Sample records for remedial response washington

  1. Radiological Survey Results for Areas A1 North, A5A, A6, and B2 at the Molycorp Washington Remediation Project, Washington, Pennsylvania

    SciTech Connect (OSTI)

    W.C. Adams

    2007-03-13T23:59:59.000Z

    Perform radiological surveys of the Molycorp Washington Remediation Project (MWRP) facility in Washington, Pennsylvania

  2. Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect (OSTI)

    Nimmons, Michael J.

    2007-08-01T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

  3. GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD SITE WASHINGTON USA - 11507

    SciTech Connect (OSTI)

    SMOOT JL; BIEBESHEIMER FH; ELUSKIE JA; SPILIOTOPOULOS A; TONKIN MJ; SIMPKIN T

    2011-01-12T23:59:59.000Z

    The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km{sup 2} (2.7 mi{sup 2}) with concentrations greater than 20 {micro}g/L. Concentrations range from 60,000 {micro}g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 {micro}g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 {micro}g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

  4. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  5. Prioritization and accelerated remediation of groundwater contamination in the 200 Areas of the Hanford Site, Washington

    SciTech Connect (OSTI)

    Wittreich, C.D.; Ford, B.H.

    1993-04-01T23:59:59.000Z

    The Hanford Site, operated by the US Department of Energy (DOE), occupies about 1,450 km{sup 2} (560 mi{sup 2}) of the southeastern part of Washington State north of the confluence of the Yakima and Columbia Rivers. The Hanford Site is organized into numerically designated operational areas. The 200 Areas, located near the center of the Hanford Site, encompasses the 200 West, East and North Areas and cover an area of over 40 km{sup 2}. The Hanford Site was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment via infiltration structures such as cribs, ponds, ditches. This has resulted in over 25 chemical and radionuclide groundwater plumes, some of which have reached the Columbia River. An Aggregate Area Management Study program was implemented under the Hanford Federal Facility Agreement and Consent Order to assess source and groundwater contamination and develop a prioritized approach for managing groundwater remediation in the 200 Areas. This included a comprehensive evaluation of existing waste disposal and environmental monitoring data and the conduct of limited field investigations (DOE-RL 1992, 1993). This paper summarizes the results of groundwater portion of AAMS program focusing on high priority contaminant plume distributions and the groundwater plume prioritization process. The objectives of the study were to identify groundwater contaminants of concern, develop a conceptual model, refine groundwater contaminant plume maps, and develop a strategy to expedite the remediation of high priority contaminants through the implementation of interim actions.

  6. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    SciTech Connect (OSTI)

    Not Available

    1983-07-01T23:59:59.000Z

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

  7. Washington

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartment of Energy Washington , DC

  8. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  9. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

  10. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    SciTech Connect (OSTI)

    Heiser,J.; Sullivan, T.

    2009-06-30T23:59:59.000Z

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the decontamination process(es). In the case of an entire building, the value may be obvious; it's costly to replace the structure. For a smaller item such as a vehicle or painting, the cost versus benefit of decontamination needs to be evaluated. This will be determined on a case by case basis and again is beyond the scope of this report, although some thoughts on decontamination of unique, personal and high value items are given. But, this is clearly an area that starting discussions and negotiations early on will greatly benefit both the economics and timeliness of the clean up. In addition, high value assets might benefit from pre-event protection such as protective coatings or HEPA filtered rooms to prevent contaminated outside air from entering the room (e.g., an art museum).

  11. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-08-11T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  12. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-11-10T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  13. Draft Guidance: Response, Remediation, and Recovery Checklist for Chemically Contaminated Facilities

    SciTech Connect (OSTI)

    Raber, E; Mancieri, S; Carlsen, T; Fish, C; Hirabayashi-Dethier, J; Intrepido, A; MacQueen, D; Michalik, R; Richards, J

    2007-09-04T23:59:59.000Z

    A key part of preparedness in the event of a chemical warfare agent (CWA) or toxic industrial chemical (TIC) release at a large facility, such as an airport or subway, is to develop a concept of operations that allows for an effective incident response and recovery. This document is intended as a component of the concept of operations and will be used in the Emergency Operations Center (EOC) as a decision tool for the Unified Command (UC). The Checklist for Facility Response, Remediation, and Recovery presented in this document is principally focused on the Consequence Management Phase (see Figure 1; LLNL 2007a and 2007b) of a chemical release. Information in this document conforms to the National Response Plan (NRP) (DHS 2004) and the National Incident Management System (NIMS 2004). Under these two guidance documents, personnel responsible for managing chemical response and recovery efforts--that is, the decision-makers--are members of an Incident Command (IC), which is likely to transition to a UC in the event of a CWA or TIC attack. A UC is created when more than one agency has incident jurisdiction or when incidents cross political jurisdictions. The location for primary, tactical-level command and management is referred to as the Incident Command Post (ICP), as described in the NRP. Thus, regardless of whether an IC or a UC is used, the responsible entities are located at an ICP. Agencies work together through designated members of the UC to establish their designated Incident Commanders at a single ICP and to establish a common set of objectives and strategies and a single Incident Action Plan. Initially during the Crisis Management Phase (see Figure 1), the Incident Commander is likely to be the Chief of the fire department that serves the affected facility. As life-safety issues are resolved and the Crisis Management Phase shifts to the Consequence Management Phase, the work of characterization, decontamination, and facility clearance begins. There will likely be a coincident transition in organizational structure as well, and new remediation-focused groups, units, and personnel will be added as remediation needs are anticipated. In most cases, a UC would be formed, if not formed already, to direct the cleanup process jointly and to take ultimate responsibility for all cleanup decisions. The UC would likely include the Transportation Facility Manager or Emergency Operations Manager; representatives from state and local public health, environmental, and emergency management agencies; and Federal agencies, such as the U.S. Environmental Protection Agency.

  14. Comment and response document for the final remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado.

  15. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.

    SciTech Connect (OSTI)

    Youngs, Robert R.

    2007-06-29T23:59:59.000Z

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  16. Comment and response document for the final remedial action plan site design for stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document consists of comments and responses; the reviewers are the U.S. Nuclear Regulatory Commission (NRC), Colorado Dept. of Public Health and Environment, and the remedial action contractor (RAC).

  17. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices

    SciTech Connect (OSTI)

    Not Available

    1983-07-01T23:59:59.000Z

    This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process.

  18. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2009-09-28T23:59:59.000Z

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  19. University Responses to MPCA's Preliminary Written Comments to the UMore East Remedial Investigation Report

    E-Print Network [OSTI]

    Netoff, Theoden

    Remedial Investigation Report (July 12, 2012) Shortly before a meeting at the Minnesota Pollution Control Agency (MPCA) on June 6, 2012, MPCA Superfund Program staff members Gary Krueger and Dave Scheer provided the presence of asbestos-containing materials (ACMs), and implements the tree clearing procedures plan approved

  20. USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504

    SciTech Connect (OSTI)

    BROCK CT

    2011-02-15T23:59:59.000Z

    The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.

  1. Remedial measures plan for a spill of solvent refined coal liquid at the SRC pilot plant, Ft. Lewis, Washington. Final Report

    SciTech Connect (OSTI)

    Grimshaw, T.W.; Little, W.M.

    1980-08-22T23:59:59.000Z

    On December 19, 1979, a spill of SRC liquid occurred during transfer of the liquid from a storage tank to sample drums. Approximately 2,300 gallons of fluid flowed into the floor of the tank farm and infiltrated into the porous and permeable gravels at the site. Because of concern for the possible impact of the SRC fluid on the quality of ground water, surface water, and water supply sources at and near the site, GMRC commissioned Radian to evaluate the problem and recommend specific measures to mitigate any known or anticipated impacts. This report presents the results of Radian's investigations. Although ground-water contamination apparently has occurred as a result of the December 19 spill, the contamination plume is localized to the vicinity of the SRC plant and Lake Sequalitchew. A contamination plume apparently is presently moving toward Lake Sequalitchew, but the two pump wells included in the Remedial Measures Plan will arrest this movement. These wells will be pumped until phenol concentrations in the groundwater fall to acceptable levels. The source of contamination at the spill is being cut off by excavation of the contaminated soil and sealing of the floor of the tank farm. No public water supplies are appreciably endangered by the December 19 spill. A long-term ground-water monitoring plan is being implemented to ensure early discovery of any unanticipated impacts of the spill. If further water quality problems are disclosed, additional remedial measures will be undertaken as necessary.

  2. Responsiveness summary for the remedial investigation/feasibility study for management of the bulk wastes at the Weldon Spring quarry, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Peterson, J.M.; MacDonell, M.M.

    1990-08-01T23:59:59.000Z

    The US Department of Energy (DOE) is responsible for conducting remedial actions at the Weldon Spring site in St. Charles County, Missouri, under its Surplus Facilities Management Program. The site consists of a quarry and a chemical plant area located about 6.4 km (4 mi) northeast of the quarry. The quarry is surrounded by the Weldon Spring Wildfire Area and is near an alluvial well field that constitutes a major source of potable water for St. Charles County; the nearest supply well is located about 0.8 km (0.5 mi) southeast of the quarry. From 1942 to 1969, the quarry was used for the disposal of various radioactively and chemically contaminated materials. Bulk wastes in the quarry consist of contaminated soils and sediments, rubble, metal debris, and equipment. As part of overall site remediation, DOE is proposing to conduct an interim remedial action at the quarry to manage the radioactively and chemically contaminated bulk wastes contained therein. Potential remedial action alternatives for managing the quarry bulk wastes have been evaluated consistent with US Environmental Protection Agency (EPA) guidance for conducting remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The contents of these documents were developed in consultation with EPA Region VII and the state of Missouri and reflect the focused scope defined for this interim remedial action. 9 refs.

  3. US Department of Energy response to standards for remedial actions at inactive uranium processing sites: Proposed rule

    SciTech Connect (OSTI)

    Not Available

    1988-01-29T23:59:59.000Z

    The Title I groundwater standards for inactive uranium mill tailings sites, which were promulgated on January 5, 1983, by the US Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action (UMTRA) Project, were remanded to the EPA on September 3, 1985, by the US Tenth Circuit Court of Appeals. The Court instructed the EPA to compile general groundwater standards for all Title I sites. On September 24, 1987, the EPA published proposed standards (52FR36000-36008) in response to the remand. This report includes an evaluation of the potential effects of the proposed EPA groundwater standards on the UMTRA Project, as well as a discussion of the DOE's position on the proposed standards. The report also contains and appendix which provides supporting information and cost analyses. In order to assess the impacts of the proposed EPA standards, this report summarizes the proposed EPA standards in Section 2.0. The next three sections assess the impacts of the three parts of the EPA standards: Subpart A considers disposal sites; Subpart B is concerned with restoration at processing sites; and Subpart C addresses supplemental standards. Section 6.0 integrates previous sections into a recommendations section. Section 7.0 contains the DOE response to questions posed by the EPA in the preamble to the proposed standards. 6 refs., 5 figs., 3 tabs.

  4. US Department of Energy final response to standards for remedial actions at inactive uranium processing sites; Proposed rule

    SciTech Connect (OSTI)

    Not Available

    1988-11-14T23:59:59.000Z

    This document revisits and supplements information and recommendations presented in the January 1988 US Department of Energy (DOE) submission to the US Environmental Protection Agency (EPA) regarding the proposed standards for Title I uranium processing sites (DOE, 1988). The clarifications and comments in this report are based on further DOE investigation, contemplation, and interpretation of the proposed standards. Since the January response, the DOE has undertaken a number of special studies to -investigate, evaluate, focus, and clarify issues relating to the standards. In addition, the Nuclear Regulatory Commission (NRC) has issued a draft technical position outlining its interpretation of the proposed standards and clarifying how the standards will be implemented (NRC, 1988). Some issues presented are based on previous positions, and the original DOE position is restated for reference. Other issues or recommendations are more recent than the January DOE response; therefore, no former position was advanced. The order of presentation reflects the general order of significance to the DOE, specifically in regards to the Uranium Mill Tailings Remedial Action (UMTRA) Project.

  5. Enhanced Chemical Incident Response Plan (ECIRP). Appendix F, remediation analysis with Decision Support Tools (DSTs) for wide-area chemical hazards.

    SciTech Connect (OSTI)

    Hassig, Nancy L. (Pacific Northwest National Laboratory, Richland, WA); Pulsipher, Brent A. (Pacific Northwest National Laboratory, Richland, WA); Foltz, Greg W.; Hoette, Trisha Marie

    2011-07-01T23:59:59.000Z

    The Defense Threat Reduction Agency (DTRA) commissioned an assessment of the Consequence Management (CM) plans in place on military bases for response to a chemical attack. The effectiveness of the CM plans for recovering from chemical incidents was modeled using a multiple Decision Support Tools (DSTs). First, a scenario was developed based on an aerial dispersion of a chemical agent over a wide-area of land. The extent of contamination was modeled with the Hazard Prediction and Assessment Capability (HPAC) tool. Subsequently, the Analyzer for Wide Area Restoration Effectiveness (AWARE) tool was used to estimate the cost and time demands for remediation based on input of contamination maps, sampling and decontamination resources, strategies, rates and costs. The sampling strategies incorporated in the calculation were designed using the Visual Sample Plan (VSP) tool. Based on a gaps assessment and the DST remediation analysis, an Enhanced Chemical Incident Response Plan (ECIRP) was developed.

  6. Remedial Action Assessment System (RAAS): Evaluation of selected feasibility studies of CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) hazardous waste sites

    SciTech Connect (OSTI)

    Whelan, G. (Pacific Northwest Lab., Richland, WA (USA)); Hartz, K.E.; Hilliard, N.D. (Beck (R.W.) and Associates, Seattle, WA (USA))

    1990-04-01T23:59:59.000Z

    Congress and the public have mandated much closer scrutiny of the management of chemically hazardous and radioactive mixed wastes. Legislative language, regulatory intent, and prudent technical judgment, call for using scientifically based studies to assess current conditions and to evaluate and select costeffective strategies for mitigating unacceptable situations. The NCP requires that a Remedial Investigation (RI) and a Feasibility Study (FS) be conducted at each site targeted for remedial response action. The goal of the RI is to obtain the site data needed so that the potential impacts on public health or welfare or on the environment can be evaluated and so that the remedial alternatives can be identified and selected. The goal of the FS is to identify and evaluate alternative remedial actions (including a no-action alternative) in terms of their cost, effectiveness, and engineering feasibility. The NCP also requires the analysis of impacts on public health and welfare and on the environment; this analysis is the endangerment assessment (EA). In summary, the RI, EA, and FS processes require assessment of the contamination at a site, of the potential impacts in public health or the environment from that contamination, and of alternative RAs that could address potential impacts to the environment. 35 refs., 7 figs., 1 tab.

  7. The Epsomitic Phototrophic Microbial Mat of Hot Lake, Washington: Community Structural Responses to Seasonal Cycling

    SciTech Connect (OSTI)

    Lindemann, Stephen R.; Moran, James J.; Stegen, James C.; Renslow, Ryan S.; Hutchison, Janine R.; Cole, Jessica K.; Dohnalkova, Alice; Tremblay, Julien; Singh, Kanwar; Malfatti, Stephanie; Chen, Feng; Tringe, Susannah; Beyenal, Haluk; Fredrickson, Jim K.

    2013-11-13T23:59:59.000Z

    Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg2+ and SO2?4) and irradiation over the annual cycle. We examined spatiotemporal variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function.

  8. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24T23:59:59.000Z

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  9. Response of selected cascade glaciers (Washington, Oregon) to climatic change in the late twentieth century (1980-1995)

    SciTech Connect (OSTI)

    Chatelain, E.E. [Valdosta State Univ., GA (United States)

    1995-07-01T23:59:59.000Z

    Alpine glaciers of the Washington and Oregon Cascade Range are particularly sensitive indicators of climatic change. Recent maximum size of these glaciers has coincided with periods of explosive volanism (Krakatoa, 1883; Katmai, 1912). Minimum size has resulted from periods of prolonged regional drought (1933-39). The proximity of elevated temperatures in the 80`s decade and the colossal 1991-92 eruption of Mt. Pinatubo (Phillippines) provides a unique opportunity to document resultant efforts of both events on the size, thickness, and terminus positions of Cascade glaciers. Present aerial extents of 1994 and compared with USGS aerial surveys predating the Pinatubo eruptions. Climatic records are examined to determine the extent of localized warming during the pre-eruption period (1977-1991), eruption effects (1991-1994), and present (recovery?). The effects of these local climatic variations are evaluated in light of documented changing glacial dimensions. Observed size modifications may also represent response to insulating rockslide cover, glacial surging, or independent climatic effects of El Nino.

  10. Washington Update

    Energy Savers [EERE]

    Text eere.energy.gov Federal Energy Management Program FederalUtility Partnership Working Group David McAndrew April 14, 2010 Providence RI Washington Update Federal Energy...

  11. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE`s predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE`s preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area.

  12. Toxic remediation

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alamed County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1994-01-01T23:59:59.000Z

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  13. Selecting Mold Remediation Contractors

    E-Print Network [OSTI]

    Renchie, Don L.

    2005-10-05T23:59:59.000Z

    Texas has strict regulations that govern mold remediation companies. Before contracting for mold remediation work, consumers should know what the law requires of remediation companies and what such contracts should contain....

  14. Remediating MGP brownfields

    SciTech Connect (OSTI)

    Larsen, B.R.

    1997-05-01T23:59:59.000Z

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example.

  15. Phase 1 remedial investigation report for 200-BP-1 operable unit. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit.

  16. Learn more at: http://www.washington.edu/2y2d/fostering-collaboration/ November 2011 response to the question "What will collaborative research and education look like in the 21

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    Learn more at: http://www.washington.edu/2y2d/fostering-collaboration/ A November 2011 response. ...is incubated in grassroots initiatives Faculty will increasingly desire and demand opportunities of excellence, central to the recruitment and retention of high-quality faculty and students, allowing teams

  17. Proceedings, 2005 International Oil Spill Conference. American Petroleum Institute, Washington, DC. pp. 541-545. Ten Years of Realtime, Near-Surface Current Observations Supporting Oil Spill Response1

    E-Print Network [OSTI]

    2000 barrels of Bunker C oil into the Gulf of Mexico off Texas' coast. Sea conditions dispersedProceedings, 2005 International Oil Spill Conference. American Petroleum Institute, Washington, DC. pp. 541-545. Ten Years of Realtime, Near-Surface Current Observations Supporting Oil Spill Response1

  18. Environmental remediation of contamination sites at the Hanford Site

    SciTech Connect (OSTI)

    Wittreich, C.D.; Johnson, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    Efforts currently are under way to remediate the 200 Areas of the US Department of Energy`s (DOE) Hanford Site in Washington State. Because of the complexity and extent of environmental contamination that has resulted from decades of hazardous and radioactive waste disposal practices, an innovative approach to remediating the site was required. A comprehensive study of waste disposal and environmental monitoring data with field investigations, referred to as the 200 Aggregate Area Management Study (AAMS) program, was conducted in 1992 to assess the scope of the remediation effort and to develop a plan to expedite the cleanup progress.

  19. Environmental remediation 1991: ``Cleaning up the environment for the 21st Century``. Proceedings

    SciTech Connect (OSTI)

    Wood, D.E. [ed.] [Westinghouse Hanford Co., Richland, WA (United States)

    1991-12-31T23:59:59.000Z

    This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases.

  20. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    SciTech Connect (OSTI)

    Simpkin, Thomas J. [CH2M HILL, Denver, Colorado (United States); Favara, Paul [CH2M HILL, Gainesville, Florida (United States)

    2012-07-01T23:59:59.000Z

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this process also provides new opportunities to think differently and look at the bigger picture of the overall benefit we are providing with our remediation projects. The opportunities from the move towards GSR are very real. They will help us make remedial actions truly more beneficial to the environment and to society. They will also allow (or force) remediation practitioners to think outside of the usual realm of approaches to find newer and more beneficial technologies. (authors)

  1. Procurement under Superfund remedial cooperative agreements

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    This document provides guidance on procuring services during remedial-response activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), or Superfund, as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA). The topics covered in the guidance include procurement requirements; procurement of engineering services, including types of services provided; procurement of construction contractors; and subagreement administration.

  2. EIS-0189-S1: Tank Waste Remediation System, Richland, Washington

    Broader source: Energy.gov [DOE]

    For this Supplement Analysis, in each of the potential impact areas for Project W-314, the proposed action was evaluated and compared to the TWRS EIS evaluation of the preferred alternative (Section 5.0). Qualitative and/or quantitative comparisons are then provided in this Supplement Analysis to support a determination on the need for additional National Environmental Policy Act (NEPA) analysis. Based on this Supplement Analysis, the potential impacts for Project W -314 would be small in comparison to and are bounded by the impacts assessed for the TWRS EIS preferred alternative, and therefore no additional NEPA analysis is required.

  3. Washington: Putting More Solar on More Rooftops in Washington...

    Office of Environmental Management (EM)

    Putting More Solar on More Rooftops in Washington State Washington: Putting More Solar on More Rooftops in Washington State November 8, 2013 - 12:00am Addthis Mercer Island...

  4. Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1

    SciTech Connect (OSTI)

    NONE

    1994-01-01T23:59:59.000Z

    The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy`s (DOE`s) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement.

  5. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01T23:59:59.000Z

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE`s Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  6. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01T23:59:59.000Z

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE's Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  7. George Washington Carver Recognition Day

    Broader source: Energy.gov [DOE]

    In commemoration of George Washington Carver’s life and work, Congress declared January 5 as George Washington Carver Recognition Day.

  8. ICDF Complex Remedial Action Work Plan

    SciTech Connect (OSTI)

    W. M. Heileson

    2006-12-01T23:59:59.000Z

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  9. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  10. Energy Matters in Washington State

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Matters in Washington State Energy Matters in Washington State www.energy.wsu.edu/library/ November 2009 #12;905 Plum Street SE, Building 3 P.O. Box 43169 Olympia, Washington 98504-3169 Energy University Extension Energy Program. 905 Plum Street SE, Building 3, P.O. Box 43169, Olympia, Washington

  11. Interstate Technology & Regulatory Council (ITRC) Remediation...

    Office of Environmental Management (EM)

    Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance Interstate Technology & Regulatory Council (ITRC) Remediation...

  12. CLOSEOUT REPORT REMEDIAL ACTION

    E-Print Network [OSTI]

    FINAL CLOSEOUT REPORT REMEDIAL ACTION AREA OF CONCERN 6 BUILDING 650 RECLAMATION FACILITY SUMP York 11973 REGISTERED TO ISO 14001 #12;AOC 6 BUILDING 650 RECLAMATION FACILITY SUMP AND SUMP OUTFALL .................................................................................9 2.6.1 Final Radiological Status Survey Design

  13. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  14. One Earth Future Foundation and George Washington University's Institute for Corporate Responsibility invite you a panel discussion on business and the Responsibility to Protect (R2P). This event will bring

    E-Print Network [OSTI]

    Vertes, Akos

    One Earth Future Foundation and George Washington University's Institute for Corporate associate at One Earth Future Foundation · Jonas Claes, program officer, US Institute of Peace · Raymond Earth Future Foundation by phone, 303.533.1707 or by email, rspivak@oneearthfuture.org. Best regards

  15. FUPWG Spring 2010 Providence: Washington Update | Department...

    Energy Savers [EERE]

    Spring 2010 Providence: Washington Update FUPWG Spring 2010 Providence: Washington Update Presentation covers an update on Washington and is given at the Spring 2010 Federal...

