Sample records for remediation facilities support

  1. A Cercla-Based Decision Model to Support Remedy Selection for an Uncertain Volume of Contaminants at a DOE Facility

    SciTech Connect (OSTI)

    Christine E. Kerschus

    1999-03-31T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP) operated by the Department of Energy is challenged with selecting the appropriate remediation technology to cleanup contaminants at Waste Area Group (WAG) 6. This research utilizes value-focused thinking and multiattribute preference theory concepts to produce a decision analysis model designed to aid the decision makers in their selection process. The model is based on CERCLA's five primary balancing criteria, tailored specifically to WAG 6 and the contaminants of concern, utilizes expert opinion and the best available engineering, cost, and performance data, and accounts for uncertainty in contaminant volume. The model ranks 23 remediation technologies (trains) in their ability to achieve the CERCLA criteria at various contaminant volumes. A sensitivity analysis is performed to examine the effects of changes in expert opinion and uncertainty in volume. Further analysis reveals how volume uncertainty is expected to affect technology cost, time and ability to meet the CERCLA criteria. The model provides the decision makers with a CERCLA-based decision analysis methodology that is objective, traceable, and robust to support the WAG 6 Feasibility Study. In addition, the model can be adjusted to address other DOE contaminated sites.

  2. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01T23:59:59.000Z

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  3. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01T23:59:59.000Z

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  4. Managing Complex Environmental Remediation amidst Aggressive Facility Revitalization Milestones

    SciTech Connect (OSTI)

    Richter Pack, S. [PMP Science Applications International Corporation, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    Unlike the final closure projects at Rocky Flats and Fernald, many of the Department of Energy's future CERCLA and RCRA closure challenges will take place at active facilities, such as the Oak Ridge National Laboratory (ORNL) central campus. ORNL has aggressive growth plans for a Research Technology Park and cleanup must address and integrate D and D, soil and groundwater remediation, and on-going and future business plans for the Park. Different planning and tracking tools are needed to support closures at active facilities. To support some large Airport redevelopment efforts, we created tools that allowed the Airline lease-holder to perform environmental remediation on the same schedule as building D and D and new building construction, which in turn allowed them to migrate real estate from unusable to usable within an aggressive schedule. In summary: The FIM and OpenGate{sup TM} spatial analysis system were two primary tools developed to support simultaneous environmental remediation, D and D, and construction efforts at an operating facility. These tools helped redevelopers to deal with environmental remediation on the same schedule as building D and D and construction, thereby meeting their goals of opening gates, restarting their revenue streams, at the same time complying with all environmental regulations. (authors)

  5. List of Contractors to Support Anthrax Remediation

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Lesperance, Ann M.

    2010-05-14T23:59:59.000Z

    This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

  6. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    D. Vandel

    2003-09-01T23:59:59.000Z

    This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

  7. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01T23:59:59.000Z

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  8. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    SciTech Connect (OSTI)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01T23:59:59.000Z

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  9. Adaptive management: a paradigm for remediation of public facilities

    SciTech Connect (OSTI)

    Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

    2009-01-01T23:59:59.000Z

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.

  10. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12T23:59:59.000Z

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  11. NREL Research Support Facilities (RSF)

    High Performance Buildings Database

    Golden, CO NREL's Research Support Facilities building (RSF) will be a total of 218,000 sq. feet. It will have two parallel secured employee wings, one of which will be 4 stories and the other 3 stories. A connector building housing most of the public spaces will run perpendicular through both wings. The RSF will provide workspace for 742 employees. The RSF is designed to be a zero energy building through the use of innovative energy efficiency, daylighting, and renewable energy strategies, including photovoltaic solar electric systems to generate electricity.

  12. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01T23:59:59.000Z

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  13. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect (OSTI)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States)] [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)] [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01T23:59:59.000Z

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  14. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  15. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    SciTech Connect (OSTI)

    Palmer, E.

    1998-10-02T23:59:59.000Z

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  16. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect (OSTI)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  18. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01T23:59:59.000Z

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  19. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01T23:59:59.000Z

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  20. HOLDUP MEASUREMENTS FOR THREE VISUAL EXAMINATION AND TRU REMEDIATION GLOVEBOX FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Dewberry, R; Donald Pak, D

    2007-05-04T23:59:59.000Z

    Visual Examination (VE) gloveboxes are used to remediate transuranic waste (TRU) drums at three separate facilities at the Savannah River Site. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements using cooled HPGe spectrometers are performed in order to confirm that these assumptions are conservative. {sup 239}Pu is the main nuclide of interest; however, {sup 241}Pu, equilibrium {sup 237}Np/{sup 233}Pa and {sup 238}Pu (if detected) are typically assayed. At the Savannah River National Laboratory (SRNL) facility {sup 243,244,245}Cm are also generally observed and are always reported at either finite levels or at limits of detection. A complete assay at each of the three facilities includes a measure of TRU content in the gloveboxes and HEPA filters in the glovebox exhaust. This paper includes a description of the {gamma}-PHA acquisitions, of the modeling, and of the calculations of nuclide content. Because each of the remediation facilities is unique and ergonomically unfavorable to {gamma}-ray acquisitions, we have constructed custom detector support devices specific to each set of acquisitions. This paper includes a description and photographs of these custom devices. The description of modeling and calculations include determination and application of container and matrix photon energy dependent absorption factors and also determination and application of geometry factors relative to our detector calibration geometry. The paper also includes a discussion of our measurements accuracy using off-line assays of two SRNL HEPA filters. The comparison includes assay of the filters inside of 55-gallon drums using the SRNL Q{sup 2} assay system and separately using off-line assay with an acquisition configuration unique from the original in-situ acquisitions.

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01T23:59:59.000Z

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  2. RCRA Facility Investigation/Remedial Investigation Report with the Baseline Risk Assessment for the 716-A Motor Shops Seepage Basin

    SciTech Connect (OSTI)

    Palmer, E.

    1997-08-25T23:59:59.000Z

    This document describes the RCRA Facility Investigation/Remedial Investigation/Baseline Risk Assessment of the 716-A Motor Shops Seepage Basin.

  3. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  4. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  5. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Fire Department Hose Training Facility (904-113G)

    SciTech Connect (OSTI)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-01T23:59:59.000Z

    This report documents the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA) for the Fire Department Hose Training Facility (FDTF) (904-113G).

  6. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01T23:59:59.000Z

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  7. NREL Research Support Facility (RSF) Documentary

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    he ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.

  8. Haselden/RNL - Research Support Facility Documentary

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The US Department of Energy's (DOE) Research Support Facility (RSF) on the campus of the National Renewable Energy Laboratory is positioned to be one of the most energy efficient buildings in the world. It will demonstrate NREL's role in moving advanced technologies and transferring knowledge into commercial applications. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  9. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  10. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-06T23:59:59.000Z

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values that have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.

  11. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  12. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  13. Draft Guidance: Response, Remediation, and Recovery Checklist for Chemically Contaminated Facilities

    SciTech Connect (OSTI)

    Raber, E; Mancieri, S; Carlsen, T; Fish, C; Hirabayashi-Dethier, J; Intrepido, A; MacQueen, D; Michalik, R; Richards, J

    2007-09-04T23:59:59.000Z

    A key part of preparedness in the event of a chemical warfare agent (CWA) or toxic industrial chemical (TIC) release at a large facility, such as an airport or subway, is to develop a concept of operations that allows for an effective incident response and recovery. This document is intended as a component of the concept of operations and will be used in the Emergency Operations Center (EOC) as a decision tool for the Unified Command (UC). The Checklist for Facility Response, Remediation, and Recovery presented in this document is principally focused on the Consequence Management Phase (see Figure 1; LLNL 2007a and 2007b) of a chemical release. Information in this document conforms to the National Response Plan (NRP) (DHS 2004) and the National Incident Management System (NIMS 2004). Under these two guidance documents, personnel responsible for managing chemical response and recovery efforts--that is, the decision-makers--are members of an Incident Command (IC), which is likely to transition to a UC in the event of a CWA or TIC attack. A UC is created when more than one agency has incident jurisdiction or when incidents cross political jurisdictions. The location for primary, tactical-level command and management is referred to as the Incident Command Post (ICP), as described in the NRP. Thus, regardless of whether an IC or a UC is used, the responsible entities are located at an ICP. Agencies work together through designated members of the UC to establish their designated Incident Commanders at a single ICP and to establish a common set of objectives and strategies and a single Incident Action Plan. Initially during the Crisis Management Phase (see Figure 1), the Incident Commander is likely to be the Chief of the fire department that serves the affected facility. As life-safety issues are resolved and the Crisis Management Phase shifts to the Consequence Management Phase, the work of characterization, decontamination, and facility clearance begins. There will likely be a coincident transition in organizational structure as well, and new remediation-focused groups, units, and personnel will be added as remediation needs are anticipated. In most cases, a UC would be formed, if not formed already, to direct the cleanup process jointly and to take ultimate responsibility for all cleanup decisions. The UC would likely include the Transportation Facility Manager or Emergency Operations Manager; representatives from state and local public health, environmental, and emergency management agencies; and Federal agencies, such as the U.S. Environmental Protection Agency.

  14. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  15. Development of an auditable safety analysis in support of a radiological facility classification

    SciTech Connect (OSTI)

    Kinney, M.D. [Roy F. Weston, Inc., Rockville, MD (United States); Young, B. [Dept. of Energy, Albuquerque, NM (United States)

    1995-03-01T23:59:59.000Z

    In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23.

  16. CRAD, Nuclear Facility Construction - Piping and Pipe Supports...

    Broader source: Energy.gov (indexed) [DOE]

    March 29, 2012 Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0) This Criteria Review and...

  17. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect (OSTI)

    Gilles, Michael L.; Gilmour, John C. [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01T23:59:59.000Z

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  18. Aquifer characterization and groundwater modeling in support of remedial actions at the Weldon Spring Site

    SciTech Connect (OSTI)

    Durham, L.A. [Argonne National Lab., IL (United States); Carman, J.D. [Jacobs Engineering Group, Inc., St. Charles, MO (United States)

    1993-10-01T23:59:59.000Z

    Aquifer characterization studies were performed to develop a hydrogeologic understanding of an unconfined shallow aquifer at the Weldon Spring site west of St. Louis, Missouri. The 88-ha site became contaminated because of uranium and thorium processing and disposal activities that took place from the 1940s through the 1960s. Slug and pumping tests provided valuable information on the lateral distribution of hydraulic conductivities, and packer tests and lithologic information were used to determine zones of contrasting hydrologic properties within the aquifer. A three-dimensional, finite- element groundwater flow model was developed and used to simulate the shallow groundwater flow system at the site. The results of this study show that groundwater flow through the system is predominantly controlled by a zone of fracturing and weathering in the upper portion of the limestone aquifer. The groundwater flow model, developed and calibrated from field investigations, improved the understanding of the hydrogeology and supported decisions regarding remedial actions at the site. The results of this study illustrate the value, in support of remedial actions, of combining field investigations with numerical modeling to develop an improved understanding of the hydrogeology at the site.

  19. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    SciTech Connect (OSTI)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07T23:59:59.000Z

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  20. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    SciTech Connect (OSTI)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01T23:59:59.000Z

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation methodology can be adapted for evaluating and assessing the safeguardability of nuclear facilities – both existing, as well as those still on the drawing board. The advantages of the Facility Safeguardability Analysis is that it would not only give the facility designer an analytical method for evaluating and assessing the safeguards measures and approaches for the prospective facility, but also the ability to optimize the design of the facility process for enhancing facility safeguardability. The following report explains the need for Facility Safeguardability Analysis and explains how it could be used in the Safeguards-by-Design, in support of the design and construction of nuclear facilities.

  1. Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel...

    Office of Environmental Management (EM)

    Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing Methods Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing...

  2. Catalyst Support Interactions | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruaryMetal nanoparticles supported on the surface of

  3. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect (OSTI)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01T23:59:59.000Z

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  4. POTENTIAL ENHANCEMENTS TO NATURAL ATTENUATION: LINES OF INQUIRY SUPPORTING ENHANCED PASSIVE REMEDIATION OF CHLORINATED SOLVENTS

    SciTech Connect (OSTI)

    Vangelas, K; Tom Early, T; Michael Heitkamp, M; Brian02 Looney, B; David Major, D; Brian Riha, B; Jody Waugh, J; Gary Wein, G

    2004-06-18T23:59:59.000Z

    The Department of Energy (DOE) is sponsoring an initiative to facilitate efficient, effective and responsible use of Monitored Natural Attenuation (MNA) and Enhanced Passive Remediation (EPR) for chlorinated solvents. This Office of Environmental Management (EM) ''Alternative Project,'' focuses on providing scientific and policy support for MNA/EPR. A broadly representative working group of scientists supports the project along with partnerships with regulatory organizations such as the Interstate Technology and Regulatory Council and the U.S. Environmental Protection Agency (EPA). The initial product of the technical working group was a summary report that articulated the conceptual approach and central scientific tenants of the project, and that identified a prioritized listing of technical targets for field research. This report documented the process in which: (1) scientific ground rules were developed, (2) lines of inquiry were identified and then critically evaluated, (3) promising applied research topics were highlighted in the various lines of inquiry, and (4) these were discussed and prioritized. The summary report will serve as a resource to guide management and decision-making throughout the period of the subject MNA/EPR Alternative Project. To support and more fully document the information presented in the summary report, we are publishing a series of supplemental documents that present the full texts from the technical analyses within the various lines of inquiry (see listing). The following report - documenting our evaluation of the state of the science of the characterization and monitoring process and tools-- is one of those supplemental documents.

  5. Contaminant distributions at typical U.S. uranium milling facilities and their effect on remedial action decisions

    SciTech Connect (OSTI)

    Hamp, S. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Jackson, T.J. [Geraghty and Miller, Inc., Albuquerque, NM (United States); Dotson, P.W. [Roy F. Weston, Inc., Albuquerque, NM (United States)

    1995-03-01T23:59:59.000Z

    Past operations at uranium processing sites throughout the US have resulted in local contamination of soils and ground water by radionuclides, toxic metals, or both. Understanding the origin of contamination and how the constituents are distributed is a basic element for planning remedial action decisions. This report describes the radiological and nonradiological species found in ground water at a typical US uranium milling facility. The report will provide the audience with an understanding of the vast spectrum of contaminants that must be controlled in planning solutions to the long-term management of these waste materials.

  6. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  7. NSTX Program Governance, Research Support and Facility Operation

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    of DPP, 3 PU faculty) · Graduate students & post-doc (from PU) · Engineering expertise: designNSTX Program Governance, Research Support and Facility Operation Office of Science M.G. Bell, PPPL for the NSTX Research Team NSTX 5 Year Plan Review for 2009-13 Princeton Plasma Physics Laboratory July 28

  8. FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF)

    E-Print Network [OSTI]

    FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF): UPDATE · It was well recognized there were also critical materials and technology issues that needed to be addressed in order to apply the knowledge we gained about burning plasma state #12;FUSION NUCLEAR SCIENCE PROGRAM

  9. Interim measure conceptual design for remediation at the former CCC/USDA grain storage facility at Centralia, Kansas : pilot test and remedy implementation.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2007-11-09T23:59:59.000Z

    This document presents an Interim Measure Work Plan/Design for the short-term, field-scale pilot testing and subsequent implementation of a non-emergency Interim Measure (IM) at the site of the former grain storage facility operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Centralia, Kansas. The IM is recommended to mitigate both (1) localized carbon tetrachloride contamination in the vadose zone soils beneath the former facility and (2) present (and potentially future) carbon tetrachloride contamination identified in the shallow groundwater beneath and in the immediate vicinity of the former CCC/USDA facility. Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory have demonstrated that groundwater at the Centralia site is contaminated with carbon tetrachloride at levels that exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency's maximum contaminant level of 5.0 {micro}g/L for this compound. Groundwater sampling and analyses conducted by Argonne under a monitoring program approved by the Kansas Department of Health and Environment (KDHE) indicated that the carbon tetrachloride levels at several locations in the groundwater plume have increased since twice yearly monitoring of the site began in September 2005. The identified groundwater contamination currently poses no unacceptable health risks, in view of the absence of potential human receptors in the vicinity of the former CCC/USDA facility. Carbon tetrachloride contamination has also been identified at Centralia in subsurface soils at concentrations on the order of the Kansas Tier 2 RBSL of 200 {micro}g/kg in soil for the soil-to-groundwater protection pathway. Soils contaminated at this level might pose some risk as a potential source of carbon tetrachloride contamination to groundwater. To mitigate the existing contaminant levels and decrease the potential future concentrations of carbon tetrachloride in groundwater and soil, the CCC/USDA recommends initial short-term, field-scale pilot testing of a remedial approach that employs in situ chemical reduction (ISCR), in the form of a commercially available material marketed by Adventus Americas, Inc., Freeport, Illinois (http://www.adventusgroup.com). If the pilot test is successful, it will be followed by a request for KDHE authorization of full implementation of the ISCR approach. In the recommended ISCR approach, the Adventus EHC{reg_sign} material--a proprietary mixture of food-grade organic carbon and zero-valent iron--is introduced into the subsurface, where the components are released slowly into the formation. The compounds create highly reducing conditions in the saturated zone and the overlying vadose zone. These conditions foster chemical and biological reductive dechlorination of carbon tetrachloride. The anticipated effective lifetime of the EHC compounds following injection is 1-5 yr. Although ISCR is a relatively innovative remedial approach, the EHC technology has been demonstrated to be effective in the treatment of carbon tetrachloride contamination in groundwater and has been employed at a carbon tetrachloride contamination site elsewhere in Kansas (Cargill Flour Mill and Elevator, Wellington, Kansas; KDHE Project Code C209670158), with the approval of the KDHE. At Centralia, the CCC/USDA recommends use of the ISCR approach initially in a short-term pilot test addressing the elevated carbon tetrachloride levels identified in one of three persistently highly contaminated areas ('hot-spot areas') in the groundwater plume. In this test, a three-dimensional grid pattern of direct-push injection points will be used to distribute the EHC material (in slurry or aqueous form) throughout the volume of the contaminated aquifer and (in selected locations) the vadose zone in the selected hot-spot area. Injection of the EHC material will be conducted by a licensed contractor, under the supervision of Adventus and Argonne technical personnel. The contractor will be identified upon acceptanc

  10. TAN Hot Shop and Support Facility Utilization Study

    SciTech Connect (OSTI)

    Picker, B.A.

    2001-11-16T23:59:59.000Z

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D and D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D and D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho National Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.

  11. TAN HOT SHOP AND SUPPORT FACILITY UTILIZATION STUDY

    SciTech Connect (OSTI)

    Phillips, Ken Crawforth

    2001-11-01T23:59:59.000Z

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D&D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D&D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho National Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.

  12. Adaptive Comfort in Mixed-Mode Buildings: Research Support Facility, National Renewable Energy Lab

    E-Print Network [OSTI]

    Brager, Gail; Pigman, Margaret

    2013-01-01T23:59:59.000Z

    Support Facility, National Renewable Energy Lab Gail Brager,Facility of the National Renewable Energy Lab in Golden, CO.for energy efficiency and renewable energy technologies. The

  13. RCRA Facility Investigation/Remedial Investigation Report for Gunsite 720 Rubble Pit Unit (631-16G) - March 1996

    SciTech Connect (OSTI)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-03-01T23:59:59.000Z

    Gunsite 720 Rubble Pit Unit is located on the west side of SRS. In the early to mid 1980`s, while work was being performed in this area, nine empty, partially buried drums, labeled `du Pont Freon 11`, were found. As a result, Gunsite 720 became one of the original waste units specified in the SRS RCRA Facility Assessment (RFA). The drums were excavated on July 30, 1987 and placed on a pallet at the unit. Both the drums and pallet were removed and disposed of in October 1989. The area around the drums was screened during the excavation and the liquid (rainwater) that collected in the excavated drums was sampled prior to disposal. No evidence of hazardous materials was found. Based on the review of the analytical data and screening techniques used to evaluate all the chemicals of potential concern at Gunsite 720 Rubble Pit Unit, it is recommended that no further remedial action be performed at this unit.

  14. ICDF Complex Remedial Action Work Plan

    SciTech Connect (OSTI)

    W. M. Heileson

    2006-12-01T23:59:59.000Z

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  15. THE INSTITUTE FOR SOLID STATE PHYSICS 2013 Supporting Facilities

    E-Print Network [OSTI]

    Katsumoto, Shingo

    Numerically controlled lathe MainFacilities Heliumliquefiersystem(Linde) 200L/hr Heliumliquefiersystem(Linde

  16. Supported by the National Science Foundation and the State of Florida New Testing Facilities Available

    E-Print Network [OSTI]

    Weston, Ken

    outside the laboratory, both from the government and commercial sectors. Presently, the facilities include: Facilities Electrical A variety of large, high current electrical equipment is available1 Supported by the National Science Foundation and the State of Florida New Testing Facilities

  17. Facility Operations and User Support | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014Facilities FusionFacility Data

  18. Support of the Iraq nuclear facility dismantlement and disposal program

    SciTech Connect (OSTI)

    Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

  19. Code of Conduct for Users of McGill Computing Facilities McGill Computing Facilities (MCF) are intended to support the academic mission and the

    E-Print Network [OSTI]

    Shoubridge, Eric

    Code of Conduct for Users of McGill Computing Facilities McGill Computing Facilities (MCF for Users of McGill Computing Facilities 1 #12;Code of Conduct for Users of McGill Computing Facilities) are intended to support the academic mission and the administrative functions of the University. This code

  20. Facility Operations and User Support | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    programmatic support for collaboration with external agencies on specific high-performance computing projects. This product also includes collaborations with internal or...

  1. CLOSEOUT REPORT REMEDIAL ACTION

    E-Print Network [OSTI]

    FINAL CLOSEOUT REPORT REMEDIAL ACTION AREA OF CONCERN 6 BUILDING 650 RECLAMATION FACILITY SUMP York 11973 REGISTERED TO ISO 14001 #12;AOC 6 BUILDING 650 RECLAMATION FACILITY SUMP AND SUMP OUTFALL .................................................................................9 2.6.1 Final Radiological Status Survey Design

  2. Research Support Facility - Zero Energy Building Moves Closer to Reality (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    The DOE's Research Support Facility showcases high-performance design features, passive energy strategies, and renewable energy. It is a prototype for future large-scale net-zero energy buildings.

  3. ICDF Complex Remedial Action Report

    SciTech Connect (OSTI)

    W. M. Heileson

    2007-09-26T23:59:59.000Z

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  4. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    SciTech Connect (OSTI)

    Stange, Sy [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Herrera, Gary D. [Los Alamos National Laboratory; McLaughlin, Anastasia D. [Los Alamos National Laboratory; Montoya, Charles M. [Los Alamos National Laboratory; Quihuis, Becky A. [Los Alamos National Laboratory; Trujillo, Julio B. [Los Alamos National Laboratory; Van Pelt, Craig E. [Los Alamos National Laboratory; Wenz, Tracy R. [Los Alamos National Laboratory

    2012-07-13T23:59:59.000Z

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  5. Enhanced Chemical Incident Response Plan (ECIRP). Appendix F, remediation analysis with Decision Support Tools (DSTs) for wide-area chemical hazards.

    SciTech Connect (OSTI)

    Hassig, Nancy L. (Pacific Northwest National Laboratory, Richland, WA); Pulsipher, Brent A. (Pacific Northwest National Laboratory, Richland, WA); Foltz, Greg W.; Hoette, Trisha Marie

    2011-07-01T23:59:59.000Z

    The Defense Threat Reduction Agency (DTRA) commissioned an assessment of the Consequence Management (CM) plans in place on military bases for response to a chemical attack. The effectiveness of the CM plans for recovering from chemical incidents was modeled using a multiple Decision Support Tools (DSTs). First, a scenario was developed based on an aerial dispersion of a chemical agent over a wide-area of land. The extent of contamination was modeled with the Hazard Prediction and Assessment Capability (HPAC) tool. Subsequently, the Analyzer for Wide Area Restoration Effectiveness (AWARE) tool was used to estimate the cost and time demands for remediation based on input of contamination maps, sampling and decontamination resources, strategies, rates and costs. The sampling strategies incorporated in the calculation were designed using the Visual Sample Plan (VSP) tool. Based on a gaps assessment and the DST remediation analysis, an Enhanced Chemical Incident Response Plan (ECIRP) was developed.

  6. RCRA Facility Investigation/Remedial Investigation Report for the Gunsite 113 Access Road Unit (631-24G) - March 1996

    SciTech Connect (OSTI)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-03-01T23:59:59.000Z

    Gunsite 113 Access Road Unit is located in the northeast corner of SRS. In the mid 1980`s, sparse vegetation, dead trees, and small mounds of soil were discovered on a portion of the road leading to Gunsite 113. This area became the Gunsite 113 Access Road Unit (Gunsite 113). The unit appears to have been used as a spoil dirt and / or road construction debris disposal area. There is no documentation or record of any hazardous substance management, disposal, or any type of waste disposal at this unit. Based upon the available evidence, there are no potential contaminants of concern available for evaluation by a CERCLA baseline risk assessment. Therefore, there is no determinable health risk associated with Gunsite 113. In addition, it is also reasonable to conclude that, since contamination is below risk-based levels, the unit presents no significant ecological risk. It is recommended that no further remedial action be performed at this unit.

  7. Research Support Facility Data Center: An Example of Best Practices Implementation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure details the design and operations of the Research Support Facility (RSF) data center. The National Renewable Energy Laboratory (NREL) is world-renowned for its commitment to green building construction. To further this commitment to green building and leading by example, NREL included an ultra-energy-efficient data center in the laboratory's new Research Support Facility (RSF), which recently received a Leadership in Energy and Environmental Design{reg_sign} (LEED) Platinum designation from the U.S. Green Building Council.

  8. Technical Support Document: Development of the Advanced Energy Design Guide for Small Hospitals and Healthcare Facilities--30% Guide

    SciTech Connect (OSTI)

    Bonnema, E.; Doebber, I.; Pless, S.; Torcellini, P.

