Powered by Deep Web Technologies
Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition  

SciTech Connect (OSTI)

This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

Leach, C.E.; Galbraith, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Grant, P.R.; Francuz, D.J.; Schroeder, P.J. [Fluor Daniel, Inc., Richland, WA (United States)

1995-11-01T23:59:59.000Z

2

Managing Complex Environmental Remediation amidst Aggressive Facility Revitalization Milestones  

SciTech Connect (OSTI)

Unlike the final closure projects at Rocky Flats and Fernald, many of the Department of Energy's future CERCLA and RCRA closure challenges will take place at active facilities, such as the Oak Ridge National Laboratory (ORNL) central campus. ORNL has aggressive growth plans for a Research Technology Park and cleanup must address and integrate D and D, soil and groundwater remediation, and on-going and future business plans for the Park. Different planning and tracking tools are needed to support closures at active facilities. To support some large Airport redevelopment efforts, we created tools that allowed the Airline lease-holder to perform environmental remediation on the same schedule as building D and D and new building construction, which in turn allowed them to migrate real estate from unusable to usable within an aggressive schedule. In summary: The FIM and OpenGate{sup TM} spatial analysis system were two primary tools developed to support simultaneous environmental remediation, D and D, and construction efforts at an operating facility. These tools helped redevelopers to deal with environmental remediation on the same schedule as building D and D and construction, thereby meeting their goals of opening gates, restarting their revenue streams, at the same time complying with all environmental regulations. (authors)

Richter Pack, S. [PMP Science Applications International Corporation, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

3

New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

D. Vandel

2003-09-01T23:59:59.000Z

4

Personnel Support Facility (PSF)  

High Performance Buildings Database

Virginia Beach, VA The Personnel Support Facility (PSF) provides space for a library, the Navy Marine Corps Relief Society, the Substance Abuse Rehabilitation Program, St. Leo College, and the Navy College Program. A design-build project of brick, masonry, and steel, PSF is part of a post-occupancy evaluation study run by Naval Facilities Engineering Command. The study is being used to determine the benefits of green design.

5

Adaptive management: a paradigm for remediation of public facilities  

SciTech Connect (OSTI)

Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.

Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

2009-01-01T23:59:59.000Z

6

NREL Research Support Facilities (RSF)  

High Performance Buildings Database

Golden, CO NREL's Research Support Facilities building (RSF) will be a total of 218,000 sq. feet. It will have two parallel secured employee wings, one of which will be 4 stories and the other 3 stories. A connector building housing most of the public spaces will run perpendicular through both wings. The RSF will provide workspace for 742 employees. The RSF is designed to be a zero energy building through the use of innovative energy efficiency, daylighting, and renewable energy strategies, including photovoltaic solar electric systems to generate electricity.

7

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

8

SRS - Area Completion Projects - Federal Facility Agreement and Supporting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5/2013 5/2013 SEARCH GO spacer Administrative Record File/Information Repository File Federal Facility Agreement and Supporting Documentation General Information and Technologies Public Involvement Home SRS Home Area Completion Projects Federal Facility Agreement and Supporting Documentation * Federal Facility Agreement -The document that directs the comprehensive remediation of the Savannah River Site Appendix Affected by Modification: Appendix D Issuance of EPA and SCDHEC approved Revision.0 Appendix D for Fiscal Year 2013 (Print Date: 08/27/2013). The SCDHEC provided a comment on the Revision 0 Appendix D for Fiscal Year 2013 (Print Date: 08/27/2013) on Spetember 26, 2013. The EPA provided conditional approval, pending resolution of the SCDHEC's comment, of theRevision 0 Appendix D for Fiscal Year 2013 (Print Date: 08/27/2013) on October 30, 2013.

9

Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility  

Broader source: Energy.gov (indexed) [DOE]

June 7, 2011 June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at the Hanford Site - a major American Recovery and Reinvestment Act project - is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish con- struction of the 200 West Groundwater Treatment Facil- ity this year. Funding for the project comes from the $1.6 billion the Richland Operations Office received from the Recovery Act. The 52,000-square-foot facility will pump contaminated water from the ground, remove contaminants with a combination of treatment technologies, and return clean water to the aquifer. The system will have the capacity to

10

Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506  

SciTech Connect (OSTI)

The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States)] [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)] [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

2013-07-01T23:59:59.000Z

11

Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography  

SciTech Connect (OSTI)

This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

Owen, P.T.; Michelson, D.C.; Knox, N.P.

1985-09-01T23:59:59.000Z

12

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes  

SciTech Connect (OSTI)

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

13

RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)  

SciTech Connect (OSTI)

This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

Palmer, E.

1998-10-02T23:59:59.000Z

14

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12  

SciTech Connect (OSTI)

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

15

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program  

SciTech Connect (OSTI)

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

16

Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5  

SciTech Connect (OSTI)

This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

1984-09-01T23:59:59.000Z

17

Remediation  

SciTech Connect (OSTI)

The three most frequently used remediation technologies are discussed: (1) NAPL removal, (2) Pump-and-Treat, (3) Soil Vapor Extraction.

Oostrom, Mart; Falta, Ron W.; Mayer, Alex S.; Javandel, I.; Hassanizadeh, S. M.

2005-12-06T23:59:59.000Z

18

RCRA Facility Investigation/Remedial Investigation Report with the Baseline Risk Assessment for the 716-A Motor Shops Seepage Basin  

SciTech Connect (OSTI)

This document describes the RCRA Facility Investigation/Remedial Investigation/Baseline Risk Assessment of the 716-A Motor Shops Seepage Basin.

Palmer, E.

1997-08-25T23:59:59.000Z

19

CRAD, Nuclear Facility Construction - Piping and Pipe Supports...  

Office of Environmental Management (EM)

Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012 CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012...

20

Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance- April 2012  

Broader source: Energy.gov [DOE]

Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Fire Department Hose Training Facility (904-113G)  

SciTech Connect (OSTI)

This report documents the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA) for the Fire Department Hose Training Facility (FDTF) (904-113G).

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-04-01T23:59:59.000Z

22

NREL: Sustainable NREL - Research Support Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Support Facility Research Support Facility Take a Closer Look RSF Brochure Design-Build Process Booklet Photos Videos Media Contacts Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Text Version An artist's rendering of an H-shaped building. The rendering includes a key at the bottom with letters A-K that correspond with letters on the building. Each letter, when selected, provides additional information about the building feature. Use the interactive rendering to learn more about the RSF's renewable energy and energy efficiency features and design. The Research Support Facility (RSF) is the laboratory's newest sustainable green building. This 360,000 ft2 Leadership in Energy and Environmental Design (LEED®) Platinum office building is a showcase for energy

23

REP&V TO ATTNJF: NE-23 SUWECC Commercial Facilities Used by National Lead Company of Ohio in Support  

Office of Legacy Management (LM)

REP&V TO REP&V TO ATTNJF: NE-23 SUWECC Commercial Facilities Used by National Lead Company of Ohio in Support 'of FMPC Operations TO: Robert E. Lynch Procuresnent and CorXracts Division, AD-42 Oak Ridge Operations Office The Division of Facility and Site Decormnissioning Projects (DFSP) is responsible for managing the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP). The purposes of FUSRAP are (1) to identify facilities formerly operated for or by the Manhattan Engineer District (NED) and Atomic Energy Commission (AEC) which may have been radioactively contaminated as a result of these operations, (2) to determine if the facilities require remedial action, and (3) where DOE has authority, to conduct the remedial action. Authority for remedial action under FUSRAP is

24

Haselden/RNL - Research Support Facility Documentary  

ScienceCinema (OSTI)

The US Department of Energy's (DOE) Research Support Facility (RSF) on the campus of the National Renewable Energy Laboratory is positioned to be one of the most energy efficient buildings in the world. It will demonstrate NREL's role in moving advanced technologies and transferring knowledge into commercial applications. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

None

2013-05-29T23:59:59.000Z

25

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program  

SciTech Connect (OSTI)

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

26

Investigating Habitat Value in Support of Contaminant Remediation Decisions: Approach  

SciTech Connect (OSTI)

Habitat valuation methods are most often developed and used to prioritize candidate lands for conservation. In this study the intent of habitat valuation was to inform the decision-making process for remediation of chemical contaminants on specific lands or surface water bodies. Methods were developed to summarize dimensions of habitat value for six representative aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy Oak Ridge Reservation in Oak Ridge, TN, USA. Several general valuation metrics were developed for three broad categories: site use by groups of organisms, site rarity, and use value added from spatial context. Examples of use value metrics are taxa richness, a direct measure of number of species that inhabit an area, complexity of habitat structure, an indirect measure of potential number of species that may use the area, and land use designation, a measure of the length of time that the area will be available for use. Measures of rarity included presence of rare species or communities. Examples of metrics for habitat use value added from spatial context included similarity or complementarity of neighboring habitat patches and presence of habitat corridors. More specific metrics were developed for groups of organisms in contaminated streams, ponds, and terrestrial ecosystems. For each of these metrics, cutoff values for high, medium, and low habitat value were suggested, based on available information on distributions of organisms and landscape features, as well as habitat use information. A companion paper describes the implementation of these habitat valuation metrics and scoring criteria in the remedial investigation for ETTP.

Efroymson, Rebecca Ann [ORNL; Peterson, Mark J [ORNL; Welsh, Christopher John Edward [ORNL; Druckenbrod, Daniel L [ORNL; Ryon, Michael G [ORNL; Smith, John G [ORNL; Hargrove, William Walter [ORNL; Giffen, Neil R [ORNL; Roy, W Kelly [ORNL; Quarles III, Harry Dewitt [ORNL

2008-01-01T23:59:59.000Z

27

Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227  

SciTech Connect (OSTI)

The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow and load scenarios. (authors)

Freihammer, Till; Chaput, Barb [AECOM, 99 Commerce Drive, Winnipeg, Manitoba, R3P 0Y7 (Canada)] [AECOM, 99 Commerce Drive, Winnipeg, Manitoba, R3P 0Y7 (Canada); Vandergaast, Gary [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada)] [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada); Arey, Jimi [Public Works and Government Services Canada, Ontario (Canada)] [Public Works and Government Services Canada, Ontario (Canada)

2013-07-01T23:59:59.000Z

28

International cooperation and support in environmental remediation – is there any room for improvement?  

Science Journals Connector (OSTI)

The challenges faced by states seeking to implement Environmental Remediation works are many. To this end, the International Atomic Energy Agency attempts to provide assistance and guidance to Member States wherever possible. This review article provides a brief overview of these challenges and highlights the international sources of financial and implementation support discussed at an international conference on the topic in Astana, Kazakhstan in 2009. The conference concluded the importance of institutional structures as a pre-requisite for remediation work, recognized privatization as a useful but limited financing tool for remediation and illustrated the need for better coordination between international funding organizations to reduce overlap and optimization of resources to secure the best outcomes.

Horst Monken Fernandes; Manuel Santamaria Recio; Hans Forsstrom; Philip Michael Carson

2013-01-01T23:59:59.000Z

30

Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572  

SciTech Connect (OSTI)

Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

Gilles, Michael L.; Gilmour, John C. [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

2013-07-01T23:59:59.000Z

31

User Support | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services The ALCF User Assistance Center provides support for ALCF resources. The center's normal support hours are 9 a.m. until 5 p.m. (Central time) Monday through Friday,...

32

CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection -  

Broader source: Energy.gov (indexed) [DOE]

Construction - Piping and Pipe Supports Construction - Piping and Pipe Supports Inspection - March 29, 2012 CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012 March 29, 2012 Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0) For the purpose of this criteria review and approach, this Criteria Review and Approach Document (CRAD) includes piping and pipe supports and attachments of the pipe supports to structures (concrete, structural steel, or embed plates). Pipe supports include rigid restraints, welded attachments to piping, struts, snubbers, spring cans, and constant supports. Inspection of pipe whip restraints are also included in this CRAD. Selection of nuclear facility piping systems for inspection should be

33

NREL: Sustainable NREL - Media Contacts for the Research Support Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Media Contacts for the Research Support Facility Media Contacts for the Research Support Facility Please refer to these media contacts if you are a member of the media and have questions about the Research Support Facility (RSF). U.S. Department of Energy, Golden Field Office The U.S. Department of Energy (DOE), the owner of the National Renewable Energy Laboratory (NREL), developed the vision for a super energy-efficient office building on the NREL campus that would serve as a model and showcase for what is technologically possible and commercially viable. With this building, DOE leads by example and hopes to spur innovation and replication throughout government and the commercial building sector. John Horst U.S. Department of Energy, Golden Field Office 303-275-4709 Eric Escudero U.S. Department of Energy, Golden Field Office

34

Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

1998-03-01T23:59:59.000Z

35

POTENTIAL ENHANCEMENTS TO NATURAL ATTENUATION: LINES OF INQUIRY SUPPORTING ENHANCED PASSIVE REMEDIATION OF CHLORINATED SOLVENTS  

SciTech Connect (OSTI)

The Department of Energy (DOE) is sponsoring an initiative to facilitate efficient, effective and responsible use of Monitored Natural Attenuation (MNA) and Enhanced Passive Remediation (EPR) for chlorinated solvents. This Office of Environmental Management (EM) ''Alternative Project,'' focuses on providing scientific and policy support for MNA/EPR. A broadly representative working group of scientists supports the project along with partnerships with regulatory organizations such as the Interstate Technology and Regulatory Council and the U.S. Environmental Protection Agency (EPA). The initial product of the technical working group was a summary report that articulated the conceptual approach and central scientific tenants of the project, and that identified a prioritized listing of technical targets for field research. This report documented the process in which: (1) scientific ground rules were developed, (2) lines of inquiry were identified and then critically evaluated, (3) promising applied research topics were highlighted in the various lines of inquiry, and (4) these were discussed and prioritized. The summary report will serve as a resource to guide management and decision-making throughout the period of the subject MNA/EPR Alternative Project. To support and more fully document the information presented in the summary report, we are publishing a series of supplemental documents that present the full texts from the technical analyses within the various lines of inquiry (see listing). The following report - documenting our evaluation of the state of the science of the characterization and monitoring process and tools-- is one of those supplemental documents.

Vangelas, K; Tom Early, T; Michael Heitkamp, M; Brian02 Looney, B; David Major, D; Brian Riha, B; Jody Waugh, J; Gary Wein, G

2004-06-18T23:59:59.000Z

36

NREL's Research Support Facility: An Operations Update - December 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL's Research Support Facility: NREL's Research Support Facility: An Energy Performance Update Shanti Pless- Senior Research Engineer Chad Lobato - Research Engineer Joe Drexler - Chief Engineer for Site Operations and Maintenance Paul Torcellini - Group Manager Ron Judkoff - Principal Program Manager Commercial Buildings Research Group December 2011 Innovation for Our Energy Future Innovation for Our Energy Future 0 20 40 60 80 100 120 140 Old NREL/DOE Leased Office Space Typical Denver Office Building ENERGY STAR 75 Office Building Average LEED Office Building ENERGY STAR 90 Office Building EPA Region 8 Office Denver, CO RSF RSF Renewable Production Annual EUI (kBtu/ft 2 ) Site Mounted PV Roof Mounted PV Data Center Whole Building Energy Efficiency Design Requirements

37

REP&V TO ATTNOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio in Support  

Office of Legacy Management (LM)

x:Y" x:Y" . .' 3023 I\ \ 'a' '. Unita? -&&s Coverament , ,Q,.l. ),&, ,(>.. Department of Energy riGmorandum / d6a 2/. $3 DATE: JL(L 2 8 ;;$5 co. /3 .-J/ co,/3 REP&V TO ATTNOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio in Support of FMPC Operations TO: Robert E. Lynch Procuremnent and Contracts Division, AD-42 Oak Ridge Operations Office The Division of Facility and Site Decommissioning Projects (DFSD) is responsible for managing the Department's Formerly Utilized Sites Remedial Action Program (FuSRAP). The purposes of FUSRAP are (1) to identify facilities formerly operated for or by the Manhattan Engineer District (NED) and Atomic Energy Commission (AEC) which may have been radioactively contaminated as a result of these operations, (2) to determine if the

38

Diagnostic development and support of MHD test facilities  

SciTech Connect (OSTI)

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 9 figs., 1 tab.

Not Available

1990-01-01T23:59:59.000Z

39

Diagnostic development and support of MHD (magnetohydrodynamics) test facilities  

SciTech Connect (OSTI)

Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

Not Available

1989-07-01T23:59:59.000Z

40

RCRA Facility Investigation/Remedial Investigation Report for Gunsite 720 Rubble Pit Unit (631-16G) - March 1996  

SciTech Connect (OSTI)

Gunsite 720 Rubble Pit Unit is located on the west side of SRS. In the early to mid 1980`s, while work was being performed in this area, nine empty, partially buried drums, labeled `du Pont Freon 11`, were found. As a result, Gunsite 720 became one of the original waste units specified in the SRS RCRA Facility Assessment (RFA). The drums were excavated on July 30, 1987 and placed on a pallet at the unit. Both the drums and pallet were removed and disposed of in October 1989. The area around the drums was screened during the excavation and the liquid (rainwater) that collected in the excavated drums was sampled prior to disposal. No evidence of hazardous materials was found. Based on the review of the analytical data and screening techniques used to evaluate all the chemicals of potential concern at Gunsite 720 Rubble Pit Unit, it is recommended that no further remedial action be performed at this unit.

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ICDF Complex Remedial Action Work Plan  

SciTech Connect (OSTI)

This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

W. M. Heileson

2006-12-01T23:59:59.000Z

42

Calibration Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards for calibrating borehole fission neutron devices are also available, but are used infrequently. Radiation standards are constructed of concrete with elevated, uniform concentrations of naturally occurring potassium, uranium, and/or thorium. Pad standards have large, flat surfaces suitable for calibration

43

Decision Support Facility for the APS Control System  

E-Print Network [OSTI]

The Advanced Photon Source is now in its fifth year of routine beam production. The EPICS-based [1] control system has entered the phase in its life cycle where new control algorithms must be implemented under increasingly stringent operational and reliability requirements. The sheer volume of the control system (~270,000 records, ~145 VME-based input-output controllers (IOCs), and ~7,000,000 lines of EPICS ASCII configuration code), presents a daunting challenge for code maintenance. The present work describes a relational database that provides an integrated view of the interacting components of the entire APS control system, including the IOC low-level logic, the physical wiring documentation, and high-level client applications. The database is extracted (booted) from the same operational CVS repository as that used to load the active IOCs. It provides site-wide decision support facilities to inspect and trace control flow and to identify client (e.g., user interface) programs involved at any selected poin...

Dohan, D A

2001-01-01T23:59:59.000Z

44

Voluntary Protection Program Onsite Review, Portsmouth Facility Support Services- March 2013  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Portsmouth Facility Support Services is continuing to perform at a level deserving DOE-VPP Star recognition.

45

CRAD, Nuclear Facility Construction- Piping and Pipe Supports Inspection- March 29, 2012  

Broader source: Energy.gov [DOE]

Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0)

46

DOE's 2012 Facility Rep of the Year Supports EM | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE's 2012 Facility Rep of the Year Supports EM DOE's 2012 Facility Rep of the Year Supports EM DOE's 2012 Facility Rep of the Year Supports EM September 30, 2013 - 12:00pm Addthis John Barnes, right, discusses a transuranic (TRU) waste container with Charles Fairburn of Savannah River Nuclear Solutions. The TRU waste container was repackaged in the Savannah River Site H-Canyon facility. Barnes has more than 23-years of experience at the Savannah River Site as a Facility Representative. John Barnes, right, discusses a transuranic (TRU) waste container with Charles Fairburn of Savannah River Nuclear Solutions. The TRU waste container was repackaged in the Savannah River Site H-Canyon facility. Barnes has more than 23-years of experience at the Savannah River Site as a Facility Representative. AIKEN, S.C. - John Barnes, a Savannah River Site (SRS) employee who works

47

DOE's 2012 Facility Rep of the Year Supports EM | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE's 2012 Facility Rep of the Year Supports EM DOE's 2012 Facility Rep of the Year Supports EM DOE's 2012 Facility Rep of the Year Supports EM September 30, 2013 - 12:00pm Addthis John Barnes, right, discusses a transuranic (TRU) waste container with Charles Fairburn of Savannah River Nuclear Solutions. The TRU waste container was repackaged in the Savannah River Site H-Canyon facility. Barnes has more than 23-years of experience at the Savannah River Site as a Facility Representative. John Barnes, right, discusses a transuranic (TRU) waste container with Charles Fairburn of Savannah River Nuclear Solutions. The TRU waste container was repackaged in the Savannah River Site H-Canyon facility. Barnes has more than 23-years of experience at the Savannah River Site as a Facility Representative. AIKEN, S.C. - John Barnes, a Savannah River Site (SRS) employee who works

48

RCRA Facility Investigation/Remedial Investigation Work Plan Addendum for the TNX Area Operable Unit Groundwater Radiological Characterization  

SciTech Connect (OSTI)

The purpose of this document is to present a sampling and analysis plan for the Water Table Aquifer for purposes of obtaining additional data for remedial decision-making with respect to radioactive contamination in the groundwater.

Brewer, K.

2002-06-17T23:59:59.000Z

49

REP&" TO A~NOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio iin Support  

Office of Legacy Management (LM)

tifr'itG!'l' &i&s Coverament tifr'itG!'l' &i&s Coverament --_ , ,&,.i +.&r, ,' ,T.L ' Department of Energy / REP&" TO A~NOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio iin Support of FMPC Operations TO: Robert E. Lynch Procuremnent and Contracts Division, AD-42 Oak Ridge Operations Office , / I I The Division of Facility and Site Oecomnissioning Projects (OF%) is responsible for managing the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP). The purposes of FUSRAP are (1) to identify facilities formerly operated for or by the Manhattan Engineer District (WED) and Atomic Energy Commission (AEC) which may have been'radioactively contaminated as a result of these operations, (5) to determine if the

50

Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

51

Support of the Iraq nuclear facility dismantlement and disposal program  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

2007-07-01T23:59:59.000Z

52

Evaluation of DMDOHEMA based supported liquid membrane system for high level waste remediation under simulated conditions  

Science Journals Connector (OSTI)

Abstract N,N?-dimethyl-N,N?-dioctyl-2,(2?-hexyloxyethyl) malonamide (DMDOHEMA) has been proposed as solvent for the partitioning of radiotoxic minor actinides from high-level waste (HLW) solutions. The facilitated transport of 241Am(III), 239Pu(IV), 233U(VI), 237Np(V) across supported liquid membrane (SLM) impregnated with DMDOHEMA solution in n-dodecane was investigated under varying conditions of feed acidity, receiver phase composition, carrier concentration, and membrane thickness. Micro porous PTFE membrane was used as the polymeric support. There was a decrease in the transport of metal ions under the pressurized heavy water reactor simulated HLW (PHWR-SHLW) conditions. The physical stability of the SLM impregnated with the carrier was investigated for ~60 days by performing Am(III) permeation studies. Marginal variation in the transport behavior suggested reasonably good stability of the impregnated carrier in the membrane pores. A simple mathematical model has been developed to simulate experimental data and to explain quantitatively the role of different parameters.

Ajay B. Patil; Pankaj Kandwal; V.S. Shinde; P.N. Pathak; P.K. Mohapatra

2013-01-01T23:59:59.000Z

53

Workers Demolish Reactor Support Facility as Part of River Corridor Contract  

Broader source: Energy.gov [DOE]

RICHLAND, Wash. – EM’s Richland Operations Office and cleanup contractor Washington Closure Hanford recently completed the cleanout and demolition of the last reactor support facility as part of the River Corridor Closure Contract.

54

Analyses in support of the Laboratory Microfusion Facility and ICF commercial reactor designs  

SciTech Connect (OSTI)

Our work on this contract was divided into two major categories; two thirds of the total effort was in support of the Laboratory Microfusion Facility (LMF), and one third of the effort was in support of Inertial Confinement Fusion (ICF) commercial reactors. This final report includes copies of the formal reports, memoranda, and viewgraph presentations that were completed under this contract.

Meier, W.R.; Monsler, M.J.

1988-12-28T23:59:59.000Z

55

Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space  

SciTech Connect (OSTI)

The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

Stange, Sy [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Herrera, Gary D. [Los Alamos National Laboratory; McLaughlin, Anastasia D. [Los Alamos National Laboratory; Montoya, Charles M. [Los Alamos National Laboratory; Quihuis, Becky A. [Los Alamos National Laboratory; Trujillo, Julio B. [Los Alamos National Laboratory; Van Pelt, Craig E. [Los Alamos National Laboratory; Wenz, Tracy R. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

56

Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations, April 2012  

Broader source: Energy.gov (indexed) [DOE]

Oversight Review of Oversight Review of Richland Operations Office and CH2M HILL Plateau Remediation Company and Mission Support Alliance Conduct of Operations April 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

57

Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations, April 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Independent Oversight Review of Independent Oversight Review of Richland Operations Office and CH2M HILL Plateau Remediation Company and Mission Support Alliance Conduct of Operations April 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

58

ICDF Complex Remedial Action Report  

SciTech Connect (OSTI)

This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

W. M. Heileson

2007-09-26T23:59:59.000Z

59

Technology Survey to Support Revision to the Remedial Investigation/Feasibility Study Work Plan for the 200­-SW­-2 Operable Unit at the U.S. Department of Energy’s Hanford Site  

SciTech Connect (OSTI)

A survey of technologies was conducted to provide information for a Data Quality Objectives process being conducted to support revision of the Remedial Investigation/Feasibility Study Work Plan for the 200-SW-2 Operable Unit. The technology survey considered remediation and characterization technologies. This effort was conducted to address, in part, comments on the previous version of the Remedial Investigation/Feasibility Study Work Plan for the 200-SW-2 Operable Unit as documented in 200­SW­1 and 200­SW­2 Collaborative Workshops?Agreement, Completion Matrix, and Supporting Documentation. By providing a thorough survey of remediation and characterization options, this report is intended to enable the subsequent data quality objectives and work plan revision processes to consider the full range of potential alternatives for planning of the Remedial Investigation/Feasibility Study activities.

Truex, Michael J.; Johnson, Christian D.; Nimmons, Michael J.

2007-09-25T23:59:59.000Z

60

Diagnostic development and support of MHD test facilities. Final progress report, March 1980--March 1994  

SciTech Connect (OSTI)

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.

Not Available

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Remedial investigation of the High Explosives Burn Pit facility, Building 829 complex, Lawrence Livermore National Laboratory site 300  

SciTech Connect (OSTI)

To assess any impact on the environment resulting from operations at the High Explosives (HE) Burn Pits at Lawrence Livermore National Laboratory (LLNL) Site 300, we evaluated the soil, rock, and ground water beneath the burn pit facility. Between November 16, 1986, and January 12, 1987, we drilled eight exploratory holes; one was converted to a monitor well, and another was converted to a piezometer. Seven holes were drilled, geologically logged, and sampled to determine the concentration and extent of substances that may have infiltrated to the subsurface from the burn pits. The eighth hole was completed as a monitor well but was not sampled, and no detailed log was prepared. Electric logging was performed in one exploratory hole further evaluate the geologic conditions. 27 refs., 4 figs., 6 tabs.

Webster-Scholten, C.P.; Crow, N.B.

1989-08-01T23:59:59.000Z

62

An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor  

SciTech Connect (OSTI)

The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

Yoder Jr, Graydon L [ORNL] [ORNL; Aaron, Adam M [ORNL] [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Peretz, Fred J [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Wilgen, John B [ORNL] [ORNL; Wilson, Dane F [ORNL] [ORNL

2014-01-01T23:59:59.000Z

63

Recovery Act Supports Construction of Site's Largest Groundwater Treatment  

Broader source: Energy.gov (indexed) [DOE]

Supports Construction of Site's Largest Groundwater Supports Construction of Site's Largest Groundwater Treatment Facility Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility Construction of the largest groundwater treatment facility at the Hanford Site – a major American Recovery and Reinvestment Act project – is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish construction of the 200 West Groundwater Treatment Facility this year. Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility More Documents & Publications Hanford Treats Record Amount of Groundwater Recovery Act Invests in Cleanup, Preservation of Hanford Site Locomotives,

64

The role of historical operations information for supporting remedial investigation work at the former Harshaw Chemical Site - 8279.  