  16. CENTRAL PLATEAU REMEDIATION

    SciTech Connect (OSTI)

    ROMINE, L.D.

    2006-02-01T23:59:59.000Z

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  17. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14T23:59:59.000Z

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  18. Washington: Washington's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Washington.

  19. WASHINGTON TECHNICAL INSTITUTE WASHINGTON, D.C. 20008

    E-Print Network [OSTI]

    District of Columbia, University of the

    WASHINGTON TECHNICAL INSTITUTE WASHINGTON, D.C. 20008 WRRC REPORT NO. 9 CHARACTERIZATION-379, as amended. Agreement No. 14-34-0001-6066 Water Resources Research Center Washington Technical Institute Analysis of Composite Samples Before Concentration............ 16 5. Organic Losses During Concentration

  20. Washington Residents, Agencies, NGOs Specialists

    E-Print Network [OSTI]

    Collins, Gary S.

    Washington Residents, Agencies, NGOs Specialists County Directors, County Faculty, Staff, and Volunteers Department Chairs District Directors County Government Issue Teams Research and Extension Centers WASHINGTON STATE UNIVERSITY CAMPUSES Pullman Spokane Tri-Cities Vancouver Agriculture Program Director R

  1. Report on the emergency response to the event on May 14, 1997, at the plutonuim reclamation facility, Hanford Site, Richland,Washington

    SciTech Connect (OSTI)

    Shoop, D.S.

    1997-08-20T23:59:59.000Z

    On the evening of May 14,1997, a chemical explosion Occurred at the Plutonium Reclamation Facility (PRF) in the 200 West Area(200-W) of the Hanford Site. The event warranted the declaration of an Alert emergency, activation of the Hanford Emergency Response Organization (BRO), and notification of offsite agencies. As a result of the emergency declaration, a subsequent evaluation was conducted to assess: 9 the performance of the emergency response organization o the occupational health response related to emergency activities o event notifications to offsite and environmental agencies. Additionally, the evaluation was designed to: 9 document the chronology of emergency and occupational health responses and environmental notifications connected with the explosion at the facility 0 assess the adequacy of the Hanford Site emergency preparedness activities; response readiness; and emergency management actions, occupational health, and environmental actions 0 provide an analysis of the causes of the deficiencies and weaknesses in the preparedness and response system that have been identified in the evaluation of the response a assign organizational responsibility to correct deficiencies and weaknesses a improve future performance 0 adjust elements of emergency implementing procedures and emergency preparedness activities.

  2. Effects of remediation amendments on vadose zone microorganisms

    SciTech Connect (OSTI)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10T23:59:59.000Z

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

  3. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect (OSTI)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19T23:59:59.000Z

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  4. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  5. Brownfield landfill remediation under the Illinois EPA site remediation program

    SciTech Connect (OSTI)

    Beck, J.; Bruce, B.; Miller, J.; Wey, T.

    1999-07-01T23:59:59.000Z

    Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

  6. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  7. Dispersion of Metals from Abandoned Mines and their Effects on Biota in the Methow River, Okanogan County, Washington : Annual Report 3/15/00-3/14/01.

    SciTech Connect (OSTI)

    Peplow, Dan; Edmonds, Robert

    2001-06-01T23:59:59.000Z

    The University of Washington, College of Forest Resources and the Center for Streamside Studies in Seattle, Washington, is being funded by the Bonneville Power Administration to conduct a three-year research project to measure the watershed scale response of stream habitat to abandoned mine waste, the dispersion of metals, and their effects on biota in the Methow River basin. The purpose of this project is to determine if there are processes and pathways that result in the dispersion of metals from their source at abandoned mines to biological receptors in the Methow River. The objectives of this study are the following: (1) Assess ecological risk due to metal contamination from mines near the Methow; (2) Measure impact of metals from mines on groundwater and sediments in Methow River; (3) Measure response of organisms in the Methow River to excess metals in the sediments of the Methow River; (4) Recommend restoration guidelines and biological goals that target identified pathways and processes of metal pollution affecting salmon habitat in the Methow basin; and (5) Submit peer review journal publications. When concluded, this study will contribute to the advancement of current best management practices by describing the processes responsible for the release of metals from small abandoned mine sites in an arid environment, their dispersal pathways, and their chemical and biological impacts on the Methow River. Based on these processes and pathways, specific remediation recommendations will be proposed.

  8. Soil Remediation Test

    SciTech Connect (OSTI)

    Manlapig, D. M.; Williamsws

    2002-04-01T23:59:59.000Z

    Soils contaminated with petroleum by-products can now be effectively remediated using a variety of technologies. Among these are in-situ bioremediation, land farming, and landfill/replacing of soil. The range of efficiencies and cost effectiveness of these technologies has been well documented. Exsorbet Plus is showing promise as an in-situ bioremediation agent. It is made of naturally grown Spaghnum Peat Moss which has been activated for encapsulation and blended with nitrogen-rich fertilizer. In its initial field test in Caracas, Venezuela, it was able to remediate crude oil-contaminated soil in 90 days at less than half of the cost of competing technologies. Waste Solutions, Corp and the US Department of Energy signed a Cooperative Research and Development Agreement to test Exsorbet Plus at the Rocky Mountain Oilfield Testing Center near Casper, Wyoming. As part of the test, soil contaminated with crude oil was treated with Exsorbet Plus to aid the in-situ bioremediation process. Quantitative total petroleum hydrocarbon (TPH) measurements were acquired comparing the performance of Exsorbet Plus with an adjacent plot undergoing unaided in-situ bioremediation.

  9. REMEDIAL ACTION PLAN

    E-Print Network [OSTI]

    Inactive Uranium; Mill Tailings Site; Uranium Mill Tremedial

    1990-01-01T23:59:59.000Z

    designated site consists of the 111-acre tailings pile, the mill yard, and piles of demolition rubble awaiting burial. The site contains 2.659 million cubic yards of tailings including 277,000 cubic yards of contaminated material in the mill yard, ore storage area, and Ann Lee Mine area; 151,000 cubic yards in the protore storage and leach pad areas; and 664,000 cubic yards of windblown contaminated soil, including excess soil that would result from excavation. Remedial action The remedial action will start with the excavation of windblown contaminated material and placement around the west, south, and east sides of the pile to buttress the slopes for increased stability. Most of the demolition rubble will be placed in the southern part of the pile and be covered with tailings. The northern part of the tailings pile (one million cubic yards) will then be excavated and placed on the south part of the pile to reduce the size of the disposal cell footprint. Demolition rubble that

  10. Digging Begins at Hazardous Hanford Burial Ground- River Corridor Contractor Spent Two Years Preparing to Remediate 618-10

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. — After careful preparation and characterization, the Department of Energy’s (DOE) River Corridor contractor, Washington Closure Hanford, has begun remediation of one of the most hazardous burial grounds tackled to date on the Hanford Site’s River Corridor.

  11. Remediation and Recycling of Linde FUSRAP Materials

    SciTech Connect (OSTI)

    Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

    2002-02-27T23:59:59.000Z

    During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

  12. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    SciTech Connect (OSTI)

    Post, Thomas C. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States)] [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); Strom, Dean [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States)] [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States); Beulow, Laura [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)] [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

  13. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    SciTech Connect (OSTI)

    Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States)] [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)] [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2013-07-01T23:59:59.000Z

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation/feasibility study (RI/FS) reports developed for upland areas, riparian areas, and groundwater in the Hanford Site River Corridor. The RI/FS reports will evaluate the impacts to soil, groundwater, and river sediments and lead to proposed cleanup actions and records of decision to address releases from the Hanford Site reactor operations. (authors)

  14. EIS-0484: Montana-to-Washington Transmission System Upgrade Project...

    Energy Savers [EERE]

    4: Montana-to-Washington Transmission System Upgrade Project in Washington, Idaho, and Montana EIS-0484: Montana-to-Washington Transmission System Upgrade Project in Washington,...

  15. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  16. Superfund state-lead remedial project-management handbook. Final report

    SciTech Connect (OSTI)

    Winter, B.

    1986-12-01T23:59:59.000Z

    The handbook defines the roles and responsibilities of the Remedial Project Officer (RPM) with regard to State-lead remedial projects at uncontrolled hazardous-waste sites. It also discusses project-management techniques and the resources available to the RPM for accomplishing his mission.

  17. Superfund federal-lead remedial project-management handbook. Final report

    SciTech Connect (OSTI)

    Hooper, S.

    1986-12-01T23:59:59.000Z

    The handbook defines the roles and responsibilities of the Remedial Project Officer (RPM) with regard to Federal-lead remedial projects at uncontrolled hazardous-waste sites. It also discusses project management techniques and the resources available to the RPM for accomplishing his mission.

  18. Recovery Act State Memos Washington

    Broader source: Energy.gov (indexed) [DOE]

    Richart Family has hired 25 new workers since last September to help with the infusion of weatherization work in the southwestern part of Washington. Half of those workers...

  19. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity...

  20. northeastern Washington's Okanogan County. The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.31 acre habitat acquisition in Washington's Okanogan River Watershed for fish habitat mitigation (see map). The Okanogan River Watershed was selected as a focus for restoration...

  1. ICDF Complex Remedial Action Report

    SciTech Connect (OSTI)

    W. M. Heileson

    2007-09-26T23:59:59.000Z

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  2. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  3. Biofuels in Oregon and Washington

    E-Print Network [OSTI]

    PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

  4. Harold Washington Social Security Administration (SSA) Center...

    Office of Environmental Management (EM)

    Harold Washington Social Security Administration (SSA) Center Water Conservation and Green Energy Harold Washington Social Security Administration (SSA) Center Water Conservation...

  5. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Energy Savers [EERE]

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  6. Independent Activity Report, Washington River Protection Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington River Protection Solutions, LLC - October 2011 October 2011 Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene...

  7. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  8. Washington Energy Facility Site Evalutation Council - Generalized...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

  9. Remediation by inspiration : artist-driven models for environmental clean-up

    E-Print Network [OSTI]

    Fain, Jessica (Jessica Elizabeth)

    2011-01-01T23:59:59.000Z

    While often seen as utilitarian and technical, environmental remediation efforts have significant cultural, social and physical impacts. Accordingly, they demand responses that utilize a multi-disciplinary approach to the ...

  10. Application of a World Wide Web technology to environmental remediation

    SciTech Connect (OSTI)

    Johnson, R.; Durham, L. A.

    2000-03-09T23:59:59.000Z

    As part of the Formerly Utilized Site Remedial Action Program (FUSRAP), the United States Army Corps of Engineers (USACE), Buffalo District, is responsible for overseeing the remediation of several sites within its jurisdiction. FUSRAP sites are largely privately held facilities that were contaminated by activities associated with the nuclear weapons program in the 1940s, 50s, and 60s. The presence of soils and structures contaminated with low levels of radionuclides is a common problem at these sites. Typically, contaminated materials must be disposed of off-site at considerable expense (up to several hundred dollars per cubic yard of waste material). FUSRAP is on an aggressive schedule, with most sites scheduled for close-out in the next couple of years. Among the multitude of tasks involved in a typical remediation project is the need to inform and coordinate with active stakeholder communities, including local, state, and federal regulators.

  11. Fiscal Year 2010 Program of the U.S. DOE Office of Groundwater and Soil Remediation

    SciTech Connect (OSTI)

    Chamberlain, G. M.; Skubal, Karen L.; Wellman, Dawn M.

    2011-03-07T23:59:59.000Z

    The mission of the Office of Groundwater and Soil Remediation (EM-32) is to perform assessments, establish technical criteria and promote cross-site integration. The Office provides guidance for the development and implementation of plans for remediation of groundwater and is responsible for development of technologies needed to reduce risk from groundwater contamination. It is also responsible for providing technical direction and/or assistance to sites in resolving difficult technical groundwater and soil remediation problems. This paper discusses the activities funded by EM-32 for FY-2010.

  12. Remedial Action Contacts Directory - 1997

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

  13. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    SciTech Connect (OSTI)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14T23:59:59.000Z

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  14. Streamline simulation of Surfactant Enhanced Aquifer Remediation 

    E-Print Network [OSTI]

    Tunison, Douglas Irvin

    1996-01-01T23:59:59.000Z

    Nonaqueous Phase Liquids (NAPLS) are a recognized source of groundwater contamination. Surfactant Enhanced Aquifer Remediation (SEAR) shows promise in increasing the efficiency and effectiveness over traditional "pump and treat" NAPL remediation...

  15. WASHINGTON STATE UNIVERSITY GRADUATE SCHOOL GRADUATE MENTOR ACADEMY OVERVIEW

    E-Print Network [OSTI]

    Collins, Gary S.

    WASHINGTON STATE UNIVERSITY GRADUATE SCHOOL GRADUATE MENTOR ACADEMY OVERVIEW 1 Graduate Mentor and mentoring graduate students who need sound advice during their early experiences in graduate school of teacher and mentor. All faculty advisors should be responsible for encouraging and ensuring effective

  16. Toxic Remediation System And Method

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alameda County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1996-07-23T23:59:59.000Z

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  17. GROUNDWATER REMEDIATION DESIGN USING SIMULATED

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 8 GROUNDWATER REMEDIATION DESIGN USING SIMULATED ANNEALING Richard L. Skaggs Pacific? There has been an emergence in the use of combinatorial methods such as simulated annealing in groundwater for groundwater management applications. The algorithm incor- porates "directional search" and "memory

  18. FUPWG Fall 2009 Washington Update | Department of Energy

    Office of Environmental Management (EM)

    FUPWG Fall 2009 Washington Update FUPWG Fall 2009 Washington Update Presentation covers the 2009 Federal Utility Partnership Working Group (FUPWG) Washington update to the Lighting...

  19. Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC (United States); Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia (United States); Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado (United States); Gillespie, Joey; Widdop, Michael [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS and M) of remediated FUSRAP sites. DOE LTS and M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS and M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS and M. Over the life of the FUSRAP program from 1974 to the present, DOE's primary mission and responsibility has been to ensure that FUSRAP sites remain protective of human health and the environment. In fulfilling this mission, the DOE program includes the following key elements: eligibility determinations, transition of remediated sites from USACE to DOE, LTS and M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close communication stakeholders as well as state and federal regulators. DOE programs are designed to preserve and present the information that future stewards and stakeholders will need to maintain site remedies and knowledge. (authors)

  20. Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado; Gillespie, Joey [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; Widdop, Michael [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; none,

    2012-02-26T23:59:59.000Z

    The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS&M) of remediated FUSRAP sites. DOE LTS&M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS&M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS&M.

  1. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S Department of Energy Office of Legacy Management, Westminster, Colorado; Widdop, Michael; Gillespie, Joey [SM Stoller Corporation, Grand Junction, Colorado

    2012-02-26T23:59:59.000Z

    The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: ? Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. ? DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. ? DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators.

  2. Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE`s Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories.

  3. Remediation of oil field wastes

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.

    1990-01-01T23:59:59.000Z

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  4. Review: Rare Plants of Washington State

    E-Print Network [OSTI]

    Miller, Ryder W.

    2013-01-01T23:59:59.000Z

    Field Guide to the Rare Plants of Washington Pamela Camp andField Guide to the Rare Plants of Washington. Seattle, WA:State’s 3600 vascular plants, 600 mosses, and 1000-1500

  5. UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195-7730

    E-Print Network [OSTI]

    Borenstein, Elhanan

    of Washington September 2006 #12;3) Rubber O-rings. We reuse the O-rings over and over. We purchase bags of 25 for applying vacuum grease. Puritan Applicator Sticks Harwood Products Guilford, ME 04443-0149 No. 807 1000 6 Number 1-000-0250 Drummond Scientific Company Broomall, PA 7) Schneider's tissue culture medium (500 ml

  6. Robert Blankenship Director Washington University Dewey Holten

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington University David Bocian, University of California, Riverside Donald Bryant, Pennsylvania State University Richard Cogdell, University of Glasgow P. Leslie...

  7. EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington

    Broader source: Energy.gov [DOE]

    This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

  8. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  9. Denman Forestry Issues Series: Washington's Forest Regulations

    E-Print Network [OSTI]

    Borenstein, Elhanan

    Denman Forestry Issues Series: Washington's Forest Regulations and Their Impacts on The Private College of Forest Resources continued its Denman Forestry Issues Series on May 30, 2001. Alumni landowners. Policy analysts and speakers representing the Washington Farm Forestry Assn., Washington Forest

  10. mentor memo University of Washington

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    mentor memo University of Washington the graduate school autumn quarter 2009 By Sabrina Bonaparte Network: Finding Mentors What do mentors do? Mentors help you learn and often share common topical a personal manner. Mentors understand you, see potential in you, and help you develop that potential

  11. Washington Update March 14, 2011

    E-Print Network [OSTI]

    Washington Update March 14, 2011 Nominations for the National Climate Assessment Development a very wide range of expertise is required on the NCADAC.Nominees are sought who have · sectoral expertise, including the natural environment, agriculture and forestry, energy, land cover and land use

  12. FEDERAL COMMUNICATIONS COMMISSION Washington, DC

    E-Print Network [OSTI]

    Peha, Jon M.

    1 Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC GN Docket No. 14-28 In the Matter 15213-3890 peha@cmu.edu July 15, 2014 #12;2 Executive Summary It is important for the Commission situated entity. This policy would particularly benefit new entrepreneurial ventures. The Commission should

  13. Summary - Mitigation and Remediation of Mercury Contamination...

    Office of Environmental Management (EM)

    and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

  14. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01T23:59:59.000Z

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  15. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect (OSTI)

    Rieck, R.H.

    1996-10-03T23:59:59.000Z

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  16. Recommendation 192: Comments on Remediation Effectiveness Report

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendations and Comments on the Draft 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation.

  17. Tank Waste Remediation System Guide

    SciTech Connect (OSTI)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01T23:59:59.000Z

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties.

  18. POST-REMEDIAL ACTION REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No.GS05:orPOST-REMEDIAL ACTION

  19. Groundwater Remediation Strategy Using Global Optimization Algorithms

    E-Print Network [OSTI]

    Neumaier, Arnold

    Groundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja Jonoski2 ; and Dimitri P. Solomatine3 Abstract: The remediation of groundwater contamination by pumping as decision variables. Groundwater flow and particle-tracking models MODFLOW and MODPATH and a GO tool GLOBE

  20. Savannah River Remediation Donates $10,000 to South Carolina...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

  1. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Terminal Waste Disposal and Remedial Action, Division of Remedial Action Projects (andor...

  2. Summary - Remedial System Performance Improvement for the 200...

    Office of Environmental Management (EM)

    primary remedial technology for groundwater. The remedial strategy should emphasize hydraulic containment for the most impacted portion of the groundwater plume, with compliance...

  3. acoustically enhanced remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detailed procedures for site assessment, remedial system design, and optimization of the remedial action operation (RAO) for the petroleum-hydrocarbons contaminated sites. In...

  4. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War...

  5. Preliminary Notice of Violation, Rocky Mountain Remediation Services...

    Broader source: Energy.gov (indexed) [DOE]

    June 6, 1997 Issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site,...

  6. Improving Remedial Planning Performance: The Rattlesnake Creek Experience

    SciTech Connect (OSTI)

    Rieman, C.R.; Spector, H.L.; Andrews, S.M. [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Durham, L. A.; Johnson, R. L. [Argonne National Laboratory, 9700 S. Cass Ave., EVS 900, Argonne, IL 60439 (United States); Racino, R. R. [Cabrera Services, Inc., 29 Railroad Avenue, Middletown, NY 10940 (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Army Corps of Engineers (USACE), Buffalo District, has responsibility for characterizing and remediating radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Most of these FUSRAP sites include radionuclide contamination in soils where excavation and offsite disposal is the selected remedial action. For many FUSRAP soil remediation projects completed to date, the excavated contaminated soil volumes have significantly exceeded the pre-excavation volume estimates that were developed for project planning purposes. The exceedances are often attributed to limited and sparse datasets that are used to calculate the initial volume estimates. These volume exceedances complicate project budgeting and planning. Building on these experiences, the USACE took a different approach in the remediation of Rattlesnake Creek, located adjacent to the Ashland 2 site, in Tonawanda, New York. This approach included a more extensive pre-design data collection effort to improve and reduce the uncertainty in the pre-excavation volume estimates, in addition to formalizing final status survey data collection strategies prior to excavation. The final status survey sampling was fully integrated with the pre-design data collection, allowing dual use of the pre-design data that was collected (i.e., using the data to close out areas where contamination was not found, and feeding the data into volume estimates when contamination was encountered). The use of real-time measurement techniques (e.g., X-ray fluorescence [XRF] and gamma walkover surveys) during pre-excavation data collection allowed the USACE to identify and respond to unexpected contamination by allocating additional data collection to characterizing new areas of concern. The final result was an estimated soil volume and excavation footprint with a firm technical foundation and a reduction in uncertainty. However, even with extensive pre-design data collection, additional contamination was found during the excavation that led to an increase in the soil volume requiring offsite disposal. This paper describes the lessons learned regarding improving remedial planning performance from the Rattlesnake Creek experience and evaluates the level of project uncertainty reduction achieved through pre-design data collection. (authors)

  7. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01T23:59:59.000Z

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  8. EIS-0096: Remedial Actions at the Former Vitro Rare Metals Plant Site, Canonsburg, Washington County, Pennsylvania

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to evaluate the environmental impacts associated with five potential sets of actions to address the potential public health hazards of residual radioactive materials remaining at the inactive uranium processing site in Canonsburg, Pennsylvania.

  9. Hanford site tank waste remediation system programmatic environmental review report

    SciTech Connect (OSTI)

    Haass, C.C.

    1998-09-03T23:59:59.000Z

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  10. UMTRA (Uranium Mill Tailings Remedial Action) Project site management manual

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs.

  11. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    SciTech Connect (OSTI)

    DOE/NV

    2001-04-05T23:59:59.000Z

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  12. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  13. Washington: a guide to geothermal energy development

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01T23:59:59.000Z

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  14. Bonneville Power Administration, Oregon Energy Northwest, Washington...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration, Oregon Energy Northwest, Washington; Wholesale Electric Primary Credit Analyst: David N Bodek, New York (1) 212-438-7969; david.bodek@standardandpo...

  15. Energy Northwest, Washington Bonneville Power Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northwest, Washington Bonneville Power Administration, Oregon; Wholesale Electric Primary Credit Analyst: David N Bodek, New York (1) 212-438-7969; david.bodek@standardandpoors.com...

  16. Washington Environmental Permit Handbook - Dangerous Waste Treatment...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Dangerous Waste Treatment Storage Disposal Facility New Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Web...

  17. USDA Rural Development Washington State Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Agriculture is hosting a Washington Rural Development Workshop. Speakers will cover local and regional broadband initiatives program and broadband success stories,...

  18. Washington Environmental Permit Handbook - NPDES Construction...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - NPDES Construction Stormwater General Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory...

  19. Federal Utility Partnership Working Group Meeting: Washington...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Utility Partnership Working Group Meeting: Washington Update fupwgspring12unruh.pdf More Documents & Publications Federal Utility Partnership Working Group Meeting:...

  20. Preliminary Notice of Violation, Washington Closure Hanford,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2012-04 Type B Accident Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1,...

