Sample records for remedial project managers

  1. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  2. UMTRA (Uranium Mill Tailings Remedial Action) Project site management manual

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs.

  3. EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

  4. Superfund state-lead remedial project-management handbook. Final report

    SciTech Connect (OSTI)

    Winter, B.

    1986-12-01T23:59:59.000Z

    The handbook defines the roles and responsibilities of the Remedial Project Officer (RPM) with regard to State-lead remedial projects at uncontrolled hazardous-waste sites. It also discusses project-management techniques and the resources available to the RPM for accomplishing his mission.

  5. Superfund federal-lead remedial project-management handbook. Final report

    SciTech Connect (OSTI)

    Hooper, S.

    1986-12-01T23:59:59.000Z

    The handbook defines the roles and responsibilities of the Remedial Project Officer (RPM) with regard to Federal-lead remedial projects at uncontrolled hazardous-waste sites. It also discusses project management techniques and the resources available to the RPM for accomplishing his mission.

  6. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  7. Approved CAMU equals faster, better, cheaper remediation at the Fernald Environmental Management Project

    SciTech Connect (OSTI)

    Dupuis-Nouille, E.M. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States)] [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Goidell, L.C.; Strimbu, M.J. [Jacobs Engineering Co., Cincinnati, OH (United States)] [Jacobs Engineering Co., Cincinnati, OH (United States); Nickel, K.A. [US Dept. of Energy-Fernald, CIncinnati, OH (United States)] [US Dept. of Energy-Fernald, CIncinnati, OH (United States)

    1996-03-01T23:59:59.000Z

    A 1,050 acre Corrective Action Management Unit (CAMU) was approved for the Fernald Protection Agency Environmental Management Project (FEMP) by the US Environmental Protection Agency (USEPA) to manage environmental media remediation waste in the Operable Unit 5 Record of Decision, 1995. Debris is also proposed for management as remediation waste under the CAMU Rule in the Operable Unit 3 Remedial Investigation/Feasibility Study (RI/FS) Report, as of December 1995. Application of the CAMU Rule at the FEMP will allow consolidation of low-level mixed waste and hazardous waste that presents minimal threat from these two operable units in an on-property engineered disposal facility without triggering land disposal restrictions (LDRs). The waste acceptance criteria for the on property disposal facility are based on a combination of site-specific risk-based concentration standards, as opposed to non-site-specific requirements imposed by regulatory classifications.

  8. Uranium mill tailings remedial action project real estate management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This plan summarizes the real estate requirements of the US Department of Energy`s (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence.

  9. Management and overview Quality Assurance Program Plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office (DOE/ UMTRA-PO) is the US Department of Energy (DOE) Albuquerque Operations Office (AL) organization charged with the responsibility of managing and coordinating the activities of the various participating organizations and support contractors working on the UMTRA Project. This Quality Assurance Program Plan (QAPP) describes how the DOE/UMTRA-PO, as assisted by the Technical Assistance Contractor (TAC), performs the quality assurance (QA) aspects of managing and coordinating UMTRA Project activities. This QAPP was developed to comply with DOE Order 5700.6A, August, 1981, and AL Order 5700.6B, April, 1984, which contain the criteria applicable to Project QA activities.

  10. Groundwater protection management program plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1.

  11. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  12. Saxton soil remediation project

    SciTech Connect (OSTI)

    Holmes, R.D. [GPU Nuclear Corporation, Middletown, PA (United States)

    1995-12-31T23:59:59.000Z

    The Saxton Nuclear Experimental Facility (SNEF) consists of a 23-MW(thermal) pressurized light water thermal reactor located in south central Pennsylvania. The Saxton Nuclear Experimental Corporation (SNEC), a wholly owned subsidiary of the General Public Utilities (GPU) Corporation, is the licensee for the SNEF. Maintenance and decommissioning activities at the site are conducted by GPU Nuclear, also a GPU subsidiary and operator of the Three Mile Island and Oyster Creek nuclear facilities. The remediation and radioactive waste management of contaminated soils is described.