SciTech Connect (OSTI)

In the early stages of hazardous, toxic, and radioactive waste (HTRW) site investigations, basic record searches are performed to help direct the agencies investigating contaminated sites to areas of concern and to identify contaminants of interest (COI). Plans developed on the basis of this preliminary research alone are often incomplete and result in unexpected discoveries either while in the field investigating the site or after the reports have been written. Many of the sites investigated under the Formerly Utilized Sites Remedial Action program (FUSRAP) have complex histories that are slowly uncovered over the life of the project. Because of programmatic constraints, nuances of these sites are often discovered late in their programs and result in increased expenditures in order to fully characterize the site, perform a robust feasibility study, and recommend appropriate alternatives for remediation. By identifying resources for public records, classified records, historic aerial photographs, and other sources of site-specific historical information, a process can be established to optimize the collection of information and to develop efficient and complete project plans. In many cases, interviews with past site employees are very useful tools. In combining what is found in the records, observed on historic aerial photographs, and heard from former employees and family members, teams investigating these sites can begin to compile sound and more complete conceptual site models (CSMs). The former Harshaw Chemical Site (HCS) illustrates this discovery process. HCS is part of FUSRAP. Preliminary investigations by the US Department of Energy (DOE) in the 1970s provided an initial CSM of activities that had taken place that may have resulted in contamination. The remedial investigation (RI) conducted by the US Army Corps of Engineers (USACE) was designed around this CSM. The RI work, however, identified a number of site conditions that were unexpected, including new potential COI associated with recycled uranium and contaminant locations that were inconsistent with the original CSM. As part of an RI Addendum effort, the USACE reconsidered its understanding of HCS historical activities. This effort included an intensive review of available historical aerial photography, an in-depth Potentially Responsible Parties (PRP) investigation, additional analysis of the production processes in place at HCS, and targeted supplemental data collection. The result of this effort was a revised CSM that included a number of previously unidentified potential COI and a much clearer understanding of the processes and resulting waste streams potentially associated with environmental contamination. Because of their complex and often poorly documented operational histories, unexpected discoveries will always be a part of investigating sites such as HCS. Taking advantage of available resources and expending funds for thorough historical research early in the life of a project will help to reduce the chances for expensive field remobilizations and significant schedule delays. A complete and accurate site history also allows for more efficient long-term technical and budgetary planning, thus eliminating many obstacles associated with the ultimate disposition of HTRW sites.

Johnson, R.; Peterson, J.; Picel, K.; Kolhoff, A.; Devaughn, J.; Environmental Science Division; U. S.Army Corps of Engineers, Buffalo District; Science Applications International Corp.

2008-01-01T23:59:59.000Z

65

The Role of Historical Operations Information for Supporting Remedial Investigation Work at the Former Harshaw Chemical Site  

SciTech Connect (OSTI)

In the early stages of hazardous, toxic, and radioactive waste (HTRW) site investigations, basic record searches are performed to help direct the agencies investigating contaminated sites to areas of concern and to identify contaminants of interest (COI). Plans developed on the basis of this preliminary research alone are often incomplete and result in unexpected discoveries either while in the field investigating the site or after the reports have been written. Many of the sites investigated under the Formerly Utilized Sites Remedial Action Program (FUSRAP) have complex histories that are slowly uncovered over the life of the project. Because of programmatic constraints, nuances of these sites are often discovered late in their programs and result in increased expenditures in order to fully characterize the site, perform a robust feasibility study, and recommend appropriate alternatives for remediation. By identifying resources for public records, classified records, historic aerial photographs, and other sources of site-specific historical information, a process can be established to optimize the collection of information and to develop efficient and complete project plans. In many cases, interviews with past site employees are very useful tools. In combining what is found in the records, observed on historic aerial photographs, and heard from former employees and family members, teams investigating these sites can begin to compile sound and more complete conceptual site models (CSM(s). The former Harshaw Chemical Site (HCS) illustrates this discovery process. HCS is part of FUSRAP. Preliminary investigations by the U.S. Department of Energy (DOE) in the 1970's provided an initial CSM of activities that had taken place that may have resulted in contamination. The remedial investigation (RI) conducted by the U.S. Army Corps of Engineers (USACE) was designed around this CSM. The RI work, however, identified a number of site conditions that were unexpected, including new potential COI associated with recycled uranium and contaminant locations that were inconsistent with the original CSM. As part of an RI Addendum effort, the USACE reconsidered its understanding of HCS historical activities. This effort included an intensive review of available historical aerial photography, an in-depth Potentially Responsible Parties (PRP) investigation, additional analysis of the production processes in place at HCS, and targeted supplemental data collection. The result of this effort was a revised CSM that included a number of previously unidentified potential COI and a much clearer understanding of the processes and resulting waste streams potentially associated with environmental contamination. Because of their complex and often poorly documented operational histories, unexpected discoveries will always be a part of investigating sites such as HCS. Taking advantage of available resources and expending funds for thorough historical research early in the life of a project will help to reduce the chances for expensive field re-mobilizations and significant schedule delays. A complete and accurate site history also allows for more efficient long-term technical and budgetary planning, thus eliminating many obstacles associated with the ultimate disposition of HTRW sites. (authors)

Kolhoff, A. [U.S. Army Corps of Engineers - Buffalo District, Buffalo, NY (United States); Johnson, R.; Peterson, J.; Picel, K. [Argonne National Laboratory, Argonne, IL (United States); DeVaughn, J. [Science Applications International Corporation, Twinsburg, OH (United States)

2008-07-01T23:59:59.000Z

66

RCRA Information Brief, June 1996: Conditional remedies under RCRA correction action  

SciTech Connect (OSTI)

This document describes conditional remedies under RCRA corrective action. The definition of conditional remedies, criteria that must be met, applications to DOE facilities, applicable clean-up standards, and implementation of conditional remedies are discussed in the document.

NONE

1996-06-01T23:59:59.000Z

67

Saxton soil remediation project  

SciTech Connect (OSTI)

The Saxton Nuclear Experimental Facility (SNEF) consists of a 23-MW(thermal) pressurized light water thermal reactor located in south central Pennsylvania. The Saxton Nuclear Experimental Corporation (SNEC), a wholly owned subsidiary of the General Public Utilities (GPU) Corporation, is the licensee for the SNEF. Maintenance and decommissioning activities at the site are conducted by GPU Nuclear, also a GPU subsidiary and operator of the Three Mile Island and Oyster Creek nuclear facilities. The remediation and radioactive waste management of contaminated soils is described.

Holmes, R.D. [GPU Nuclear Corporation, Middletown, PA (United States)

1995-12-31T23:59:59.000Z

68

Facilities evaluation report  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

Sloan, P.A.; Edinborough, C.R.

1992-04-01T23:59:59.000Z

69

Cost of presumptive source term Remedial Actions Laboratory for energy-related health research, University of California, Davis  

SciTech Connect (OSTI)

A Remedial Investigation/Feasibility Study (RI/FS) is in progress at the Laboratory for Energy Related Health Research (LEHR) at the University of California, Davis. The purpose of the RI/FS is to gather sufficient information to support an informed risk management decision regarding the most appropriate remedial actions for impacted areas of the facility. In an effort to expedite remediation of the LEHR facility, the remedial project managers requested a more detailed evaluation of a selected set of remedial actions. In particular, they requested information on both characterization and remedial action costs. The US Department of Energy -- Oakland Office requested the assistance of the Pacific Northwest National Laboratory to prepare order-of-magnitude cost estimates for presumptive remedial actions being considered for the five source term operable units. The cost estimates presented in this report include characterization costs, capital costs, and annual operation and maintenance (O&M) costs. These cost estimates are intended to aid planning and direction of future environmental remediation efforts.

Last, G.V.; Bagaasen, L.M.; Josephson, G.B.; Lanigan, D.C.; Liikala, T.L.; Newcomer, D.R.; Pearson, A.W.; Teel, S.S.

1995-12-01T23:59:59.000Z

70

Status Report on Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6  

SciTech Connect (OSTI)

This document provides a status report on efforts to transfer physical and hydraulic property data from PNNL to CHPRC for incorporation into HEIS. The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and their contractors. The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library. These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft Access database files used by SoilVision{reg_sign} into HEIS, which is currently being maintained by CH2M-Hill Plateau Remediation Company (CHRPC), (3) develop a Virtual Library module for accessing these data from HEIS, and (4) write a User's Manual for the Virtual Library module. The intent of these activities is to make the available physical and hydraulic property data more readily accessible and useable by technical staff and operable unit managers involved in waste site assessments and remedial action decisions for Hanford. In FY08 communications were established between PNNL and staff from Fluor-Hanford Co. (who formerly managed HEIS) to outline the design of a Virtual Library module that could be used to access the physical and hydraulic property data that are to be transferred into HEIS. Data dictionaries used by SoilVision{reg_sign} were also provided to Fluor-Hanford personnel who are now with CHPRC. During ongoing work to ensure traceability and defensibility of all physical and hydraulic property data that currently reside in the SoilVision{reg_sign} database, it was recognized that further work would be required in this effort before the data were actually ported into HEIS. Therefore work on the Virtual Library module development and an accompanying User's Guide was deferred until an unspecified later date. In FY09 efforts have continued to verify the traceability and defensibility of the physical and hydraulic property datasets that are currently being maintained by PNNL. Although this is a work in progress, several of these datasets are now ready for transfer to CHRPC for inclusion in HEIS. The actual loading of data into HEIS is performed by CHPRC staff, so after the data are transferred from PNNL to CHPRC, it will be the responsibility of CHPRC to ensure that these data are loaded and made accessible. This document provides a status report on efforts to transfer physical and hydraulic property data from PNNL to CHPRC for incorporation into HEIS.

Rockhold, Mark L.; Middleton, Lisa A.; Cantrell, Kirk J.

2009-06-30T23:59:59.000Z

71

A large scale environmental assessment: The Clinch River Remedial Investigation  

SciTech Connect (OSTI)

The USEPA identified the Department of Energy Oak Ridge Reservation (ORR) in east Tennessee as a Superfund National Priorities List site in 1989. Facilities at the ORR have released a variety of radiological, organic, and inorganic contaminants to the local aquatic environment as a result of nuclear weapons production, uranium enrichment, and energy research and development activities from the mid 1940s to the present. The Clinch River Remedial Investigation (CRRI) was initiated to meet the Resource Conservation Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements to determine the nature and extent of hazardous releases to the aquatic environment. Phase 1 of the CRRI consisted of sampling and analysis of selected sites representing differing levels of contamination to determine the range of contaminant concentrations present in off-site water, sediment, and fish. Sampling activities in support of Phase 2 of the remedial investigation were designed to assist in defining the nature and extent of the contaminants of concern in sediment, water and biota, and to provide information for assessing the potential risks to human health and the environment associated with those contaminants. A concurrent study evaluated potential remedial alternatives and identified effective and acceptable corrective measures. An overview of the CRRI, including a history of the facilities and their contaminant releases, and the regulatory context in which the remedial investigation occurred is presented.

LeHew, R.; Harris, R. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

72

Addendum to environmental monitoring plan Nevada Test Site and support facilities  

SciTech Connect (OSTI)

This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

NONE

1992-11-01T23:59:59.000Z

73

The Design-Build Process for the Research Support Facility (RSF), Energy Efficiency & Renewable Energy (EERE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design-Build Process for Design-Build Process for the Research Support Facility An in-depth look at how the U.S. Department of Energy and the National Renewable Energy Laboratory used a performance-based design-build contract process to build one of the most energy efficient office buildings in the world. Table of Contents The Design-Build Process for the Research Support Facility | 1 Table of Contents Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Building Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Owner Roles and Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Acquisition Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Defining Performance Objectives . . . . . . . . . . . . . . . . . . . . . . . .

74

Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report  

SciTech Connect (OSTI)

The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

1994-02-01T23:59:59.000Z

75

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

DOW CHEMICAL COMPANY WALNUT CREEK, CALIFORNIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site...

76

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSE'ITS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

77

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

78

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK VW. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

79

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

COLUMBIA UNIVERSITY NEW YORK, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning...

80

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Tank waste remediation system engineering plan  

SciTech Connect (OSTI)

This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

Rifaey, S.H.

1998-01-09T23:59:59.000Z

82

Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update  

SciTech Connect (OSTI)

The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

L. V. Street

2007-04-01T23:59:59.000Z

83

Innovative vitrification for soil remediation  

SciTech Connect (OSTI)

The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

Jetta, N.W.; Patten, J.S.; Hart, J.G.

1995-12-01T23:59:59.000Z

84

Preliminary assessment report for Virginia Army National Guard Army Aviation Support Facility, Richmond International Airport, Installation 51230, Sandston, Virginia  

SciTech Connect (OSTI)

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Virginia Army National Guard (VaARNG) property in Sandston, Virginia. The Army Aviation Support Facility (AASF) is contiguous with the Richmond International Airport. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The PA is designed to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF, originally constructed as an active Air Force interceptor base, provides maintenance support for VaARNG aircraft. Hazardous materials used and stored at the facility include JP-4 jet fuel, diesel fuel, gasoline, liquid propane gas, heating oil, and motor oil.

Dennis, C.B.

1993-09-01T23:59:59.000Z

85

Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River Site, Salt Waste Processing Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports September 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

86

Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site, Salt Waste Processing Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports September 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

87

WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.

N.D. Sudan

2000-06-22T23:59:59.000Z

88

Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

1993-07-01T23:59:59.000Z

89

Design criteria document, Maintenance Shop/Support Facility, K-Basin Essential Systems Recovery, Project W-405  

SciTech Connect (OSTI)

During the next 10 years a substantial amount of work is scheduled in the K-Basin Area related to the storage and eventual removal of irradiated N-Reactor fuel. Currently, maintenance support activities are housed in existing structures that were constructed in the early 1950`s. These forty-year-old facilities and their supporting services are substandard, leading to inefficiencies. Because of numerous identified deficiencies and the planned increase in the numbers of K-Basin maintenance personnel, adequate maintenance support facilities that allow efficient operations are needed. The objective of this sub-project of Project W-405 is to provide a maintenance and storage facility which meets the K-Basin Maintenance Organization requirements as defined in Attachment 1. In Reference A, existing guidelines and requirements were used to allocate space for the maintenance activities and to provide a layout concept (See Attachment 2). The design solution includes modifying the existing 190 K-E building to provide space for shops, storage, and administration support functions. The primary reason for the modification is to simplify siting/permitting and make use of existing infrastructure. In addition, benefits relative to design loads will be realized by having the structure inside 190K-E. The new facility will meet the Maintenance Organization approved requirements in Attachment 1 relating to maintenance activities, storage areas, and personnel support services. This sub-project will also resolve outstanding findings and/or deficiencies relating to building fire protection, HVAC requirements, lighting replacement/upgrades, and personnel facilities. Compliance with building codes, local labor agreements and safety standards will result.

Strehlow, M.W.B.

1994-12-14T23:59:59.000Z

90

Type B Accident Investigation Board Report Employee Puncture Wound at the F-TRU Waste Remediation Facility at the Savannah River Site on June 14, 2010  

Broader source: Energy.gov [DOE]

This report documents the results of the Type B Accident Investigation Board investigation of the June 14, 2010, employee puncture wound at the Department of Energy (DOE) Savannah River Site (SRS) F-TRU Wste Facility located in the F Canyon Facility.

91

Environmental Assessment for the construction and operation of the Health Physics Site Support Facility on the Savannah River Site  

SciTech Connect (OSTI)

DOE has prepared an environmental assessment for the proposed construction and operation of the Health Physics Site Support Facility on the Savannah River Site. This (new) facility would meet requirements of the site radiological protection program and would ensure site compliance with regulations. It was determined that the proposed action is not a major Federal action significantly affecting the quality of the environment within the meaning of NEPA. Therefore, a finding of no significant impact is made, and no environmental impact statement is needed.

NONE

1995-07-01T23:59:59.000Z

92

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan  

SciTech Connect (OSTI)

This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

D. E. Shanklin

2006-06-01T23:59:59.000Z

93

324 Facility special-case waste assessment in support of 324 closure (TPA milestone M-89-05)  

SciTech Connect (OSTI)

Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement Milestone M-89-05, requires US Department of Energy, Richland Operations Office to complete a 324 Facility Special-Case Waste Assessment in Support of 324 Closure. This document, HNF-1270, has been prepared with the intent of meeting this regulatory commitment. Alternatives for the special-case wastes located in the 324 Building were defined and analyzed. Based on the criteria of safety, environmental, complexity of interfaces, risk, cost, schedule, and long-term operability and maintainability, the best alternative was chosen. Waste packaging and transportation options are also included in the recommendations. The waste disposition recommendations for the B-Cell dispersibles/tank heels and High-Level Vault packaged residuals are to direct them to the Plutonium Uranium Extraction Facility (PUREX) Number 2 storage tunnel.

Hobart, R.L.

1998-06-25T23:59:59.000Z

94

CENTRAL PLATEAU REMEDIATION  

SciTech Connect (OSTI)

A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

ROMINE, L.D.

2006-02-01T23:59:59.000Z

95

Ignition studies in support of the European High Power Laser Energy Research Facility project  

Science Journals Connector (OSTI)

The European High Power Laser Energy Research Facility (HiPER) project is ... of the fusion target mixing prior to thermonuclear ignition have been investigated using the 1D Lagrangian...Z ion species may inhibit...

J. Pasley

2010-11-01T23:59:59.000Z

96

Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516  

SciTech Connect (OSTI)

Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)] [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

97

Groundwater Treatment at the Fernald Preserve: Status and Path Forward for the Water Treatment Facility - 12320  

SciTech Connect (OSTI)

Operating a water treatment facility at the Fernald Preserve in Cincinnati, Ohio-to support groundwater remediation and other wastewater treatment needs-has become increasingly unnecessary. The Fernald Preserve became a U.S. Department of Energy Office of Legacy Management (LM) site in November 2006, once most of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration had been completed. Groundwater remediation is anticipated to continue beyond 2020. A portion of the wastewater treatment facility that operated during the CERCLA cleanup continued to operate after the site was transferred to LM, to support the remaining groundwater remediation effort. The treatment facility handles the site's remaining water treatment needs (for groundwater, storm water, and wastewater) as necessary, to ensure that uranium discharge limits specified in the Operable Unit 5 Record of Decision are met. As anticipated, the need to treat groundwater to meet uranium discharge limits has greatly diminished over the last several years. Data indicate that the groundwater treatment facility is no longer needed to support the ongoing aquifer remediation effort. (authors)

Powel, J. [U.S. Department of Energy Office of Legacy Management, Harrison, Ohio (United States); Hertel, B.; Glassmeyer, C.; Broberg, K. [S.M. Stoller Corporation, Harrison, Ohio (United States)

2012-07-01T23:59:59.000Z

98

SBA Increases Size Standards for Waste Remediation Services ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Remediation Services & InformationAdmin Support December 12, 2012 - 10:22am Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization...

99

Attenuation-Based Remedies in the Subsurface Applied Field Research...  

Broader source: Energy.gov (indexed) [DOE]

setting for researchers in both applied and basic science fields. A wealth of subsurface data is available to support research activities and remedial decision making. Led by the...

100

Environmental studies in support of the live fire training facilities project  

SciTech Connect (OSTI)

The Engineering Division of the Oak Ridge National Laboratory of Martin Marietta Energy System, Inc., provided services, under an Interagency Agreement, to the US Air Force to design, construct, and test environmentally acceptable fire training facilities at several Air Force bases for the purpose of providing live fire training capabilities without harming the environment. The purpose of this effort was to evaluate the wastewater treatment systems of the training facilities. The study focused on taking a set of background samples at a facility and then allowing the Air Force to conduct a series of training exercises. A set of samples was taken immediately following the training exercises to determine the effect the exercises had on the wastewater in the fuel/water separator and the holding pond. The separator and pond were also allowed to set undisturbed, except for sampling and environmental influences, for /approximately/60 d to determine if any stripping or biodegradation was occurring. Samples of the separator and pond were taken at 2, 4, 6, 8, 10, 11, 32, and 59 d following the training exercises. In addition, the burn pit was sampled immediately following the extinguishment of a fire and then again after the burn pit was flushed with water to determine if the materials remaining could be classified as hazardous under the Resource Conservation and Recovery Act (RCRA). 16 figs., 11 tabs.

Hylton, T.D.; Walker, J.F.

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Manganite nanorods supported palladium - a facile electrocatalyst for direct glycerol fuel cells  

Science Journals Connector (OSTI)

Manganite (MnOOH) nanorods were synthesised by a hydrothermal method and then used as a supportive material for Palladium towards glycerol electrooxidation in alkaline medium. The smaller quantities (5 and 15 weight %) of palladium are coated on the manganite nanorods by in situ reduction method. The electrooxidation of glycerol at Pd/Manganite electrode exhibits peak current vertexes at ?0.2 V, which is lower than Pd/C. By varying the alkali (KOH) and glycerol concentrations the electrocatalytic behaviour has been changed considerably and was discussed. The present study reveals that the manganite nanorods act as active support material for Pd. The support material will help to oxidise the intermediates formed during electrooxidation of fuel. The possibilities for the removal of poisonous intermediates were also discussed. The effect of support material on the electrooxidation reaction was explained by proper mechanism.

Ramanujam Kannan; Palanisamy Ravichandiran; Kulandaivelu Karunakaran

2014-01-01T23:59:59.000Z

102

EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory, California  

Broader source: Energy.gov [DOE]

DOE is preparing an EIS for cleanup of Area IV, including the Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOE’s operations bordered the Northern Buffer Zone. DOE is responsible for soil cleanup in Area IV and the Northern Buffer Zone.) In the EIS, DOE will evaluate reasonable alternatives for disposition of radiological facilities and support buildings, remediation of contaminated soil and groundwater, and disposal of all resulting waste at permitted facilities.

103

Facility effluent monitoring plan for the 324 Facility  

SciTech Connect (OSTI)

The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

104

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 5. Appendixes J, K, L, M, and N-other supporting information  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 5 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

105

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

106

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

107

Preliminary assessment report for Army Aviation Support Facility 2, Installation 25075, Westover Air Force Base, Chicopee, Massachusetts. Installation Restoration Program  

SciTech Connect (OSTI)

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Massachusetts Army National Guard (MAARNG) property known as the Army Aviation Support Facility 2 (AASF 2) near Chicopee, Massachusetts. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF 2 is a 10-acre site located in the western portion of Massachusetts, in the town of Chicopee, in the county of Hampden. The facilities included in this PA are Building 7400, adjacent paved areas, grassy areas, and the hazardous waste drum storage buildings. The environmentally significant operations (ESOS) associated with the property are (1) the waste drum storage area, (2) abandoned underground storage tanks (USTs), and (3) refueling activities.

Haffenden, R.; Flaim, S.

1993-08-01T23:59:59.000Z

108

Remediation Experiences in Finland  

Science Journals Connector (OSTI)

This chapter discusses remediation practices for addressing gasoline-impacted soil and ground water at several hundred Neste Marketing Limited (Neste ... in Finland. The first systematic investigation and remediation

Martti R. Suominen; Nancy E. Milkey P.G.

2003-01-01T23:59:59.000Z

109

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III  

SciTech Connect (OSTI)

The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

R. P. Wells

2006-09-19T23:59:59.000Z

110

Environmental restoration and remediation technical data management plan  

SciTech Connect (OSTI)

The tasks performed in the Remedial Investigation/Feasibility Study (RI/FS) work plan for each Hanford Site operable unit must meet the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et. al 1992). An extensive amount of data will be generated in the evaluation and remediation of hazardous waste sites at the Site. The data must be of sufficient quality, as they will be used to evaluate the need, select the method(s), and support the full remediation of the waste sites as stipulated in the Tri-Party Agreement. In particular, a data management plan (DMP) is to be included in an RI/FS work plan for managing the technical data obtained during the characterization of an operable unit, as well as other data related to the study of the operable unit. Resource Conservation and Recovery Act of 1976 (RCRA) sites are involved in the operable unit. Thus, the data management activities for the operable unit should be applied consistently to RCRA sites in the operable unit as well. This DMP provides common direction for managing-the environmental technical data of all defined operable units at the Hanford Site during the RI/FS activities. Details specific to an operable unit will be included in the actual work plan of that operable unit.

Key, K.T.; Fox, R.D.

1994-02-01T23:59:59.000Z

111

Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill  

SciTech Connect (OSTI)

Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

Studer, J.E. [INTERA Inc., Albuquerque, NM (United States); Mariner, P.; Jin, M. [INTERA Inc., Austin, TX (United States)] [and others

1996-05-01T23:59:59.000Z

112

Pinellas Remediation Agreement Summary  

Broader source: Energy.gov (indexed) [DOE]

Pinellas Pinellas Agreement Name Remediation Agreement for the Four and One-Half Acre Site in Largo, Pinellas County, Florida State Florida Agreement Type Remediation Agreement Legal Driver(s) CERCLA/ Atomic Energy Act of 1954, as amended/ Florida Air and Water Pollution Control Act Scope Summary Remediation of property adjacent to the former Pinellas Plant Parties DOE; Florida Department of Environmental Protection Date 3/12/2001 SCOPE * Remediate the groundwater under a parcel of property adjacent to DOE's former Pinellas Plant to levels consistent with industrial use. * Complete remedial actions at the site in accordance with a Remedial Action Plan prepared by DOE and approved by FDEP. * Submit quarterly reports of interim remedial actions at the Site.

113

Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design  

SciTech Connect (OSTI)

This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

Spane, Frank A.; Newcomer, Darrell R.

2009-09-23T23:59:59.000Z

114

FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT ELIMINATION REPORT  

Office of Legacy Management (LM)

(' (' . . FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT ELIMINATION REPORT FORMER VITRO LABORATORIES FORMER VITRO LABORATORIES VITRO CORPORATION VITRO CORPORATION WEST ORANGE, NEW JERSEY WEST ORANGE, NEW JERSEY SEP 30 1985 SEP 30 1985 Department of Energy Office of Nuclear Waste Office of Remedial Action and Waste Technology Division of Facility and Site Deconxnissioning Projects . CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii Page 7 3 4 - _- mI _---. ELSMINATION REPORT FORMER VITRO LABORATORIES, VITRO CORPORATION, WEST ORAN6E, NEW JERSEY INTRODUCTION . The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site

115

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

I I c. ,..I -. i FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR BRIDGEPORT BRASS COMPANY HAVENS LABORATORY (REACTIVE METALS, INC.) KOSSUTH AND PULASKI STREETS BRIDGEPORT, CONNECTICUT i Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decomnissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 . 2 ii .-_. _.--_- "~ ELIMINATION REPORT FORMER BRIDGEPORT BRASS COMPANY HAVENS LABORATORY (REACTIVE METALS, INC. 1 KOSSUTH AND PULASKI STREETS BRIDGEPORT, CONNECTICUT INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and kaste Technology, Division of Facility and Site

116

Hazardous waste treatment and environmental remediation research  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

Not Available

1989-09-29T23:59:59.000Z

117

Groundwater Remediation and Modeling  

Science Journals Connector (OSTI)

Because of the author’s vantage point, this chapter is necessarily based on experience in ground-water remediation in the United States. Much of that...

Peter Shanahan

1995-01-01T23:59:59.000Z

118

Reducing Data Center Loads for a Large-scale, Low Energy Office Building: NREL's Research Support Facility (Book), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Center Loads for a Large- Data Center Loads for a Large- scale, Low-energy Office Building: NREL's Research Support Facility The NREL Approach * December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 National Renewable Energy Laboratory Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility Michael Sheppy, Chad Lobato, Otto Van Geet, Shanti Pless, Kevin Donovan, Chuck Powers National Renewable Energy Laboratory Golden, Colorado December 2011

119

Applied Field Research Initiative Attenuation Based Remedies  

Broader source: Energy.gov (indexed) [DOE]

PA00133 - March 2011 PA00133 - March 2011 Applied Field Research Initiative Attenuation Based Remedies in the Subsurface Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to develop the tools, approaches and technologies that will be required to address the technical challenges associated characteriza- tion, remediation and long-term monitoring of recalcitrant compounds in the subsurface at Department of Energy (DOE) Environmental Management (EM) sites. The ABRS AFRI site provides a unique setting for researchers in both applied and basic science fields. A wealth of subsurface data is available to support research activities and remedial decision making.