    2010-03-01T23:59:59.000Z

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Small Hospitals and Healthcare Facilities.

  9. Design-Build Process for the Research Support Facility (RSF) (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

  10. Research Support Facility - A Model of Super Efficiency (RSF) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    This fact sheet published by the National Renewable Energy Laboratory discusses the lab's newest building, the Research Support Facility (RSF). The RSF is a showcase for ultra-efficient workplaces. Various renewable energy and energy efficiency features have been employed so that the building achieves a Leadership in Energy and Environmental Design (LEED) Platinum rating from the U.S. Green Building Council.

  11. Supporting Information: A facile process for soak-and-peel delamination of CVD graphene from

    E-Print Network [OSTI]

    Deshmukh, Mandar M.

    Supporting Information: A facile process for soak-and-peel delamination of CVD graphene from equally to this work. 1 #12;I. CVD growth of graphene (a) Continuous graphene layer growth Continuous lms of CVD graphene were grown on 1 cm × 1 cm sized Cu and Pt substrates. Cu foils (Alfa Aesar, 25 µm thick

  12. Diagnostic development and support of MHD test facilities. Final progress report, March 1980--March 1994

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.

  13. The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes

    SciTech Connect (OSTI)

    Streit, R.D.; Couture, S.A.

    1995-03-01T23:59:59.000Z

    The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ``demonstration technologies.`` Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria.

  14. Brownfield landfill remediation under the Illinois EPA site remediation program

    SciTech Connect (OSTI)

    Beck, J.; Bruce, B.; Miller, J.; Wey, T.

    1999-07-01T23:59:59.000Z

    Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

  15. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    SciTech Connect (OSTI)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01T23:59:59.000Z

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.

  16. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL] [ORNL; Aaron, Adam M [ORNL] [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Peretz, Fred J [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Wilgen, John B [ORNL] [ORNL; Wilson, Dane F [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  17. Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Middleton, Lisa A.

    2009-03-31T23:59:59.000Z

    This report documents the requirements for transferring physical and hydraulic property data compiled by PNNL into the Hanford Environmental Information System (HEIS). The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and one of their current site contractors - CH2M-Hill Plateau Remediation Company (CHPRC). The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library.1 These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft Access database files used by SoilVision{reg_sign} into HEIS, which is currently being maintained by CHRPC, (3) develop a Virtual Library module for accessing these data from HEIS, and (4) write a User's Manual for the Virtual Library module. The intent of these activities is to make the available physical and hydraulic property data more readily accessible and useable by technical staff and operable unit managers involved in waste site assessments and remedial action decisions for Hanford. In FY08 communications were established between PNNL and staff from Fluor-Hanford Co. (who formerly managed HEIS) to outline the design of a Virtual Library module that could be used to access the physical and hydraulic property data that are to be transferred into HEIS. Data dictionaries used by SoilVision{reg_sign} were also provided to Fluor-Hanford personnel (who are now with CHPRC). During ongoing work to ensure traceability and defensibility of all physical and hydraulic property data that currently reside in the SoilVision{reg_sign} database, it was recognized that further work would be required in this effort before the data were actually ported into HEIS. Therefore work on the Virtual Library module development and an accompanying User's Guide was deferred until an unspecified later date. In FY09 efforts have continued to verify the traceability and defensibility of the physical and hydraulic property datasets that are currently being maintained by PNNL. Although this is a work in progress, several of these datasets should be ready for transfer to HEIS in the very near future. This document outlines a plan for the migration of these datasets into HEIS.

  18. OVERVIEW OF TESTING TO SUPPORT PROCESSING OF SLUDGE BATCH 4 IN THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Herman, C

    2006-09-20T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site began processing of its third sludge batch in March 2004. To avoid a feed outage in the facility, the next sludge batch will have to be prepared and ready for transfer to the DWPF by the end of 2006. The next sludge batch, Sludge Batch 4 (SB4), will consist of a significant volume of HM-type sludge. HM-type sludge is very high in aluminum compared to the mostly Purex-type sludges that have been processed to date. The Savannah River National Laboratory (SRNL) has been working with Liquid Waste Operations to define the sludge preparation plans and to perform testing to support qualification and processing of SB4. Significant challenges have arisen during SB4 preparation and testing to include poor sludge settling behavior and lower than desired projected melt rates. An overview of the testing activities is provided.

  19. Radiological Survey Results for Areas A1 North, A5A, A6, and B2 at the Molycorp Washington Remediation Project, Washington, Pennsylvania

    SciTech Connect (OSTI)

    W.C. Adams

    2007-03-13T23:59:59.000Z

    Perform radiological surveys of the Molycorp Washington Remediation Project (MWRP) facility in Washington, Pennsylvania

  20. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

  1. Toxic remediation

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alamed County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1994-01-01T23:59:59.000Z

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  2. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  3. Status Report on Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Middleton, Lisa A.; Cantrell, Kirk J.

    2009-06-30T23:59:59.000Z

    This document provides a status report on efforts to transfer physical and hydraulic property data from PNNL to CHPRC for incorporation into HEIS. The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and their contractors. The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library. These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft Access database files used by SoilVision{reg_sign} into HEIS, which is currently being maintained by CH2M-Hill Plateau Remediation Company (CHRPC), (3) develop a Virtual Library module for accessing these data from HEIS, and (4) write a User's Manual for the Virtual Library module. The intent of these activities is to make the available physical and hydraulic property data more readily accessible and useable by technical staff and operable unit managers involved in waste site assessments and remedial action decisions for Hanford. In FY08 communications were established between PNNL and staff from Fluor-Hanford Co. (who formerly managed HEIS) to outline the design of a Virtual Library module that could be used to access the physical and hydraulic property data that are to be transferred into HEIS. Data dictionaries used by SoilVision{reg_sign} were also provided to Fluor-Hanford personnel who are now with CHPRC. During ongoing work to ensure traceability and defensibility of all physical and hydraulic property data that currently reside in the SoilVision{reg_sign} database, it was recognized that further work would be required in this effort before the data were actually ported into HEIS. Therefore work on the Virtual Library module development and an accompanying User's Guide was deferred until an unspecified later date. In FY09 efforts have continued to verify the traceability and defensibility of the physical and hydraulic property datasets that are currently being maintained by PNNL. Although this is a work in progress, several of these datasets are now ready for transfer to CHRPC for inclusion in HEIS. The actual loading of data into HEIS is performed by CHPRC staff, so after the data are transferred from PNNL to CHPRC, it will be the responsibility of CHPRC to ensure that these data are loaded and made accessible. This document provides a status report on efforts to transfer physical and hydraulic property data from PNNL to CHPRC for incorporation into HEIS.

  4. NUMERICAL FLOW AND TRANSPORT SIMULATIONS SUPPORTING THE SALTSTONE FACILITY PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Flach, G.

    2009-02-28T23:59:59.000Z

    The Saltstone Disposal Facility Performance Assessment (PA) is being revised to incorporate requirements of Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), and updated data and understanding of vault performance since the 1992 PA (Cook and Fowler 1992) and related Special Analyses. A hybrid approach was chosen for modeling contaminant transport from vaults and future disposal cells to exposure points. A higher resolution, largely deterministic, analysis is performed on a best-estimate Base Case scenario using the PORFLOW numerical analysis code. a few additional sensitivity cases are simulated to examine alternative scenarios and parameter settings. Stochastic analysis is performed on a simpler representation of the SDF system using the GoldSim code to estimate uncertainty and sensitivity about the Base Case. This report describes development of PORFLOW models supporting the SDF PA, and presents sample results to illustrate model behaviors and define impacts relative to key facility performance objectives. The SDF PA document, when issued, should be consulted for a comprehensive presentation of results.

  5. IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    , Environmental Remediation Aimee Zack ­ Manager, Environmental Remediation #12;CORPORATE SUSTAINABILITY CREATES and sustainability of environmental remedies 2 #12;SITE BACKGROUND The Shoreham Facility 230 acres Northeast Took advantage of available rebates to install solar panels ­ Southern Solar Array: 60 panel system (11

  6. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect (OSTI)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01T23:59:59.000Z

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  7. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01T23:59:59.000Z

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  8. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities; Addendum 2

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    This 1993 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  9. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    SciTech Connect (OSTI)

    NONE

    1992-11-01T23:59:59.000Z

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  10. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect (OSTI)

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31T23:59:59.000Z

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  11. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01T23:59:59.000Z

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  12. Preliminary assessment report for Virginia Army National Guard Army Aviation Support Facility, Richmond International Airport, Installation 51230, Sandston, Virginia

    SciTech Connect (OSTI)

    Dennis, C.B.

    1993-09-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Virginia Army National Guard (VaARNG) property in Sandston, Virginia. The Army Aviation Support Facility (AASF) is contiguous with the Richmond International Airport. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The PA is designed to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF, originally constructed as an active Air Force interceptor base, provides maintenance support for VaARNG aircraft. Hazardous materials used and stored at the facility include JP-4 jet fuel, diesel fuel, gasoline, liquid propane gas, heating oil, and motor oil.

  13. EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas

    Broader source: Energy.gov [DOE]

    The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas.

  14. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect (OSTI)

    D. E. Shanklin

    2006-06-01T23:59:59.000Z

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  15. Selecting Mold Remediation Contractors

    E-Print Network [OSTI]

    Renchie, Don L.

    2005-10-05T23:59:59.000Z

    Texas has strict regulations that govern mold remediation companies. Before contracting for mold remediation work, consumers should know what the law requires of remediation companies and what such contracts should contain....

  16. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)

    1995-10-01T23:59:59.000Z

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  17. CENTRAL PLATEAU REMEDIATION

    SciTech Connect (OSTI)

    ROMINE, L.D.

    2006-02-01T23:59:59.000Z

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  18. Hanford site tank waste remediation system programmatic environmental review report

    SciTech Connect (OSTI)

    Haass, C.C.

    1998-09-03T23:59:59.000Z

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  19. Status of Activities to Implement a Sustainable System of MC&A Equipment and Methodological Support at Rosatom Facilities

    SciTech Connect (OSTI)

    J.D. Sanders

    2010-07-01T23:59:59.000Z

    Under the U.S.-Russian Material Protection, Control and Accounting (MPC&A) Program, the Material Control and Accounting Measurements (MCAM) Project has supported a joint U.S.-Russian effort to coordinate improvements of the Russian MC&A measurement system. These efforts have resulted in the development of a MC&A Equipment and Methodological Support (MEMS) Strategic Plan (SP), developed by the Russian MEM Working Group. The MEMS SP covers implementation of MC&A measurement equipment, as well as the development, attestation and implementation of measurement methodologies and reference materials at the facility and industry levels. This paper provides an overview of the activities conducted under the MEMS SP, as well as a status on current efforts to develop reference materials, implement destructive and nondestructive assay measurement methodologies, and implement sample exchange, scrap and holdup measurement programs across Russian nuclear facilities.

  20. Technical documentation in support of the project-specific analysis for construction and operation of the National Ignition Facility

    SciTech Connect (OSTI)

    Lazaro, M.A.; Vinikour, W. [Argonne National Lab., IL (United States). Environmental Assessment Div.; Allison, T. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.] [and others

    1996-09-01T23:59:59.000Z

    This document provides information that supports or supplements the data and impact analyses presented in the National Ignition Facility (NIF) Project-Specific Analysis (PSA). The purposes of NIF are to achieve fusion ignition in the laboratory for the first time with inertial confinement fusion (ICF) technology and to conduct high- energy-density experiments ins support of national security and civilian application. NIF is an important element in the DOE`s science-based SSM Program, a key mission of which is to ensure the reliability of the nation`s enduring stockpile of nuclear weapons. NIF would also advance the knowledge of basic and applied high-energy- density science and bring the nation a large step closer to developing fusion energy for civilian use. The NIF PSA includes evaluations of the potential environmental impacts of constructing and operating the facility at one of five candidate site and for two design options.

  1. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    SciTech Connect (OSTI)

    Bertsch, Paul

    2013-11-07T23:59:59.000Z

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  2. Remediation of inactive mining and milling sites

    SciTech Connect (OSTI)

    Mao, H.; Pan, Y.; Li, R.

    1993-12-31T23:59:59.000Z

    The presentation introduces relevant environment remediation standards and describes some measures of engineering remedied for inactive mines and mills. Since 1990, the remediation of decommissioned nuclear facilities has obtained fixed financial aid from state government, part of which is offered to inactive mines and mills. Considering the environmental characteristics of Chinese uranium mines and mills, the major task of decommissioning is to prevent radon release, and keep surface water and underground water from contamination. In order to control the rate of radon release effectively, the authors` research institutes conducted a series of experiments on the covers of tailings with two kinds of different material, clay and concrete.

  3. Radioactive Testing Results in Support of the In-Tank Precipitation Facility

    SciTech Connect (OSTI)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States); Barnes, M.J.; Peterson, R.A.; Crawford, C.L.

    1998-04-01T23:59:59.000Z

    A series of twelve tests examined benzene generation rates with radioactive materials simulating the planned Batches 2 through 4 that complete Cycle 1 for the In-Tank Precipitation (ITP) facility.

  4. SCFA lead lab technical assistance at Oak Ridge Y-12 national security complex: Evaluation of treatment and characterization alternatives of mixed waste soil and debris at disposal area remedial action DARA solids storage facility (SSF)

    E-Print Network [OSTI]

    Hazen, Terry

    2002-01-01T23:59:59.000Z

    TREATMENT AND CHARACTERIZATION ALTERNATIVES OF MIXED WASTE SOIL AND DEBRIS AT DISPOSAL AREA REMEDIAL ACTION (DARA) SOLIDSTreatment and Characterization Alternatives for Mixed Waste Soil and Debris at Disposal Area Remedial Action (DARA) Solids

  5. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Office of Environmental Management (EM)

    to support research activities and remedial decision making. Led by the Savannah River National Laboratory (SRNL), the initiative is a collaborative effort that leverages...

  6. EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory, California

    Broader source: Energy.gov [DOE]

    DOE is preparing an EIS for cleanup of Area IV, including the Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOE’s operations bordered the Northern Buffer Zone. DOE is responsible for soil cleanup in Area IV and the Northern Buffer Zone.) In the EIS, DOE will evaluate reasonable alternatives for disposition of radiological facilities and support buildings, remediation of contaminated soil and groundwater, and disposal of all resulting waste at permitted facilities.

  7. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    SciTech Connect (OSTI)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)] [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

    2013-07-01T23:59:59.000Z

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  8. Optimal facility and equipment specification to support cost-effective recycling

    SciTech Connect (OSTI)

    Redus, K.S. [MACTEC, Inc., Oak Ridge, TN (United States); Yuracko, K.L. [Oak Ridge National Lab., TN (United States)

    1998-06-01T23:59:59.000Z

    The authors demonstrate a project management approach for D and D projects to select those facility areas or equipment systems on which to concentrate resources so that project materials disposition costs are minimized, safety requirements are always met, recycle and reuse goals are achieved, and programmatic or stakeholder concerns are met. The authors examine a facility that contains realistic areas and equipment, and they apply the approach to illustrate the different results that can be obtained depending on the strength or weakness of safety risk requirements, goals for recycle and reuse of materials, and programmatic or stakeholder concerns.

  9. Preliminary assessment report for Army Aviation Support Facility No. 3, Installation 13307, Hunter Army Airfield, Savannah, Georgia. Installation Restoration Program

    SciTech Connect (OSTI)

    Kolpa, R.; Smith, K.

    1993-07-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Georgia Army National Guard property located on Hunter Army Airfield (HAA) near Savannah, Georgia, known as Army Aviation Support Facility (AASF) No. 3. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, types and quantities of hazardous substances utilized, the nature and amounts of wastes generated or stored at the facility, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the AASF No. 3 property, requirements of the Department of Defense Installation Restoration Program (IRP). The scope of this assessment is limited to the facilities and past activities contained within the area now occupied by AASF No. 3. However, this assessment report is intended to be read in conjunction with a previous IRP assessment of HAA completed in 1992 (USATHAMA 1992) and to provide comprehensive information on AASF No. 3 for incorporation with information contained in that previous assessment for the entirety of HAA.

  10. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    SciTech Connect (OSTI)

    R. P. Wells

    2006-09-19T23:59:59.000Z

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  11. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01T23:59:59.000Z

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  12. Preliminary assessment report for Army Aviation Support Facility 2, Installation 25075, Westover Air Force Base, Chicopee, Massachusetts. Installation Restoration Program

    SciTech Connect (OSTI)

    Haffenden, R.; Flaim, S.

    1993-08-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Massachusetts Army National Guard (MAARNG) property known as the Army Aviation Support Facility 2 (AASF 2) near Chicopee, Massachusetts. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF 2 is a 10-acre site located in the western portion of Massachusetts, in the town of Chicopee, in the county of Hampden. The facilities included in this PA are Building 7400, adjacent paved areas, grassy areas, and the hazardous waste drum storage buildings. The environmentally significant operations (ESOS) associated with the property are (1) the waste drum storage area, (2) abandoned underground storage tanks (USTs), and (3) refueling activities.

  13. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01T23:59:59.000Z

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  14. Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill

    SciTech Connect (OSTI)

    Studer, J.E. [INTERA Inc., Albuquerque, NM (United States); Mariner, P.; Jin, M. [INTERA Inc., Austin, TX (United States)] [and others

    1996-05-01T23:59:59.000Z

    Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

  15. Waste characterization for the F/H Effluent Treatment Facility in support of waste certification

    SciTech Connect (OSTI)

    Brown, D.F.

    1994-10-17T23:59:59.000Z

    The Waste Acceptance Criteria (WAC) procedures define the rules concerning packages of solid Low Level Waste (LLW) that are sent to the E-area vaults (EAV). The WACs tabulate the quantities of 22 radionuclides that require manifesting in waste packages destined for each type of vault. These quantities are called the Package Administrative Criteria (PAC). If a waste package exceeds the PAC for any radionuclide in a given vault, then specific permission is needed to send to that vault. To avoid reporting insignificant quantities of the 22 listed radionuclides, the WAC defines the Minimum Reportable Quantity (MRQ) of each radionuclide as 1/1000th of the PAC. If a waste package contains less than the MRQ of a particular radionuclide, then the package`s manifest will list that radionuclide as zero. At least one radionuclide has to be reported, even if all are below the MRQ. The WAC requires that the waste no be ``hazardous`` as defined by SCDHEC/EPA regulations and also lists several miscellaneous physical/chemical requirements for the packages. This report evaluates the solid wastes generated within the F/H Effluent Treatment Facility (ETF) for potential impacts on waste certification.

  16. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Crapse, B.; Cowan, S.

    1998-01-21T23:59:59.000Z

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  17. Formerly Used Sites Remedial Action Program (FUSRAP) W. R. Grace Building 23 Remedial Action-Challenges and Successes - 12247

    SciTech Connect (OSTI)

    Barber, Brenda; Honerlah, Hans [U.S. Army Corps of Engineers - Baltimore District, 10 S. Howard St., Baltimore, Maryland, 21201 (United States); O'Neill, Mike [EA Engineering, Science, and Technology, 15 Loveton Circle, Baltimore, Maryland, 21152 (United States); Young, Carl [Cabrera Services, Inc., 1106 N. Charles St., Suite 300, Baltimore, MD 21201 (United States)

    2012-07-01T23:59:59.000Z

    Monazite sand processing was conducted at the W. R. Grace Curtis Bay Facility (Baltimore, Maryland) from mid-May 1956 through the spring of 1957 under license to the Atomic Energy Commission (AEC), for the extraction of source material in the form of thorium, as well as rare earth elements. The processing was conducted in the southwest quadrant of a ca. 100 year old, five-story, building (Building 23) in the active manufacturing portion of the facility. Building components and equipment in the southwest quadrant of Building 23 exhibited residual radiological activity remaining from the monazite sand processing. U.S. Army Corps of Engineers (USACE) conducted a remedial investigation (RI) and feasibility study (FS) and prepared a Record of Decision (ROD) to address residual radioactivity on building components and equipment in the southwest quadrant of Building 23. The remedy selected for the southwest quadrant of Building 23, which was documented in the ROD (dated May 2005), was identified as 'Alternative 2: Decontamination With Removal to Industrial Use Levels'. The selected remedy provided for either decontaminating or removing areas of radioactivity to meet the RGs. Demonstration of compliance with the selected ARAR was performed using the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) and other appropriate guidance, as well as appropriate dose modeling codes where necessary. USACE-Baltimore District along with its private industry partner worked together under the terms of a 2008 Settlement Agreement to implement the remedial action (RA) for the southwest quadrant of Building 23. The RA was conducted in two phases: Phase 1 was completed to improve the building condition for support of subsequent remedial action and decrease scope uncertainty of the remedial action, and Phase 2 included decontamination and removal activities to meet the RGs and demonstration of compliance with the selected ARAR. Challenges encountered during the RA include: coordination with stakeholders, coordination between multiple RA contractors, addressing unique structural challenges for Building 23, nonradiological hazards associated with the RA, weather issues, and complex final status survey (FSS) coordination. The challenges during the Phase 1 RA were handled successfully. The challenges for the Phase 2 RA, which is anticipated to be complete by late-summer of 2012, have been handled successfully so far. By fall of 2012, USACE is expecting to finalize a robust RA Closure Report, including the Final Status Survey Report, which summarizes the RA activities and documents compliance with the ROD. During the ongoing RA at Building 23, there have been and still are many challenges both technically and from a project management perspective, due in part to the nature and extent of impact at the site (residual radioactivity within an active processing building), dual oversight by the property owner and USACE, and site-specific challenges associated with a complex RA and multiple contractors. Currently, USACE and its industry partner are overseeing the completion of RA field activities. RA closure documentation for the remediation of Building 23 to address residual contamination in building materials will be reviewed/approved by USACE and its industry partner upon completion of the field activities. USACE and its industry partner are working well together, through the Settlement Agreement, to conduct a cost-efficient and effective remedial action to address the legacy issues at Building 23. This cooperative effort has set a firm foundation for achieving a successful RA at the RWDA using a 'forward think' approach, and it is a case study for other sites where an industry partner is involved. The collaborative effort led to implementation of an RA which is acceptable to the site owner, the regulators, and the public, thus allowing USACE to move this project forward successfully in the FUSRAP program. (authors)

  18. Ignition Capsules with Aerogel-Supported Liquid DT Fuel For The National Ignition Facility

    SciTech Connect (OSTI)

    Ho, D D; Salmonson, J D; Clark, D S; Lindl, J D; Haan, S W; Amendt, P; Wu, K J

    2011-10-25T23:59:59.000Z

    For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to {beta}-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65-75% at peak velocity. A scan (in ablator and fuel thickness parameter space) is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  19. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    SciTech Connect (OSTI)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01T23:59:59.000Z

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

  20. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  1. Quality assurance plan for the molten salt reactor experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by Molten Salt Reactor Experiment (MSRE) Remediation Project personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description, Y/QD-15 Rev. 2 (Martin Marietta Energy Systems, Inc., 1995) and Environmental Management and Enrichment Facilities Work Smart Standards. This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRE Remediation Project. This QAP will be periodically reviewed, revised, and approved as necessary. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan.

  2. Cost Estimating Database and Prototype Tool to Support Design and Construction of Rural and Small Urban Transit Facilities

    E-Print Network [OSTI]

    Zheng, Yue

    2014-10-13T23:59:59.000Z

    and small urban transit facility industry. Unique characteristics and risk factors of those facilities were identified. A cost estimating database was constructed based on the historical cost data collected through online surveys. A cost estimating prototype...

  3. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  4. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  5. Environmental Assessment for US Department of Energy support of an Iowa State University Linear Accelerator Facility at Ames, Iowa

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.

  6. Tank waste remediation system program plan

    SciTech Connect (OSTI)

    Powell, R.W.

    1998-01-05T23:59:59.000Z

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  7. Remedial Action and Waste Disposal Conduct of OperationsMatrix

    SciTech Connect (OSTI)

    M. A. Casbon.

    1999-05-24T23:59:59.000Z

    This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

  8. DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION

    SciTech Connect (OSTI)

    Bannochie, C.; Crawford, C.

    2013-06-18T23:59:59.000Z

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

  9. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect (OSTI)

    KRONVALL CM

    2011-01-14T23:59:59.000Z

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  10. EIS-0471: Department of Energy Loan Guarantee to Support Proposed Eagle Rock Enrichment Facility in Bonneville County, Idaho

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction, operation, and decommissioning of the proposed Eagle Rock Enrichment Facility (EREF), a gas centrifuge uranium enrichment facility to be located in a rural area in western Bonneville County, Idaho. (DOE adopted this EIS issued by NRC on 04/13/2007.)

  11. Data base management activities for the Remedial Action Program at Oak Ridge National Laboratories (ORNL)

    SciTech Connect (OSTI)

    Hook, L.A.; Voorhees, L.D.; Gentry, M.J.; Faulkner, M.A.; Shaakir-Ali, J.A.; Newman, K.A.; McCord, R.A.; Goins, L.F.; Owen, P.T.

    1990-07-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP) was established in 1985 in response to state and federal regulations requiring comprehensive control over facility discharges and cleanup of contaminated sites. A computerized Data and Information Management System (DIMS) was developed for RAP to (1) provide a centralized repository for data pertinent to RAP and (2) provide support for the investigations and assessments leading to the long-term remediation of contaminated facilities and sites. The current status of DIMS and its role in supporting RAP during 1989 are described. The DIMS consists of three components: (1) the Numeric Data Base, (2) the Bibliographic Data Base, and (3) the Records Control Data Base. This report addresses all three data bases, but focuses on the contents of the Numeric Data Base. Significant progress was made last year with the geographic information system (GIS) and ARC/INFO, which can be interfaced with SAS/GRAPH to provide combined mapping and statistical graphic products. Several thematic layers of GIS data for the Oak Ridge Reservation are now available. 18 refs., 8 figs., 19 tabs.

  12. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    SciTech Connect (OSTI)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23T23:59:59.000Z

    Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the former Yucca Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

  13. LIST OF CONTRACTORS TO SUPPORT ANTHRAX REMEDIATION

    E-Print Network [OSTI]

    operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 #12;1 List) led a series of workshops with businesses, building owners, and critical service providers a wide-area anthrax release. One of the priority needs identified by private sector businesses

  14. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  15. Interstate Technology & Regulatory Council (ITRC) Remediation...