  1. Remediation of inactive mining and milling sites

    SciTech Connect (OSTI)

    Mao, H.; Pan, Y.; Li, R.

    1993-12-31T23:59:59.000Z

    The presentation introduces relevant environment remediation standards and describes some measures of engineering remedied for inactive mines and mills. Since 1990, the remediation of decommissioned nuclear facilities has obtained fixed financial aid from state government, part of which is offered to inactive mines and mills. Considering the environmental characteristics of Chinese uranium mines and mills, the major task of decommissioning is to prevent radon release, and keep surface water and underground water from contamination. In order to control the rate of radon release effectively, the authors` research institutes conducted a series of experiments on the covers of tailings with two kinds of different material, clay and concrete.

  2. Aerospace & Energetics Research Program -University of Washington Plasma Dynamics Group

    E-Print Network [OSTI]

    Shumlak, Uri

    - University of Washington Plasma Dynamics Group q The Boltzmann equation is seven dimensional. qAerospace & Energetics Research Program - University of Washington Plasma Dynamics Group Plasma Research Program - University of Washington Plasma Dynamics Group Abstract Many current plasma simulation

  3. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0 0Feet)Same MonthWashington

  4. Washington Post editor David E.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsD ContractBOE ReserveWashington Post

  5. Adaptive management: a paradigm for remediation of public facilities

    SciTech Connect (OSTI)

    Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

    2009-01-01T23:59:59.000Z

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.

  6. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect (OSTI)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28T23:59:59.000Z

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  7. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect (OSTI)

    D. E. Shanklin

    2006-06-01T23:59:59.000Z

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  8. Electrolytic remediation of chromated copper arsenate wastes

    E-Print Network [OSTI]

    Stern, Heather A. G. (Heather Ann Ganung)

    2006-01-01T23:59:59.000Z

    While chromated copper arsenate (CCA) has proven to be exceptionally effective in protecting wood from rot and infestation, its toxic nature has led to the problem of disposal of CCA-treated lumber and remediation of waters ...

  9. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect (OSTI)

    BROCK CT

    2011-01-13T23:59:59.000Z

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  10. List of Contractors to Support Anthrax Remediation

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Lesperance, Ann M.

    2010-05-14T23:59:59.000Z

    This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

  11. Water as a Reagent for Soil Remediation

    SciTech Connect (OSTI)

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  12. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)

    1995-10-01T23:59:59.000Z

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  13. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01T23:59:59.000Z

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  14. Washington,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartment ofof Energy Provides DC

  15. Washington

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads| DepartmentVictorDepartmentMarksWalk-InWas hingtonApril

  16. Export Control Laws and Washingtonand Washington

    E-Print Network [OSTI]

    1 Export Control Laws and Washingtonand Washington University For Washington University Faculty Authors: Cindy White, Research Office Tina Tyson, Office of General Counsel May 2006 What are export of foreign policy and national security. *NOTE: Export control laws apply to all activities -- not just

  17. Baer selected to join Washington Academy of Sciences | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected to join Washington Academy of Sciences Baer selected to join Washington Academy of Sciences Released: July 21, 2014 He is being honored for outstanding scientific...

  18. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Broader source: Energy.gov (indexed) [DOE]

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America...

  19. DOE - Office of Legacy Management -- Carnegie Institute of Washington...

    Office of Legacy Management (LM)

    Carnegie Institute of Washington Dept of Genetics - NY 0-07 FUSRAP Considered Sites Site: Carnegie Institute of Washington (Dept. of Genetics) (NY.0-07 ) Eliminated from...

  20. Federal Utility Partnership Working Group 2011 Meeting: Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Meeting: Washington Update Federal Utility Partnership Working Group 2011 Meeting: Washington Update Presentation-given at the Fall 2011 Federal Utility Partnership Working...

  1. Type B Accident Investigation At Washington Closure Hanford,...

    Broader source: Energy.gov (indexed) [DOE]

    Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington Type B Accident Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1,...

  2. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    SciTech Connect (OSTI)

    Not Available

    1988-04-01T23:59:59.000Z

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document.

  3. Results of Remediation and Verification Sampling for the 600-270 Horseshoe Landfill

    SciTech Connect (OSTI)

    W. S. Thompson

    2005-12-14T23:59:59.000Z

    This report presents the results of the 2005 remedial action and verification soil sampling conducted at the 600-270 waste site after removal of soil containing residual concentrations of dichlorodiphenyl trichloroethane and its breakdown products dichlorodiphenyl dichloroethylene and dichlorodiphenyl dichloroethane. The remediation was performed in response to post-closure surface soil sampling performed between 1998 and 2003 that indicated the presence of residual DDT contamination exceeding the Record of Decision for the 1100 Area National Priorities List site cleanup criteria of 1 mg/kg that was established for the original 1994 cleanup activities.

  4. Completion report for the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This report documents the results of the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory (ORNL). The work performed is compared with that proposed in the statement of work and the service contract specification for the maintenance action to remediate tanks 3013, 3004-B, T-30, and 3001-B. The Federal Facility Agreement (FFA) among the U.S. Environmental Protection Agency (EPA), the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE) requires that all tanks, which have been removed from service and are designated in the FFA as Category D, must be remediated in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. The Environmental Restoration Program`s inactive tank removal program strategy and plans for remediating the inactive LLLW tanks were documented in a report issued in January 1995 (Inactive Tanks Remediation Program Strategy and Plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER-297). The inactive (Category D) tanks were initially screened for remediation according to risk, remediation technology required, level of instrumentation available, interferences with other piping and equipment, location, and available sludge removal techniques and storage requirements. On the basis of this preliminary screening, the tanks were assigned to one of five batches (I through V) for consideration of remedial action alternatives, and these batches were tentatively scheduled for remedial actions. The eight links tentatively assigned to Batch I were divided into two groups (Series I and Series II).

  5. Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Dr. JuliaPOINTRespond to theResponse SEAB

  6. SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION

    SciTech Connect (OSTI)

    Kohn, J.; Nichols, R.; Looney, B.

    2011-05-12T23:59:59.000Z

    The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

  7. Sitewide soil and debris management program for a DOE site under remediation

    SciTech Connect (OSTI)

    Harvey, B.F. [Parsons Environmental Services, Inc., Fairfield, OH (United States)

    1993-11-01T23:59:59.000Z

    In 1986, the United States Department of Energy (DOE) and the United States Environmental Protection Agency (US EPA) entered into a Federal Facility Compliance Agreement (FFCA). The agreement included provisions to investigate and define the nature and extent of contamination and to determine the necessity for remediation at the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. The agreement is also pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Uranium enrichment production activities at the facility ceased in 1989. The FEMP mission is now environmental clean-up and remediation under the management of the Fernald Environmental Restoration Management Corporation. This report describes objectives and activities of remediation efforts at FEMP.

  8. Incorporating ecological risk assessment into remedial investigation/feasibility study work plans

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and RI/FS work plan will have to be developed as part of the site-remediation scoping process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites.

  9. An overview of treatment and characterization technologies for environmental remediation at the Savannah River Site

    SciTech Connect (OSTI)

    Holt, D.L.; Butcher, B.T.

    1992-05-01T23:59:59.000Z

    The Environmental Restoration Department (ERD) at the Savannah River Site (SRS) has the responsibility to remediate waste sites and groundwater to standards as determined by Federal and State Authorities. This mission requires that certain programmatic interfaces within the ERD, Savannah River Technology Center (SRTC, formerly Savannah River Laboratory (SRL)), the Department of Energy Headquarters (DOE-HQ) Office of Technology Development (OTD), and outside commercial contractors be utilized to ensure cost-effective remediation technologies are utilized. This paper provides a synopsis of a select cross-section of the treatment and characterization technologies currently being pursued by ERD. Environmental Restoration Technology (ERT) Department's future role in providing the necessary technologies for waste sites and groundwater remediation is also discussed.

  10. An overview of treatment and characterization technologies for environmental remediation at the Savannah River Site

    SciTech Connect (OSTI)

    Holt, D.L.; Butcher, B.T.

    1992-05-01T23:59:59.000Z

    The Environmental Restoration Department (ERD) at the Savannah River Site (SRS) has the responsibility to remediate waste sites and groundwater to standards as determined by Federal and State Authorities. This mission requires that certain programmatic interfaces within the ERD, Savannah River Technology Center (SRTC, formerly Savannah River Laboratory (SRL)), the Department of Energy Headquarters (DOE-HQ) Office of Technology Development (OTD), and outside commercial contractors be utilized to ensure cost-effective remediation technologies are utilized. This paper provides a synopsis of a select cross-section of the treatment and characterization technologies currently being pursued by ERD. Environmental Restoration Technology (ERT) Department`s future role in providing the necessary technologies for waste sites and groundwater remediation is also discussed.

  11. Federal Utility Partnership Working Group Seminar: Washington Update

    Broader source: Energy.gov [DOE]

    Presentation covers the Federal Utility Partnership Working Group Seminar: Washington Update on May 22, 2013.

  12. SCHOOL OF BUSINESS THE GEORGE WASHINGTON UNIVERSITY INVESTORS

    E-Print Network [OSTI]

    Vertes, Akos

    SCHOOL OF BUSINESS THE GEORGE WASHINGTON UNIVERSITY INVESTORS REPORT2011 #12;#12;SCHOOL OF BUSINESS THE GEORGE WASHINGTON UNIVERSITY INVESTORS REPORT2011 #12;4 | THE GEORGE WASHINGTON UNIVERSITY SCHOOL OF BUSINESS |2011INVESTORSREPORT 4 THE GEORGE WASHINGTON UNIVERSITY SCHOOL OF BUSINESS | 2011 INVESTORS REPORT

  13. Federal Government Congressional Budget Office, Budget Analysis Division Washington, DC

    E-Print Network [OSTI]

    Shyy, Wei

    Charlotte, NC Gallaher Kazakhstan, Security & Brand Integrity Almaty Oblast, Kazakhstan GMMB Washington, DC

  14. Energy Matters in Washington State Page 1 Energy Matters

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Matters in Washington State ­ Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State ­ Page 2 Copyright © 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

  15. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs.

  16. Work Plan for the Feasibility Study for Remedial Action at J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Benioff, P.; Biang, C.; Haffenden, R.; Goyette, M.; Martino, L.; Patton, T.; Yuen, C.

    1995-05-01T23:59:59.000Z

    The purpose of the feasibility study is to gather sufficient information to develop and evaluate alternative remedial actions to address contamination at J-Field in compliance with the NCP, CERCLA, and SARA. This FS Work Plan summarizes existing environmental data for each AOC and outlines the tasks to be performed to evaluate and select remedial technologies. The tasks to be performed will include (1) developing remedial action objectives and identifying response actions to meet these objectives; (2) identifying and screening remedial action technologies on the basis of effectiveness, implementability, and cost; (3) assembling technologies into comprehensive alternatives for J-Field; (4) evaluating, in detail, each alternative against the nine EPA evaluation criteria and comparing the alternatives to identify their respective strengths and weaknesses; and (5) selecting the preferred alternative for each operable unit.

  17. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections.

  18. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01T23:59:59.000Z

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  19. Sodium dichromate expedited response action assessment

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) and Washington Department of Ecology (Ecology) recommended that the US Department of Energy (DOE) perform an expedited response action (ERA) for the Sodium Dichromate Barrel Disposal Landfill. The ERA lead regulatory agency is Ecology and EPA is the support agency. The ERA was categorized as non-time-critical, which required preparation of an engineering evaluation and cost analysis (EE/CA). The EE/CA was included in the ERA proposal. The EE/CA is a rapid, focused evaluation of available technologies using specific screening factors to assess feasibility, appropriateness, and cost. The ERA goal is to reduce the potential for any contaminant migration from the landfill to the soil column, groundwater, and Columbia River. Since the Sodium Dichromate Barrel Disposal Landfill is the only waste site within the operable unit, the removal action may be the final remediation of the 100-IU-4 Operable Unit. This ERA process started in March 1992. The ERA proposal went through a parallel review process with Westinghouse Hanford Company (WHC), DOE Richland Operations (RL), EPA, Ecology, and a 30-day public comment period. Ecology and EPA issued an Action Agreement Memorandum in March 1993 (Appendix A). The memorandum directed excavation of all anomalies and disposal of the collected materials at the Hanford Site Central Landfill. Primary field activities were completed by the end of April 1993. Final waste disposal of a minor quantity of hazardous waste was completed in July 1993.

  20. How to accelerate the Fernald remediation

    SciTech Connect (OSTI)

    Yates, M.K. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States). Fernald Environmental Management Project; Reising, J. [USDOE Cincinnati, OH (United States)

    1996-01-10T23:59:59.000Z

    The Fernald Environmental Management Project is unique among Department of Energy (DOE) sites by virtue of successful efforts by the Fernald Environmental Restoration Management Corporation (FERMCO) and DOE-Fernald Area Office (FN) in securing a stak-eholder-assisted final site closure vision and all Record of Decisions (ROD) or Interim RODs required to set the stage for final remediation. DOE and FERMCO have agreed in principle on a Ten Year Plan which accelerates all activities to remediate the site in approximately half the target schedule. This paper presents the path that led to the current Ten Year Plan, the key elements of the plan and the implementation strategies.

  1. University of Washington ENTERPRISE RISK MANAGEMENT

    E-Print Network [OSTI]

    Kaminsky, Werner

    University of Washington ENTERPRISE RISK MANAGEMENT 2010 Annual Report #12;ERM 2010 Annual Report 2 December 2010 "Enterprise Risk Management" (ERM) - a process - to integrate risk into strategic UW Enterprise Risk Management Framework . . . . . . . . . 6 Illustration of ERM Components

  2. Charging Up in King County, Washington

    ScienceCinema (OSTI)

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David;

    2013-05-29T23:59:59.000Z

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  3. Alternative Fuels Data Center: Washington Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    facilities in Washington, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  4. University of Washington Montlake Landfill Oversight Committee

    E-Print Network [OSTI]

    Wilcock, William

    University of Washington Montlake Landfill Oversight Committee Montlake Landfill Project Guide Department with the review and approval of the Montlake Landfill Oversight Committee. #12;Montlake Landfill ...................................................................................................................................3 Figure 1 ­ Approximate Boundaries of the Montlake Landfill

  5. Washington City Power- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Washington City offers a rebate of $1,000 per kilowatt-DC (kW-DC) to customers who install photovoltaic (PV) systems or wind-energy systems. The rebate is limited to $3,000 for residential systems...

  6. Charging Up in King County, Washington

    Broader source: Energy.gov [DOE]

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

  7. Washington and Lee University Edgar W. Spencer

    E-Print Network [OSTI]

    Marsh, David

    Washington and Lee University Edgar W. Spencer Class of 1953 Professor Edgar Spencer graduated, with great pride and gratitude the University bestows a 2013 Distinguished Alumni Award on Edgar W. Spencer

  8. Washington Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas provides a number of rebates to residential customers who utilize energy efficient equipment and measures in the home. Rebate are available for tankless water heaters, storage (tank)...

  9. pacific northwest UNIVERSITY of WASHINGTON PRESS

    E-Print Network [OSTI]

    Manchak, John

    Alini iyer published with south asian oral history project and university of washington libraries Oral or history, this read satisfies an urge for either." ­The Green Life, Sierra Club 304 pp., 36 illus. $18

  10. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Environmental Management (EM)

    of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous...

  11. MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION

    E-Print Network [OSTI]

    MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION April 13, 2004 Prepared for. Wright Street Littleton, CO 80127 #12;MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI Site Remediation By: Date: Robert Krumberger Project Manager New Horizons Environmental Consultants, Inc. Approved By

  12. Groundwater remediation at a former oil service site

    E-Print Network [OSTI]

    Han, Liping

    2005-08-29T23:59:59.000Z

    for computer modeling and remediation strategy evaluation. Computer models were used to simulate site conditions and assist in remedy design for the site. Current pump-and-treat systems were evaluated by the model under various scenarios. Recommendations were...

  13. IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    , Environmental Remediation Aimee Zack ­ Manager, Environmental Remediation #12;CORPORATE SUSTAINABILITY CREATES and sustainability of environmental remedies 2 #12;SITE BACKGROUND The Shoreham Facility 230 acres Northeast Took advantage of available rebates to install solar panels ­ Southern Solar Array: 60 panel system (11

  14. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY

    E-Print Network [OSTI]

    COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 · The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation RESEARCH INSTITUTE REMEDIATION PROJECT SUMMARY Page Two May 15, 2007 · The revised Remedial Investigation

  15. Tank waste remediation system program plan

    SciTech Connect (OSTI)

    Powell, R.W.

    1998-01-05T23:59:59.000Z

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  16. BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION

    E-Print Network [OSTI]

    OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION FINAL Prepared by: Brookhaven FOR U.S. Department of Energy March 2009 #12;i OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA..................................................................................................................4 4.0 Building 96 ­ Operational Background

  17. groundwater nitrogen source identification and remediation

    E-Print Network [OSTI]

    groundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer, the Seymour Aquifer has the highest groundwater pollution potential of all the major aqui- fers in Texas drinking water standards. Potential sources of nitrate in groundwater include atmospheric deposi- tion

  18. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.

  19. Toward a Unique UnderstandingToward a Unique Understanding Washington SquareWashington Square

    E-Print Network [OSTI]

    Hung, I-Kuai

    ;LagniappeLagniappe 1837 Map of Nacogdoches1837 Map of Nacogdoches 1846 Map of Nacogdoches1846 Map #12;The Sanborn MapsThe Sanborn Maps #12;Georeferenced RepresentationGeoreferenced Representation #12 excavations atbelow from the 1979 excavations at Washington Square.Washington Square. #12;The GridThe Grid #12

  20. Early Adopter PDC AtEarly Adopter PDC At Washington and LeeWashington and Lee

    E-Print Network [OSTI]

    Stough, Joshua

    Early Adopter ­ PDC AtEarly Adopter ­ PDC At Washington and LeeWashington and Lee Four-year Liberal with and manipulation of collections of stuff.manipulation of collections of stuff. · PDC applications: sorting, recursive treePDC applications: sorting, recursive tree structures, image processing,...structures, image

  1. EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON

    SciTech Connect (OSTI)

    AMBALAM, T.

    2004-12-01T23:59:59.000Z

    K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel, sludge, debris and water. At present, almost all of the spent fuel has been removed from the basins and other activities to remove sludge, debris and water are scheduled to be completed in 2007. Developing environmental documentation and obtaining regulatory approvals for a project which was initiated outside CERCLA and came under CERCLA during execution, was a significant priority to the successful completion of the SNF retrieval, transfer, drying, transport and storage of fuel, within the purview of strong conduct-of-operations culture associated with nuclear facilities. Environmental requirements promulgated in the state regulations by Washington Department of Public Health for radiation were recognized as ''applicable or relevant and appropriate.'' Effective implementation of the environmental compliance strategy in a project that transitioned to CERCLA became a significant challenge involving multiple contractors. This paper provides an overview of the development and implementation of an environmental permitting and surveillance strategy that enabled us to achieve full compliance in a challenging environment, with milestones and cost constraints, while meeting the high safety standards. The details of the strategy as to how continuous rapport with the regulators, facility operators and surveillance groups helped to avoid impacts on the clean-up schedule are discussed. Highlighted are the role of engineered controls, surveillance protocols and triggers for monitoring and reporting, and active administrative controls that were established for the control of emissions, water loss and transport of waste shipments, during the different phases of the project.

  2. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    SciTech Connect (OSTI)

    R. P. Wells

    2006-09-19T23:59:59.000Z

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  3. Physical verification of contaminated sediment remediation: Capping, confined aquatic disposal, and enhanced natural recovery

    SciTech Connect (OSTI)

    Browning, D. [Science Applications International Corp., Bothell, WA (United States)

    1995-12-31T23:59:59.000Z

    Dredging and disposal in a confined aquatic disposal (CAD) site, capping with clean sediment, and natural recovery are commonly used, cost-effective remedial practices for contaminated sediments. Recent projects in Puget Sound, Washington and Southern California involved dredging and use of the material for capping and CAD fill. Both of these projects required physical monitoring to document sediment placement. Dredged sediments placed at these sites were optically identified using sediment vertical profile system (SVPS) photography. Optical criteria to distinguish cap/construction materials include grain-size, reflectance, and texture. Environmental parameters such as the extent and thickness of the CAD material or sediment cap deposits are evaluated against design and performance goals, typically the isolation of contaminants from the biologically active portion of the sediment column. Using SVPS, coring and other technologies, the stratigraphic contact between the capping/CAD sediment and the native sediment can be discerned. These measurements observations can ground-truth and be coupled with remote sensing to provide a more complete characterization of the entire remedial area. Physical isolation of the benthic community can be discerned by examining SVPS images for depth of bioturbation and sediment stratigraphy. On the periphery of cap/CAD deposits, thin layers of clean sediment ranging upwards from 1 mm thick can be identified. Dependent on the pre-remediation benthic community at the site, these thin layers of CAP/CAD sediment can be bioturbated by resident benthic infauna immediately after placement. The deposition and subsequent assimilation of the clean cap material into the contaminated sediments effectively reduces the concentration of contaminants in the biologically active zone thereby enhancing natural recovery in areas where regulatory criteria are focused on the biologically active zone.

  4. Mineralogical study of borehole MW-206 Asarco smelter site, Tacoma, Washington

    SciTech Connect (OSTI)

    Frank, D.

    1998-10-01T23:59:59.000Z

    The mobility of metals in ground water is an important consideration for evaluating remedial options at the Asarco smelter site. Tacoma, Washington. One factor in assessing metal mobility is the degree of secondary mineralization in a slag-fill aquifer extending into the intertidal zone along the Puget Sound shoreline. Samples of aquifer material were collected for mineralogical analysis from borehole MW-206 at five-foot intervals within the slag fill from 5 to 25 feet below the ground surface, and in the underlying marine sand and gravel at 27 feet. Grab samples of slag fragments with visually apparent secondary minerals were also collected at five intermediate depths between 12 and 19 feet. Samples were analyzed by a variety of techniques including hydride generation/atomic absorption for arsenic concentration, scanning electron microscopy/electron microprobe for mineralogical texture and microanalysis, powder x-ray diffraction for mineral identification, and optical microscopy for textural observations.

  5. Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State

    SciTech Connect (OSTI)

    Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

    2008-09-01T23:59:59.000Z

    Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

  6. Utah Division of Environmental Response and Remediation Underground Storage

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2 -permitCommerce

  7. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  8. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  9. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Crapse, B.; Cowan, S.