120

A Framework for Sustainable Remediation  

Science Journals Connector (OSTI)

However, after more than 30 years of experience with remediation projects, it is now clear that remedial actions are frequently energy intensive, may produce their own pollutant emissions, and may disturb and cause controversy in neighboring communities. ... Regulators, industry, and communities recognize that sustainability principles must be integrated into remediation activities, and various sustainable remediation guidance documents have been developed. ...

Karin S. Holland

2011-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EIS-0471: Department of Energy Loan Guarantee to Support Proposed Eagle Rock Enrichment Facility in Bonneville County, Idaho  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of construction, operation, and decommissioning of the proposed Eagle Rock Enrichment Facility (EREF), a gas centrifuge uranium enrichment facility to be located in a rural area in western Bonneville County, Idaho. (DOE adopted this EIS issued by NRC on 04/13/2007.)

122

Attenuation Based Remedies  

Broader source: Energy.gov [DOE]

The mission of the Attenuation Based Remedies in the Subsurface Applied Field Research Initiative is to seek holistic solutions to DOE’s groundwater contamination problems that consider not only...

123

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR OCCIDENTAL CHEMICAL CORPORATION ( FORMER HOOKER ELECTROCHEMICAL COMPANY ) NIAGARA FALLS, NEW YORK SEP 30 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ELIMINATION REPORT FOR OCCIDENTAL CHEMICAL CORPORATION (FORMER HOOKER ELECTROCHEMICAL COMPANY) L NIAGARA FALLS, NEW YORK- INTRODUCTION The Department ' of Energy (DDE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or the predecessor agencies, offices, and divisions), has reviewed the past activities of the Manhattan Engineer District (MED) and the Atomic Energy Commission (MED/AEC) at

124

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect (OSTI)

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

125

A New Approach to Wastewater Remediation Based on Bifunctional Electrodes  

Science Journals Connector (OSTI)

A New Approach to Wastewater Remediation Based on Bifunctional Electrodes ... To illustrate this innovative technique, TiO2/Ti/Ta2O5?IrO2 bifunctional electrodes were prepared using a facile thermal decomposition technique and employed in this study. ... The establishment and enforcement of limits for the discharge and/or disposal of toxic and hazardous materials has required the development of new technologies to effectively remediate a variety of gaseous and liquid effluents, solid waste and sludge. ...

Robert Matthew Asmussen; Min Tian; Aicheng Chen

2009-05-29T23:59:59.000Z

126

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) _ WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK SEP 301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ----- ----_l_.._- .._. _- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii .- --- .- Page . 1 4 ELIMINATION REPORT AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK 1 INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office

127

Observational Approach to Chromium Site Remediation - 13266  

SciTech Connect (OSTI)

Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational approach. The WCH project team is working closely with stakeholders and taking a number of steps to meet these challenges in a continuing effort to remediate chromium contaminated soil in an efficient and cost-effective manner. (authors)

Scott Myers, R. [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)

2013-07-01T23:59:59.000Z

128

DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION  

SciTech Connect (OSTI)

On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

Bannochie, C.; Crawford, C.

2013-06-18T23:59:59.000Z

129

SBA Increases Size Standards for Waste Remediation Services &  

Broader source: Energy.gov (indexed) [DOE]

SBA Increases Size Standards for Waste Remediation Services & SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support December 12, 2012 - 10:22am Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization Earlier this week, the U.S. Small Business Administration announced that they have revised size definitions for small businesses in Administrative and Support & Waste Management and Remediation Services categories, saying these revisions "reflect changes in marketplace conditions." The new standards are published in the Federal Register. Increases to size standards will enable some growing small businesses in these sectors to retain their small business status; will give federal

130

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SENECA ARMY DEPOT SENECA ARMY DEPOT ROMULUS, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and kaste Technology. Division of Facility and Site Decommissioning Projects INTRODUCTION t3ACKGROUND CONTENTS . -Page Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 1 4 ii .___ -_-_..--. ._.".. ELIMINATION REPORT SENECA ARMY DEPOT ROMULUS, NEW YORK . INTRODUCTION The Department pf Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Manhattan Engineer District (MED) at Seneca Army Depot, Romulus, hew York. Based on the

131

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

CF INDUSTRIES, INC. CF INDUSTRIES, INC. ( THE FORMER INTERNATIONAL MI NERALS AND CHEMICAL CORPORATION) BARTON, FLORIDA Department of Energy Office of Nuclear Energy. Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects - - .._. ..--.. . . I."__ . - INTRODUCTION CONTENTS Page BACKGROUND Site Function Site Description Radiological. History and Status ELIMINATION ANALYSIS REFERENCES Summary of Findings ii 7 8 --..I--- - ..-___-_--.___-"-- -- ' . ELIMINATION REPORT CF INDUSTRIES, INC. (THE FORMER INTERNATIONAL MINERALS AND CHEMICAL CORPORATION) BARTOW, FLORIDA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and

132

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

ROHM & HAAS COMPANY ROHM & HAAS COMPANY PHILADELPHIA, PENNSYLYANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS Page INTRODUCTIOk BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 2 2 2 2 3 3 iii ELIMINATION REPORT ROHM & HAAS COMPANY PHILADELPHIA, PENNSYLVANXA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities of the Atomic Energy Commission (AEC) at the Rohm & Haas Company, Philadelphia, Pennsylvania. Based on a

133

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

BETHLEHEM STEEL CORPORATION BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects P bl@ C.' , 1 & cr INTRODUCTION BACKGROUND CONTENTS Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 5 iii ELIMINATION REPORT BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and divisions), has reviewed the past activities of the Atomic Energy Commission (AEC) at the Bethlehem Steel Corporation, Lackawanna, New

134

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

UNIVERSITY OF ARIZONA UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects -- --- .- _- --__ CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii - ,. -- Page 1 4 4 ..I___ - ~-___- ELIMINATION REPORT UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities of the Atomic Energy Commission (AEC)

135

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

NATIONAL BUREAU OF STANDARDS BUILDINGS NATIONAL BUREAU OF STANDARDS BUILDINGS VAN NESS STREET WASHINGTON, D.C. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects - __-~---- -._.. .._ .-. .- INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status CONTENTS ELIMINATION ANALYSIS REFERENCES ii Paqe 1 4 INiRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities conducted for the Atomic Energy Commission and the Manhattan Engineer District (MED) (DOE predecessors) at

136

Independent Activity Report, Savannah River Remediation - July 2010 |  

Broader source: Energy.gov (indexed) [DOE]

Remediation - July 2010 Remediation - July 2010 Independent Activity Report, Savannah River Remediation - July 2010 July 2010 Savannah River Operations Office Integrated Safety Management System Phase II Verification Review of Savannah River Remediation The U.S. Department of Energy (DOE), Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the DOE Savannah River Operations Office (DOE-SR), Office of Safety and Quality Assurance (OSQA), Technical Support Division (TSD) Integrated Safety Management System (ISMS), Phase II Verification of Savannah River Remediation (SRR). The purpose of the DOE-SR Phase II ISMS Verification was to verify that the SRR ISMS Description that was submitted to and approved by the DOE-SR Manager is being effectively implemented at the Savannah

137

Wilsonville Advanced Coal-Liquefaction Research and Development Facility, Wilsonville, Alabama. Topical report No. 5. 6000 TPD SRC-I demonstration plant support  

SciTech Connect (OSTI)

Initially, the Wilsonville facility consisted of a single stage (thermal) process, also known as the SRC-I process. The original plant has been expanded to become an advanced two-stage coal liquefaction facility. A Critical Solvent Deashing (CDS) unit was installed in 1978 and a second stage catalytic hydrogenation (HTR) unit was installed in 1981. The principal product of the first stage is a low sulfur solid fuel. The reaction product is deashed by the CSD unit using a proprietary process developed by the Kerr-McGee Corporation. The hydrotreater, or the second stage, was installed primarily for further enhancement of product properties, process flexibility, and overall hydrogen utilization efficiency. In the decoupled mode of operation, the HTR unit has no direct effect on the SRC unit. This operating mode is called the non-integrated two-stage liquefaction (NTSL) process. From 17 October 1981 to 14 October 1982, the Advanced Coal Liquefaction R and D Facility at Wilsonville, Alabama, was operated partly in support of the 6000 TPD-I demonstration plant design effort undertaken by ICRC. The ICRC support tests and operations performed were: Run 235 with Kentucky 9 (Fies) coal; Run 240 with Illinois 6 (Burning Star) coal; CSD unit second stage variability study; CSD unit continuous ash removal system study; SRC solidification test; wastewater sampling operation; and residual fuel oil blending operation.

Not Available

1983-08-01T23:59:59.000Z

138

Sustainable Soil Remediation:  

Science Journals Connector (OSTI)

...wastes and creating new markets for the end products...study of the treatment of diesel-contaminated soil indicated...size and location of markets relative to waste production...remediation scenario for a diesel-contaminated site using...catabolic activity in diesel contaminated soil following...

David L. Jones; John R. Healey

139

Sustainable Soil Remediation:  

Science Journals Connector (OSTI)

...recognised since the birth of agriculture, the landspreading of industrial...full life cycle assessment (LCA). For example, blending high-nutrient-content...cradle-to-grave) of an LCA can also lead to misleading...remediation option is best. In LCA, impacts are classified as...

David L. Jones; John R. Healey

140

Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action  

SciTech Connect (OSTI)

The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

NONE

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CH2M HILL Plateau Remediation Company | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland Operations Office (DOE-RL) Surveillance Report S-11-SED-CHP~C-PFP-002, Planning and Execution of Radiological Work. S-11-SED-CHPRC-PFP-002 documented four examples where inadequate hazard analysis resulted in airborne radioactivity that exceeded the limits of the controlling radiological work permit.

142

Remediation of old environmental liabilities in the Nuclear Research Institute Rez plc  

SciTech Connect (OSTI)

The Nuclear Research Institute Rez plc (NRI) is a leading institution in all areas of nuclear R and D in the Czech Republic. The NRI's activity encompasses nuclear physics, chemistry, nuclear power, experiments at research nuclear reactors and many other topics. The NRI operates two research nuclear reactors, many facilities as a hot cell facility, research laboratories, technology for radioactive waste (RAW) management, radionuclide irradiators, an electron accelerator, etc. After 50 years of activities in the nuclear field, there are some environmental liabilities that shall be remedied in the NRI. There are three areas of remediation: (1) decommissioning of old obsolete facilities (e.g. decay tanks, RAW treatment technology, special sewage system), (2) treatment of RAW from operation and dismantling of nuclear facilities, and (3) elimination of spent fuel from research nuclear reactors operated by the NRI. The goal is to remedy the environmental liabilities and eliminate the potential negative impact on the environment. Based on this postulate, optimal remedial actions have been selected and recommended for the environmental remediation. Remediation of the environmental liabilities started in 2003 and will be finished in 2012. Some liabilities have already been successfully remedied. The most significant items of environmental liabilities are described in the paper together with information about the history, the current state, the progress, and the future activities in the field of remediation of environmental liabilities in the NRI. (authors)

Podlaha, J. [Nuclear Research Institute Rez plc (Czech Republic)

2007-07-01T23:59:59.000Z

143

Remediation and Recycling of Linde FUSRAP Materials  

SciTech Connect (OSTI)

During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

2002-02-27T23:59:59.000Z

144

TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300  

SciTech Connect (OSTI)

The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

Eddy-Dilek, C.; Miles, D.; Abitz, R.

2009-08-14T23:59:59.000Z

145

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

itI.2 -2 itI.2 -2 FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR THE FORMER BRUSH BERYLLIUM COMPANY CLEVELAND, OHIO Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __I__,_-. - ---.. ____- .- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Pa e -5 2 2 2 4 4 4 ii ELIMINATION REPORT THE FORMER BRUSH BERYLLIUM COMPANY CLEVELAND, OHIO INTRODUCTION The Oepartment of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decorrnnissioning Projects (and/or predecessor agencies, offices and divisionsa has reviewed the past activities of the Manhattan Engineer

146

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

fi.q 2, fi.q 2, I: * FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects INTRODUCTION BACKGROUND CONTENTS Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 4 iii ELIMINATION REPORT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decormnissioning Projects (and/or predecessor agencies, offices and

147

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

-p,l-I -p,l-I . . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR MOBIL MINING AND MINERALS COMPANY (THE FORMER MATHIESON CHEMICAL COMPANY) PASADENA, TEXAS D Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 2 2 2 3 3 4 ii --. ELIMINATION REPORT MOBIL MINING AND MINERALS COMPANY (THE FORMER MATHIESON CHEMICAL COMPANY) PASADENA, TEXAS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions),

148

Operations to be Performed in the Waste Package Dry Remediation Cell  

SciTech Connect (OSTI)

Describes planned and proposed operations for remediating damaged and/or out-of-compliance waste packages, casks, DPCs, overpacks, and containers at the Yucca Mountain Dry Transfer Facility.

Norman E. Cole; Randy K. Elwood

2003-10-01T23:59:59.000Z

149

Remedial Action Performed  

Office of Legacy Management (LM)

General Motors Site in General Motors Site in Adrian, Michigan Department of Energy OiZce of Assistant Manager for Environmental Management Oak Ridge Operations January 2001 69 Printed on recycledhcydable paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE GENERAL MOTORS SITE ADRIAN, MICHIGAN JANUARY 200 1 Prepared for United States Army Corps of Engineers Under Contract No. DACW45-98-D-0028 BY Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS FIGURES .............................................................................................................................................. TABLES ...............................................................................................................................................

150

DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES  

SciTech Connect (OSTI)

The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

Yoginder P. Chugh

2002-10-01T23:59:59.000Z

151

Integrated Facilities Disposition Program  

Broader source: Energy.gov (indexed) [DOE]

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

152

Performing Energy Security Assessments- A How-To Guide for Federal Facility Managers  

Broader source: Energy.gov [DOE]

Guide describes the best practices and recommended process for federal facility managers to prepare for the following sections of a facility’s energy security plan: vulnerability assessments, energy preparedness and operations plans, and remedial action plans.

153

Phase 1 remedial investigation report for 200-BP-1 operable unit. Volume 1  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit.

Not Available

1993-09-01T23:59:59.000Z

154

Full-Scale Cross-Flow Filter Testing in Support of the Salt Waste Processing Facility Design  

SciTech Connect (OSTI)

Parsons and its team members General Atomics and Energy Solutions conducted a series of tests to assess the constructability and performance of the Cross-Flow Filter (CFF) system specified for the Department of Energy (DOE) Salt Waste Processing Facility (SWPF). The testing determined the optimum flow rates, operating pressures, filtrate-flow control techniques, and cycle timing for filter back pulse and chemical cleaning. Results have verified the design assumptions made and have confirmed the suitability of cross-flow filtration for use in the SWPF. In conclusion: The CFF Test Program demonstrated that the SWPF CFF system could be successfully fabricated, that the SWPF CFF design assumptions were conservative with respect to filter performance and provided useful information on operational parameters and techniques. The filter system demonstrated performance in excess of expectations. (authors)

Stephens, A.B.; Gallego, R.M. [General Atomics, San Diego, CA (United States); Singer, S.A.; Swanson, B.L. [Energy Solutions, Aiken, SC (United States); Bartling, K. [Parsons, Aiken, SC (United States)

2008-07-01T23:59:59.000Z

155

Savannah River Remediation Donates $10,000 to South Carolina State Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Remediation Donates $10,000 to South Carolina State Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program September 28, 2012 - 9:27am Addthis Savannah River Remediation presents a $10,000 to South Carolina State University to support its Nuclear Engineering Program. In the photo, from left: Kayla Miller, Savannah River Remediation Procurement Department and South Carolina State University 2010 graduate; Dr. John Corbitt, Acting Chairman of the South Carolina State University Board of Trustees; Dr. Cynthia Warrick, Interim South Carolina State University President; and Dave Olson, Savannah River Remediation President and Project Manager. Savannah River Remediation presents a $10,000 to South Carolina State

156

Radioactive Tank Waste Remediation Focus Area. Technology summary  

SciTech Connect (OSTI)

In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

NONE

1995-06-01T23:59:59.000Z

157

CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY  

SciTech Connect (OSTI)

THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

BERGMAN TB; STEFANSKI LD; SEELEY PN; ZINSLI LC; CUSACK LJ

2012-09-19T23:59:59.000Z

158

Remedial Action Performed  

Office of Legacy Management (LM)

Baker and Williams Baker and Williams Warehouses Site in New York, New York, 7997 - 7993 Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 7 995 CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE BAKER AND WILLIAMS WAREHOUSES SITE IN NEW YORK, NEW YORK, 1991-1993 NOVEMBER 1995 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC05-910R21949 BY Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 __ CONTENTS .- ~_- _- ..- ^_ FIGURES . ...,.,.....,,........,,.,_.....,.,.,.__,....,,,,, v TABLES ,.,__...,,....,..._._..,,,,_._...,.,.,,.,,,..._,,,, vi ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..v~

159

Remedial Action Performed  

Office of Legacy Management (LM)

' ' at the C. H. Schnoor Site, Springdale, Pennsylvania, in 1 994 Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 1996 CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE C. H. SCHNOOR SITE SPRINGDALE, PENNSYLVANIA, IN 1994 NOVEMBER 1996 prep&ed for United States Department of ~nergy Oak Ridge Operations Off= r Under Contract No. DE-AC05-910R21949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. '14501 CONTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi UNITS OF MEASURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

160

Remedial Action Performed  

Office of Legacy Management (LM)

Alba Craft Laboratory and Alba Craft Laboratory and Vicinity Properties Site in Oxford, Ohio C Department of Energy Former Sites Restoration Division Oak Ridge Operations Office January 1997 $$@T Op% 3 @!B . i~d!l Ab Printed on recycled/recyclable paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE FORMER ALBA CRAFT LABORATORY AND VICINITY PROPERTIES SITE IN OXFORD, OHIO JANUARY 1997 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC0591 OR2 1949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES .............................................................................................................................................. v TABLES.. .............................................................................................................................................. vi

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Remedial Action Performed  

Office of Legacy Management (LM)

Aliquippa Forge Site Aliquippa Forge Site in Aliquippa, Pennsylvania Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 1996 CERTIFICATION DOCKE.~ FOR THE REMEDIAL ACTION PERFORMED AT THE ALIQUIPPA FORGE SITE IN ALIQUIPPA, PENNSYLVANIA NOVEMBER 1996 Prepared for . UNITED STATES DEPARTMENT OF ENERGY Oak Ridge Operations Office Under Contract No. DE-AC05-9 1 OR2 1949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TABLES vii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii UNITSOFMEASURE ix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTRODUCTION xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

162

Advanced Remediation Technologies  

SciTech Connect (OSTI)

The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the cleanup of nation's nuclear weapons program legacy wastes, along with waste associated with nuclear energy programs and research. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term; and the effort also has a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. This article will provide some insight into the Advanced Remediation Technologies (ART) projects that may enhance cleanup efforts and reduce life cycle costs. (authors)

Krahn, St.; Miller, C.E. [The United States Department of Energy, Office of Environmental Management, Washington, D.C. (United States)

2008-07-01T23:59:59.000Z

163

Surfactants and subsurface remediation  

SciTech Connect (OSTI)

Because of the limitations of pump-and-treat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the applications, there are significant differences in the objectives of the technologies and the limitations placed on surfactant use. In this article we review environmental studies concerned with the fate and transport of surface-active compounds in the subsurface environment and discuss key issues related to their successful use for in situ aquifer remediation, particularly with respect to nonaqueous-phase liquids.

West, C.C.; Harwell, J.H.

1992-01-01T23:59:59.000Z

164

Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices  

SciTech Connect (OSTI)

This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

Conner, K.R.

2000-12-12T23:59:59.000Z

165

Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the U.S. Department of Energy (DOE) by Lockheed Martin Energy System (Energy Systems). ORNL has pioneered waste disposal technologies since World War II as part of its DOE mission. In the late 1950s, at the request of the National Academy of Sciences, efforts were made to develop a permanent disposal alternative to the surface and tanks at ORNL. One such technology, the hydrofracture process, involved inducing fractures in a geologic host formation (a low-permeability shale) at depths of up to 1100 ft and injecting a radioactive grout slurry containing low-level liquid or tank sludge waste, cement, and other additives at an injection pressure of 2000 to 8500 psi. The objective of the effort was to develop a grout dig could be injected as a slurry and would solidify after injection, thereby entombing the radioisotopes contained in the low-level liquid or tank sludge waste. Four sites at ORNL were used: two experimental (HF-1 and HF-2); one developmental, later converted to batch process [Old Hydrofracture Facility (BF-3)]; and one production facility [New Hydrofracture Facility (BF-4)]. This document provides the environmental, restoration program with information about the the results of an evaluation of WAG 10 wells associated with the New Hydrofracture Facility at ORNL.

NONE

1996-08-01T23:59:59.000Z

166

Transmittal of the Calculation Package that Supports the Analysis of Performance of the Environmental Management Waste Management Facility Oak Ridge, Tennessee (Based 5-Cell Design Issued 8/14/09)  

SciTech Connect (OSTI)

This document presents the results of an assessment of the performance of a build-out of the Environmental Management Waste Management Facility (EMWMF). The EMWMF configuration that was assessed includes the as-constructed Cells 1 through 4, with a groundwater underdrain that was installed beneath Cell 3 during the winter of 2003-2004, and Cell 5, whose proposed design is an Addendum to Remedial Design Report for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee, DOE/OR/01-1873&D2/A5/R1. The total capacity of the EMWMF with 5 cells is about 1.7 million cubic yards. This assessment was conducted to determine the conditions under which the approved Waste Acceptance Criteria (WAC) for the EMWMF found in the Attainment Plan for Risk/Toxicity-Based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee [U.S. Department of Energy (DOE) 2001a], as revised for constituents added up to October 2008, would remain protective of public health and safety for a five-cell disposal facility. For consistency, the methods of analyses and the exposure scenario used to predict the performance of a five-cell disposal facility were identical to those used in the Remedial Investigation and Feasibility Study (RI/FS) and its addendum (DOE 1998a, DOE 1998b) to develop the approved WAC. To take advantage of new information and design changes departing from the conceptual design, the modeling domain and model calibration were upaded from those used in the RI/FS and its addendum. It should be noted that this analysis is not intended to justify or propose a change in the approved WAC.

Williams M.J.

2009-09-14T23:59:59.000Z

167

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

,: /A (,) i_ - z ,: /A (,) i_ - z FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR FORMERLY UTILIZED PORTIONS OF THE WATERTOWN ARSENAL WATERTOWN, MASSACHUSETTS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decotwnissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Radiological History and Status ELIMINATION ANALYSIS Findings and Recommendation 6 REFERENCES iii Page 1 1 1 3 4 7 "..*.w..,, -. ._ ..- ". --. AUTHORITY REVIEW WATERTOWN ARSENAL WATERTOWN, MASSACHUSETTS INTRODUCTION The purpose of this review is to present information pertaining to work performed under the sponsorship of the Atomic Energy Commission (AEC) Manhattan Engineer District (MED) and the facts and circum-

168

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

\ \ ,.-c , 2 2 a. . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS SEP301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __--... -_ -._.-_- _"_-. .___.. -... .._ ..-. .-. ..--- . , ' , CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii 4 __-.I ._-----.- --- ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office

169

Weidlinger-Navarro selected for waste staging facility design...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weidlinger-Navarro selected for waste staging facility design support Small firm selected for design support of new waste staging facility Weidlinger-Navarro will support the...

170

River Corridor Cleanup Contract Fiscal Year 2006 Detailed Work Plan: D4 Project/Reactor ISS Closure Projects Field Remediation Project Waste Operations Project End State and Final Closure Project Mission/General Support, Volume 2  

SciTech Connect (OSTI)

The Hanford Site contains many surplus facilities and waste sites that remain from plutonium production activities. These contaminated facilities and sites must either be stabilized and maintained, or removed, to prevent the escape of potentially hazardous contaminants into the environment and exposure to workers and the public.

Project Integration

2005-09-26T23:59:59.000Z

171

BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION  

E-Print Network [OSTI]

of the 1999 Operable Unit (OU) III Remedial Investigation/Feasibility Study(RI/FS) and was designated as AreaOU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION FINAL Prepared by: Brookhaven REMEDIATION Executive Summary

172

Remediation of Uranium Impacted Sediments in a Watercourse - 12486  

SciTech Connect (OSTI)

In 2009, remediation was initiated for a non-operational fuel cycle facility previously used for government contract work. Between 2009 and the spring of 2011, remediation efforts were focused on demolition of contaminated buildings and removal of contaminated soil. In the late spring of 2011, the last phase of remediation commenced involving the removal of contaminated sediments from portions of a 1,200 meter long gaining stream. Planning and preparation for remediation of the stream began in 2009 with submittal of permit applications to undertake construction activities in a wetland area. The permitting process was lengthy and involved securing permits from multiple agencies. However, early and frequent communication with stakeholders played an integral role in efficiently obtaining the permit approvals. Frequent communication with stakeholders throughout the planning and remediation process also proved to be a key factor in timely completion of the project. The remediation of the stream involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation and disposal. Many safeguards were employed to protect several species of concern in the work area, water management during project activities, challenges encountered during the project, methods of Final Status Survey, and stream restoration. The planning and permitting effort for the Site Brook remediation began in May 2009 and permits were approved and in place by February 2011. The remediation and restoration of the Site Brook began in April 2011 and was completed in November 2011. The remediation of the Site Brook involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation, disposal, FSS, and restoration. Early and frequent communications with stakeholders proved to be a key factor in timely completion of the project. Challenges encountered during the remediation effort were overcome by proper planning and having preparedness procedures in place prior to executing the work. With the remediation and restoration successfully completed, the only remaining task is to monitor/maintain the restoration for 10 years. (authors)

Shephard, E.; Walter, N.; Downey, H.; Collopy, P. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Conant, J. [ABB, Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2012-07-01T23:59:59.000Z

173

Independent Activity Report, Savannah River Remediation - July...  

Broader source: Energy.gov (indexed) [DOE]

Remediation - July 2010 Independent Activity Report, Savannah River Remediation - July 2010 July 2010 Savannah River Operations Office Integrated Safety Management System Phase II...

174

Recommendations for Remedial Action at Everest, Kansas.  

SciTech Connect (OSTI)

On September 7, 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented a Scoping Memo (Argonne 2005) for preliminary consideration by the Kansas Department of Health and Environment (KDHE). This document suggested possible remedial options for the carbon tetrachloride contamination in groundwater at Everest, Kansas. The suggested approaches were discussed by representatives of the KDHE, the CCC/USDA, and Argonne at the KDHE office in Topeka on September 8-9, 2005, along with other technical and logistic issues related to the Everest site. In response to these discussions, the KDHE recommended (KDHE 2005) evaluation of several remedial processes, either alone or in combination, as part of a Corrective Action Study (CAS) for Everest. The primary remedial processes suggested by the KDHE included the following: (1) Hydraulic control by groundwater extraction with aboveground treatment; (2) Air sparging-soil vapor extraction (SVE) in large-diameter boreholes; and (3) Phytoremediation. As a further outcome of the 2005 meeting and as a precursor to the proposed CAS, the CCC/USDA completed the following supplemental investigations at Everest to address several specific technical concerns discussed with the KDHE: (1) Construction of interpretive cross sections at strategic locations selected by the KDHE along the main plume migration pathway, to depict the hydrogeologic characteristics affecting groundwater flow and contaminant movement (Argonne 2006a); (2) A field investigation in early 2006 (Argonne 2006c), as follows: (a) Installation and testing of a production well and associated observation points, at locations approved by the KDHE, to determine the response of the Everest aquifer to groundwater extraction near the Nigh property; (b) Groundwater sampling for the analysis of volatile organic compounds (VOCs) and the installation of additional permanent monitoring points at locations selected by the KDHE, to further constrain the existing contaminant plume; and (c) Resampling of all existing permanent monitoring points for VOCs and biodegradation parameter analyses, at the request of the KDHE. On the basis of these studies (Argonne 2006a,c) and the CCC/USDA's past investigations at Everest (Argonne 2006b), the CCC/USDA concluded that groundwater extraction is not an effective remedial option for this site, and the KDHE concurred (KDHE 2006). As outlined in the next section, the CCC/USDA also believes that air sparging does not represent a viable remedial alternative. The CCC/USDA therefore proposes to collect the technical data required to evaluate the potential viability of a phytoremediation approach for this site and, if appropriate, to support the development of a remedial design.

