National Library of Energy BETA

Sample records for remediation demonstration group

  1. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect (OSTI)

    D. E. Shanklin

    2006-06-01

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  2. Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites

    Broader source: Energy.gov [DOE]

    Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites (Waste Management...

  3. Breakout Group 4: Early Markets and Demonstrations | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Early Markets and Demonstrations Breakout Group 4: Early Markets and Demonstrations Report from Breakout Group 4 of the Fuel Cell Pre-Solicitation Workshop, January 23-24, 2008 ...

  4. Remediation

    SciTech Connect (OSTI)

    Oostrom, Mart; Falta, Ron W.; Mayer, Alex S.; Javandel, I.; Hassanizadeh, S. M.

    2005-12-06

    The three most frequently used remediation technologies are discussed: (1) NAPL removal, (2) Pump-and-Treat, (3) Soil Vapor Extraction.

  5. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    SciTech Connect (OSTI)

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  6. Operable Unit 3-13, Group 3, Other Surface Soils (Phase I) Remedial Action Report

    SciTech Connect (OSTI)

    L. Davison

    2007-07-31

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 3, Other Surface Soils, Phase I sites at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The 10 sites addressed in this report were defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for these 10 sites have been accomplished and are hereafter considered No Action or No Further Action sites.

  7. Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Report

    SciTech Connect (OSTI)

    Lee Davison

    2009-06-30

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

  8. Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Request

    SciTech Connect (OSTI)

    L. Davison

    2009-06-30

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

  9. Demonstration of physical separation/leaching methods for the remediation of heavy metals contaminated soils at small arms ranges (acid leaching demo). Technology Demonstration, November 1995-September 1997

    SciTech Connect (OSTI)

    1997-02-07

    The U.S. Army Environmental C%`enter in partnership with the Naval Facilities Engineering Services Center and the U.S. Army Engineer Waterways Experiment Station demonstrated Physical Separation/Leaching methods for the remediation of small arms range soils. The demonstration occurred at Fort Polk, Louisiana. After conducting a world-wide search, two vendors were selected to demonstrate two variations of the physical separation/leaching technologies. The first using a process based on acetic (weak) acid chemistry and the second based on hydrochloric (strong) acid chemistry. Following completion of the bench treatability studies, each vendor performed a full scale (5-10 tons per hour, 1000 tons total) demonstration of their respective technologies. This report documents the worldwide search that was performed to identify vendors of soil remediation equipment and/or contractors who have successfully completed similar remediation projects. A number of information sources, including experts at government and RD institutions, libraries, professional journals, on-line services, academia and industry contacts were used to complete this report. Should the reader be interested in other environmental problems or other technologies not considered for this report, a listing of Internet sites searched during the effort is included and provides ample coverage of the remediation technologies available. The mention of trade names or commercial products in this report should not be constituted as endorsement or recommendation for use.

  10. Sour gas plant remediation technology research and demonstration project, Task 7.53. Topical report, January--December 1993

    SciTech Connect (OSTI)

    Stepan, D.J.; Kuehnel, V.; Schmit, C.R.

    1994-02-01

    Recognizing the potential impacts of sour gas plant operations on the subsurface environment, the Canadian Association of Petroleum Producers (CAPP) and Environment Canada initiated a multiphase study focusing on research related to the development and demonstration of remedial technologies for soil and groundwater contamination at these facilities. Research performed under this project was designed to supplement and be coordinated with research activities being conducted at an operational sour gas plant located in Rocky Mountain House, Alberta, Canada. These research tasks included hydrogeological site characterization, subsurface contaminant characterization, ex situ treatment of groundwater, and subsurface remediation of residual contamination in the unsaturated zone. Ex situ treatment of groundwater included evaluations of air stripping, steam stripping, advanced oxidation, and biological treatment, as well as the development of an artificial freeze crystallization process. Soil vapor extraction was evaluated as a technique to address residual contamination in the unsaturated zone.

  11. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    SciTech Connect (OSTI)

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on {sup 90}Sr, {sup 3}H, and {sup 137}Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides.

  12. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    SciTech Connect (OSTI)

    G. L. Schwendiman

    2006-07-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

  13. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    SciTech Connect (OSTI)

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  14. CHARACTERIZATION OF CONDITIONS OF NATURAL GAS STORAGE RESERVOIRS AND DESIGN AND DEMONSTRATION OF REMEDIAL TECHNIQUES FOR DAMAGE MECHANISMS FOUND THEREIN

    SciTech Connect (OSTI)

    J.H. Frantz Jr; K.G. Brown; W.K. Sawyer; P.A. Zyglowicz; P.M. Halleck; J.P. Spivey

    2004-12-01

    The underground gas storage (UGS) industry uses over 400 reservoirs and 17,000 wells to store and withdrawal gas. As such, it is a significant contributor to gas supply in the United States. It has been demonstrated that many UGS wells show a loss of deliverability each year due to numerous damage mechanisms. Previous studies estimate that up to one hundred million dollars are spent each year to recover or replace a deliverability loss of approximately 3.2 Bscf/D per year in the storage industry. Clearly, there is a great potential for developing technology to prevent, mitigate, or eliminate the damage causing deliverability losses in UGS wells. Prior studies have also identified the presence of several potential damage mechanisms in storage wells, developed damage diagnostic procedures, and discussed, in general terms, the possible reactions that need to occur to create the damage. However, few studies address how to prevent or mitigate specific damage types, and/or how to eliminate the damage from occurring in the future. This study seeks to increase our understanding of two specific damage mechanisms, inorganic precipitates (specifically siderite), and non-darcy damage, and thus serves to expand prior efforts as well as complement ongoing gas storage projects. Specifically, this study has resulted in: (1) An effective lab protocol designed to assess the extent of damage due to inorganic precipitates; (2) An increased understanding of how inorganic precipitates (specifically siderite) develop; (3) Identification of potential sources of chemical components necessary for siderite formation; (4) A remediation technique that has successfully restored deliverability to storage wells damaged by the inorganic precipitate siderite (one well had nearly a tenfold increase in deliverability); (5) Identification of the types of treatments that have historically been successful at reducing the amount of non-darcy pressure drop in a well, and (6) Development of a tool that can

  15. Remedial investigation plan for Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee: Responses to regulator comments

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    This document, ES/ER-6 D2, is a companion document to ORNL/RAP/Sub-87/99053/4 R1, Remedial Investigation Plan for ORNL Waste Area Grouping 1, dated August 1989. This document lists comments received from the Environmental Protection Agency, Region 4 (EPA) and the Tennessee Department of Health and Environment (TDHE) and responses to each of these comments. As requested by EPA, a revised Remedial Investigation (RI) Plan for Waste Area Grouping (WAG) 1 will not be submitted. The document is divided into two Sections and Appendix. Section I contains responses to comments issued on May 22, 1990, by EPA's Region 4 program office responsible for implementing the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Section 2 contains responses to comments issued on April 7, 1989, by EPA's program office responsible for implementing the Resource Conservation and Recovery Act (RCRA); these comments include issues raised by the TDHE. The Appendix contains the attachments referenced in a number of the responses. 35 refs.

  16. A demonstration of the applicability of implementing the enhanced Remedial Action Priority System (RAPS) for environmental releases

    SciTech Connect (OSTI)

    Whelan, G.; Droppo, J.G. Jr.; Strenge, D.L.; Walter, M.B.; Buck, J.W.

    1989-12-01

    The Remedial Action Priority System (RAPS) and the Multimedia Environmental Pollutant Assessment System (MEPAS) were developed to prioritize problems associated with potential releases of hazardous chemical and radioactive materials in a scientific and objective manner based on limited site information. This report documents the model testing efforts of the RAPS/MEPAS methodology for the atmospheric, surface water, groundwater, and exposure components. Comparisons are given of model outputs with measured data at three sites: the US Department of Energy's Mound facility in Ohio and Hanford facility in Washington, and a chromium-cadmium plating site in New York. The results show that the simulated magnitudes, spacial and temporal trends, and distributions of contaminants corresponded well with the measured data. 25 refs., 86 figs., 26 tabs.

  17. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect (OSTI)

    Siegrist, R.L.; Lowe, K.S.; Murdoch, L.D.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  18. Demonstration of physical separation/leaching methods for the remediation of heavy metals contaminated soils at small arms ranges. Final report, November 1995--September 1997

    SciTech Connect (OSTI)

    1997-09-01

    The US Army Environmental Center in partnership with the Naval Facilities Engineering Services Center and the US Army Engineer Waterways Experiment Station demonstrated Physical Separation/Leaching methods for the remediation of small arms range soils. The demonstration occurred at Fort Polk, Louisiana. The primary objective was to demonstrate and evaluate the technical capability and document the cost effectiveness of the physical separation/leaching family of technologies. The secondary objective was to identify technology sources, provide implementation guidance and transfer the technology to the user. After conducting a world-wide search, two vendors were selected to demonstrate two variations of the physical separation/leaching technologies. The first used a process based on acetic (weak) acid chemistry and the second based on hydrochloric (strong) acid chemistry. Following completion of the bench treatability studies, each vendor performed a full scale (5--10 tons per hour, 1000 tons total) demonstration of their respective technologies. This report documents the demonstration including site planning, lessons learned and recommendations for additional developmental work.

  19. Interim remedial action work plan for the cesium plots at Waste Area Grouping 13 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This remedial action work plan (RAWP) is issued under the Federal Facility Agreement to provide a basic approach for implementing the interim remedial action (IRA) described in Interim Record of Decision for the Oak Ridge National Laboratory Waste Area Grouping 13 Cesium Plots, Oak Ridge, Tennessee. This RAWP summarizes the interim record of decision (IROD) requirements and establishes the strategy for the implementation of the field activities. As documented in the IROD document, the primary goal of this action is to reduce the risk to human health and the environment resulting from current elevated levels of gamma radiation on the site and at areas accessible to the public adjacent to the site. The major steps of this IRA are to: Excavate cesium-contaminated soil; place the excavated soils in containers and transport to Waste Area Grouping (WAG) 6; and backfill excavated plots with clean fill materials. The actual remedial action will be performed by Department of Energy prime contractor, MK-Ferguson of Oak Ridge Company. Remediation of the cesium plots will require approximately 60 days to complete. During this time, all activities will be performed according to this RAWP and the applicable specifications, plans, and procedures referred to in this document. The IRA on WAG 13 will prevent a known source of cesium-contaminated soil from producing elevated levels of gamma radiation in areas accessible to the public, eliminate sources of contamination to the environment, and reduce the risks associated with surveillance and maintenance of the WAG 13 site.

  20. Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Annual Status Report for Fiscal Year 2006

    SciTech Connect (OSTI)

    R. P. Wells

    2007-05-09

    This report provides a status of the progress made in Fiscal Year 2006 on tasks identified in the Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Work Plan. Major accomplishments include: (1) groundwater sampling and review of the groundwater monitoring data, (2) installation of a Sitewide groundwater-level monitoring network, (3) update of the Groundwater Monitoring and Field Sampling Plan of Operable Unit 10-08, (4) re-evaluation of the risk at Site TSF-08, (5) progress on the Operable Unit 10-08 Sitewide Groundwater Model.