  13. The CAMU Rule: A tool for implementing a protective, cost-effective remedy at the Fernald Environmental Management Project

    SciTech Connect (OSTI)

    Dupuis-Nouille, E.M. [Fernald Environmental Management Project, Cincinnati, OH (United States); Goidell, L.C.; Strimbu, M.J. [Jacobs Engineering Group of Ohio, Inc., Cincinnati, OH (United States)

    1995-10-01T23:59:59.000Z

    The Fernald Environmental Management Project (FEMP) is a former uranium processing facility currently under remediation pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act as amended (CERCLA). Contamination at the FEMP consists of low-level radioactivity, hazardous substances, hazardous wastes and/or mixed wastes. Regulations promulgated under the Resource Conservation and Recovery Act as amended (RCRA) are evaluated as applicable or relevant and appropriate requirements (ARARs) for remediation of the FEMP. Historically, joint CERCLA-RCRA guidance dictated that hazardous waste could not be treated, or moved out of the designated area of contiguous contamination (AOC), without triggering land disposal restrictions (LDRs) or minimum technology requirements (MTRs). To avoid invoking these stringent requirements, in situ capping was chosen as the lower cost remedy at many sites, although on-site disposal and/or treatment of hazardous wastes would have been more protective. The Corrective Action Management Units (CAMUs) and Temporary Units (TUs) Final Rule [58 FR 8658, Vol. 58, No. 29, hereinafter the {open_quotes}CAMU Rule{close_quotes}], promulgated on February 16, 1993, provides facilities regulated under RCRA corrective action authority with greater flexibility to move, treat, and dispose of wastes on site without triggering LDRs or MTRs, thereby encouraging application of innovative technologies and more protective remedies. The waste acceptance criteria for the on-site disposal facility is based on site-specific considerations including the mobility of the contaminants through the underlying site geology and the protectiveness of the engineered liners. Application of the {open_quotes}CAMU Rule{close_quotes} allows for disposition in the on-site facility based on these technical considerations rather than on regulatory classifications.

  14. Enforcement Project Management Handbook. Directive

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The handbook has been prepared as a basic reference and training manual to assist RPMs (Remedial Project Managers) and OSCs (On-Scene Coordinators) in planning, negotiating, and managing various enforcement actions.

  15. Uranium Mill Tailings Remedial Action Project Environmental Line Management Audit Action Plan. Final report. Audit, October 26, 1992--November 6, 1992

    SciTech Connect (OSTI)

    NONE

    1993-07-01T23:59:59.000Z

    This Action Plan contains responses, planned actions, and estimated costs for addressing the findings discovered in the Environmental Management Audit conducted for the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRA), October 26 through November 6, 1992. This document should be read in conjunction with the Audit Report to ensure the findings addressed in this document are fully understood. The scope of the UMTRA Environmental Management Audit was comprehensive and encompassed all areas of environmental management except environmental programs pertaining to the National Environmental Policy Act (NEPA) compliance. The Audit Report listed 18 findings: 11 were identified as compliance findings, and the remaining 7 were best management practice findings. Root cause analysis was performed on all the findings. The results of the analysis as well as planned corrective actions are summarized in Section 5.0. All planned actions were prioritized using the Tiger Team Assessment Corrective Action Plan system. Based on assigned priorities, all planned actions were costed by fiscal year. This Action Plan contains a description of the organizational and management structures to be used to implement the Action Plan, a brief discussion of root cause analysis and funding, followed by the responses and planned actions for each finding. A member of the UMTRA Project Office (PO) has been assigned responsibility for tracking the progress on each of the findings. The UMTRA PO staff wrote and/or approved all of the corrective actions recorded in this Action Plan.

  16. Project Management Project Managment

    E-Print Network [OSTI]

    Stephenson, Ben

    ­ Inspired by agile methods #12;Background · Large-scale software development & IT projects, plagued relations #12;One Agile Approach to Scheduling · The creative nature of game development resist heavy up Problems ­incompatible platforms, 3rd party etc. #12;Is Games Development Similar? · Yes & No

  17. Project Manager

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a project manager in the Fuel Cell Technologies Office in the DOE-EERE Office of Transportation responsible for a wide variety of highly...

  18. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The Uranium Mill Tallings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1 (Chapter 3, paragraph 2). The UMTRA EPIP covers the time period of November 9, 1992, through November 8, 1993. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  19. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  20. UMTRA -- The US Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Lightner, R. [Dept. of Energy, Washington, DC (United States); Cormier, C. [Department of Energy, Albuquerque, NM (United States); Bierley, D. [Roy F. Weston, Inc., Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    In the late 1970s, the United States (US) established the first comprehensive regulatory structure for the management, disposal, and long-term care of wastes produced from its domestic uranium processing industry. This regulatory framework was established through the passage of the Uranium Mill Tailings Radiation Control Act of 1978, often referred to as UMTRCA. This legislation created the Uranium Mill Tailings Remedial Action (UMTRA) Project and assigned the US Department of Energy (DOE) the lead in conducting the required remedial action at 24 designated inactive uranium ore processing sites. With the majority of these 22 sites complete, the DOE`s UMTRA Project has established a distinguished reputation for safely and effectively remediating these low-level waste sites in a complex regulatory and socioeconomic environment. This paper describes the past accomplishments and current status of the UMTRA Project and discusses the DOE`s plans for addressing ground water contamination associated with these sites and its commitment to continuing the long-term care and management of these disposal cells.