LaFreniere, L. M. (Environmental Science Division)

2007-02-15T23:59:59.000Z

175

Development Of Ion Chromatography Methods To Support Testing Of The Glycolic Acid Reductant Flowsheet In The Defense Waste Processing Facility  

SciTech Connect (OSTI)

Ion Chromatography (IC) is the principal analytical method used to support studies of Sludge Reciept and Adjustment Tank (SRAT) chemistry at DWPF. A series of prior analytical ''Round Robin'' (RR) studies included both supernate and sludge samples from SRAT simulant, previously reported as memos, are tabulated in this report.2,3 From these studies it was determined to standardize IC column size to 4 mm diameter, eliminating the capillary column from use. As a follow on test, the DWPF laboratory, the PSAL laboratory, and the AD laboratory participated in the current analytical RR to determine a suite of anions in SRAT simulant by IC, results also are tabulated in this report. The particular goal was to confirm the laboratories ability to measure and quantitate glycolate ion. The target was + or - 20% inter-lab agreement of the analyte averages for the RR. Each of the three laboratories analyzed a batch of 12 samples. For each laboratory, the percent relative standard deviation (%RSD) of the averages on nitrate, glycolate, and oxalate, was 10% or less. The three laboratories all met the goal of 20% relative agreement for nitrate and glycolate. For oxalate, the PSAL laboratory reported an average value that was 20% higher than the average values reported by the DWPF laboratory and the AD laboratory. Because of this wider window of agreement, it was concluded to continue the practice of an additional acid digestion for total oxalate measurement. It should also be noted that large amounts of glycolate in the SRAT samples will have an impact on detection limits of near eluting peaks, namely Fluoride and Formate. A suite of scoping experiments are presented in the report to identify and isolate other potential interlaboratory disceprancies. Specific ion chromatography inter-laboratory method conditions and differences are tabulated. Most differences were minor but there are some temperature control equipment differences that are significant leading to a recommendation of a heated jacket for analytical columns that are remoted for use in radiohoods. A suggested method improvement would be to implement column temperture control at a temperature slightly above ambient to avoid peak shifting due to temperature fluctuations. Temperature control in this manner would improve short and longer term peak retention time stability. An unknown peak was observed during the analysis of glycolic acid and SRAT simulant. The unknown peak was determined to best match diglycolic acid. The development of a method for acetate is summaraized, and no significant amount of acetate was observed in the SRAT products tested. In addition, an alternative Gas Chromatograph (GC) method for glycolate is summarized.

Wiedenman, B. J.; White, T. L.; Mahannah, R. N.; Best, D. R.; Stone, M. E.; Click, D. R.; Lambert, D. P.; Coleman, C. J.

2013-10-01T23:59:59.000Z

176

The mission of the Remediation of Mercury and Industrial  

Broader source: Energy.gov (indexed) [DOE]

Remediation of Mercury and Industrial Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of protecting surface water, groundwater, and ecological receptors. For more information, contact: Eric Pierce Oak Ridge National Laboratory 1 Bethel Valley Road, MS 6038 Oak Ridge, TN 37831 pierceem@ornl.gov (865) 574-9968 Kurt Gerdes DOE-EM Office of Groundwater and Soil Remediation kurt.gerdes@em.doe.gov (301) 903-7289 Sediment Biota Groundwater Flow Fluctuating Water Table Hg in building structures and rubble Waterborne mercury (mercury being transported via water being released from the facilities to the creeks) Hg currently present in the creek and sediments along the base of the creek

177

RCRA facility stabilization initiative  

SciTech Connect (OSTI)

The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

Not Available

1995-02-01T23:59:59.000Z

178

Remedial design work plan for Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Remedial Design Work Plan (RDWP) for Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee. This remedial action fits into the overall Oak Ridge Reservation (ORR) cleanup strategy by addressing contaminated floodplain soil. The objective of this remedial action is to minimize the risk to human health and the environment from contaminated soil in the Lower EFPC floodplain pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Federal Facility Agreement (FFA) (1992). In accordance with the FFA, a remedial investigation (RI) (DOE 1994a) and a feasibility study (DOE 1994b) were conducted to assess contamination of the Lower EFPC and propose remediation alternatives. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative by the feasibility study was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Following the remedial investigation/feasibility study, and also in accordance with the FFA, a proposed plan was prepared to more fully describe the proposed remedy.

NONE

1995-10-01T23:59:59.000Z

179

Remediation plan for fluorescent light fixtures containing polychlorinated biphenyls (PCBs)  

SciTech Connect (OSTI)

This report describes the remedial action to achieve compliance with 29 CFR 1910 Occupational Safety and Health Administration (OSHA) requirements of fluorescent light fixtures containing PCBs at K-25 site. This remedial action is called the Remediation Plan for Fluorescent Light Fixtures Containing PCBs at the K-25 Site (The Plan). The Plan specifically discusses (1) conditions of non-compliance, (2) alternative solutions, (3) recommended solution, (4) remediation plan costs, (5) corrective action, (6) disposal of PCB waste, (7) training, and (8) plan conclusions. The results from inspections by Energy Systems personnel in 2 buildings at K-25 site and statistical extension of this data to 91 selected buildings at the K-25 site indicates that there are approximately 28,000 fluorescent light fixtures containing 47,036 ballasts. Approximately 38,531 contain PCBs and 2,799 of the 38,531 ballasts are leaking PCBs. Review of reportable occurrences at K-25 for the 12 month period of September 1990 through August 1991 shows that Energy Systems personnel reported 69 ballasts leaking PCBs. Each leaking ballast is in non-compliance with 29 CFR 1910 - Table Z-1-A. The age of the K-25 facilities indicate a continued and potential increase in ballasts leaking PCBs. This report considers 4 alternative solutions for dealing with the ballasts leaking PCBs. The advantages and disadvantages of each alternative solution are discussed and ranked using cost of remediation, reduction of health risks, and compliance with OSHA as criteria.

NONE

1992-04-30T23:59:59.000Z

180

Mound Plant Federal Facility Agreement, July 15, 1993 Summary  

Broader source: Energy.gov (indexed) [DOE]

United States Environmental Protection Agency Region V United States Environmental Protection Agency Region V and the State of Ohio Federal Facility Agreement State Ohio Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary DOE shall identify Interim Remedial Actions (IRAs) alternatives and implement US EPA and OEPA approved remedies for the site in accordance with CERCLA Parties EPA; Ohio EPA (OEPA); DOE Date 07/15/1993 SCOPE * Identify Interim Remedial Action (IRA) alternatives which include Remedial Investigations (RI) and Feasibility Studies (FS); design and implement US EPA and OEPA approved remedies for the Mound site in accordance with CERCLA. ESTABLISHING MILESTONES * After approval of remedial design and action plans, DOE shall prepare and provide to U.S. EPA and OEPA written monthly progress reports.

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

UNIVERSITY OF MINNESOTA UMore Park Remedial Investigation  

E-Print Network [OSTI]

UNIVERSITY OF MINNESOTA UMore Park Remedial Investigation Frequently Asked Questions What is a remedial investigation? A remedial investigation is a technical assessment that characterizes the soil. A remedial investigation includes the analysis of soil and water samples as well as evaluating existing data

Netoff, Theoden

182

NREL: Wind Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

183

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIkNATION REPORT  

Office of Legacy Management (LM)

ELIkNATION REPORT ELIkNATION REPORT .FOR WESTINGHOUSE .ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Deconrmissioning Projects l CONTENTS INTRODUCTICIN BACKGROUND. Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 2 2 2' 4 4 iii ELIMINATION~REPORT WESTINGHOUSE ATOMIC POWER,DEVELOPMENT,PLANT: EAST PITTSBURGH PLANT: 'FOREST HILLS ,PITTS.BURGH, PENNSYLVANIA INTRODUCTION The Department of,Energy (DOE), Office of Nuclear Energy, Office of 'Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and

184

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM - ELIMINATION REPORT FOR  

Office of Legacy Management (LM)

- - ELIMINATION REPORT FOR . UNIVERSITY OF NEVADA MACKAY SCHOOL OF MINES RENO, NEVADA s,d k I",, ici ;3J(, i Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 1 , Page . 1 2 2 2' 3 3 iii The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities conducted under contract to the Atomic Energy Conrmission (AEC) at the University of Nevada, Mackay

185

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMER ALLIED CHEMICAL CORPORATION, CHEMICALS COMPANY FORMER ALLIED CHEMICAL CORPORATION, CHEMICALS COMPANY (NOW GENERAL CHEMICAL CORPORATION) NORTH CLAYMONT, DELAWARE Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioni.ng Projects " .___ . ..-. --.- ------ ". CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 1 1 2 2 2 4 ii INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Manhattan Engineer -- District (MED) and the Atomic Energy Commission (AEC) at the Allied Chemical

186

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

AMOCO CHEMICAL COMPANY AMOCO CHEMICAL COMPANY (THE FORMER TEXAS CITY CHEMICALS, INC.) TEXAS CITY, TEXAS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS Summary of Findings REFERENCES ii --.. ---_ .l.- _-__II__-_. -. Page 1 7 7 ' c . ELIMINATION REPORT AMOCO CHEMICAL COMPANY (THE FORMER TEXAS CITY CHEMICALS, INC.) TEXAS CITY, TEXAS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions), has reviewed the past activities conducted on behalf of the Atomic

187

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK VW. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ..- .-- ---- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii Page 1 L 2 2 3 3 5 5 - --__( -_..... _ .._ ELIMINATION REPORT THE FORMER SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK L -rc c INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Atomic Energy

188

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT,  

Office of Legacy Management (LM)

REPORT, REPORT, FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET, NEW YORK, AND DUNKIRK, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste.Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES * 1 2 2 2 3 4 4 . . . 111 ELIMINATION REPORT AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET. NEW YORK, AND DUNKIRK, NEW YORK INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and

189

Phyto remediation groundwater trends at the DOE portsmouth gaseous  

SciTech Connect (OSTI)

This paper describes the progress of a phyto-remediation action being performed at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) X-740 Waste Oil Handling Facility to remediate contaminated groundwater under a Resource Conservation and Recovery Act (RCRA) closure action. This action was effected by an Ohio Environmental Protection Agency (OEPA) decision to use phyto-remediation as the preferred remedy for the X-740 groundwater contamination. This remedy was recognized as a cost-effective, low-maintenance, and promising method to remediate groundwater contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). During 1999, prior to the tree installation at the X-740 Phyto-remediation Area, water level measurements in the area were collected from 10 monitoring wells completed in the Gallia Formation. The Gallia is the uppermost water-bearing zone and contains most of the groundwater contamination at PORTS. During the tree installation which took place during the summer of 1999, four new Gallia monitoring wells were installed at the X-740 Area in addition to the 10 Gallia wells which had been installed in the same area during the early 1990's. Manual water level measurements were collected quarterly from these 14 Gallia monitoring wells between 1998 and 2001. These manual water level measurements were collected to monitor the combined impact of the trees on the groundwater prior to root development. Beginning in 2001, water level measurements were collected monthly during the growing season (April-September) and quarterly during the dormant season (October-March). A total of eight water level measurements were collected annually to monitor the phyto-remediation system's effect on the groundwater in the X- 740 Area. The primary function of the X-740 Phyto-remediation Area is to hydraulically prevent further spreading of the TCE plume. This process utilizes deep-rooted plants, such as poplar trees, to extract large quantities of water from the saturated zone. The focus of any phyto-remediation system is to develop a cone of depression under the entire plantation area. This cone of depression can halt migration of the contaminant plume and can create a hydraulic barrier, thereby maintaining plume capture. While a cone of depression is not yet evident at the X-740 Phyto-remediation Area, water level measurements in 2004 and 2005 differed from measurements taken in previous years, indicating that the now mature trees are influencing groundwater flow direction and gradient at the site. Water level measurements taken from 2003 through 2005 indicate a trend whereby groundwater elevations steadily decreased in the X-740 Phyto-remediation System. During this time, an average groundwater table drop of 0.30 feet was observed. Although the time for the phyto-remediation system to mature had been estimated at two to three years, these monitoring data indicate a period of four to five years for the trees to reach maturity. Although, these trends are not apparent from analysis of the potentiometric surface contours, it does appear that the head gradient across the site is higher during the spring and lower during the fall. It is not clear, however, whether this trend was initiated by the installation of the phyto-remediation system. This paper will present the groundwater data collected to date to illustrate the effects of the trees on the groundwater table. (authors)

Lewis, A.C.; Baird, D.R. [CDM, Piketon, OH (United States)

2007-07-01T23:59:59.000Z

190

RCRA facility assessments  

SciTech Connect (OSTI)

The Hazardous and Solid Waste Amendments of 1984 (HSWA) broadened the authorities of the Resource Conservation and Recovery Act (RCRA) by requiring corrective action for releases of hazardous wastes and hazardous constituents at treatment, storage, and disposal (TSD) facilities. The goal of the corrective action process is to ensure the remediation of hazardous waste and hazardous constituent releases associated with TSD facilities. Under Section 3004(u) of RCRA, operating permits issued to TSD facilities must address corrective actions for all releases of hazardous waste and hazardous constituents from any solid waste management unit (SWMU) regardless of when the waste was placed in such unit. Under RCRA Section 3008(h), the Environmental Protection Agency (EPA) may issue administrative orders to compel corrective action at facilities authorized to operate under RCRA Section 3005(e) (i.e., interim status facilities). The process of implementing the Corrective Action program involves the following, in order of implementation; (1) RCRA Facility Assessment (RFA); (2) RCRA Facility Investigation (RFI); (3) the Corrective Measures Study (CMS); and (4) Corrective Measures Implementation (CMI). The RFA serves to identify and evaluate SWMUs with respect to releases of hazardous wastes and hazardous constituents, and to eliminate from further consideration SWMUs that do not pose a threat to human health or the environment. This Information Brief will discuss issues concerning the RFA process.

NONE

1994-07-01T23:59:59.000Z

191

Evaluation of previous remedial construction along the Duquesne Bluff  

Science Journals Connector (OSTI)

The Boulevard of the Allies is a major four lane roadway in Pittsburgh, Pennsylvania that is constructed atop a near vertical, 35 meter high rock slope known locally as the Duquesne Bluff. Stratigraphic relief observed on the bluff consists of alternating sequences of flat lying sedimentary deposits of sandstone, siltstone, shale, carbonaceous shale, claystone and limestone. Expsoure of alternating sequences of durable and less durable rock has resulted in differential weathering and the formation of precarious overhanging conditions. In the interest of motorist safety and roadway improvement, a major remedial program was undertaken by the Pennsylvania Department of Transportation (PennDOT) in the mid 1980s. Primary remedial activities included rock trimming, rock bolting, the construction of dental concrete buttressing for overhanging rock support and shotcrete slope facing to arrest continued weathering of less durable claystone and carbonaceous shale exposures. As part of a current roadway improvement project, PennDOT and their consultant, Gannett Fleming, Inc., are evaluating the performance of previous remedial construction and are developing preliminary alternatives for future remediation. This paper will discuss the slope geology, overall favorable performance of the previous remedial construction and unfavorable slope conditions that may have resulted from large scale trimming operations.

J.W. Kovacs; W.R. Adams Jr.

1997-01-01T23:59:59.000Z

192

Surfactants for ground water remediation  

Science Journals Connector (OSTI)

Ground water contamination is a most intractable form of pollution. Spilled solvent or fuel liquids are trapped below the water table by colloidal forces. Surfactants may be used to dramatically improve contaminated aquifer remediation rates. Principal remediation mechanisms include micellar solubilization and mobilization of the trapped liquids by lowering of the oil/water interfacial tension. Surfactant selection is a key to the successful design of a remediation effort, and involves consideration of factors including Krafft Point, surfactant adsorption onto the aquifer solids, and the phase behavior of the oil/water/surfactant system. Successful field demonstrations have occurred in recent months and the technology is moving rapidly toward commercialization. Critical research issues remain including acceptable clean-up levels, surfactant/contaminant in situ biodegradation rates, and surfactant decontamination and reuse.

Jeffrey H. Harwell; David A. Sabatini; R.C. Knox

1999-01-01T23:59:59.000Z

193

Remediation alternatives for low-level herbicide contaminated groundwater  

SciTech Connect (OSTI)

In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

Conger, R.M. [BASF Corp., Geismar, LA (United States)

1995-10-01T23:59:59.000Z

194

Remedial action work plan for the Colonie site. Revision 1  

SciTech Connect (OSTI)

The Colonie site is a DOE Formerly Utilized Sites Remedial Action Program (FUSRAP) site located in the Town of Colonie, New York, and consisting of an interim storage site and several vicinity properties. The Colonie Interim Storage Site (CISS) is the former National Lead (NL) Industries plant located at 1130 Central Avenue. There are 11 vicinity properties that received remedial action in 1984: 7 located south of the site on Yardboro and Palmer Avenues just across the Colonie-Albany town limits in Albany, and 4 located northwest of the site along Central Avenue in Colonie. Of these properties, nine are residences and two are commercial properties. This document describes the engineering design, construction, and associated plans for remedial action on the vicinity properties and the interim storage site. These plans include both radiological and chemical work. Radiological work includes: excavating the above-guideline radioactive wastes on the vicinity properties; designing required facilities for the interim storage site; preparing the interim storage site to receive these contaminated materials; transporting the contaminated materials to the interim waste storage stockpile; and preparing necessary schedules for accomplishing the remedial actions. Chemical work involves: developing the Resource Conservation and Recovery Act (RCRA) closure plans; neutralizing chemical hazards associated with plating solutions; inventorying on-site chemicals; and disposal of chemicals and/or residues. 17 refs., 5 figs., 1 tab.

Not Available

1985-08-01T23:59:59.000Z

195

Borehole Geologic Data for the 216-Z Crib Facilities, A Status of Data Assembled through the Hanford Borehole Geologic Information System (HBGIS)  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) is assembling existing borehole geologic information to aid in determining the distribution and potential movement of contaminants released to the environment and to aid selection of remedial alternatives. This information is being assembled via the Hanford Borehole Geologic Information System (HBGIS), which is being developed as part of the Characterization of Systems Project, managed by PNNL, and the Remediation Decision Support Task of the Groundwater Remediation Project, managed by Fluor Hanford, Inc. The purpose of this particular study was to assemble the existing borehole geologic data pertaining to sediments underlying the 216-Z Crib Facilities and the Plutonium Finishing Plant Closure Zone. The primary objective for Fiscal Year 2006 was to assemble the data, complete log plots, and interpret the location of major geologic contacts for each major borehole in and around the primary disposal facilities that received carbon tetrachloride. To date, 154 boreholes located within or immediately adjacent to 19 of the 216-Z crib facilities have been incorporated into HBGIS. Borehole geologic information for the remaining three Z-crib facilities is either lacking (e.g. 216-Z-13, -14, and -15), or has been identified as a lesser priority to be incorporated at a later date.

Last, George V.; Mackley, Rob D.; Lanigan, David C.

2006-09-25T23:59:59.000Z

196

FY-95 technology catalog. Technology development for buried waste remediation  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

NONE

1995-10-01T23:59:59.000Z

197

Streamline simulation of Surfactant Enhanced Aquifer Remediation  

E-Print Network [OSTI]

Nonaqueous Phase Liquids (NAPLS) are a recognized source of groundwater contamination. Surfactant Enhanced Aquifer Remediation (SEAR) shows promise in increasing the efficiency and effectiveness over traditional "pump and treat" NAPL remediation...

Tunison, Douglas Irvin

1996-01-01T23:59:59.000Z

198

Use of Risk Analysis on Remedial Alternatives  

Science Journals Connector (OSTI)

Quantitative risk assessment (RA) is a tool used in determining a remedial alternative’s effectiveness of reducing public health ... to occur at a site. Under the Remedial Investigation/Feasibility Study (RI/FS) ...

Teresa A. Schuller; Denice H. Wardrop…

1991-01-01T23:59:59.000Z

199

Assessment of Remedial Actions for Contaminated Sites  

Science Journals Connector (OSTI)

During the investigation in the field of remedial actions on contaminated land, an appropriate concept ... site, an evaluation of the existing alternative remedial techniques is necessary. The comparative evaluat...

Th. Neteler; H. L. Jessberger

1993-01-01T23:59:59.000Z

200

Toxic Remediation System And Method  

DOE Patents [OSTI]

What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

Matthews, Stephen M. (Alameda County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

1996-07-23T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Paper D-019, in: E.A. Foote and G.S. Durell (Conference Chairs), Remediation of Contaminated Sediments--2007. Proceedings of the Fourth International Conference on Remediation of Contaminated Sediments (Savannah, Georgia;  

E-Print Network [OSTI]

Paper D-019, in: E.A. Foote and G.S. Durell (Conference Chairs), Remediation of Contaminated Sediments--2007. Proceedings of the Fourth International Conference on Remediation of Contaminated Sediments layer to bring biogenically-produced gas to shoreline collectors through an innovative support grid

Rockne, Karl J.

202

Residential radon remediation: performance over 17 years  

Science Journals Connector (OSTI)

......covering about 1000 m2. Water drains into the basin...sub-slab ventilation remediation system installed, i...sub-slab ventilation remediation (Bq mSE). Measured...concentration with height above ground level. For example...had a sub-slab radon remediation system installed that......

Naomi H. Harley; Passaporn Chittaporn; Anthony Marsicano

2011-05-01T23:59:59.000Z

203

Bargaining over Remedies in Merger Bruce Lyons  

E-Print Network [OSTI]

on the internationally standard 2-phase investigation structure and remedy negotiations of the form practiced by the EC jurisdictions, remedies can be agreed in either phase of investigation. In particular, both the EU and US merger regulations allow remedies to be agreed in either phase of the investigation. Either de jure (as in the EU

Feigon, Brooke

204

Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

Not Available

1992-09-01T23:59:59.000Z

205

Environmental remediation and waste management information systems  

SciTech Connect (OSTI)

The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

Harrington, M.W.; Harlan, C.P.

1993-12-31T23:59:59.000Z

206

Recovery Act Begins Box Remediation Operations at F Canyon | Department of  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon May 17, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico. The $40-million facility will process approximately 330 boxes containing TRU waste with a radiological risk higher than seen in the rest of the Site's original 5,000-cubic-meter

207

Integrating GIS and GPS in environmental remediation oversight  

SciTech Connect (OSTI)

This paper presents findings on Ohio EPA Office of Federal Facilities Oversight`s (OFFO) use of GIS and GPS for environmental remediation oversight at the U.S. Department of Energy`s (DOE) Fernald Site. The Fernald site is a former uranium metal production facility within DOE`s nuclear weapons complex. Significant uranium contamination of soil and groundwater is being remediated under state and federal regulations. OFFO uses GIS/GPS to enhance environmental monitoring and remediation oversight. These technologies are utilized within OFFO`s environmental monitoring program for sample location and parameter selection, data interpretation and presentation. GPS is used to integrate sample data into OFFO`s GIS and for permanently linking precise and accurate geographic data to samples and waste units. It is important to identify contamination geographically as all visual references (e.g., buildings, infrastructure) will be removed during remediation. Availability of the GIS allows OFFO to perform independent analysis and review of DOE contractor generated data, models, maps, and designs. This ability helps alleviate concerns associated with {open_quotes}black box{close_quotes} models and data interpretation. OFFO`s independent analysis has increased regulatory confidence and the efficiency of design reviews. GIS/GPS technology allows OFFO to record and present complex data in a visual format aiding in stakeholder education and awareness. Presented are OFFO`s achievements within the aforementioned activities and some reasons learned in implementing the GIS/GPS program. OFFO`s two years of GIS/GPS development have resulted in numerous lessons learned and ideas for increasing effectiveness through the use of GIS/GPS.

Kaletsky, K.; Earle, J.R.; Schneider, T.A. [Ohio EPA, Dayton, OH (United States)

1996-12-31T23:59:59.000Z

208

Summary Protocol: Identification, Characterization, Designation, Remedial  

Broader source: Energy.gov (indexed) [DOE]

Summary Protocol: Identification, Characterization, Designation, Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification (January 1986) Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification (January 1986) More Documents & Publications Supplement No. 1 to the FUSRAP Summary Protocol - Designation/Elimination Protocol Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at

209

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national...

210

Soil & Groundwater Remediation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Soil & Groundwater Soil & Groundwater Remediation Soil & Groundwater Remediation Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages the largest groundwater and soil remediation effort in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic meters of soil and debris contaminated with radionuclides, metals, and organics. The Office of Groundwater and Soil Remediation is working with DOE site managers around the country regarding specific technical issues. At the large sites such as Hanford, Savannah River, and Oak Ridge, the Office of Groundwater and Soil Remediation has conducted research and demonstration projects to test new technologies and remediation

211

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Inertial Confinement Fusion Inertial Confinement Fusion Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement Fusion > Facilities Facilities Office of Inertial Confinement Fusion, Facilities ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser Energetics Z Machine, Sandia National Laboratories

212

Approved CAMU equals faster, better, cheaper remediation at the Fernald Environmental Management Project  

SciTech Connect (OSTI)

A 1,050 acre Corrective Action Management Unit (CAMU) was approved for the Fernald Protection Agency Environmental Management Project (FEMP) by the US Environmental Protection Agency (USEPA) to manage environmental media remediation waste in the Operable Unit 5 Record of Decision, 1995. Debris is also proposed for management as remediation waste under the CAMU Rule in the Operable Unit 3 Remedial Investigation/Feasibility Study (RI/FS) Report, as of December 1995. Application of the CAMU Rule at the FEMP will allow consolidation of low-level mixed waste and hazardous waste that presents minimal threat from these two operable units in an on-property engineered disposal facility without triggering land disposal restrictions (LDRs). The waste acceptance criteria for the on property disposal facility are based on a combination of site-specific risk-based concentration standards, as opposed to non-site-specific requirements imposed by regulatory classifications.

Dupuis-Nouille, E.M. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States)] [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Goidell, L.C.; Strimbu, M.J. [Jacobs Engineering Co., Cincinnati, OH (United States)] [Jacobs Engineering Co., Cincinnati, OH (United States); Nickel, K.A. [US Dept. of Energy-Fernald, CIncinnati, OH (United States)] [US Dept. of Energy-Fernald, CIncinnati, OH (United States)

1996-03-01T23:59:59.000Z

213

Feasibility of In Situ Redox Manipulation of Subsurface Sediments for RDX Remediation at Pantex  

SciTech Connect (OSTI)

This laboratory study was conducted to assess RDX (hexahydro-1,3,5-trinitro-1,3,5 triazine) abiotic degradation by chemically reduced sediments and other geochemical aspects of the application of this technology to remediation of RDX contamination in groundwater at the U.S. DOE Pantex facility...

Szecsody, James E.; Fruchter, Jonathan S.; Mckinley, Mark A.; Resch, Charles T.; Gilmore, Tyler J.