  1. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2 -- Appendix A: Characterization methods and data summary

    SciTech Connect (OSTI)

    1995-09-01

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at WAG 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The US Department of Energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used.

  2. Integration of biotechnology in remediation and pollution prevention activities

    SciTech Connect (OSTI)

    Strong-Gunderson, J.M.

    1996-02-01

    The North American Free Trade Agreement/North American Agreement on Environmental Cooperation provides a mechanism for an international collaboration between the US, Canada, and Mexico to jointly develop, modify, or refine technologies that remediate or protect the environment. These countries have a vested interest in this type of collaboration because contaminants do not respect the boundaries of a manufacturing site, region, city, state, or country. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) consists of a diverse group of individuals who address a variety of environmental issues. ESD is involved in basic and applied research on the fate, transport, and remediation of contaminants; environmental assessment; environmental engineering; and demonstrations of advanced remediation technologies. The remediation and protection of the environment includes water, air, and soils for organic, inorganic, and radioactive contaminants. In addition to remediating contaminated sites, research also focuses on life-cycle analyses of industrial processes and the production of green technologies. The author focuses this discussion on subsurface remediation and pollution prevention; however, the research activities encompass water, soil and air and many of the technologies are applicable to all environments. The discussion focuses on the integration of biotechnology with remediation activities and subsequently linking these biological processes to other remediation technologies.

  3. Toxic remediation

    DOE Patents [OSTI]

    Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.

    1994-01-01

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  4. Readiness review plan for the in situ vitrification demonstration of Seepage Pit 1 in Waste Area Grouping 7

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    A treatability study is planned that encompasses the application of in situ vitrification (ISV) to at least two segments of the Oak Ridge National Laboratory Seepage Pit I during the third quarter of fiscal year 1995. Before the treatability study can be initiated, the proposed activity must be subjected to an Operational Readiness Review (ORR). ORR is a structured methodology of determining readiness to proceed as outlined in Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration Waste Management Procedure ER/C-P1610, which provides Energy Systems organizations assurance that the work to be performed is consistent with management`s expectations and that the subject activity is ready to proceed safely. The readiness review plan provides details of the review plan overview and the scope of work to be performed. The plan also identifies individuals and position responsibilities for implementing the activity. The management appointed Readiness Review Board (RRB) has been identified. A Field Readiness Review Team (FRT), a management appointed multidisciplinary group, has been established (1) to evaluate the ISV treatability study, (2) to identify and assemble supporting objective evidences of the readiness to proceed, and (3) to assist the team leader in presenting the evidences to the RRB. A major component of RRB is the formulation of readiness review criteria months before the operation. A comprehensive readiness review tree (a positive logic tree) is included, which identifies the activities required for the development of the readiness criteria. The readiness review tree serves as a tool to prevent the omission of an item that could affect system performance. All deficiencies identified in the review will be determined as prestart findings and must be resolved before the project is permitted to proceed. The final approval of the readiness to proceed will be the decision of RRB.

  5. Innovative Vitrification for Soil Remediation

    SciTech Connect (OSTI)

    Hnat, James G.; Patten, John S.; Jetta, Norman W.

    1996-12-31

    Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

  6. DOE Selects Savannah River Remediation, LLC for Liquid Waste...

    Energy Savers [EERE]

    Savannah River Remediation, LLC is a limited liability company consisting of URS Washington Division; Babcock & Wilcox Technical Services Group, Inc.; Bechtel National, Inc.; CH2M ...

  7. The mission of the Remediation of Mercury and Industrial

    Office of Environmental Management (EM)

    ... Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative Technical Working Group DOE End-Users ITRC, CABs, regulators and stakeholders Universities, ...

  8. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    SciTech Connect (OSTI)

    R. P. Wells

    2006-09-19

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  9. Environmental Cleanup and Remediation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board Report Feature Stories What We Clean Up & Why TOP STORIES - highlights of our science, people, technologies close Environmental Remediation program completes legacy...

  10. Pinellas Remediation Agreement Summary

    Office of Environmental Management (EM)

    Legal Driver(s) CERCLA Atomic Energy Act of 1954, as amended Florida Air and Water Pollution Control Act Scope Summary Remediation of property adjacent to the former ...

  11. Demonstration & Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration & Deployment Plenary Presentation Brian Duff May 20, 2013 2 | Bioenergy Technologies Office Demonstration & Deployment Peer Review Plenary * Introduction to the ...

  12. Remedial action planning for Trench 1

    SciTech Connect (OSTI)

    Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J.; Greengard, T.

    1998-07-01

    The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site.

  13. Remedial design/remedial action strategy report

    SciTech Connect (OSTI)

    Dieffenbacher, R.G.

    1994-06-30

    This draft Regulatory Compliance Strategy (RCS) report will aid the ER program in developing and implementing Remedial Design/Remedial Action (RD/RA) projects. The intent of the RCS is to provide guidance for the implementation of project management requirements and to allow the implementation of a flexible, graded approach to design requirements depending on the complexity, magnitude, schedule, risk, and cost for any project. The RCS provides a functional management-level guidance document for the identification, classification, and implementation of the managerial and regulatory aspects of an ER project. The RCS has been written from the perspective of the ER Design Manager and provides guidance for the overall management of design processes and elements. The RCS does not address the project engineering or specification level of detail. Topics such as project initiation, funding, or construction are presented only in the context in which these items are important as sources of information or necessary process elements that relate to the design project phases.

  14. Technology development activities supporting tank waste remediation

    SciTech Connect (OSTI)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

  15. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  16. Interstate Technology & Regulatory Council (ITRC) Remediation...

    Office of Environmental Management (EM)

    Interstate Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance Interstate Technology & Regulatory Council (ITRC) Remediation ...

  17. Environmental Monitoring and Remediation Committee Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Monitoring and Remediation Committee Fiscal Year 2014 Work Plan Topics: ... More Documents & Publications Environmental Monitoring and Remediation Committee Fiscal ...

  18. Environmental Monitoring and Remediation Committee Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Monitoring and Remediation Committee Fiscal Year 2013 Work Plan Topics: ... More Documents & Publications Environmental Monitoring and Remediation Committee Fiscal ...

  19. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    SciTech Connect (OSTI)

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  20. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate

  1. Remedial Action Performed

    Office of Legacy Management (LM)

    Aliquippa Forge Site in Aliquippa, Pennsylvania Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 1996 CERTIFICATION DOCKE.~ FOR THE REMEDIAL ACTION PERFORMED AT THE ALIQUIPPA FORGE SITE IN ALIQUIPPA, PENNSYLVANIA NOVEMBER 1996 Prepared for . UNITED STATES DEPARTMENT OF ENERGY Oak Ridge Operations Office Under Contract No. DE-AC05-9 1 OR2 1949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES v . . . . . . . . . . .

  2. Remedial Action Performed

    Office of Legacy Management (LM)

    Baker and Williams Warehouses Site in New York, New York, 7997 - 7993 Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 7 995 CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE BAKER AND WILLIAMS WAREHOUSES SITE IN NEW YORK, NEW YORK, 1991-1993 NOVEMBER 1995 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC05-910R21949 BY Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 __

  3. Remedial Action Performed

    Office of Legacy Management (LM)

    Alba Craft Laboratory and Vicinity Properties Site in Oxford, Ohio C Department of Energy Former Sites Restoration Division Oak Ridge Operations Office January 1997 $$@T Op% 3 @!B . i~d!l Ab Printed on recycled/recyclable paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE FORMER ALBA CRAFT LABORATORY AND VICINITY PROPERTIES SITE IN OXFORD, OHIO JANUARY 1997 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC0591 OR2 1949 Bechtel

  4. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G.

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  5. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)] [and others

    1996-03-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  6. Arid sites stakeholder participation in evaluating innovative technologies: VOC-Arid Site Integrated Demonstration

    SciTech Connect (OSTI)

    Peterson, T.S.; McCabe, G.H.; Brockbank, B.R.

    1995-05-01

    Developing and deploying innovative environmental cleanup technologies is an important goal for the U.S. Department of Energy (DOE), which faces challenging remediation problems at contaminated sites throughout the United States. Achieving meaningful, constructive stakeholder involvement in cleanup programs, with the aim of ultimate acceptance of remediation decisions, is critical to meeting those challenges. DOE`s Office of Technology Development sponsors research and demonstration of new technologies, including, in the past, the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID), hosted at the Hanford Site in Washington State. The purpose of the VOC-Arid ID has been to develop and demonstrate new technologies for remediating carbon tetrachloride and other VOC contamination in soils and ground water. In October 1994 the VOC-Arid ID became a part of the Contaminant Plume Containment and Remediation Focus Area (Plume Focus Area). The VOC Arid ID`s purpose of involving stakeholders in evaluating innovative technologies will now be carried on in the Plume Focus Area in cooperation with Site Technology Coordination Groups and Site Specific Advisory Boards. DOE`s goal is to demonstrate promising technologies once and deploy those that are successful across the DOE complex. Achieving that goal requires that the technologies be acceptable to the groups and individuals with a stake in DOE facility cleanup. Such stakeholders include groups and individuals with an interest in cleanup, including regulatory agencies, Native American tribes, environmental and civic interest groups, public officials, environmental technology users, and private citizens. This report documents the results of the stakeholder involvement program, which is an integral part of the VOC-Arid ID.

  7. Remedial Action Assessment System

    Energy Science and Technology Software Center (OSTI)

    1997-02-01

    RAAS1.1 is a software-based system designed to assist remediation professionals at each stage of the environmental analysis process. RAAS1.1 provides a template for environmental restoration analysis, and provides the user with key results at each step in the analysis. RAAS1.1 assists the user to develop a coherent and consistent site description, estimate baseline and residual risk to public health from the contaminated site, identify applicable environmental restoration technologies, and formulate feasible remedial response alternatives. Inmore » addition, the RAAS1.1 methodology allows the user to then assess and compare those remedial response alternatives across EPA criteria, including: compliance with objectives; short-term and long-term effectiveness; extent of treatment; and implementability of the technologies. The analytic methodology is segmented and presented in a standardized, concise, easy-to-use format that can be viewed on the personal computer screen, saved and further manipulated, or printed for later use. Each screen and analytic step is accessed via a user-friendly personal computer graphical interface. Intuitively-designed buttons, menus, and lists help the user focus in on the particular information and analysis component of interest; the corresponding results are presented in a format that facilitates their use in decision-making.« less

  8. Optimizing multiphase aquifer remediation using ITOUGH2

    SciTech Connect (OSTI)

    Finsterle, S.; Pruess, K.

    1994-06-01

    The T2VOC computer model for simulating the transport of organic chemical contaminants in non-isothermal multiphase systems has been coupled to the ITOUGH2 code which solves parameter optimization problems. This allows one to use nonlinear programming and simulated annealing techniques to solve groundwater management problems, i.e. the optimization of multiphase aquifer remediation. This report contains three illustrative examples to demonstrate the optimization of remediation operations by means of simulation-minimization techniques. The code iteratively determines an optimal remediation strategy (e.g. pumping schedule) which minimizes, for instance, pumping and energy costs, the time for cleanup, and residual contamination. While minimizing the objective function is straightforward, the relative weighting of different performance measures--e.g. pumping costs versus cleanup time versus residual contaminant content--is subject to a management decision process. The intended audience of this report is someone who is familiar with numerical modeling of multiphase flow of contaminants, and who might actually use T2VOC in conjunction with ITOUGH2 to optimize the design of aquifer remediation operations.