    1998-01-21T23:59:59.000Z

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  10. BAYESIAN RESIDUAL ANALYSIS FOR BINARY RESPONSE

    E-Print Network [OSTI]

    Albert, James H.

    of Mathematics and Statistics Bowling Green State University, Bowling Green, 43403 USA Siddhartha Chib Olin School of Business Washington University, St. Louis 63130 USA March, 1994 Summary In a binary response

  11. Using 3D Acoustic Telemetry to Assess the Response of Resident Salmonids to Strobe Lights in Lake Roosevelt, Washington; Chief Joseph Kokanee Enhancement Feasibility Study, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Perry, Russlee; Farley, M.; Hansen, Gabriel

    2003-01-01T23:59:59.000Z

    In 1995, the Chief Joseph Kokanee Enhancement Project was established to mitigate the loss of anadromous fish due to the construction of Chief Joseph and Grand Coulee dams. The objectives of the Chief Joseph Enhancement Project are to determine the status of resident kokanee (Oncorhynchus nerka) populations above Chief Joseph and Grand Coulee dams and to enhance kokanee and rainbow trout (Oncorhynchus mykiss) populations. Studies conducted at Grand Coulee Dam documented substantial entrainment of kokanee through turbines at the third powerhouse. In response to finding high entrainment at Grand Coulee Dam, the Independent Scientific Review Panel (ISRP) recommended investigating the use of strobe lights to repel fish from the forebay of the third powerhouse. Therefore, our study focused on the third powerhouse and how strobe lights affected fish behavior in this area. The primary objective of our study was to assess the behavioral response of kokanee and rainbow trout to strobe lights using 3D acoustic telemetry, which yields explicit spatial locations of fish in three dimensions. Our secondary objectives were to (1) use a 3D acoustic system to mobile track tagged fish in the forebay and upriver of Grand Coulee Dam and (2) determine the feasibility of detecting fish using a hydrophone mounted in the tailrace of the third powerhouse. Within the fixed hydrophone array located in the third powerhouse cul-de-sac, we detected 50 kokanee and 30 rainbow trout, accounting for 47% and 45% respectively, of the fish released. Kokanee had a median residence time of 0.20 h and rainbow trout had a median residence time of 1.07 h. We detected more kokanee in the array at night compared to the day, and we detected more rainbow trout during the day compared to the night. In general, kokanee and rainbow trout approached along the eastern shore and the relative frequency of kokanee and rainbow trout detections was highest along the eastern shoreline of the 3D array. However, because we released fish near the eastern shore, this approach pattern may have resulted from our release location. A high percentage of rainbow trout (60%) approached within 35 m of the eastern shore, while fewer kokanee (40%) approached within 35 m of the eastern shore and were more evenly distributed across the entrance to the third powerhouse cul-de-sac area. During each of the strobe light treatments there were very few fish detected within 25 m of the strobe lights. The spatial distribution of fish detections showed relatively few tagged fish swam through the center of the array where the strobe lights were located. We detected 11 kokanee and 12 rainbow trout within 25 m of the strobe lights, accounting for 10% and 18% respectively, of the fish released. Both species exhibited very short residence times within 25 m of the strobe lights No attraction or repulsion behavior was observed within 25 m of the strobe lights. Directional vectors of both kokanee and rainbow trout indicate that both species passed the strobe lights by moving in a downstream direction and slightly towards the third powerhouse. We statistically analyzed fish behavior during treatments using a randomization to compare the mean distance fish were detected from the strobe lights. We compared treatments separately for day and night and with the data constrained to three distances from the strobe light (< 85m, < 50 m, and < 25 m). For kokanee, the only significant randomization test (of 10 tests) occurred with kokanee during the day for the 3-On treatment constrained to within 85 m of the strobe lights, where kokanee were significantly further away from the strobe lights than during the Off treatment (randomization test, P < 0.004, Table 1.5). However, one other test had a low P-value (P = 0.064) where kokanee were closer to the lights during the 3-On treatment at night within 85 m of the strobe lights compared to the Off treatment. For rainbow trout, none of the 11 tests were significant, but one test had a low P-value (P = 0.04), and fish were further away from the strobe lights during

  12. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Rhia, Brian D. (Augusta, GA)

    2011-03-01T23:59:59.000Z

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  13. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Riha, Brian D.

    2012-07-03T23:59:59.000Z

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  14. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    SciTech Connect (OSTI)

    D.F. Nickelson; D.K. Jorgensen; J.J. Jessmore; R.A. Hyde; R.K. Farnsworth

    1999-02-01T23:59:59.000Z

    Mixed radioactive and hazardous wastes were buried at the Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE's Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  15. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    SciTech Connect (OSTI)

    Jorgensen, Douglas Kay; Nickelson, David Frank; Nickelson, Reva Anne; Farnsworth, Richard Kent; Jessmore, James Joseph

    1999-03-01T23:59:59.000Z

    Mixed radioactive and hazardous wastes were buried at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE’s Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  16. Washington, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtilityInformationWashingtonInformationWashington,

  17. Washington Technology Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWarana Group ofWashingtonWashington

  18. Small Business Summit - Coming to Washington State this April...

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Summit - Coming to Washington State this April Small Business Summit - Coming to Washington State this April February 23, 2012 - 12:24pm Addthis You're invited to...

  19. Orcas Power & Light- MORE Green Power Program (Washington)

    Broader source: Energy.gov [DOE]

    Orcas Power and Light (OPALCO), an electric cooperative serving Washington’s San Juan Islands, provides a production-based incentive for residential and commercial members who generate energy from...

  20. CHP Units in Washington State - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    CHP Units in Washington State This is data taken from the website http:www.eea-inc.comchpdataStatesWA.html on 232015 regarding the Cogeneration units in Washington State....

  1. Washington Notice of Construction Application under New Source...

    Open Energy Info (EERE)

    Washington Notice of Construction Application under New Source Review (Form ECY 070-410) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Washington Notice...

  2. Remedial design through effective electronic associations

    SciTech Connect (OSTI)

    Deis, J.L.; Wankum, R.D.

    1999-07-01T23:59:59.000Z

    Black and Veatch Special Projects Corp. (BVSPC) used an environmental data management system (EDMS) to consolidate x-ray fluorescence (XRF), global positioning system (GPS), and laboratory analytical data into a unique and flexible electronic database. Cost savings were acknowledged in all phases of the remedial design due to the development and use of the EDMS and its distinct associations with various electronic software packages. The EDMS allowed effective and efficient completion of the remedial design investigation of the Oronogo-Duenweg Mining Belt Site. The Site is a 125-year old mining community in Jasper County, Missouri. Approximately 6,500 residences are now located within the 60 square-mile Superfund Site where lead and zinc were mined. Smelting and mining activities were conducted in several areas throughout the community. These operations left approximately 9 million tons of mine wastes at the Site upon completion of the mining activities. The purpose of the remedial design investigation was to quantify and identify the residential yards that were adversely affected by these activities.

  3. Laboratory/industry partnerships for environmental remediation

    SciTech Connect (OSTI)

    Beskid, N.J.; Zussman, S.K.

    1994-09-01T23:59:59.000Z

    There are two measures of ``successful`` technology transfer in DOE`s environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized.

  4. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.; Van Lonkhuyzen, R.

    2000-02-25T23:59:59.000Z

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment.

  5. Salmon Site Remedial Investigation Report, Appendix C

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  6. Salmon Site Remediation Investigation Report, Appendix A

    SciTech Connect (OSTI)

    US DOE /Nevada Operations Office

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  7. Salmon Site Remedial Investigation Report, Appendix D

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  8. Salmon Site Remedial Investigation Report, Exhibit 5

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  9. Salmon Site Remedial Investigation Report, Exhibit 4

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  10. Salmon Site Remedial Investigation Report, Exhibit 3

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  11. Salmon Site Remedial Investigation Report, Exhibit 2

    SciTech Connect (OSTI)

    USDOE NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  12. Salmon Site Remedial Investigation Report, Exhibit 1

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  13. Salmon Site Remedial Investigation Report, Main Body

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  14. 1979-1980 Geothermal Resource Assessment Program in Washington

    SciTech Connect (OSTI)

    Korosec, M.A.; Schuster, J.E.

    1980-01-01T23:59:59.000Z

    Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

  15. Late Quaternary history of Washington Land, North Greenland OLE BENNIKE

    E-Print Network [OSTI]

    Ingólfsson, Ólafur

    Late Quaternary history of Washington Land, North Greenland OLE BENNIKE Bennike, O. 2002 (September): Late Quaternary history of Washington Land, North Greenland. Boreas, Vol. 31, 260­272. Oslo. ISSN 0300-9483. During the last glacial stage, Washington Land in western North Greenland was probably completely inun

  16. WWU Sustainability Academy Western Washington University

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    WWU Sustainability Academy Western Washington University Dear colleagues, We cordially extend to you this invitation to join the WWU Sustainability Academy! Following several years of discussion, a group of faculty has started the (tentatively named) "WWU Sustainability Academy." Our goal is to build

  17. Washington University Department of Computer Science

    E-Print Network [OSTI]

    Schmidt, Douglas C.

    Washington University Department of Computer Science CS422: Operating Systems Programming Project_SOCK_Connector (void); // Default constructor. int connect (Muxed_SOCK_Stream *&new_stream, const INET_Addr &remote_sap); // Actively connect and produce a if things go well. // The sap> is the address that we

  18. Electrical Engineering Graduation Requirements University of Washington

    E-Print Network [OSTI]

    Queitsch, Christine

    EE Electrical Engineering Graduation Requirements University of Washington www Chemistry with lab Phys 121 (5cr) ­ Mechanics with lab [pr: Math 124] Engineering Electives (10 Credits Analysis [pr: PHYS 122; MATH 307 & CSE 142 concurrent] Application Deadlines Professional Issues (1 Credit

  19. John Yembrick Headquarters, Washington May 7, 2009

    E-Print Network [OSTI]

    : 09-100 NASA RELEASES INTERACTIVE 3-D VIEWS OF SPACE STATION, NEW MARS ROVER WASHINGTON -- NASA and Microsoft Corporation of Redmond, Wash., released an interactive, 3-D photographic collection of internal standard digital cameras to construct a 3-D view that can be navigated and explored online. "This stunning

  20. SAN JOSE STATE UNIVERSITY ONE WASHINGTON SQUARE

    E-Print Network [OSTI]

    Gleixner, Stacy

    Public Safety Funding). RESOLVED That the San José State University (SJSU) commend the CSU BoardSAN JOSE STATE UNIVERSITY ONE WASHINGTON SQUARE SAN JOSE, CA 95192 SS-F12-2, Sense of the Senate Resolution, Urging that California Voters Become Well Informed About the Current State of Funding

  1. FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554

    E-Print Network [OSTI]

    Bove Jr., V. Michael

    FCC 96­207 Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554 In the Matter to the advancement of digital television and related technologies by the Federal Communications Commission, its 617­253­0334, fax 617­258­6264 vmb@media.mit.edu #12; EXECUTIVE SUMMARY The Federal Communications

  2. EIS-0205: Joint NEPA/SEPA Final Environmental Impact Statement Washington Windplant No. 1, Goldendale, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bonneville Power Administration prepared this statement in order to fulfill its National Environmental Policy Act obligations ahead of signing an agreement with the utilities that would purchase the Windplant’s power from KENETECH. KENETECH Windpower, Inc., proposes to construct and operate Washington Windplant No. 1 in the Columbia Hills area, southeast of Goldendale, in Klickitat County, Washington.

  3. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  4. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect (OSTI)

    KRONVALL CM

    2011-01-14T23:59:59.000Z

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  5. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    SciTech Connect (OSTI)

    G. L. Schwendiman

    2006-07-01T23:59:59.000Z

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

  6. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

  7. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  8. Confirmatory Survey Report for Area B1S/B2S at the Chevron Mining Washington Remediation Project, Washington, PA

    SciTech Connect (OSTI)

    W. C. Adams

    2007-11-20T23:59:59.000Z

    During the period of October 2 and 3, 2007, the Oak Ridge Institute for Science and Education (ORISE) performed confirmatory radiological survey activities which included gamma surface scans within Area B1S/B2S and the collection of soil samples from these areas.

  9. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

  10. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Environmental Management (EM)

    and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

  11. Economical Remediation of Plastic Waste into Advanced Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economical Remediation of Plastic Waste into Advanced Materials with Coatings Technology available for licensing: An autogenic pyrolysis process to convert plastic waste into...

  12. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American...

  13. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Office of Environmental Management (EM)

    to support research activities and remedial decision making. Led by the Savannah River National Laboratory (SRNL), the initiative is a collaborative effort that leverages...

  14. Environmental Remediation program to perform slope-side cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perform slope-side cleanup Environmental Remediation program to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory is performing a high-angle...

  15. Iowa Land Recycling and Environmental Remediation Standards Act (Iowa)

    Broader source: Energy.gov [DOE]

    This chapter establishes remediation standards for land, other than standards for water quality, hazardous conditions, underground storage tanks, and groundwater protection, which are discussed in...

  16. Different Strategies for Biological Remediation of Perchlorate Contaminated Groundwater

    E-Print Network [OSTI]

    Wang, Yue

    2012-01-01T23:59:59.000Z

    Respiring Microorganisms. Bioremediation 1998. 2(2): p. 69-Analysis and Remediation. Bioremediation Journal, 1998. 2(of in situ perchlorate bioremediation at the Indian Head

  17. area remedial investigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 104 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  18. act cercla remedial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 86 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  19. accelerated remedial strategy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 151 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  20. area remediation case: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 112 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  1. antimalarial herbal remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 105 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  2. aquifer remediation design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 207 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  3. active chemical remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 142 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  4. antimalarial phytotherapy remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 65 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  5. area including remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 117 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  6. Final Environmental Impact Statement for the Tank Waste Remediation...

    Broader source: Energy.gov (indexed) [DOE]

    to radioactive sources. They would occur while managing the tank farms and performing remedial activities. Exposures are closely monitored, and the radiation dose a worker may...

  7. assess remediation performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation...

  8. advanced remediation technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 374 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  9. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

  10. Washington v. DOE - Respondents' Response in Opposition to Petitioner's

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartment ofof Energy Provides

  11. Historical hydronuclear testing: Characterization and remediation technologies

    SciTech Connect (OSTI)

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01T23:59:59.000Z

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  12. Portsmouth Remedial Actions Documents | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmount forDecontamination and DecommissioningRemedial

  13. Portsmouth Remediation Scope | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site » Portsmouth Community Outreach » PortsmouthRemediation Scope

  14. Superfund Record of Decision (EPA Region 10): Old Navy Dump Manchester Laboratory (USEPA/NOAA), Manchester, WA, September 30, 1997

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This decision document presents the selected remedial action for the Old Navy Dump/Manchester Annex Superfund Site (Site) in Manchester, Washington. The selected remedy is the only response action planned for the Site.

  15. Vicinity Property Assessments at Formerly Utilized Sites Remedial Action Program Project Sites in the New York District - 13420

    SciTech Connect (OSTI)

    Ewy, Ann; Hays, David [U.S. Army Corps of Engineers (United States)] [U.S. Army Corps of Engineers (United States)

    2013-07-01T23:59:59.000Z

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) has addressed sites across the nation for almost 4 decades. Multiple stake holder pressures, multiple regulations, and process changes occur over such long time periods. These result in many challenges to the FUSRAP project teams. Initial FUSRAP work was not performed under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Records of Decision (ROD). The ROD identifies the remedy decision and ultimately the criteria to be used to release a site. Early FUSRAP projects used DOE Orders or the Uranium Mill Tailings Radiation Control Act (UMTRCA) standards. Under current RODs, regulations may differ, resulting in different cleanup criteria than that used in prior Vicinity Property (VP) remediation. The USACE, in preparation for closeout of Sites, conducts reviews to evaluate whether prior actions were sufficient to meet the cleanup criteria specified in the current ROD. On the basis of these reviews, USACE has conducted additional sampling, determined that prior actions were sufficient, or conducted additional remediation consistent with the selected remedy in the ROD. As the public pressures, regulations, and processes that the FUSRAP encounters continue to change, the program itself continues to evolve. Assessment of VPs at FUSRAP sites is a necessary step in the life cycle of our site management. (authors)

  16. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    D. Vandel

    2003-09-01T23:59:59.000Z

    This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

  17. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12T23:59:59.000Z

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  18. Installation of an innovative remedial technology

    SciTech Connect (OSTI)

    Hines, B. [CDM Federal Programs Corp., Kevil, KY (United States)

    1995-12-31T23:59:59.000Z

    The major goal of the Lasagna{trademark} project was to design, construct, install, and operate an in situ remediation system in low-permeability soil. A new technology--the Lasagna process--uses electro-osmosis to move contaminated groundwater through treatment zones. The treatment zones are installed in contaminated soils, thereby forming an integrated in situ remedial process. Electro-osmosis, well known for its effectiveness and extremely low power consumption, uses a direct current to cause Groundwater to travel through low-permeability soil. When a bench-scale version of the technology was 98 percent effective in removing contamination, an actual field test was the next step. The site chosen for this first field effort was the DOE-owned Paducah Gaseous Diffusion Plant located in Paducah, Kentucky. The target contaminant for this project was trichloroethylene (TCE) because it is found at many sites across the country and is present at approximately 60 percent of DOE`s sites.

  19. National Museum of the American Indian Museum Stores Washington, D.C. & New York Vendor Product Proposal

    E-Print Network [OSTI]

    Mathis, Wayne N.

    National Museum of the American Indian Museum Stores Washington, D.C. & New York Vendor Product Proposal Submission to Museum Stores National Museum of the American Indian (NMAI) Our Museum Stores your craft for sale in our Museum Stores, vendor shall be responsible for complying with all applicable

  20. National Museum of the American Indian Museum Stores Washington, D.C. & New York Vendor Product Proposal/ Jewelry

    E-Print Network [OSTI]

    Mathis, Wayne N.

    National Museum of the American Indian Museum Stores Washington, D.C. & New York Vendor Product Proposal/ Jewelry Submission to Museum Stores National Museum of the American Indian (NMAI) Our Museum Institution your craft for sale in our Museum Stores, vendor shall be responsible for complying with all

  1. National Museum of the American Indian Museum Stores Washington, D.C. & New York Vendor Product Proposal/Books & Media

    E-Print Network [OSTI]

    Mathis, Wayne N.

    National Museum of the American Indian Museum Stores Washington, D.C. & New York Vendor Product Proposal/Books & Media Submission to Museum Stores National Museum of the American Indian (NMAI) Our Museum Institution your craft for sale in our Museum Stores, vendor shall be responsible for complying with all

  2. Your Laboratory Specific Chemical Hygiene Plan Washington Administrative Code (WAC) 296-828, Hazardous Chemicals in Labs, AKA

    E-Print Network [OSTI]

    Collins, Gary S.

    1 Your Laboratory Specific Chemical Hygiene Plan Washington Administrative Code (WAC) 296 Hygiene Plan (CHP) and designate a "Chemical Hygiene Officer" responsible for ensuring that the plan Manual (LSM) and this Chemical Hygiene Plan Guide to assist you with developing a Chemical Hygiene Plan

  3. SIMULATION OF REMEDIATION ALTERNATIVES FOR A 137Cs CONTAMINATED SOIL.

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    SIMULATION OF REMEDIATION ALTERNATIVES FOR A 137Cs CONTAMINATED SOIL. THE NUMERICAL MODELING analyze remediation alternatives for a soil contaminated with 137Cs, which sorbs strongly onto the clayey. The mobile portion of the soil (macropores) retains little water and cesium. The natural attenuation option

  4. Chapter 2. Assessment and Remediation of Residential Lead Exposure

    E-Print Network [OSTI]

    Chapter 2. Assessment and Remediation of Residential Lead Exposure Prepared by Thomas D. Matte, MD of Residential Lead Exposure Table 2.1. Summary of Recommendations for Assessment and Remediation of Residential Lead Exposure Make prompt and effective environmental management for children with EBLLs the highest

  5. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  6. Optimal Groundwater Remediation Network Design using Selective Membranes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimal Groundwater Remediation Network Design using Selective Membranes Eugenio Bringasa with the optimal synthesis of groundwater remediation networks for the valorization of anionic pollutants by means possible design alternatives are proposed. The aim of this work is to obtain a minimum cost groundwater

  7. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    SciTech Connect (OSTI)

    Barry L. Burks

    2002-12-01T23:59:59.000Z

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  8. Remediation of Hylebos Waterway (Tacoma, WA): A common sense approach to determining contaminated sediment volumes

    SciTech Connect (OSTI)

    Fuglevand, P. [Dalton, Olmsted and Fuglevand, Inc., Bothell, WA (United States); Revelas, G.; Striplin, B.; Striplin, P. [Striplin Environmental Associates, Inc., Olympia, WA (United States)

    1995-12-31T23:59:59.000Z

    Hylebos Waterway is a three mile long industrial waterway located in Commencement Bay, Washington. A CERCLA program RI/FS, conducted in the mid-1980`s, found that surface sediments (0--2 cm) were contaminated with chlorinated organics, PAHs, and metals. An ongoing pre-remedial design effort, initiated in 1993, is evaluating natural recovery and four sediment confinement options for sediments that exceed programmatic sediment quality objectives: confined aquatic disposal, near-shore disposal, upland disposal, and in-place capping. The first three confinement options require dredging of contaminated sediments which, in turn, requires accurate determination of the three dimensional distribution of contaminated sediments. To place a maximum depth boundary on the sediment sampling approach, isopach maps were created by contouring the difference between the deepest historic dredging depth and current depth along the entire waterway. These isopach maps revealed the pattern of post-industrial sediment deposition in the waterway. For example, in some areas, little or no sediment accumulation had occurred in the navigation channel. Conversely, significant accumulation had occurred along some channel edges and in near-shore areas as the result of deposition, bank sloughing and historic dredging/filling activities. The isopach maps were used to place a lower depth boundary on waterway-wide sediment contamination and to establish the maximum core sampling depth required to reach ``native`` sediments, i.e., those below the deepest historic dredging depth and believed to be uncontaminated. Subsequent geo-technical and chemical analyses of the core samples confirmed the accuracy of the isopach approach. The data generated from this sampling effort are being used to estimate the areas and volumes of subtidal sediments requiring remedial action.

  9. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    SciTech Connect (OSTI)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23T23:59:59.000Z

    Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the former Yucca Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

  10. Regulatory strategies for remediation of contaminated sediments

    SciTech Connect (OSTI)

    Zar, H. [Environmental Protection Agency, Chicago, IL (United States)

    1995-12-31T23:59:59.000Z

    A number of federal and state laws may be used to obtain remediation of contaminated sediments in the US. Until recently, the most prominent approaches at the federal level were the use of Superfund authorities for sites on the National priority List and navigational dredging activity by the Corps of Engineers. However, with the increasing concern about contaminated sediments, regional offices of the US Environmental Protection Agency (EPA) and state agencies have begun to use a greater variety of regulatory approaches, both individually and in combination. These efforts have been particularly evident in the Great Lakes and are now being extended nationwide, as embodied in the EPA`s Contaminated Sediment Management Strategy. This paper will describe some of the regulatory approaches being applied, case examples in the Great Lakes area, and the expected directions of these efforts, as embodied in the national strategy.

  11. Environmental remediation and waste management information systems

    SciTech Connect (OSTI)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31T23:59:59.000Z

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  12. DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION

    SciTech Connect (OSTI)

    Bannochie, C.; Crawford, C.