2001-12-31T23:59:59.000Z

214

Packaging and Transportation Support at LANL CTMA 2012  

SciTech Connect (OSTI)

Operations Support Packaging and Transportation (OS-PT) supports LANL in various functions. Some highlights of the past year have been with the work relating to environmental remediation, type B packaging, non-DOT compliant transfers, and special permit training. The TA-21 remediation project was part of the ARRA funding that LANL received. The $212 million in funding was used to demolish 24 buildings at TA-21, excavate the lab's oldest waste disposal site, and install 16 groundwater monitoring wells. The project was completed ahead of schedule and under budget. More than 300 tons of metal was recycled and all the soil excavated from MDA-B was replaced with clean fill. OS-PT supported this projected by transporting more than 7 million pounds of waste to TA-54 Area G with an addendum to their TSD. Because of the public access on the transfer route, Los Alamos County restricted the transfer to happen from 2:00 AM to 4:00 AM. OS-PT conducted 8 transfers in support of this project. Some concerns included the contaminated trailers at receipt facilities when transferring filled Super Sacks. Future Super Sacks were over packed into new IP-2 Super Sacks before shipping. OS-PT is also supporting the remediation of TA-54 Area G. LANL has an agreement with the State of New Mexico to remove all TRU waste currently stored above ground from at Area G. OS-PT supports this initiative with transfers of TRU waste under LANL's TSD and support of TRU shipments to WIPP. Another project supported by our organization is gas cylinder/dewar recycling and remediation. We are focusing on reducing risk associated with unneeded gasses at LANL. To minimized excessive ordering, to save money and time, and to minimize hazards OS-PT is supporting a gas recycling program. This program will allow programmatic organization across LANL to share unused/unneeded gasses. Instead of old dewars being disposed of, OS-PT has began identifying these dewars and sending them for refurbishment. To date, this effort has saved LANL $450K and estimated saving for future efforts will be more than $1.5 million. Some Projects that are happening here at LANL are offsite source recovery, weapon component transfers, and isotope science production. There are specific packages that help support these projects for the shipment of related materials. OS-PT provides support to these packages to ensure they are and will be available to continue this support. The Areva 435-B Overpack will help the Offsite Source Recovery Project recover high activity gamma sources from various locations across the globe. The Safety Analysis for Packaging is scheduled for initial completion June of 2012. The DPP-1 package is designed to replace the Model FL, which was designed by Rocky Flats and began service in 1990. LANL has collaborated on package design with LLNL, Pantex, Y-12, and KCP. LANL is supporting LLNL on component fixture development. Testing to 10 CFR 71 is to be completed in the Fall of 2012 and scheduled for NA-174 approval in 2014. The SAFESHIELD package helps supports LANL's Isotope production projects. This package can transfer highly irradiated materials from LANL's accelerator to material processing facilities. LANL worked to renew the SAFESHEILD's Certification for 5 more years.

Salazar, Nick [Los Alamos National Laboratory

2012-06-08T23:59:59.000Z

215

LANSCE | Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Isotope Production Facility (IPF) Lujan Neutron Scattering Center Materials Test Station (MTS) Proton Radiography (pRad) Ultracold Neutrons (UCN) Weapons Neutron Research Facility...

216

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4, 2013 [Facility News] 4, 2013 [Facility News] Work Cut Out for ARM Science Board Bookmark and Share With a new fixed site on the horizon in the Azores, a third ARM Mobile Facility gearing up for action in the Arctic, and more aircraft probes and sensors than scientists can shake a stick at, the ARM Facility continues to expand its considerable suite of assets for conducting climate research. Along with this impressive inventory comes the responsibility to ensure the Facility is supporting the highest-value science possible. Enter the ARM Science Board. This eleven-member group annually reviews complex proposals for use of the ARM mobile and aerial facilities. To maintain excellence and integrity in the review process, each member serves a renewable term of two years, with membership updated annually.

217

FORMERLY UTILIZED elTEB REMEDIAL ACTION PROORAM [FUSRAP] AND  

Office of Legacy Management (LM)

bE8IQM CRITERIA FOR bE8IQM CRITERIA FOR r FORMERLY UTILIZED elTEB REMEDIAL ACTION PROORAM [FUSRAP] AND r 8URPLUS FACIL~TIES MANAOEMENT PROQRAM [SFMPI FEBRUARY 1886 i r s o i - o o - ~ c - o l - 1 ~ R e v . 1 DESIGN CRITERIA FOR FORMERLY UTILIZED Sf TES REMEDIAL' ACTION PROGAM ( PUSRAPL AND . . -- SURPLUS F A C I L I T I E S UANAGEMENT PROGRAM ( SFMP ( I S S U E D FOR CLIENT APPROVAL) SF proved by: 2-24-86 D a t e T e c h n i c a l Services D i v i s i o n A p p r o v e d by: 2-24-86 D a t e C o n s t r u c t i o n a n d E n g i n e e r i n g Oak R i d g e O p e r a t i o n s O f f ice 14SOl-00-PC-01 Rev. 1 PREFACE T O DESIGN CRITERIA These design criteria have been written in a generic form that sunmarizes criteria applicabl'e for remedial action and long-tern ranasenent activities associated with t h e radioactive wastes at the FOSRAP *and SFflP sites. Site-specific information i

218

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

WINCHESTER ENGINEERING AND ANALYTICAL CENTER WINCHESTER ENGINEERING AND ANALYTICAL CENTER (NORTHEASTERN RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSE'ITS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects . . I . I C O N T E N T S IN T R O D U C T IO N B A C K G R O U N D S i te F u n c ti o n S i te D e s c ri p ti o n R a d i o l o g i c a l H i s to ry a n d S ta tu s E L IM IN A T IO N A N A L Y S IS R E F E R E N C E S - P a g e 1 2 2 2 3 5 5 i i i -..- - ELIMINATION REPORT WINCHESTER ENGINEERING AND ANALYTICAL CENTER (NORTHEASTERN RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSETTS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Terminal Waste Disposal and Remedial Action, Division of Remedial Action Projects (and/or predecessor agencies, offices and divisions,)

219

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS&M) of remediated FUSRAP sites. DOE LTS&M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS&M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS&M.

Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado; Gillespie, Joey [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; Widdop, Michael [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; none,

2012-02-26T23:59:59.000Z

220

X-701B Groundwater Remedy Portsmouth Ohio  

Broader source: Energy.gov (indexed) [DOE]

X-701B Groundwater Remediation X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section A report, existing conditions calculations/supporting information  

SciTech Connect (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. Based upon US Department of Energy (DOE) Albuquerque Operations (DOE/Al) Office and LANL projections, storage space limitations/restrictions will begin to affect LANL`s ability to meet its missions between 1998 and 2002.

NONE

1995-07-14T23:59:59.000Z

222

Tank waste remediation system operation and utilization plan,vol. I {ampersand} II  

SciTech Connect (OSTI)

The U.S. Department of Energy Richland Operations Office (RL) is in the first stages of contracting with private companies for the treatment and immobilization of tank wastes. The components of tank waste retrieval, treatment, and immobilization have been conceived in two phases (Figure 1.0-1). To meet RL's anticipated contractual requirements, the Project Hanford Management Contractor (PHMC) companies will be required to provide waste feeds to the private companies consistent with waste envelopes that define the feeds in terms of quantity, and concentration of both chemicals and radionuclides. The planning that supports delivery of the feed must be well thought out in four basic areas: (1) Low-activity waste (LAW)/high-level waste (HLW) feed staging plans. How is waste moved within the existing tanks to deliver waste that corresponds to the defined feed envelopes to support the Private Contractor's processing schedule and processing rate? (2) Single-shell tank (SST) retrieval sequence. How are Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) milestones for SST retrieval integrated into the Phase I processing to set the stage for Phase II processing to complete the mission? (3) Tank Waste Remediation System (TWRS) process flowsheet. How do materials flow from existing tank inventories through: (1) blending and pretreatment functions in the double-shell tanks (DSTs), (2) contractor processing facilities, and (3) stored waste forms (Figure 1.0-2); (4) Storage and disposal of the immobilized low-activity waste (ILAW) and immobilized high-level waste (IHLW) product. How is the ILAW and IHLW product received from the private companies, the ILAW disposed onsite, and the IHLW stored onsite until final disposal?

Kirkbride, R.A.

1997-09-01T23:59:59.000Z

223

DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation  

Broader source: Energy.gov (indexed) [DOE]

CH2M Hill Plateau Remediation Company for Plateau CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site June 19, 2008 - 1:29pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that CH2M Hill Plateau Remediation Company has been selected as the plateau remediation contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $4.5 billion over ten years (a five-year base period with the option to extend it for another five years). CH2M Hill Plateau Remediation Company is a limited liability company formed by CH2M Hill Constructors, Inc. The team also includes AREVA Federal

224

Summary - Mitigation and Remediation of Mercury Contamination...  

Office of Environmental Management (EM)

and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

225

Savannah River Remediation (SRR) Expanded Staff Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River Remediation Delivering the Mission Dave Olson President and Project Manager January 27, 2012 SRS Executive Management Community Discussion 2 * Liquid Waste Funding...

226

Recommendation 192: Comments on Remediation Effectiveness Report  

Broader source: Energy.gov [DOE]

The ORSSAB Recommendations and Comments on the Draft 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation.

227

Consideration of Reliability in System Design for Ground Water Remediation  

Science Journals Connector (OSTI)

A remedial action design system is described that may be used to evaluate candidate remediation systems and select the preferred alternative under conditions of uncertainty. The remedial action design method i...

W. Woldt; I. Bogardi; L. Duckstein

1991-01-01T23:59:59.000Z

228

Groundwater Remediation Strategy Using Global Optimization Algorithms  

E-Print Network [OSTI]

. DOI: 10.1061/ ASCE 0733-9496 2002 128:6 431 CE Database keywords: Ground water; Remedial action; Algorithms; Ground-water management. Introduction The contamination of groundwater is a widespread problemGroundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja

Neumaier, Arnold

229

Remediation of the Maxey Flats Site  

SciTech Connect (OSTI)

This report describes issues associated with remedial action of Maxey Flats, a low-level radioactive waste disposal site from 1963-1977, located in Fleming County, Kentucky. Present remedial action alternatives being considered are discussed along with emergency plans, ground water monitoring plans, and budgets.

Not Available

1990-01-12T23:59:59.000Z

230

BNL | Research Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brookhaven's Research Facilities Brookhaven's Research Facilities Tools of Discovery Brookhaven National Lab excels at the design, construction, and operation of large-scale, cutting-edge research facilities-some available nowhere else in the world. Each year, thousands of scientists from laboratories, universities, and industries around the world use these facilities to delve into the basic mysteries of physics, chemistry, biology, materials science, energy, and the environment-and develop innovative applications that arise, sometimes at the intersections of these disciplines. construction Brookhaven Lab is noted for the design, construction and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide. RHIC tunnel Relativistic Heavy Ion Collider

231

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

FACILITY SAFETY (FS) FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the safety envelope of the facility. The, safety documentation should characterize the hazards/risks associated with the facility and should, identify preventive and mitigating measures (e.g., systems, procedures, and administrative, controls) that protect workers and the public from those hazards/risks. (Old Core Requirement 4) Criteria 1. A DSA has been prepared by FWENC, approved by DOE, and implemented to reflect the SN process operations in the WPF. (10 CFR 830.200, DOE-STD-3009-94) 2. A configuration control program is in place and functioning such that the DSA is

232

Site & Facility Restoration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Restoration Restoration Site & Facility Restoration Deactivation & Decommissioning (D&D) Deactivation and Decommissioning (D&D) is the process of taking an active/excess/abandoned facility to a final disposition end state. Because of residual radioactivity, other hazardous constituents, and the physical condition of EM's facilities, D&D presents unique hazards that must be addressed from a safety, programmatic, environmental, and technological standpoint. Read more Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages the largest groundwater and soil remediation effort in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic

233

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 11, 2011 [Facility News] October 11, 2011 [Facility News] Final Recovery Act Milestone Complete! Bookmark and Share To support all the new instruments from the Recovery Act, infrastructure upgrades ranging from power and platforms to communications and data systems required a focused team effort. To support all the new instruments from the Recovery Act, infrastructure upgrades ranging from power and platforms to communications and data systems required a focused team effort. For the past year and a half, ARM scientists, engineers, operations, and data systems staff have been working tirelessly to support the installation and operation of nearly 150 new and upgraded instruments throughout the user facility. In September, ARM received its final three instruments - a radar wind profiler; a micropulse lidar for the Darwin, Australia site; and

234

Salt Processing at the Savannah River Site: Results of Technology Down-Selection and Research and Development to Support New Salt Waste Processing Facility  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste (HLW) program is responsible for storage, treatment, and immobilization of HLW for disposal. The Salt Processing Project (SPP) is the salt waste (water-soluble) treatment portion of this effort. The overall SPP encompasses the selection, design, construction, and operation of technologies to prepare the salt-waste feed material for immobilization at the site's Saltstone Production Facility (SPF) and vitrification facility (Defense Waste Processing Facility [DWPF]). Major constituents that must be removed from the salt waste and sent as feed to DWPF include cesium (Cs), strontium (Sr), and actinides. In April 2000, the DOE Deputy Secretary for Project Completion (EM-40) established the SRS Salt Processing Project Technical Working Group (TWG) to manage technology development of treatment alternatives for SRS high-level salt wastes. The separation alternatives investigated included three candidate Cs-removal processes selected, as well as actinide and Sr removal that are also required as a part of each process. The candidate Cs-removal processes are: crystalline Silicotitanate Non-Elutable Ion Exchange (CST); caustic Side Solvent Extraction (CSSX); and small Tank Tetraphenylborate Precipitation (STTP). The Tanks Focus Area was asked to assist DOE by managing the SPP research and development (R&D), revising roadmaps, and developing down-selection criteria. The down-selection decision process focused its analysis on three levels: (a) identification of goals that the selected technology should achieve, (b) selection criteria that are a measure of performance of the goal, and (c) criteria scoring and weighting for each technology alternative. After identifying the goals and criteria, the TWG analyzed R&D results and engineering data and scored the technology alternatives versus the criteria. Based their analysis and scoring, the TWG recommended CSSX as the preferred alternative. This recommendation was formalized in July 2001 when DOE published the Savannah River Site Salt Processing Alternatives Final Supplemental Environmental Impact Statement (SEIS) and was finalized in the DOE Record of Decision issued in October 2001.

Lang, K.; Gerdes, K.; Picha, K.; Spader, W.; McCullough, J.; Reynolds, J.; Morin, J. P.; Harmon, H. D.

2002-02-26T23:59:59.000Z

235

Agencies plan continued DOE landfill remediation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agencies plan continued DOE landfill remediation Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision (ROD) and implements the retrieval of targeted waste at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC). The SDA began receiving waste in 1952 and contains radioactive and chemical waste in approximately 35 acres of disposal pits, trenches and soil vaults.

236

Remediation of Mercury and Industrial Contaminants Applied Field...  

Office of Environmental Management (EM)

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

237

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy Savers [EERE]

Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Full Document...

238

Groundwater remediation technologies for trichloroethylene and technetium-99.  

E-Print Network [OSTI]

??M. Eng. The Technical Advisory Group (TAG) of the Innovative Treatment Remediation Demonstration Program (ITRD) made technology recommendations after reviewing thirty in situ remediation technologies… (more)

Uhl, John Nicholas, 1960-

2005-01-01T23:59:59.000Z

239

Surfactant-enhanced electrokinetic remediation of hydrocarbon-contaminated soils.  

E-Print Network [OSTI]

??Concern over soil and groundwater contamination has created a demand for new and efficient remediation technologies. Surfactant-enhanced electrokinetic remediation is an innovative technique which has… (more)

Thomas, Steven P.

2012-01-01T23:59:59.000Z

240

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Sandia Capabilities to Support Power Industry On January 8, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work  

SciTech Connect (OSTI)

This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

D. E. Shanklin

2007-07-25T23:59:59.000Z

242

Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

area area Contact Us | Careers | Staff Directory | User Support Search form Search Search Argonne Leadership Computing Facility an Office of Science user facility Home . About Overview History Staff Directory Careers Visiting Us Contact Us Resources & Expertise Mira Cetus Vesta Intrepid Challenger Surveyor Visualization Clusters Data and Networking Our Teams User Advisory Council Science at ALCF INCITE 2014 Projects ALCC 2013 Projects ESP Projects View All Projects Allocation Programs Early Science Program Publications Industry Collaborations News & Events Web Articles In the News Upcoming Events Past Events Informational Materials Photo Galleries User Services User Support Machine Status Presentations Training & Outreach User Survey Getting Started How to Get an Allocation New User Guide

243

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

244

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

245

Certified Facilities  

Broader source: Energy.gov [DOE]

Industrial Leaders: The industrial facilities shown below are among the first to earn certification for Superior Energy Performance® (SEP™).

246

Remedial Action Work Plan Amchitka Island Mud Pit Closures  

SciTech Connect (OSTI)

This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

DOE/NV

2001-04-05T23:59:59.000Z

247

Project Overview: Successful Field-Scale in SITU Thermal NAPL Remediation  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) successfully completed a field-scale remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at the Northeast Site on the Young-Rainey Science, Technology, and Research (STAR) Center, Largo, Florida. The Young-Rainey STAR Center is a former DOE facility that was previously known as the Pinellas Plant and the Pinellas STAR Center. The remediation project encompassed an area of 10,000 ft2 and depths extending to 35 ft below ground surface. Prior to the remediation, DOE evaluated technologies that had the potential to remove NAPLs from the subsurface at the site. Because of site conditions (clay lenses and an underlying clay layer that were thought to be contaminated), steam injection and electrical heating were considered to be the only technologies that had the potential to remove these NAPLs. In July 2001, DOE’s contractor awarded a subcontract for removal of NAPLs from a portion of the Northeast Site. The technologies used for remediation were a combination of steam-enhanced extraction and Electro-Thermal Dynamic Stripping Process, an electrical resistive heating technology. Construction of the remediation system was completed in September 2002. Remedial operations began immediately after construction, and active heating ended in February 2003. After operations were completed, confirmatory sampling was conducted during a 6-month period to verify the level of cleanup achieved. Additional confirmatory sampling was conducted 18 months after operations ended. Analytical results of the confirmatory sampling showed that NAPL concentrations were reduced significantly below the required cleanup goals and, in most cases, below the regulatory maximum contaminant levels. Lessons learned relative to the design, construction, operation, confirmatory sampling approach, and subcontracting could benefit managers of similar remediation projects.

Butherus, Michael [S.M. Stoller Corporation; Ingle, David S. [S.M. Stoller Corporation; Juhlin, Randall [S.M. Stoller Corporation; Daniel, Joseph [S.M. Stoller Corporation; none,

2004-10-24T23:59:59.000Z

248

Successful Field-Scale In Situ Thermal NAPL Remediation at the Young-Rainey Star Center  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) successfully completed a fieldscale remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at a site on the Young-Rainey Science, Technology, and Research (STAR) Center, Largo, Florida. The STAR Center is a former DOE facility. The remediation project covered an area of 930 m2 (10,000 ft2) and depths extending to 10.5 m (35 ft) below ground surface. In July 2001, DOE’s contractor awarded a subcontract to SteamTech Environmental Services for removal of NAPLs from a portion of the Northeast Site. The technologies used for remediation were steam-enhanced extraction and Electro-Thermal Dynamic Stripping Process, an electrical resistive heating technology. McMillan-McGee Corporation implemented the process. Construction of the remediation system was completed in September 2002. Operations began immediately after construction, and active heating ended in February 2003. After operations were completed, confirmatory sampling was conducted over a 6-month period to verify the level of cleanup achieved. Results of the sampling showed that NAPL concentrations were reduced significantly below the required cleanup goals and, in most cases, below the regulatory maximum contaminant levels. Lessons learned relative to the design, construction, operation, confirmatory sampling approach, and subcontracting could benefit managers of similar remediation projects

Gavaskar, A.R. [ed.; Chen, A.S.C. [ed.; none,

2004-05-04T23:59:59.000Z

249

Federal Facility Agreement progress report  

SciTech Connect (OSTI)

The (SRS) Federal Facility Agreement (FFA) was made effective by the US. Environmental Protection Agency Region IV (EPA) on August 16, 1993. To meet the reporting requirements in Section XXV of the Agreement, the FFA Progress Report was developed. The FFA Progress Report is the first of a series of quarterly progress reports to be prepared by the SRS. As such this report describes the information and action taken to September 30, 1993 on the SRS units identified for investigation and remediation in the Agreement. This includes; rubble pits, runoff basins, retention basin, seepage basin, burning pits, H-Area Tank 16, and spill areas.

Not Available

1993-10-01T23:59:59.000Z

250

Improved Saltstone Facilities Restart Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Improved Saltstone Facilities Restart Operations Improved Saltstone Facilities Restart Operations Improved Saltstone Facilities Restart Operations September 1, 2012 - 12:00pm Addthis Savannah River Remediation employees install new equipment in the Saltstone Process Room during the recent outage. Savannah River Remediation employees install new equipment in the Saltstone Process Room during the recent outage. AIKEN, S.C. - The Saltstone Facilities at the Savannah River Site (SRS) have restarted operations following a nine-month planned improvement outage. Improvements to the facilities are expected to provide a new and more reliable system to process larger amounts of decontaminated salt solution needed for future tank closure operations. Saltstone processs and disposes of decontaminated salt solution, reducing the risk of potential

251

White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C  

SciTech Connect (OSTI)

This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

NONE

1996-11-01T23:59:59.000Z

252

Monticello Mill site Federal Facility Agreement, December 22, 1988 Summary  

Broader source: Energy.gov (indexed) [DOE]

Monticello Monticello Agreement Name Monticello (Utah) Site: Monticello Vicinity Properties NPL Site and Monticello Millsite Federal Facility Agreement Pursuant to CERCLA Section 120, December 22, 1988 State Utah Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; US EPA; State of Utah Department of Environmental Health Date 12/22/1988 SCOPE * Identify Interim Remedial Action (IRA) alternatives, if any, which are appropriate at the Site prior to the implementation of final remedial actions for the Site. * Evaluate all past investigative and response actions taken at the Site and documented

253

Remediation of Mercury and Industrial Contaminants  

Broader source: Energy.gov [DOE]

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

254

Engineered Polymeric Nanoparticles for Soil Remediation  

Science Journals Connector (OSTI)

compds. in soil-water systems in which surfactants play a role in contaminant remediation or facilitated transport. ... (9)?Abdul, A. S.; Ang, C. C. Ground Water 1994, 32, 727. ...

Warapong Tungittiplakorn; Leonard W. Lion; Claude Cohen; Ju-Young Kim

2004-01-28T23:59:59.000Z

255

SITE MAINTENANCE PLAN CSMRI SITE REMEDIATION  

E-Print Network [OSTI]

...............................................................................................................5 5.2 Ground and Surface Water MonitoringSITE MAINTENANCE PLAN CSMRI SITE REMEDIATION June 29, 2004 Prepared by: Colorado School of Mines .................................................................................................4 5.0 SITE AIR AND WATER MONITORING

256

Avoiding Destructive Remediation at DOE Sites  

Science Journals Connector (OSTI)

...Pollutants, Radioactive 0 Water Pollutants, Radioactive...States Government Agencies Water Pollutants, Radioactive...management government agencies ground water policy pollutants pollution...pumping radioactive waste remediation risk assessment soils...

F. W. Whicker; T. G. Hinton; M. M. MacDonell; J. E. Pinder III; L. J. Habegger

2004-03-12T23:59:59.000Z

257

In situ Groundwater Remediation Using Treatment Walls  

Science Journals Connector (OSTI)

Development of treatment wall technology for the clean up of contaminated ground-water resources has expanded in the past few...ex situ and other in situ ground-water remediation approaches is reduced operation a...

Radisav D. Vidic; Frederick G. Pohland

2002-01-01T23:59:59.000Z

258

Electrolytic remediation of chromated copper arsenate wastes  

E-Print Network [OSTI]

While chromated copper arsenate (CCA) has proven to be exceptionally effective in protecting wood from rot and infestation, its toxic nature has led to the problem of disposal of CCA-treated lumber and remediation of waters ...

Stern, Heather A. G. (Heather Ann Ganung)

2006-01-01T23:59:59.000Z

259

SAMPLING AND ANALYSIS PLAN CSMRI SITE REMEDIATION  

E-Print Network [OSTI]

Littleton, CO 80127 #12;CSMRI Site Remediation Quality Assurance Project Plan March 30, 2004 SAMPLING Environmental Consultants, Inc. Approved By: Date: Sally Cuffin Project Quality Assurance Manager New Horizons...................................................................................................................................3 2.5 Decision Rules

260

DOE/EV-0005/10 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

0 0 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Horizons Inc., Metal Handling Facility, Cleveland, Ohio February 1979 - Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology DOE/EV-0005/10 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Horizons Inc., Metal Handling Facility, Cleveland, Ohii February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 Under Contract No. W-7405-ENG-26 By the Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Available from: National Technical Information Service (NTIS)

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Science Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Microscopy Lab Ion Beam Materials Lab Matter-Radiation Interactions in Extremes (MaRIE) Proton Radiography Trident Laser Facility LOOK INTO LANL - highlights...

262

Big Explosives Experimental Facility - BEEF  

ScienceCinema (OSTI)

The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

None

2015-01-07T23:59:59.000Z

263

Big Explosives Experimental Facility - BEEF  

SciTech Connect (OSTI)

The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

None

2014-10-31T23:59:59.000Z

264

Scheduling the Remediation of Port Hope: Logistical and Regulatory Challenges of a Multiple Site Urban Remediation Project - 13119  

SciTech Connect (OSTI)

The Port Hope Project is part of the larger CAN$1.28 billion Port Hope Area Initiative (PHAI), a community-based program for the development and implementation of a safe, local, long-term management solution for historic Low-Level Radioactive Waste (LLRW) in the Municipalities of Port Hope and Clarington, Ontario, Canada. Atomic Energy of Canada (AECL) is the Project Proponent, Public Works and Government Services (PWGSC) is managing the procurement of services and the MMM Group Limited - Conestoga Rovers and Associates Joint Venture (MMM-CRA Joint Venture) is providing detailed design and construction oversight and administration services for the Project. The Port Hope Project includes the construction of a long-term waste management facility (LTWMF) in the Municipality of Port Hope and the remediation of 18 (eighteen) large-scale LLRW, numerous small-scale sites still being identified and industrial sites within the Municipality. The total volume to be remediated is over one million cubic metres and will come from sites that include temporary storage sites, ravines, beaches, parks, private commercial and residential properties and vacant industrial sites all within the urban area of Port Hope. Challenges that will need to be overcome during this 10 year project include: - Requirements stipulated by the Environmental Assessment (EA) that affect Project logistics and schedule. - Coordination of site remediation with the construction schedule at the LTWMF. - Physical constraints on transport routes and at sites affecting production rates. - Despite being an urban undertaking, seasonal constrains for birds and fish (i.e., nesting and spawning seasons). - Municipal considerations. - Site-specific constraints. - Site interdependencies exist requiring consideration in the schedule. Several sites require the use of an adjacent site for staging. (authors)

Ferguson Jones, Andrea; Lee, Angela [MMM Group Limited, 100 Commerce Valley Drive West, Thornhill, Ontario, L3T 0A1 (Canada)] [MMM Group Limited, 100 Commerce Valley Drive West, Thornhill, Ontario, L3T 0A1 (Canada); Palmeter, Tim [Public Works and Government Services Canada, 4900 Yonge Street, Toronto, Ontario, M2N 6A6 (Canada)] [Public Works and Government Services Canada, 4900 Yonge Street, Toronto, Ontario, M2N 6A6 (Canada)

2013-07-01T23:59:59.000Z

265

Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545  

SciTech Connect (OSTI)

Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this process also provides new opportunities to think differently and look at the bigger picture of the overall benefit we are providing with our remediation projects. The opportunities from the move towards GSR are very real. They will help us make remedial actions truly more beneficial to the environment and to society. They will also allow (or force) remediation practitioners to think outside of the usual realm of approaches to find newer and more beneficial technologies. (authors)

Simpkin, Thomas J. [CH2M HILL, Denver, Colorado (United States); Favara, Paul [CH2M HILL, Gainesville, Florida (United States)

2012-07-01T23:59:59.000Z

266

Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

Not Available

1993-09-01T23:59:59.000Z

267

High Explosives Application Facility | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

at the micron scale in its microdetonics laboratory, and utilizing multiple firing tanks for larger scale explosives experiments. No other facility in the world supports such...

268

3 Cleantech Facilities You Should Know About  

Broader source: Energy.gov [DOE]

These National Lab facilities are supporting local economies across the country and driving national industries -- and you should definitely know more about them.

269

National Ignition Facility | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and...