  9. Breakout Group 4: Early Markets and Demonstrations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ragsdale Cyvolt Energy System Pete Devlin ... Goals - Get something like 1000 units in use as quickly ... between (for instance) a diesel generator at Pep Boys and a fuel ...

  10. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop Augusta, GA, August 30, 2005 Funding and Duration * Timeline - Project start date: 7/20/05 - Project end date: 7/19/09 - Percent complete: 0.1% * Budget: Total project funding: 300k/yr * DOE share: 75% * Contractor share: 25% * Barriers - Hydrogen embrittlement of pipelines and remediation (mixing with water

  11. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect (OSTI)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  12. Waste Contaminants at Military Bases Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-04

    The Waste Contaminants at Military Bases Working Group has screened six prospective demonstration projects for consideration by the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT). These projects include the Kirtland Air Force Base Demonstration Project, the March Air Force Base Demonstration Project, the McClellan Air Force Base Demonstration Project, the Williams Air Force Base Demonstration Project, and two demonstration projects under the Air Force Center for Environmental Excellence. A seventh project (Port Hueneme Naval Construction Battalion Center) was added to list of prospective demonstrations after the September 1993 Working Group Meeting. This demonstration project has not been screened by the working group. Two additional Air Force remediation programs are also under consideration and are described in Section 6 of this document. The following information on prospective demonstrations was collected by the Waste Contaminants at Military Bases Working Group to assist the DOIT Committee in making Phase 1 Demonstration Project recommendations. The remainder of this report is organized into seven sections: Work Group Charter`s mission and vision; contamination problems, current technology limitations, and institutional and regulatory barriers to technology development and commercialization, and work force issues; screening process for initial Phase 1 demonstration technologies and sites; demonstration descriptions -- good matches;demonstration descriptions -- close matches; additional candidate demonstration projects; and next steps.

  13. Buried Waste Integrated Demonstration Plan

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  14. GASIS demonstration

    SciTech Connect (OSTI)

    Vidas, E.H.

    1995-04-01

    A prototype of the GASIS database and retrieval software has been developed and is the subject of this poster session and computer demonstration. The prototype consists of test or preliminary versions of the GASIS Reservoir Data System and Source Directory datasets and the software for query and retrieval. The prototype reservoir database covers the Rocky Mountain region and contains the full GASIS data matrix (all GASIS data elements) that will eventually be included on the CD-ROM. It is populated for development purposes primarily by the information included in the Rocky Mountain Gas Atlas. The software has been developed specifically for GASIS using Foxpro for Windows. The application is an executable file that does not require Foxpro to run. The reservoir database software includes query and retrieval, screen display, report generation, and data export functions. Basic queries by state, basin, or field name will be assisted by scrolling selection lists. A detailed query screen will allow record selection on the basis of any data field, such as depth, cumulative production, or geological age. Logical operators can be applied to any-numeric data element or combination of elements. Screen display includes a {open_quotes}browse{close_quotes} display with one record per row and a detailed single record display. Datasets can be exported in standard formats for manipulation with other software packages. The Source Directory software will allow record retrieval by database type or subject area.

  15. Intelligent Unmanned Monitoring of Remediated Sites

    SciTech Connect (OSTI)

    Emile Fiesler, Ph.D.

    2001-06-01

    During this Phase I project, IOS demonstrated the feasibility of combining digital signal processing and neural network analysis to analyze spectral signals from pure samples of several typical contaminants. We fabricated and tested a prototype system by automatically analyzing Raman spectral data taken in the Vadose zone at the 321 M site in the M area of DOE's Savannah River Site in South Carolina. This test demonstration proved the ability of IOS's technology to detect the target contaminants, tetrachloroethylene (PCE) and trichloroethylene (TCE), in isolation, and to detect the spectra of these contaminants in real-world noisy samples taken from a mixture of materials obtained from this typical remediation target site.

  16. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M.; Crapse, B.; Cowan, S.

    1998-01-21

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  17. Savannah River Remediation, College Create Job Opportunities...

    Office of Environmental Management (EM)

    Remediation, College Create Job Opportunities for Graduates Savannah River Remediation, ... "With ongoing missions at the Savannah River Site and construction at Plant Vogtle and ...

  18. Savannah River Remediation (SRR) Expanded Staff Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River Remediation Delivering the Mission Dave Olson President and Project Manager ... Liquid Waste Operations contractor Savannah River Remediation LLC * Began work in ...

  19. Environmental Monitoring, Remediation, and Surveillance Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring, Remediation, and Surveillance Committee Fiscal Year 2012 Work Plan Environmental Monitoring, Remediation, and Surveillance Committee Fiscal Year 2012 Work Plan Topics: ...

  20. Environmental Monitoring and Remediation Committee Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Monitoring and Remediation Committee Fiscal Year 2016 Work Plan Topics: ... Environmental Monitoring and Remediation Committee Fiscal Year 2015 Work Plan Waste ...

  1. Environmental Management and Remediation Committee Roster | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management and Remediation Committee Roster Environmental Management and Remediation Committee Roster List of NNMCAB members that participate on the Environmental Monitoring and ...

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 The meeting was called to order by Jonathan Sanwald, HASQARD Focus Group Chair at 2:10 PM on April 19, 2016 in Conference Room 308 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (Mission Support Alliance (MSA)), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Marcus Aranda (Wastren Advantage Inc. Wastren Hanford Laboratory (WHL)), Joe Archuleta (CH2M HILL Plateau Remediation Company

  3. Dynamic Underground Stripping Demonstration Project

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D. ); udel, K. . Dept. of Mechanical Engineering)

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92.

  4. Response Resources Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interoperability of Demand Response Resources Demonstration in NY Final Technical Report Award Number: DE-FC26-08NT02869 Project Type: Regional Demonstration Principal Investigator: Andre Wellington, Project Manager, Smart Grid Implementation Group Recipient: Consolidated Edison Company of New York, Inc. Team members: Innoventive Power and Verizon Communications Consolidated Edison Company of New York, Inc. Taxpayer ID Number: 13-5009340 Organizational DUNS: 00-698-2359 4 Irving Place New York,

  5. Summary Protocol: Identification, Characterization, Designation, Remedial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Action, Certification | Department of Energy Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification (January 1986) Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification (January 1986) (2.36 MB) More Documents &

  6. ICDF Complex Remedial Action Report

    SciTech Connect (OSTI)

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  7. FOAM: NOVEL DELIVERY TECHNOLOGY FOR REMEDIATION OF VADOSE ZONE ENVIRONMENTS

    SciTech Connect (OSTI)

    Jansik, Danielle P.; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Wu, Yuxin; Foote, Martin; Zhang, Z. F.; Hubbard, Susan

    2011-07-05

    , which readily penetrate low permeability zones. Although surfactant foams have been utilized for subsurface mobilization efforts in the oil and gas industry, so far, the concept of using foams as a delivery mechanism for transporting remedial amendments into deep vadose zone environments to stabilize metal and long-lived radionuclide contaminants has not been explored. Foam flow can be directed by pressure gradients, rather than being dominated by gravity; and, foam delivery mechanisms limit the volume of water (< 5% vol.) required for remedy delivery and emplacement, thus mitigating contaminant mobilization. We will present the results of a numerical modeling and integrated laboratory- / intermediate-scale investigation to simulate, develop, demonstrate, and monitor (i.e. advanced geophysical techniques and advanced predictive biomarkers) foam-based delivery of remedial amendments to remediate metals and radionuclides in vadose zone environments.

  8. Environmental Response to Remedial Actions at the Weldon Spring Site--An Environmental Success Story

    SciTech Connect (OSTI)

    Meier, J. A.; Welton, T. D.

    2002-02-27

    Environmental remediation activities have been ongoing at the Weldon Spring Site for over a decade, beginning with small interim response actions and culminating in completion of surface cleanup as represented by closure of the 17 hectare (42-acre) on-site disposal cell. As remedial actions have incrementally been accomplished, the occurrence of site-related contaminants in on and off-site environmental media have effectively been reduced. The DOE-WSSRAP has demonstrated success through the effective reduction or elimination of site related water and airborne contaminants along multiple migration pathways. This paper briefly describes the remedial measures affected at Weldon Spring, and quantifies the environmental responses to those remedial measures.

  9. Salmon Site Remedial Investigation Report, Exhibit 4

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  10. Salmon Site Remedial Investigation Report, Exhibit 2

    SciTech Connect (OSTI)

    USDOE NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  11. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  12. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  13. Remedial Action Contacts Directory - 1997

    SciTech Connect (OSTI)

    1997-05-01

    This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

  14. Innovative mathematical modeling in environmental remediation

    SciTech Connect (OSTI)

    Yeh, Gour T.; Gwo, Jin Ping; Siegel, Malcolm D.; Li, Ming-Hsu; Fang, Yilin; Zhang, Fan; Luo, Wensui; Yabusaki, Steven B.

    2013-05-01

    There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models

  15. Remediating Sellafield - A New Focus for the Site

    SciTech Connect (OSTI)

    Baldwin, N. D.

    2003-02-24

    The structure of the ownership and management of nuclear liabilities on civil sites in the United Kingdom is undergoing fundamental change. The UK Government will take responsibility for the liabilities on the UKAEA, BNFL Sellafield and Capenhurst sites and the Magnox Generation sites. When fully implemented the accountability for long term strategy will rest with the new Government Nuclear Decommissioning Authority (NDA), and contracts will be placed on M&O contractors to manage the site and implement the liabilities discharge plans. At Sellafield whilst the commercial reprocessing and MOX contracts continue, it is clear that the overall focus of the site has changed to remediation. Until the NDA is established the task of undertaking the planning is the responsibility of BNFL. To address this task the Site Remediation Team has been established. The production of the Sellafield Lifecycle Baseline Plan requires the existing long term decommissioning and waste management plans (primarily produced for provisioning purposes) together with several other specific strategies to be combined and developed into a coordinated and optimized plan for the remediation of the Sellafield Site, recognizing the ongoing reprocessing, MOX manufacture and long term fuel storage activities. An important principle within the plan is to achieve early hazard reduction whilst demonstrating value for money. The paper will address the scale of the remediation challenge and the process being followed to develop the necessary strategy. The paper will appeal to those involved in managing remediation of large, complex and interdependent nuclear sites.

  16. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  17. Buried waste integrated demonstration FY 94 deployment plan

    SciTech Connect (OSTI)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

  18. Galaxy groups

    SciTech Connect (OSTI)

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ?} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of ?{sub matter}?0.15 in a flat topology, with a 68% probability of being less than 0.44.

  19. X-701B Groundwater Remedy Portsmouth Ohio

    Office of Environmental Management (EM)

    X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I-

  20. Attenuation Based Remedies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attenuation Based Remedies Attenuation Based Remedies The mission of the Attenuation Based Remedies in the Subsurface Applied Field Research Initiative is to seek holistic solutions to DOE's groundwater contamination problems that consider not only the technical aspects of a waste site, but regulator, stakeholder, and end-user concerns as well. Attenuation Based Remedies (3.23 MB) More Documents & Publications CX-014694: Categorical Exclusion Determination Chairs Meeting - June 2011

  1. Toxic Remediation System And Method

    DOE Patents [OSTI]

    Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.