    2013-06-18T23:59:59.000Z

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

  13. Remediation of Centre Pier, Port Hope, Ontario: Historical, Logistical, Regulatory and Technical Challenges - 13118

    SciTech Connect (OSTI)

    Ferguson Jones, Andrea [MMM Group Limited, 100 Commerce Valley Drive West, Thornhill, Ontario, L3T 0A1 (Canada)] [MMM Group Limited, 100 Commerce Valley Drive West, Thornhill, Ontario, L3T 0A1 (Canada); Case, Glenn [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario, L1A 3S4 (Canada)] [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario, L1A 3S4 (Canada); Lawrence, Dave [Public Works and Government Services Canada, 115 Toronto Road, Port Hope, Ontario, L1A 3S4 (Canada)] [Public Works and Government Services Canada, 115 Toronto Road, Port Hope, Ontario, L1A 3S4 (Canada)

    2013-07-01T23:59:59.000Z

    Centre Pier is a 3.9 ha property owned by the Commissioners of the Port Hope Harbour in the Municipality of Port Hope, Ontario, Canada. It is centrally located on the Port Hope waterfront and is bounded on the west by the Port Hope Harbour, on the east by the Ganaraska River, on the south by Lake Ontario, and on the north by a railway corridor. The property is currently leased by the Commissioners of the Port Hope Harbour to the Cameco Corporation which owns the four onsite building that are used as warehouse space for their uranium conversion facility located on the western side of the Harbour. Remediation of this site forms part of the Port Hope Project being undertaken by Atomic Energy of Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). Soil impacts include radiological, metals and petroleum hydrocarbons resulting from long term historical industrial use. Radiological impacts in soil extend across most of the site primarily within the upper metre of fill. Metals-contaminated soil is present across the entire site in the underlying fill material. The metals-contaminated fill extends to a maximum depth of 2.0 m below grade at the north end of the site which is underlain by peat. However, the metals-contaminated soil could extend to the top of the bedrock on the remainder of the site. Based on the elevation of the bedrock in the adjacent river and Harbour Basin, the metals-contaminated soil may extend to a depth of 5.6 m or 6.5 m below existing grade. Petroleum-contaminated soil is present on the southeast side of the site, where a storage tank farm was previously located. Challenges include: - The complex history of the site both relating to site use and Pier construction. Pier development began in the 1800's and was undertaken by many different entities. Modifications and repairs were made over the years resulting in several different types of Pier walls and fill that must be considered during remediation. A wide variety of industrial activity on the Pier including extensive foundry operations as well as the industrial nature of the fill used to construct the Pier has resulted in extensive contamination distribution. The Pier structure will require reinforcement to permit both the remediation of the Pier and the adjacent Harbour and remediation techniques will need to be well suited to minimize disruption of wall structures as well as being able to deal with fill ranging from ash to boulders. - Multiple stakeholders are responsible for building demolition, remediation of radiological impacts, remediation of industrial impacts and the use of the site as a staging area for Harbour sediment remediation. The successful remediation of the Centre Pier will require careful negotiation and planning for the various remediation activities noted above. - The depth of contamination on the Pier would result in the complete removal of the Pier if all contamination were to be excavated. Therefore, a Risk Assessment will be conducted to determine the appropriate means for in situ risk management for materials to be left in place below a proposed depth of 1.5 m below current grade. With the concurrence of the property owners and Provincial regulators, the Risk Assessment will be undertaken in accordance with the Provincial requirements that will ensure adequate protection of the environment and future users of the site. - The end use of the Pier has yet to be confirmed by the Municipality. (authors)

  14. Independent Technical Review of the X-740 Groundwater Remedy, Portsmouth, Ohio: Technical Evaluation and Recommendations

    SciTech Connect (OSTI)

    Looney, B.; Rhia, B.; Jackson, D.; Eddy-Dilek, C.

    2010-04-30T23:59:59.000Z

    Two major remedial campaigns have been applied to a plume of trichloroethene (TCE) contaminated groundwater near the former X-740 facility at the Portsmouth Gaseous Diffusion Plant in Piketon Ohio. The two selected technologies, phytoremediation using a stand of hybrid poplar trees from 1999-2007 and in situ chemical oxidation using modified Fenton's Reagent from 2008-2009, have proven ineffective in achieving remedial action objectives (RAOs). The 'poor' performance of these technologies is a direct result of site specific conditions and the local contaminant hydrogeology. Key among these challenges is the highly heterogeneous subsurface geology with a thin contaminated aquifer zone (the Gallia) - the behavior of the contamination in the Gallia is currently dominated by slow release of TCE from the clay of the overlying Minford formation, from the sandstone of the underlying Berea formation, and from clayey layers within the Gallia itself. In response to the remediation challenges for the X-740 plume, the Portsmouth team (including the US Department of Energy (DOE), the site contractor (CDM), and the Ohio Environmental Protection Agency (OEPA)) is evaluating the feasibility of remediation at this site and identifying specific alternatives that are well matched to site conditions and that would maximize the potential for achieving RAOs. To support this evaluation, the DOE Office of Groundwater and Soil Remediation (EM-32) assembled a team of experts to serve as a resource and provide input and recommendations to Portsmouth. Despite the challenging site conditions and the failure of the previous two remediation campaigns to adequately move the site toward RAOs, the review team was unanimous in the conclusion that an effective combination of cost effective technologies can be identified. Further, the team expressed optimism that RAOs can be achieved if realistic timeframes are accepted by all parties. The initial efforts of the review team focused on reviewing the site history and data and organizing the information into a conceptual model and findings to assist in evaluating the potential of alternative remediation technologies. Examples of the key conceptual findings of the EM-32 review team were: (1) The Gallia represents the most practical target for deployment of in situ remediation treatment reagents - injection/extraction focused in this zone would provide maximum lateral impacts with minimal potential risk of failure or adverse collateral impacts. (2) The slow release of TCE from clay and sandstone into the Gallia represent a long term source of TCE that can re-contaminate the Gallia in the future - technologies that effectively treat the permeable portions of the Gallia, but do not leave residual treatment capacity in the system are unlikely to achieve long term remedial action objectives. CDM, the site contractor, provided important and useful information documenting the status and preliminary results of the on-site technology alternative evaluation. In the CDM evaluation, potential technologies were either retained (or screened out) in two preliminary evaluation phases and a detailed evaluation was performed on the five alternatives that were retained into the final 'detailed analysis' phase. The five alternatives that were included in the detailed analysis were: (1) hydraulic fracturing with EHC (a solid bioremediation amendment), (2) enhanced anaerobic bioremediation, (3) in situ chemical oxidation, (4) electrical resistance heating, and (5) reactive barriers. In several cases, two or three variants were separately evaluated. The review team found the CDM effort to be generally credible and reasonable. Thus, the review team focused on providing additional considerations and inputs to Portsmouth and on amending and refining the alternatives in ways that might improve performance and/or reduce costs. The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-32) to provide an independent technical panel to review previous and o

  15. Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-08-10T23:59:59.000Z

    This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

  16. Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-09-21T23:59:59.000Z

    This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

  17. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Hulstrom, L.

    2011-02-07T23:59:59.000Z

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  18. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-09-28T23:59:59.000Z

    This report documents field activity associated with the collection, preparation, and shipment of fish samples. The purpose of the report is to describe the sampling locations, identify samples collected, and describe any modifications and additions made to the sampling and analysis plan.

  19. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1994-03-02T23:59:59.000Z

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

  20. Uranium Mill Tailings Remedial Action 1993 Roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ``Lack of sufficient human resources,`` remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0.

  1. FUPWG Spring 2010 Meeting South Dakota: Washington Update

    Broader source: Energy.gov [DOE]

    Presentation covers an update on Washington given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  2. Washington Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Recovery Act State Memo Washington State has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act...

  3. BOBBI M. JOHNSON Washington State University PO Box 644236

    E-Print Network [OSTI]

    Kemp, Brian M.

    , Washington-BC, Idaho/Palouse - Sections: Genetics, Education GRANTS AWARDED Northwest Scientific Association / 2011 - 2012 Palouse Audubon Society Research Grant Genetic Characterization of Historic Upper

  4. Energy Secretary Chu, EPA Administrator Jackson, Washington State...

    Broader source: Energy.gov (indexed) [DOE]

    subject to a public comment period. The proposed consent decree between the Department of Energy (DOE) and Washington State will set a new and achievable schedule for construction...

  5. Workplace Charging Challenge Partner: Washington Area New Automobile...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Association (WANADA) serves as the representative organization for all franchised new car dealers in the metropolitan Washington region. Workplace charging matches the vision...

  6. annual meeting washington: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Washington ENTERPRISE RISK MANAGEMENT 2010 Annual Report 12;ERM 2010 Annual Report 2 December 2010 "Enterprise Risk Management" (ERM) - a process - to integrate risk...

  7. asce seattle washington: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sept. 21, 2006 Seattle, Washington Next-generation 76Ge neutrinoless double beta-decay experiments J.F. Wilkerson Center for Experimental Nuclear Physics and...

  8. Potential Federal On-Site Solar Aggregation in Washington, D...

    Broader source: Energy.gov (indexed) [DOE]

    Shah 2 Presentation Overview * Federal Renewable Requirements * On-site Renewable Energy Purchase Overview * Washington DCMaryland Solar Options * Case Studies * Federal...

  9. Ecological risk assessment guidance for preparation of remedial investigation/feasibility study work plans

    SciTech Connect (OSTI)

    Pentecost, E.D.; Vinikour, W.S. [Argonne National Lab., IL (United States)

    1993-08-01T23:59:59.000Z

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial assessment investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfired Amendments and Reauthorization Act of 1986 (SARA), an RI/FS work plan win have to be developed as part of the site-remediation scoping the process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites. An overview analysis of early ecological risk assessment methods (i.e., in the 1980s) at Superfund sites was conducted by the EPA (1989a). That review provided a perspective of attention given to ecological issues in some of the first RI/FS studies. By itself, that reference is of somewhat limited value; it does, however, establish a basis for comparison of past practices in ecological risk with current, more refined methods.

  10. Remedial Investigation/Feasibility Study (RI/FS) process, elements and techniques guidance

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This manual provides detailed guidance on Remedial Investigation/Feasibility Studies (RI/FSs) conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Department of Energy (DOE) facilities. The purpose of the RI/FS, to assess the risk posed by a hazardous waste site and to determine the best way to reduce that risk, and its structure (site characterization, risk assessment, screening and detailed analysis of alternatives, etc.) is defined in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) and further explained in the Environmental Protection Agency`s (EPA`s) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (Interim Final) 540/G-89/004, OSWER Directive 9355.3-01, October 1988. Though issued in 1988, the EPA guidance remains an excellent source of information on the conduct and structure of an RI/FS. This document makes use of supplemental RI/FS-related guidance that EPA has developed since its initial document was issued in 1988, incorporates practical lessons learned in more than 12 years of experience in CERCLA hazardous site remediation, and drawing on those lessons, introduces the Streamlined Approach For Environmental Restoration (SAFER), developed by DOE as a way to proceed quickly and efficiently through the RI/FS process at DOE facilities. Thus as its title implies, this guidance is intended to describe in detail the process and component elements of an RI/FS, as well as techniques to manage the RI/FS effectively.

  11. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR.

  12. An Overview of Public Domain Tools for Measuring the Sustainability of Environmental Remediation - 12060

    SciTech Connect (OSTI)

    Claypool, John E.; Rogers, Scott [AECOM, Denver, Colorado, 80202 (United States)

    2012-07-01T23:59:59.000Z

    The application of sustainability principles to the investigation and remediation of contaminated sites is an area of rapid development within the environmental profession, with new business practices, tools, and performance standards for identifying, evaluating, and managing the 'collateral' impacts of cleanup projects to the environment, economy and society coming from many organizations. Guidelines, frameworks, and standards of practice for 'green and sustainable remediation' (GSR) have been released and are under development by the Sustainable Remediation Forum (SURF), the American Society for Testing Materials (ASTM), the Interstate Technology Roundtable Commission (ITRC) and other organizations in the U.S. and internationally. In response to Executive Orders from the President, Federal government agencies have developed policies, procedures and guidelines for evaluating and reporting the sustainability of their environmental restoration projects. Private sector companies in the petroleum, utility, manufacturing, defense, and other sectors are developing their own corporate GSR programs to improve day-to-day management of contaminated sites and to support external reporting as part of their corporate social responsibility (CSR) efforts. The explosion of mandates, policy, procedures and guidance raises the question of how to determine whether a remediation technology or cleanup approach is green and/or sustainable. The environmental profession has responded to this question by designing, developing and deploying a wide array of tools, calculators, and databases that enable regulatory agencies, site managers and environmental professionals to calculate the collateral impacts of their remediation projects in the environmental, social, and economic domains. Many of these tools are proprietary ones developed by environmental engineering/consulting firms for use in their consulting engagements and/or tailored specifically to meet the needs of their clients. When it comes to the public domain, Federal government agencies are spearheading the development of software tools to measure and report emissions of air pollutants (e.g., carbon dioxide, other greenhouse gases, criteria air pollutants); consumption of energy, water and natural resources; accident and safety risks; project costs and other economic metrics. Most of the tools developed for the Government are available to environmental practitioners without charge, so they are growing in usage and popularity. The key features and metrics calculated by the available public-domain tools for measuring the sustainability of environmental remediation projects share some commonalities but there are differences amongst the tools. The SiteWise{sup TM} sustainability tool developed for the Navy and US Army will be compared with the Sustainable Remediation Tool (SRT{sup TM}) developed for the US Air Force (USAF). In addition, the USAF's Clean Solar and Wind Energy in Environmental Programs (CleanSWEEP), a soon-to-be-released tool for evaluating the economic feasibility of utilizing renewal energy for powering remediation systems will be described in the paper. (authors)

  13. Federal government information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    Not Available

    1980-12-31T23:59:59.000Z

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the Federal Government. It contains a summary of the organization and responsibilities of agencies within the executive branch of the Federal government which may be relevant to FUSRAP activities; a brief summary of relevant Federal statutes and regulations; a description of the structure of the US Congress, identification of the officers, relevant committees and committee chairmen; a description of the Federal legislative process; a summary of legislation enacted and considered in the recently-adjourned 96th Congress; a description of the Federal budgetary process; a summary of the Carter Administration's comprehensive radioactive waste management program; and excerpts from the text of relevant federal statutes and regulations.

  14. Almost remediation of saltwater spills at E and P sites

    SciTech Connect (OSTI)

    Carty, D.J. [K. W. Brown Environmental Services, College Station, TX (United States)

    1995-12-31T23:59:59.000Z

    At exploration and production (E and P) sites crude spills restricted to topsoil are often self-remediating, but salt spills rarely are. Most soils naturally biodegrade crude. Without appropriate human intervention, brine spills can result in decades of barren land and seriously degrade surface water and aquifers. Servicing the E and P industry are remediation practitioners with a limited array of often expensive remediation concepts and materials which they hope will work, and sometimes do. Unfortunately, many remediation practitioners are unfamiliar with, or disregard, the natural physical, chemical, and biotic complexity of the soil and aquatic media. All too often this results in exacerbating injury to an already damaged ecosystem. Likewise, important cultural factors such as public relations, environmental regulations, property rights, and water rights are also overlooked until after implementation of an ill-advised or illegal remediation design has been initiated. A major issue is determining what constitutes ``successful`` remediation of a brine spill. Environmental managers have long sought one or two universally applicable fast and cheap amendment/treatment protocols for all their diverse multi-state salt affected spill scenarios. This presentation describes aspects of common spill-affected ecosystems which must be considered to achieve ``successful`` remediation.

  15. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    NONE

    1999-08-10T23:59:59.000Z

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation.

  16. Superfund Record of Decision (EPA Region 10): Wyckoff/Eagle Harbor, WA. (First remedial action), September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-29T23:59:59.000Z

    The 3,780-acre Wyckoff/Eagle Harbor site is located on the east side of Bainbridge Island, in Central Puget Sound, Kitsap County, Washington. The site consists of an inactive 40-acre wood treating facility owned by Wyckoff, the adjacent 500-acre Eagle Harbor and other upland sources of contamination to the Harbor, including a former shipyears. The selected remedial action for this site includes dredging, dewatering, excavating approximately 1,000 to 7,000 cubic yards of intertidal sediment that exceed levels of 5 mg/kg mercury and/or lower moderate PAH concentrations, followed by treatment using solidification/stabilization, if necessary, to comply with LDR as determined by bench scale tests; transporting sediment, which cannot be treated to meet LDR offsite for disposal at a RCRA-permitted landfill; treating wastewater from the dewatering process using carbon adsorption before discharge into the harbor; capping over sediment in areas of high concern with a 1-meter thick layer of clean sediment; placing a thin layer of clean sediment in subtidal areas of low to moderate concern to enhance natural sediment recovery; conducting long-term environmental monitoring; and implementing institutional controls to prevent exposure to contaminated fish and shellfish. The estimated present worth cost for this remedial action ranges from $6,200,000 to $16,000,000 which includes a present worth O M cost of $1,100,000 for 10 years.

  17. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    2001-04-01T23:59:59.000Z

    This report represents the sixth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the White Meadow Mine site, after amended specifications were prepared and continued negotiations took place with the Property Owner, the property ownership was transferred during the reporting period. As a result in the change in property ownership, the remediation project was then to be done by the new Property Owner out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort. At the Green Pond Mine site at the Township Compost Storage Facility, no additional field work was undertaken during this reporting period subsequent to the previous completion of the geophysical survey. With the termination of the White Meadow Mine project, work began toward development of a remedial design for the Green Pond Mines.

  18. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    2001-04-01T23:59:59.000Z

    This report represents the seventh Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township Compost Storage Facility, research and preliminary design was performed during this reporting period toward development of the engineering plans and Technical Specifications for the remediation work. At the White Meadow Mine site, the remediation project was conducted last reporting period by others, out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort.

  19. Energy Incentive Programs, Washington | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs, Texas Updated JuneWashington Energy

  20. Washington -- SEP Data Dashboard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartment of Energy Washington ,

  1. Acme, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00AboutAchille,Acme, Washington: Energy

  2. Bothell, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights, Ohio: Energy ResourcesBothell, Washington:

  3. Bucoda, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy Resources Jump to: navigation,

  4. Burien, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington:InformationgeothermalBurien,

  5. Washington Gas Energy Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide PermitInformationIsland: Energy ResourcesProcessWashington Gas

  6. Skykomish, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG SolarSkykomish, Washington: Energy Resources Jump

  7. Kent, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: Energy Resources Jump to: navigation, search

  8. Kingsgate, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:Kimble County,

  9. Kirkland, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:KimbleKinnelon, NewOklahoma:(Redirected from

  10. Enumclaw, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESLEnergyEnphaseEnumclaw, Washington:

  11. Newcastle, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania:Information296593°,Newcastle, Washington: Energy Resources

  12. Medina, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698°MecostaWashington: Energy Resources

  13. Tenino, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechintIsNumericTenino, Washington: Energy Resources

  14. Washington Gas Energy Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWarana Group ofWashington Gas Energy

  15. Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWarana GroupInformationWashington:

  16. Renton, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - Making the Path for FutureRenton, Washington:

  17. Ritzville, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze -RichtonMissouri: EnergyRitzville, Washington:

  18. Rochester, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Resources Jump to:Washington:

  19. Tumwater, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-StateTucson Estates,Tumwater, Washington: Energy

  20. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC).

  1. EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory, California

    Broader source: Energy.gov [DOE]

    DOE is preparing an EIS for cleanup of Area IV, including the Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOE’s operations bordered the Northern Buffer Zone. DOE is responsible for soil cleanup in Area IV and the Northern Buffer Zone.) In the EIS, DOE will evaluate reasonable alternatives for disposition of radiological facilities and support buildings, remediation of contaminated soil and groundwater, and disposal of all resulting waste at permitted facilities.

  2. Engineering evaluation of the 618-9 Burial Ground expedited response action

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    Throughout Hanford Site history, chemical waste products were disposed via burial in trenches. One such trench was the 618-9 Burial Ground, located in the 600 Area on the Hanford Site. The 618-9 Burial Ground was suspected to contain approximately 5,000 ga (19,000 L) of uranium contaminated solvent in 55-gal (208-L) steel drums. On December 20, 1990, the US Department of Energy (DOE) was instructed by the US Environmental Protection Agency (EPA) and the State of Washington Department of Ecology (Ecology) to initiate planning necessary to implement an expedited response action (ERA) for the 618-9 Burial Ground. The project was to be implemented in two phases: (1) removal of immediate human health and environmental hazards and (2) remediation of contaminated soil. Phase 1 of the project was initiated February 15, 1991. During Phase 1 activities approximately 700 gal (2,650 L) of methyl isobutyl ketone (hexone) and 900 gal (3,400 L) of kerosene solvent were removed from the 618-9 Burial Ground. A significant amount of scrap process equipment/building debris was excavated. The results of an environmental risk assessment for chemicals above detection further determined that risks posed by other detected constituents to human health and the environment are negligible. A compilation of activities utilized for determining subsequent remediation activities for the 618-9 Burial Ground is presented. This includes: (1) Phase 1 activities, (2) sampling performed and associated data results, (3) results of the risk assessment, and (4) applicable or relevant and appropriate requirements. 13 refs., 5 figs., 4 tabs.

  3. In Situ Iron Oxide Emplacement for Groundwater Arsenic Remediation 

    E-Print Network [OSTI]

    Abia, Thomas Sunday

    2012-02-14T23:59:59.000Z

    Iron oxide-bearing minerals have long been recognized as an effective reactive media for arsenic-contaminated groundwater remediation. This research aimed to develop a technique that could facilitate in situ oxidative precipitation of Fe3+ in a soil...

  4. army environmental remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: ER 200-1-4 29 August 2014 ENVIRONMENTAL QUALITY FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM.C. 20314-1000 CECC-E Regulation No. 200-1-4 29 August 2014...

  5. Containment remedies: Minimizing hazard, not just exposure, cuts liabilities

    SciTech Connect (OSTI)

    Hirschhorn, J.S. [Hirschhorn and Associates, Wheaton, MD (United States)

    1996-12-31T23:59:59.000Z

    An important consequence of the trend to reduce Superfund cleanup costs has been a definite shift away from treatment to pure containment remedies. The issue that merits more attention, however, is whether reductions in short term costs may be offset by longer term liabilities. Containment remedies that focus entirely on reducing exposures and hence risk are vulnerable to various failures of key components that may not necessarily be prevented by operation and maintenance programs. A sensible alternative is to also include some hazard reduction, especially by in situ technology. By doing so, longer term liabilities associated with various failure modes of containment remedies can be greatly reduced. Corporate accounting systems ignore such liabilities. The insurance industry, large companies, brownfield developers, and the government are currently ignoring liabilities that inevitably will become all too real, because pure containment remedies are not permanently effective.

  6. Environmental Remediation Strategic Planning of Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Onishi, Yasuo

    2011-12-01T23:59:59.000Z

    Environmntal Remediation Assessment and other respons decision making on Environmental monitoring, experiments and assessment. Preliminary assessment to grasp the overall picture and determine critical locations, phenomena, people, etc. Using simple methods and models.