270

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

CONTENTS CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii Pa e -5 1 : 2 2 4 ELIMINATION REPORT THE FORMER VIRGINIA-CAROLINA CHEMICAL CORPORATION RICHMOND, VIRGINIA INTROUUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and divisions, has reviewed the past activities of the Atomic Energy Commission (AEC) at the former Virginia-Carolina Chemical Corporation, Richmond, Virginia. On the basis of historical information, DOE has determined that any radioactive material potentially remaining from these activities would be insignificant in terms of both its quantity and the hazard it would

271

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

. . CONTENTS INTROOUCTION BACKGROUND Site Function Site Description Radiological History,and Status ELIMINATION ANALYSIS REFERENCES 9 1 1 2 2 2 4 ii ELIMINATION REPORT THE FORMER VIRGINIA-CAROLINA CHEMICAL CORPORATION RICHMOND. VIRGINIA INTROLJUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of ,Remedial Action and Waste Technology, Division of Facility and Site Deconunissioning Projects (and/or predecessor agencies, offices and divisions, has reviewed the past activities of the Atomic Energy Carmission (AEC) at the former Virginia-Carolina Chemical Corporation, Richmond, Virginia. On the basis of historical information, DOE has determined that any radioactive material potentially remaining from these activities would oe insignificant in terms of both its quantity and the hazard it would

272

Remedial Action Certification Docket - Sodium Reactor Experiment (SRE)  

Office of Legacy Management (LM)

c~-?i-- c~-?i-- I ,3-l Remedial Action Certification Docket - Sodium Reactor Experiment (SRE) .Complex and the Hot Cave Facility (Bldg. 003), Santa Susana ,Fie!d Laboratory, Chatsworth, California ..:'..~::Yerlette Gatl in, MA-232 I am attaching for entry into the Public Document Room, one copy of the N -23 subject documentat ion. These documents are the backup data for the certification that the facilfties are radiologically acceptable for b- unrestricted use as noted in the certification statement published in the &aney Federal Register. Inasmuch as the certification for unrestricted use is 9/2(/85 being published in the Federal Register, it is prudent that the attached documentation also be available to the public. These documents should be retained In accordance with DOE Order 1324.2--disposal schedule 25.

273

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

274

Ecological effects of contaminants and remedial actions in Bear Creek  

SciTech Connect (OSTI)

Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. [Oak Ridge National Lab., TN (United States); Burris, J.A. [C. E. Environmental, Inc., Tallahassee, FL (United States)

1992-01-01T23:59:59.000Z

275

Mobile Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

276

In Situ Remediation Integrated Program: Technology summary  

SciTech Connect (OSTI)

The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

Not Available

1994-02-01T23:59:59.000Z

277

DOE Awards $3.3 million for Advanced Remediation Technology Contracts |  

Broader source: Energy.gov (indexed) [DOE]

Awards $3.3 million for Advanced Remediation Technology Awards $3.3 million for Advanced Remediation Technology Contracts DOE Awards $3.3 million for Advanced Remediation Technology Contracts August 3, 2006 - 8:38am Addthis WASHINGTON, DC - The Department of Energy's (DOE) Office of Environmental Management (EM) today awarded 12 contracts totaling $3.3 million to support the development of technologies that have the potential to reduce cleanup costs and increase the safety and efficiency of treating and disposing of radioactive waste. These contracts provide funding to small and large businesses and a university to develop technologies over a six month period. "These awards allow for further development and evaluation of technologies that can lead to breakthroughs in how the Department implements its cleanup

278

DOE Awards $3.3 million for Advanced Remediation Technology Contracts |  

Broader source: Energy.gov (indexed) [DOE]

.3 million for Advanced Remediation Technology .3 million for Advanced Remediation Technology Contracts DOE Awards $3.3 million for Advanced Remediation Technology Contracts August 3, 2006 - 8:38am Addthis WASHINGTON, DC - The Department of Energy's (DOE) Office of Environmental Management (EM) today awarded 12 contracts totaling $3.3 million to support the development of technologies that have the potential to reduce cleanup costs and increase the safety and efficiency of treating and disposing of radioactive waste. These contracts provide funding to small and large businesses and a university to develop technologies over a six month period. "These awards allow for further development and evaluation of technologies that can lead to breakthroughs in how the Department implements its cleanup mission across the complex," said Assistant Secretary of Environmental

279

MPA-11 Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our Cleanroom Facility is available for use by LANL researchers MPA-11 Facilities Fuel cell testing, acoustics laboratories, and a wide spectrum of characterization equipment are essential to the research conducted in our group. Fuel Cell Testing. ........Acoustics. ........Characterization . ........ Many other multi-disciplinary staff and experimental/computational capabilities throughout Los Alamos National Laboratory are available to support our research. Access to enabling capabilities for the Fuel Cell Program is facilitated by the Laboratory's Institute for Hydrogen and Fuel Cell Research. Fuel Cell Testing Experimental equipment that is essential to our fuel cell efforts is housed in 24 laboratories at the Los Alamos National Laboratory. A partial list of

280

Tank waste remediation system program plan  

SciTech Connect (OSTI)

This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

Powell, R.W.

1998-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Remediation of Trichloroethylene-Contaminated Soils by STAR Technology using Vegetable Oil Smoldering  

Science Journals Connector (OSTI)

Abstract Self-sustaining Treatment for Active Remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (Trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil:TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000 mg/kg canola oil was found to treat sand exhibiting up to 80,000 mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy.

Madiha Salman; Jason I. Gerhard; David W. Major; Paolo Pironi; Rory Hadden

2014-01-01T23:59:59.000Z

282

Multiscale modeling of surfactant phase behavior in the remediation of DNAPL contamination.  

E-Print Network [OSTI]

??The brine barrier remediation technique (BBRT) has been proposed as a novel Brine barrier remediation techniques (BBRT) that use surfactants have been proposed for remediating… (more)

Fan, Xiangyu.

2008-01-01T23:59:59.000Z

283

Remediation of water contamination using catalytic technologies  

Science Journals Connector (OSTI)

Remediation of contaminated ground and underground water is becoming a critical issue in Europe and worldwide. We discuss here the role of catalysis in water remediation, with reference to two specific examples of catalytic water remediation technologies: (i) the elimination of nitrate and pesticides from water contaminated as a result of agricultural practices and (ii) the conversion of methyl tert-butyl ether (MTBE) in contaminated underground water. Of particular interest is a technology based on catalytic membranes for remediation of water contaminated by nitrate, which offers various advantages with respect to conventional technologies. Using a Pd-Cu-based catalytic membrane, a reaction temperature below 15 °C, a mixed 4:1 CO2:H2 feed and controlling bulk solution pH by \\{HCl\\} addition, it is possible to obtain a nitrate conversion higher than 80% even with ammonium ion formation below 0.5 ppm, i.e. the maximum concentration allowed to meet the requirements for drinking water quality. In MTBE conversion in contaminated underground water, acid zeolites with suitable pore structures (channel structure and pore openings) such as H-ZSM-5 and H-BEA can be used as catalytic permeable reactive barriers for in situ remediation. These zeolites not only act as adsorbents for both MTBE and its reaction products, but also effectively catalyze the hydrolysis of MTBE to t-butyl alcohol (TBA) and methanol (MeOH) which then can be rapidly biodegraded by indigenous microorganisms.

Gabriele Centi; Siglinda Perathoner

2003-01-01T23:59:59.000Z

284

Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York  

SciTech Connect (OSTI)

This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs.

Not Available

1990-06-01T23:59:59.000Z

285

Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste fadities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCIA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RIFA)/RCRA Facility Investigation (RFI)/Coffective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the Pre@ary Assessment/Site Investigation (PA/Sl) Remedial Investigation Feasibility Study (RI/FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCIA into an RI Work Plan for the lint phase of characterization of Bear Creek Valley (BCV) Operable Unit (OU) 4.

Not Available

1992-12-01T23:59:59.000Z

286

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

287

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

288

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

289

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

290

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Office of Defense Science Office of Defense Science Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development > Facilities Facilities Office of Research and Development, Facilities The Office of Research and Development manages and oversees the operation of an exceptional suite of science, technology, and engineering facilities that support and further the national stockpile stewardship agenda. Of varying size, scope and capabilities, the facilities work in a concert to accomplish the following activities: Annual assessment of the stockpile in the face of increasing challenges due to aging or remanufacture, Reduced response times for resolving stockpile issues, Timely and certifiable completion of Life Extension Programs,

291

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

More Storage Space, Better Reliability Now at the ARM Data Management More Storage Space, Better Reliability Now at the ARM Data Management Facility Bookmark and Share To support the ever-increasing file storage needs of the ARM Data Management Facility (DMF) and ARM Engineering computers, a Network Appliance (NetApp®) file server with 2.68 terabytes, or 2.95 trillion bytes, of highly-reliable and extremely-fast, usable disk storage joined the DMF servers. The NetApp system performs nearly four times faster than the previous file server and is engineered for a higher degree of reliability-critical improvements needed to maintain uptime for ARM data availability at the DMF. A NetApp server increases ARM storage capacity and keeps the data flowing at the Data Management Facility. A NetApp server increases ARM storage capacity and keeps the data flowing

292

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 24, 2013 [Education, Facility News] April 24, 2013 [Education, Facility News] A Twist on TwisterTM: ARM Educational Outreach Participates in Community Science Nights Bookmark and Share This week, the U.S. Department of Energy begins its National Science Bowl competition, a nationwide academic competition that tests students' knowledge in all areas of science. Created 22 years ago in 1991, the DOE National Science Bowl strives to encourage students to excel in mathematics and science and to pursue careers in these fields and is an important part of DOE's STEM (science, technology, engineering and math) education efforts today. The ARM Climate Research Facility supports STEM by participating in public science nights and developing climate related lesson plans to share at these events and via the ARM website.

293

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 15, 2007 [Facility News] October 15, 2007 [Facility News] ARM Joins National Science Foundation Remote Sensing Collaboration Bookmark and Share In September, the ARM Climate Research Facility became an official member of the National Science Foundation's Center for Collaborative Adaptive Sensing of the Atmosphere, or CASA. Initial discussions for partnering began nearly a year ago. After a series of informative visits and presentations, the decision was made to move forward with membership process. The transfer of interagency funds was completed on September 18, 2007, solidifying the partnership. In the meantime, CASA dedicated a significant effort to support the CLASIC field campaign in June 2007 by providing a network of four scanning X-band radars. CASA is a multi-sector partnership among academia, industry, and government

294

Beneficial reuse of treated media from remediation at an industrial site  

SciTech Connect (OSTI)

Remediation at an active PVC resin manufacturing plant in southeastern Pennsylvania has involved closure of lagoons under a RCRA plan and design of a groundwater pump and treat program under CERCLA. Both the CERCLA and RCRA programs involve beneficial reuse of the treated media, which in effect has offset some costs of the remediation. The lagoons were used to settle the PVC residual material from wastewater generated by the facility. Analysis of the residual material showed that the polymer content would allow it to be used as a low-grade PVC resin after drying. The treatment process selected for the RCRA lagoon closure involved indirect steam stripping and filter pressing which produced a filter cake that was both nonhazardous and marketable. Approximately 6,000 tons of product was sent to market from the lagoons. The groundwater, which will be remediated at the site, contains trichlorethylene (TCE), vinyl chloride monomer (VCM), and other volatile organic compounds. An average 400 gpm of groundwater will be extracted and treated by carbon absorbents and an air stripper. The groundwater will be used by the plant in the production process after it is treated by the CERCLA remediation system.

Erdman, D.E. [Smith Environmental Technologies, Plymouth Meeting, PA (United States); Weston, A.F. [Occidental Chemical Corp., Niagara Falls, NY (United States); Morrissey, B.J. [Occidental Chemical Corp., Houston, TX (United States)

1996-12-31T23:59:59.000Z

295

How to accelerate the Fernald remediation  

SciTech Connect (OSTI)

The Fernald Environmental Management Project is unique among Department of Energy (DOE) sites by virtue of successful efforts by the Fernald Environmental Restoration Management Corporation (FERMCO) and DOE-Fernald Area Office (FN) in securing a stak-eholder-assisted final site closure vision and all Record of Decisions (ROD) or Interim RODs required to set the stage for final remediation. DOE and FERMCO have agreed in principle on a Ten Year Plan which accelerates all activities to remediate the site in approximately half the target schedule. This paper presents the path that led to the current Ten Year Plan, the key elements of the plan and the implementation strategies.

Yates, M.K. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States). Fernald Environmental Management Project; Reising, J. [USDOE Cincinnati, OH (United States)

1996-01-10T23:59:59.000Z

296

Limiting factors in ground water remediation  

Science Journals Connector (OSTI)

If one is charged with restoring a contaminated aquifer today, the procedure of pumping contaminated water to the surface for treatment and discharge is most often the state-of-practice technology. The perceived success of pump-and-treat technology can be misleading if the hydrology and contaminant characteristics at the site are not adequately understood. A failure to understand the processes controlling contaminant transport can result in extremely long pumping periods and, consequently, costly and inefficient remediation. Effects of tailing, sorption, and residual immiscible fluids on time required for pump-and-treat remediation of ground water are discussed.

Clinton W. Hall; Jeffrey A. Johnson

1992-01-01T23:59:59.000Z

297

Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Responses to comments  

SciTech Connect (OSTI)

This report provides responses to US Environmental Protection Agency Region IV EPA-M and Tennessee Department of Environment and Conservation Oversite Division (TDEC-O) comments on report ORNL/ER-58, Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Waste Area Grouping (WAG) 2 consists of the White Oak Creek (WOC) drainage system downgradient of the major ORNL WAGs in the WOC watershed. A strategy for the remedial investigation (RI) of WAG2 was developed in report ES/ER-14&Dl, Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This strategy takes full advantage of WAG2`s role as an integrator of contaminant releases from the ORNL WAGs in the WOC watershed, and takes full advantage of WAG2`s role as a conduit for contaminants from the ORNL site to the Clinch River. The strategy calls for a multimedia environmental monitoring and characterization program to be conducted in WAG2 while upgradient contaminant sources are being remediated. This monitoring and characterization program will (1) identify and quantify contaminant fluxes, (2) identify pathways of greatest concern for human health and environmental risk, (3) improve conceptual models of contaminant movement, (4) support the evaluation of remedial alternatives, (5) support efforts to prioritize sites for remediation, (6) document the reduction in contaminant fluxes following remediation, and (7) support the eventual remediation of WAG2. Following this strategy, WAG2 has been termed an ``integrator WAG,`` and efforts in WAG2 over the short term are directed toward supporting efforts to remediate the contaminant ``source WAGS`` at ORNL.

Not Available

1992-10-01T23:59:59.000Z

298

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Military Facilities, Restricted Airspace Okayed to Support Arctic Cloud Military Facilities, Restricted Airspace Okayed to Support Arctic Cloud Experiment Bookmark and Share As shown in this aerial photo of Oliktok Point, Alaska, the USAF Long Range Radar Station-also known as Dew Line Station-is situated at the edge of the Arctic Ocean. Instrumentation for the ARM Program's M-PACE experiment will be located just south of the station, near the aircraft hangar. (Photo courtesy of Aeromap U.S.) As shown in this aerial photo of Oliktok Point, Alaska, the USAF Long Range Radar Station-also known as Dew Line Station-is situated at the edge of the Arctic Ocean. Instrumentation for the ARM Program's M-PACE experiment will be located just south of the station, near the aircraft hangar. (Photo courtesy of Aeromap U.S.) After more than a year and a half of planning, proposals, and paperwork,

299

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

31, 2007 [Facility News] 31, 2007 [Facility News] Long-term Radiosonde Validation Campaign Concludes Bookmark and Share In 2007, sonde launches at ARM sites supported validation of the IASI instrument onboard the Metop-A satellite. As the satellite scans a "swath" of the Earth below it, the IASI scanning mirror directs emitted infrared radiation into the uncovered interferometer to derive atmospheric temperature and humidity profiles. (Image source: European Space Agency) In 2007, sonde launches at ARM sites supported validation of the IASI instrument onboard the Metop-A satellite. As the satellite scans a "swath" of the Earth below it, the IASI scanning mirror directs emitted infrared radiation into the uncovered interferometer to derive atmospheric temperature and humidity profiles. (Image source: European Space Agency)

300

Risk assessment in the DOE Assurance Program for Remedial Action  

SciTech Connect (OSTI)

This document provides information obtained during the performance of risk assessment tasks in support of the Assurance Program for Remedial Action (APRA) sponsored by the Office of Operational Safety of the Department of Energy. We have presented a method for the estimation of projected health effects at properties in the vicinity of uranium mill tailing piles due to transported tailings or emissions from the piles. Because radon and radon daughter exposure is identified as the principal factor contributing to health effects at such properties, the basis for estimating lung cancer risk as a result of such exposure is discussed in detail. Modeling of health risk due to a secondary pathway, ingestion of contaminated, home-grown food products, is also discussed since it is a potentially important additional source of exposure in certain geographic locations. Risk assessment methods used in various mill tailings reports are reviewed. The protocols for radiological surveys conducted in DOE-sponsored remedial action programs are critically reviewed with respect to their relevance to the needs of health risk estimation. The relevance of risk assessment to the APRA program is discussed briefly.

Marks, S.; Cross, F.T.; Denham, D.H.; Kennedy, W.E.; Stenner, R.D.

1985-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

OBJECTIVE OBJECTIVE OP.1 - (Core Requirements 4 and 6) Sufficient numbers of qualified personnel are available to conduct and support operations. Adequate facilities and equipment are available to ensure operational support services are adequate for operations. The level of knowledge of managers, operations personnel, and support personnel is adequate based on reviews of examinations and examination results and selected interviews of personnel. (Old Core Requirements 3, 8, 13, and 19) Criteria 1. Minimum staffing requirements for safe operations have been established for operations personnel, supervisors, and managers. These staffing levels are met and are consistent with the safety basis requirements and assumptions. (DOE O 5480.19; WPF DSA) 2. All ES&H matrix support functions are identified for system operations. Adequate

302

Decontamination of Hot Cells and Hot Pipe Tunnel at NASA's Plum Brook Reactor Facility  

SciTech Connect (OSTI)

The large scale decontamination of the concrete Hot Cells and Hot Pipe Tunnel at NASA's Plum Brook Reactor Facility demonstrates that novel management and innovative methods are crucial to ensuring that the successful remediation of the most contaminated facilities can be achieved with minimal risk to the project stakeholders. (authors)

Anderson, M.G.; Halishak, W.F. [MOTA Corporation, West Columbia, SC (United States)

2008-07-01T23:59:59.000Z

303

Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification  

Broader source: Energy.gov (indexed) [DOE]

Nonaqueous-Phase Liquid Characterization and Post-Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Charles Tabor, Randall Juhlin, Paul Darr, Julian Caballero, Joseph Daniel, David Ingle Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling More Documents & Publications Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center

304

Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification  

Broader source: Energy.gov (indexed) [DOE]

Nonaqueous-Phase Liquid Characterization and Post-Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Charles Tabor, Randall Juhlin, Paul Darr, Julian Caballero, Joseph Daniel, David Ingle Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling More Documents & Publications Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center

305

Mitigation and Remediation of Mercury Contamination at the Y...  

Office of Environmental Management (EM)

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and...

306

Hydrocarbon pollution control and remediation of groundwater: a brief review  

Science Journals Connector (OSTI)

...oil-contaminated sediments. There are two main remediation techniques: soil washing and bio- remediation. With soil washing, contaminated soil is leached with water containing a surfactant to assist in hydrocarbon removal. In situ washing is undertaken...

L. Clark

307

Remedial Costs for MTBE in Soil and Ground Water  

Science Journals Connector (OSTI)

The contamination of MTBE in ground water has introduced concerns about the increased cost of remediating MTBE/BTEX releases compared to remediating sites with BTEX only contamination. In an attempt to evaluat...

Barbara H. Wilson; John T. Wilson Ph.D.

2003-01-01T23:59:59.000Z

308

Draft Final Remedial Investigation/Feasibility Study and Proposed Plan  

E-Print Network [OSTI]

Draft Final Remedial Investigation/Feasibility Study and Proposed Plan Colorado School of Mines, Colorado 80021 #12;The S.M. Stoller Corporation Flood Plain Remedial Investigation / Feasibility Study ..................................................................................................... 1-8 1.6 Previous Investigations

309

Proton beam therapy facility  

SciTech Connect (OSTI)

It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

Not Available

1984-10-09T23:59:59.000Z

310

Research Facilities & Centers | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Energy Clean Energy Research Areas Research Highlights Facilities and Centers BioEnergy Science Center Building Technologies Research and Integration Center Carbon Fiber Technology Facility Center For Structural Molecular Biology Climate Change Science Institute Joint Institute for Biological Sciences Manufacturing Demonstration Facility National Transportation Research Center Tools & Resources News and Awards Supporting Organizations Clean Energy Home | Science & Discovery | Clean Energy | Facilities and Centers SHARE Facilities, Centers Welcome Industry, Academia Oak Ridge National Laboratory facilities and capabilities together provide a unique environment for Clean Energy research. For example, as the lead institution for DOE's BioEnergy Science Center, ORNL is pioneering

311

Acoustically enhanced remediation, Phase 2: Technology scaling  

SciTech Connect (OSTI)

Weiss Associates is conducting the following three phase program investigating the in-situ application of acoustically enhanced remediation (AER) of contaminated unconsolidated soil and ground water under both saturated and unsaturated conditions: Phase I-- laboratory scale parametric investigation; Phase II--technology Scaling; and Phase III--large scale field tests. AER addresses the need for NAPL (either lighter or denser than water: LNAPL or DNAPL, respectively) in high and low permeability sediments, and the remediation of other types of subsurface contaminants (e.g., metals, radionuclides) in low permeability soils. This program has been placed in the U.S. Department of Energy`s (DOE`s) DNAPL product. Phase I indicated that AER could be used to effectively remediate NAPL in high permeability soil, and that removal of NAPL from low permeability soil could be increased since the water flux through these soils was significantly increased. Phase II, Technology Scaling, the subject of this paper, focused on (1) evaluating the characteristics of an AER field deployment system, (2) developing DNAPL flow and transport performance data under acoustic excitation, (3) predicting the effect of acoustic remediation in three-dimensional unconsolidated hydrogeologic conditions, (4) conducting an engineering analysis of acoustical sources, and (5) identifying candidate field site(s) for large-scale field testing of the technology.

Iovenitti, J.L.; Hill, D.G. [Weiss Associates, Emeryville, CA (United States); Rynne, T.M.; Spadaro, J.F.; Hutchinson, W. [Scientific Applications and Research Associates, Inc., Huntington Beach, CA (United States); Illangasakere, T. [Colorado Univ., Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering

1996-12-31T23:59:59.000Z

312

groundwater nitrogen source identification and remediation  

E-Print Network [OSTI]

producer profits. This will, in turn, benefit water bodies in the area that receive stream baseflow fromgroundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer water withdraws are used for irrigation while the cities of Vernon, Burk- burnett and Electra and many

313

Gamma Ray Imaging for Environmental Remediation  

SciTech Connect (OSTI)

This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

2004-11-12T23:59:59.000Z

314

Selection of a remedial alternative at a superfund site in an environmentally sensitive context  

Science Journals Connector (OSTI)

The site is a former intermediate dye products research and production facility which operated from the late 1950's until 1981. It is located on a small island in the midst of a salt marsh, adjacent to the upper reach of a tidal creek. The remedial investigation identified a variety of synthetic organic chemicals, primarily aromatics and substituted aromatics, in the shallow groundwater and in a restricted area of soils. Treatment technologies selected for analysis during the feasibility study included off-site disposal, incineration, and low-temperature thermal aeration for soils and carbon adsorption for groundwater. As required by the National Contingency Plan, “no action” alternatives were included for both media. These technologies were combined to provide 12 remedial action alternatives, seven of which were selected for detailed analysis. The detailed analysis considered technical feasibility, legal and regulatory requirements, human health and environmental effects, and cost.

Ralph Odom Jr.; William D. Adams

1990-01-01T23:59:59.000Z

315

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

316

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

317

DOE`s Innovative Treatment Remediation Demonstration Program accelerating the implementation of innovative technologies  

SciTech Connect (OSTI)

A program to help accelerate the adoption and implementation of new and innovative remediation technologies has been initiated by the Department of Energy`s (DOE) Environmental Restoration Program Office (EM40). Developed as a Public-Private Partnership program in cooperation with the US Environmental Protection Agency`s (EPA) Technology Innovation Office (TIO) and coordinated by Sandia National Laboratories, the Innovative Treatment Remediation Demonstration (ITRD) Program attempts to reduce many of the classic barriers to the use of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. In this program, DOE facilities work cooperatively with EPA, industry, national laboratories, and state and federal regulatory agencies to establish remediation demonstrations using applicable innovative technologies at their sites. Selected innovative technologies are used to remediate small, one to two acre, sites to generate the full-scale and real-world operating, treatment performance, and cost data needed to validate these technologies and gain acceptance by industry and regulatory agencies, thus accelerating their use nationwide. Each ITRD project developed at a DOE site is designed to address a typical soil or groundwater contamination issue facing both DOE and industry. This includes sites with volatile organic compound (VOC), semi-VOC, heavy metal, explosive residue, and complex or multiple constituent contamination. Projects are presently underway at three DOE facilities, while additional projects are under consideration for initiation in FY96 at several additional DOE sites. A brief overview of the ITRD Program, program plans, and the status and progress of existing ITRD projects are reviewed in this paper.

Hightower, M.

1995-08-01T23:59:59.000Z

318

PNNL: EDO - Facilities & Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities & Equipment Facilities & Equipment Facilities Equipment Decades of government investment on and around the Pacific Northwest National Laboratory campus has made PNNL a business-friendly resource for conducting a wide range of research. As a mission-focused organization, we are dedicated to teaming with government agencies, industry and academia to address what we believe are among the nation's most pressing needs in the areas of energy, environment, national security, and fundamental science. But behind these important missions is a wealth of supporting capabilities including incubator space, research laboratories, and user facilities that may be just what your business needs. We invite you to learn more about how we can work with businesses as well as what research laboratories and user facilities are available.

319

Corrective action management unit application for the Environmental Restoration Disposal Facility  

SciTech Connect (OSTI)

The Environmental Restoration Disposal Facility (ERDF) is to accept both CERCLA (EPA-regulated) and RCRA (Ecology-regulated) remediation waste. The ERDF is considered part of the overall remediation strategy on the Hanford Site, and as such, determination of ERDF viability has followed both RCRA and CERCLA decision making processes. Typically, determination of the viability of a unit, such as the ERDF, would occur as part of record of decision (ROD) or permit modification for each remediation site before construction of the ERDF. However, because construction of the ERDF may take a significant amount of time, it is necessary to begin design and construction of the ERDF before final RODs/permit modifications for the remediation sites. This will allow movement of waste to occur quickly once the final remediation strategy for the RCRA and CERCLA past-practice units is determined. Construction of the ERDF is a unique situation relative to Hanford Facility cleanup, requiring a Hanford Facility specific process be developed for implementing the ERDF that would satisfy both RCRA and CERCLA requirements. While the ERDF will play a significant role in the remediation process, initiation of the ERDF does not preclude the evaluation of remedial alternatives at each remediation site. To facilitate this, the January 1994 amendment to the Tri-Party Agreement recognizes the necessity for the ERDF, and the Tri-Party Agreement states: ``Ecology, EPA, and DOE agree to proceed with the steps necessary to design, approve, construct, and operate such a ... facility.`` The Tri-Party Agreement requires the DOE-RL to prepare a comprehensive ``package`` for the EPA and Ecology to consider in evaluating the ERDF. The package is to address the criteria listed in 40 CFR 264.552(c) for corrective action management unit (CAMU) designation and a CERCLA ROD. This CAMU application is submitted as part of the Tri-Party Agreement-required information package.

Evans, G.C.