    1996-07-23

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  2. Navajo Electrification Demonstration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Plans * Navajo Electrification Demonstration Program -Video OBJECTIVES OBJECTIVES " ... Navajo Electrification Demonstration Navajo Electrification Demonstration Program Program ...

  3. Remediation of oil field wastes

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.

    1990-01-01

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  4. Remediated Nitrate Salt Drums Background

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Providing Additional Pressure Relief to the Remediated Nitrate Salt Drums Background After the radiological event on February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), Department of Energy (DOE) scientists from several national laboratories conducted extensive experiments and modeling studies to determine what caused the drum to breach. These investigations indicated that an incompatible mixture of nitrate salts and an organic absorbent created the conditions that resulted in an

  5. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184

    SciTech Connect (OSTI)

    Clayton, Christopher; Kothari, Vijendra; Starr, Ken; Widdop, Michael; Gillespie, Joey

    2012-02-26

    The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program:  Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns.  DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk.  DOE must continue to maintain constructive relationships

  6. DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract at its Hanford Site | Department of Energy CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site June 19, 2008 - 1:29pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that CH2M Hill Plateau Remediation Company has been selected as the plateau remediation contractor for DOE's Hanford Site in southeastern Washington

  7. HASQARD Focus Group - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting Wastren Advantage, Inc. HASQARD Focus Group Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Analytical Services HASQARD Focus Group Bechtel National, Inc. Washington River Protection Solutions HASQARD Focus Group Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size HASQARD Document HASQARD

  8. Process for Transition of Responsibilities for Formerly Utilized Sites Remedial Action Program Sites from the U.S. Army Corps of Engineers to the U.S. Department of Energy for Long-Term Surveillance and Maintenance

    SciTech Connect (OSTI)

    Clayton, C.; Widdop, M.

    2006-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is the long-term custodian of sites remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The U.S. Army Corps of Engineers (USACE) is responsible for characterization, assessment, remedy selection, and remedial action of FUSRAP sites. Site responsibilities are transferred from USACE to DOE-LM when the implemented remedy is demonstrated to be functioning as designed. Coordination of site transfer follows prescribed processes to ensure that DOE acquires the knowledge and information to maintain the site remedy and site protectiveness. (authors)

  9. Buried Waste Integrated Demonstration Plan. Revision 1

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  10. Portsmouth Remedial Actions Documents | Department of Energy

    Energy Savers [EERE]

    Remedial Actions Documents Portsmouth Remedial Actions Documents Remedial Action documents for: Portsmouth Site Process Buildings and Complex Facilities D&D Decision Portsmouth Site Site-Wide Waste Disposition Decision Proposed Plan for the Site-wide Waste Disposition Evaluation Project (5.76 MB) Proposed Plan for the Process Buildings and Complex Facilities D&D Evaluation Project (1.66 MB) RI/FS Report for the Site-Wide Waste Disposition Evaluation Project for Portsmouth incl.

  11. Tank waste remediation systems technical baseline database

    SciTech Connect (OSTI)

    Porter, P.E.

    1996-10-16

    This document includes a cassette tape that contains Hanford generated data for the Tank Waste Remediation Systems Technical Baseline Database as of October 09, 1996.

  12. Environmental Restoration and Performance-Based Remediation....

    Broader source: Energy.gov (indexed) [DOE]

    Policy Flash Environmental Restoration and Performance-Based Remediation. . . More Documents & Publications Oversight of Performance-based Contracts CRAD, Performance-Based...

  13. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  14. Environmental Monitoring and Remediation Committee Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Monitoring and Remediation Committee Fiscal Year 2015 Work Plan Topics: ... More Documents & Publications Waste Management Committee Fiscal Year 2015 Work Plan ...

  15. Recommendation 192: Comments on Remediation Effectiveness Report

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendations and Comments on the Draft 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation.

  16. Environmental Remediation program completes legacy mercury cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories Legacy slope-side cleanup Environmental Remediation program completes legacy mercury cleanup near Smith's Marketplace Los Alamos National Laboratory performed a ...

  17. Environmental Monitoring and Remediation Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Monitoring and Remediation Committee Environmental Monitoring and Remediation Committee Committee Meeting at the NNCMAB Office in Pojoaque Committee Meeting at the NNCMAB Office in Pojoaque Environmental Monitoring and Remediation Committee Mission Statement: The NNMCAB Environmental Monitoring & Remediation (EM&R) Committee provides the citizens' perspective to the Department of Energy (DOE) on current and future environmental remediation activities resulting from

  18. Manufacturing Demonstration Facility

    Energy Savers [EERE]

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  19. Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation

    SciTech Connect (OSTI)

    1994-09-01

    The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

  20. Lasagna{trademark} soil remediation

    SciTech Connect (OSTI)

    1996-04-01

    Lasagna{trademark} is an integrated, in situ remediation technology being developed which remediates soils and soil pore water contaminated with soluble organic compounds. Lasagna{trademark} is especially suited to sites with low permeability soils where electroosmosis can move water faster and more uniformly than hydraulic methods, with very low power consumption. The process uses electrokinetics to move contaminants in soil pore water into treatment zones where the contaminants can be captured and decomposed. Initial focus is on trichloroethylene (TCE), a major contaminant at many DOE and industrial sites. Both vertical and horizontal configurations have been conceptualized, but fieldwork to date is more advanced for the vertical configuration. Major features of the technology are electrodes energized by direct current, which causes water and soluble contaminants to move into or through the treatment layers and also heats the soil; treatment zones containing reagents that decompose the soluble organic contaminants or adsorb contaminants for immobilization or subsequent removal and disposal; and a water management system that recycles the water that accumulates at the cathode (high pH) back to the anode (low pH) for acid-base neutralization. Alternatively, electrode polarity can be reversed periodically to reverse electroosmotic flow and neutralize pH.

  1. Environmental Monitoring, Remediation, and Surveillance Committee Fiscal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Year 2012 Work Plan | Department of Energy Monitoring, Remediation, and Surveillance Committee Fiscal Year 2012 Work Plan Environmental Monitoring, Remediation, and Surveillance Committee Fiscal Year 2012 Work Plan Topics: Groundwater Surface water Consent Order EMSR-FY12-WP - September 1, 2011 (128.63

  2. Tank waste remediation system compensatory measure removal

    SciTech Connect (OSTI)

    MILLIKEN, N.J.

    1999-05-18

    In support of Fiscal Year 1998 Performance Agreement TWR1.4.3, ''Replace Compensatory Measures,'' the Tank Waste Remediation System is documenting the completion of field modifications supporting the removal of the temporary exemptions from the approved Tank Waste Remediation System Technical Safety Requirements (TSRs), HNF-SD-WM-TSR-006. These temporary exemptions or compensatory measures expire September 30, 1998.

  3. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  4. Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

    2006-08-07

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

  5. Risk analysis of remediation technologies for a DOE facility. Master`s thesis

    SciTech Connect (OSTI)

    Wilson, H.A.

    1998-03-01

    The Department of Energy is responsible for selecting a remediation technology to cleanup the Waste Area Group (WAG) 6 site at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. WAG 6 is contaminated with an uncertain amount of trichloroethylene (TCE) and technetium-99 (Tc-99). Selecting a remediation technology involves a certain degree of risk because many of these technologies are new or proven only for a specific type of contaminant or a particular set of site conditions. Differences between contaminant type and site conditions are enough to make the performance of a remediation technology uncertain. This research identifies the technological risks of two remediation technologies: Dynamic Underground Stripping (DUS) and In Situ Chemical Oxidation (ISCO). Risk is defined as the likelihood of undesirable events occurring during the implementation of a technology at WAG 6.

  6. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    SciTech Connect (OSTI)

    Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

    2012-09-28

    quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.

  7. Dynamic underground stripping demonstration project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-04-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution.

  8. Remediated Nitrate Salt Drums Storage at Los Alamos National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory As a part of its national security ...

  9. Notice of Availability of the Remediation of the Moab Uranium...

    Office of Environmental Management (EM)

    ... DEPARTMENT OF ENERGY Remediation of the Moab Uranium Mill Tailings Final Environmental ... the availability of the Remediation of the Moab Uranium Mill Tailings Final Environmental ...

  10. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and ... Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management ...

  11. Long-Term Surveillance and Maintenance Requirements for Remediated...

    Energy Savers [EERE]

    Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites Long-Term ...

  12. Voluntary Protection Program Onsite Review, Savannah River Remediation...

    Office of Environmental Management (EM)

    River Remediation, Llc, Liquid Waste Contract, Savannah River Site - November 2014 Voluntary Protection Program Onsite Review, Savannah River Remediation, Llc, Liquid Waste ...

  13. Record of Decision for the Tank Waste Remediation System, Hanford...

    Office of Environmental Management (EM)

    DEPARTMENT OF ENERGY Record of Decision for the Tank Waste Remediation System, Hanford ... of radioactive, hazardous, and mixed waste within the Tank Waste Remediation System ...

  14. Final Environmental Impact Statement for the Tank Waste Remediation...

    Office of Environmental Management (EM)

    TITLE: Final Environmental Impact Statement for the Tank Waste Remediation System, Hanford ... related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for ...

  15. Technology Demonstration Partnership Policy

    Broader source: Energy.gov [DOE]

    This City Council memorandum establishes a framework for engaging in and evaluating demonstration partnerships with the goal of developing, testing, and demonstrating emerging technologies, product, and service innovations.

  16. Demonstration & Market Transformation

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration & Market Transformation Peer Review Break-Out Presentation Jim Spaeth Program Manager Demonstration & Market Transformation March 23, 2015 2 | Bioenergy Technologies ...

  17. Radiation Emergency Procedure Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dressing To Prevent the Spread of Radioactive Contamination This demonstration shows how ... Preparing The Area This demonstration shows basic steps you can take to gather equipment ...

  18. Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work

    SciTech Connect (OSTI)

    D. E. Shanklin

    2007-07-25

    This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

  19. In Situ Remediation Integrated Program, Evaluation and assessment of containment technology

    SciTech Connect (OSTI)

    Gerber, M.A.; Fayer, M.J.

    1994-04-01

    The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP`s Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE`s site restoration activities.

  20. LIMB Demonstration Project Extension and Coolside Demonstration

    SciTech Connect (OSTI)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  1. In Situ Remediation Integrated Program: FY 1994 program summary

    SciTech Connect (OSTI)

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  2. Newberry EGS Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    Newberry EGS Demonstration Susan Petty, PI AltaRock Energy EGS Demonstration Projects Project Officer: Lauren Boyd Total Project Funding: 43.8 m April 22, 2013 This presentation ...

  3. List of Contractors to Support Anthrax Remediation

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Lesperance, Ann M.

    2010-05-14

    This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

  4. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect (OSTI)

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  5. Remediation of Mercury and Industrial Contaminants

    Office of Energy Efficiency and Renewable Energy (EERE)

    The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

  6. Soil remediation interim measures/interim remedial action (IM/IRA) for Rocky Flats Plant

    SciTech Connect (OSTI)

    Bulgar, L.; Law, J.; Buddy, M.