  7. Aerospace & Energetics Research Program -University of Washington Plasma Dynamics Group

    E-Print Network [OSTI]

    Shumlak, Uri

    of Washington Plasma Dynamics Group q The Boltzmann equation is seven dimensional. q As a consequence plasmaAerospace & Energetics Research Program - University of Washington Plasma Dynamics Group Plasma Plasma Dynamics Group Abstract Many current plasma simulation codes are based on the magnetohydrodynamic

  8. POLYGENETIC TOPOGRAPHY OF THE CASCADE RANGE, WASHINGTON STATE, USA

    E-Print Network [OSTI]

    -relief topography, 2) post-Miocene surface uplift of the range superimposed on pre-existing high-relief topographyPOLYGENETIC TOPOGRAPHY OF THE CASCADE RANGE, WASHINGTON STATE, USA SARA GRAN MITCHELL Range of Washington State by analyzing the topography, geology, and exhumation patterns across the range

  9. University of Washington February 1, 2014 January 31, 2018

    E-Print Network [OSTI]

    Hochberg, Michael

    populated Puget Sound basin. In contrast, Washington's Pacific coast is an area of low population densities governance approaches have developed for Puget Sound and Washington's Pacific coast. WSG is involved in implementing the Puget Sound action agenda to restore and protect Puget Sound. WSG is also a member

  10. 12008 Tribal Leadership Summit Universit y of Washington

    E-Print Network [OSTI]

    Kaminsky, Werner

    for Sustainable Societies 26 Genomics Outreach for Minorities 27 Research Opportunities in Materials Science Leadership Summit University of washington libraries American Indian Children's and Young Adult Material 73 Art, UW Bothell Library 75 University of washington, Bothell Tulalip Data Services 76 University

  11. Remedial Action and Waste Disposal Conduct of OperationsMatrix

    SciTech Connect (OSTI)

    M. A. Casbon.

    1999-05-24T23:59:59.000Z

    This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

  12. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  13. Final environmental impact statement, Washington Water Power/B.C. Hydro Transmission Interconnection Project

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Washington Water Power (WWP) proposes to construct and operate an electric transmission line that would connect with the electrical system of the British Columbia Hydro and Power Authority (B.C. Hydro). The project would be composed of a double-circuit, 230-kilovolt (kV) transmission line from WWP`s existing Beacon Substation located northeast of Spokane, Washington to the international border located northwest of Metaline Falls, Washington. The original Presidential permit application and associated proposed route presented in the draft environmental impact statement (DEIS) have been modified to terminate at the Beacon Substation, instead of WWP`s initially proposed termination point at the planned Marshall Substation located southwest of Spokane. A supplemental draft EIS was prepared and submitted for review to not only examine the new proposed 5.6 miles of route, but to also compare the new Proposed Route to the other alternatives previously analyzed in the DEIS. This final EIS (FEIS) assesses the environmental effects of the proposed transmission line through construction, operation, maintenance, and abandonment activities and addresses the impacts associated with the Proposed Action, Eastern Alternative, Western Alternative, Northern Crossover Alternative, Southern Crossover Alternative, and No Action Alternative. The FEIS also contains the comments received and the responses to these comments submitted on the DEIS and Supplemental DEIS.

  14. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

  15. Initial Site-wide Groundwater remediation Strategy of the Hanford Site, WA: Its Application, Lessons Learned and Future Path forward

    SciTech Connect (OSTI)

    Goswami, D.; Hedges, J.; Whalen, C. [Nuclear Waste Program, Washington State Department of Ecology, WA (United States)

    2007-07-01T23:59:59.000Z

    In 1989, the Washington State Department of Ecology (Ecology), the U.S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE) formed an agreement to clean up the Hanford Site, located in the state of Washington. By 1995, the three parties developed an initial comprehensive site wide groundwater remediation strategy with a vision to address contaminated plumes of hazardous and radioactive waste. The Hanford Site has more than 170 square miles of contaminated groundwater. Almost half exceeds the state and federal drinking water standards. The plumes are often commingled. The remediation is challenged by limited technologies, poor understanding of conceptual models, and subsurface contaminant behavior. This paper briefly describes the basic principles of the initial strategy, its application, the results of the decade-long operation, and the future path forward. The initial strategy was based on a qualitative assessment to reduce immediate risk to human health and the environment; to support commonly held values of stakeholders, including tribal nations and the public; and to deploy available remediation technologies. Two different approaches were used for two distinct geographic, the river shore reactor areas and the central plateau few miles away. The strategy was to cleanup the major groundwater plumes in the reactor areas next to the Columbia River where chromium, strontium-90, and uranium already entering the river and to contain the plumes of chlorinated solvents and radionuclides in the central plateau. The strategy acknowledges the lack of cost-effective technologies to address the contaminants, and asked DOE to develop, test, and deploy cost-effective alternative technologies wherever applicable. After more than a decade, the results are mixed. While the pump and treat provided a meaningful approach to address certain contaminants, it was too small in scale. Efforts to scale up these operations enhance characterization, and to deployment innovative technologies are progressing; albeit slowly due to budget constraints. A number of innovative technologies were identified to address source control and groundwater remediation across the Hanford Site. In the 10 years since the initial strategy was developed, additional severe groundwater and vadose zone contaminations were discovered under the waste storage tanks on the central plateau and river corridor areas. These problems required changes to the strategy. Changes include complete integration of vadose zone and groundwater characterization and remediation activities and immediate needs for technologies to address the deep vadose zone source areas, as well as thick aquifer contamination - especially for chlorinated solvents and technetium-99. The successes of the initial strategy show that even a strategy based on incomplete information can make progress on difficult issues. The regulatory agencies identified these issues early and provided the needed direction to DOE to move forward with the overall mission of clean up. The cleanup of the Hanford site is a big challenge, not only for DOE, but also for the regulators, to ensure the tri-party agencies achieve the desired goals. (authors)

  16. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites. Final report and users` guide

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

  17. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

    E-Print Network [OSTI]

    Bernard, S.

    2009-01-01T23:59:59.000Z

    Remediation, and Carbon Sequestration References Anderson,Remediation, and Carbon Sequestration rhizosphere byRemediation, and Carbon Sequestration Figure 1. Examples of

  18. Assessment of unsaturated zone radionuclide contamination in the 200 areas of the Hanford site, Washington

    SciTech Connect (OSTI)

    Brodeur, J.R.; Wittreich, C.D.

    1993-03-01T23:59:59.000Z

    The 200 East and 200 West Areas at the Department of Energy`s Hanford site in southeastern Washington, contain chemical and nuclear fuel processing facilities that disposed of large volumes of chemical and radionuclide effluents to the ground via various structures such as ponds, cribs and ditches. A geophysical logging investigation was implemented in 1992 to assess the nature and extent of contamination beneath select liquid disposal sites in the 200 Areas. The borehole geophysical logging was accomplished with a recently developed spectral gamma-ray logging system called the Radionuclide Logging System (RLS). This system has a high-resolution, intrinsic germanium detector mounted in a downhole probe and is calibrated and operated specifically for use in a borehole environment. It provides a means to develop in-situ, gamma-emitting radioelement concentration profiles. Approximately 50 boreholes were logged in this study. The RLS log data provided information about the migration and deposition patterns of specific radionuclides in the unsaturated zone and their impacts on the groundwater. Approximately 10 radionuclide species were detected and quantified. Results of the field investigation are being used to refine site specific conceptual models, support Hanford Site remediation decisions and focus future characterization activities.

  19. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  20. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01T23:59:59.000Z

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ``error`` in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand.

  1. Heat flow and geothermal studies in the state of Washington

    SciTech Connect (OSTI)

    Blackwell, D.D.; Steele, J.L.; Kelley, S.A.

    1985-08-01T23:59:59.000Z

    Existing geothermal gradient and heat flow data for the state of Washington are summarized. In addition, information on mean-annual ground surface temperatures is included. The data consist of accurate, detailed temperature-depth measurements in selected available holes throughout the state of Washington made between 1979 and 1982. Measurements of thermal conductivity on selected rock samples from these drill holes and ancillary information required to assess the significance of the data and calculate heat flow values were obtained as well. Information is presented on the mean-annual ground-surface temperatures throughout the state of Washington. 32 refs., 15 figs., 4 tabs.

  2. International Electric Propulsion Conference, The George Washington University, USA October 6 10, 2013

    E-Print Network [OSTI]

    Walker, Mitchell

    1 The 33rd International Electric Propulsion Conference, The George Washington University, USA Electric Propulsion Conference, The George Washington University · Washington, D.C. · USA October 6 ­ 10.t.yim@nasa.gov. #12;2 The 33rd International Electric Propulsion Conference, The George Washington University, USA

  3. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16T23:59:59.000Z

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate-scale tests will be used to bridge the gap between the small-scale foam transport studies and the field-scale demonstration. Numerical simulation studies on foam delivery under vadose conditions will be performed to simulate observed foam transport behavior under vadose zone conditions and predict the foam delivery performance at field-scale.

  4. Use of Facility Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-15T23:59:59.000Z

    To clarify and modify policies and procedures for management of Department of Energy (DOE) facility contractor employees located in the Washington, D.C., area. A facility contractor employee is any employee of either a contractor responsible for managing a Department-owned facility, such as a National Laboratory, or a subcontractor of such a contractor. Facility contractor means any contractor performing under a Management and Operating (M&O), Management and Integration (M&I), or Environmental Restoration Management Contractor (ERMC) contract awarded by a DOE contracting officer. Canceled by DOE O 350.2.

  5. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01T23:59:59.000Z

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  6. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01T23:59:59.000Z

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore »too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. Thein situsequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less

  7. Electrochemical arsenic remediation for rural Bangladesh

    SciTech Connect (OSTI)

    Addy, Susan Amrose

    2009-01-01T23:59:59.000Z

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

  8. Washington Post, Sept. 15, 2005 Communication Challenges After the Hurricane

    E-Print Network [OSTI]

    Peha, Jon M.

    Washington Post, Sept. 15, 2005 Communication Challenges After the Hurricane Jon M. Peha Many survivors of Hurricane Katrina who tried to call for rescue or medical assistance found that their cell

  9. Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan

    SciTech Connect (OSTI)

    K.J. Kroegler, M. Truex, D.J. McBride

    2006-01-19T23:59:59.000Z

    This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

  10. Geoff Brumfiel, Washington Plans shut down international high

    E-Print Network [OSTI]

    particle nuclear physics, that decision could affect future projects. think major impact way deal American experiment Tony Reichhardt, Washington Scientific societies urging Department of Agriculture give information agriculture appropriations subcommittee science committee, asked APHIS work closely with research community

  11. Secretary Chu Speaks at the 2010 Washington Auto Show

    Broader source: Energy.gov [DOE]

    at the 2010 Washington Auto Show, Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need. He also announced that the Department of Energy had...

  12. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Mercury used in many laboratory areas on campus. All laboratory areas and former laboratory areas should. Cleanup by a hazardous materials contractor is required before demolition or construction can begin

  13. MEDICAL FORM Washington and Lee University Outing Club

    E-Print Network [OSTI]

    Marsh, David

    Washington and Lee Outing Club trips are multi-day wilderness expeditions, operating in remote areas where No _____________________________________________________ 21. History of heat stroke or other heat related illness? 21. Yes No FITNESS 22. Do you exercise

  14. Washington Sea Grant Kate Litle, Citizen Science Specialist

    E-Print Network [OSTI]

    Carrington, Emily

    Washington Sea Grant Kate Litle, Citizen Science Specialist Michelle Wainstein, Senior Program Stewardship Program Director Citizen Science Advisory Panel Citizen Science Harnessing to State University (WSU) Extension to develop recommendations for advancing citizen science to meet Action

  15. Fluor Federal Services, Richland, Washington, Report from the...

    Broader source: Energy.gov (indexed) [DOE]

    Washington -DOE VPP Onsite Review Report - March 2001 Introduction U.S. Department of Energy, Office of Regulatory Liaison 3 The DOE-VPP onsite review of the Fluor Federal...

  16. EA-0915: Waste Tank Safety Program Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to resolve waste tank safety issues at the Hanford Site near the City of Richland, Washington, and to reduce the risks associated with...

  17. Independent Activity Report, Washington River Protection Solutions, LLC- October 2011

    Broader source: Energy.gov [DOE]

    Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene Program Strategy and Implementation of the Hanford Concerns Council Recommendations [HIAR-ORP-2011-10-26

  18. Washington State Department of Ecology: Replacement Wells Requiring...

    Open Energy Info (EERE)

    Ecology: Replacement Wells Requiring a Water Right Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Washington State Department of...

  19. Washington State Ergonomics Tool: predictive validity in the waste industry 

    E-Print Network [OSTI]

    Eppes, Susan Elise

    2004-09-30T23:59:59.000Z

    This study applies the Washington State Ergonomics Tool to waste industry jobs in Texas. Exposure data were collected by on-site observation of fourteen different multi-task jobs in a major national solid waste management ...

  20. Final Report: Feasibility Study of Biomass in Snohomish County, Washington

    SciTech Connect (OSTI)

    Daryl Williams (Tulalip Tribes); Ray Clark (Clark Group)

    2005-01-31T23:59:59.000Z

    This report and its attachments summarizes the results of a unique tribal-farmer cooperative study to evaluate the feasibility of building one or more regional anaerobic digestion systems in Snohomish County, Washington.

  1. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  2. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect (OSTI)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States)] [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)] [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01T23:59:59.000Z

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  3. Commercial Energy Code Enforcement in Oregon and Washington

    E-Print Network [OSTI]

    Johnson, M.; Miller, W.; O'Neill, M.

    1988-01-01T23:59:59.000Z

    COMUERCIAL ENERGY CODE ENFORCEMENT IN OREGON AND WASHINGTON WILL MILLER )(AURA O'NEILL UARK JOHNSON TECHNICAL DIRECTOR PRESIDENT PUBLIC UTILITIES SPECIALIST PORTLAND ENERGY CONSERVATION, IWC . , O'NEILL 6 CO., INC., BONNEVILLE POWER... ADHINISTBATION PORTLAND, OREGON SEATTLE, WASHINGTON PORTLAND. OREGON In recent years. many states and local jurisdictions have passed mandatory building codes to achieve energy efficiency in new construction. All too often the political bodies that pass...

  4. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

  5. Tank SY-102 remediation project summary report: ASPEN modeling

    SciTech Connect (OSTI)

    Punjak, W.A.; Schreiber, S.B.; Yarbro, S.L.

    1995-05-01T23:59:59.000Z

    The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. As a part of this program, personnel at Los Alamos National Laboratory (LANL) have developed and demonstrated a flow sheet to remediate tank SY-102, which is located in the 200 West Area and contains high-level radioactive waste. In the conceptual design report issued earlier, an ASPEN plus{trademark} computer model of the flow sheet was presented. This report documents improvements in the flow sheet model after additional thermodynamic data for the actinide species were incorporated.

  6. 1999 GWU, RPI, VCU All Rights Reserved Washington State Ferries Risk Assessment -Appendix II The Washington State

    E-Print Network [OSTI]

    van Dorp, Johan René

    The Washington State Ferries Risk Assessment Appendix II: Collision, Allision, Grounding and Fire/Explosion..............................................................................................47 SECTION 3: HISTORICAL RATES FOR ALLISIONS, GROUNDINGS AND FIRES/EXPLOSIONS ....................................................................................................53 3.5 FIRE/EXPLOSION ANALYSIS RESULTS.

  7. 1999 GWU, RPI, VCU All Rights Reserved Washington State Ferries Risk Assessment Final Report The Washington State

    E-Print Network [OSTI]

    van Dorp, Johan René

    's Transportation Policy Advisor Representative Mike Cooper House Transportation Committee House of Representatives, the Washington State Office of Marine Safety, the Port of Houston, and The Government of Argentina. The tasks

  8. Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater

    E-Print Network [OSTI]

    Caravello, Victor

    1998-01-01T23:59:59.000Z

    if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements...

  9. The Effects of Behaviorist and Constructivist Instruction on Student Performance in College-level Remedial Mathematics

    E-Print Network [OSTI]

    Cox, Murray William

    2011-10-21T23:59:59.000Z

    for quality remedial mathematics classes is also growing. Institutions that place learners into remedial classes must also fund these same programs and are increasingly faced with disgruntled students, the appearance of having lower standards, and a...

  10. Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive

    SciTech Connect (OSTI)

    Gerlach, Robin

    2005-06-01T23:59:59.000Z

    This project report addresses one part of a 3-way collaboration between researchers (Drs. Robin Gerlach and Al Cunningham) at Montana State University's (MSU's) Center for Biofilm Engineering (CBE), (Dr. Brent Peyton at) the WSU/NSF IGERT Center for Multiphase Environmental Research (CMER) at Washington State University (WSU), and (Drs. William Apel and Frank Roberto at) the Biotechnology Department at the INEEL. Each part of this project is funded under a different contract with the Science Division of the US Department of Energy. The project is designed to evaluate the possibility to develop a subsurface remediation technology for mixed wastes at Department of Energy sites using a group of common soil bacteria of the genus Cellulomonas. We are seeking to gain a better understanding of microbial transformation of chromium, uranium, and carbon tetrachloride by Cellulomonas spp. in simulated subsurface environments.

  11. Interface control document between the Tank Waste Remediation System and the Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Duncan, D.R.

    1995-04-01T23:59:59.000Z

    This document discusses the interface between the Tank Waste Remediation System (TWRS) and the Solid Waste Division (SWD).

  12. Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

  13. Voluntary Protection Program Onsite Review, Soil and Groundwater Remediation Project- March 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Soil and Groundwater Remediation Project is performing at a level deserving DOE-VPP recognition.

  14. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  15. Data base management activities for the Remedial Action Program at Oak Ridge National Laboratories (ORNL)

    SciTech Connect (OSTI)

    Hook, L.A.; Voorhees, L.D.; Gentry, M.J.; Faulkner, M.A.; Shaakir-Ali, J.A.; Newman, K.A.; McCord, R.A.; Goins, L.F.; Owen, P.T.

    1990-07-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP) was established in 1985 in response to state and federal regulations requiring comprehensive control over facility discharges and cleanup of contaminated sites. A computerized Data and Information Management System (DIMS) was developed for RAP to (1) provide a centralized repository for data pertinent to RAP and (2) provide support for the investigations and assessments leading to the long-term remediation of contaminated facilities and sites. The current status of DIMS and its role in supporting RAP during 1989 are described. The DIMS consists of three components: (1) the Numeric Data Base, (2) the Bibliographic Data Base, and (3) the Records Control Data Base. This report addresses all three data bases, but focuses on the contents of the Numeric Data Base. Significant progress was made last year with the geographic information system (GIS) and ARC/INFO, which can be interfaced with SAS/GRAPH to provide combined mapping and statistical graphic products. Several thematic layers of GIS data for the Oak Ridge Reservation are now available. 18 refs., 8 figs., 19 tabs.

  16. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect (OSTI)

    T. M. Blakley; W. D. Schofield

    2007-09-10T23:59:59.000Z

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  17. Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont

    E-Print Network [OSTI]

    Fleskes, Joe

    Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County.....................................................................................................................................................link Figures Figure 1. Location of 19 soil samples collected from the Riverton Uranium Mill Tailings Remedial

  18. Managing site remediation using pathway analysis, application to a semi-arid site

    SciTech Connect (OSTI)

    Rutz, E.E.; Ijaz, T.; Wood, R.P.; Eckart, R.E. [Univ. of Cincinnati, OH (United States). Dept. of Mechanical, Industrial and Nuclear Engineering

    1993-12-31T23:59:59.000Z

    This paper discusses the application of pathway analysis methodology to evaluate alternatives associated with remediation of a semi-arid site. Significant aspects of remediation include potential land uses, soil cleaning techniques and restoration alternatives. Important environmental transport pathways and dominant radionuclides are identified using pathway analysis. The remediation strategy is optimized based on results of the analysis.

  19. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23T23:59:59.000Z

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  20. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01T23:59:59.000Z

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  1. National conference on environmental remediation science and technology: Abstracts

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  2. Biogeochemical Considerations Related To The Remediation Of I-129 Plumes

    SciTech Connect (OSTI)

    Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Yeager, C. [Los Alamos National Laboratory , Los Alamos, NM (United States); Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States); Zhang, S. [Texas A& amp; M University, Galveston, TX (United States); Xu, C. [Texas A& amp; M University, Galveston, TX (United States); Schwehr, K. A. [Texas A& amp; M University, Galveston, TX (United States); Li, H. P. [Texas A& amp; M University, Galveston, TX (United States); Brinkmeyer, R. [Texas A& amp; M University, Galveston, TX (United States); Santschi, P. H. [Texas A& amp; M University, Galveston, TX (United States)

    2012-09-24T23:59:59.000Z

    The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

  3. Managing Complex Environmental Remediation amidst Aggressive Facility Revitalization Milestones

    SciTech Connect (OSTI)

    Richter Pack, S. [PMP Science Applications International Corporation, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    Unlike the final closure projects at Rocky Flats and Fernald, many of the Department of Energy's future CERCLA and RCRA closure challenges will take place at active facilities, such as the Oak Ridge National Laboratory (ORNL) central campus. ORNL has aggressive growth plans for a Research Technology Park and cleanup must address and integrate D and D, soil and groundwater remediation, and on-going and future business plans for the Park. Different planning and tracking tools are needed to support closures at active facilities. To support some large Airport redevelopment efforts, we created tools that allowed the Airline lease-holder to perform environmental remediation on the same schedule as building D and D and new building construction, which in turn allowed them to migrate real estate from unusable to usable within an aggressive schedule. In summary: The FIM and OpenGate{sup TM} spatial analysis system were two primary tools developed to support simultaneous environmental remediation, D and D, and construction efforts at an operating facility. These tools helped redevelopers to deal with environmental remediation on the same schedule as building D and D and construction, thereby meeting their goals of opening gates, restarting their revenue streams, at the same time complying with all environmental regulations. (authors)

  4. REMEDIATION Autumn 2007 A Deterministic Approach to Evaluate

    E-Print Network [OSTI]

    Clement, Prabhakar

    Corrective Action, and Underground Storage Tank Sites." This OSWER directive identifies three lines by an existing remediation technology (e.g., pump-and-treat) make evaluation of MNA using only field data of a hydraulic containment system operated at the site for six years, direct field measurements could not be used

  5. Activated Peroxygens for Remediation of Contaminated Soil and Groundwater

    E-Print Network [OSTI]

    Hansen, René Rydhof

    of Doctor of Philosophy Department of Chemistry, Biotechnology and Environmental Engineering Section, Biotechnology and Environmental Engineering Section of Chemical Engineering CIChem Research Group Aalborg May 2011 #12;ii Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis

  6. FY-95 technology catalog. Technology development for buried waste remediation

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  7. In-Situ Thermal Remediation of Contaminated Soil1

    E-Print Network [OSTI]

    Lapin, Sergey

    Chapter 1 In-Situ Thermal Remediation of Contaminated Soil1 Written by Huaxiong Huang,2 Serguei Lapin and Rex Westbrook 1.1 Background Recently, a method for removing contaminants from soil (several as follows. Over a period of several weeks, electrical energy is introduced to the contaminated soil using

  8. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, Robert W. (Naperville, IL); Frank, James R. (Glen Ellyn, IL); Feng, Xiandong (West Richland, WA)

    1998-01-01T23:59:59.000Z

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  9. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  10. IH Report # 04-011 April 2004 Mold Remediation

    E-Print Network [OSTI]

    during remediation. 5. Non-porous (metals, glass, hard plastics) and semi-porous (wood and concrete and Semi-Porous Materials (e.g., wood/concrete) 1. Remove and discard. Attempts should be made to minimize) materials can be cleaned and re-used. 6. Contaminated porous materials such as wallboards and ceiling tiles

  11. Remediation of Abandoned Mines Using Coal Combustion By-Products

    E-Print Network [OSTI]

    Aydilek, Ahmet

    . Maryland has about 450 coal mines out of which only 50 are active and about 150 mines produce AMD RafalkoRemediation of Abandoned Mines Using Coal Combustion By-Products Sowmya Bulusu1 ; Ahmet H. Aydilek that occurs when pyrite that is present in abandoned coal mines comes in contact with oxygen and water, which

  12. Description of the Formerly Utilized Sites Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The background and the results to date of the Department of Energy program to identify and evaluate the radiological conditions at sites formerly utilized by the Corps of Engineers' Manhattan Engineer District (MED) and the US Atomic Energy Commission (AEC) are summarized. The sites of concern were federally, privately, and institutionally owned and were used primarily for research, processing, and storage of uranium and thorium ores, concentrates, or residues. Some sites were subsequently released for other purposes without radiological restriction. Surveys have been conducted since 1974 to document radiological conditions at such sites. Based on radiological surveys, sites are identified in this document that require, or are projected to require, remedial action to remove potential restrictions on the use of the property due to the presence of residual low-level radioactive contamination. Specific recommendations for each site will result from more detailed environmental and engineering surveys to be conducted at those sites and, if necessary, an environmental impact assessment or environmental impact statement will be prepared. Section 3.0 describes the current standards and guidelines now being used to conduct remedial actions. Current authority of the US Department of Energy (DOE) to proceed with remedial actions and the new authority required are summarized. A plan to implement the Formerly Utilized Sites Remedial Action Program (FUSRAP) in accordance with the new authority is presented, including the objectives, scope, general approach, and a summary schedule. Key issues affecting schedule and cost are discussed.