    Office of Environmental Management (EM)

    Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance Interstate Technology & Regulatory Council (ITRC) Remediation...

  16. Subj: Educational and General (E&G) Facility Support Provide an overview of Facility Operations, Maintenance, Repair and Renovation and Space

    E-Print Network [OSTI]

    support, and, preventive and unscheduled maintenance of all building systems, with the exception of BAS Operations, Maintenance, Repair and Renovation and Space Management Procedures and Practices. KEY DEFINITIONS chambers, fume hoods, fixed seating, etc. are normally considered part of the building. Maintenance, repair

  17. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  18. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01T23:59:59.000Z

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources are then addressed. Differences in required analyses and data are captured as outstanding data needs.

  19. Remediation and Recycling of Linde FUSRAP Materials

    SciTech Connect (OSTI)

    Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

    2002-02-27T23:59:59.000Z

    During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

  20. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and...

  1. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14T23:59:59.000Z

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  2. Operations to be Performed in the Waste Package Dry Remediation Cell

    SciTech Connect (OSTI)

    Norman E. Cole; Randy K. Elwood

    2003-10-01T23:59:59.000Z

    Describes planned and proposed operations for remediating damaged and/or out-of-compliance waste packages, casks, DPCs, overpacks, and containers at the Yucca Mountain Dry Transfer Facility.

  3. Phase 1 remedial investigation report for 200-BP-1 operable unit. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit.

  4. Remediating MGP brownfields

    SciTech Connect (OSTI)

    Larsen, B.R.

    1997-05-01T23:59:59.000Z

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example.

  5. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    SciTech Connect (OSTI)

    NONE

    1993-07-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review.

  6. Savannah River Site’s H Canyon Begins 2012 with New and Continuing Missions- Transuranic waste remediation, new mission work are the focus of the nation’s only active nuclear chemical separations facility in 2012

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The Savannah River Site (SRS) is breathing new life into the H Canyon, the only active nuclear chemical separations facility still operating in the U.S.

  7. Capabilities and Facilities Available at the Advanced Test Reactor to Support Development of the Next Generation Reactors

    SciTech Connect (OSTI)

    S. Blaine Grover; Raymond V. Furstenau

    2005-10-01T23:59:59.000Z

    The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. It is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The Irradiation Test Vehicle (ITV) installed in 1999 enhanced these capabilities by providing a built in experiment monitoring and control system for instrumented and/or temperature controlled experiments. This built in control system significantly reduces the cost for an actively monitored/temperature controlled experiments by providing the thermocouple connections, temperature control system, and temperature control gas supply and exhaust systems already in place at the irradiation position. Although the ITV in-core hardware was removed from the ATR during the last core replacement completed in early 2005, it (or a similar facility) could be re-installed for an irradiation program when the need arises. The proposed Gas Test Loop currently being designed for installation in the ATR will provide additional capability for testing of not only gas reactor materials and fuels but will also include enhanced fast flux rates for testing of materials and fuels for other next generation reactors including preliminary testing for fast reactor fuels and materials. This paper discusses the different irradiation capabilities available and the cost benefit issues related to each capability.

  8. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  9. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect (OSTI)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin [Office of Groundwater and Soil Remediation, U.S. Department of Energy, Washington, DC 20585 (United States); Wellman, Dawn [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Deeb, Rula; Hawley, Elisabeth [ARCADIS U.S., Inc., Emeryville, CA 94608 (United States)

    2012-07-01T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

  10. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    SciTech Connect (OSTI)

    Sheppy, M.; Beach, A.; Pless, S.

    2013-04-01T23:59:59.000Z

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  11. Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Field activities and well summaries

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    Four hydrofracture sites at the Oak Ridge National Laboratory (ORNL) were used for development, demonstration, and disposal from 1959 to 1984. More than 10 million gal of waste grout mix was disposed of via hydrofracture. Various types of wells were installed to monitor the hydrofracture operations. The primary goal of this remedial investigation was to gather information about the wells in order to recommend the type and best method of final disposition for the wells. Evaluations were performed to determine the integrity of well castings, confirm construction details for each well, evaluate the extent of contamination, assist in planning for future activities, and determine the suitability of the wells for future temporary site monitoring.

  12. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect (OSTI)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19T23:59:59.000Z

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  13. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    SciTech Connect (OSTI)

    Yoginder P. Chugh

    2002-10-01T23:59:59.000Z

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  14. Technical Support for Improving the Licensing Regulatory Base for Selected Facilities Associated with the Front End of the Fuel Cycle

    SciTech Connect (OSTI)

    Clark, R. G.; Schreiber, R. E.; Jamison, J. D.; Davenport, L. C.; Brite, D. W.

    1982-04-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) was asked by the NRC Office of Nuclear Material Safety and Safeguards (NMSS) to determine the adequacy of its health, safety and environmental regulatory base as a guide to applicants for licenses to operate UF{sub 6} conversion facilities and fuel fabrication plants. The regulatory base was defined as the body of documented requirements and guidance to licensees, including laws passed by Congress, Federal Regulations developed by the NRC to implement the laws, license conditions added to each license to deal with special requirements for that specific license, and Regulatory Guides. The study concentrated on the renewal licensing accomplished in the last few years at five typical facilities, and included analyses of licensing documents and interviews with individuals involved with different aspects of the licensing process. Those interviewed included NMSS staff, Inspection and Enforcement (IE) officials, and selected licensees. From the results of the analyses and interviews, the PNL study team concludes that the regulatory base is adequate but should be codified for greater visibility. PNL recommends that NMSS clarify distinctions among legal requirements of the licensee, acceptance criteria employed by NMSS, and guidance used by all. In particular, a prelicensing conference among NMSS, IE and each licensee would be a practical means of setting license conditions acceptable to all parties.

  15. Independent Technical Review of the X-740 Groundwater Remedy, Portsmouth, Ohio: Technical Evaluation and Recommendations

    SciTech Connect (OSTI)

    Looney, B.; Rhia, B.; Jackson, D.; Eddy-Dilek, C.

    2010-04-30T23:59:59.000Z

    Two major remedial campaigns have been applied to a plume of trichloroethene (TCE) contaminated groundwater near the former X-740 facility at the Portsmouth Gaseous Diffusion Plant in Piketon Ohio. The two selected technologies, phytoremediation using a stand of hybrid poplar trees from 1999-2007 and in situ chemical oxidation using modified Fenton's Reagent from 2008-2009, have proven ineffective in achieving remedial action objectives (RAOs). The 'poor' performance of these technologies is a direct result of site specific conditions and the local contaminant hydrogeology. Key among these challenges is the highly heterogeneous subsurface geology with a thin contaminated aquifer zone (the Gallia) - the behavior of the contamination in the Gallia is currently dominated by slow release of TCE from the clay of the overlying Minford formation, from the sandstone of the underlying Berea formation, and from clayey layers within the Gallia itself. In response to the remediation challenges for the X-740 plume, the Portsmouth team (including the US Department of Energy (DOE), the site contractor (CDM), and the Ohio Environmental Protection Agency (OEPA)) is evaluating the feasibility of remediation at this site and identifying specific alternatives that are well matched to site conditions and that would maximize the potential for achieving RAOs. To support this evaluation, the DOE Office of Groundwater and Soil Remediation (EM-32) assembled a team of experts to serve as a resource and provide input and recommendations to Portsmouth. Despite the challenging site conditions and the failure of the previous two remediation campaigns to adequately move the site toward RAOs, the review team was unanimous in the conclusion that an effective combination of cost effective technologies can be identified. Further, the team expressed optimism that RAOs can be achieved if realistic timeframes are accepted by all parties. The initial efforts of the review team focused on reviewing the site history and data and organizing the information into a conceptual model and findings to assist in evaluating the potential of alternative remediation technologies. Examples of the key conceptual findings of the EM-32 review team were: (1) The Gallia represents the most practical target for deployment of in situ remediation treatment reagents - injection/extraction focused in this zone would provide maximum lateral impacts with minimal potential risk of failure or adverse collateral impacts. (2) The slow release of TCE from clay and sandstone into the Gallia represent a long term source of TCE that can re-contaminate the Gallia in the future - technologies that effectively treat the permeable portions of the Gallia, but do not leave residual treatment capacity in the system are unlikely to achieve long term remedial action objectives. CDM, the site contractor, provided important and useful information documenting the status and preliminary results of the on-site technology alternative evaluation. In the CDM evaluation, potential technologies were either retained (or screened out) in two preliminary evaluation phases and a detailed evaluation was performed on the five alternatives that were retained into the final 'detailed analysis' phase. The five alternatives that were included in the detailed analysis were: (1) hydraulic fracturing with EHC (a solid bioremediation amendment), (2) enhanced anaerobic bioremediation, (3) in situ chemical oxidation, (4) electrical resistance heating, and (5) reactive barriers. In several cases, two or three variants were separately evaluated. The review team found the CDM effort to be generally credible and reasonable. Thus, the review team focused on providing additional considerations and inputs to Portsmouth and on amending and refining the alternatives in ways that might improve performance and/or reduce costs. The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-32) to provide an independent technical panel to review previous and o

  16. Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices

    SciTech Connect (OSTI)

    Conner, K.R.

    2000-12-12T23:59:59.000Z

    This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

  17. Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the U.S. Department of Energy (DOE) by Lockheed Martin Energy System (Energy Systems). ORNL has pioneered waste disposal technologies since World War II as part of its DOE mission. In the late 1950s, at the request of the National Academy of Sciences, efforts were made to develop a permanent disposal alternative to the surface and tanks at ORNL. One such technology, the hydrofracture process, involved inducing fractures in a geologic host formation (a low-permeability shale) at depths of up to 1100 ft and injecting a radioactive grout slurry containing low-level liquid or tank sludge waste, cement, and other additives at an injection pressure of 2000 to 8500 psi. The objective of the effort was to develop a grout dig could be injected as a slurry and would solidify after injection, thereby entombing the radioisotopes contained in the low-level liquid or tank sludge waste. Four sites at ORNL were used: two experimental (HF-1 and HF-2); one developmental, later converted to batch process [Old Hydrofracture Facility (BF-3)]; and one production facility [New Hydrofracture Facility (BF-4)]. This document provides the environmental, restoration program with information about the the results of an evaluation of WAG 10 wells associated with the New Hydrofracture Facility at ORNL.

  18. Soil Remediation Test

    SciTech Connect (OSTI)

    Manlapig, D. M.; Williamsws

    2002-04-01T23:59:59.000Z

    Soils contaminated with petroleum by-products can now be effectively remediated using a variety of technologies. Among these are in-situ bioremediation, land farming, and landfill/replacing of soil. The range of efficiencies and cost effectiveness of these technologies has been well documented. Exsorbet Plus is showing promise as an in-situ bioremediation agent. It is made of naturally grown Spaghnum Peat Moss which has been activated for encapsulation and blended with nitrogen-rich fertilizer. In its initial field test in Caracas, Venezuela, it was able to remediate crude oil-contaminated soil in 90 days at less than half of the cost of competing technologies. Waste Solutions, Corp and the US Department of Energy signed a Cooperative Research and Development Agreement to test Exsorbet Plus at the Rocky Mountain Oilfield Testing Center near Casper, Wyoming. As part of the test, soil contaminated with crude oil was treated with Exsorbet Plus to aid the in-situ bioremediation process. Quantitative total petroleum hydrocarbon (TPH) measurements were acquired comparing the performance of Exsorbet Plus with an adjacent plot undergoing unaided in-situ bioremediation.

  19. REMEDIAL ACTION PLAN

    E-Print Network [OSTI]

    Inactive Uranium; Mill Tailings Site; Uranium Mill Tremedial

    1990-01-01T23:59:59.000Z

    designated site consists of the 111-acre tailings pile, the mill yard, and piles of demolition rubble awaiting burial. The site contains 2.659 million cubic yards of tailings including 277,000 cubic yards of contaminated material in the mill yard, ore storage area, and Ann Lee Mine area; 151,000 cubic yards in the protore storage and leach pad areas; and 664,000 cubic yards of windblown contaminated soil, including excess soil that would result from excavation. Remedial action The remedial action will start with the excavation of windblown contaminated material and placement around the west, south, and east sides of the pile to buttress the slopes for increased stability. Most of the demolition rubble will be placed in the southern part of the pile and be covered with tailings. The northern part of the tailings pile (one million cubic yards) will then be excavated and placed on the south part of the pile to reduce the size of the disposal cell footprint. Demolition rubble that

  20. Transmittal of the Calculation Package that Supports the Analysis of Performance of the Environmental Management Waste Management Facility Oak Ridge, Tennessee (Based 5-Cell Design Issued 8/14/09)

    SciTech Connect (OSTI)

    Williams M.J.

    2009-09-14T23:59:59.000Z

    This document presents the results of an assessment of the performance of a build-out of the Environmental Management Waste Management Facility (EMWMF). The EMWMF configuration that was assessed includes the as-constructed Cells 1 through 4, with a groundwater underdrain that was installed beneath Cell 3 during the winter of 2003-2004, and Cell 5, whose proposed design is an Addendum to Remedial Design Report for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee, DOE/OR/01-1873&D2/A5/R1. The total capacity of the EMWMF with 5 cells is about 1.7 million cubic yards. This assessment was conducted to determine the conditions under which the approved Waste Acceptance Criteria (WAC) for the EMWMF found in the Attainment Plan for Risk/Toxicity-Based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee [U.S. Department of Energy (DOE) 2001a], as revised for constituents added up to October 2008, would remain protective of public health and safety for a five-cell disposal facility. For consistency, the methods of analyses and the exposure scenario used to predict the performance of a five-cell disposal facility were identical to those used in the Remedial Investigation and Feasibility Study (RI/FS) and its addendum (DOE 1998a, DOE 1998b) to develop the approved WAC. To take advantage of new information and design changes departing from the conceptual design, the modeling domain and model calibration were upaded from those used in the RI/FS and its addendum. It should be noted that this analysis is not intended to justify or propose a change in the approved WAC.

  1. Application of a World Wide Web technology to environmental remediation

    SciTech Connect (OSTI)

    Johnson, R.; Durham, L. A.

    2000-03-09T23:59:59.000Z

    As part of the Formerly Utilized Site Remedial Action Program (FUSRAP), the United States Army Corps of Engineers (USACE), Buffalo District, is responsible for overseeing the remediation of several sites within its jurisdiction. FUSRAP sites are largely privately held facilities that were contaminated by activities associated with the nuclear weapons program in the 1940s, 50s, and 60s. The presence of soils and structures contaminated with low levels of radionuclides is a common problem at these sites. Typically, contaminated materials must be disposed of off-site at considerable expense (up to several hundred dollars per cubic yard of waste material). FUSRAP is on an aggressive schedule, with most sites scheduled for close-out in the next couple of years. Among the multitude of tasks involved in a typical remediation project is the need to inform and coordinate with active stakeholder communities, including local, state, and federal regulators.

  2. Support - Facilities - Radiation Effects Facility / Cyclotron Institute /

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrial TechnologiesSupplemental3,01535,785 740WIPPTexas

  3. River Corridor Cleanup Contract Fiscal Year 2006 Detailed Work Plan: D4 Project/Reactor ISS Closure Projects Field Remediation Project Waste Operations Project End State and Final Closure Project Mission/General Support, Volume 2

    SciTech Connect (OSTI)

    Project Integration

    2005-09-26T23:59:59.000Z

    The Hanford Site contains many surplus facilities and waste sites that remain from plutonium production activities. These contaminated facilities and sites must either be stabilized and maintained, or removed, to prevent the escape of potentially hazardous contaminants into the environment and exposure to workers and the public.

  4. Preliminary plans to move the special nuclear material supporting category I and II missions from TA-18 to the device assembly facility

    SciTech Connect (OSTI)

    Haag, William Earl; Nicholas, N. J. (Nancy J.); Mann, P. (Paul)

    2004-01-01T23:59:59.000Z

    In December 2002, the National Nuclear Security Agency (NNSA) issued a Record of Decision announcing its intent to relocate safeguards Category I and II missions and associated special nuclear materials (SNM) from Los Alamos National Laboratory (LANL) Technical Area 18 (TA-18) to the Device Assembly Facility (DAF) at the Nevada Test Site (NTS). The Cat I and II missions support nuclear criticality safety, nuclear emergency response, nuclear nonproliferation, and homeland security. TA-18 is the sole remaining facility in the United States with the capability to perform general-purpose nuclear materials handling experiments and training. Hands-on and remote control experiments, measurements, and training with special materials and devices are conducted. The conceptual design for modifying the DAF to house these Cat I and II missions includes plans for packaging and transporting the SNM inventory associated with the missions. This paper discusses these preliminary packaging and transporting plans, including how they fit into the plans for transitioning the relevant TA- 18 missions to DAF while ensuring that mission, cost, and schedule requirements are met.

  5. Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE`s Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories.

  6. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

  7. Biogeochemical Considerations Related To The Remediation Of I-129 Plumes

    SciTech Connect (OSTI)

    Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Yeager, C. [Los Alamos National Laboratory , Los Alamos, NM (United States); Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States); Zhang, S. [Texas A& amp; M University, Galveston, TX (United States); Xu, C. [Texas A& amp; M University, Galveston, TX (United States); Schwehr, K. A. [Texas A& amp; M University, Galveston, TX (United States); Li, H. P. [Texas A& amp; M University, Galveston, TX (United States); Brinkmeyer, R. [Texas A& amp; M University, Galveston, TX (United States); Santschi, P. H. [Texas A& amp; M University, Galveston, TX (United States)

    2012-09-24T23:59:59.000Z

    The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

  8. Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

  9. Development Of Ion Chromatography Methods To Support Testing Of The Glycolic Acid Reductant Flowsheet In The Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Wiedenman, B. J.; White, T. L.; Mahannah, R. N.; Best, D. R.; Stone, M. E.; Click, D. R.; Lambert, D. P.; Coleman, C. J.

    2013-10-01T23:59:59.000Z

    Ion Chromatography (IC) is the principal analytical method used to support studies of Sludge Reciept and Adjustment Tank (SRAT) chemistry at DWPF. A series of prior analytical ''Round Robin'' (RR) studies included both supernate and sludge samples from SRAT simulant, previously reported as memos, are tabulated in this report.2,3 From these studies it was determined to standardize IC column size to 4 mm diameter, eliminating the capillary column from use. As a follow on test, the DWPF laboratory, the PSAL laboratory, and the AD laboratory participated in the current analytical RR to determine a suite of anions in SRAT simulant by IC, results also are tabulated in this report. The particular goal was to confirm the laboratories ability to measure and quantitate glycolate ion. The target was + or - 20% inter-lab agreement of the analyte averages for the RR. Each of the three laboratories analyzed a batch of 12 samples. For each laboratory, the percent relative standard deviation (%RSD) of the averages on nitrate, glycolate, and oxalate, was 10% or less. The three laboratories all met the goal of 20% relative agreement for nitrate and glycolate. For oxalate, the PSAL laboratory reported an average value that was 20% higher than the average values reported by the DWPF laboratory and the AD laboratory. Because of this wider window of agreement, it was concluded to continue the practice of an additional acid digestion for total oxalate measurement. It should also be noted that large amounts of glycolate in the SRAT samples will have an impact on detection limits of near eluting peaks, namely Fluoride and Formate. A suite of scoping experiments are presented in the report to identify and isolate other potential interlaboratory disceprancies. Specific ion chromatography inter-laboratory method conditions and differences are tabulated. Most differences were minor but there are some temperature control equipment differences that are significant leading to a recommendation of a heated jacket for analytical columns that are remoted for use in radiohoods. A suggested method improvement would be to implement column temperture control at a temperature slightly above ambient to avoid peak shifting due to temperature fluctuations. Temperature control in this manner would improve short and longer term peak retention time stability. An unknown peak was observed during the analysis of glycolic acid and SRAT simulant. The unknown peak was determined to best match diglycolic acid. The development of a method for acetate is summaraized, and no significant amount of acetate was observed in the SRAT products tested. In addition, an alternative Gas Chromatograph (GC) method for glycolate is summarized.

  10. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01T23:59:59.000Z

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  11. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  12. Quality assurance guidance for laboratory assessment plates in support of EM environmental sampling and analysis activities

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This document is one of several guidance documents developed to support the EM (DOE Environmental Restoration and Waste Management) Analytical Services program. Its purpose is to introduce assessment plates that can be used to conduct performance assessments of an organization`s or project`s ability to meet quality goals for analytical laboratory activities. These assessment plates are provided as non-prescriptive guidance to EM-support organizations responsible for collection of environmental data for remediation and waste management programs at DOE facilities. The assessments evaluate objectively all components of the analytical laboratory process to determine their proper selection and use.

  13. MOSE: a feasibility study for optical turbulence forecasts with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones)

    E-Print Network [OSTI]

    Masciadri, E; 10.1117/12.925924

    2012-01-01T23:59:59.000Z

    We present very encouraging preliminary results obtained in the context of the MOSE project, an on-going study aiming at investigating the feasibility of the forecast of the optical turbulence and meteorological parameters (in the free atmosphere as well as in the boundary and surface layer) at Cerro Paranal (site of the Very Large Telescope - VLT) and Cerro Armazones (site of the European Extremely Large Telescope - E-ELT), both in Chile. The study employs the Meso-Nh atmospheric mesoscale model and aims at supplying a tool for optical turbulence forecasts to support the scheduling of the scientific programs and the use of AO facilities at the VLT and the E-ELT. In this study we take advantage of the huge amount of measurements performed so far at Paranal and Armazones by ESO and the TMT consortium in the context of the site selection for the E-ELT and the TMT to constraint/validate the model. A detailed analysis of the model performances in reproducing the atmospheric parameters (T, V, p, H, ...) near the g...

  14. Remedial Action Contacts Directory - 1997

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

  15. FY-95 technology catalog. Technology development for buried waste remediation

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  16. Streamline simulation of Surfactant Enhanced Aquifer Remediation 

    E-Print Network [OSTI]

    Tunison, Douglas Irvin

    1996-01-01T23:59:59.000Z

    Nonaqueous Phase Liquids (NAPLS) are a recognized source of groundwater contamination. Surfactant Enhanced Aquifer Remediation (SEAR) shows promise in increasing the efficiency and effectiveness over traditional "pump and treat" NAPL remediation...

  17. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02T23:59:59.000Z

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013 equivalency. Under the defined process conditions and associated material specifications, the high-purity PuO{sub 2} produced in HBL presents no unique safety concerns for packaging or storage in the 3013 required configuration. The PuO{sub 2} produced using the HBL flow sheet conditions will have a higher specific surface area (SSA) than PuO{sub 2} stabilized at 950 C and, consequently, under identical conditions will adsorb more water from the atmosphere. The greatest challenge to HBL operators will be controlling moisture content below 0.5 wt %. However, even at the 0.5 wt % moisture limit, the maximum acceptable pressure of a stoichiometric mixture of hydrogen and oxygen in the 3013 container is greater than the maximum possible pressure for the HBL PuO{sub 2} product.

  18. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  19. Toxic Remediation System And Method

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alameda County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1996-07-23T23:59:59.000Z

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  20. GROUNDWATER REMEDIATION DESIGN USING SIMULATED

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 8 GROUNDWATER REMEDIATION DESIGN USING SIMULATED ANNEALING Richard L. Skaggs Pacific? There has been an emergence in the use of combinatorial methods such as simulated annealing in groundwater for groundwater management applications. The algorithm incor- porates "directional search" and "memory

  1. Environmental remediation and waste management information systems

    SciTech Connect (OSTI)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31T23:59:59.000Z

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  2. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  3. Sitewide soil and debris management program for a DOE site under remediation

    SciTech Connect (OSTI)

    Harvey, B.F. [Parsons Environmental Services, Inc., Fairfield, OH (United States)

    1993-11-01T23:59:59.000Z

    In 1986, the United States Department of Energy (DOE) and the United States Environmental Protection Agency (US EPA) entered into a Federal Facility Compliance Agreement (FFCA). The agreement included provisions to investigate and define the nature and extent of contamination and to determine the necessity for remediation at the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. The agreement is also pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Uranium enrichment production activities at the facility ceased in 1989. The FEMP mission is now environmental clean-up and remediation under the management of the Fernald Environmental Restoration Management Corporation. This report describes objectives and activities of remediation efforts at FEMP.

  4. DRY TRANSFER FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect (OSTI)

    J.S. Tang

    2004-09-23T23:59:59.000Z

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Dry Transfer Facility No.1 (DTF-1) performing operations to receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. Doses received by workers due to maintenance operations are also included in this revision. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation, excluding the remediation area of the building. The results of this calculation will be used to support the design of the DTF-1 and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the Environmental and Nuclear Engineering.

  5. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national...

  6. Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC (United States); Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia (United States); Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States); Gillespie, Joey; Widdop, Michael [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS and M) of remediated FUSRAP sites. DOE LTS and M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS and M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS and M. Over the life of the FUSRAP program from 1974 to the present, DOE's primary mission and responsibility has been to ensure that FUSRAP sites remain protective of human health and the environment. In fulfilling this mission, the DOE program includes the following key elements: eligibility determinations, transition of remediated sites from USACE to DOE, LTS and M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close communication stakeholders as well as state and federal regulators. DOE programs are designed to preserve and present the information that future stewards and stakeholders will need to maintain site remedies and knowledge. (authors)

  7. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Rifle, Colorado

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Rifle sites. That remedial action consists of removing approximately 4,185,000 cubic yards (cy) of tailings and contaminated materials from their current locations, transporting, and stabilizing the tailings material at the Estes Gulch disposal site, approximately six miles north of Rifle. The tailings and contaminated materials are comprised of approximately 597,000 cy from Old Rifle, 3,232,000 cy from New Rifle, and 322,000 cy from vicinity properties and about 34,000 cy from demolition. The remedial action plan includes specific design requirements for the detailed design and construction of the remedial action. An extensive amount of data and supporting information have been generated for this remedial action and cannot all be incorporated into this document. Pertinent information and data are included with reference given to the supporting documents.