1994-06-01T23:59:59.000Z

320

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TA-55: LANL Plutonium-Processing Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TA-55: LANL Plutonium-Processing Facilities TA-55: LANL Plutonium-Processing Facilities TA-55: LANL Plutonium-Processing Facilities TA-55 supports a wide range of national security programs that involve stockpile stewardship, plutonium processing, nuclear materials stabilization, materials disposition, nuclear forensics, nuclear counter-terrorism, and nuclear energy. ...the only fully operational, full capability plutonium facility in the nation. National Security At the Los Alamos National Laboratory (LANL), virtually all plutonium operations occur within the Plutonium Facility at Technical Area 55 (TA-55). TA-55 is the nation's most modern plutonium science and manufacturing facility, and it is the only fully operational, full capability plutonium facility in the nation. Thus, TA-55 supports a wide

322

Decontamination Technologies, Task 3, Urban Remediation and Response Project  

SciTech Connect (OSTI)

In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the decontamination process(es). In the case of an entire building, the value may be obvious; it's costly to replace the structure. For a smaller item such as a vehicle or painting, the cost versus benefit of decontamination needs to be evaluated. This will be determined on a case by case basis and again is beyond the scope of this report, although some thoughts on decontamination of unique, personal and high value items are given. But, this is clearly an area that starting discussions and negotiations early on will greatly benefit both the economics and timeliness of the clean up. In addition, high value assets might benefit from pre-event protection such as protective coatings or HEPA filtered rooms to prevent contaminated outside air from entering the room (e.g., an art museum).

Heiser,J.; Sullivan, T.

2009-06-30T23:59:59.000Z

323

Remediation technology needs and applied R D initiatives  

SciTech Connect (OSTI)

The US Department of Energy (DOE) recently consolidated its environmental restoration and waste management activities. Within that new organization, DOE has committed to support Research, Development, Demonstration, Testing and, Evaluation (RDDT E) activities with the following objectives: rapidly advance beyond currently available technologies; provide solutions to key technical issues that will improve effectiveness, efficiency, and safety; and enhance DOE's ability to meet its 30-year compliance and cleanup goals. Four general categories have been identified where R D (and DT E) efforts need to be focused. These include: waste minimization technologies, site characterization and assessment methods, waste treatment technologies, and remediation technologies with emphasis on in-situ methods. The DOE has already supported a number of R D activities in these areas and plans to continue that support in the future. For technology development, the DOE is committed to forming cooperative partnerships and eliciting broad participation from qualified organizations who can contribute to RDDT E activities. The new technologies resulting from these R D initiatives will enhance DOE's ability to meet its 30-year cleanup goal, reduce environmental risk, and provide significant cost savings over existing technologies. Even modest investments in these emerging technologies now can be expected to generate a high rate of return. 3 refs., 2 tabs.

Lien, S.C.T.; Levine, R.S. (USDOE Office of Environmental Restoration and Waste Management, Washington, DC (United States). Research and Development Div.); Beskid, N.J.; Devgun, J.S.; Erickson, M.D. (Argonne National Lab., IL (United States)); Webster, S.L. (USDOE Chicago Operations Office, Argonne, IL (United States))

1991-01-01T23:59:59.000Z

324

New Groundwater Treatment Facility Begins Operation: Boost in Cleanup  

Broader source: Energy.gov (indexed) [DOE]

New Groundwater Treatment Facility Begins Operation: Boost in New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding January 19, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL (509)376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is boosting its capacity for treating groundwater to remove chromium near the Columbia River by 40 percent with the recent completion of a new treatment facility. Contractor CH2M HILL Plateau Remediation Company (CH2M HILL) finished building and started operating the new 100-DX groundwater treatment facility in December. The facility is located near the D and DR Reactors on

325

Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives  

SciTech Connect (OSTI)

The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal.

Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

1995-03-01T23:59:59.000Z

326

Rethinking remediation technologies for desertified landscapes  

SciTech Connect (OSTI)

Shrub-dominated communities have replaced native grasslands throughout much of the arid Southwest during the past 120 years. Most currently available remediation technologies are uneconomical due to large inputs of energy, fertilizers, herbicides and labor, or are ecologically ineffective due to harsh environments and the highly competitive nature of these native shrubs. Our analysis of these historical remediation technologies together with new information on ecosystem processes has led us to pursue an ecologically-based approach in which more limited inputs are targeted to promote natural processes of regeneration. Advantages to this approach include lower costs, reduced reliance on agronomic practices, and maintenance of natural landscape features. Disadvantages include longer time required for desired changes to occur, and a need for increased understanding of arid land processes.

Herrick, J.E.; Havstad, K.M. [New Mexico State Univ., Las Cruces, NM (United States); Coffin, D.P. [Colorado State Univ., Fort Collins, CO (United States)

1997-07-01T23:59:59.000Z

327

The role of innovative remediation technologies  

SciTech Connect (OSTI)

There are currently over 1200 sites on the US Superfund's National Priorities List (NPL) of hazardous waste sites, and there are over 30, 000 sites listed by the Comprehensive Environmental Responsibility, Compensation and Liability Information System (CERCLIS). The traditional approach to remediating sites in the US has been to remove the material and place it in a secure landfill, or in the case of groundwater, pump and treat the effluent. These technologies have proven to be very expensive and don't really fix the problem. The waste is just moved from one place to another. In recent years, however, alternative and innovative technologies have been increasingly used in the US to replace the traditional approaches. This paper will focus on just such innovative remediation technologies in the US, looking at the regulatory drivers, the emerging technologies, some of the problems in deploying technologies, and a case study.

Doesburg, J.M.

1992-05-01T23:59:59.000Z

328

The role of innovative remediation technologies  

SciTech Connect (OSTI)

There are currently over 1200 sites on the US Superfund`s National Priorities List (NPL) of hazardous waste sites, and there are over 30, 000 sites listed by the Comprehensive Environmental Responsibility, Compensation and Liability Information System (CERCLIS). The traditional approach to remediating sites in the US has been to remove the material and place it in a secure landfill, or in the case of groundwater, pump and treat the effluent. These technologies have proven to be very expensive and don`t really fix the problem. The waste is just moved from one place to another. In recent years, however, alternative and innovative technologies have been increasingly used in the US to replace the traditional approaches. This paper will focus on just such innovative remediation technologies in the US, looking at the regulatory drivers, the emerging technologies, some of the problems in deploying technologies, and a case study.

Doesburg, J.M.

1992-05-01T23:59:59.000Z

329

Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

L.C. Hulstrom

2010-11-10T23:59:59.000Z

330

UESC and High Tech Facilities  

Broader source: Energy.gov (indexed) [DOE]

Federal Energy Management Program UESC and High Tech Facilities Charles Williams, Lawrence Berkeley National Lab 2 | FUPWG April 2012 High Tech Building UESC Partnership Leveraging Technical Potential, Market Opportunity, Program Resources * Energy-intensive facilities with high savings potential * PG&E service territory - high concentration of high-technology buildings * PG&E UESC program, new and growing * DOE FEMP programs for UESC and High-Tech Buildings * LBNL expertise in labs, data centers, clean rooms * LBNL support for UESC program * UESC potential for innovation * Presidential "We Can't Wait $2 Billion challenge to Federal agencies 3 | FUPWG April 2012 UESC project support at LBNLL Training /Education

331

2010sr31_box-remediation.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thursday, November 18, 2010 Thursday, November 18, 2010 james-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 292-2484 paivi.nettamo@srs.gov SRS Recovery Act TRU Waste Project Ahead of Schedule with Box Remediation Program Aiken, SC - The U.S. Department of Energy's Savannah River Site (SRS) started off the last 12 months of the American Recovery and Reinvestment Act with an enormous success in its legacy transuranic (TRU) waste program. The H-Canyon

332

Thixotropic gel for vadose zone remediation  

DOE Patents [OSTI]

A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

Rhia, Brian D. (Augusta, GA)

2011-03-01T23:59:59.000Z

333

Innovative mathematical modeling in environmental remediation  

Science Journals Connector (OSTI)

There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g., Ni, Cr, Co). The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models for environmental remediation.

Gour-Tsyh Yeh; Jin-Ping Gwo; Malcolm D. Siegel; Ming-Hsu Li; Yilin Fang; Fan Zhang; Wensui Luo; Steve B. Yabusaki

2013-01-01T23:59:59.000Z

334

Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

NONE

1996-09-01T23:59:59.000Z

335

Remedial design through effective electronic associations  

SciTech Connect (OSTI)

Black and Veatch Special Projects Corp. (BVSPC) used an environmental data management system (EDMS) to consolidate x-ray fluorescence (XRF), global positioning system (GPS), and laboratory analytical data into a unique and flexible electronic database. Cost savings were acknowledged in all phases of the remedial design due to the development and use of the EDMS and its distinct associations with various electronic software packages. The EDMS allowed effective and efficient completion of the remedial design investigation of the Oronogo-Duenweg Mining Belt Site. The Site is a 125-year old mining community in Jasper County, Missouri. Approximately 6,500 residences are now located within the 60 square-mile Superfund Site where lead and zinc were mined. Smelting and mining activities were conducted in several areas throughout the community. These operations left approximately 9 million tons of mine wastes at the Site upon completion of the mining activities. The purpose of the remedial design investigation was to quantify and identify the residential yards that were adversely affected by these activities.

Deis, J.L.; Wankum, R.D.

1999-07-01T23:59:59.000Z

336

User Facility Science Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

user-facilities/highlights/ The Office of Science user-facilities/highlights/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {611EDD39-818D-4CBA-BFD7-9568495C1566}http://science.energy.gov/bes/highlights/2013/bes-2013-09-a/ The Role of Stripes in Superconducting Behavior Using neutron diffraction, movement of charged atoms arranged as "stripes"

337

The CAMU Rule: A tool for implementing a protective, cost-effective remedy at the Fernald Environmental Management Project  

SciTech Connect (OSTI)

The Fernald Environmental Management Project (FEMP) is a former uranium processing facility currently under remediation pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act as amended (CERCLA). Contamination at the FEMP consists of low-level radioactivity, hazardous substances, hazardous wastes and/or mixed wastes. Regulations promulgated under the Resource Conservation and Recovery Act as amended (RCRA) are evaluated as applicable or relevant and appropriate requirements (ARARs) for remediation of the FEMP. Historically, joint CERCLA-RCRA guidance dictated that hazardous waste could not be treated, or moved out of the designated area of contiguous contamination (AOC), without triggering land disposal restrictions (LDRs) or minimum technology requirements (MTRs). To avoid invoking these stringent requirements, in situ capping was chosen as the lower cost remedy at many sites, although on-site disposal and/or treatment of hazardous wastes would have been more protective. The Corrective Action Management Units (CAMUs) and Temporary Units (TUs) Final Rule [58 FR 8658, Vol. 58, No. 29, hereinafter the {open_quotes}CAMU Rule{close_quotes}], promulgated on February 16, 1993, provides facilities regulated under RCRA corrective action authority with greater flexibility to move, treat, and dispose of wastes on site without triggering LDRs or MTRs, thereby encouraging application of innovative technologies and more protective remedies. The waste acceptance criteria for the on-site disposal facility is based on site-specific considerations including the mobility of the contaminants through the underlying site geology and the protectiveness of the engineered liners. Application of the {open_quotes}CAMU Rule{close_quotes} allows for disposition in the on-site facility based on these technical considerations rather than on regulatory classifications.

Dupuis-Nouille, E.M. [Fernald Environmental Management Project, Cincinnati, OH (United States); Goidell, L.C.; Strimbu, M.J. [Jacobs Engineering Group of Ohio, Inc., Cincinnati, OH (United States)

1995-10-01T23:59:59.000Z

338

SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

339

ARM - SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

340

Sustainable Operations & Maintenance Implementation Support  

E-Print Network [OSTI]

, and purchasing policy: Energy efficiency cannot exist without accountability and organizational support energy efficiency in buildings. Organizational innovation for energy conservation; Organizations face of energy efficiency. Meetings with facilities personnel, maintenance staff, building managers, building oc

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Salmon Site Remedial Investigation Report, Exhibit 2  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE NV

1999-09-01T23:59:59.000Z

342

Salmon Site Remedial Investigation Report, Exhibit 4  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

343

Salmon Site Remedial Investigation Report, Exhibit 5  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

344

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINFA;RIOflH;EPORT  

Office of Legacy Management (LM)

ELIMINFA;RIOflH;EPORT ELIMINFA;RIOflH;EPORT FORMER ELECTRO METALLURGICAL COMPANY NIAGARA FALLS, NEW YORK U.S. DEPARTMENT OF ENERGY OFFICE OF NUCLEAR ENERGY OFFICE OF REMEDIAL ACTION AND WASTE TECHNOLOGY DIVISION OF FACILITY AND SITE DECOMMISSIONING PROJECTS CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS SUMMARY OF FINDINGS REFERENCES Page 1 : 3 5 7 8 ELIMINATION REPORT FORMER ELECTRO METALLURGICAL COMPANY NIAGARA FALLS, NEW YORK INTRODUCTION From 1942 through 1953, the Electra Metallurgical' Company ("Electromet"), a subsidiary of Union Carbide and Carbon Corporation (now Umetco Minerals Corporation, a subsidiary of Union Carbide Corporation) performed work with radioactive materials under contract to the Manhattan

345

NREL: Energy Systems Integration Facility - Facility Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Design Throughout the Energy Systems Integration Facility design process, the National Renewable Energy Laboratory hosted workshops in which stakeholders from across the...

346

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program  

Broader source: Energy.gov [DOE]

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program (March 2012)

347

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan  

SciTech Connect (OSTI)

This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

G. L. Schwendiman

2006-07-01T23:59:59.000Z

348

Altering Design Decisions to Better Suit Facilities Management Processes  

E-Print Network [OSTI]

Research work reported in this paper tackles the communication between processes of both facilities management (FM) and design, showing the effect of such communication on the capability of newly built facilities in supporting organizations...

Jawdeh, H. B.; Abudul-Malak, M. A.; Wood, G.

2010-01-01T23:59:59.000Z

349

OFFICE OF FACILITIES ENGINEERING AND OPERATIONS Strategic and  

E-Print Network [OSTI]

Engineering Museum Support Services Bruce Kendall Director Sheryl Kolasinski DD/CoS Facilities Master Planning Management Engineering &Design Management Technical Services Fire Protection Occupational Safety OccupationalOFFICE OF FACILITIES ENGINEERING AND OPERATIONS Strategic and Administrative Management Julie

Mathis, Wayne N.

350

Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001  

SciTech Connect (OSTI)

A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W. [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)] [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

351

Remediation of Mercury and Industrial Contaminants Applied Field Research  

Broader source: Energy.gov (indexed) [DOE]

Remediation of Mercury and Industrial Contaminants Applied Field Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Located on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee, the RoMIC-AFRI was established to protect water resources by addressing the challenge of preventing contamination. The initiative at Oak Ridge is a collaborative effort that leverages DOE investments in basic science and applied research and the work of site contractors to address the complex challenges in the remediation of legacy waste at the Oak Ridge Reservation. The mission of the Remediation of Mercury and Industrial Contaminants

352

Independent Activity Report, CH2M Hill Plateau Remediation Company -  

Broader source: Energy.gov (indexed) [DOE]

Independent Activity Report, CH2M Hill Plateau Remediation Company Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 January 2011 Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003] The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security, during a site visit from January 10-14, 2011, presented the results of a technical review of the CH2M Hill Plateau Remediation Company (PRC) Unreviewed Safety Question (USQ) Procedure. Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 More Documents & Publications CX-009415: Categorical Exclusion Determination Independent Activity Report, Richland Operations Office - January 2011

353

Gas: A Neglected Phase in Remediation of Metals and Radionuclides  

SciTech Connect (OSTI)

The gas phase is generally ignored in remediation of metals and radionuclides because it is assumed that there is no efficient way to exploit it. In the literal sense, all remediations involve the gas phase because this phase is linked to the liquid and solid phases by vapor pressure and thermodynamic relationships. Remediation methods that specifically use the gas phase as a central feature have primarily targeted volatile organic contaminants, not metals and radionuclides. Unlike many organic contaminants, the vapor pressure and Henry's Law constants of metals and radionuclides are not generally conducive to direct air stripping of dissolved contaminants. Nevertheless, the gas phase can play an important role in remediation of inorganic contaminants and provide opportunities for efficient, cost effective remediation. The objective here is to explore ways in which manipulation of the gas phase can be used to facilitate remediation of metals and radionuclides.

Denham, Miles E.; Looney, Brian B

2005-09-28T23:59:59.000Z

354

4858 recreation facility [n  

Science Journals Connector (OSTI)

plan. recr. (Installation and equipment provided for recreation; ? simply-provided recreation facility , ? well-provided recreation facility ...

2010-01-01T23:59:59.000Z

355

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

356

Part 2: Quality Assurance Project Plan Remedial Investigation, UMore East  

E-Print Network [OSTI]

Part 2: Quality Assurance Project Plan Remedial Investigation, UMore East Dakota County, Minnesota\\23191092 UMore 1948 Parcel Remedial Inv\\WorkFiles\\SAP\\Part 2-QAPP Umore East v2.1\\QAPP rev. 2.1.doc A2 Table\\19\\23191092 UMore 1948 Parcel Remedial Inv\\WorkFiles\\SAP\\Part 2-QAPP Umore East v2.1\\QAPP rev. 2

Netoff, Theoden

357

Army Regulation 4201 Facilities Engineering  

E-Print Network [OSTI]

and management, mil- itary construction program development and execution, master planning, utilities services of the United States for use by the National Guard; single project-owned or leased civil works facilities as tenants when support is provided by another government agency. In areas outside the United States, Status

US Army Corps of Engineers

358

Successful Characterization and Remedial Contour of Highly Contaminated Mercury Soil at the Y-12 National Security Complex - 13593  

SciTech Connect (OSTI)

An area known as the 81-10 pad within the footprint of the Y-12 National Security Complex, suspected to be heavily contaminated with mercury, was slated for characterization in support of a Federal Facilities Agreement (FFA) milestone to be accomplished by September 30, 2012. A full remedial design report (RDR) required the soil in Exposure Unit -9 (EU-9) to be fully characterized for a number of contaminates of concern including mercury. The goal of this characterization effort was to determine what soil, if any, would need to be removed for the protection of industrial workers and impacts to the surface and ground water. Funding for this project was made available using buy-back scope under the American Recovery and Reinvestment Act (ARRA). The EU-9 soil unit involved 3 different classifications which were determined as follows: Class 1: Known to have been impacted, contamination is likely; Class 2: Suspected to have been impacted, contamination is unknown; Class 3: Area not known to have been impacted, contamination unlikely. Due to various sampling and analysis events since the 1980's, significant mercury contamination was expected under the concrete pad of an area known as 81-10. Mercury contamination outside of the boundary of this pad within the EU-9 footprint was not known and therefore an original planned estimate of 1,461 cubic meters of material were expected to be heavily contaminated with mercury requiring removal, treatment and disposal. Through the use of a highly effective nature and extent sampling and analysis design that involved a hybrid of statistically-based and judgmental sampling, the actual remedial contour requiring removal was approximately 717 cubic meters, roughly 12% of the original estimate. This characterization approach was executed in full compliance with the Record of Decision (ROD) [1] documents that were agreed upon by the U.S. Department of Energy, Environmental Protection Agency and Tennessee Department of Environment and Conservation. In addition, the RDR was completed ahead of the FFA milestone date of September 30, 2012. (authors)

White, Aaron; Rigas, Michael [U.S. Department of Energy Oak Ridge Operations, Oak Ridge, TN 37830 (United States)] [U.S. Department of Energy Oak Ridge Operations, Oak Ridge, TN 37830 (United States); Birchfield, Joseph W. III [1528 Paxton Drive Knoxville, TN 37918 (United States)] [1528 Paxton Drive Knoxville, TN 37918 (United States)

2013-07-01T23:59:59.000Z

359

Utah Division of Environmental Response and Remediation Underground...  

Open Energy Info (EERE)

Division of Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah...

360

Remediation of environmental contaminants by novel organoclay adsorbents.  

E-Print Network [OSTI]

??Naturally occuring layer silicate clay minerals could be value-added by modifying the surface properties in order to enhance their efficacy in the remediation of environmental… (more)

Sarkar, Binoy

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EPA - National Remedy Review Board webpage | Open Energy Information  

Open Energy Info (EERE)

Review Board webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - National Remedy Review Board webpage Abstract This webpage provides...

362

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

Broader source: Energy.gov (indexed) [DOE]

Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group...

363

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

DOE has determined that the contamination is not attirbutable to the AEC-sponsored operations. Therefore, DOE does not have legal authority to conduct remedial actions at...

364

100-D/H Remedial Investigation/ Feasibility Study /Proposed...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remedial Investigation Feasibility Study Proposed Plan Nina Menard Washington State Department of Ecology 100-DH RIFSPP * Received Draft RIFSPP on December 14, 2012 *...

365

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

366

Waterjet injection of powdered activated carbon for sediment remediation .  

E-Print Network [OSTI]

??"In situ sediment remediation through waterjet-activated carbon amendment delivery is an innovative means to mitigate the dangers posed by hydrophobic organic compounds. Ease of use… (more)

Redell, Chris J.

2011-01-01T23:59:59.000Z

367

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

ELECTRIC CORPORATION BUILDING 7 BLOOMFIELD, NEW JERSEY SW 30 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of...

368

MANAGEMENT ALERT Remediation of Selected Transuranic Waste Drums...  

Office of Environmental Management (EM)

MANAGEMENT ALERT Remediation of Selected Transuranic Waste Drums at Los Alamos National Laboratory - Potential Impact on the Shutdown of the Department's Waste Isolation Plant DOE...

369

Understanding Contaminant Transport Pathways at Rocky Flats - A Basis for the Remediation Strategy  

SciTech Connect (OSTI)

The Rocky Flats Environmental Technology Site (RFETS) is a Department of Energy facility located approximately 16 miles northwest of Denver, Colorado. Processing and fabrication of nuclear weapons components occurred at Rocky Flats from 1952 through 1989. Operations at the Site included the use of several radionuclides, including plutonium-239/240 (Pu), americium-241 (Am), and various uranium (U) isotopes, as well as several types of chlorinated solvents. The historic operations resulted in legacy contamination, including contaminated facilities, process waste lines, buried wastes and surface soil contamination. Decontamination and removal of buildings at the site was completed in late 2005, culminating more than ten years of active environmental remediation work. The Corrective Action Decision/Record of Decision was subsequently approved in 2006, signifying regulatory approval and closure of the site. The use of RFETS as a National Wildlife Refuge is scheduled to be in full operation by 2012. To develop a plan for remediating different types of radionuclide contaminants present in the RFETS environment required understanding the different environmental transport pathways for the various actinides. Developing this understanding was the primary objective of the Actinide Migration Evaluation (AME) project. Findings from the AME studies were used in the development of RFETS remediation strategies. The AME project focused on issues of actinide behavior and mobility in surface water, groundwater, air, soil and biota at RFETS. For the purposes of the AME studies, actinide elements addressed included Pu, Am, and U. The AME program, funded by DOE, brought together personnel with a broad range of relevant expertise in technical investigations. The AME advisory panel identified research investigations and approaches that could be used to solve issues related to actinide migration at the Site. An initial step of the AME was to develop a conceptual model to provide a qualitative description of the relationships among potential actinide sources and transport pathways at RFETS. One conceptual model was developed specifically for plutonium and americium, because of their similar geochemical and transport properties. A separate model was developed for uranium because of its different properties and mobility in the environment. These conceptual models were guidelines for quantitative analyses described in the RFETS Pathway Analysis Report, which used existing data from the literature as well as site-specific analyses, including field, laboratory and modeling studies to provide quantitative estimates of actinide migration in the RFETS environment. For pathways where more than one method was used to estimate offsite loads for a specific pathway, the method yielding the highest estimated off-site was used for comparison purposes. For all actinides studied, for pre-remediation conditions, air and surface water were identified to be the dominant transport mechanisms. The estimated annual airborne plutonium-239/240 load transported off site exceeded the surface water load by roughly a factor of 40. However, despite being the largest transport pathway, airborne radionuclide concentrations at the monitoring location with the highest measurements during the period studied were less than two percent of the allowable 10 milli-rem standard governing DOE facilities. Estimated actinide loads for other pathways were much less. Shallow groundwater was approximately two orders of magnitude lower, or 1/100 of the load conveyed in surface water. The estimated biological pathway load for plutonium was approximately five orders of magnitude less, or 1/100,000, of the load estimated for surface-water. The pathway analysis results were taken into consideration during subsequent remediation activities that occurred at the site. For example, when the 903 Pad area was remediated to address elevated concentrations of Pu and Am in the surface soil, portable tent structures were constructed to prevent wind and water erosion from occurring while remediation activitie

Paton, Ian [Wright Water Engineers, Inc.: 2490 W. 26th Avenue, Suite 100A, Denver, CO 80211 (United States)

2008-01-15T23:59:59.000Z

370

Estimating Fire Risks at Industrial Nuclear Facilities  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has a wide variety of nuclear production facilities that include chemical processing facilities, machine shops, production reactors, and laboratories. Current safety documentation must be maintained for the nuclear facilities at SRS. Fire Risk Analyses (FRAs) are used to support the safety documentation basis. These FRAs present the frequency that specified radiological and chemical consequences will be exceeded. The consequence values are based on mechanistic models assuming specific fire protection features fail to function as designed.

Coutts, D.A.

1999-07-12T23:59:59.000Z

371

Innovative mathematical modeling in environmental remediation  

SciTech Connect (OSTI)

There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models for environmental remediation.The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium.

Yeh, Gour T. [Taiwan Typhoon and Flood Research Institute (Taiwan); National Central Univ. (Taiwan); Univ. of Central Florida (United States); Gwo, Jin Ping (Jack) [Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Siegel, Malcolm D. [Sandia National Laboratories, Albuquerque, NM (United States); Li, Ming-Hsu [National Central Univ. (Taiwan); ; Fang, Yilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhang, Fan [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Luo, Wensui [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Yabusaki, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

2013-05-12T23:59:59.000Z

372

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

373

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

374

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

375

Research Facility,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collecting and Delivering the Data Collecting and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Preliminary data may be shared among field campaign participants during and shortly following the campaign. To facilitate sharing of preliminary data, the ARM Data Archive establishes restricted access capability, limited to participants and data managers.

376

Independent Oversight Review, DOE Nuclear Facilities - May 2013 |  

Broader source: Energy.gov (indexed) [DOE]

Review, DOE Nuclear Facilities - May 2013 Review, DOE Nuclear Facilities - May 2013 Independent Oversight Review, DOE Nuclear Facilities - May 2013 May 2013 Lessons Learned from Targeted Reviews of Implementation Verification Review Processes at Department of Energy Nuclear Facilities This report summarizes and analyzes the results of independent reviews of IVR and associated processes at eight DOE sites conducted by Independent Oversight from August 2011 to September 2012. The purpose of the Independent Oversight review was to evaluate the processes and methods used for verifying the implementation of safety basis hazard controls and periodically re-verifying that the controls remain in place. Independent Oversight Review, DOE Nuclear Facilities - May 2013 More Documents & Publications Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation

377

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

INL, Idaho INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of the ICDF include a landfill that is used for disposal of solid waste, an evaporation pond that is used to manage leachate from the landfill and other aqueous wastes (8.3 million L capacity), and a staging and treatment facility. The ICDF is located near the southwest

378

BP-5 Remedial Investigation Slug-Test Characterization Results for Well 699-52-55A  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory conducted slug-test characterization at the final, completed BP-5 Remedial Investigation well 699-52-55A near the 200-East Area at the Hanford Site on April 22, 2008. The slug-test characterization was in support of the BP-5 Remedial Investigation. The portion of the unconfined aquifer tested is composed of sediments of the lower Ringold Formation and the underlying Elephant Mountain basalt flowtop. The basalt flowtop unit was included as part of the effective test-interval length for the slug-test analysis because the flowtop unit is hydraulically communicative with the unconfined aquifer. Estimates of hydraulic conductivity for the effective test-interval length represent composite values for the lower Ringold Formation and the underlying Elephant Mountain basalt flow top.

Newcomer, Darrell R.

2008-07-21T23:59:59.000Z

379

THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY  

SciTech Connect (OSTI)

This report represents the fourth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. During this reporting period the Engineering Design for remediation of the surface safety hazards associated with the White Meadow Mine was completed. Construction Plans and Technical Specifications were completed and competitive bids were solicited by the Township for completion of the work. The electrical resistivity survey analysis and report was completed for the Green Pond Mines site at the Township Compost Storage Facility. The geophysical survey results confirmed evidence of abandoned mining activity at the Green Pond Mine site which was previously identified. During this reporting period, the time frame of the Cooperative Agreement between the Township and the Department of Energy was extended. An additional site of subsidence with in the Township related to abandoned mining activity at Mount Hope Road was selected by Rockaway Township to be considered for remediation and inclusion under the Cooperative Agreement.