  13. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect (OSTI)

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01T23:59:59.000Z

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field

  14. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    SciTech Connect (OSTI)

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

    2012-07-01T23:59:59.000Z

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

  15. Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    SAIC

    2011-04-01T23:59:59.000Z

    The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

  16. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV

    SciTech Connect (OSTI)

    R. P. Wells

    2006-11-14T23:59:59.000Z

    This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

  17. The link between chronic or repeated activation of the stress response and detrimental effects on

    E-Print Network [OSTI]

    Bonier, Fran

    351800, Seattle, WA 98195-1800, USA; e-mail: fb2@u.washington.edu. Address for Howard Quigley: Hornocker-invasively detecting stress response in cougars Frances Bonier, Howard Quigley, and Steven N. Austad Abstract

  18. Apparatus and method for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Moses, John M. (Dedham, MA); Barker, Donna L. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  19. Method and system for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Barker, Donna L. (Idaho Falls, ID)

    2003-01-01T23:59:59.000Z

    A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  20. Protection and Remediation of the Black Sea and the Caspian Sea--through the International Environmental Center (http://pims.ed.ornl.gov)

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL; Shelton, Robert B [ORNL; Grubb, Kimberly R [ORNL

    2006-01-01T23:59:59.000Z

    The international Black Sea and Caspian Sea Environmental Information Center (BCSEIC) is a valuable research and communications resource to aid in the prevention of oil spills and, in the case of a spill, quick, effective clean-up action. Prevention and remediation are essential to protecting and maintaining the environment. The BCSEIC provides up-to-date, reliable, and easily accessible research and information. In addition, the web site serves as an international platform for discussion and sharing experiences on how to prevent and respond to oil spills with a focus on delivery and exchange of practical and real life information and dialogue. There is no cost or registration required for using the site. This BCSEIC offers information on region- and country-specific initiatives as well as information with worldwide applications. Interested organizations are encouraged to promote their technologies, services, or research activities through the web site. The site is being accessed at roughly 1,000 hits per day from 115 countries all over world. The oil industry strongly endorses the Black Sea and Caspian Sea Environmental Information Center and has representatives participate in all of the Center's workshops. The site is also home to a growing database of historical pollution-testing data from research institutes in the region. Recently, 31 years of pollution-testing data collected by the Ukrainian Scientific Center of the Ecology of the Sea (UkrSCES) was uploaded to the web site. The information includes compiled data, maps, graphic files, and background information on UkrSCES and contains a catalog of oceanographic data on the Black Sea (including chemistry and pollution), geophysical data, statistical evaluations of the data, meteorology, and aerology. Recent events in which the BCSEIC provided input and follow-up resources include the U.S.-Kazakhstan Energy Partnership fourth meeting, September 7-8, 2005, in Washington, D.C and the U.S.-Russian Workshop on Oil Spill Prevention and Response held at Interspill 2004. The Partnership's working groups met to exchange information and develop a program of work to guide the activities of the Partnership over the next twelve months, including establishing an information exchange between the U.S. Department of Energy, the Ministry of Industry and Commerce, the Ministry of Energy and Natural Resources, and other Ministries of interest of the Republic of Kazakhstan. A U.S.-Russian Workshop on Oil Spill Prevention and Response was held at the Interspill 2004 conference in Trondheim, Norway to discuss energy issues of interest to both countries and to implement the oil spill prevention and response agreement developed between the United States and Russia over the past year. The BCSEIE's goal as a regional information and communications center is to facilitate cooperation among the countries of the region to help prevent oil spills and to develop contingency plans should a spill occur. For more information on how to schedule an "online, real-time" meeting, link data, research proposals, technology products and services from the website, please contact Melissa Lapsa (lapsamv@ornl.gov).

  1. Low Temperature Geothermal Resource Evaluation of the Moses Lake-Ritzville-Connell Area, Washington

    SciTech Connect (OSTI)

    Widness, Scott

    1983-11-01T23:59:59.000Z

    The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. The regional piezometric surface and stratigraphic units dip towards the southwest. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given in table 2. Some of the BHT data in table 2 may vary from those previously reported by WSU. These discrepancies are the result of changes in the calibration method of the FT tool. A technique developed by Giggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG). Well data groups were selected on the premises of geographic proximity, position within the regional groundwater flow system, land slope azimuth, and land slope dip. Some data points have been excluded from the linear regression analysis on the basis of factors such as duplicate logging of the same hole, down-hole flow, holes not logged to total depth, and questionable FT tool responses.

  2. Tank waste remediation system program plan

    SciTech Connect (OSTI)

    Powell, R.W.

    1998-01-09T23:59:59.000Z

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

  3. Uranium Mill Tailings Remedial Action Project fiscal year 1997 annual report to stakeholders

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The fiscal year (FY) 1997 annual report is the 19th report on the status of the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. In 1978, Congress directed the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction or landscaping. Cleanup has been undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the groundwater project. This report addresses specifics about the UMTRA surface project.

  4. Management and overview Quality Assurance Program Plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office (DOE/ UMTRA-PO) is the US Department of Energy (DOE) Albuquerque Operations Office (AL) organization charged with the responsibility of managing and coordinating the activities of the various participating organizations and support contractors working on the UMTRA Project. This Quality Assurance Program Plan (QAPP) describes how the DOE/UMTRA-PO, as assisted by the Technical Assistance Contractor (TAC), performs the quality assurance (QA) aspects of managing and coordinating UMTRA Project activities. This QAPP was developed to comply with DOE Order 5700.6A, August, 1981, and AL Order 5700.6B, April, 1984, which contain the criteria applicable to Project QA activities.

  5. Fiscal year 1996 annual report to stakeholders, Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This is the Fiscal Year (FY) 1996 annual report on the status of the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. In 1978, Congress directed the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction of landscaping. Cleanup is being undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the ground water project. This report addresses specifics about the surface phase of the UMTRA Project.

  6. Optimal Demand Response Capacity of Automatic Lighting Control

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    . To remedy this problem, different demand side management programs have been proposed to shape the energy prior studies have extensively studied the capacity of offering demand response in buildings and office buildings. Keywords: Demand response, automatic lighting control, commercial and office buildings

  7. Innovate Washington Group Looks to Create State Business

    SciTech Connect (OSTI)

    Madison, Alison L.

    2012-04-11T23:59:59.000Z

    Monthly column for TCH - April 2012. Excerpt here: Change is inevitable. In fact, many say it’s the only constant. One can either wait for the waves to hit and try not to drown, or get ahead of them and maximize the ride. I believe being proactive is the harder, but more powerful option. Over the past couple years numerous people have proactively worked to effect a particular change across the state of Washington: create a thriving ecosystem to accelerate technology-based economic development and achieve sustainable job growth. The result is an organization called Innovate Washington.

  8. Energy Secretary Moniz's Remarks at CSIS in Washington D.C. on...

    Energy Savers [EERE]

    Moniz's Remarks at CSIS in Washington D.C. on Energy Security 40 Years after the Embargo - As Delivered Energy Secretary Moniz's Remarks at CSIS in Washington D.C. on Energy...

  9. U.S. Department of Energy - Washington, DC | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaic System at the Forrestal Building in Washington, DC The U.S. Department of Energy (DOE) is housed in the Forrestal Building in Washington, DC. A photovoltaic (PV)...

  10. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  11. Decontamination formulation with additive for enhanced mold remediation

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM); Irvine, Kevin (Huntsville, AL); Berger, Paul (Rome, NY); Comstock, Robert (Bel Air, MD)

    2010-02-16T23:59:59.000Z

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  12. In-situ groundwater remediation by selective colloid mobilization

    DOE Patents [OSTI]

    Seaman, J.C.; Bertch, P.M.

    1998-12-08T23:59:59.000Z

    An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

  13. In-situ groundwater remediation by selective colloid mobilization

    DOE Patents [OSTI]

    Seaman, John C. (New Ellenton, SC); Bertch, Paul M. (Aiken, SC)

    1998-01-01T23:59:59.000Z

    An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

  14. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    none,

    1981-02-27T23:59:59.000Z

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  15. Using GIS to Identify Remediation Areas in Landfills

    SciTech Connect (OSTI)

    Linda A.Tedrow

    2004-08-01T23:59:59.000Z

    This paper reports the use of GIS mapping software—ArcMap and ArcInfo Workstation—by the Idaho National Engineering and Environmental Laboratory (INEEL) as a non-intrusive method of locating and characterizing radioactive waste in a 97-acre landfill to aid in planning cleanup efforts. The fine-scale techniques and methods used offer potential application for other burial sites for which hazards indicate a non-intrusive approach. By converting many boxes of paper shipping records in multiple formats into a relational database linked to spatial data, the INEEL has related the paper history to our current GIS technologies and spatial data layers. The wide breadth of GIS techniques and tools quickly display areas in need of remediation as well as evaluate methods of remediation for specific areas as the site characterization is better understood and early assumptions are refined.

  16. Decommissioning of the remediation systems at Waverly, Nebraska, in 2011-2012.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2012-06-29T23:59:59.000Z

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility in Waverly, Nebraska, from 1952 to 1974. During this time, the grain fumigant '80/20' (carbon tetrachloride/carbon disulfide) was used to preserve stored grain. In 1982, sampling by the U.S. Environmental Protection Agency (EPA) found carbon tetrachloride contamination in the town's groundwater. After an investigation of the contaminant distribution, the site was placed on the National Priority List (NPL) in 1986, and the CCC/USDA accepted responsibility for the contamination. An Interagency Compliance Agreement between the EPA and the CCC/USDA was finalized in May 1988 (EPA 1990). The EPA (Woodward-Clyde Consultants, contractor) started immediate cleanup efforts in 1987 with the installation of an air stripper, a soil vapor extraction system, a groundwater extraction well, and groundwater and soil gas monitoring wells (Woodward-Clyde 1986, 1988a,b). After the EPA issued its Record of Decision (ROD; EPA 1990), the CCC/USDA (Argonne National Laboratory, contractor) took over operation of the treatment systems. The CCC/USDA conducted a site investigation (Argonne 1991, 1992a,b), during which a carbon tetrachloride plume in groundwater was discovered northeast of the former facility. This plume was not being captured by the existing groundwater extraction system. The remediation system was modified in 1994 (Argonne 1993) with the installation of a second groundwater extraction well to contain the contamination further. Subsequently, a detailed evaluation of the system resulted in a recommendation to pump only the second well to conserve water in the aquifer (Argonne 1995). Sampling and analysis after implementation of this recommendation showed continued decreases in the extent and concentrations of the contamination with only one well pumping (Argonne 1999). The CCC/USDA issued quarterly monitoring reports from 1988 to 2009. Complete documentation of the CCC/USDA characterization and remediation efforts, including the quarterly monitoring reports, is on the compact disc inside the back cover of this report. The EPA reported on the progress of the remediation systems in a series of five-year reviews (EPA 1993, 1999, 2004, 2009). These reports and other EPA documentation are also on the compact disc inside the back cover of this report, along with the Woodward-Clyde (1986, 1988a,b) documentation cited. Starting in 2006, the analytical results for groundwater (the only medium still being monitored) showed no carbon tetrachloride concentrations above the maximum contaminant level (MCL) of 5.0 g/L. Because the cleanup goals specified in the ROD (EPA 1990) had been met, the EPA removed the site from the NPL in November 2006 (Appendix A). In 2008 the National Pollutant Discharge Elimination System (NPDES) permit for the remediation system was deactivated, and a year later the EPA released its fourth and final five-year report (EPA 2009), indicating that no further action was required for the site and that the site was ready for unlimited use. In 2011-2012, the CCC/USDA decommissioned the remediation systems at Waverly. This report documents the decommission process and closure of the site.

  17. EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)

    Broader source: Energy.gov [DOE]

    This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

  18. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    SciTech Connect (OSTI)

    Knox, A; Michael Paller, M; Danny D. Reible, D; Xingmao Ma, X; Ioana G. Petrisor, I

    2007-05-10T23:59:59.000Z

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene. Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.

  19. In Situ Remediation Integrated Program: FY 1994 program summary

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  20. Uranium Mill Tailings Remedial Action fiscal year 1992 roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is funded and managed as two separate projects: Surface remediation (UMTRA-S) and Groundwater compliance (UMTRA-G). Surface remediation is a Major System Acquisition and has been completed at 10 sites, 7 sites are under construction, and 7 sites are in the planning stage. The planning stages of the UMTRA-G Project, a major project, began in April 1991. A programmatic environmental impact statement (PEIS) has been started. Site characterization work and baseline risk assessment will begin FY 1993. Thus, the UMTRA-S Project is a mature and ongoing program with the roles of various organizations well defined, while the UMTRA-G Project is still being formulated and the interfaces between the DOE, states and tribes, and the EPA are being established. The Office of Environmental Restoration and Waste Management (EM) directed that all projects under its authority develop roadmaps for their activities. The UMTRA Project Roadmap was developed by the UMTRA Project Office with input from the TAC, RAC, the GJPO, and assistance from SAIC. A single roadmap has been prepared for both the UMTRA-S and UMTRA-G Projects. This was deemed appropriate due to the close relationship between the projects and to the fact that the same Government and contractor personnel are preparing the roadmaps. Roadmap development is a planning process that focuses on issue identification, root-cause analysis, and issues resolution. The methodology is divided into three phases: assessment, analysis, and issues resolution.

  1. Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

  2. The UMTRA PEIS: A strategy for groundwater remediation

    SciTech Connect (OSTI)

    Burt, C.; Ulland, L.; Weston, R.F.; Metzler, D. (DOE, Albuquerque, NM (United States))

    1993-01-01T23:59:59.000Z

    A programmatic environmental impact statement (PEIS) was initiated in 1992 for the uranium mill tailings remedial action (UMTRA) program. The PEIS kicked off the groundwater restoration phase of UMTRA, a project involving remediation of 24 sites in ten states and tribal lands contaminated with tailings from uranium mining and milling operations. The U.S. Department of Energy (DOE) agreed, in early 1992, that a PEIS was an appropriate strategy to comply with the National Environmental Policy Act (NEPA) for this second, groundwater phase of the project. This decision recognized that although a parallel effort was being undertaken in preparing a PEIS for DOE's Environmental Restoration/Waste Management (ER/WM) program, characteristics and the maturity of the UMTRA project made it more appropriate to prepare a separate PEIS. The ER/WM PEIS is intended to examine environmental restoration and waste management issues from a very broad perspective. For UMTRA, with surface remediation completed or well under way at 18 of the 24 sites, a more focused programmatic approach for groundwater restoration is more effective than including the UMTRA project within the ER/WM environmental impact statements. A separate document allows a more focused and detailed analysis necessary to efficiently tier site-specific environmental assessments for groundwater restoration at each of the 24 UMTRA former processing sites.

  3. UMTRA -- The US Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Lightner, R. [Dept. of Energy, Washington, DC (United States); Cormier, C. [Department of Energy, Albuquerque, NM (United States); Bierley, D. [Roy F. Weston, Inc., Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    In the late 1970s, the United States (US) established the first comprehensive regulatory structure for the management, disposal, and long-term care of wastes produced from its domestic uranium processing industry. This regulatory framework was established through the passage of the Uranium Mill Tailings Radiation Control Act of 1978, often referred to as UMTRCA. This legislation created the Uranium Mill Tailings Remedial Action (UMTRA) Project and assigned the US Department of Energy (DOE) the lead in conducting the required remedial action at 24 designated inactive uranium ore processing sites. With the majority of these 22 sites complete, the DOE`s UMTRA Project has established a distinguished reputation for safely and effectively remediating these low-level waste sites in a complex regulatory and socioeconomic environment. This paper describes the past accomplishments and current status of the UMTRA Project and discusses the DOE`s plans for addressing ground water contamination associated with these sites and its commitment to continuing the long-term care and management of these disposal cells.

  4. Remediation cleanup options for the Hoe Creek UCG site

    SciTech Connect (OSTI)

    Nordin, J.; Griffin, W.; Chatwin, T.; Lindblom, S.; Crader, S.

    1990-03-01T23:59:59.000Z

    The US Department of Energy must restore groundwater quality at the Hoe Creek, Wyoming, underground coal gasification site using the best proven practicable technology. Six alternative remediation methods are evaluated in this project: (1) excavation, (2) three variations of groundwater plume containment, (3) in situ vacuum extraction, (4) pump and treat using a defined pattern of pumping wells to obtain an effective matrix sweep, (5) in situ flushing using a surfactant, and (6) in situ bioremediation. Available site characterization data is insufficient to accurately project the cost of remediation. Several alternative hypothetical examples and associated costs are described in the text and in the appendices. However, not enough information is available to use these examples as a basis for comparison purposes. Before a cleanup method is selected, core borings should be taken to define the areal extent and depth of contaminated matrix material. Segments of these core borings should be analyzed for organic contaminants in the soil (e.g., benzene) and their relationship to the groundwater contamination. These analyses and subsequent treatability studies will show whether or not the contaminants can be effectively removed by surface on in situ volatilization, leached from the matrix using washing solutions, or removed by bioremediation. After this information is obtained, each technology should be evaluated with respect to cost and probability of success. A decision tree for implementing remediation cleanup at the Hoe Creek site is presented in this report. 26 refs., 11 figs., 3 tabs.

  5. COMPLEXITY AND ADAPTIVE MANAGEMENT IN WASHINGTON STATE FOREST POLICY, 1987-2001

    E-Print Network [OSTI]

    COMPLEXITY AND ADAPTIVE MANAGEMENT IN WASHINGTON STATE FOREST POLICY, 1987-2001 by Mark Kepkay BA and Adaptive Management in Washington State Forest Policy, 1987-2001 PROJECT NUMBER: 345 SUPERVISORY COMMITTEE programs within Washington State forest policy. I focus on the Watershed Analysis program, 1992 to 1997

  6. Ecological Modelling 187 (2005) 140178 Eutrophication model for Lake Washington (USA)

    E-Print Network [OSTI]

    Arhonditsis, George B.

    Ecological Modelling 187 (2005) 140­178 Eutrophication model for Lake Washington (USA) Part I eutrophication model that has been developed to simulate plankton dynamics in Lake Washington, USA. Because loading scenarios. © 2005 Elsevier B.V. All rights reserved. Keywords: Eutrophication; Lake Washington

  7. Seasonal and Interannual Variability in the Circulation of Puget Sound, Washington: A Box Model Study

    E-Print Network [OSTI]

    MacCready, Parker

    Seasonal and Interannual Variability in the Circulation of Puget Sound, Washington: A Box Model A prognostic, time-dependent box model of circulation in Puget Sound, Washington is used to study seasonal circulation dans le détroit de Puget, dans l'État de Washington, pour étudier les variations saisonnières et

  8. The 33st International Electric Propulsion Conference, The George Washington University, USA October 6 10, 2013

    E-Print Network [OSTI]

    King, Lyon B.

    The 33st International Electric Propulsion Conference, The George Washington University, USA with FerroTec EFH-1 in a non- uniform magnetic field IEPC-2013-319 Presented at the 33rd International Electric Propulsion Conference, The George Washington University · Washington, D.C. · USA October 6 ­ 10

  9. Five-Year Review of CERCLA Response Actions at the Idaho National Laboratory

    SciTech Connect (OSTI)

    W. L. Jolley

    2007-02-01T23:59:59.000Z

    This report summarizes the documentation submitted in support of the five-year review or remedial actions implemented under the Comprehensive Environmental Response, Compensation, and Liability Act Sitewide at the Idaho National Laboratory. The report also summarizes documentation and inspections conducted at the no-further-action sites. This review covered actions conducted at 9 of the 10 waste area groups at the Idaho National Laboratory, i.e. Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 9, and 10. Waste Area Group 8 was not subject to this review, because it does not fall under the jurisdiction of the U.S. Department of Energy Idaho Operations Office. The review included past site inspections and monitoring data collected in support of the remedial actions. The remedial actions have been completed at Waste Area Groups 2, 4, 5, 6, and 9. Remedial action reports have been completed for Waste Area Groups 2 and 4, and remedial action reports are expected to be completed during 2005 for Waste Area Groups 1, 5, and 9. Remediation is ongoing at Waste Area Groups 3, 7, and 10. Remedial investigations are yet to be completed for Operable Units 3-14, 7-13/14, and 10-08. The review showed that the remedies have been constructed in accordance with the requirements of the Records of Decision and are functioning as designed. Immediate threats have been addressed, and the remedies continue to be protective. Potential short-term threats are being addressed though institutional controls. Soil cover and cap remedies are being maintained properly and inspected in accordance with the appropriate requirements. Soil removal actions and equipment or system removals have successfully achieved remedial action objectives identified in the Records of Decision. The next Sitewide five-year review is scheduled for completion by 2011.