  8. Remediation of oil field wastes

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.

    1990-01-01T23:59:59.000Z

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  9. Tank waste remediation system dangerous waste training plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-05-13T23:59:59.000Z

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench.

  10. Societal-Equity-Enhancing Criteria and Facility-Host Incentives Supporting Five Key Elements in the January 2012 Blue Ribbon Commission Report - 13015

    SciTech Connect (OSTI)

    Eriksson, Leif G. [Nuclear Waste Dispositions, 535 N. Interlachen Avenue, Unit 303, Winter Park, Florida 32789 (United States)] [Nuclear Waste Dispositions, 535 N. Interlachen Avenue, Unit 303, Winter Park, Florida 32789 (United States); Dials, George E. [B and W Conversion Services LLC, 1020 Monarch Road, Suite 300, Lexington, Kentucky 40513 (United States)] [B and W Conversion Services LLC, 1020 Monarch Road, Suite 300, Lexington, Kentucky 40513 (United States); George, Critz H. [Retired DOE and Consultant, 1218 Countryside Lane, Albuquerque, New Mexico, 87114 (United States)] [Retired DOE and Consultant, 1218 Countryside Lane, Albuquerque, New Mexico, 87114 (United States)

    2013-07-01T23:59:59.000Z

    In February 2009, the Obama Administration announced it would abandon USA's only candidate SNF/HLW-disposal facility since 1987. In 2010, all related activities were stopped and the Blue Ribbon Commission on America's Nuclear Future was established 'to recommend a new strategy for managing the back end of the nuclear fuel cycle', which it did in January 2012, emphasizing eight key elements. However, Key Element 1, 'A new, consent-based approach to siting future nuclear facilities', is qualitative/indeterminate rather than quantitative/measurable. It is thus highly-susceptible to semantic permutations that could extend rather than, as intended, expedite the siting of future nuclear facilities unless it also defines: a) Whose consent is needed?; and b) What constitutes consent? The following 'generic', radiation-risk- and societal-equity-based criteria address these questions: 1. Identify areas affected by projected radiation and other health risks from: a. The proposed nuclear facility (facility stakeholders); and b. The related nuclear-materials-transportation routes (transportation stakeholders); then 2. Surround each stakeholder area with a buffer zone and use this enlarged foot print to identify: a. Stakeholder hosts; and b. Areas not hosting any stakeholder category (interested parties). 3. Define 'consent-based' as being at least 60 percent of the 'population' in the respective stakeholder category and apply this yardstick to both 'in favor' and 'against' votes. Although criteria 1 and 2 also need facility-based definitions to make Key Element 1 measurable, the described siting approach, augmented by related facility-host incentives, would expedite the schedule and reduce the cost for achieving Key Elements 4-6 and 8, politics permitting. (authors)

  11. Plutonium Uranium Extraction Facility Documented Safety Analysis

    SciTech Connect (OSTI)

    DODD, E.N.

    2003-10-08T23:59:59.000Z

    This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the Plutonium-Uranium Extraction (PUREX) facility. This DSA was developed in accordance with DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities''. Upon approval and implementation of this document, the current safety basis documents will be retired.

  12. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01T23:59:59.000Z

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  13. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01T23:59:59.000Z

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  14. Packaging and Transportation Support at LANL CTMA 2012

    SciTech Connect (OSTI)

    Salazar, Nick [Los Alamos National Laboratory

    2012-06-08T23:59:59.000Z

    Operations Support Packaging and Transportation (OS-PT) supports LANL in various functions. Some highlights of the past year have been with the work relating to environmental remediation, type B packaging, non-DOT compliant transfers, and special permit training. The TA-21 remediation project was part of the ARRA funding that LANL received. The $212 million in funding was used to demolish 24 buildings at TA-21, excavate the lab's oldest waste disposal site, and install 16 groundwater monitoring wells. The project was completed ahead of schedule and under budget. More than 300 tons of metal was recycled and all the soil excavated from MDA-B was replaced with clean fill. OS-PT supported this projected by transporting more than 7 million pounds of waste to TA-54 Area G with an addendum to their TSD. Because of the public access on the transfer route, Los Alamos County restricted the transfer to happen from 2:00 AM to 4:00 AM. OS-PT conducted 8 transfers in support of this project. Some concerns included the contaminated trailers at receipt facilities when transferring filled Super Sacks. Future Super Sacks were over packed into new IP-2 Super Sacks before shipping. OS-PT is also supporting the remediation of TA-54 Area G. LANL has an agreement with the State of New Mexico to remove all TRU waste currently stored above ground from at Area G. OS-PT supports this initiative with transfers of TRU waste under LANL's TSD and support of TRU shipments to WIPP. Another project supported by our organization is gas cylinder/dewar recycling and remediation. We are focusing on reducing risk associated with unneeded gasses at LANL. To minimized excessive ordering, to save money and time, and to minimize hazards OS-PT is supporting a gas recycling program. This program will allow programmatic organization across LANL to share unused/unneeded gasses. Instead of old dewars being disposed of, OS-PT has began identifying these dewars and sending them for refurbishment. To date, this effort has saved LANL $450K and estimated saving for future efforts will be more than $1.5 million. Some Projects that are happening here at LANL are offsite source recovery, weapon component transfers, and isotope science production. There are specific packages that help support these projects for the shipment of related materials. OS-PT provides support to these packages to ensure they are and will be available to continue this support. The Areva 435-B Overpack will help the Offsite Source Recovery Project recover high activity gamma sources from various locations across the globe. The Safety Analysis for Packaging is scheduled for initial completion June of 2012. The DPP-1 package is designed to replace the Model FL, which was designed by Rocky Flats and began service in 1990. LANL has collaborated on package design with LLNL, Pantex, Y-12, and KCP. LANL is supporting LLNL on component fixture development. Testing to 10 CFR 71 is to be completed in the Fall of 2012 and scheduled for NA-174 approval in 2014. The SAFESHIELD package helps supports LANL's Isotope production projects. This package can transfer highly irradiated materials from LANL's accelerator to material processing facilities. LANL worked to renew the SAFESHEILD's Certification for 5 more years.

  15. Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado; Gillespie, Joey [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; Widdop, Michael [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; none,

    2012-02-26T23:59:59.000Z

    The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS&M) of remediated FUSRAP sites. DOE LTS&M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS&M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS&M.

  16. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

  17. PLANNING AND COORDINATION OF ACTIVITIES SUPPORTING THE RUSSIAN SYSTEM OF CONTROL AND ACCOUNTING OF NUCLEAR MATERIALS AT ROSATOM FACILITIES IN THE FRAMEWORK OF THE U.S.-RUSSIAN COOPERATION.

    SciTech Connect (OSTI)

    SVIRIDOVA, V.V.; ERASTOV, V.V.; ISAEV, N.V.; ROMANOV, V.A.; RUDENKO, V.S.; SVIRIDOV, A.S.; TITOV, G.V.; JENSEN, B.; NEYMOTIN, L.; SANDERS, J.

    2005-05-16T23:59:59.000Z

    The MC&A Equipment and Methodological Support Strategic Plan (MEMS SP) for implementing modern MC&A equipment and methodologies at Rosatom facilities has been developed within the framework of the U.S.-Russian MPC&A Program. This plan developed by the Rosatom's Russian MC&A Equipment and Methodologies (MEM) Working Group and is coordinated by that group with support and coordination provided by the MC&A Measurements Project, Office of National Infrastructure and Sustainability, US DOE. Implementation of different tasks of the MEMS Strategic Plan is coordinated by Rosatom and US-DOE in cooperation with different U.S.-Russian MC&A-related working groups and joint site project teams. This cooperation allows to obtain and analyze information about problems, current needs and successes at Rosatom facilities and facilitates solution of the problems, satisfying the facilities' needs and effective exchange of expertise and lessons learned. The objective of the MEMS Strategic Plan is to enhance effectiveness of activities implementing modern equipment and methodologies in the Russian State MC&A system. These activities are conducted within the joint Russian-US MPC&A program aiming at reduction of possibility for theft or diversion of nuclear materials and enhancement of control of nuclear materials.

  18. LANSCE | Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LINAC Outreach Affiliations Visiting LANSCE Facilities Isotope Production Facility Lujan Neutron Scattering Center MaRIE Proton Radiography Ultracold Neutrons Weapons Neutron...

  19. Summary - Mitigation and Remediation of Mercury Contamination...

    Office of Environmental Management (EM)

    and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

  20. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect (OSTI)

    Rieck, R.H.

    1996-10-03T23:59:59.000Z

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  1. Recommendation 192: Comments on Remediation Effectiveness Report

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendations and Comments on the Draft 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation.

  2. Tank Waste Remediation System Guide

    SciTech Connect (OSTI)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01T23:59:59.000Z

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties.

  3. POST-REMEDIAL ACTION REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No.GS05:orPOST-REMEDIAL ACTION

  4. Facility Microgrids

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01T23:59:59.000Z

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  5. Groundwater Remediation Strategy Using Global Optimization Algorithms

    E-Print Network [OSTI]

    Neumaier, Arnold

    Groundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja Jonoski2 ; and Dimitri P. Solomatine3 Abstract: The remediation of groundwater contamination by pumping as decision variables. Groundwater flow and particle-tracking models MODFLOW and MODPATH and a GO tool GLOBE

  6. Weldon Spring Site Remedial Action Project quarterly environmental data summary for second quarter 1998

    SciTech Connect (OSTI)

    NONE

    1998-08-11T23:59:59.000Z

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the second quarter of 1998 is enclosed. The data presented constitutes the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the database during the second quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the database and KPA data are not merged into the regular database. All data received and verified during the second quarter were within a permissible range of variability, except for those listed. Above normal occurrences are cited for groundwater, air, and NPDES data. There were no above normal occurrences for springs or surface water. The attached tables present the most recent data for air and the data merged into the database during the second quarter 1998 for groundwater, NPDES, surface water, and springs.

  7. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-02-01T23:59:59.000Z

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  8. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-05-01T23:59:59.000Z

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  9. Savannah River Remediation Donates $10,000 to South Carolina...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

  10. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Terminal Waste Disposal and Remedial Action, Division of Remedial Action Projects (andor...

  11. Summary - Remedial System Performance Improvement for the 200...

    Office of Environmental Management (EM)

    primary remedial technology for groundwater. The remedial strategy should emphasize hydraulic containment for the most impacted portion of the groundwater plume, with compliance...

  12. acoustically enhanced remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detailed procedures for site assessment, remedial system design, and optimization of the remedial action operation (RAO) for the petroleum-hydrocarbons contaminated sites. In...

  13. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War...

  14. Preliminary Notice of Violation, Rocky Mountain Remediation Services...

    Broader source: Energy.gov (indexed) [DOE]

    June 6, 1997 Issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site,...

  15. Impact of Physical Environment of a Rehabilitation Facility on the Social Support and Interaction Patterns of Spinal Cord Injury Patients and their Family and Friends: A Naturalistic Inquiry

    E-Print Network [OSTI]

    Setya, Nidhi

    2014-04-29T23:59:59.000Z

    Previous research has demonstrated the positive effects of family and friends support on the overall well-being of Spinal Cord Injury (SCI) rehabilitation patients. This study explores the ways in which physical environment can provide for social...

  16. Sandia National Laboratories: Solar Test Facility Upgrades Complete...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility Upgrades Complete, Leading to Better Sandia Capabilities to Support Power Industry Solar Test Facility Upgrades Complete, Leading to Better Sandia Capabilities to...

  17. Completion report for the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This report documents the results of the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory (ORNL). The work performed is compared with that proposed in the statement of work and the service contract specification for the maintenance action to remediate tanks 3013, 3004-B, T-30, and 3001-B. The Federal Facility Agreement (FFA) among the U.S. Environmental Protection Agency (EPA), the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE) requires that all tanks, which have been removed from service and are designated in the FFA as Category D, must be remediated in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. The Environmental Restoration Program`s inactive tank removal program strategy and plans for remediating the inactive LLLW tanks were documented in a report issued in January 1995 (Inactive Tanks Remediation Program Strategy and Plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER-297). The inactive (Category D) tanks were initially screened for remediation according to risk, remediation technology required, level of instrumentation available, interferences with other piping and equipment, location, and available sludge removal techniques and storage requirements. On the basis of this preliminary screening, the tanks were assigned to one of five batches (I through V) for consideration of remedial action alternatives, and these batches were tentatively scheduled for remedial actions. The eight links tentatively assigned to Batch I were divided into two groups (Series I and Series II).

  18. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    SciTech Connect (OSTI)

    NONE

    1993-02-01T23:59:59.000Z

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy.

  19. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM DIOXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Duffey, J. M.; Livingston, R. R.; Berg, J. M.; Veirs, D. K.

    2013-02-06T23:59:59.000Z

    This report documents the technical basis for determining that stabilizing highpurity PuO{sub 2} derived from oxalate precipitation at the SRS HB-Line facility at a minimum of 625 {degree}C for at least four hours in an oxidizing atmosphere is equivalent to stabilizing at a minimum of 950 {degree}C for at least two hours as regards meeting the objectives of stabilization defined by DOE-STD-3013 if the material is handled in a way to prevent excessive absorption of water.

  20. Project Overview: Successful Field-Scale in SITU Thermal NAPL Remediation

    SciTech Connect (OSTI)

    Butherus, Michael [S.M. Stoller Corporation; Ingle, David S. [S.M. Stoller Corporation; Juhlin, Randall [S.M. Stoller Corporation; Daniel, Joseph [S.M. Stoller Corporation; none,

    2004-10-24T23:59:59.000Z

    The U.S. Department of Energy (DOE) successfully completed a field-scale remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at the Northeast Site on the Young-Rainey Science, Technology, and Research (STAR) Center, Largo, Florida. The Young-Rainey STAR Center is a former DOE facility that was previously known as the Pinellas Plant and the Pinellas STAR Center. The remediation project encompassed an area of 10,000 ft2 and depths extending to 35 ft below ground surface. Prior to the remediation, DOE evaluated technologies that had the potential to remove NAPLs from the subsurface at the site. Because of site conditions (clay lenses and an underlying clay layer that were thought to be contaminated), steam injection and electrical heating were considered to be the only technologies that had the potential to remove these NAPLs. In July 2001, DOE’s contractor awarded a subcontract for removal of NAPLs from a portion of the Northeast Site. The technologies used for remediation were a combination of steam-enhanced extraction and Electro-Thermal Dynamic Stripping Process, an electrical resistive heating technology. Construction of the remediation system was completed in September 2002. Remedial operations began immediately after construction, and active heating ended in February 2003. After operations were completed, confirmatory sampling was conducted during a 6-month period to verify the level of cleanup achieved. Additional confirmatory sampling was conducted 18 months after operations ended. Analytical results of the confirmatory sampling showed that NAPL concentrations were reduced significantly below the required cleanup goals and, in most cases, below the regulatory maximum contaminant levels. Lessons learned relative to the design, construction, operation, confirmatory sampling approach, and subcontracting could benefit managers of similar remediation projects.

  1. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    SciTech Connect (OSTI)

    DOE/NV

    2001-04-05T23:59:59.000Z

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  2. Remediation of former uranium mining and milling activities in Central Asia

    SciTech Connect (OSTI)

    Waggitt, Peter [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Several of the Central Asian countries of the former Soviet Union were involved in the uranium mining and milling industry from about 1945 for varying periods until the break up of the Soviet Union in 1991 and beyond. Some facilities are still producing in Uzbekistan and Kazakhstan. However, before the break up, many facilities had been abandoned and in only a few cases had any remediation been undertaken. Since 1991 the newly independent states of the region have been seeking assistance for the remediation of the multitude of tailings piles, waste rock stockpiles and abandoned, and often semi dismantled, production facilities that may be found throughout the region. Many of these sites are close to settlements that were established as service towns for the mines. Most towns still have populations, although the mining industry has departed. In some instances there are cases of pollution and contamination and in many locations there is a significant level of public concern. The IAEA has been undertaking a number of Technical Cooperation (TC) projects throughout the region for some time to strengthen the institutions in the relevant states and assist them to establish monitoring and surveillance programs as an integral part of the long term remediation process. The IAEA is liaising with other agencies and donors who are also working on these problems to optimise the remediation effort. The paper describes the objectives and operation of the main TC regional program, liaison efforts with other agencies, the achievements so far and the long term issues for remediation of these legacies of the 'cold war' era. (authors)

  3. Successful Field-Scale In Situ Thermal NAPL Remediation at the Young-Rainey Star Center

    SciTech Connect (OSTI)

    Gavaskar, A.R. [ed.; Chen, A.S.C. [ed.; none,

    2004-05-04T23:59:59.000Z

    The U.S. Department of Energy (DOE) successfully completed a fieldscale remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at a site on the Young-Rainey Science, Technology, and Research (STAR) Center, Largo, Florida. The STAR Center is a former DOE facility. The remediation project covered an area of 930 m2 (10,000 ft2) and depths extending to 10.5 m (35 ft) below ground surface. In July 2001, DOE’s contractor awarded a subcontract to SteamTech Environmental Services for removal of NAPLs from a portion of the Northeast Site. The technologies used for remediation were steam-enhanced extraction and Electro-Thermal Dynamic Stripping Process, an electrical resistive heating technology. McMillan-McGee Corporation implemented the process. Construction of the remediation system was completed in September 2002. Operations began immediately after construction, and active heating ended in February 2003. After operations were completed, confirmatory sampling was conducted over a 6-month period to verify the level of cleanup achieved. Results of the sampling showed that NAPL concentrations were reduced significantly below the required cleanup goals and, in most cases, below the regulatory maximum contaminant levels. Lessons learned relative to the design, construction, operation, confirmatory sampling approach, and subcontracting could benefit managers of similar remediation projects

  4. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16T23:59:59.000Z

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate-scale tests will be used to bridge the gap between the small-scale foam transport studies and the field-scale demonstration. Numerical simulation studies on foam delivery under vadose conditions will be performed to simulate observed foam transport behavior under vadose zone conditions and predict the foam delivery performance at field-scale.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  7. U.S. Army Engineer Waterways Experiment Station (WES) support to Department of Energy Rocky Flats Facility (DOE RFO) saltcrete processing. Progress report, April 15--September 30, 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-29T23:59:59.000Z

    This report summarizes work authorized for technical and scientific support to waste cementation and saltcrete processing operations. During this report period, the remaining tasks described in the agreement were completed and the project was closed. Accomplishments are summarized. The bulk of this report is a paper entitled ``Salt related expansion reactions in portland-cement-based waste forms.``

  8. The Fusion Advanced Studies Torus (FAST): a Proposal for an ITER Satellite Facility in Support of the Development of Fusion Energy

    E-Print Network [OSTI]

    Zonca, Fulvio

    in Support of the Development of Fusion Energy A. Pizzuto 1) on behalf of the Italian Association 1 injection (NNBI) in the energy range of 0.5-1 MeV. The total power input is in the 30-40 MW range prioritize what the actual ITER needs are. Some apparently conflicting aspects must be carefully analyzed

  9. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  10. Supporting Technical Documents | Department of Energy

    Office of Environmental Management (EM)

    Environmental Department (NMED) Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit Supporting Technical Document for the Radiological Release Accident...

  11. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 2, Appendixes

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document contains the appendixes for the remedial investigation and feasibility study for the David Witherspoon, Inc., 901 site in Knoxville, Tennessee. The following topics are covered in the appendixes: (A) David Witherspoon, Inc., 901 Site Historical Data, (B) Fieldwork Plans for the David Witherspoon, Inc., 901 Site, (C) Risk Assessment, (D) Remediation Technology Discussion, (E) Engineering Support Documentation, (F) Applicable or Relevant and Appropriate Requirements, and (G) Cost Estimate Documentation.

  12. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 113 RARAF - Table of Contents RARAF Professional · ANNUAL REPORT 2007 114 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE CENTER................................................................................................................................................114 Development of Facilities

  13. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents RARAF Professional Staff RESEARCH ANNUAL REPORT 2009 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE................................................................................................................................................101 Development of Facilities

  14. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 118 RARAF Table of Contents RARAF Professional ANNUAL REPORT 2008 119 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE CENTER................................................................................................................................................119 Development of Facilities

  15. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 117 RARAF - Table of Contents RARAF Professional RESEARCH · ANNUAL REPORT 2010 118 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE................................................................................................................................................117 Development of Facilities

  16. Electrolytic remediation of chromated copper arsenate wastes

    E-Print Network [OSTI]

    Stern, Heather A. G. (Heather Ann Ganung)

    2006-01-01T23:59:59.000Z

    While chromated copper arsenate (CCA) has proven to be exceptionally effective in protecting wood from rot and infestation, its toxic nature has led to the problem of disposal of CCA-treated lumber and remediation of waters ...

  17. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect (OSTI)

    BROCK CT

    2011-01-13T23:59:59.000Z

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  18. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Rifle, Colorado. Volume 1, Text: Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Rifle sites. That remedial action consists of removing approximately 4,185,000 cubic yards (cy) of tailings and contaminated materials from their current locations, transporting, and stabilizing the tailings material at the Estes Gulch disposal site, approximately six miles north of Rifle. The tailings and contaminated materials are comprised of approximately 597,000 cy from Old Rifle, 3,232,000 cy from New Rifle, and 322,000 cy from vicinity properties and about 34,000 cy from demolition. The remedial action plan includes specific design requirements for the detailed design and construction of the remedial action. An extensive amount of data and supporting information have been generated for this remedial action and cannot all be incorporated into this document. Pertinent information and data are included with reference given to the supporting documents.

  19. Water as a Reagent for Soil Remediation

    SciTech Connect (OSTI)

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  20. Tank SY-102 remediation project: Flowsheet and conceptual design report

    SciTech Connect (OSTI)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Dunn, S.L.; Jarvinen, G.D.; Marsh, S.F.; Pope, N.G.; Agnew, S.; Birnbaum, E.R.; Thomas, K.W.; Ortic, E.A.

    1994-01-01T23:59:59.000Z

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. A major program in TWRS is pretreatment which was established to process the waste prior to disposal. Pretreatment is needed to resolve tank safety issues and to separate wastes into high-level and low-level fractions for subsequent immobilization and disposal. There is a fixed inventory of actinides and fission products in the tank which must be prepared for disposal. By segregating the actinides and fission products from the bulk of the waste, the tank`s contents can be effectively managed. Due to the high public visibility and environmental sensitivity of this problem, real progress and demonstrated efforts toward addressing it must begin as soon as possible. As a part of this program, personnel at the Los Alamos National Laboratory (LANL) have developed and demonstrated a flowsheet to remediate tank SY-102 which is located in the 200 West Area and contains high-level radioactive waste. This report documents the results of the flowsheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. The tank waste was characterized using both a tank history approach and an exhaustive evaluation of the available core sample analyses. This report also presents a conceptual design complete with a working material flow model, a major equipment list, and cost estimates.

  1. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  2. Remedial action plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Final report, Appendixes to attachment 3

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document contains supporting appendices to attachment 3 for the remedial action and site stabilization plan for Maybell, Colorado UMTRA site. Appendix A includes the Hydrological Services Calculations and Appendix B contains Ground Water Quality by Location data.

  3. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    SciTech Connect (OSTI)

    Simpkin, Thomas J. [CH2M HILL, Denver, Colorado (United States); Favara, Paul [CH2M HILL, Gainesville, Florida (United States)

    2012-07-01T23:59:59.000Z

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this process also provides new opportunities to think differently and look at the bigger picture of the overall benefit we are providing with our remediation projects. The opportunities from the move towards GSR are very real. They will help us make remedial actions truly more beneficial to the environment and to society. They will also allow (or force) remediation practitioners to think outside of the usual realm of approaches to find newer and more beneficial technologies. (authors)

  4. Big Explosives Experimental Facility - BEEF

    ScienceCinema (OSTI)

    None

    2015-01-07T23:59:59.000Z

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  5. Alpha Gamma Hot Cell Facility

    E-Print Network [OSTI]

    Kemner, Ken

    -reactor nuclear facility being decommissioned. It is also used to support the de-inventory of other facilities PROGRAM Contact: Yung Y. Liu Senior Nuclear Engineer, Section Manager Argonne National Laboratory yyliu on the Argonne site. As part of decommissioning, large quantities of radioactive material and waste are being

  6. Big Explosives Experimental Facility - BEEF

    SciTech Connect (OSTI)

    None

    2014-10-31T23:59:59.000Z

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  7. Facility worker technical basis document

    SciTech Connect (OSTI)

    EVANS, C.B.

    2003-03-21T23:59:59.000Z

    This report documents the technical basis for facility worker safety to support the Tank Farms Documented Safety Analysis and described the criteria and methodology for allocating controls to hazardous conditions with significant facility worker consequences and presents the results of the allocation.

  8. Facility worker technical basis document

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    2003-08-28T23:59:59.000Z

    This technical basis document was developed to support the Tank Farm Documented Safety Analysis (DSA). It describes the criteria and methodology for allocating controls to hazardous conditions with significant facility work consequence and presents the results of the allocation.

  9. Ecological effects of contaminants and remedial actions in Bear Creek

    SciTech Connect (OSTI)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01T23:59:59.000Z

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  10. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pulsed Power and Systems Validation Facility The Pulsed Power and System Validation Technology Deployment Center offers access to unique equipment to support specialized research,...

  11. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology report, Final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.

  12. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs.

  13. Tank waste remediation system program plan

    SciTech Connect (OSTI)

    Powell, R.W.

    1998-01-09T23:59:59.000Z

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

  14. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections.