    1994-12-31

    The accelerated Cleanup Program for Rocky Flats Plant includes a number of subprograms which are being implemented to expedite remediation at the facility. One of these is the Soil Remediation IM/IRA. This paper discusses the objectives, scope, and approach for the Soil Remediation IM/IRA program. The major features of this program are addressed, along with a discussion of its potential benefits relative to the conventional RCRA/CERCLA remediation process. The paper also provides information on the problems encountered and decisions made during the planning and development of this program, its current status, and future plans.

  7. Consolidated Online Data Management Strategy in Support of Environmental Remediation Activities at the Dupont Chambers Works Formerly Utilized Sites Remedial Action Program (Fusrap) Site

    SciTech Connect (OSTI)

    Nelson, K.A.; Desai, N.B.; Samus, J.E.; Bock, G.O.

    2007-07-01

    The U.S. Army Corps of Engineers (USACE) has developed and implemented an innovative online data management application in support of site characterization and remediation activities at the DuPont Chambers Works Formerly Utilized Sites Remedial Action Program (FUSRAP) Site. The password-protected, web-based application was implemented to centralize project data, facilitate project communications, and provide a large and diverse group of project team members with access to the data and analytical tools they need to efficiently and effectively manage the ongoing characterization and remediation efforts. Centralizing resources using the online application and web-based strategy streamlines data access and communications, allowing the team to effectively keep the project on track while reducing the costs associated with data requests, data duplication, document review and retrieval, software requirements, and lapses in communication or data transfer. (authors)

  8. Strategy Guideline. Demonstration Home

    SciTech Connect (OSTI)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  9. Strategy Guideline: Demonstration Home

    SciTech Connect (OSTI)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  10. Data surety demonstrations

    SciTech Connect (OSTI)

    Draelos, T.; Harris, M.; Herrington, P.; Kromer, D.

    1998-08-01

    The use of data surety within the International Monitoring System (IMS) is designed to offer increased trust of acquired sensor data at a low cost. The demonstrations discussed in the paper illustrate the feasibility of hardware authentication for sensor data and commands in a retrofit environment and a new system and of the supporting key management system. The individual demonstrations which are summarized in the paper are: (1) demonstration of hardware authentication for communication authentication in a retrofit environment; (2)demonstration of hardware authentication in a new system; and (3) demonstration of key management for sensor data and command authentication.

  11. An Electronic Encyclopedia of Remedial Options

    Energy Science and Technology Software Center (OSTI)

    1992-10-01

    REOPT has been developed by Pacific Northwest Laboratory to provide information about remedial action technologies, including application and regulatory information for over 700 contaminants. REOPT is a user-friendly personal computer program and database that functions like an electronic encyclopedia, sorting and presenting information to quickly familiarize engineers and planners with available remediation technologies. The system will help users focus quickly on the remediation technologies most likely to be effective for a particular site and problem,more » and presents concise, easy-to-use information about those technologies, helping users identify the key factors and constraints to consider in evaluating the use of each technology. REOPT contains information on approximately 90 established (i.e., proven) remediation technologies that could potentially be used for DOE waste-site cleanup. REOPT also contains auxiliary information about hazardous and radioactive contaminants and the federal regulations that govern their disposal. REOPT contains data for approximately 90 remedial action technologies, divided into categories according to the portion of a remedial action (i.e., containment, treatment, disposal, etc.) that they relate to or perform. Technologies are also classified according to the contaminants to which they may be applied. Contaminants may be selected from a list of approximately 700 in ten organic and four inorganic categories. The information for each technology is organized into the broad categories of descriptive information, application information, and additional information sources; these are then subdivided to allow the user to access more specific information about the technology.« less

  12. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  13. Activities of HPS standards committee in environmental remediation

    SciTech Connect (OSTI)

    Stencel, J.R.; Chen, S.Y.

    1994-12-31

    The Health Physics Society (HPS) develops American National Standards in the area of radiation protection using methods approved by the American National Standards Institute (ANSI). Two of its sections, Environmental Health Physics and Contamination Limits, have ongoing standards development which are important to some environmental remediation efforts. This paper describes the role of the HPS standards process and indicates particular standards under development which will be of interest to the reader. In addition, the authors solicit readers to participate in the voluntary standards process by either joining active working groups (WG) or suggesting appropriate and relevant topics which should be placed into the standards process.

  14. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.

  15. CROWtm FIELD DEMONSTRATION WITH BELL LUMBER AND POLE

    SciTech Connect (OSTI)

    Lyle A. Johnson, Jr.; L. John Fahy

    2002-03-01

    In 1990, efforts were initiated to implement an in-situ remediation project for the contaminated aquifer at the Bell Lumber and Pole Company (Bell Pole) site in New Brighton, Minnesota. The remediation project involves the application of the Contained Recovery of Oily Waste (CROW{trademark}) process, which consists of hot-water injection to displace and recover nonaqueous phase liquids. While reviewing the site evaluation information, it became apparent that better site characterization would enhance the outcome of the project. Additional coring indicated that the areal extent of the contaminated soils was approximately eight times greater than initially believed. Because of the uncertainties, in 1993, a pilot test was conducted that provided containment and organic recovery information that assisted in the design of the full-scale CROW process demonstration. After reviewing the cost ramifications of implementing the full-scale CROW field demonstration, Bell Pole approached Western Research Institute (WRI) with a request for a staged, sequential site remediation. Bell Pole's request for the change in the project scope was prompted by budgetary constraints. Bell Pole felt that although a longer project might be more costly, by extending the length of the project, the yearly cost burden would be more manageable. After considering several options, WRI recommended implementing a phased approach to remediate the contaminated area. Phase 1 involves a CROW process demonstration to remediate the upgradient one-third of the contaminated area, which contains the largest amount of free organic material. The Bell Pole Phase 1 CROW demonstration began in mid-1995 and was operated until January 2001. The operation of the demonstration was satisfactory, although at less than the design conditions. During the demonstration, 25,502,902 gal of hot water was injected and 83,155 gal of organics was transferred to the storage tank. During operations more than 65% of the produced

  16. In Situ Remediation Integrated Program: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  17. Commercial office daylighting demonstration

    SciTech Connect (OSTI)

    Pike, T.F.; Rizzuto, J.

    1981-01-01

    The results of a commerical office photoelectrically controlled, dimmable lighting demonstration in New York City have shown that daylighting can be used to conserve energy and limit peak electrical demand. In this demonstration, three photo-electrically controlled dimming systems were compared side-by-side to test the concept of independent dimming of banks of luminaires controlled with individual photocells.

  18. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program - 12184

    SciTech Connect (OSTI)

    Clayton, Christopher; Kothari, Vijendra; Starr, Ken; Widdop, Michael; Gillespie, Joey

    2012-07-01

    The U.S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS and M) program: - Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. - DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. - DOE must continue to maintain constructive relationships with

  19. ICDF Complex Remedial Action Work Plan

    SciTech Connect (OSTI)

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  20. SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION

    SciTech Connect (OSTI)

    Kohn, J.; Nichols, R.; Looney, B.

    2011-05-12

    The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

  1. A process for ensuring regulatory compliance at the INEL`s buried waste integrated demonstrations

    SciTech Connect (OSTI)

    Cannon, P.G.; Watson, L.R.; Blacker, P.B.

    1993-03-01

    The Buried Waste Integrated Demonstration Program is funded by the Department of Energy Office of Technology Development. The mission of this Integrated Demonstration is to identify, evaluate, and demonstrate a suite of innovative technologies for the remediation of radioactive and hazardous waste buried throughout the DOE complex between 1950 and 1970. The program approach to development of a long-range strategy for improving buried waste remediation capabilities is to combine systems analysis with already identified remediation needs for DOE complex buried waste. The systems analysis effort has produced several configuration options (a top-level block diagram of a cradle-to-grave remediation system) capable of remediating the transuranic-contaminated waste pits and trenches at the Idaho National Engineering Laboratory. Technologies for demonstration are selected using three criteria: (a) the ability to satisfy a specific buried waste need, (b) the ability to satisfy functional and operational requirements defined for functional sub-elements in a configuration option, and (c) performance against Comprehensive Environmental Restoration and Compensation Liability Act selection criteria, such as effectiveness, implementability, and cost. Early demonstrations experienced problems with missed requirements, prompting the Buried Waste Integrated Demonstration Program Office to organize a Corrective Action Team to identify the cause and recommend corrective actions. The result of this team effort is the focus of this paper.

  2. Tank Waste Remediation System decisions and risk assessment

    SciTech Connect (OSTI)

    Johnson, M.E.

    1994-09-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize the highly radioactive Hanford Site tank wastes and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost effective manner. Additionally, the TWRS conducts, as part of this mission, resolution of safety issues associated with the wastes within the 177 underground radioactive waste tanks. Systems engineering principles are being applied to determine the functions and establish requirements necessary for accomplishing the TWRS mission (DOE 1994 draft). This systematic evaluation of the TWRS program has identified key decisions that must be executed to establish mission scope, determine requirements, or select a technical solution for accomplishing identified functions and requirements. Key decisions identified through the systematic evaluation of the TWRS mission are presented in this document. Potential alternative solutions to each decision are discussed. After-discussion and evaluation of each decision with effected stakeholder groups, the US Department of Energy (DOE) will select a solution from the identified alternatives for implementation. In order to proceed with the development and execution of the tank waste remediation program, the DOE has adopted a planning basis for several of these decisions, until a formal basis is established. The planning bases adopted by the DOE is continuing to be discussed with stakeholder groups to establish consensus for proceeding with proposed actions. Technical and programmatic risks associated with the planning basis adopted by the DOE are discussed.

  3. Core Drilling Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  4. Demonstration & Market Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration & Market Transformation Peer Review Break-Out Presentation Jim Spaeth Program Manager Demonstration & Market Transformation March 23, 2015 2 | Bioenergy Technologies Office DMT Portfolio Peer Review * Introduction of the DMT Peer Review Team * Peer Review Process - Ground rules for review process * DMT Approach to Project Management - Budget Periods * Changes Made in Response to the 2013 Peer Review - Lessons Learned / Best Practices * Portfolio Overview - FOA Status and

  5. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  6. Remediation of Soil at Nuclear Sites

    SciTech Connect (OSTI)

    Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

    2000-03-01

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste.

  7. Remediation of soil at nuclear sites

    SciTech Connect (OSTI)

    R. Holmes; C. Boardman; R. Robbins; R. Fox; B. J. Mincher

    2000-02-28

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

  8. How to accelerate the Fernald remediation

    SciTech Connect (OSTI)

    Yates, M.K.; Reising, J.

    1996-01-10

    The Fernald Environmental Management Project is unique among Department of Energy (DOE) sites by virtue of successful efforts by the Fernald Environmental Restoration Management Corporation (FERMCO) and DOE-Fernald Area Office (FN) in securing a stak-eholder-assisted final site closure vision and all Record of Decisions (ROD) or Interim RODs required to set the stage for final remediation. DOE and FERMCO have agreed in principle on a Ten Year Plan which accelerates all activities to remediate the site in approximately half the target schedule. This paper presents the path that led to the current Ten Year Plan, the key elements of the plan and the implementation strategies.