Gary Gartenberg, P.E., P.P.

1999-10-01T23:59:59.000Z

380

Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)  

SciTech Connect (OSTI)

The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project.

Tucker, M.D. [Sandia National Labs., Albuquerque, NM (United States). Site Restoration Technology Program Office; Valdez, J.M.; Khan, M.A. [IT Corp., Albuquerque, NM (United States)

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Facility Interface Capability Assessment (FICA) summary report  

SciTech Connect (OSTI)

The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from the commercial facilities. In support of the development of the CRWMS, OCRWM sponsored the Facility Interface Capability Assessment (FICA) project. The objective of this project was to assess the capability of each commercial facility to handle various spent nuclear fuel shipping casks. The purpose of this report is to summarize the results of the facility assessments completed within the FICA project. The project was conducted in two phases. During Phase I, the data items required to complete the facility assessments were identified and the data base for the project was created. During Phase II, visits were made to 122 facilities on 76 sites to collect data and information, the data base was updated, and assessments of the cask-handling capabilities at each facility were performed.

Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States); Pope, R.B. [ed.] [Oak Ridge National Lab., TN (United States)

1992-05-01T23:59:59.000Z

382

CMI Unique Facility: Thermal Analysis in High Magnetic Fields...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

guide efforts to create strong permanent magnets that use less of the critical rare earth elements. This facility supports the CMI efforts of developing substitutes, and...

383

The Emergence of Nonbulk Properties in Supported Metal Clusters: Negative Thermal Expansion and Atomic Disorder in  

E-Print Network [OSTI]

that are critical to the growth of the American economy.1-3 Prominent examples of processes in which supported metal catalysts play an indispensable role include petroleum refining,2,3 environmental remediation (e

Frenkel, Anatoly

384

Harrisburg Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Harrisburg Facility Biomass Facility Harrisburg Facility Biomass Facility Jump to: navigation, search Name Harrisburg Facility Biomass Facility Facility Harrisburg Facility Sector Biomass Facility Type Landfill Gas Location Dauphin County, Pennsylvania Coordinates 40.2734277°, -76.7336521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2734277,"lon":-76.7336521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brookhaven Facility Biomass Facility Brookhaven Facility Biomass Facility Jump to: navigation, search Name Brookhaven Facility Biomass Facility Facility Brookhaven Facility Sector Biomass Facility Type Landfill Gas Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Access to Courts and Preemption of State Remedies in Collective Action Perspective  

E-Print Network [OSTI]

application of preemption doctrine to state judicial remedies. This article applies a “collective action” framework for preemption analysis to the issue of remedial preemption. Our analysis suggests that while remedial preemption may be justified in some...

Glicksman, Robert L.; Levy, Richard E.

2009-01-01T23:59:59.000Z

387

Characterization of complex mineral assemblages: Implications for contaminant transport and environmental remediation  

Science Journals Connector (OSTI)

...W P ( 1996 ) Ground Water 34 : 778 – 783...environmental remediation. | Surface...and biological remediation strategies...environmental effects ground water humic acids humic...pollutants pollution remediation risk assessment...

Paul M. Bertsch; John C. Seaman

1999-01-01T23:59:59.000Z

388

Microsoft PowerPoint - 2011_1012_Hansen_100-K_Remediation.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

K Area Remediation Summary of Draft Su a y o a t Remedial InvestigationFeasibility Study and Proposed Plan Study and Proposed Plan October 2011 Purpose * The 100-K Remedial...

389

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network [OSTI]

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water;Objectives · To come up with a mechanistic understanding of hydrogen embrittlement in pipeline steels

390

Integration of biotechnology in remediation and pollution prevention activities  

SciTech Connect (OSTI)

The North American Free Trade Agreement/North American Agreement on Environmental Cooperation provides a mechanism for an international collaboration between the US, Canada, and Mexico to jointly develop, modify, or refine technologies that remediate or protect the environment. These countries have a vested interest in this type of collaboration because contaminants do not respect the boundaries of a manufacturing site, region, city, state, or country. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) consists of a diverse group of individuals who address a variety of environmental issues. ESD is involved in basic and applied research on the fate, transport, and remediation of contaminants; environmental assessment; environmental engineering; and demonstrations of advanced remediation technologies. The remediation and protection of the environment includes water, air, and soils for organic, inorganic, and radioactive contaminants. In addition to remediating contaminated sites, research also focuses on life-cycle analyses of industrial processes and the production of green technologies. The author focuses this discussion on subsurface remediation and pollution prevention; however, the research activities encompass water, soil and air and many of the technologies are applicable to all environments. The discussion focuses on the integration of biotechnology with remediation activities and subsequently linking these biological processes to other remediation technologies.

Strong-Gunderson, J.M. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1996-02-01T23:59:59.000Z

391

Remediation of the Maxey Flats Site. Final report  

SciTech Connect (OSTI)

This report describes issues associated with remedial action of Maxey Flats, a low-level radioactive waste disposal site from 1963-1977, located in Fleming County, Kentucky. Present remedial action alternatives being considered are discussed along with emergency plans, ground water monitoring plans, and budgets.

Not Available

1990-01-12T23:59:59.000Z

392

Fusion Energy Sciences User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

FES User Facilities FES User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 FES User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences program supports the operation of the following national scientific user facilities: DIII-D Tokamak Facility: External link DIII-D, located at General Atomics in San Diego, California, is the largest magnetic fusion facility in the U.S. and is operated as a DOE national user facility. DIII-D has been a major contributor to the world fusion program

393

EA-1331: Remediation of Subsurface and Groundwater Contamination at the  

Broader source: Energy.gov (indexed) [DOE]

331: Remediation of Subsurface and Groundwater Contamination at 331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming EA-1331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming SUMMARY This EA evaluates the environmental impacts for the proposal for the Rock Springs In-Situ Oil Shale Retort Test Site remediation that would be performed at the Rock Springs site in Sweetwater County, Wyoming. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 31, 2000 EA-1331: Finding of No Significant Impact Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site July 31, 2000 EA-1331: Final Environmental Assessment

394

EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project |  

Broader source: Energy.gov (indexed) [DOE]

198: Uranium Mill Tailings Remedial Action Groundwater Project 198: Uranium Mill Tailings Remedial Action Groundwater Project EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project SUMMARY This EIS assesses the potential programmatic impacts of conducting the Ground Water Project, provides a method for determining the site-specific ground water compliance strategies, and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 28, 1997 EIS-0198: Record of Decision Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project (April 1997) December 1, 1996 EIS-0198: Programmatic Environmental Impact Statement Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project

395

Implementation of the Formerly Utilized Sites Remedial Action Program:  

Broader source: Energy.gov (indexed) [DOE]

Implementation of the Formerly Utilized Sites Remedial Action Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010) Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010) More Documents & Publications Recent Developments in DOE FUSRAP

396

Summary - X-701B Groundwater Remedy, Portsmouth, Ohio  

Broader source: Energy.gov (indexed) [DOE]

X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected catalyzed hydrogen peroxide without meeting the

397

DOE Awards Contract for Environmental Remediation Services at California  

Broader source: Energy.gov (indexed) [DOE]

Environmental Remediation Services at Environmental Remediation Services at California Santa Susana Field Laboratory DOE Awards Contract for Environmental Remediation Services at California Santa Susana Field Laboratory September 27, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy (DOE) today awarded a task order (contract) to CDM, A Joint Venture, of Fairfax, Virginia, to provide environmental remediation services for the Energy Technology Engineering Center at the Santa Susana Field Laboratory, Canoga Park, California. The cost-plus incentive fee task order has a 36-month performance period and a value of $11.3 million. CDM will continue to assist DOE in chemical sampling, the preparation of a chemical data gap analysis and preparing a soils remediation action

398

DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION  

SciTech Connect (OSTI)

The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

Barry L. Burks

2002-12-01T23:59:59.000Z

399

Promoting decision making through a Sustainable Remediation Assessment Matrix (SRAM)  

Science Journals Connector (OSTI)

This paper describes the steps taken in a decision making process through a Sustainable Remediation Assessment Matrix (SRAM). The development of the SRAM deals with Complex, Large-scale Interconnected, Open, and Socio-technical System (CLIOS). For both large and small contaminated areas, considers potential impacts on neighbouring areas, the contribution to air emissions from the materials of the proposed project and the energy to be consumed. Along this line, the research focused on setting up a model under a systems perspective. A systemigram, from remedial investigation to project closeout, has been developed. For each stage of the remediation project, the process to identify stakeholders has been outlined. Moreover, and as an illustrative example, environmental, social, and economic aspects of remedial operations have been addressed on a specific case using the US Air Force Sustainable Remediation Tool (SRT).

Aspasia Kalomoiri; Washington Braida

2013-01-01T23:59:59.000Z

400

Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

Not Available

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Uncertainties in risk assessment at USDOE facilities  

SciTech Connect (OSTI)

The United States Department of Energy (USDOE) has embarked on an ambitious program to remediate environmental contamination at its facilities. Decisions concerning cleanup goals, choices among cleanup technologies, and funding prioritization should be largely risk-based. Risk assessments will be used more extensively by the USDOE in the future. USDOE needs to develop and refine risk assessment methods and fund research to reduce major sources of uncertainty in risk assessments at USDOE facilities. The terms{open_quote} risk assessment{close_quote} and{open_quote} risk management{close_quote} are frequently confused. The National Research Council (1983) and the United States Environmental Protection Agency (USEPA, 1991a) described risk assessment as a scientific process that contributes to risk management. Risk assessment is the process of collecting, analyzing and integrating data and information to identify hazards, assess exposures and dose responses, and characterize risks. Risk characterization must include a clear presentation of {open_quotes}... the most significant data and uncertainties...{close_quotes} in an assessment. Significant data and uncertainties are {open_quotes}...those that define and explain the main risk conclusions{close_quotes}. Risk management integrates risk assessment information with other considerations, such as risk perceptions, socioeconomic and political factors, and statutes, to make and justify decisions. Risk assessments, as scientific processes, should be made independently of the other aspects of risk management (USEPA, 1991a), but current methods for assessing health risks are based on conservative regulatory principles, causing unnecessary public concern and misallocation of funds for remediation.

Hamilton, L.D.; Holtzman, S.; Meinhold, A.F.; Morris, S.C.; Rowe, M.D.

1994-01-01T23:59:59.000Z

402

Advanced Materials Facilities & Capabilites | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Highlights Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Facilities and Capabilities ORNL has resources that together provide a unique environment for Advanced Materials Researchers. ORNL hosts two of the most advanced neutron research facilities in the world, the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). In addition, the Center for Nanophase Materials Sciences offers world-class capabilities and expertise for nanofabrication, scanning probe microscopy, chemical and laser synthesis, spectroscopy, and computational modeling and their. The ORNL

403

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explosive Components Facility Explosive Components Facility The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis capabilities for energetic materials and explosive components: advanced design of energetic devices and subsystems optical ordnance energetic materials testing of explosives and explosive components and subsystems advanced explosives diagnostics reliability analyses failure modes evaluation safety evaluation The ECF has the full-range of capabilities necessary to support the understanding of energetic materials and components: Optical and Semiconductor Bridge (SCB) Initiation Laboratories Characterization Laboratories thermal properties gas analyses powder characterization

404

E-Print Network 3.0 - active chemical remediation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.405 Discovery or notification. 300.410 Removal site evaluation. 300.415 Removal action. 300.420 Remedial site... evaluation. 300.425 Establishing remedial...

405

Verification of Active and Passive Ground-Water Contamination Remediation Efforts  

Science Journals Connector (OSTI)

The verification of ground-water contamination remediation efforts requires thorough documentation of subsurface conditions ... comprehensive approach to the design and operation of remediation efforts with an em...

M. J. Barcelona

1995-01-01T23:59:59.000Z

406

An investigation of school factors related to enrollment in remedial writing at postsecondary institutions in Montana.  

E-Print Network [OSTI]

?? Remedial postsecondary coursework, while ubiquitous, is a high cost means for students to become prepared to complete the rigors of postsecondary education. Remedial coursework… (more)

Shipman, Dustin Harry

2011-01-01T23:59:59.000Z

407

An investigation of school factors related to enrollment in remedial writing at postsecondary institutions in Montana.  

E-Print Network [OSTI]

??Remedial postsecondary coursework, while ubiquitous, is a high cost means for students to become prepared to complete the rigors of postsecondary education. Remedial coursework represents… (more)

Shipman, Dustin Harry.

2011-01-01T23:59:59.000Z

408

Sustainability Support  

Broader source: Energy.gov [DOE]

Sustainability Support serves as a corporate technical assistance, coordination, and integration resource to support line organizations in the resolution of sustainability issues and management concerns.

409

120 Ground Water Monitoring & Remediation 32, no. 1/ Winter 2012/pages 120130 NGWA.org Ground Water Monitoring & Remediation  

E-Print Network [OSTI]

120 Ground Water Monitoring & Remediation 32, no. 1/ Winter 2012/pages 120­130 NGWA.org Ground Water Monitoring & Remediation © 2011, National Ground Water Association. Published 2011. This article known as emerging contaminants (ECs) to surrounding groundwater and surface water. ECs consist

410

Major Risk Factors to the Integrated Facility Disposition Project  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization, reindustrialization, and reconfiguration initiatives at the Oak Ridge National Laboratory and at the Y-12 National Security Complex. The balancing of the broad nature of these activities and issues at ORO are a key challenge for the IFDP especially since their interrelationship is not always obvious.

411

International Facility Management Association Strategic Facility  

Broader source: Energy.gov (indexed) [DOE]

Facility Management Association Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning © 2009 | International Facility Management Association For additional information, contact: 1 e. Greenway Plaza, Suite 1100 houston, tX 77046-0104 USA P: + 1-713-623-4362 F: + 1-713-623-6124 www.ifma.org taBle OF cOntentS PreFace ......................................................... 2 executive Summary .................................... 3 Overview ....................................................... 4 DeFinitiOn OF Strategic Facility Planning within the Overall cOntext OF Facility Planning ................. 5 SPecializeD analySeS ................................ 9 OrganizatiOnal aPPrOacheS tO SFP ... 10 the SFP PrOceSS .......................................

412

Expedited approach to a carbon tetrachloride spill interim remedial action  

SciTech Connect (OSTI)

Monitored natural attenuation was selected as an interim measure for a carbon tetrachloride spill site where source removal or in situ treatment cannot currently be implemented due to the surrounding infrastructure. Rather than delay action until the site is more accessible to an interim action, this more expedited approach would support a final action. Individual Hazard Substance Site (IHSS) 118.1 is a former underground storage tank at Rocky Flats Environmental Technology Site (RFETS) that stored carbon tetrachloride for process use. Inadvertent releases associated with filling and failure of the tank system resulted in an accumulation of carbon tetrachloride in a bedrock depression around a group of former process waste tanks. Access to the source of contamination is obstructed by numerous utilities, the process waste tanks, and other components of the site infrastructure that limit the ability to conduct an effective remedial action. A preremedial field investigation was conducted in September 1997 to identify and delineate the extent of the dense nonaqueous phase liquid (DNAPL) in the subsurface. Data collected from the investigation revealed that natural processes might be limiting the migration of contaminants from the source area.

Cowdery, C.; Primrose, A. [Rocky Mountain Remediation Services, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Uhland, J. [Kaiser-Hill, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Environmental Technology Site

1998-07-01T23:59:59.000Z

413

Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426  

SciTech Connect (OSTI)

The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies that illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, time frame, and potential remedial effectiveness. This presentation is intended to inform DOE program managers, state regulators, practitioners and other stakeholders who are evaluating technical cleanup challenges within their own programs, and establishing programmatic approaches to evaluating and implementing long-term management approaches. Case studies provide examples of long-term management designations and strategies to manage and remediate groundwater at complex sites. At least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. Long-term management designations are not a way to 'do nothing' or walk away from a site. Instead, soil and groundwater within the zone is managed to be protective of human health and the environment. Understanding when and how to adopt a long-term management approach can lead to cost savings and the more efficient use of resources across DOE and at numerous other industrial and military sites across the U.S. This presentation provides context for assessing the use and appropriate role of alternative endpoints and supporting long-term management designations in final remedies. (authors)

Deeb, Rula A.; Hawley, Elisabeth L. [ARCADIS, U.S., 2000 Powell St., 7th Floor, Emeryville, California 94608 (United States)] [ARCADIS, U.S., 2000 Powell St., 7th Floor, Emeryville, California 94608 (United States)

2013-07-01T23:59:59.000Z

414

Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

Paducah, KY Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is evaluating alternatives to dispose of waste generated from the remedial activities at the PGDP. One option is to construct an on-site disposal facility (OSDF) meeting the CERCLA requirements.

415

Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results  

SciTech Connect (OSTI)

This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

2000-03-14T23:59:59.000Z

416

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 11, 2011 Facility News ARM Mobile Facility Completes Extended Campaign in the Azores; Next Stop-India Bookmark and Share The ARM Mobile Facility obtained data on Graciosa...

417

Facilities Services Overview & Discussion  

E-Print Network [OSTI]

& Finance Facilities Services Director: Jeff Butler Human Resources Administrative Services Engineering) Environmental Services Morrison (3) Admin Services Evans (1) Human Resources Engineering (4) ·EngineeringFacilities Services Overview & Discussion Jeff Butler Director ­ Facilities Services November 2011

Maxwell, Bruce D.

418

Investigating habitat value to inform contaminant remediation options: Case study  

Science Journals Connector (OSTI)

Habitat valuation methods were implemented to support remedial decisions for aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, TN, USA. The habitat valuation was undertaken for six contaminated sites: Contractor's Spoil Area, K-901-N Disposal Area, K-770 Scrapyard, K-1007-P1 pond, K-901 pond, and the Mitchell Branch stream. Four of these sites are within the industrial use area of ETTP and two are in the Black Oak Ridge Conservation Easement. These sites represent terrestrial and aquatic habitat for vertebrates, terrestrial habitat for plants, and aquatic habitat for benthic invertebrates. Current and potential future, no-action (no remediation) scenarios were evaluated primarily using existing information. Valuation metrics and scoring criteria were developed in a companion paper, this volume. The habitat valuation consists of extensive narratives, as well as scores for aspects of site use value, site rarity, and use value added from spatial context. Metrics for habitat value were expressed with respect to different spatial scales, depending on data availability. There was significant variation in habitat value among the six sites, among measures for different taxa at a single site, between measures of use and rarity at a single site, and among measures for particular taxa at a single site with respect to different spatial scales. Most sites had aspects of low, medium, and high habitat value. Few high scores for current use value were given. These include: wetland plant communities at all aquatic sites, Lepomid sunfish and waterbirds at 1007-P1 pond, and Lepomid sunfish and amphibians at K-901 pond. Aquatic sites create a high-value ecological corridor for waterbirds, and the Contractor's Spoil Area and possibly the K-901-N Disposal Site have areas that are part of a strong terrestrial ecological corridor. The only example of recent observations of rare species at these sites is the gray bat observed at the K-1007-P1 pond. Some aspects of habitat value are expected to improve under no-action scenarios at a few of the sites. Methods are applicable to other contaminated sites where sufficient ecological data are available for the site and region.

Rebecca A. Efroymson; Mark J. Peterson; Neil R. Giffen; Michael G. Ryon; John G. Smith; William W. Hargrove; W. Kelly Roy; Christopher J. Welsh; Daniel L. Druckenbrod; Harry D. Quarles

2008-01-01T23:59:59.000Z

419

ETEC - Radioactive Handling Materials Facility (RMHF) Leachfield...  

Office of Environmental Management (EM)

of Plume (acres): 2 Plume Status: Plume expanding but not expected to migrate offsite Remedial Approach Remedy Name Status Start Date End Date Groundwater Use Exit Strategy...

420

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery  

Broader source: Energy.gov (indexed) [DOE]

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations June 14, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Hanford workers are pouring enough cement-like material to fill six Olympic-size wimming pools in one of the U.S. Department of Energy's (DOE) largest nuclear facilities at the Hanford Site in southeast Washington State to prepare the massive building for demolition.

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery  

Broader source: Energy.gov (indexed) [DOE]

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations June 14, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Hanford workers are pouring enough cement-like material to fill six Olympic-size wimming pools in one of the U.S. Department of Energy's (DOE) largest nuclear facilities at the Hanford Site in southeast Washington State to prepare the massive building for demolition.

422

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

423

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

424

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 15, 2008 Facility News ARM Mobile Facility Completes Field Campaign in Germany Bookmark and Share Researchers will study severe precipitation events that occurred in...

425

from Isotope Production Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

426

Programs & User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Programs & User Facilities Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy...

427

Facility Data Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Data Policy About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board ESCC Acceptable Use Policy Facility Data Policy Career Opportunities...

428

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 15, 2005 Facility News More Server Power Improves Performance at the ARM Data Management Facility Bookmark and Share Recently, several new Sun servers joined the...

429

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

approximately 22,500 square kilometers, or the approximate area of a modern climate model grid cell. Centered around the SGP Central Facility, these extended facilities are...

430

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Coastal Clouds to Desert Dust: ARM Mobile Facility Headed to Africa Bookmark and Share ARM operations staff prepare the ARM Mobile Facility in Point Reyes, California, for...

431

Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program  

SciTech Connect (OSTI)

Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

Not Available

1986-05-01T23:59:59.000Z

432

NREL: Sustainable NREL - Integrated Biorefinery Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Biorefinery Research Facility Integrated Biorefinery Research Facility A photo of a grey, three-story research facility on a large campus. The Integrated Biorefinery Research Facility The Integrated Biorefinery Research Facility (IBRF) incorporates a large number of energy efficiency and sustainability practices into its cutting-edge design. This facility received a Leadership in Energy and Environmental Design (LEED®) Gold-level certification from the U.S. Green Building Council and supports a variety of advanced biofuels projects and enables researchers and industry partners to develop, test, evaluate, and demonstrate processes for the production of bio-based products and fuels. Fast Facts Cost: $33.5M Square feet: 27,000 Occupants: 32 Labs/Equipment: high-bay biochemical conversion pilot plant that

433

NREL: Photovoltaics Research - Science and Technology Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Technology Facility Science and Technology Facility Photo of the Science and Technology Facility (S&TF) at NREL. NREL's Science and Technology Facility (S&TF) has a sustainable and energy efficient design and will support solar cell, thin film, and nanostructure research. Solar cell, thin film, and nanostructure research are conducted in our Science and Technology Facility (S&TF) with the benefits of a forty percent reduction in energy use compared to standard laboratory buildings; energy recovery for ventilation in laboratories; and functional and flexible laboratory space. Designed specifically to reduce time delays associated with transferring technology to industry, the S&TF's 71,000 square feet is a multi-level facility of laboratory space, office space, and lobby connected by an

434

Effects of remediation amendments on vadose zone microorganisms  

SciTech Connect (OSTI)

Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

Miller, Hannah M.; Tilton, Fred A.

2012-08-10T23:59:59.000Z

435

Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.  

SciTech Connect (OSTI)

This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

Howerton, Jack; Hwang, Diana

1984-11-01T23:59:59.000Z

436

Nuclear Facilities | Department of Energy  

Energy Savers [EERE]

Nuclear Facilities Nuclear Facilities Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear...

437

Power Systems Development Facility  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

Southern Company Services

2009-01-31T23:59:59.000Z

438

Facility Representative Program: 2003 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

439

NREL: Research Facilities - Test and User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

440

Facility Representative Program: 2000 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

Note: This page contains sample records for the topic "remediation facilities support" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vibration diagnosis and remediation design for an x-ray optics stitching interferometer system.  

SciTech Connect (OSTI)

The Advanced Photon Source (APS) x-ray optics Metrology Laboratory currently operates a small-aperture Wyko laser interferometer in a stitching configuration. While the stitching configuration allows for easier surface characterization of long x-ray substrates and mirrors, the addition of mechanical components for optic element translation can compromise the ultimate measurement performance of the interferometer. A program of experimental vibration measurements, quantifying the laboratory vibration environment and identifying interferometer support-system behavior, has been conducted. Insight gained from the ambient vibration assessment and modal analysis has guided the development of a remediation technique. Discussion of the problem diagnosis and possible solutions are presented in this paper.

Preissner, C.; Assoufid, L.; Shu, D.; Experimental Facilities Division (APS)

2004-01-01T23:59:59.000Z

442

Sulfate Reduction in Groundwater: Characterization and Applications for Remediation  

SciTech Connect (OSTI)

Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

2012-06-01T23:59:59.000Z

443

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Broader source: Energy.gov (indexed) [DOE]

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

444

DOE Facility Management Contracts Facility Owner Contractor  

Broader source: Energy.gov (indexed) [DOE]

Ultimate Potential Ultimate Potential Expiration Date Contract FY Competed Parent Companies INEEL (AMWTP Ops) EM Bechtel BWXT Idaho LLC (Under Protest) 6/15/1999 3/31/2011 2 three month option periods until protest resolved 9/30/2011 M&O 1999 Bechtel National, Inc. (67%) and Babcock and Wilcox Company (33%) Portsmouth Remediation EM LATA/Parallax 1/10/2005 6/30/2010 2/28/2011 Site Clean up 2005 Los Alamos Technical Associates (LATA) 51%; Parallax (name changed to ES Performance Plus) 49% Paducah Remediation EM LATA Environmental Services of Kentucky 4/22/2010 7/21/2015 7/21/2015 Site Clean up 2009 Los Alamos Technical Associates, Inc. 100% West Valley Demonstration Project EM West Valley Environmental Svcs 6/29/2007 6/30/2011 6/30/2011 Site Clean up 2007 URS -60% Jacobs - 20% ECC - 10% Paralax - 10%

445

Decision support system to select cover systems  

SciTech Connect (OSTI)

The objective of this technology is to provide risk managers with a defensible, objective way to select capping alternatives for remediating radioactive and mixed waste landfills. The process of selecting containment cover technologies for mixed waste landfills requires consideration of many complex and interrelated technical, regulatory, and economic issues. A Decision Support System (DSS) is needed to integrate the knowledge of experts from scientific, engineering, and management disciplines to help in selecting the best capping practice for the site.

Bostick, K.V.

1995-02-01T23:59:59.000Z

446

WATER AS A REAGENT FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand and bentonite systems. Also, sodium carbonate greatly reduces the possible reactor corrosion under hydrothermal conditions. Our results show that a water-to-sand ratio of at least 3:1 is required to efficiently remove PAH from soil under static conditions.

Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

2001-03-29T23:59:59.000Z

447

Virginia Regional Industrial Facilities Act (Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Regional Industrial Facilities Act (Virginia) Regional Industrial Facilities Act (Virginia) Virginia Regional Industrial Facilities Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Provider Regional Industrial Facility Authorities The Virginia Regional Industrial Facilities Act is meant to aid the economic development of localities within the Commonwealth. The Act provides a mechanism for localities to establish regional industrial facility authorities, enabling them to pool financial resources to stimulate economic development. The purpose of a regional industrial

448

Commissioning for Federal Facilities  

Broader source: Energy.gov [DOE]

Guide describes building commissioning, recommissioning, retrocommissioning, and continuous commissioning for federal facilities.

449

THE RELATIONSHIP BETWEEN THE RADIATION SURVEY AND SITE INVESTIGATION PROCESS, THE CERCLA REMEDIAL OR REMOVAL  

E-Print Network [OSTI]

Assessment Site Inspection Remedial Investigation Feasibility Study Remedial Design/ Remedial Action PassAPPENDIX F THE RELATIONSHIP BETWEEN THE RADIATION SURVEY AND SITE INVESTIGATION PROCESS, THE CERCLA REMEDIAL OR REMOVAL PROCESS, AND THE RCRA CORRECTIVE ACTION PROCESS This appendix presents a discussion

450

Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites  

Broader source: Energy.gov [DOE]

Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites (Waste Management Conference 2008)

451

REMEDIATION OF HIGH WATER CONTENT GEOMATERIALS: A REVIEW OF GEOTEXTILE FILTER PERFORMANCE  

E-Print Network [OSTI]

costly remediation alternatives is capping of surface impoundments such as lagoons, ponds or old quarries