  15. Lessons Learned: Tribal Community Engagement, Remediation and Restoration of a Uranium Mine Tailings Site, Navajo Nation - 12484

    SciTech Connect (OSTI)

    Wadsworth, Donald K. [New World Environmental Inc., Livermore California 94550 (United States); Hicks, Allison H. [New World Environmental Inc., Irvine California 92614 (United States)

    2012-07-01T23:59:59.000Z

    In May, 2011 New World Environmental Inc. was awarded a contract by the Navajo Nation Environmental Protection Agency to remediate an illegal radioactive waste disposal site located in the Navajo Nation. The initial scope included the excavation and shipment of an estimated 3,000 cubic yards of Uranium mine tailings and associated industrial waste. In this instance Stakeholders were supportive of the project, remediation and restoration, yet the movement of residual radioactive materials through tribal communities was a controversial issue. Other Stakeholder issues included site security, water sources for remediation activities, local residents' temporary re-location and care of livestock, right of way permissions and local workforce development. This presentation recaps the technical and non-technical issues encountered in the remediation and restoration the seven acre site and the outreach to surrounding communities. Cultural and equity issues resulting from historical problems associated with this and other sites in the immediate area and education and training. (authors)

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  17. SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION

    SciTech Connect (OSTI)

    Kohn, J.; Nichols, R.; Looney, B.

    2011-05-12T23:59:59.000Z

    The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

  18. Mound facility physical characterization

    SciTech Connect (OSTI)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01T23:59:59.000Z

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  19. Recovery Act Supports Construction of Site's Largest Groundwater...

    Office of Environmental Management (EM)

    June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at...

  20. DOE In Situ Remediation Integrated Program. In situ manipulation technologies subprogram plan

    SciTech Connect (OSTI)

    Yow, J.L. Jr.

    1993-12-22T23:59:59.000Z

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified.

  1. Policy Title: Policy Number: Facilities and

    E-Print Network [OSTI]

    Papautsky, Ian

    been supported by the federal government since that time. Indirect costs are also called "Facilities and Administrative" or F&A costs. These costs include facilities costs such as electricity, heating and airPolicy Title: Policy Number: Facilities and Administrative Distribution 2.1.11 Category: Financial

  2. Investigation and remediation of a 1,2-dichloroethane spill. Part 1: Short and long-term remediation strategies

    SciTech Connect (OSTI)

    Sehayek, L.; Vandell, T.D.; Sleep, B.E.; Lee, M.D.; Chien, C.

    1999-06-30T23:59:59.000Z

    Release of an estimated 150,000 gallons of 1,2-dichloroethane (EDC) from a buried pipeline into a ditch and surrounding soil resulted in shallow subsurface contamination of a Gulf Coast site. Short-term remediation included removal of EDC DNAPL (dense nonaqueous phase liquid) by dredging and vacuuming the ditch, and by dredging the river where the ditch discharged. EDC saturation in shallow impacted sediments located beneath the ditch was at or below residual saturation and these sediments were therefore left in place. The ditch was lined, backfilled, and capped. Long-term remediation includes EDC DNAPL recovery and hydraulic containment from the shallow zone with long-term monitoring of the shallow, intermediate, and deep aquifers. Ground water, DNAPL, and dissolved phase models were used to guide field investigations and the selection of an effective remedial action strategy. The DNAPL modeling was conducted for a two-dimensional vertical cross section of the site, and included the three aquifers separated by two aquitards with microfractures. These aquitards were modeled using a dual porosity approach. Matrix and fracture properties of the aquitards used for DNAPL modeling were determined from small-scale laboratory properties. These properties were consistent with effective hydraulic conductivity determined from ground water flow modeling. A sensitivity analysis demonstrated that the vertical migration of EDC was attenuated by dissolution of EDC into the matrix of the upper aquitard. When the organic/water entry pressure of the aquitard matrix, or the solubility of EDC were decreased to unrealistically low values, EDC DNAPL accumulated in the aquifer below the upper aquitard. EDC DNAPL did not reach the regional (deepest) aquifer in any of the cases modeled. The limited extent of vertical EDC migration predicted is supported by ground water monitoring conducted over the four years since the spill.

  3. How to accelerate the Fernald remediation

    SciTech Connect (OSTI)

    Yates, M.K. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States). Fernald Environmental Management Project; Reising, J. [USDOE Cincinnati, OH (United States)

    1996-01-10T23:59:59.000Z

    The Fernald Environmental Management Project is unique among Department of Energy (DOE) sites by virtue of successful efforts by the Fernald Environmental Restoration Management Corporation (FERMCO) and DOE-Fernald Area Office (FN) in securing a stak-eholder-assisted final site closure vision and all Record of Decisions (ROD) or Interim RODs required to set the stage for final remediation. DOE and FERMCO have agreed in principle on a Ten Year Plan which accelerates all activities to remediate the site in approximately half the target schedule. This paper presents the path that led to the current Ten Year Plan, the key elements of the plan and the implementation strategies.

  4. INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

    2008-12-15T23:59:59.000Z

    The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issued by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are recommended, the team should identify the type of injection and target soil horizon for these injections; (2) Consider the feasibility of declaring Technical Impracticability and proceeding with the RCRA Cap for the X-701B; and (3) Provide a summary of other cost-effective technologies that could be implemented (especially for the lower Gallia). The Independent Technical Review team focused its evaluation solely on the X-701B source zone and contaminant plume. It did not review current or planned remedial activities at other plumes, waste areas, or landfills at the Portsmouth site, nor did it attempt to integrate such activities into its recommendations for X-701B. However, the ultimate selection of a remedy for X-701B by site personnel and regulators should take into account potentially synergistic efforts at other waste areas. Assessment of remedial alternatives in the context of site-wide management practices may reveal opportunities for leveraging and savings that would not otherwise be identified. For example, the cost of source-zone excavation or construction of a permeable reactive barrier at X-701B might be substantially reduced if contaminated soil could be buried on site at an existing or planned landfill. This allowance would improve the feasibility and competitiveness of both remedies. A comprehensive examination of ongoing and future environmental activities across the Portsmouth Gaseous Diffusion Plant is necessary to optimize the selection and timing of X-701B remediation with respect to cleanup efficiency, safety, and economics. A selected group of technical experts attended the technical workshop at the Portsmouth Gaseous Diffusion Plant from November 18 through 21, 2008. During the first day of the workshop, both contractor and DOE site personnel briefed the workshop participants and took them on a tour of the X-701B site. The initial briefing was attended by representatives of Ohio EPA who participated in the discussions. On subsequent days, the team reviewed baseline data and reports, were provided additional technical information from site personne

  5. Remedial Investigation/Feasibility Study (RI/FS) process, elements and techniques guidance

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This manual provides detailed guidance on Remedial Investigation/Feasibility Studies (RI/FSs) conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Department of Energy (DOE) facilities. The purpose of the RI/FS, to assess the risk posed by a hazardous waste site and to determine the best way to reduce that risk, and its structure (site characterization, risk assessment, screening and detailed analysis of alternatives, etc.) is defined in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) and further explained in the Environmental Protection Agency`s (EPA`s) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (Interim Final) 540/G-89/004, OSWER Directive 9355.3-01, October 1988. Though issued in 1988, the EPA guidance remains an excellent source of information on the conduct and structure of an RI/FS. This document makes use of supplemental RI/FS-related guidance that EPA has developed since its initial document was issued in 1988, incorporates practical lessons learned in more than 12 years of experience in CERCLA hazardous site remediation, and drawing on those lessons, introduces the Streamlined Approach For Environmental Restoration (SAFER), developed by DOE as a way to proceed quickly and efficiently through the RI/FS process at DOE facilities. Thus as its title implies, this guidance is intended to describe in detail the process and component elements of an RI/FS, as well as techniques to manage the RI/FS effectively.

  6. Risk assessment in the DOE Assurance Program for Remedial Action

    SciTech Connect (OSTI)

    Marks, S.; Cross, F.T.; Denham, D.H.; Kennedy, W.E.; Stenner, R.D.

    1985-08-01T23:59:59.000Z

    This document provides information obtained during the performance of risk assessment tasks in support of the Assurance Program for Remedial Action (APRA) sponsored by the Office of Operational Safety of the Department of Energy. We have presented a method for the estimation of projected health effects at properties in the vicinity of uranium mill tailing piles due to transported tailings or emissions from the piles. Because radon and radon daughter exposure is identified as the principal factor contributing to health effects at such properties, the basis for estimating lung cancer risk as a result of such exposure is discussed in detail. Modeling of health risk due to a secondary pathway, ingestion of contaminated, home-grown food products, is also discussed since it is a potentially important additional source of exposure in certain geographic locations. Risk assessment methods used in various mill tailings reports are reviewed. The protocols for radiological surveys conducted in DOE-sponsored remedial action programs are critically reviewed with respect to their relevance to the needs of health risk estimation. The relevance of risk assessment to the APRA program is discussed briefly.

  7. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Environmental Management (EM)

    of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous...

  8. MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION

    E-Print Network [OSTI]

    MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION April 13, 2004 Prepared for. Wright Street Littleton, CO 80127 #12;MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI Site Remediation By: Date: Robert Krumberger Project Manager New Horizons Environmental Consultants, Inc. Approved By

  9. Groundwater remediation at a former oil service site

    E-Print Network [OSTI]

    Han, Liping

    2005-08-29T23:59:59.000Z

    for computer modeling and remediation strategy evaluation. Computer models were used to simulate site conditions and assist in remedy design for the site. Current pump-and-treat systems were evaluated by the model under various scenarios. Recommendations were...

  10. Modelling of Remediation Technologies at the Performance Assessment Level

    SciTech Connect (OSTI)

    Parton, N.J.; Paksy, A.; Eden, L.; Trivedi, D.P. [Nexia Solutions Limited, Hinton House, Risley, Warrington, Cheshire, UK, WA (United States)

    2008-07-01T23:59:59.000Z

    This paper presents approaches to modelling three different remediation technologies that are designed to support site operators during their assessment of remediation options for the management of radioactively contaminated land on nuclear licensed sites in the UK. The three selected technologies were soil washing, permeable reactive barrier and in-situ stabilisation. The potential exists to represent electrokinetics in the future. These technologies were chosen because it was considered that enough information already existed for site operators to assess mature technologies such as soil dig and disposal and groundwater pump and treat. Using the software code GoldSim, the models have been designed to allow site operators to make both a reasonable scoping level assessment of the viability of treatment and understand the cost-benefits of each technology. For soil washing, a standard soil leaching technique was simulated whereby the soil is separated into fines and oversize particles, and subsequently a chemical reagent is used to strip contamination off the soil. The cost benefit of this technology in terms of capital costs for the plant and materials, operational costs and waste disposal costs can also be assessed. The permeable reactive barrier (PRB) model can represent either a continuous wall or a funnel and gate system. The model simulates the transport of contaminants through the reactive material contained in the PRB. The outputs from the model include concentration of contaminants in the groundwater flow downstream of the PRB, mass of contaminants retained by the PRB, total mass and volume of waste and the various costs associated with the PRB remediation technology. The in-situ stabilisation (ISS) model has the capability to represent remediation by the addition of reagents that immobilise contaminated soil. The model simulates the release of contaminants from the treated soil over time. Performance is evaluated by comparison of the mass of contaminants retained and released to the area outside the treatment zone. Other outputs include amount of spoil generated (to be treated as waste) and the costs associated with the application of the ISS technology. These models are aimed to help users select a technology or technologies that are potentially suitable for a particular site. It is anticipated that they will prompt the user to undertake more detailed assessments to tailor the selected technology to their site specific circumstances and contaminated land conditions. (author)

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  12. Rensselaer Multimedia Facilities Facilities listed below are equipped for display of computers, or an installed DVD/VCR. Auxiliary connections are available to

    E-Print Network [OSTI]

    Linhardt, Robert J.

    Rensselaer Multimedia Facilities Facilities listed below are equipped for display of computers for Multimedia support, please navigate to http://mms.rpi.edu. #12;

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  16. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY

    E-Print Network [OSTI]

    COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 · The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation RESEARCH INSTITUTE REMEDIATION PROJECT SUMMARY Page Two May 15, 2007 · The revised Remedial Investigation

  17. BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION

    E-Print Network [OSTI]

    OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION FINAL Prepared by: Brookhaven FOR U.S. Department of Energy March 2009 #12;i OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA..................................................................................................................4 4.0 Building 96 ­ Operational Background

  18. Procurement under Superfund remedial cooperative agreements

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    This document provides guidance on procuring services during remedial-response activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), or Superfund, as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA). The topics covered in the guidance include procurement requirements; procurement of engineering services, including types of services provided; procurement of construction contractors; and subagreement administration.

  19. groundwater nitrogen source identification and remediation

    E-Print Network [OSTI]

    groundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer, the Seymour Aquifer has the highest groundwater pollution potential of all the major aqui- fers in Texas drinking water standards. Potential sources of nitrate in groundwater include atmospheric deposi- tion

  20. Analyzing remediation technologies for Department of Energy sites contaminated with DNAPL pollutants. Master`s thesis

    SciTech Connect (OSTI)

    Papatyi, A.F.

    1997-03-01T23:59:59.000Z

    The Department of Energy is in the process of conducting a Remedial Investigation/Feasibility Study for a site contaminated with Dense Non-Aqueous Phase Liquid (DNAPL) pollutants at their Paducah Kentucky facility. This thesis effort focuses on acquiring insight into a number of remediation technology trains that are candidates for the Paducah site. This insight is used to recommend and justify the screening of candidate technology trains. The research makes use of two decision analysis models (one is deterministic, the other is probabilistic) built to provide a quantitative assessment of the candidate technology trains. Dominance considerations and multi-attribute utility theory are utilized to make the quantitative assessments and to gain insight into each candidate technology train. The results of the analysis provide the DOE with a rational justification for screening 55 of the 58 candidate technology trains from further consideration.

  1. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01T23:59:59.000Z

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  2. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  3. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.

  4. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    SciTech Connect (OSTI)

    FORSYTHE, HOWARD S

    2010-04-14T23:59:59.000Z

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 ?g/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 ?g/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  5. Corrective action management unit application for the Environmental Restoration Disposal Facility

    SciTech Connect (OSTI)

    Evans, G.C.

    1994-06-01T23:59:59.000Z

    The Environmental Restoration Disposal Facility (ERDF) is to accept both CERCLA (EPA-regulated) and RCRA (Ecology-regulated) remediation waste. The ERDF is considered part of the overall remediation strategy on the Hanford Site, and as such, determination of ERDF viability has followed both RCRA and CERCLA decision making processes. Typically, determination of the viability of a unit, such as the ERDF, would occur as part of record of decision (ROD) or permit modification for each remediation site before construction of the ERDF. However, because construction of the ERDF may take a significant amount of time, it is necessary to begin design and construction of the ERDF before final RODs/permit modifications for the remediation sites. This will allow movement of waste to occur quickly once the final remediation strategy for the RCRA and CERCLA past-practice units is determined. Construction of the ERDF is a unique situation relative to Hanford Facility cleanup, requiring a Hanford Facility specific process be developed for implementing the ERDF that would satisfy both RCRA and CERCLA requirements. While the ERDF will play a significant role in the remediation process, initiation of the ERDF does not preclude the evaluation of remedial alternatives at each remediation site. To facilitate this, the January 1994 amendment to the Tri-Party Agreement recognizes the necessity for the ERDF, and the Tri-Party Agreement states: ``Ecology, EPA, and DOE agree to proceed with the steps necessary to design, approve, construct, and operate such a ... facility.`` The Tri-Party Agreement requires the DOE-RL to prepare a comprehensive ``package`` for the EPA and Ecology to consider in evaluating the ERDF. The package is to address the criteria listed in 40 CFR 264.552(c) for corrective action management unit (CAMU) designation and a CERCLA ROD. This CAMU application is submitted as part of the Tri-Party Agreement-required information package.

  6. Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project - status of project to date January 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This document describes the progress made by the Missouri Department of Natural Resources (MDNR) during the fourth year (1996) of the Agreement in Support (AIS) in its oversight role of the Weldon Springs Site Remedial Action Project (WSSRAP). The fourth year at the Weldon Springs Site shows sustained progress as the project moves through the final design and into the remedial action phases of the Chemical Plant Operable Unit. The remedial action phase includes the Foundations Removal work package, Chemical Solidification and Stabilization, and disposal cell.

  7. NREL's Research Support Facility and its Foundations

    E-Print Network [OSTI]

    's (DOE) NREL campus in Golden, Colo- rado, has a foundation in energy efficiency, grounded in the work of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy technologies New high throughput platform speeds up biomass analysis Published by the National Renewable Energy

  8. NREL: Sustainable NREL - Research Support Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure

  9. Support Facilities | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrial TechnologiesSupplemental3,01535,785

  10. User Support | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite MapScience Accelerator

  11. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  12. FACILITY WORKER TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    2005-03-31T23:59:59.000Z

    This technical basis document was developed to support RPP-13033, ''Tank Farms Documented Safety Analysis (DSA). It describes the criteria and methodology for allocating controls to hazardous conditions with significant facility worker (FW) consequence and presents the results of the allocation. The criteria and methodology for identifying controls that address FW safety are in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''.

  13. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    SciTech Connect (OSTI)

    Heiser,J.; Sullivan, T.

    2009-06-30T23:59:59.000Z

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the decontamination process(es). In the case of an entire building, the value may be obvious; it's costly to replace the structure. For a smaller item such as a vehicle or painting, the cost versus benefit of decontamination needs to be evaluated. This will be determined on a case by case basis and again is beyond the scope of this report, although some thoughts on decontamination of unique, personal and high value items are given. But, this is clearly an area that starting discussions and negotiations early on will greatly benefit both the economics and timeliness of the clean up. In addition, high value assets might benefit from pre-event protection such as protective coatings or HEPA filtered rooms to prevent contaminated outside air from entering the room (e.g., an art museum).

  14. Canastota Renewable Energy Facility Project

    SciTech Connect (OSTI)

    Blake, Jillian; Hunt, Allen

    2013-12-13T23:59:59.000Z

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  15. Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives

    SciTech Connect (OSTI)

    Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

    1995-03-01T23:59:59.000Z

    The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal.

  16. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  19. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-08-11T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  20. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-11-10T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  1. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  2. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  3. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  4. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Rhia, Brian D. (Augusta, GA)

    2011-03-01T23:59:59.000Z

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  5. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Riha, Brian D.

    2012-07-03T23:59:59.000Z

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  6. Remedial design through effective electronic associations

    SciTech Connect (OSTI)

    Deis, J.L.; Wankum, R.D.

    1999-07-01T23:59:59.000Z

    Black and Veatch Special Projects Corp. (BVSPC) used an environmental data management system (EDMS) to consolidate x-ray fluorescence (XRF), global positioning system (GPS), and laboratory analytical data into a unique and flexible electronic database. Cost savings were acknowledged in all phases of the remedial design due to the development and use of the EDMS and its distinct associations with various electronic software packages. The EDMS allowed effective and efficient completion of the remedial design investigation of the Oronogo-Duenweg Mining Belt Site. The Site is a 125-year old mining community in Jasper County, Missouri. Approximately 6,500 residences are now located within the 60 square-mile Superfund Site where lead and zinc were mined. Smelting and mining activities were conducted in several areas throughout the community. These operations left approximately 9 million tons of mine wastes at the Site upon completion of the mining activities. The purpose of the remedial design investigation was to quantify and identify the residential yards that were adversely affected by these activities.

  7. Laboratory/industry partnerships for environmental remediation

    SciTech Connect (OSTI)

    Beskid, N.J.; Zussman, S.K.

    1994-09-01T23:59:59.000Z

    There are two measures of ``successful`` technology transfer in DOE`s environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized.

  8. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    SciTech Connect (OSTI)

    G. L. Schwendiman

    2006-07-01T23:59:59.000Z

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

  9. Salmon Site Remedial Investigation Report, Appendix C

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  10. Salmon Site Remediation Investigation Report, Appendix A

    SciTech Connect (OSTI)

    US DOE /Nevada Operations Office

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  11. Salmon Site Remedial Investigation Report, Appendix D

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  12. Salmon Site Remedial Investigation Report, Exhibit 5

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  13. Salmon Site Remedial Investigation Report, Exhibit 4

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  14. Salmon Site Remedial Investigation Report, Exhibit 3

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  15. Salmon Site Remedial Investigation Report, Exhibit 2

    SciTech Connect (OSTI)

    USDOE NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  16. Salmon Site Remedial Investigation Report, Exhibit 1

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  17. Salmon Site Remedial Investigation Report, Main Body

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  18. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    SciTech Connect (OSTI)

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W. [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)] [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)

    2013-07-01T23:59:59.000Z

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  19. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TONWSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg

    2003-02-01T23:59:59.000Z

    This report represents the tenth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government-Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township Compost Storage Facility, engineering continued during this reporting period toward development of the Construction Plans and Technical Specifications for the remediation work. At the Mt. Hope Road subsidence, surface monitoring was conducted periodically at the work area and adjacent areas after the January 2000 construction effort.

  20. Responsiveness summary for the remedial investigation/feasibility study for management of the bulk wastes at the Weldon Spring quarry, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Peterson, J.M.; MacDonell, M.M.

    1990-08-01T23:59:59.000Z

    The US Department of Energy (DOE) is responsible for conducting remedial actions at the Weldon Spring site in St. Charles County, Missouri, under its Surplus Facilities Management Program. The site consists of a quarry and a chemical plant area located about 6.4 km (4 mi) northeast of the quarry. The quarry is surrounded by the Weldon Spring Wildfire Area and is near an alluvial well field that constitutes a major source of potable water for St. Charles County; the nearest supply well is located about 0.8 km (0.5 mi) southeast of the quarry. From 1942 to 1969, the quarry was used for the disposal of various radioactively and chemically contaminated materials. Bulk wastes in the quarry consist of contaminated soils and sediments, rubble, metal debris, and equipment. As part of overall site remediation, DOE is proposing to conduct an interim remedial action at the quarry to manage the radioactively and chemically contaminated bulk wastes contained therein. Potential remedial action alternatives for managing the quarry bulk wastes have been evaluated consistent with US Environmental Protection Agency (EPA) guidance for conducting remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The contents of these documents were developed in consultation with EPA Region VII and the state of Missouri and reflect the focused scope defined for this interim remedial action. 9 refs.

  1. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07T23:59:59.000Z

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  2. Enhancing the safety of tailings management facilities

    SciTech Connect (OSTI)

    Meggyes, T.; Niederleithinger, E.; Witt, K.J.; Csovari, M.; Kreft-Burman, K.; Engels, J.; McDonald, C.; Roehl, K.E. [BAM, Berlin (Germany). Federal Institute for Material Research & Testing

    2008-07-01T23:59:59.000Z

    Unsafe tailings management facilities (TMFs) have caused serious accidents in Europe threatening human health/life and the environment. While advanced design, construction and management procedures are available, their implementation requires greater emphasis. An integrated research project funded by the European Union was carried out between 2002 and 2005 with the overall goal of improving the safety of TMFs (Sustainable Improvement in Safety of Tailings Facilities - TAILSAFE, http://www.tailsafe.com/). The objective of TAILSAFE was to develop and apply methods of parameter evaluation and measurement for the assessment and improvement of the safety state of tailings facilities, with particular attention to the stability of tailings dams and slurries, the special risks inherent when such materials include toxic or hazardous wastes, and authorization and management procedures for tailings facilities. Aspects of tailings facilities design, water management and slurry transport, non-destructive and minimally intrusive testing methods, monitoring and the application of sensors, intervention and remediation options were considered in TAILSAFE. A risk reduction framework (the TAILSAFE Parameter Framework) was established to contribute to the avoidance of catastrophic accidents and hazards from tailings facilities. Tailings from the mining and primary processing of metals, minerals and coal were included within the scope of TAILSAFE. The project focused on the avoidance of hazards by developing procedures and methods for investigating and improving the stability of tailings dams and tailings bodies.

  3. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    SciTech Connect (OSTI)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

    1994-08-01T23:59:59.000Z

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  4. 303-K Storage Facility closure plan. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-15T23:59:59.000Z

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  5. Facility model for the Los Alamos Plutonium Facility

    SciTech Connect (OSTI)

    Coulter, C.A.; Thomas, K.E.; Sohn, C.L.; Yarbro, T.F.; Hench, K.W.

    1986-01-01T23:59:59.000Z

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line.

  6. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    1999-10-01T23:59:59.000Z

    This report represents the fourth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. During this reporting period the Engineering Design for remediation of the surface safety hazards associated with the White Meadow Mine was completed. Construction Plans and Technical Specifications were completed and competitive bids were solicited by the Township for completion of the work. The electrical resistivity survey analysis and report was completed for the Green Pond Mines site at the Township Compost Storage Facility. The geophysical survey results confirmed evidence of abandoned mining activity at the Green Pond Mine site which was previously identified. During this reporting period, the time frame of the Cooperative Agreement between the Township and the Department of Energy was extended. An additional site of subsidence with in the Township related to abandoned mining activity at Mount Hope Road was selected by Rockaway Township to be considered for remediation and inclusion under the Cooperative Agreement.

  7. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    2001-04-01T23:59:59.000Z

    This report represents the sixth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the White Meadow Mine site, after amended specifications were prepared and continued negotiations took place with the Property Owner, the property ownership was transferred during the reporting period. As a result in the change in property ownership, the remediation project was then to be done by the new Property Owner out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort. At the Green Pond Mine site at the Township Compost Storage Facility, no additional field work was undertaken during this reporting period subsequent to the previous completion of the geophysical survey. With the termination of the White Meadow Mine project, work began toward development of a remedial design for the Green Pond Mines.

  8. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    2001-04-01T23:59:59.000Z

    This report represents the seventh Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township Compost Storage Facility, research and preliminary design was performed during this reporting period toward development of the engineering plans and Technical Specifications for the remediation work. At the White Meadow Mine site, the remediation project was conducted last reporting period by others, out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort.

  9. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect (OSTI)

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01T23:59:59.000Z

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field

  10. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  11. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Environmental Management (EM)

    and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

  12. Economical Remediation of Plastic Waste into Advanced Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economical Remediation of Plastic Waste into Advanced Materials with Coatings Technology available for licensing: An autogenic pyrolysis process to convert plastic waste into...

  13. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American...

  14. Environmental Remediation program to perform slope-side cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perform slope-side cleanup Environmental Remediation program to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory is performing a high-angle...