  9. 2010sr31_box-remediation.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, November 18, 2010 james-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 292-2484 paivi.nettamo@srs.gov SRS Recovery Act TRU Waste Project Ahead of Schedule with Box Remediation Program Aiken, SC - The U.S. Department of Energy's Savannah River Site (SRS) started off the last 12 months of the American Recovery and Reinvestment Act with an enormous success in its legacy transuranic (TRU) waste program. The H-Canyon box remediation program has not only met, but beat, its deadline for

  10. Technology needs for remediation: Hanford and other DOE sites

    SciTech Connect (OSTI)

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy's (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL's Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  11. Innovative Demonstration Platform: PEC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JOINT CENTER FOR ARTIFICIAL PHOTOSYNTHESIS SOLAR PEC H 2 DEVICES FRANCES HOULE AWSM workshop April 14-15, 2016 LAWRENCE BERKELEY NATIONAL LABORATORY THE STATE OF THE ART Fraunhofer/JCAP JCAP JCAP JCAP JCAP 2016 >15% JCAP Updated with 2015-16 demonstrations DEVICE TYPES FOR DEMONSTRATIONS 10% PLANAR DEVICE: THE LOUVERED DESIGN WITH FULL PRODUCT SEPARATION Potential (mV) Cell parameters: PV width = 1.43 cm Nafion height = 3.10 mm Channel height = 3.25 mm Catalysts: IrO 2 and Pt Solution: 1 M H

  12. Gigashot Optical Laser Demonstrator

    SciTech Connect (OSTI)

    Deri, R. J.

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  13. DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION

    SciTech Connect (OSTI)

    VONGARGEN BH

    2009-11-03

    The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon

  14. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    SciTech Connect (OSTI)

    Hunt, A.; Jones, G.; Janke, R.; Nelson, K.

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete.

  15. Demonstrating carbon capture

    SciTech Connect (OSTI)

    Qader, A.; Hooper, B.; Stevens, G.

    2009-11-15

    Australia is at the forefront of advancing CCS technology. The CO2CRC's H3 (Post-combustion) and Mulgrave (pre-combustion) capture projects are outlined. The capture technologies for these 2 demonstration projects are described. 1 map., 2 photos.

  16. Task Order Awarded for Moab Uranium Mill Tailings Remedial Action...

    Office of Environmental Management (EM)

    Task Order Awarded for Moab Uranium Mill Tailings Remedial Action (UMTRA) Follow-On Effort Task Order Awarded for Moab Uranium Mill Tailings Remedial Action (UMTRA) Follow-On ...

  17. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and ...

  18. Remediated Nitrate Salt Drums Safety Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Safety Update Remediated Nitrate Salt Drums Safety Update Topic: Mr. Nickless, Environmental Management Los Alamos, Provided a presentation on the status of the Nitrate Salt waste at Los Alamos.

  19. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 PDF icon Audit of Selected Hazardous Waste ...

  20. DOE Selects CH2M Hill Plateau Remediation Company for Plateau...

    Office of Environmental Management (EM)

    CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its ...

  1. Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sampling | Department of Energy Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Charles Tabor, Randall Juhlin, Paul Darr, Julian Caballero, Joseph Daniel, David Ingle Nonaqueous-Phase Liquid Characterization and Post-Remediation

  2. Attenuation-Based Remedies in the Subsurface Applied Field Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative (ABRS AFRI) | Department of Energy Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to

  3. CH2M HILL Plateau Remediation Company - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting CH2M HILL Plateau Remediation Company Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Bechtel National, Inc. Washington River Protection Solutions CH2M HILL Plateau Remediation Company Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size CH2M CH2M HILL Plateau Remediation Company is the prime

  4. Demonstration and Deployment Workshop - Day 1 Report Out | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemistry Group danddworkshopbiochem.pdf (266.72 KB) More Documents & Publications Demonstration and Deployment Workshop - Day 1 Report Out Demonstration and Deployment ...

  5. Demonstration and Deployment Workshop Day 2 - Biochem | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration and Deployment Workshop Day 2 - Biochem Day 2 Report - Breakout Group: Biochem danddworkshopbiochem2.pdf (289.41 KB) More Documents & Publications Demonstration ...

  6. Scheduling the Remediation of Port Hope: Logistical and Regulatory Challenges of a Multiple Site Urban Remediation Project - 13119

    SciTech Connect (OSTI)

    Ferguson Jones, Andrea; Lee, Angela; Palmeter, Tim

    2013-07-01

    The Port Hope Project is part of the larger CAN$1.28 billion Port Hope Area Initiative (PHAI), a community-based program for the development and implementation of a safe, local, long-term management solution for historic Low-Level Radioactive Waste (LLRW) in the Municipalities of Port Hope and Clarington, Ontario, Canada. Atomic Energy of Canada (AECL) is the Project Proponent, Public Works and Government Services (PWGSC) is managing the procurement of services and the MMM Group Limited - Conestoga Rovers and Associates Joint Venture (MMM-CRA Joint Venture) is providing detailed design and construction oversight and administration services for the Project. The Port Hope Project includes the construction of a long-term waste management facility (LTWMF) in the Municipality of Port Hope and the remediation of 18 (eighteen) large-scale LLRW, numerous small-scale sites still being identified and industrial sites within the Municipality. The total volume to be remediated is over one million cubic metres and will come from sites that include temporary storage sites, ravines, beaches, parks, private commercial and residential properties and vacant industrial sites all within the urban area of Port Hope. Challenges that will need to be overcome during this 10 year project include: - Requirements stipulated by the Environmental Assessment (EA) that affect Project logistics and schedule. - Coordination of site remediation with the construction schedule at the LTWMF. - Physical constraints on transport routes and at sites affecting production rates. - Despite being an urban undertaking, seasonal constrains for birds and fish (i.e., nesting and spawning seasons). - Municipal considerations. - Site-specific constraints. - Site interdependencies exist requiring consideration in the schedule. Several sites require the use of an adjacent site for staging. (authors)

  7. Tank waste remediation system program plan

    SciTech Connect (OSTI)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  8. Tank waste remediation system mission analysis report

    SciTech Connect (OSTI)

    Acree, C.D.

    1998-01-06

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces.

  9. AVNG system demonstration

    SciTech Connect (OSTI)

    Thron, Jonathan Louis; Mac Arthur, Duncan W; Kondratov, Sergey; Livke, Alexander; Razinkov, Sergey

    2010-01-01

    An attribute measurement system (AMS) measures a number of unclassified attributes of potentially classified material. By only displaying these unclassified results as red or green lights, the AMS protects potentially classified information while still generating confidence in the measurement result. The AVNG implementation that we describe is an AMS built by RFNC - VNIIEF in Sarov, Russia. To provide additional confidence, the AVNG was designed with two modes of operation. In the secure mode, potentially classified measurements can be made with only the simple red light/green light display. In the open mode, known unclassified material can be measured with complete display of the information collected from the radiation detectors. The AVNG demonstration, which occurred in Sarov, Russia in June 2009 for a joint US/Russian audience, included exercising both modes of AVNG operation using a number of multi-kg plutonium sources. In addition to describing the demonstration, we will show photographs and/or video taken of AVNG operation.

  10. Nucla CFB Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

  11. National Hydrogen Learning Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, Chris Ainscough, Genevieve Saur February 6, 2012 DOE's Informational Webinar Series National Hydrogen Learning Demonstration Status This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC v8 National Renewable Energy Laboratory 2

  12. Treatment of Remediated Nitrate Salts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment of Remediated Nitrate Salts Treatment of Remediated Nitrate Salts Topic: Plan for remediation the nitrate salt waste from the 3706 campaign that is currently stored at Material Disposal Area G, presenter was David Funk, LANS. Nitrate Salts - November 18, 2015 (1 MB

  13. Groundwater and Wastewater Remediation Using Agricultural Oils - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Groundwater and Wastewater Remediation Using Agricultural Oils Savannah River National Laboratory Contact SRNL About This Technology Soybean oil used for groundwater and wastewater remediation Soybean oil used for groundwater and wastewater remediation Technology Marketing Summary Scientists have developed a groundwater treatment technique that employs agricultural oils to stimulate endogenous microbes which accelerates the cleanup. The oils tested include canola oil,

  14. Observational Approach to Chromium Site Remediation - 13266

    SciTech Connect (OSTI)

    Scott Myers, R.

    2013-07-01

    Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational

  15. Bioventing approach to remediate a gasoline contaminated subsurface. Book chapter

    SciTech Connect (OSTI)

    Kampbell, D.H.; Wilson, J.T.; Griffin, C.J.

    1992-01-01

    Bioventing is a subsurface process using an air stream to enhance biodegradation of oily contaminants. Two pilot-scale bioventing systems were installed at a field site. Process operations began in October 1990. The field site is located at an air station. A spill in 1969 of about 100,000 kilograms aviation gasoline was caused by a broken underground transfer line. A major portion of the spilled product still persists as an oily-phase residue in a 80x360 meter plume. The subsurface is a uniform beach sand with the ground water level near five meters. Prior to startup of the venting systems, a grass cover was established and a nutrient solution was dispersed throughout the unsaturated subsurface. Subsurface air flow patterns are being determined with a tracer gas of sulfur hexafloride. Soil gas, core material, and underground water are being monitored to determine the extent of remediation. Objectives of the study are to demonstrate that surface emissions of gasoline are minimal, oily residue will be reduced to <100 mg fuel carbon/Kg core material, and the process will be applicable to full-scale remediation. Flow rate is based on a calculated residence time of 24 hours. Surface emission of fuel hydrocarbons have not exceeded 1 micrograms/liter soil gas.

  16. Light Duty Utility Arm System applications for tank waste remediation

    SciTech Connect (OSTI)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy`s (DOE`s) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE`s underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE`s environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE`s environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design.

  17. System description for DART (Decision Analysis for Remediation Technologies)

    SciTech Connect (OSTI)

    Nonte, J.; Bolander, T.; Nickelson, D.; Nielson, R.; Richardson, J.; Sebo, D.

    1997-09-01

    DART is a computer aided system populated with influence models to determine quantitative benefits derived by matching requirements and technologies. The DART database is populated with data from over 900 DOE sites from 10 Field Offices. These sites are either source terms, such as buried waste pits, or soil or groundwater contaminated plumes. The data, traceable to published documents, consists of site-specific data (contaminants, area, volume, depth, size, remedial action dates, site preferred remedial option), problems (e.g., offsite contaminant plume), and Site Technology Coordinating Group (STCG) need statements (also contained in the Ten-Year Plan). DART uses this data to calculate and derive site priorities, risk rankings, and site specific technology requirements. DART is also populated with over 900 industry and DOE SCFA technologies. Technology capabilities can be used to match technologies to waste sites based on the technology`s capability to meet site requirements and constraints. Queries may be used to access, sort, roll-up, and rank site data. Data roll-ups may be graphically displayed.