  10. Formerly Used Sites Remedial Action Program (FUSRAP) W. R. Grace Building 23 Remedial Action-Challenges and Successes - 12247

    SciTech Connect (OSTI)

    Barber, Brenda; Honerlah, Hans [U.S. Army Corps of Engineers - Baltimore District, 10 S. Howard St., Baltimore, Maryland, 21201 (United States); O'Neill, Mike [EA Engineering, Science, and Technology, 15 Loveton Circle, Baltimore, Maryland, 21152 (United States); Young, Carl [Cabrera Services, Inc., 1106 N. Charles St., Suite 300, Baltimore, MD 21201 (United States)

    2012-07-01T23:59:59.000Z

    Monazite sand processing was conducted at the W. R. Grace Curtis Bay Facility (Baltimore, Maryland) from mid-May 1956 through the spring of 1957 under license to the Atomic Energy Commission (AEC), for the extraction of source material in the form of thorium, as well as rare earth elements. The processing was conducted in the southwest quadrant of a ca. 100 year old, five-story, building (Building 23) in the active manufacturing portion of the facility. Building components and equipment in the southwest quadrant of Building 23 exhibited residual radiological activity remaining from the monazite sand processing. U.S. Army Corps of Engineers (USACE) conducted a remedial investigation (RI) and feasibility study (FS) and prepared a Record of Decision (ROD) to address residual radioactivity on building components and equipment in the southwest quadrant of Building 23. The remedy selected for the southwest quadrant of Building 23, which was documented in the ROD (dated May 2005), was identified as 'Alternative 2: Decontamination With Removal to Industrial Use Levels'. The selected remedy provided for either decontaminating or removing areas of radioactivity to meet the RGs. Demonstration of compliance with the selected ARAR was performed using the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) and other appropriate guidance, as well as appropriate dose modeling codes where necessary. USACE-Baltimore District along with its private industry partner worked together under the terms of a 2008 Settlement Agreement to implement the remedial action (RA) for the southwest quadrant of Building 23. The RA was conducted in two phases: Phase 1 was completed to improve the building condition for support of subsequent remedial action and decrease scope uncertainty of the remedial action, and Phase 2 included decontamination and removal activities to meet the RGs and demonstration of compliance with the selected ARAR. Challenges encountered during the RA include: coordination with stakeholders, coordination between multiple RA contractors, addressing unique structural challenges for Building 23, nonradiological hazards associated with the RA, weather issues, and complex final status survey (FSS) coordination. The challenges during the Phase 1 RA were handled successfully. The challenges for the Phase 2 RA, which is anticipated to be complete by late-summer of 2012, have been handled successfully so far. By fall of 2012, USACE is expecting to finalize a robust RA Closure Report, including the Final Status Survey Report, which summarizes the RA activities and documents compliance with the ROD. During the ongoing RA at Building 23, there have been and still are many challenges both technically and from a project management perspective, due in part to the nature and extent of impact at the site (residual radioactivity within an active processing building), dual oversight by the property owner and USACE, and site-specific challenges associated with a complex RA and multiple contractors. Currently, USACE and its industry partner are overseeing the completion of RA field activities. RA closure documentation for the remediation of Building 23 to address residual contamination in building materials will be reviewed/approved by USACE and its industry partner upon completion of the field activities. USACE and its industry partner are working well together, through the Settlement Agreement, to conduct a cost-efficient and effective remedial action to address the legacy issues at Building 23. This cooperative effort has set a firm foundation for achieving a successful RA at the RWDA using a 'forward think' approach, and it is a case study for other sites where an industry partner is involved. The collaborative effort led to implementation of an RA which is acceptable to the site owner, the regulators, and the public, thus allowing USACE to move this project forward successfully in the FUSRAP program. (authors)

  11. Spring 2010 (Rev.) Washington and Lee University Library

    E-Print Network [OSTI]

    Marsh, David

    1 Spring 2010 (Rev.) Washington and Lee University Library Collection Development Policy I. Purpose of the University Library II. Relationship with other libraries III. Purpose of a collection policy IV. Collection. Retrospective purchases D. Duplicates E. Gifts F. Weeding VIII. Types of materials A. Books / E-books B. Serial

  12. Understanding African Poverty: Beyond the Washington Consensus to the

    E-Print Network [OSTI]

    23 2 Understanding African Poverty: Beyond the Washington Consensus to the Millennium Development Poverty he era of structural adjustment, which can be dated approximately to the last two decades-based development lending of structural adjustment, it remains mired in poverty and debt. What went wrong

  13. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    project having the potential to impact lead-containing building materials, including lead paint. ResultsUNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Lead Basis, lead-containing materials have the potential to negatively impact the health of construction workers

  14. STATE OF WASHINGTON DEPARTMENT OF COMMUNITY, TRADE AND ECONOMIC DEVELOPMENT

    E-Print Network [OSTI]

    is vital to controlling cost of doing business, reducing consumer spending on energy, and making our an addition $5 billion per year on energy costs an increase of nearly one and onehalf percent in our stateSTATE OF WASHINGTON DEPARTMENT OF COMMUNITY, TRADE AND ECONOMIC DEVELOPMENT Energy Policy Division

  15. Fishery Leaflet 374 Washington 2 i Do Co May

    E-Print Network [OSTI]

    ary Fishery Leaflet 374 Washington 2 i Do Co May FREEZING AND CANNING KING CRAB By John Ao Dassow in maintaining the quality of the canned or frozen product 0 King crab meat must be prooessed with utmost care orab, butohering i oooking i oooling, remo'9'..ing the meat" and oleaning o Reoom- mendations are based

  16. University of Washington Libraries Thesis and Dissertation Submission Agreement

    E-Print Network [OSTI]

    Kaminsky, Werner

    University of Washington Libraries Thesis and Dissertation Submission Agreement 11/1/2011 In presenting your thesis or dissertation, including any abstract, ("the Work") in partial fulfillment, the publication agreement, if any, associated with such prior publication allows for use in a thesis/dissertation

  17. Materials Science and Engineering Graduate Program Bylaws Washington State University

    E-Print Network [OSTI]

    Collins, Gary S.

    1 Materials Science and Engineering Graduate Program Bylaws Washington State University of Materials Science and Engineering. In particular: a. To enable students to develop as successful in the field of Materials Science and Engineering. II. Graduate Faculty A. The Gradate Faculty include: 1. All

  18. Fish Foraging on an Artificial Reef in Puget Sound, Washington

    E-Print Network [OSTI]

    Fish Foraging on an Artificial Reef in Puget Sound, Washington GREGORY J. HUECKEL and R. LEE with an artificial reef in Puget Sound to increase our knowledge of the changes in the structure of the fish com with an artificial reef in Puget Sound, Wash. Stomachs ofthesefish species, dissectedfrom 609 fish speared on, around

  19. WashingtonSeaGrant StrategicPlan2010-2014

    E-Print Network [OSTI]

    Carrington, Emily

    communities with diversified urban economies rim the densely populated Puget Sound basin. Given these differences, separate state governance approaches have developed for Puget Sound and the Washington coast. WSG is involved in implementing the Puget Sound Partnership's Action Agenda to restore and protect Puget Sound

  20. Coastal and Lower Elwha River, Washington, Prior to

    E-Print Network [OSTI]

    of Puget Sound, a large fjord-estuary in northwestern Washington State. The more than 3,000 km of Puget, and deltas. Puget Sound and the Georgia Basin are part of the Salish Sea (fig. 1.1), which is fed by rivers impacts, Puget Sound is home to a diverse array of biological communities and charismatic species

  1. Washington and Lee University Guidance on Information Security

    E-Print Network [OSTI]

    Marsh, David

    Washington and Lee University Guidance on Information Security This guidance addresses common issues that have come up during information security discussions with offices and departments across, Information Security Program Committee Chair (sdittman@wlu.edu) or Dean Tallman, Information Security Officer

  2. The Environmental Studies MAJOR The George Washington University

    E-Print Network [OSTI]

    Vertes, Akos

    Conservation Biology 3 Chem 2085 Environmental Chemistry 3 CE 1010** Intro to Civil and EnvironmentalThe Environmental Studies MAJOR The George Washington University To declare as an Environmental-8523 Program Advisor Prof. Melissa Keeley, keeley@gwu.edu, (202) 994-7156 Environmental Studies majors must

  3. Anaerobic Co-Digestion on Dairies in Washington State

    E-Print Network [OSTI]

    Collins, Gary S.

    as food-processing wastes) to increase biogas productivity, improve digester performance, and increase with the manure--a process that has been shown to enhance digester performance and notably increase biogas1 Anaerobic Co-Digestion on Dairies in Washington State The solid waste handling permit exemption W

  4. University of Washington-Seattle College of Engineering Mathematics Academy

    E-Print Network [OSTI]

    Anderson, Richard

    #12;University of Washington-Seattle College of Engineering Mathematics Academy 2010 July 11 - August 6 2010 UW Mathematics Academy #12;About the College of Engineering MATHEMATICS ACADEMY The COLLEGE OF ENGINEERING MATHEMATICS ACADEMY is a mathematics intensive, four- week residential session , first held

  5. 2004 INDEX OF INNOVATION AND TECHNOLOGY TRI-CITIES, WASHINGTON

    E-Print Network [OSTI]

    such as traffic congestion and high cost of living o Has two factors impeding its technology-based economic Tax Burden 14 Labor Costs 15 Growth 16 Employment in Technology Firms 17 Growth in Startups 172004 INDEX OF INNOVATION AND TECHNOLOGY TRI-CITIES, WASHINGTON JULY 2004 #12;PNNL-SA-42092 2004

  6. Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,

    E-Print Network [OSTI]

    Jackson, Robert B.

    Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

  7. MESOSCALE EDDIES Peter B. Rhines, University of Washington,

    E-Print Network [OSTI]

    MESOSCALE EDDIES Peter B. Rhines, University of Washington, School of Oceanography, Box 357940, Seattle, WA 98195 7940, USA Copyright ^ 2001 Academic Press doi:10.1006/rwos.2001.0143 Mesoscale eddies that strongly feel viscosity, to `mesoscale eddies' that strongly feel the Earth's rota- tion, to great `gyres

  8. GeoffBrumfiel,Washington Nuclear watchdogs and former weapons

    E-Print Network [OSTI]

    is supposed to help scientists assess the nation's ageing nuclear stockpile without testing the weaponsGeoffBrumfiel,Washington Nuclear watchdogs and former weapons scientists are taking issue existing bombs detonate, so that the stockpile can be maintained without testing the weapons it contains

  9. Washington University Can the Sound Generated by Modern Wind Turbines

    E-Print Network [OSTI]

    Salt, Alec N.

    Washington University Can the Sound Generated by Modern Wind Turbines Affect the Health of Those turbines haveWind turbines have been getting biggerbeen getting bigger and bigger....and bigger.... Lars Needs Wind turbines are "green" and areWind turbines are "green" and are contributing to our energy

  10. Reprint & Copyright by Aerospace Medical Association, Washington, DC

    E-Print Network [OSTI]

    Reprint & Copyright ©by Aerospace Medical Association, Washington, DC TECHNICAL NOTE Reflectance.EPICS Biomedical Engineering and Science Institute and Department of Electrical and Computer Engineering, Drexel and pulsatile and mean Doppler velocities were examined as predictors of impending peripheral light loss (PLL

  11. Salmon Site Remedial Investigation Report, Appendix B (Part 1)

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  12. Salmon Site Remedial Investigation Report, Appendix B (Part 2)

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  13. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01T23:59:59.000Z

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

  14. Self-revegetation of disturbed ground in the deserts of Nevada and Washington

    SciTech Connect (OSTI)

    Rickard, W.H.; Sauer, R.H.

    1982-01-01T23:59:59.000Z

    Plant cover established without purposeful soil preparation or seeding was measured on ground disturbed by plowing in Washington and by aboveground nuclear explosions in Nevada. After a time lapse of three decades in Washington and two decades in Nevada, fewer species were self-established on the disturbed ground than the nearby undisturbed ground. Alien annual plants were the dominants on the disturbed ground. Cheatgrass (Bromus tectorum) dominated abandoned fields in Washington, and filaree (Erodium cicutarium) dominated disturbed ground in Nevada. Perennial grasses and shrubs appeared to be more successful as invaders in Nevada than in Washington. This distinction is attributed to the superior competitive ability of cheatgrass in Washington.

  15. Remediation progress at the Iron Mountain Mine Superfund site, California. Information Circular/1991

    SciTech Connect (OSTI)

    Biggs, F.R.

    1991-01-01T23:59:59.000Z

    The report was prepared by the U.S. Bureau of Mines to present a brief history of the listing of Iron Mountain Mine as a Superfund site on the National Priorities List (NPL) and subsequent remedial actions. The mine area is located on 4,400 acres near Redding, CA, and includes underground workings, an open pit area, waste rock dumps, and tailings piles. The property involves multiple sources of acid mine drainage (AMD) that are high in copper, zinc, and cadmium. The selected remedial actions, based on the Record of Decision of 1986, would partially cap the richmond mineralized zone to reduce infiltration of clean water, divert clean surface waters away from contaminated areas, fill surface subsidence areas, and enlarge the Spring Creek debris dam to provide increased surge capacity. Site remediation efforts at Iron Mountain are well into the remedial design-remedial action phase. Details of activities and designs of remedial elements are presented, and future activities, discussed.

  16. Final Site Specific Decommissioning Inspection Report #2 for the University of Washington Research and Test Reactor, Seattle, Washington

    SciTech Connect (OSTI)

    S.J. Roberts

    2007-03-20T23:59:59.000Z

    During the period of August through November 2006, ORISE performed a comprehensive IV at the University of Washington Research and Test Reactor Facility. The objective of the ORISE IV was to validate the licensee’s final status survey processes and data, and to assure the requirements of the DP and FSSP were met.

  17. Work plan addendum for the remedial investigation and feasibility study of the Salmon Site

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This document is intended as an addendum to the Remedial Investigation and Feasibility Study (RI/FS) Work Plan for the Salmon Site (SS) (formerly the Tatum Dome Test Site) Lamar County, Mississippi. The original work plan - Remedial Investigation and Feasibility Study of the Tatum Dome Test Site, Lamar County, Mississippi (herein after called the Work Plan) was approved by the state of Mississippi in 1992 and was intended as the operative document for investigative activities at the Tatum Dome Test Site. Subsequent to the approval of the document a series of activities were undertaken under the auspices of the work plan. This document is organized in the same manner as the original work plan: (1) Introduction; (2) Site Background and History; (3) Initial Evaluation; (4) Data Quality Objectives; (5) RI/FS Tasks; (6) Project Schedule; (7) Project Management; and (8) Reference. This addendum will identify changes to the original work plan that are necessary because of additional information acquired at the SS. This document is not intended to replace the work plan, rather, it is intended to focus the remaining work in the context of additional site knowledge gained since the development of the original work plan. The U.S. Department of Energy (DOE) is conducting a focused and phased site characterization as a part, of the RI/FS. The RI/FS is the methodology under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) for evaluating hazardous waste sites on the National Priorities List (NPL). The SS is not listed on the NPL, but DOE has voluntarily elected to conduct the evaluation of the SS in accordance with CERCLA.

  18. Geothermal : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    Bloomquist, R.Gordon

    1991-10-01T23:59:59.000Z

    The actual geothermal exploration and development may appear to be a simple and straightforward process in comparison to the legal and institutional maze which the developer must navigate in order to obtain all of the federal, state, and local leases, permits, licenses, and approvals necessary at each step in the process. Finally, and often most difficult, is obtaining a contract for the sale of thermal energy, brine, steam, or electricity. This guide is designed to help developers interested in developing geothermal resource sites in the Bonneville Power Administration Service Territory in the state of Idaho, Montana, Oregon, and Washington better understand the federal, state, and local institutional process, the roles and responsibilities of each agency, and how and when to make contact in order to obtain the necessary documents.

  19. Washington State Department of Transportation energy efficiency guidelines for small buildings

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This document provides energy efficiency guidelines for the construction and remodel of small buildings owned by the Washington State Department of Transportation (DOT). For the purpose of these guidelines {open_quotes}small buildings{close_quotes} are defined as those under 25,000 square feet. However, many of the guidelines can also be used for larger buildings. DOT is responsible for 641 buildings totaling 2.2 million square feet and consuming approximately $1,087,500 dollars in energy costs each year. Building types covered by these guidelines are small offices, shop buildings, and heated and unheated storage. These building types can be expected to vary greatly in both the distribution and magnitude of energy use.

  20. Spectroscopic and Diffraction Study of Uranium Speciation in Contaminated Vadose Zone Sediments from the Hanford Site, Washington State

    SciTech Connect (OSTI)

    Catalano, Jeffrey G.; Heald, Steve M.; Zachara, John M.; Brown Jr., G E.

    2004-05-15T23:59:59.000Z

    Contamination of vadose zone sediments under tank BX-102 at the Hanford site, Washington, resulted from the accidental release of 7-8 metric tons of uranium dissolved in caustic aqueous sludge in 1951. We have applied synchrotron-based X-ray spectroscopic and diffraction techniques to characterize the speciation of uranium in samples of these contaminated sediments. U LIII-edge X-ray absorption fine structure (XAFS) spectroscopic studies demonstrate that uranium occurs predominantly as a uranium-(VI) silicate from the uranophane group of minerals. XAFS cannot distinguish between the members of this mineral group due to the near identical local coordination environments of uranium in these phases. However, these phases differ crystallographically, and can be distinguished using X-ray diffraction (XRD) methods. As the concentration of uranium was too low for conventional XRD to detect these phases, X-ray microdiffraction (?XRD) was used to collect diffraction patterns on {approx}20 ?m diameter areas of localized high uranium concentration found using microscanning X-ray fluorescence (?SXRF). Only sodium boltwoodite, Na(UO2)(SiO3OH)?1.5H2O, was observed; no other uranophane group minerals were present. Sodium boltwoodite formation has effectively sequestered uranium in these sediments under the current geochemical and hydrologic conditions. Attempts to remediate the uranium contamination will likely face significant difficulties because of the speciation and distribution of uranium in the sediments.

  1. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    SciTech Connect (OSTI)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30T23:59:59.000Z

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  2. Record of Decision/Remedial Alternative Selection for the Motor Shops Seepage Basin (716-A)

    SciTech Connect (OSTI)

    Palmer, E.

    1999-02-03T23:59:59.000Z

    This decision document presents the selected remedial alternative for the Motor Shops Seepage Basin located at the Savannah River Site in Aiken, South Carolina

  3. Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program

    Broader source: Energy.gov [DOE]

    *Editor's note: This article is cross-posted from Savannah River Remediation's website, where it was posted on September 28, 2012.

  4. Voluntary Protection Program Onsite Review, CHPlateau Remediation Contract Hanford Site- March 2011

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Plateau Remediation Contract Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  5. animal-based folk remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 143 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  6. EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

  7. Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

  8. Versatile microbial surface-display for environmental remediation and biofuels production

    E-Print Network [OSTI]

    Hawkes, Daniel S

    2008-01-01T23:59:59.000Z

    engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

  9. Report on the technical workshop on WTI incinerator risk issues. Held in Washington, DC on December 8-9, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The report includes information and materials from a peer review workshop organized by EPA's Risk Assessment Forum (RAF) for the Office of Solid Waste and Emergency Response and Region 5. The meeting was held in Washington, DC, at the Holiday Inn Capitol on December 8-9, 1993. The subject of the peer review was a draft project plan prepared by EPA Region 5 for assessing risk at an incinerator operated by Waste Technologies Industries (WTI) in East Liverpool, Ohio. The peer review panel was convened to evaluate the project plan as the scientific foundation for a risk assessment, which will be used in setting final permit conditions for the WTI facility.

  10. ENVIRONMENTAL REMEDIAL ACTION – ARE WE DOING MORE HARM THAN GOOD?

    E-Print Network [OSTI]

    Bruce W. Church

    The International Commission on Radiological Protection (ICRP) (1) has stated that interventions i.e., remedial actions should do more good than harm. This paper examines completed cleanup projects to answer the question posed in the title. Various researchers have published that toxins in the environment only cause a small percentage of cancers i.e., 1-3 percent (2,3). Estimates of hypothetical fatal cancers are inflated because primarily it is assumed that people will change their living habits and move onto or near uncontrolled waste sites. An occupancy factor of 100 % is used and by using large populations exposed to miniscule levels of radiation (4) unreal levels of fatal cancers are predicted. What we observe are technically indefensible numbers of cancers being calculated for these hypothetical people. This and other maximizing assumptions inflate the risk. The inflated risk, along with very conservative criteria, drives the removal of large volumes of soil and debris. An unintended consequence of these costly well-intentioned (5) remedial actions is the real fatalities and injuries that occur to workers doing the construction and to members of the public through transportation activities. Even though some analysis include the estimates of worker risk, there is little or no discussion which highlights the fact that real risk is being traded for hypothetical risk. This paper is an attempt to review this situation and through cited literature and case studies, come to a better understanding of what if any good is really being done. Maybe it is time to consider this transfer of risk from hypothetical victims to the real victims in remedial action decision-making.

  11. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  12. Tank waste remediation system dangerous waste training plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-05-13T23:59:59.000Z

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench.

  13. Activities of HPS standards committee in environmental remediation

    SciTech Connect (OSTI)

    Stencel, J.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Chen, S.Y. [Argonne National Lab., IL (United States)

    1994-12-31T23:59:59.000Z

    The Health Physics Society (HPS) develops American National Standards in the area of radiation protection using methods approved by the American National Standards Institute (ANSI). Two of its sections, Environmental Health Physics and Contamination Limits, have ongoing standards development which are important to some environmental remediation efforts. This paper describes the role of the HPS standards process and indicates particular standards under development which will be of interest to the reader. In addition, the authors solicit readers to participate in the voluntary standards process by either joining active working groups (WG) or suggesting appropriate and relevant topics which should be placed into the standards process.

  14. Modelling of Remediation Technologies at the Performance Assessment Level

    SciTech Connect (OSTI)

    Parton, N.J.; Paksy, A.; Eden, L.; Trivedi, D.P. [Nexia Solutions Limited, Hinton House, Risley, Warrington, Cheshire, UK, WA (United States)

    2008-07-01T23:59:59.000Z

    This paper presents approaches to modelling three different remediation technologies that are designed to support site operators during their assessment of remediation options for the management of radioactively contaminated land on nuclear licensed sites in the UK. The three selected technologies were soil washing, permeable reactive barrier and in-situ stabilisation. The potential exists to represent electrokinetics in the future. These technologies were chosen because it was considered that enough information already existed for site operators to assess mature technologies such as soil dig and disposal and groundwater pump and treat. Using the software code GoldSim, the models have been designed to allow site operators to make both a reasonable scoping level assessment of the viability of treatment and understand the cost-benefits of each technology. For soil washing, a standard soil leaching technique was simulated whereby the soil is separated into fines and oversize particles, and subsequently a chemical reagent is used to strip contamination off the soil. The cost benefit of this technology in terms of capital costs for the plant and materials, operational costs and waste disposal costs can also be assessed. The permeable reactive barrier (PRB) model can represent either a continuous wall or a funnel and gate system. The model simulates the transport of contaminants through the reactive material contained in the PRB. The outputs from the model include concentration of contaminants in the groundwater flow downstream of the PRB, mass of contaminants retained by the PRB, total mass and volume of waste and the various costs associated with the PRB remediation technology. The in-situ stabilisation (ISS) model has the capability to represent remediation by the addition of reagents that immobilise contaminated soil. The model simulates the release of contaminants from the treated soil over time. Performance is evaluated by comparison of the mass of contaminants retained and released to the area outside the treatment zone. Other outputs include amount of spoil generated (to be treated as waste) and the costs associated with the application of the ISS technology. These models are aimed to help users select a technology or technologies that are potentially suitable for a particular site. It is anticipated that they will prompt the user to undertake more detailed assessments to tailor the selected technology to their site specific circumstances and contaminated land conditions. (author)

  15. Enhancement of in situ microbial remediation of aquifers

    DOE Patents [OSTI]

    Fredrickson, James K. (Kennewick, WA); Brockman, Fred J. (Kennewick, WA); Streile, Gary P. (both or Richland, WA); Cary, John W. (both or Richland, WA); McBride, John F. (Carrboro, NC)

    1993-01-01T23:59:59.000Z

    Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification.

  16. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The Uranium Mill Tallings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1 (Chapter 3, paragraph 2). The UMTRA EPIP covers the time period of November 9, 1992, through November 8, 1993. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  17. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  18. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

  19. DVZ_Remediation_Technology_Tables_Info_Exchange.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplemental TechnologySummary of DSO 216 -Remediation

  20. 100-D/H Remedial Investigation/ Feasibility Study /Proposed Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY9 OFEnergyOctober Remedial