  15. Iowa Land Recycling and Environmental Remediation Standards Act (Iowa)

    Broader source: Energy.gov [DOE]

    This chapter establishes remediation standards for land, other than standards for water quality, hazardous conditions, underground storage tanks, and groundwater protection, which are discussed in...

  16. Different Strategies for Biological Remediation of Perchlorate Contaminated Groundwater

    E-Print Network [OSTI]

    Wang, Yue

    2012-01-01T23:59:59.000Z

    Respiring Microorganisms. Bioremediation 1998. 2(2): p. 69-Analysis and Remediation. Bioremediation Journal, 1998. 2(of in situ perchlorate bioremediation at the Indian Head

  17. area remedial investigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 104 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  18. act cercla remedial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 86 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  19. accelerated remedial strategy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 151 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  20. area remediation case: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 112 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  1. antimalarial herbal remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 105 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  2. aquifer remediation design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 207 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  3. active chemical remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 142 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  4. antimalarial phytotherapy remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 65 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  5. area including remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 117 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  6. Final Environmental Impact Statement for the Tank Waste Remediation...

    Broader source: Energy.gov (indexed) [DOE]

    to radioactive sources. They would occur while managing the tank farms and performing remedial activities. Exposures are closely monitored, and the radiation dose a worker may...

  7. assess remediation performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation...

  8. advanced remediation technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 374 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  9. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

  10. Remediation of Centre Pier, Port Hope, Ontario: Historical, Logistical, Regulatory and Technical Challenges - 13118

    SciTech Connect (OSTI)

    Ferguson Jones, Andrea [MMM Group Limited, 100 Commerce Valley Drive West, Thornhill, Ontario, L3T 0A1 (Canada)] [MMM Group Limited, 100 Commerce Valley Drive West, Thornhill, Ontario, L3T 0A1 (Canada); Case, Glenn [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario, L1A 3S4 (Canada)] [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario, L1A 3S4 (Canada); Lawrence, Dave [Public Works and Government Services Canada, 115 Toronto Road, Port Hope, Ontario, L1A 3S4 (Canada)] [Public Works and Government Services Canada, 115 Toronto Road, Port Hope, Ontario, L1A 3S4 (Canada)

    2013-07-01T23:59:59.000Z

    Centre Pier is a 3.9 ha property owned by the Commissioners of the Port Hope Harbour in the Municipality of Port Hope, Ontario, Canada. It is centrally located on the Port Hope waterfront and is bounded on the west by the Port Hope Harbour, on the east by the Ganaraska River, on the south by Lake Ontario, and on the north by a railway corridor. The property is currently leased by the Commissioners of the Port Hope Harbour to the Cameco Corporation which owns the four onsite building that are used as warehouse space for their uranium conversion facility located on the western side of the Harbour. Remediation of this site forms part of the Port Hope Project being undertaken by Atomic Energy of Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). Soil impacts include radiological, metals and petroleum hydrocarbons resulting from long term historical industrial use. Radiological impacts in soil extend across most of the site primarily within the upper metre of fill. Metals-contaminated soil is present across the entire site in the underlying fill material. The metals-contaminated fill extends to a maximum depth of 2.0 m below grade at the north end of the site which is underlain by peat. However, the metals-contaminated soil could extend to the top of the bedrock on the remainder of the site. Based on the elevation of the bedrock in the adjacent river and Harbour Basin, the metals-contaminated soil may extend to a depth of 5.6 m or 6.5 m below existing grade. Petroleum-contaminated soil is present on the southeast side of the site, where a storage tank farm was previously located. Challenges include: - The complex history of the site both relating to site use and Pier construction. Pier development began in the 1800's and was undertaken by many different entities. Modifications and repairs were made over the years resulting in several different types of Pier walls and fill that must be considered during remediation. A wide variety of industrial activity on the Pier including extensive foundry operations as well as the industrial nature of the fill used to construct the Pier has resulted in extensive contamination distribution. The Pier structure will require reinforcement to permit both the remediation of the Pier and the adjacent Harbour and remediation techniques will need to be well suited to minimize disruption of wall structures as well as being able to deal with fill ranging from ash to boulders. - Multiple stakeholders are responsible for building demolition, remediation of radiological impacts, remediation of industrial impacts and the use of the site as a staging area for Harbour sediment remediation. The successful remediation of the Centre Pier will require careful negotiation and planning for the various remediation activities noted above. - The depth of contamination on the Pier would result in the complete removal of the Pier if all contamination were to be excavated. Therefore, a Risk Assessment will be conducted to determine the appropriate means for in situ risk management for materials to be left in place below a proposed depth of 1.5 m below current grade. With the concurrence of the property owners and Provincial regulators, the Risk Assessment will be undertaken in accordance with the Provincial requirements that will ensure adequate protection of the environment and future users of the site. - The end use of the Pier has yet to be confirmed by the Municipality. (authors)

  11. Technical advantages and political necessity of public involvement in environmental remediation: The case of the U.S. and Russian weapons complexes

    SciTech Connect (OSTI)

    Shideler, J.C. [JK Research Associates, Inc., Arlington, VA (United States)

    1993-12-31T23:59:59.000Z

    Environmental remediation is an enormous challenge for the governments of the US, Russia, and other states in eastern and central Europe. Historically, governments have withheld issues related to nuclear weapons from public policy debate. As a result of revelations about human health impacts and environmental contamination, serious credibility problems exist for managers of weapons facilities. However, public involvement can contribute to better definition of problems, to identification of a range of potential solutions, and to increased public acceptance of outcomes. Decision makers can maximize the benefits of public involvement by integrating specific processes into their environmental remediation project planning and management.

  12. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacility AMF Information Science

  13. Facility Representatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of Energy

  14. Facility Representatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of Energy063-2011

  15. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFYRANDOM DRUG TESTING The requirementFacility

  16. Historical hydronuclear testing: Characterization and remediation technologies

    SciTech Connect (OSTI)

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01T23:59:59.000Z

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  17. Portsmouth Remedial Actions Documents | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmount forDecontamination and DecommissioningRemedial

  18. Portsmouth Remediation Scope | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site » Portsmouth Community Outreach » PortsmouthRemediation Scope

  19. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  20. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    SciTech Connect (OSTI)

    Campbell, Don; Barton, David [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada)] [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada); Case, Glenn [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)] [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)

    2013-07-01T23:59:59.000Z

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibility for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary construction activities for the Port Hope LTWMF commenced in 2012 and are scheduled to continue over the next few years. The first cell of the engineered containment mound is scheduled to be constructed in 2015 with waste placement into the Port Hope LTWMF anticipated over the following seven year period. (authors)

  1. Results for the Independent Sampling and Analysis of Used Oil Drums at the Impact Services Facility in Oak Ridge, TN

    SciTech Connect (OSTI)

    none,

    2013-04-25T23:59:59.000Z

    The U.S. Department of Energy (DOE) requested that Oak Ridge Associated Universities (ORAU), via the Oak Ridge Institute for Science and Education (ORISE) contract, perform independent sampling and analysis of used oils contained within eight 55 gallon drums stored at the former IMPACT Services facility, located at the East Tennessee Technology Park in Oak Ridge, Tennessee. These drums were originally delivered by LATA Sharp Remediation Services (LSRS) to IMPACT Services on January 11, 2011 as part of the Bldg. K-33 demolition project, and the drums plus contents should have been processed as non-hazardous non-radiological waste by IMPACT Services. LSRS received a certificate of destruction on August 29, 2012 (LSRS 2012a). However, IMPACT Services declared bankruptcy and abandoned the site later in 2012, and eight of the original eleven K-33 drums are currently stored at the facility. The content of these drums is the subject of this investigation. The original drum contents were sampled by LSRS in 2010 and analyzed for gross alpha, gross beta, and polychlorinated biphenyls (PCBs), using both compositing and grab sampling techniques. The objective of this 2013 sample and analysis effort was to duplicate, to the extent possible, the 2010 sampling and analysis event to support final disposition decisions. Part of that decision process includes either verifying or refuting the assertion that oils that are currently stored in drums at the IMPACT Services facility originated from Bldg. K-33 equipment.

  2. Lower Three Runs Remediation Safety Preparation Strategy - 13318

    SciTech Connect (OSTI)

    Mackay, Alexander; Fryar, Scotty; Doane, Alan [United States Department of Energy, Building 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Building 730-B, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site. It is a large blackwater stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 20 mile stretch of Lower Three Runs Stream that narrows and provides a limited buffer of US DOE property along the stream and flood-plain. Based on data collected during the years 2009 and 2010 under American Recovery and Re-investment Act funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. In agreement with the Environmental Protection Agency and the South Carolina Department of Health and Environmental Control, three areas were identified for remediation [1] (SRNS April 2012). A comprehensive safety preparation strategy was developed for safe execution of the LTR remediation project. Contract incentives for safety encouraged the contractor to perform a complete evaluation of the work and develop an implementation plan to perform the work. The safety coverage was controlled to ensure all work was observed and assessed by one person per work area within the project. This was necessary due to the distances between the fence work and three transects being worked, approximately 20 miles. Contractor Management field observations were performed along with DOE assessments to ensure contractor focus on safe performance of the work. Dedicated ambulance coverage for remote worker work activities was provided. This effort was augmented with access to medical evacuation services. The areas where the work was performed were remote and difficult to get emergency vehicles to in a timely manner in case of an accident. Satellite phones were utilized due to intermittent phone coverage. High visibility vests were utilized to enable any hunters in the area to see the workers; due to the limited buffer areas along the stream route. An innovative approach to providing the necessary protection for workers during periods of extreme heat and humidity was also employed, which included the use of 'heat islands' with fans and crew trailers and ice vests for workers. (authors)

  3. 340 Facility emergency preparedness hazards assessment

    SciTech Connect (OSTI)

    CAMPBELL, L.R.

    1998-11-25T23:59:59.000Z

    This document establishes the technical basis in support of Emergency Planning activities for the 340 Facility on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone, is demonstrated.

  4. Strategic Facility Management: A White Paper

    Broader source: Energy.gov [DOE]

    This white paper provides information on the SFP process, its requirements and benefits, and gives a facility manager the basic tools to launch and successfully complete a SFP for the supported organization.

  5. Facilities Services and Environmental Health and Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    systems and implement and track hood decommissioning Trends in energy consumption of laboratory buildings and facility maintenance, mechanical support and operational budget management. The Energy Management Office energy conservation opportunities in campus laboratories. It provides continuous laboratory systems

  6. Research and development activities in support of Hanford River protection project privatization -- SRTC program

    SciTech Connect (OSTI)

    Sturm, H.

    2000-01-11T23:59:59.000Z

    A team led by BNFL was awarded the contract to remediate and immobilize the Hanford radioactive tank waste in support of the Hanford River Protection Program. BNFL and team members will develop and design integrated facilities for pretreatment and vitrification in support of this program. This facility will pretreat and immobilize approximately 0.375 MT/day of high level waste and approximately 4.5 MT/day of low activity waste. As part of the overall project, BNFL has contracted Savannah River Technology Center (SRTC) to provide research and development services in characterization, pretreatment, and immobilization of actual Hanford tank wastes. SRTC is conducting tests, radioactive and non-radioactive, to confirm all major processing steps for the pretreatment flowsheet. During this testing, SRTC has identified and developed alternate or additional processing steps to address significant processing concerns. Additionally, SRTC is developing design basis data using simulants of Hanford tank wastes in areas of ion exchange, filtration, precipitation, glass former blending, evaporation, and slurry mixing. This paper will provide an overview of SRTC activities completed during the initial phase of the project, flowsheet modifications resulting from SRTC's identification and development of alternate or modified processing steps, as well as a description of the SRTC development program for the next phase of the project.

  7. BNL | CFN Strategic Plan | State-of-the-art Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalyst supports, and solar energy capture. New capabilities to enhance the time, energy and spatial resolutions of the ultrafast and single-molecule optical facilities...

  8. Installation of an innovative remedial technology

    SciTech Connect (OSTI)

    Hines, B. [CDM Federal Programs Corp., Kevil, KY (United States)

    1995-12-31T23:59:59.000Z

    The major goal of the Lasagna{trademark} project was to design, construct, install, and operate an in situ remediation system in low-permeability soil. A new technology--the Lasagna process--uses electro-osmosis to move contaminated groundwater through treatment zones. The treatment zones are installed in contaminated soils, thereby forming an integrated in situ remedial process. Electro-osmosis, well known for its effectiveness and extremely low power consumption, uses a direct current to cause Groundwater to travel through low-permeability soil. When a bench-scale version of the technology was 98 percent effective in removing contamination, an actual field test was the next step. The site chosen for this first field effort was the DOE-owned Paducah Gaseous Diffusion Plant located in Paducah, Kentucky. The target contaminant for this project was trichloroethylene (TCE) because it is found at many sites across the country and is present at approximately 60 percent of DOE`s sites.

  9. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07T23:59:59.000Z

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  10. Summary of remedial investigations at the 307 retention basins and 307 trenches (316-3), 300-FF-2 Operable Unit

    SciTech Connect (OSTI)

    Hulstrom, L.C.

    1994-06-30T23:59:59.000Z

    Remedial investigations at the 307 retention basins and 307 trenches (316-3) in the 300 Area of the Hanford Site were conducted as part of the 300-FF-1 operable unit Phase 1 remedial investigation (RI) in accordance with the approved RI work plan. During the RI, the southwestern boundary of the 300-FF-1 operable unit was modified by all signatories to the Hanford Federal Facility Agreement and Consent Order, which shifted the 307 retention basins and 307 trenches to the 300-FF-3 operable unit. As a consequence, the RI results from these waste management units were not included in the Phase 1 Remedial Investigation Report for the 300-FF-1 Operable Unit. As a results of recent Hanford Federal Facility Agreement and Consent Order negotiations, the 300-FF-2 operable unit now consists of the remaining 300 Area operable units within the 300 Area National Priorities List (NPL), which includes the former 300-FF-3 operable unit. Therefore, this document summarizes the RI results from the 307 retention basins and 307 trenches in the 300-FF-2 operable unit. Analysis and evaluation of these results well be included in the 300-FF-2 RI report.

  11. SIMULATION OF REMEDIATION ALTERNATIVES FOR A 137Cs CONTAMINATED SOIL.

    E-Print Network [OSTI]

    Politčcnica de Catalunya, Universitat

    SIMULATION OF REMEDIATION ALTERNATIVES FOR A 137Cs CONTAMINATED SOIL. THE NUMERICAL MODELING analyze remediation alternatives for a soil contaminated with 137Cs, which sorbs strongly onto the clayey. The mobile portion of the soil (macropores) retains little water and cesium. The natural attenuation option

  12. Chapter 2. Assessment and Remediation of Residential Lead Exposure

    E-Print Network [OSTI]

    Chapter 2. Assessment and Remediation of Residential Lead Exposure Prepared by Thomas D. Matte, MD of Residential Lead Exposure Table 2.1. Summary of Recommendations for Assessment and Remediation of Residential Lead Exposure Make prompt and effective environmental management for children with EBLLs the highest

  13. Optimal Groundwater Remediation Network Design using Selective Membranes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimal Groundwater Remediation Network Design using Selective Membranes Eugenio Bringasa with the optimal synthesis of groundwater remediation networks for the valorization of anionic pollutants by means possible design alternatives are proposed. The aim of this work is to obtain a minimum cost groundwater

  14. Technology needs for environmental restoration remedial action

    SciTech Connect (OSTI)

    Watson, J.S.

    1992-11-01T23:59:59.000Z

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  15. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

  16. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    SciTech Connect (OSTI)

    Barry L. Burks

    2002-12-01T23:59:59.000Z

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  17. Decommissioning of facilities and encapsulation of wastes for an uranium mill site in Spain

    SciTech Connect (OSTI)

    Santiago, J.L. [Enresa, Madrid (Spain); Sanchez, M. [Initec, Madrid (Spain)

    1994-12-31T23:59:59.000Z

    In the south of Spain on the outskirts of the town of Andujar an inactive uranium mill tailings site is being remediated in place. Mill equipment, buildings and process facilities have been dismantled and demolished and the resulting metal wastes and debris have been placed in the tailings pile. The tailings mass has been reshaped by flattening the sideslopes to improve stability and a cover system has been placed over the pile. Remedial action works started in February 1991 and will be completed by March 1994. This paper describes the progress of the remediation works for the closure of the Andujar mill site and in particular discusses the approaches used for the dismantling and demolition of the processing facilities and the stabilization of the tailings pile.

  18. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  19. Managing Legacy Records for Formerly Utilized Sites. Remedial Action Program Sites

    SciTech Connect (OSTI)

    Clayton, C. [DOE Office of Legacy Management, Washington, DC (United States); Gueretta, J. [Lead DOE Office of Legacy Management, Grand Junction, CO (United States); Tack, J. [Source One Management, Inc., Grand Junction, CO (United States); Widdop, M. [S.M. Stoller Corporation, Grand Junction, CO (United States)

    2008-07-01T23:59:59.000Z

    The Manhattan Engineer District (MED) and U.S. Atomic Energy Commission (AEC) contracted for support work through private and academic parties through the early 1960's. The work often involved radioactive materials. Residual radioactive contamination was left at some of more than 600 potentially contaminated (candidate) sites, and worker health and safety concerns remain from the site operations and subsequent remediation activities. The U.S. Department of Energy (DOE) initiated a program to identify and protect records of MED/AEC activities and of remediation work conducted under the Formerly Utilized Sites Remedial Action Program (FUSRAP) to aid in resolving questions about site conditions, liability, and worker health and safety and to ensure ongoing protectiveness of human health and the environment. This paper discusses DOE activities undertaken to locate records collections, confirm retention schedules and access requirements, and document information about the collections for use by future stewards. In conclusion: DOE-LM recognizes that records and information management is a critical component of effective LTS and M. Records are needed to answer questions about site conditions and demonstrate to the public in the future that the sites are safe. DOE-LM is working to satisfy present needs and anticipate future uses for FUSRAP records, and compile a collection of site and program information from which future stewards can readily locate and retrieve needed information. (authors)

  20. Facility Safety | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA SupportDOE's FY3FacilityFacilityIn

  1. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect (OSTI)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28T23:59:59.000Z

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  2. Remediation of a Former USAF Radioactive Material Disposal Site

    SciTech Connect (OSTI)

    Hoffman, D. E.; Cushman, M; Tupyi, B.; Lambert, J.

    2003-02-25T23:59:59.000Z

    This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had been identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while minimizing disposal costs. In addition, worker exposures were maintained ALARA as a result of the removal and characterization methods employed.

  3. Regulatory strategies for remediation of contaminated sediments

    SciTech Connect (OSTI)

    Zar, H. [Environmental Protection Agency, Chicago, IL (United States)

    1995-12-31T23:59:59.000Z

    A number of federal and state laws may be used to obtain remediation of contaminated sediments in the US. Until recently, the most prominent approaches at the federal level were the use of Superfund authorities for sites on the National priority List and navigational dredging activity by the Corps of Engineers. However, with the increasing concern about contaminated sediments, regional offices of the US Environmental Protection Agency (EPA) and state agencies have begun to use a greater variety of regulatory approaches, both individually and in combination. These efforts have been particularly evident in the Great Lakes and are now being extended nationwide, as embodied in the EPA`s Contaminated Sediment Management Strategy. This paper will describe some of the regulatory approaches being applied, case examples in the Great Lakes area, and the expected directions of these efforts, as embodied in the national strategy.

  4. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect (OSTI)

    Howerton, Jack; Hwang, Diana

    1984-11-01T23:59:59.000Z

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  5. Uranium Mill Tailings Remedial Action 1993 Roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ``Lack of sufficient human resources,`` remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0.

  6. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    SciTech Connect (OSTI)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14T23:59:59.000Z

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  7. Interim measure conceptual design for remediation of source area contamination at Agra, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2007-07-31T23:59:59.000Z

    This document presents a conceptual design for the implementation of a non-emergency interim measure (IM) at the site of the grain storage facility formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Agra, Kansas. The IM is recommended to mitigate localized carbon tetrachloride contamination in the vadose zone soils at the former CCC/USDA facility and eliminate ongoing soil-to-groundwater contamination. The objectives of this IM conceptual design report include the following: 1. Obtain written acknowledgement from the Kansas Department of Health and the Environment (KDHE) that remediation on the former CCC/USDA property is required. 2. Provide information (IM description, justification for the IM, and project schedule) that the KDHE can include in a pending fact sheet. 3. Obtain KDHE approval for the IM conceptual design, so that the CCC/USDA can initiate a formal request for access to the privately owned property and proceed with preparation of a remedial design plan (RDP). Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory (Argonne 2006) have demonstrated that soil and groundwater at the Agra site are contaminated with carbon tetrachloride. The levels in groundwater exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 5.0 {micro}g/L for this compound. The soil and groundwater contamination identified at the former CCC/USDA facility currently poses no unacceptable health risks.

  8. The Radiological Research Accelerator THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    The Radiological Research Accelerator Facility #12;84 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY Director: David J. Brenner, Ph.D., D.Sc., Manager: Stephen A. Marino, M.S. An NIH SupportedV/µm 4 He ions using the microbeam facility (Exp. 73) also continued. The transformation frequency

  9. Effects of remediation amendments on vadose zone microorganisms

    SciTech Connect (OSTI)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10T23:59:59.000Z

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

  10. Almost remediation of saltwater spills at E and P sites

    SciTech Connect (OSTI)

    Carty, D.J. [K. W. Brown Environmental Services, College Station, TX (United States)

    1995-12-31T23:59:59.000Z

    At exploration and production (E and P) sites crude spills restricted to topsoil are often self-remediating, but salt spills rarely are. Most soils naturally biodegrade crude. Without appropriate human intervention, brine spills can result in decades of barren land and seriously degrade surface water and aquifers. Servicing the E and P industry are remediation practitioners with a limited array of often expensive remediation concepts and materials which they hope will work, and sometimes do. Unfortunately, many remediation practitioners are unfamiliar with, or disregard, the natural physical, chemical, and biotic complexity of the soil and aquatic media. All too often this results in exacerbating injury to an already damaged ecosystem. Likewise, important cultural factors such as public relations, environmental regulations, property rights, and water rights are also overlooked until after implementation of an ill-advised or illegal remediation design has been initiated. A major issue is determining what constitutes ``successful`` remediation of a brine spill. Environmental managers have long sought one or two universally applicable fast and cheap amendment/treatment protocols for all their diverse multi-state salt affected spill scenarios. This presentation describes aspects of common spill-affected ecosystems which must be considered to achieve ``successful`` remediation.

  11. Use of a permeable biological reaction barrier for groundwater remediation at a uranium mill tailings remedial action (UMTRA) site

    SciTech Connect (OSTI)

    Thombre, M.S.; Thomson, B.M.; Barton, L.L. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    Previous work at the University of New Mexico and elsewhere has shown that sulfate reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed groundwater remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected and the precipitated U(IV) was determined to be crystalline UO{sub 2}(s) by X-ray Diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials.

  12. Safety-Related Activities of the IAEA for Radioactive Waste, Decommissioning and Remediation - 13473

    SciTech Connect (OSTI)

    Hahn, Pil-Soo; Vesterlind, Magnus [Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria)] [Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria)

    2013-07-01T23:59:59.000Z

    To fulfil its mandate and serve the needs of its Member States, the IAEA is engaged in a wide range of safety-related activities pertaining to radioactive waste management, decommissioning and remediation. One of the statutory obligations of the IAEA is to establish safety standards and to provide for the application of these standards. The present paper describes recent developments in regard to the IAEA's waste safety standards, and some of the ways the IAEA makes provision for their application. The safety standards and supporting safety demonstration projects seek to establish international consensus on methodologies and approaches for dealing with particular subject areas, for example, safety assessment for radioactive waste disposal. (authors)

  13. Environmental remediation of contamination sites at the Hanford Site

    SciTech Connect (OSTI)

    Wittreich, C.D.; Johnson, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    Efforts currently are under way to remediate the 200 Areas of the US Department of Energy`s (DOE) Hanford Site in Washington State. Because of the complexity and extent of environmental contamination that has resulted from decades of hazardous and radioactive waste disposal practices, an innovative approach to remediating the site was required. A comprehensive study of waste disposal and environmental monitoring data with field investigations, referred to as the 200 Aggregate Area Management Study (AAMS) program, was conducted in 1992 to assess the scope of the remediation effort and to develop a plan to expedite the cleanup progress.

  14. from Isotope Production Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

  15. Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

  16. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC).

  17. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  18. Remediation of overlapping benzene/MTBE and MTBE-only plumes: A case study

    SciTech Connect (OSTI)

    Carpenter, P.L. [TolTest, Inc., Pittsburgh, PA (United States); Vinch, C.A. [Ryder Transportation Services, Lawrenceville, NJ (United States)

    1997-12-31T23:59:59.000Z

    Two overlapping dissolved hydrocarbon plumes were identified in the shallow water-bearing zone at a commercial vehicle service and fueling facility. Plume 1 originated from a pre-1993 gasoline product line/dispenser leak. This plume contained a relatively common mix of benzene, toluene, ethylbenzene, xylenes (BTEX), and methyl tert-butyl ether (MTBE); benzene and MTBE were identified as the Plume 1 contaminants of concern based on their detection at approximately 200 {mu}g/l each, which exceeded regulatory guidance. Plume 2, which was detected in the tank cavity during UST removal, resulted from gasoline line leaks/underground storage tank overfills. Although the majority of impacted soils in both the dispenser and tank cavity areas were removed during UST excavation, rainfall during impacted soil removal mobilized the MTBE contained in the soils to groundwater. As a result, Plume 2 contained approximately 900 {mu}g/l MTBE while BTEX compounds were non-detect. Although the impacted zone sustained an approximate yield of only 0.3 gallon per minute, Pennsylvania regulations dictate that this zone must be treated as an aquifer. The failure of remediating gasoline plumes using pump-and-treat has been predominantly due to BTEX`s tendency to adsorb onto soil, creating a residual-phase product layer which acts as a continuing source of dissolved-phase BTEX. Based on this experience, most groundwater and remediation professionals reject pump-and-treat as a viable remedial option, except in situations where controlling groundwater movement is the predominant goal.