  18. Missouri State information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    1980-12-31

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Missouri. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature chairmen, and a summary of recent relevant legislative action; a description of the organization and structure of local governments affected by remedial action at the St. Louis area sites; a summary of relevant local ordinances and regulations; an identification of relevant public interest groups; a list of radio stations, television stations, and newspapers that provide public information to the St. Louis area or to Jefferson City; and the full text of relevant statutes and regulations.

  19. Test Plan for the overburden removal demonstration

    SciTech Connect (OSTI)

    Rice, P.; Thompson, D.; Winberg, M.; Skaggs, J.

    1993-06-01

    The removal of soil overburdens from contaminated pits and trenches involves using equipment that will remove a small layer of soil from 3 to 6 in. at any time. As a layer of soil is removed, overburden characterization techniques perform surveys to a depth that exceeds each overburden removal layer to ensure that the removed soil will be free of contamination. It is generally expected that no contamination will be found in the soil overburden, which was brought in after the waste was put in place. It is anticipated that some containers in the waste zone have lost their integrity, and the waste leakage from those containers has migrated by gravity downward into the waste zone. To maintain a safe work environment, this method of overburden removal should allow safe preparation of a pit or trench for final remediation. To demonstrate the soil overburden techniques, the Buried Waste Integrated Demonstration Program has contracted vendor services to provide equipment and techniques demonstrating soil overburden removal technology. The demonstration will include tests that will evaluate equipment performance and techniques for removal of overburden soil, control of contamination spread, and dust control. To evaluate the performance of these techniques, air particulate samples, physical measurements of the excavation soil cuts, maneuverability measurements, and time versus volume (rate) of soil removal data will be collected during removal operations. To provide a medium for sample evaluation, the overburden will be spiked at specific locations and depths with rare earth tracers. This test plan will be describe the objectives of the demonstration, data quality objectives, methods to be used to operate the equipment and use the techniques in the test area, and methods to be used in collecting data during the demonstration.

  20. CCUS Demonstrations Making Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9, First Quarter, 2013 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 CCUS Demonstrations Making Progress A Column from the Director of Clean Energy Sys- tems, Office of Clean Coal 4 LNG Exports DOE Releases Third Party Study on Impact of Natural Gas Exports 5 Providing Emergency Relief Petroleum Reservers Helps Out with Hurricane Relief Efforts 7 Game-Changing Membranes FE-Funded Project Develops Novel Membranes for CCUS 8 Shale Gas Projects Selected 15 Projects Will Research

  1. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  2. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  3. Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  4. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 1, Final report: Final report text data in tabular form, Disk 1

    SciTech Connect (OSTI)

    Hazen, T.C.

    1993-09-01

    This project was designed to demonstrate in situ bioremediation of ground water and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade trichlorethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated aquifer and adjacent vadose zone. The principle carbon/energy source nutrient used in this demonstration was methane (natural gas). In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency, safety, and public and regulatory acceptability. This report describes the preliminary results of the demonstration and provides conclusions only for those measures that the Bioremediation Technical Support Group felt were so overwhelmingly convincing that they do not require further analyses. Though this report is necessarily superficial it does intend to provide a basis for further evaluating the technology and for practitioners to immediately apply some parts of the technology.

  5. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste

  6. Fuel Cell Demonstration Program

    SciTech Connect (OSTI)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation

  7. Fusion Power Demonstration III

    SciTech Connect (OSTI)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  8. Jennings Demonstration PLant

    SciTech Connect (OSTI)

    Russ Heissner

    2010-08-31

    Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

  9. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  10. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  11. Tank waste remediation system mission analysis report

    SciTech Connect (OSTI)

    Acree, C.D.

    1998-01-09

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

  12. Remediation and Recycling of Linde FUSRAP Materials

    SciTech Connect (OSTI)

    Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

    2002-02-27

    During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

  13. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  14. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Riha, Brian D.

    2012-07-03

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  15. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Rhia, Brian D.

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  16. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM

    Office of Legacy Management (LM)

    . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM 'FOR , ELW~~I~NREPORT FOR&fERMCKINNEYTOOLANDMANUFACT@INGCC)&iPANY ~. 1688 ARAB,EkLA ROiD CL&VELAND,OHIO ,,, .I _. .' , Jaquary 1994 ,. I U. S . De@rtment of Energy Office ,of EnvironFental Restoration ' ,' I ,,' ' , i ., ; 1 ! i ' , ' . 1 .' ( ,. ,' ," ' .~ : "' ; ,' . ' _ EliminationReport~ .' _. 5' Former McKhmey Tool add Manufacturing Company: " ' . ..,' : ., 8. ,, .: _, :. TABLE OF CONTENTS - i. /i 1' JN'

  17. Tidd PFBC demonstration project

    SciTech Connect (OSTI)

    Marrocco, M.

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent of sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.

  18. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  19. Tank waste remediation system configuration management plan

    SciTech Connect (OSTI)

    Vann, J.M.

    1998-01-08

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

  20. Federal antitrust remedies in electric cases

    SciTech Connect (OSTI)

    Sponseller, D.

    1984-02-01

    The issue of antitrust remedies available in electric cases is far from settled. The courts and the Federal Energy Regulatory Commission (FERC) have taken various paths in the last year. On the one hand are the Chanute and Alabama Power cases which appear to encourage competition in the public interest. Using such inclusive criteria as potential anticompetitive affects could give great leeway in ordering wheeling or other forms of interconnection. Most of the cases, however, seem intent on restricting federal jurisdiction over antitrust remedies. The FERC appears ready to relinquish its role in ordering wheeling by asserting that wheeling can only be compelled for energy or conservation reasons not for fostering competition. After a honeymoon period of making price-squeeze allegations easier to prove, the courts seem to be considering price-squeeze cases strictly as antitrust litigation rather than as antitrust utility regulatory cases, thereby invoking a greater burden of proof. In their efforts not to be too swift in interfering with the market or promoting competition, the courts seem to have lost sight of the function of preventing discrimination. It appears clear that the courts and the commission will be increasingly reluctant to impose wheeling as a remedy. The Supreme Court at least, in denying certiorari in the Alabama Power case, has left an opening for redress through potential anticompetitive affects, although they may be nebulous at best.

  1. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  2. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  3. Electrokinetic demonstration at the unlined chromic acid pit

    SciTech Connect (OSTI)

    Lindgren, E.R.; Hankins, M.G.; Mattson, E.D.; Duda, P.M.

    1998-01-01

    Heavy-metal contaminated soils are a common problem at Department of Energy (DOE)-operated sites and privately owned facilities throughout the nation. One emerging technology which can remove heavy metals from soil in situ is electrokinetics. To conduct electrokinetic (EK) remediation, electrodes are implanted into the ground, and a direct current is imposed between the electrodes. Metal ions dissolved in the soil pore water migrate towards an electrode where they can be removed. The electrokinetic program at Sandia National Laboratories (SNL) has been focusing on electrokinetic remediation for unsaturated soils. A patent was awarded for an electrokinetic electrode system designed at SNL for applications to unsaturated soils. Current research described in this report details an electrokinetic remediation field demonstration of a chromium plume that resides in unsaturated soil beneath the SNL Chemical Waste Landfill (CWL). This report describes the processes, site investigation, operation and monitoring equipment, testing procedures, and extraction results of the electrokinetic demonstration. This demonstration successfully removed chromium contamination in the form of chromium(VI) from unsaturated soil at the field scale. After 2700 hours of operation, 600 grams of Cr(VI) was extracted from the soil beneath the SNL CWL in a series of thirteen tests. The contaminant was removed from soil which has moisture contents ranging from 2 to 12 weight percent. This demonstration was the first EK field trial to successfully remove contaminant ions from and soil at the field scale. Although the new patented electrode system was successful in removing an anionic contaminant (i.e., chromate) from unsaturated sandy soil, the electrode system was a prototype and has not been specifically engineered for commercialization. A redesign of the electrode system as indicated by the results of this research is suggested for future EK field trials.

  4. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program

    Broader source: Energy.gov [DOE]

    Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program (March 2012)

  5. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  6. The Use of Ecological Restoration Principles To Achieve Remedy Protection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the Fernald Preserve and Weldon Spring Sites | Department of Energy The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring Sites The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring Sites The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring Sites The Use of Ecological Restoration Principles To Achieve

  7. Unique environmental remediation project on steep canyon successfully

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    completed Environmental remediation project on canyon completed Unique environmental remediation project on steep canyon successfully completed A team recently completed a remediation project that involved removing contaminated rock and soil from the parking lot of a busy shopping center. July 29, 2015 A telescoping crane hoists a spider excavator over Los Alamos Canyon before placing it on the canyon slope to excavate historically contaminated soil. A telescoping crane hoists a spider

  8. Audit of Selected Hazardous Waste Remedial Actions Program Costs,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ER-B-97-04 | Department of Energy Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 (61.68 KB) More Documents & Publications Audit Report: CR-B-97-04 Audit Report: IG-0443 Inspection Report: IG-0369

  9. Uranium Mill Tailings Remedial Action Program. Annual status report

    SciTech Connect (OSTI)

    Not Available

    1983-12-01

    The FY 1983 project accomplishments are: completed the Remedial Action Plan and Phase I engineering design for the Canonsburg processing site; completed remedial action on an additional 52 vicinity properties and the inclusion of an additional 303 properties in the Uranium Mill Tailings Remedial Action Project; executed cooperative agreements with four states and the Navajo Nation; published the draft environmental impact statement for Salt Lake City site; and issued the approved Project Plan.

  10. Independent Activity Report, Savannah River Remediation - July 2010 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Savannah River Remediation - July 2010 Independent Activity Report, Savannah River Remediation - July 2010 July 2010 Savannah River Operations Office Integrated Safety Management System Phase II Verification Review of Savannah River Remediation The U.S. Department of Energy (DOE), Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the DOE Savannah River Operations Office (DOE-SR), Office of Safety and Quality

  11. REMEDIATE AND RESTORE GROUNDWATER TO HIGHEST BENEFICIAL USE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REMEDIATE AND RESTORE GROUNDWATER TO HIGHEST BENEFICIAL USE ■ Groundwater is to be cleaned up and restored to the highest bene cial use.* ■ Restoration should be within a reasonable time frame, commensurate with risk and Tri-Party Agreement timelines. ■ Ongoing groundwater remediation activities and review processes should be fully funded. ■ Technology development should continually be pursued to remediate and restore groundwater to highest bene cial use.* ■ The public and tribes must

  12. Historical hydronuclear testing: Characterization and remediation technologies

    SciTech Connect (OSTI)

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  13. Rail transportation of Fernald remediation waste

    SciTech Connect (OSTI)

    Fellman, R.T.; Lojek, D.A.; Motl, G.P.; Weddendorf, W.K.