  19. The Remediation of Abandoned Iron Ore Mine Subsidence in Rockaway Township, New Jersey

    SciTech Connect (OSTI)

    Gartenberg, Gary; Poff, Gregory

    2010-06-30T23:59:59.000Z

    This report represents the twenty-seventh and Final Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this last reporting period ending June 30, 2010 and a summary of the work accomplished since the agreement inception in 1997. This report is issued as part of the project reporting provisions set forth in the Cooperatorâ??s Agreement between the United States Government - Department of Energy, and Rockaway Township. The purpose of the Cooperatorâ??s Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800â??s, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Townshipâ??s Jacobs Road Compost Storage Facility, surface monitoring continued after completion of construction in September 2003. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort. In March 2007, a seventh collapse occurred over a portion of the White Meadow Mine in a public roadway at the intersection of Iowa and Erie Avenues in Rockaway Township. After test drilling, this portion of the mine was remediated by drilling and grouting the stopes.

  20. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  1. An Overview of Public Domain Tools for Measuring the Sustainability of Environmental Remediation - 12060

    SciTech Connect (OSTI)

    Claypool, John E.; Rogers, Scott [AECOM, Denver, Colorado, 80202 (United States)

    2012-07-01T23:59:59.000Z

    The application of sustainability principles to the investigation and remediation of contaminated sites is an area of rapid development within the environmental profession, with new business practices, tools, and performance standards for identifying, evaluating, and managing the 'collateral' impacts of cleanup projects to the environment, economy and society coming from many organizations. Guidelines, frameworks, and standards of practice for 'green and sustainable remediation' (GSR) have been released and are under development by the Sustainable Remediation Forum (SURF), the American Society for Testing Materials (ASTM), the Interstate Technology Roundtable Commission (ITRC) and other organizations in the U.S. and internationally. In response to Executive Orders from the President, Federal government agencies have developed policies, procedures and guidelines for evaluating and reporting the sustainability of their environmental restoration projects. Private sector companies in the petroleum, utility, manufacturing, defense, and other sectors are developing their own corporate GSR programs to improve day-to-day management of contaminated sites and to support external reporting as part of their corporate social responsibility (CSR) efforts. The explosion of mandates, policy, procedures and guidance raises the question of how to determine whether a remediation technology or cleanup approach is green and/or sustainable. The environmental profession has responded to this question by designing, developing and deploying a wide array of tools, calculators, and databases that enable regulatory agencies, site managers and environmental professionals to calculate the collateral impacts of their remediation projects in the environmental, social, and economic domains. Many of these tools are proprietary ones developed by environmental engineering/consulting firms for use in their consulting engagements and/or tailored specifically to meet the needs of their clients. When it comes to the public domain, Federal government agencies are spearheading the development of software tools to measure and report emissions of air pollutants (e.g., carbon dioxide, other greenhouse gases, criteria air pollutants); consumption of energy, water and natural resources; accident and safety risks; project costs and other economic metrics. Most of the tools developed for the Government are available to environmental practitioners without charge, so they are growing in usage and popularity. The key features and metrics calculated by the available public-domain tools for measuring the sustainability of environmental remediation projects share some commonalities but there are differences amongst the tools. The SiteWise{sup TM} sustainability tool developed for the Navy and US Army will be compared with the Sustainable Remediation Tool (SRT{sup TM}) developed for the US Air Force (USAF). In addition, the USAF's Clean Solar and Wind Energy in Environmental Programs (CleanSWEEP), a soon-to-be-released tool for evaluating the economic feasibility of utilizing renewal energy for powering remediation systems will be described in the paper. (authors)

  2. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2009-09-28T23:59:59.000Z

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  3. Sustainability Support

    Broader source: Energy.gov [DOE]

    Sustainability Support serves as a corporate technical assistance, coordination, and integration resource to support line organizations in the resolution of sustainability issues and management concerns.

  4. Remedidal investigation and feasibility study report for the Environmental Restoration Disposal Facility

    SciTech Connect (OSTI)

    Roeck, F.V.

    1994-06-01T23:59:59.000Z

    The purpose of the remedial investigation (RI) is to collect data necessary to adequately characterize the site for the purpose of developing and evaluating effective remedial alternatives. To characterize the site, the lead agency shall, as appropriate, conduct field investigations, including treatability studies, and conduct a baseline risk assessment. The RI provides information to assess the risks to human health and the environment and to support the development, evaluation, and selection of appropriate response alternatives. The primary objective of the feasibility study (FS) is to ensure that appropriate remedial alternatives are developed and evaluated such that relevant information concerning the remedial action options can be presented to a decision-maker and an appropriate remedy selected. The lead agency may develop a feasibility study to address a specific site problem or the entire site. The development and evaluation of alternatives shall reflect the scope and complexity of the remedial action under consideration and the site problems being addressed. Development of alternatives shall be fully integrated with the site characterization activities of the remedial investigation described in paragraph (d) of this section. The lead agency shall include an alternatives screening step, when needed, to select a reasonable number of alternatives for detailed analysis.

  5. In Situ Iron Oxide Emplacement for Groundwater Arsenic Remediation 

    E-Print Network [OSTI]

    Abia, Thomas Sunday

    2012-02-14T23:59:59.000Z

    Iron oxide-bearing minerals have long been recognized as an effective reactive media for arsenic-contaminated groundwater remediation. This research aimed to develop a technique that could facilitate in situ oxidative precipitation of Fe3+ in a soil...

  6. army environmental remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: ER 200-1-4 29 August 2014 ENVIRONMENTAL QUALITY FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM.C. 20314-1000 CECC-E Regulation No. 200-1-4 29 August 2014...

  7. Containment remedies: Minimizing hazard, not just exposure, cuts liabilities

    SciTech Connect (OSTI)

    Hirschhorn, J.S. [Hirschhorn and Associates, Wheaton, MD (United States)

    1996-12-31T23:59:59.000Z

    An important consequence of the trend to reduce Superfund cleanup costs has been a definite shift away from treatment to pure containment remedies. The issue that merits more attention, however, is whether reductions in short term costs may be offset by longer term liabilities. Containment remedies that focus entirely on reducing exposures and hence risk are vulnerable to various failures of key components that may not necessarily be prevented by operation and maintenance programs. A sensible alternative is to also include some hazard reduction, especially by in situ technology. By doing so, longer term liabilities associated with various failure modes of containment remedies can be greatly reduced. Corporate accounting systems ignore such liabilities. The insurance industry, large companies, brownfield developers, and the government are currently ignoring liabilities that inevitably will become all too real, because pure containment remedies are not permanently effective.

  8. Environmental Remediation Strategic Planning of Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Onishi, Yasuo

    2011-12-01T23:59:59.000Z

    Environmntal Remediation Assessment and other respons decision making on Environmental monitoring, experiments and assessment. Preliminary assessment to grasp the overall picture and determine critical locations, phenomena, people, etc. Using simple methods and models.

  9. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect (OSTI)

    R.L. Thacker

    2005-03-24T23:59:59.000Z

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  10. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14T23:59:59.000Z

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  11. SOURCE AND PATHWAY DETERMINATION FOR BERYLLIUM FOUND IN BECHTEL NEVADA NORTH LAS VEGAS FACILITIES

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2004-07-01T23:59:59.000Z

    In response to the report ''Investigation of Beryllium Exposure Cases Discovered at the North Las Vegas Facility of the National Nuclear Security Administration'', published by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) in August 2003, Bechtel Nevada (BN) President and General Manager Dr. F. A. Tarantino appointed the Beryllium Investigation & Assessment Team (BIAT) to identify both the source and pathway for the beryllium found in the North Las Vegas (NLV) B-Complex. From September 8 to December 18, 2003, the BIAT investigated the pathway for beryllium and determined that a number of locations existed at the Nevada Test Site (NTS) which could have contained sufficient quantities of beryllium to result in contamination if transported. Operations performed in the B-1 Building as a result of characterization activities at the Engine Maintenance, Assembly, and Disassembly (EMAD); Reactor Maintenance, Assembly, and Disassembly (RMAD); Test Cells A and C; and the Central Support Facility in Area 25 had the greatest opportunity for transport of beryllium. Investigative monitoring and sampling was performed at these sites with subsequent transport of sample materials, equipment, and personnel from the NTS to the B-1 Building. The timeline established by the BIAT for potential transport of the beryllium contamination into the B-1 Building was from September 1997 through November 2002. Based on results of recently completed swipe sampling, no evidence of transport of beryllium from test areas has been confirmed. Results less than the DOE beryllium action level of 0.2 ???g/100 cm2 were noted for work support facilities located in Area 25. All of the identified sites in Area 25 worked within the B-1 tenant's residency timeline have been remediated. Legacy contaminants have either been disposed of or capped with clean borrow material. As such, no current opportunity exists for release or spread of beryllium contamination. Historical records indicate that there are locations at the NTS which contain hazardous quantities of beryllium; however, because beryllium was not always considered a contaminant of concern, complete characterization was not performed prior to remediation efforts. Today, it is not practical to characterize Area 25 for beryllium due to the successful remediation. Analysis of sample data collected in B-1 for the BIAT was performed for the purpose of confirming past results and identifying a source of beryllium through the use of markers. The results confirmed the presence of man-made beryllium contamination in the B-1 High Bay at levels consistent with the NNSA Report. No source markers were found that would be associated with NTS historical nuclear rocket or weapons-related operations. Beryllium contamination was identified in the southwest area of the B-1 High Bay in characteristic association with materials handled during historic metal-working operations. Use of source marker analysis suggests a contributor of beryllium found in carpeted areas of the B-Complex may be naturally occurring. Naturally occurring beryllium is not regulated by Title 10 Code of Federal Regulations Part 850 (10 CFR 850) (see Appendix A). No current uncontrolled beryllium source or transport pathways have been identified as available for spread of contamination to uncontrolled areas from the NTS.

  12. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    SciTech Connect (OSTI)

    Post, Thomas C. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States)] [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); Strom, Dean [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States)] [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States); Beulow, Laura [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)] [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

  13. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg

    2003-12-01T23:59:59.000Z

    This report represents the thirteenth Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this semi annual reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township's Jacobs Road Compost Storage Facility, construction was completed during this reporting period and surface monitoring began. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort.

  14. Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1

    SciTech Connect (OSTI)

    NONE

    1994-01-01T23:59:59.000Z

    The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy`s (DOE`s) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement.

  15. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01T23:59:59.000Z

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE`s Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  16. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01T23:59:59.000Z

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE's Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  17. Remediation of the Melton Valley Watershed at Oak Ridge National Lab: An Accelerated Closure Success Story

    SciTech Connect (OSTI)

    Johnson, Ch.; Cange, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Skinner, R. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States); Adams, V. [U.S. DOE, Office of Groundwater and Soil Remediation, Washington, DC (United States)

    2008-07-01T23:59:59.000Z

    The Melton Valley (MV) Watershed at the U. S. Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) encompasses approximately 430 hectares (1062 acres). Historic operations at ORNL produced a diverse legacy of contaminated facilities and waste disposal areas in the valley. In addition, from 1955 to 1963, ORNL served as a major disposal site for wastes from over 50 off-site government-sponsored installations, research institutions, and other isotope users. Contaminated areas in the watershed included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pits/trenches, hydro-fracture wells, leak and spill sites, inactive surface structures, and contaminated soil and sediment. Remediation of the watershed in accordance with the requirements specified in the Melton Valley Record of Decision (ROD) for Interim Actions in Melton Valley, which estimated that remedial actions specified in the ROD would occur over a period of 14 years, with completion by FY 2014. Under the terms of the Accelerated Closure Contract between DOE and its contractor, Bechtel Jacobs Company, LLC, the work was subdivided into 14 separate sub-projects which were completed between August 2001 and September 2006, 8 years ahead of the original schedule. (authors)

  18. Future Fixed Target Facilities

    SciTech Connect (OSTI)

    Melnitchouk, Wolodymyr

    2009-01-01T23:59:59.000Z

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  19. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  20. Superfund record of decision (EPA Region 2): Federal Aviation Administration Technical Center (Area B Navy Fire Test Facility), Atlantic County, Atlantic City International Airport, NJ, September 20, 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This decision document presents the selected remedial action for Area B, the Navy Fire Test Facility, at the FAA Technical Center, Atlantic City Internatioal Airport, New Jersey. The selected remedy for Area B includes: Installation of additional monitoring wells; Continued ground water and surface water monitoring; Installation and operation of air sparging wells, vapor extraction wells and monitoring probes; On-site vapor treatment (if necessary); and Five year reviews.

  1. Estimation of costs for applications of remediation technologies for the Department of Energy`s Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Villegas, A.J.; Hansen, R.I.; Humphreys, K.K.; Paananen, J.M.; Gildea, L.F.

    1994-03-01T23:59:59.000Z

    The Programmatic Environmental impact Statement (PEIS) being developed by the US Department of Energy (DOE) for environmental restoration (ER) and waste management (WM) activities expected to be carried out across the DOE`s nationwide complex of facilities is assessing the impacts of removing, transporting, treating, storing, and disposing of waste from these ER and WM activities. Factors being considered include health and safety impacts to the public and to workers, impacts on the environment, costs and socio-economic impacts, and near-term and residual risk during those ER and WM operations. The purpose of this paper is to discuss the methodology developed specifically for the PEIS to estimate costs associated with the deployment and application of individual remediation technologies. These individual costs are used in developing order-of-magnitude cost estimates for the total remediation activities. Costs are developed on a per-unit-of-material-to-be-treated basis (i.e., $/m{sup 3}) to accommodate remediation projects of varying sizes. The primary focus of this cost-estimating effort was the development of capital and operating unit cost factors based on the amount of primary media to be removed, handled, and treated. The unit costs for individual treatment technologies were developed using information from a variety of sources, mainly from periodicals, EPA documentation, handbooks, vendor contacts, and cost models. The unit cost factors for individual technologies were adjusted to 1991 dollars.

  2. Prioritization and accelerated remediation of groundwater contamination in the 200 Areas of the Hanford Site, Washington

    SciTech Connect (OSTI)

    Wittreich, C.D.; Ford, B.H.

    1993-04-01T23:59:59.000Z

    The Hanford Site, operated by the US Department of Energy (DOE), occupies about 1,450 km{sup 2} (560 mi{sup 2}) of the southeastern part of Washington State north of the confluence of the Yakima and Columbia Rivers. The Hanford Site is organized into numerically designated operational areas. The 200 Areas, located near the center of the Hanford Site, encompasses the 200 West, East and North Areas and cover an area of over 40 km{sup 2}. The Hanford Site was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment via infiltration structures such as cribs, ponds, ditches. This has resulted in over 25 chemical and radionuclide groundwater plumes, some of which have reached the Columbia River. An Aggregate Area Management Study program was implemented under the Hanford Federal Facility Agreement and Consent Order to assess source and groundwater contamination and develop a prioritized approach for managing groundwater remediation in the 200 Areas. This included a comprehensive evaluation of existing waste disposal and environmental monitoring data and the conduct of limited field investigations (DOE-RL 1992, 1993). This paper summarizes the results of groundwater portion of AAMS program focusing on high priority contaminant plume distributions and the groundwater plume prioritization process. The objectives of the study were to identify groundwater contaminants of concern, develop a conceptual model, refine groundwater contaminant plume maps, and develop a strategy to expedite the remediation of high priority contaminants through the implementation of interim actions.

  3. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring

    SciTech Connect (OSTI)

    Gulson, Brian, E-mail: brian.gulson@mq.edu.au [Graduate School of the Environment, Faculty of Science, Macquarie University, Sydney, NSW 2109 (Australia) [Graduate School of the Environment, Faculty of Science, Macquarie University, Sydney, NSW 2109 (Australia); CSIRO Earth Science and Resource Engineering North Ryde, NSW 1670 (Australia); Korsch, Michael [CSIRO Earth Science and Resource Engineering North Ryde, NSW 1670 (Australia)] [CSIRO Earth Science and Resource Engineering North Ryde, NSW 1670 (Australia); Winchester, Wayne; Devenish, Matthew; Hobbs, Thad [Esperance Cleanup and Recovery Project, Western Australia (WA) Department of Transport, Esperance 6450 (Australia)] [Esperance Cleanup and Recovery Project, Western Australia (WA) Department of Transport, Esperance 6450 (Australia); Main, Cleve; Smith, Gerard [Animal Health Laboratory, Department of Agriculture and Food, Perth 6151, WA (Australia)] [Animal Health Laboratory, Department of Agriculture and Food, Perth 6151, WA (Australia); Rosman, Kevin; Howearth, Lynette; Burn-Nunes, Laurie [Curtin University, Department of Imaging and Applied Physics, Bentley 6102, WA (Australia)] [Curtin University, Department of Imaging and Applied Physics, Bentley 6102, WA (Australia); Seow, Jimmy; Oxford, Cameron [Department of Environment and Conservation, Booragoon 6154, WA (Australia)] [Department of Environment and Conservation, Booragoon 6154, WA (Australia); Yun, Gracie; Gillam, Lindsay [Department of Health, East Perth 6004, WA (Australia)] [Department of Health, East Perth 6004, WA (Australia); Crisp, Michelle [LED (Locals for Esperance Development), Esperance 6450, WA (Australia)] [LED (Locals for Esperance Development), Esperance 6450, WA (Australia)

    2012-01-15T23:59:59.000Z

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments, air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. - Highlights: Black-Right-Pointing-Triangle Lead carbonate concentrate. Black-Right-Pointing-Triangle Successful use of Pb isotopes in identifying sources of Pb arising from transport and shipping. Black-Right-Pointing-Triangle Use of Pb isotopes in legal proceedings and their use in cleanup of residences. Black-Right-Pointing-Triangle Use of Pb isotopes in cleanup of a residual 9000 tonnes of Pb carbonate and in ongoing monitoring.

  4. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

  5. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  6. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    SciTech Connect (OSTI)

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

    2012-07-01T23:59:59.000Z

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

  7. Decommissioning of the remediation systems at Waverly, Nebraska, in 2011-2012.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2012-06-29T23:59:59.000Z

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility in Waverly, Nebraska, from 1952 to 1974. During this time, the grain fumigant '80/20' (carbon tetrachloride/carbon disulfide) was used to preserve stored grain. In 1982, sampling by the U.S. Environmental Protection Agency (EPA) found carbon tetrachloride contamination in the town's groundwater. After an investigation of the contaminant distribution, the site was placed on the National Priority List (NPL) in 1986, and the CCC/USDA accepted responsibility for the contamination. An Interagency Compliance Agreement between the EPA and the CCC/USDA was finalized in May 1988 (EPA 1990). The EPA (Woodward-Clyde Consultants, contractor) started immediate cleanup efforts in 1987 with the installation of an air stripper, a soil vapor extraction system, a groundwater extraction well, and groundwater and soil gas monitoring wells (Woodward-Clyde 1986, 1988a,b). After the EPA issued its Record of Decision (ROD; EPA 1990), the CCC/USDA (Argonne National Laboratory, contractor) took over operation of the treatment systems. The CCC/USDA conducted a site investigation (Argonne 1991, 1992a,b), during which a carbon tetrachloride plume in groundwater was discovered northeast of the former facility. This plume was not being captured by the existing groundwater extraction system. The remediation system was modified in 1994 (Argonne 1993) with the installation of a second groundwater extraction well to contain the contamination further. Subsequently, a detailed evaluation of the system resulted in a recommendation to pump only the second well to conserve water in the aquifer (Argonne 1995). Sampling and analysis after implementation of this recommendation showed continued decreases in the extent and concentrations of the contamination with only one well pumping (Argonne 1999). The CCC/USDA issued quarterly monitoring reports from 1988 to 2009. Complete documentation of the CCC/USDA characterization and remediation efforts, including the quarterly monitoring reports, is on the compact disc inside the back cover of this report. The EPA reported on the progress of the remediation systems in a series of five-year reviews (EPA 1993, 1999, 2004, 2009). These reports and other EPA documentation are also on the compact disc inside the back cover of this report, along with the Woodward-Clyde (1986, 1988a,b) documentation cited. Starting in 2006, the analytical results for groundwater (the only medium still being monitored) showed no carbon tetrachloride concentrations above the maximum contaminant level (MCL) of 5.0 g/L. Because the cleanup goals specified in the ROD (EPA 1990) had been met, the EPA removed the site from the NPL in November 2006 (Appendix A). In 2008 the National Pollutant Discharge Elimination System (NPDES) permit for the remediation system was deactivated, and a year later the EPA released its fourth and final five-year report (EPA 2009), indicating that no further action was required for the site and that the site was ready for unlimited use. In 2011-2012, the CCC/USDA decommissioned the remediation systems at Waverly. This report documents the decommission process and closure of the site.

  8. Oppenheimer's Box of Chocolates: Remediation of the Manhattan Project Landfill at Los Alamos National Laboratory - 12283

    SciTech Connect (OSTI)

    Allen, Donald L.; Ramsey, Susan S.; Finn, Kevin P.; Chaloupka, Allan B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01T23:59:59.000Z

    Material Disposal Area B (MDA B) is the oldest radioactive waste disposal facility at Los Alamos National Laboratory. Operated from 1944-48, MDA B was the disposal facility for the Manhattan Project. Recognized as one of the most challenging environmental remediation projects at Los Alamos, the excavation of MDA B received $110 million from the American Recovery and Reinvestment Act of 2009 to accelerate this complex remediation work. Several factors combined to create significant challenges to remediating the landfill known in the 1940's as the 'contaminated dump'. The secrecy surrounding the Manhattan Project meant that no records were kept of radiological materials and chemicals disposed or of the landfill design. An extensive review of historical documents and interviews with early laboratory personnel resulted in a list of hundreds of hazardous chemicals that could have been buried in MDA B. Also, historical reports of MDA B spontaneously combusting on three occasions -with 50-foot flames and pink smoke spewing across the mesa during the last incident in 1948-indicated that hazardous materials were likely present in MDA B. To complicate matters further, though MDA B was located on an isolated mesa in the 1940's, the landfill has since been surrounded by a Los Alamos commercial district. The local newspaper, hardware store and a number of other businesses are located directly across the street from MDA B. This close proximity to the public and the potential for hazardous materials in MDA B necessitated conducting remediation work within protective enclosures. Potential chemical hazards and radiological inventory were better defined using a minimally intrusive sampling method called direct push technology (DPT) prior to excavation. Even with extensive sampling and planning the project team encountered many surprises and challenges during the project. The one area where planning did not fail to meet reality was safety. There were no serious worker injuries and the minor injuries recorded were those common to construction type activities. Extensive monitoring along the site boundary demonstrated that no hazardous chemicals were released and radiological dose to the public was within administrative limits. More than three years of effort by the LANL project team went into the planning for remediation of Material Disposal Area B. Hundreds of historical documents were reviewed; retired personnel were extensively interviewed and noninvasive techniques were used to characterize the site. The information collected was incorporated into the safety requirements, cost estimate, schedule and primary execution plan for the project. Ultimately the waste volume managed by the project approached 40000 m{sup 3}, more than double the original project estimate. This increase had a major impact on both project cost and schedule. Nuclear safety requirements for the project were based on an estimated MDA B radionuclide inventory of 12 PE-Ci. When excavation was complete over 123 PE-Ci had been removed from the trenches. The radionuclide inventory at MDA B was an order of magnitude higher than estimated. Work at MDA B could not have proceeded without the safety basis exemption from DOE-HQ. The one area where planning did not fail to meet reality was safety. There were no serious worker injuries and the minor injuries recorded were those common to construction type activities. Extensive monitoring along the site boundary demonstrated that no hazardous chemicals were released and radiological dose to the public was within administrative limits. (authors)

  9. Preliminary evaluation of selected in situ remediation technologies for Volatile Organic Compound contamination at Arid sites

    SciTech Connect (OSTI)

    Lenhard, R.J.; Gerber, M.A.; Amonette, J.E.

    1992-10-01T23:59:59.000Z

    To support the Volatile Organic Compounds-Arid Site (VOC-Arid) Integrated Demonstration (ID) in its technical, logistical, institutional, and economical testing of emerging environmental management and restoration technologies. Pacific Northwest Laboratory(a) is evaluating several in situ remediation technologies for possible inclusion in the demonstration. The evaluations are made with respect to the initial focus of the VOC-Arid ID: the carbon tetrachloride contamination at the Hanford Site, where it was disposed to the vadose zone along with other volatile and nonvolatile organic wastes. heavy metals, acids. and radionuclides. The purposes of this report are (1) to identify candidate in situ technologies for inclusion in the program, (2) to evaluate the candidate technologies based on their potential applicability to VOC contamination at arid sites and geologic conditions representative of the ID host site (i.e., Hanford Site), and (3) to prioritize those technologies for future US Department of Energy (DOE) support.

  10. Los Alamos neutron science user facility - control system risk mitigation & updates

    SciTech Connect (OSTI)

    Pieck, Martin [Los Alamos National Laboratory

    2011-01-05T23:59:59.000Z

    LANSCE User Facility is seeing continuing support and investments. The investment will sustain reliable facility operations well into the next decade. As a result, the LANSCE User Facility will continue to be a premier Neutron Science Facility at the Los Alamos National Laboratory.

  11. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

    E-Print Network [OSTI]

    Bernard, S.

    2009-01-01T23:59:59.000Z

    Remediation, and Carbon Sequestration References Anderson,Remediation, and Carbon Sequestration rhizosphere byRemediation, and Carbon Sequestration Figure 1. Examples of

  12. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  13. Texas Facilities Commission's Facility Management Strategic Plan

    E-Print Network [OSTI]

    Ramirez, J. A.

    , Texas, November 17 - 19, 2009 Facility Strategic Plan ?High Performance Building Approach ? Envelope ? Load Reduction ? (Re)Design ? Advanced Tactics ?Building Automation ? Sub-metering ? Controls ?Commissioning ? Assessment ? Continuous ?Facility... International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 Commissioning Assessment ?30 buildings ?CC Opportunities ?O&M Improvements ?Energy/Capital Improvement Opportunities ?Quick Payback Implementation ?Levering DM...

  14. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    SciTech Connect (OSTI)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01T23:59:59.000Z

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  15. Preliminary remediation goals for use at the US Department of Energy Oak Ridge Operations Office. Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This technical memorandum presents Preliminary Remediation Goals (PRGs) for use in human health risk assessment efforts under the United States Department of Energy, Oak Ridge Operations Office Environmental Restoration (ER) Division. This document provides the ER Division with standardized PRGs which are integral to the Remedial Investigation/Feasibility Study process. They are used during project scooping (Data Quality Objectives development), in screening level risk assessments to support early action or No Further Investigation decisions, and in the baselines risk assessment where they are employed in the selection of chemicals of potential concern. The primary objective of this document is to standardize these values and eliminate any duplication of effort by providing PRGs to all contractors involved in risk activities. In addition, by managing the assumptions and systems used in PRG derivation, the ER Risk Assessment Program will be able to control the level of quality assurance associated with these risk-based guideline values.

  16. State Environmental Policy Act (SEPA) environmental checklist forms for 304 Concretion Facility Closure Plan. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 304 Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 304 Facility, the history of materials and waste managed, and the procedures that will be followed to close the 304 Facility. The 304 Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  17. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  18. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01T23:59:59.000Z

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore »too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. Thein situsequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less

  19. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    SciTech Connect (OSTI)

    Peggy Hinman

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  20. M-Area Hazardous Waste Management Facility groundwater monitoring and corrective-action report. Second quarter 1995, Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This report describes the corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site during second quarter 1995. Topics include: changes in sampling, analysis, and reporting; water levels; remedial action of groundwater; and hydrology of the affected aquifer zones.

  1. Technology Transitions Facilities Database

    Broader source: Energy.gov [DOE]

    The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

  2. Electrochemical arsenic remediation for rural Bangladesh

    SciTech Connect (OSTI)

    Addy, Susan Amrose

    2009-01-01T23:59:59.000Z

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

  3. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL`s assessment of the need for further remedial attention.

  4. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention.

  5. Tank waste remediation system environmental program plan

    SciTech Connect (OSTI)

    Borneman, L.E.

    1998-01-09T23:59:59.000Z

    This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996).

  6. Web-based feedback system: the life cycle management as continuous maintenance of apartment facility information 

    E-Print Network [OSTI]

    Jeong, Jin Su

    2006-10-30T23:59:59.000Z

    This research investigates the feasibility of web technology as a means of delivering facility information for better support of facility operations and maintenance. This study proposes a web-based feedback system as a ...

  7. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-03T23:59:59.000Z

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  8. Scaleup tests and supporting research for the development of duct injection technology. Topical report No. 2, Task 3.1: Evaluation of system performance, Duct Injection Test Facility, Muskingum River Power Plant, Beverly, Ohio

    SciTech Connect (OSTI)

    Felix, L.G.; Dismukes, E.B.; Gooch, J.P. [Southern Research Inst., Birmingham, AL (United States); Klett, M.G.; Demian, A.G. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1992-04-20T23:59:59.000Z

    This Topical Report No. 2 is an interim report on the Duct Injection Test Facility being operated for the Department of Energy at Beverly, Ohio. Either dry calcium hydroxide or an aqueous slurry of calcium hydroxide (prepared by slaking quicklime) is injected into a slipstream of flue gas to achieve partial removal of SO{sub 2} from a coal-burning power station. Water injected with the slurry or injected separately from the dry sorbents cools the flue gas and increases the water vapor content of the gas. The addition of water, either in the slurry or in a separate spray, makes the extent of reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state, when it is able to wet the sorbent particles physically, and not especially effective in the vapor state. An electrostatic precipitator collects the combination of suspended solids (fly ash from the boiler and sorbent from the duct injection process). All of the operations are being carried out on the scale of approximately 50,000 acfm of flue gas.

  9. Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2

    SciTech Connect (OSTI)

    Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

    1995-05-01T23:59:59.000Z

    A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

  10. Analytical Plans Supporting The Sludge Batch 8 Glass Variability Study Being Conducted By Energysolutions And Cua's Vitreous State Laboratory

    SciTech Connect (OSTI)

    Edwards, T. B.; Peeler, D. K.

    2012-11-26T23:59:59.000Z

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF.

  11. Tank SY-102 remediation project summary report: ASPEN modeling

    SciTech Connect (OSTI)

    Punjak, W.A.; Schreiber, S.B.; Yarbro, S.L.

    1995-05-01T23:59:59.000Z

    The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. As a part of this program, personnel at Los Alamos National Laboratory (LANL) have developed and demonstrated a flow sheet to remediate tank SY-102, which is located in the 200 West Area and contains high-level radioactive waste. In the conceptual design report issued earlier, an ASPEN plus{trademark} computer model of the flow sheet was presented. This report documents improvements in the flow sheet model after additional thermodynamic data for the actinide species were incorporated.

  12. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Text, Appendices A--C. Final report

    SciTech Connect (OSTI)

    NONE

    1988-07-01T23:59:59.000Z

    This Remedial Action Plan (RAP) has been developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Appendices A,B, and C are provided as part of this document. Appendix A presents regulatory compliance issues, Appendix B provides details of the engineering design, and Appendix C presents the radiological support plan.

  13. Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater

    E-Print Network [OSTI]

    Caravello, Victor

    1998-01-01T23:59:59.000Z

    if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements...

  14. The Effects of Behaviorist and Constructivist Instruction on Student Performance in College-level Remedial Mathematics

    E-Print Network [OSTI]

    Cox, Murray William

    2011-10-21T23:59:59.000Z

    for quality remedial mathematics classes is also growing. Institutions that place learners into remedial classes must also fund these same programs and are increasingly faced with disgruntled students, the appearance of having lower standards, and a...

  15. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01T23:59:59.000Z

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  16. Supporting Data-Producing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrialSupporting Data-Producing Facilities and

  17. Environmental analysis and data report prepared for the environmental assessment of remedial action at the Lowman uranium mill tailings site near Lowman, Idaho. [Urnanium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lowman, Idaho. The Lowman EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the effects of their actions on the environment. It examines the short-term and the long-term effects of the US Department of Energy's (DOE) proposed remedial action for the Lowman site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement will be prepared. If the impacts are not judged to be significant, the DOE may issue a Finding of No Significant Impact and implement the proposed action. The information and data presented in this environmental analyses and data report are for background purposes only and are not required as part of the NEPA decision-making process.

  18. Interface control document between the Tank Waste Remediation System and the Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Duncan, D.R.

    1995-04-01T23:59:59.000Z

    This document discusses the interface between the Tank Waste Remediation System (TWRS) and the Solid Waste Division (SWD).

  19. Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

  20. Voluntary Protection Program Onsite Review, Soil and Groundwater Remediation Project- March 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Soil and Groundwater Remediation Project is performing at a level deserving DOE-VPP recognition.

  1. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  2. Facility Engineering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA SupportDOE's FY3Facility Engineering

  3. Small Power Production Facilities (Montana)

    Broader source: Energy.gov [DOE]

    For the purpose of these regulations, a small power production facility is defined as a facility that:...

  4. Regulator Interface Strategies Implemented at the Y-12 National Security Complex Old Salvage Yard Soils Remediation Project, Oak Ridge, TN - 12162

    SciTech Connect (OSTI)

    Albrecht, Linda [Alliant Corporation (United States); Wilkerson, Laura; Skinner, Ralph [US DOE-ORO EM (United States); Birchfield, Joseph W. III [Link Technologies (United States)

    2012-07-01T23:59:59.000Z

    The Oak Ridge Y-12 National Security Complex housed an area known as the Old Salvage Yard (OSY) that was approximately 7 acres. The OSY was used as an area for the accumulation, processing and storage of scrap metal and equipment from Y-12 operations extending from 1968 until 2009. Areas in the northern sections of OSY also have been used for the storage of used oils containing solvents and the accumulation and recycling or de-heading and crushing of 55-gal metal drums. Scrap metal operations historically involved the accumulation, sorting, storage, public sale or disposal of scrap metal and equipment. Non-containerised storage of scrap metal was routine until 1995 when scrap metal received at OSY was placed in B-24 and B-25 boxes. Under the American Recovery and Reinvestment Act (ARRA), approximately 26,759 cubic meters of scrap metal and debris were removed and disposed at both on and off-site disposal facilities including the on-site, Oak Ridge Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) landfill in 2010 and 2011. This removal action was performed in accordance with a CERCLA Record of Decision (ROD) and a close working relationship with both the U.S. Environmental Protection Agency (EPA) Region IV and Tennessee Department of Environment and Conservation (TDEC). Due to efficiencies and the excellent cooperative relationship forged with EPA Region IV and TDEC for Y-12 ARRA Cleanup Projects, a surplus of funding was available for additional remediation work that was completed in fiscal year (FY) 2011. The underlying OSY soils were targeted for characterization and potential remediation. To expedite these important activities, the U.S. Department of Energy Oak Ridge Environmental Management partnered with the regulators during detailed planning sessions through a variety of means to quickly and efficiently characterize and pinpoint areas requiring remediation according to previous ROD commitments. Data Quality Objectives (DQOs), data-sharing, real-time characterization reporting, surface and groundwater modeling and other interface planning activities were utilized to help facilitate and complete characterization and remediation activities. As a result of these strategies, the surgical extraction of one contiguous area of soil approximately 354 cubic meters is planned for FY12. The strategies discussed resulted in a major reduction of footprint remediation (i.e., 2.8% of the original estimate) which was originally estimated at over 26,759 cubic meters. The original estimate was developed using historical data collected at various times over the period of 20 years. By leveraging a hybrid sampling approach that involved both statistically-based and biased sampling locations, the area of contamination was significantly reduced resulting in both a compliant remedial design that is cost effective while mitigating a principle threat sources to surface and groundwater at the Y-12 plant. One remedial action boundary of 354 cubic meters was verified in the northern section of the Western OSY area known as the old drum de-header station for VOCs. The original estimate for disposal was in excess of 26,759 cubic meters. This area is scheduled for waste characterization and profile development in the first half of fiscal year 2012. The anticipated disposal facility is an on-site Oak Ridge CERCLA disposal landfill known as the Environmental Management Waste Management Facility (EMWMF). By utilizing the careful strategic planning, field-based screening and close cooperation of regulatory stakeholders as detailed in this paper, the total area of soil requiring remedial action within the Y-12 OSY footprint was 354 cubic meters or 2.8% of the original planned estimate. A potential waste reduction of 97.2% was realized over the original planned estimate for OSY Soils. Significant cost savings were achieved by - Minimizing the footprint of the remedial action; - Confirmatory analysis of soils instead of use of historical sampling results for waste profile development; - Targeting traditional laboratory analy

  5. FACET: SLAC___s New User Facility

    SciTech Connect (OSTI)

    Clarke, C.I.; Decker, F.-J.; England, R.J.; Erickson, R.A.; Hast, C.; Hogan, M.J.; Li, S.Z.; Litos, M.D.; Nosochkov, Y.; Seeman, J.T.; Sheppard, J.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

    2012-05-16T23:59:59.000Z

    FACET (Facility for Advanced Accelerator Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. The first User Run started in spring 2012 with 20 GeV, 3 nC electron beams. The facility is designed to provide short (20 {micro}m) bunches and small (20 {micro}m wide) spot sizes, producing uniquely high power beams. FACET supports studies from many fields but in particular those of Plasma Wakefield Acceleration and Dielectric Wakefield Acceleration. The creation of drive and witness bunches and shaped bunch profiles is possible with 'Notch' Collimation. FACET is also a source of THz radiation for material studies. Positrons will be available at FACET in future user runs. We present the User Facility and the available tools and opportunities for future experiments.

  6. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect (OSTI)

    Marks, Tobin Jay [Northwestern University

    2013-05-08T23:59:59.000Z

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  7. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect (OSTI)

    T. M. Blakley; W. D. Schofield

    2007-09-10T23:59:59.000Z

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  8. Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont

    E-Print Network [OSTI]

    Fleskes, Joe

    Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County.....................................................................................................................................................link Figures Figure 1. Location of 19 soil samples collected from the Riverton Uranium Mill Tailings Remedial

  9. Managing site remediation using pathway analysis, application to a semi-arid site

    SciTech Connect (OSTI)

    Rutz, E.E.; Ijaz, T.; Wood, R.P.; Eckart, R.E. [Univ. of Cincinnati, OH (United States). Dept. of Mechanical, Industrial and Nuclear Engineering

    1993-12-31T23:59:59.000Z

    This paper discusses the application of pathway analysis methodology to evaluate alternatives associated with remediation of a semi-arid site. Significant aspects of remediation include potential land uses, soil cleaning techniques and restoration alternatives. Important environmental transport pathways and dominant radionuclides are identified using pathway analysis. The remediation strategy is optimized based on results of the analysis.

  10. NETL- Severe Environment Corrosion Erosion Facility

    SciTech Connect (OSTI)

    None

    2013-09-12T23:59:59.000Z

    NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.

  11. Division of Administration and Finance Facilities Management

    E-Print Network [OSTI]

    Azevedo, Ricardo

    of utility meters and planning for software to track usage by building, energy audit and conservation STEWARDS OF SUSTAINABILITY Houston, Nov. 30, 2012 ­ During the past several years, the University and are undergoing many changes in our habits and systems. In support of the university's efforts, Facilities

  12. NETL- Severe Environment Corrosion Erosion Facility

    ScienceCinema (OSTI)

    None

    2014-06-16T23:59:59.000Z

    NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.

  13. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23T23:59:59.000Z

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  14. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01T23:59:59.000Z

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  15. National conference on environmental remediation science and technology: Abstracts

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  16. REMEDIATION Autumn 2007 A Deterministic Approach to Evaluate

    E-Print Network [OSTI]

    Clement, Prabhakar

    Corrective Action, and Underground Storage Tank Sites." This OSWER directive identifies three lines by an existing remediation technology (e.g., pump-and-treat) make evaluation of MNA using only field data of a hydraulic containment system operated at the site for six years, direct field measurements could not be used

  17. Activated Peroxygens for Remediation of Contaminated Soil and Groundwater

    E-Print Network [OSTI]

    Hansen, René Rydhof

    of Doctor of Philosophy Department of Chemistry, Biotechnology and Environmental Engineering Section, Biotechnology and Environmental Engineering Section of Chemical Engineering CIChem Research Group Aalborg May 2011 #12;ii Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis

  18. In-Situ Thermal Remediation of Contaminated Soil1

    E-Print Network [OSTI]

    Lapin, Sergey

    Chapter 1 In-Situ Thermal Remediation of Contaminated Soil1 Written by Huaxiong Huang,2 Serguei Lapin and Rex Westbrook 1.1 Background Recently, a method for removing contaminants from soil (several as follows. Over a period of several weeks, electrical energy is introduced to the contaminated soil using

  19. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, Robert W. (Naperville, IL); Frank, James R. (Glen Ellyn, IL); Feng, Xiandong (West Richland, WA)

    1998-01-01T23:59:59.000Z

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  20. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  1. IH Report # 04-011 April 2004 Mold Remediation

    E-Print Network [OSTI]

    during remediation. 5. Non-porous (metals, glass, hard plastics) and semi-porous (wood and concrete and Semi-Porous Materials (e.g., wood/concrete) 1. Remove and discard. Attempts should be made to minimize) materials can be cleaned and re-used. 6. Contaminated porous materials such as wallboards and ceiling tiles

  2. Remediation of Abandoned Mines Using Coal Combustion By-Products

    E-Print Network [OSTI]

    Aydilek, Ahmet

    . Maryland has about 450 coal mines out of which only 50 are active and about 150 mines produce AMD RafalkoRemediation of Abandoned Mines Using Coal Combustion By-Products Sowmya Bulusu1 ; Ahmet H. Aydilek that occurs when pyrite that is present in abandoned coal mines comes in contact with oxygen and water, which

  3. Description of the Formerly Utilized Sites Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The background and the results to date of the Department of Energy program to identify and evaluate the radiological conditions at sites formerly utilized by the Corps of Engineers' Manhattan Engineer District (MED) and the US Atomic Energy Commission (AEC) are summarized. The sites of concern were federally, privately, and institutionally owned and were used primarily for research, processing, and storage of uranium and thorium ores, concentrates, or residues. Some sites were subsequently released for other purposes without radiological restriction. Surveys have been conducted since 1974 to document radiological conditions at such sites. Based on radiological surveys, sites are identified in this document that require, or are projected to require, remedial action to remove potential restrictions on the use of the property due to the presence of residual low-level radioactive contamination. Specific recommendations for each site will result from more detailed environmental and engineering surveys to be conducted at those sites and, if necessary, an environmental impact assessment or environmental impact statement will be prepared. Section 3.0 describes the current standards and guidelines now being used to conduct remedial actions. Current authority of the US Department of Energy (DOE) to proceed with remedial actions and the new authority required are summarized. A plan to implement the Formerly Utilized Sites Remedial Action Program (FUSRAP) in accordance with the new authority is presented, including the objectives, scope, general approach, and a summary schedule. Key issues affecting schedule and cost are discussed.

  4. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  5. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992. Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.

  6. Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    SAIC

    2011-04-01T23:59:59.000Z

    The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

  7. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

  8. Superfund Record of Decision (EPA Region 8): Anaconda Smelter site, (Operable Unit 11 - Flue Dust), Deer Lodge County, Anaconda, MT. (Second remedial action), September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-09-23T23:59:59.000Z

    The 6,000-acre Anaconda Smelter site is a former copper and ore processing facility in Deer Lodge County, Montana. Land use in the area is predominantly residential. The site is bounded on the north and east, respectively, by the Warm Springs Creek and Mill Creek, both of which are potential sources of drinking water. From 1884 until 1980 when activities ceased, the site was used for ore processing and smelting operations. In 1988, EPA conducted an investigation to determine the nature and extent of the flue dust contamination. A 1988 ROD addressed the Mill Creek Operable Unit (OU15) and documented the relocation of residents from the community surrounding the smelter site as the selected remedial action. The Record of Decision (ROD) addresses the Flue Dust Operable Unit (OU11). The primary contaminants of concern affecting this site from the flue dust materials are metals including arsenic, cadmium, and lead. The selected remedial action for the site is included.

  9. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ``WAG 5``). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5.

  10. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  11. Dredging, remediation, and containment of contaminated sediments

    SciTech Connect (OSTI)

    Demars, K.R.; Richardson, G.N.; Yong, R.N.; Chaney, R.C. [eds.

    1995-12-31T23:59:59.000Z

    This conference was held June 23--24, 1994 in Montreal, Canada. One purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on identifying tests, methods, procedures, and materials, used in support of dredging, treatment, and containment of contaminated sediments that are in need of standardization. Another objective was to provide a forum for discussion of past dredging practices and future directions, including the effects of sediment properties and behavior, equipment requirements, and the impact of regulations. Individual papers have been processed separately for inclusion in the appropriate data bases.

  12. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    SciTech Connect (OSTI)

    Howden, G.F.

    1994-10-24T23:59:59.000Z

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  13. D and D (System Closure) Mockup Testing Demonstration. Remediation of Legacy Radioactive Piping and Tank Systems at the Reactor Technology Complex (RTC) (2007)

    SciTech Connect (OSTI)

    Byrne-Kelly, D.; Brown, Ch.; Hart, A. [MSE Technology Applications, Inc., Butte, Montana (United States); Welty, B. [Portage, Inc., Idaho Falls, ID (United States); Winterholler, K. [CWI, Idaho Falls, ID (United States)

    2008-07-01T23:59:59.000Z

    This paper presents the results of an integrated mockup demonstration of technologies and equipment designed to remove radioactively contaminated piping systems from underground vaults and pipe trenches at the Idaho National Laboratory. The integrated mockup demonstration included performing a bench scale wax fixative study and field demonstrations of the remotely operated equipment that will be used to remove radioactively contaminated pipe systems. The bench-scale wax fixative study involved defining optimum temperature and moisture conditions for effectively filling pipe sections containing residual wastes with a wax based fixative. The field demonstrations involved dismantling underground vault and trench piping systems, including pipe sections filled with the wax fixative. The purpose of the demonstration was to ensure the selected technologies and equipment would be effective prior to field deployment. The demonstration was conducted as a joint effort by MSE Technology Applications, Inc., and CWI on behalf of the U.S. Department of Energy at the Mike Mansfield Advanced Technology Center in Butte Montana. In summary: The mockup included two main tests at the MSE facility: 1) a vault mockup that included stainless and carbon steel pipe cutting and removal; and 2) a trench mockup that included cutting and removing buried Duriron and ductile iron piping. Both mockups included cutting and removing a pipe filled with the WAXFIX stabilizing material. Based on the MSE moisture tests, project personnel concluded that the WAXFIX product would be effective when used on wastes with different moisture contents that may be encountered in piping systems during the closure of the TRA-630 Catch Tank System at INL. A section of stainless steel pipe was also used to test a number of leak stop alternatives for wax leaks that may be encountered in a degraded piping system. Both the vault and the trench mockup demonstration proved successful for ICP, DOE, and MSE. The ICP operators received valuable hands-on training using the selected equipment and tooling in situations very similar to what they will encounter at INL. Proper tool selection and tool change procedures were defined as situations requiring these operations were encountered. Methodologies for approaching similar trench and vault situations (including safety concerns) were identified and experienced, and wax filled pipes were successfully cut and removed without spilling the surrogate materials within the pipes. All of the tools performed well except the band saw tool. The band saw was specifically designed to cut pipe; however, it was not robust enough and generally the shear was used in its place. Mockups are essential in gaining actual hands on training before going to the field. Mockups improve efficiency and safety that results in cost effective remediation. The MSE facility provides a valuable resource for demonstration of mockups. The facility has several acres of available space and a highly qualified support staff. The integrated mockup demonstration was considered a great success by all involved parties. ICP operators received valuable experience using the equipment selected for catch tank system closure before field deployment in a radiological contaminated environment. The selected equipment proved to be applicable to the safe and effective closure of the catch tank systems, and MSE demonstrated the ability to provide facility and services necessary to support closure mockup demonstrations. (authors)

  14. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-14T23:59:59.000Z

    The Guide was developed in support of DOE O 226.1B to provide guidance that may be useful to DOE line management organizations in meeting the provisions of that order when applied to nuclear facilities.

  15. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-04T23:59:59.000Z

    The Guide was developed in support of DOE O 226.1B to provide guidance that may be useful to DOE line management organizations in meeting the provisions of that order when applied to nuclear facilities.

  16. Public Facility Location Using Dispersion, Population, and Equity ...

    E-Print Network [OSTI]

    2013-01-13T23:59:59.000Z

    terion which stipulates that the distance from a demand point to its closest facility is ... are usually some function of the response time; typical functions are the ...... Minde, J. Building a Framework for a Spatial Decision Support System for Co- ...

  17. In-situ remediation system for volatile organic compounds with deep recharge mechanism

    DOE Patents [OSTI]

    Jackson, Jr., Dennis G. (Augusta, GA); Looney, Brian B. (Aiken, SC); Nichols, Ralph L. (Augusta, SC); Phifer, Mark A. (Augusta, SC)

    2001-01-01T23:59:59.000Z

    A method and apparatus for the treatment and remediation of a contaminated aquifer in the presence of an uncontaminated aquifer at a different hydraulic potential. The apparatus consists of a wellbore inserted through a first aquifer and into a second aquifer, an inner cylinder within the wellbore is supported and sealed to the wellbore to prevent communication between the two aquifers. Air injection is used to sparge the liquid having the higher static water level and, to airlift it to a height whereby it spills into the inner cylinder. The second treatment area provides treatment in the form of aeration or treatment with a material. Vapor stripped in sparging is vented to the atmosphere. Treated water is returned to the aquifer having the lower hydraulic potential.

  18. Management and overview Quality Assurance Program Plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office (DOE/ UMTRA-PO) is the US Department of Energy (DOE) Albuquerque Operations Office (AL) organization charged with the responsibility of managing and coordinating the activities of the various participating organizations and support contractors working on the UMTRA Project. This Quality Assurance Program Plan (QAPP) describes how the DOE/UMTRA-PO, as assisted by the Technical Assistance Contractor (TAC), performs the quality assurance (QA) aspects of managing and coordinating UMTRA Project activities. This QAPP was developed to comply with DOE Order 5700.6A, August, 1981, and AL Order 5700.6B, April, 1984, which contain the criteria applicable to Project QA activities.

  19. Air quality assessments in support of the Environmental Impact Statement (EIS), Oregon Air Contaminant Discharge Permit (ACDP) and Oregon Energy Facility Siting Council certificate (EFSC) for the Newberry Geothermal Pilot Project

    SciTech Connect (OSTI)

    Houck, J.E. [AGI Technologies, Portland, OR (United States); McClain, D.W. [CE Newberry, Inc., Portland, OR (United States)

    1996-12-31T23:59:59.000Z

    Air quality monitoring, emission predictions and impact modeling have been performed in support of the regulatory process for the Newberry Geothermal Pilot Project located near Newberry Crater, Oregon. The proposed power plant will generate 33 NM of power utilizing double flash technology. Air emissions from construction activities, well drilling, wellfield testing and operation, power plant operation, and unplanned upsets were evaluated. Wellfield and plant emission rates for hydrogen sulfide and other air pollutants were developed based on expected resource chemistry and operational scenarios. In addition, nitrogen dioxide and particulate emissions were estimated for drill rig diesel engines and construction activities, respectively. Air pollutant impacts at property boundaries, inside the Newberry National Volcanic Monument and at the nearest Class I area (Three Sisters Wilderness) were predicted using U.S. Environmental Protection Agency dispersion models. Cooling tower plume dimensions were predicted using an Electric Power Research Institute model. The deposition and impact of airborne heavy metals and hydrogen sulfide on two nearby watersheds were calculated. The effect of cooling tower plume drift was also evaluated. Preconstruction background air quality was estimated from published data. The results of the studies have demonstrated that good air quality can be expected at the proposed project site.

  20. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV

    SciTech Connect (OSTI)

    R. P. Wells

    2006-11-14T23:59:59.000Z

    This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.