    1995-01-24

    Remediation of the Department of Energy (DOE) Fernald site located north of Cincinnati will generate large quantities of low-level radwaste. This volume includes approximately 1,050,000 tons of material to be removed from eight waste pits comprising Operable Unit 1 (OU-1). The remedial alternative selected includes waste material excavation, drying and transportation by rail to a burial site in the arid west for disposal. Rail transportation was selected not only because rail transportation is safer than truck transportation, but also because of the sheer magnitude of the project and the availability of bulk rail car unloading facilities at a representative disposal site. Based upon current waste quantity estimates as presented in the Feasibility Study for OUI, a fully-loaded 47-car unit train would depart the Fernald site weekly for five years. This paper illustrates the steps taken to obtain agency and public acceptance of the Record of Decision for the remedy which hinged on rail transportation. A preliminary, but detailed, rail transportation plan was prepared for the project to support a series of CERCLA public meetings conducted in late 1994. Some of the major issues addressed in the plan included the following: (1) Scope of project leading to selection of rail transportation; (2) Waste classification; (3) Rail Company overview; (4) Train configuration and rail car selection; (5) Routing; (6) Safety; (7) Prior Notification Requirements (8) Emergency Response. A series of three public meetings identified a number of issues of prime concern to Fernald stakeholders. Following resolution of these issues during the public comment period, a Record of Decision (ROD) approving implementation of the rail transportation strategy was approved pending incorporation of EPA and State of Ohio comments on December 22, 1994.

  14. EPA - National Remedy Review Board webpage | Open Energy Information

    Open Energy Info (EERE)

    Abstract This webpage provides information on the National Remedy Review Board. Author Environmental Protection Agency Published Environmental Protection Agency, 2014 DOI Not...

  15. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The mission of the Attenuation Based Remedies in the Subsurface Applied Field Research Initiative is to seek holistic solutions to DOE's groundwater contamination problems that ...

  16. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Broader source: Energy.gov (indexed) [DOE]

    Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) ... Enable a Carbon-Neutral Energy Economy Hydrogen Embrittlement of Pipeline Steels: Causes ...

  17. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  18. Analysis of SPR salt cavern remedial leach program 2013. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Analysis of SPR salt cavern remedial leach program 2013. Citation Details In-Document ... Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of ...

  19. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    In addition to the remediated nitrate salt (RNS) waste at the Laboratory, similar drums are underground at WIPP and at Waste Control Specialists (WCS) in Andrews, Texas.

  20. Summary - Building C-400 Thermal Treatment Remedial Design Report...

    Office of Environmental Management (EM)

    C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, Paducah ... What the ETR Team Recommended The data provide an initial basis for designoperation; ...

  1. T.G. Hinton: Remediation of Radioactively Contaminated Ecosystems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remediation of Radioactively Contaminated Ecosystems Thomas G. Hinton Savannah River Ecology ... availability from sequential extractions compared to plant uptake of 137Cs and 90Sr. ...

  2. X-701B Groundwater Remedy Portsmouth Ohio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Integration Director's Final Findings and Order Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Groundwater Contamination and ...

  3. Geophysical monitoring of foam used to deliver remediation treatments...

    Office of Scientific and Technical Information (OSTI)

    Geophysical monitoring of foam used to deliver remediation treatments within the vadose zone Citation Details In-Document Search Title: Geophysical monitoring of foam used to ...

  4. Final Environmental Impact Statement for the Tank Waste Remediation...

    Office of Environmental Management (EM)

    DOE is the Federal agency responsible for waste management and environmental restoration ... disposal of Tank Waste Remediation System (TWRS) radioactive, hazardous, and mixed waste. ...

  5. MANAGEMENT ALERT Remediation of Selected Transuranic Waste Drums...

    Office of Environmental Management (EM)

    MANAGEMENT ALERT Remediation of Selected Transuranic Waste Drums at Los Alamos National Laboratory - Potential Impact on the Shutdown of the Department's Waste Isolation Plant DOE...

  6. Analysis of SPR salt cavern remedial leach program 2013. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Analysis of SPR salt cavern remedial leach program 2013. The storage caverns of the US Strategic Petroleum Reserve (SPR) exhibit creep behavior resulting in reduction of ...

  7. Formerly Utilized Sites Remedial Action Program Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... USACE determined the site requires additional remediation and accepted it as an active site. Since then, DOE has also referred sites in Brooklyn, New York, and Niagara Falls ...

  8. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR JESSOP STEEL COMPANY; 500 GREEN STREET: WASHINGTON, PENNSYLVANIA December 1991 U.S. Department of Energy ...

  9. Tank Waste Remediation System optimized processing strategy

    SciTech Connect (OSTI)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  10. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches

    SciTech Connect (OSTI)

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  11. Overview of the Dynamic Underground Stripping demonstration project

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-08-01

    Dynamic Underground Stripping is a limited-scope demonstration of a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it combines steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. The system is targeted toward the removal of free-phase organics of all kinds. The LLNL gasoline spill is a convenient test site because much of the gasoline has been trapped below the water table, mimicking the behavior of dense organic liquids.

  12. Overview of the Dynamic Underground Stripping demonstration project

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D. ); Udell, K. . Dept. of Mechanical Engineering)

    1992-08-01

    Dynamic Underground Stripping is a limited-scope demonstration of a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it combines steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. The system is targeted toward the removal of free-phase organics of all kinds. The LLNL gasoline spill is a convenient test site because much of the gasoline has been trapped below the water table, mimicking the behavior of dense organic liquids.

  13. Dynamic Underground Stripping Demonstration Project. Interim progress report, 1991

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; udel, K.

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92.

  14. Commercial Building Demonstration and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Demonstration and Deployment 2014 Building Technologies Office Peer ... April 23 rd 11:15-11:30 Commercial DemonstrationDeployment Overview Kristen Taddonio, ...

  15. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect (OSTI)

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was

  16. Tank waste remediation system mission analysis

    SciTech Connect (OSTI)

    Baynes, P.A.; Woods, J.W.; Collings, J.L.

    1993-03-01

    Mission analysis is an iterative process that expands the mission statement, identifies needed information, and provides sufficient insight to proceed with the necessary, subsequent analyses. The Tank Waste Remediation System (TWRS) mission analysis expands the TWRS Program problem statement: ``remediate tank waste.`` It also and the mission statement: ``store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost effective manner.`` The mission analysis expands the problem and mission statements to accomplish four primary tasks. First, it defines the mission in enough detail to provide any follow-on work with a consistent foundation. Second, it defines the TWRS boundaries. Third, it identifies the following for TWRS: (1) current conditions, (2) acceptable final conditions, (3) requirement sources for the final product and the necessary systems, (4) organizations authorized to issue requirements, and (5) the criteria to determine when the problem is solved. Finally, it documents the goals to be achieved.This document concludes that tank safety issues should be resolved quickly and tank waste should be treated and immobilized quickly because of the hazardous nature of the tank waste and the age and condition of the existing tanks. In addition, more information is needed (e.g., waste acceptance criteria, condition of existing waste) to complete the TWRS mission analysis.

  17. Tank waste remediation system mission analysis

    SciTech Connect (OSTI)

    Baynes, P.A.; Woods, J.W. ); Collings, J.L. )

    1993-03-01

    Mission analysis is an iterative process that expands the mission statement, identifies needed information, and provides sufficient insight to proceed with the necessary, subsequent analyses. The Tank Waste Remediation System (TWRS) mission analysis expands the TWRS Program problem statement: remediate tank waste.'' It also and the mission statement: store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost effective manner.'' The mission analysis expands the problem and mission statements to accomplish four primary tasks. First, it defines the mission in enough detail to provide any follow-on work with a consistent foundation. Second, it defines the TWRS boundaries. Third, it identifies the following for TWRS: (1) current conditions, (2) acceptable final conditions, (3) requirement sources for the final product and the necessary systems, (4) organizations authorized to issue requirements, and (5) the criteria to determine when the problem is solved. Finally, it documents the goals to be achieved.This document concludes that tank safety issues should be resolved quickly and tank waste should be treated and immobilized quickly because of the hazardous nature of the tank waste and the age and condition of the existing tanks. In addition, more information is needed (e.g., waste acceptance criteria, condition of existing waste) to complete the TWRS mission analysis.

  18. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  19. Field Sampling Plan for the Operable Units 6-05 and 10-04 Remedial Action, Phase IV

    SciTech Connect (OSTI)

    R. Wells

    2006-11-14

    This Field Sampling Plan outlines the collection and analysis of samples in support of Phase IV of the Waste Area Group 10, Operable Units 6-05 and 10-04 remedial action. Phase IV addresses the remedial actions to areas with the potential for unexploded ordnance at the Idaho National Laboratory Site. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. The remedial action consists of removal and disposal of ordnance by high-order detonation, followed by sampling to determine the extent, if any, of soil that might have been contaminated by the detonation activities associated with the disposal of ordnance during the Phase IV activities and explosives during the Phase II activities.

  20. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    SciTech Connect (OSTI)

    FORSYTHE, HOWARD S

    2010-04-14

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 μg/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 μg/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  1. The remedial investigation/feasibility study process at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages and operates the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, under a cost-plus-award-fee contract administered by the Department of Energy`s (DOE) Oak Ridge Operations Office (Operations Office). Energy Systems` environmental restoration program is responsible for eliminating or reducing the risk posed by inactive and surplus sites and facilities that have been contaminated with radioactive, hazardous, or mixed wastes. The remedial investigation and feasibility study (RI/FS) is being conducted as part of Energy Systems` environmental restoration program. The objective of the audit was to determine if the proposed interim source control action identified in the ``Proposed Plan for the Oak Ridge National Laboratory Waste Area Grouping 6 Interim Remedial Action`` had been adequately justified. The audit disclosed that the proposed source control interim remedial action, three flexible membrane caps estimated to cost $140 million for waste area grouping 6, was not adequately justified. We recommended that DOE justify the proposed action before agreeing to proceed. The Manager, Oak Ridge Operations Office, generally concurred with the audit recommendations.

  2. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  3. Product Demonstrations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Demonstrations Product Demonstrations The Consortium will pursue a number of demonstrations following the general procedure used by DOE's GATEWAY demonstration program. Specific products to be featured in a demonstration may be selected by the host site or may be suggested for a given installation by the Consortium based on the product's anticipated performance in that installation. In the latter case, products will be evaluated for suitability based on performance relative to other

  4. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  5. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgw_embrittlementsteels_sofronis.pdf (675.35 KB) More Documents & Publications Webinar: I2CNER: An International Collaboration to Enable a Carbon-Neutral Energy Economy Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Hydrogen permeability and Integrity of hydrogen transfer pipelines

  6. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect (OSTI)

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  7. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    \ ,.-c , 2 2 a. . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS SEP301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __--... -_ -._.-_- _"_-. .___.. -... .._ ..-. .-. ..--- . , ' , CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological

  8. In situ remediation technologies for mercury-contaminated soil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Feng; Gao, Jie; Pierce, Eric; Strong, P. J.; Wang, Hailong; Liang, Liyuan

    2015-04-09

    A pollutant that poses significant risks to humans and the environment is mercury from anthropogenic activities. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. Our paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic,more » and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. We also discussed two emerging technologies, phytoremediation and nanotechnology, in this review.« less

  9. In situ remediation technologies for mercury-contaminated soil

    SciTech Connect (OSTI)

    He, Feng; Gao, Jie; Pierce, Eric; Strong, P. J.; Wang, Hailong; Liang, Liyuan

    2015-04-09

    A pollutant that poses significant risks to humans and the environment is mercury from anthropogenic activities. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. Our paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic, and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. We also discussed two emerging technologies, phytoremediation and nanotechnology, in this review.

  10. Environmental remediation and waste management information systems

    SciTech Connect (OSTI)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.