  1. Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.

  2. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  3. THE POSITIVE IMPACTS OF AMERICAN REINVESTMENT AND RECOVERY ACT (ARRA) FUNDING TO THE WASTE MANAGEMENT PROGRAM ON HANFORD'S PLATEAU REMEDIATION PROJECT

    SciTech Connect (OSTI)

    BLACKFORD LT

    2010-01-19T23:59:59.000Z

    In April 2009, the Department of Energy (DOE) Richland Operations Office (RL) was allocated $1.6 billion (B) in ARRA funding to be applied to cleanup projects at the Hanford Site. DOE-RL selected projects to receive ARRA funding based on 3-criteria: creating/saving jobs, reducing the footprint of the Hanford Site, and reducing life-cycle costs for cleanup. They further selected projects that were currently covered under regulatory documents and existing prime contracts, which allowed work to proceed quickly. CH2M HILL Plateau Remediation Company (CHPRC) is a prime contractor to the DOE focused on the environmental cleanup of the DOE Hanford Site Central Plateau. CHPRC was slated to receive $1.36B in ARRA funding. As of January, 2010, CHPRC has awarded over $200 million (M) in subcontracts (64% to small businesses), created more that 1,100 jobs, and touched more than 2,300 lives - all in support of long-term objectives for remediation of the Central Plateau, on or ahead of schedule. ARRA funding is being used to accelerate and augment cleanup activities already underway under the baseline Plateau Remediation Contract (PRC). This paper details challenges and accomplishments using ARRA funding to meet DOE-RL objectives of creating/saving jobs, expediting cleanup, and reducing lifecycle costs for cleanup during the first months of implementation.

  4. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Vollmer, A.T.

    1993-10-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

  5. Contract/Project Management

    Energy Savers [EERE]

    on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre-...

  6. Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

  7. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    SciTech Connect (OSTI)

    Post, Thomas C. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States)] [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); Strom, Dean [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States)] [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States); Beulow, Laura [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)] [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

  8. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  9. Contract/Project Management

    Office of Environmental Management (EM)

    Post-CAP This is based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and...

  10. Contract/Project Management

    Energy Savers [EERE]

    Qtr FY09 completions. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...

  11. Contract/Project Management

    Energy Savers [EERE]

    in the 2 nd Qtr FY09. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...

  12. Contract/Project Management

    Energy Savers [EERE]

    76% This is a 3-year rolling average Data includes FY06 to FY08. (3748) 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...

  13. Formerly Utilized MED/AEC Sites Remedial Action Program. Project management plan for the decontamination of Jones Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    SciTech Connect (OSTI)

    Flynn, K.F.; Smith, W.H.; Wynveen, R.A.

    1984-01-01T23:59:59.000Z

    The Department of Energy (DOE) has in place a plan for the decontamination and decommissioning of contaminated sites that had been formerly utilized by the Manhattan Engineering District (MED) and/or the Atomic Energy Commission. This plan is referred to as the Formerly Utilized Sites Remedial Action Program (FUSRAP). Among these sites are Jones Laboratory, Ryerson Physical Laboratory and Eckhart Hall of The University of Chicago at Chicago, Illinois. This document represents the Project Management Plan for the decontamination of these facilities. 13 references, 3 figures, 1 table.

  14. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  15. Project Management Practices

    Energy Savers [EERE]

    on the DOE Project Management web page. 1.2 INTENDED USE Federal Project Directors, Contracting Officers, Contracting Officer's Technical Representatives, Integrated Project Team...

  16. Adaptive management: a paradigm for remediation of public facilities

    SciTech Connect (OSTI)

    Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

    2009-01-01T23:59:59.000Z

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.

  17. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect (OSTI)

    KRONVALL CM

    2011-01-14T23:59:59.000Z

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  18. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05T23:59:59.000Z

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  19. Project Risk Management:.

    E-Print Network [OSTI]

    Koelmeyer, Chris

    2013-01-01T23:59:59.000Z

    ?? The recent increase in international projects has resulted in higher risk along with difficulties in control and coordination. Effective project management can therefore be (more)

  20. Project Management Plan Resident Management System (RMS)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    1 Project Management Plan Resident Management System (RMS) And Quality Control System (QCS Resident Management System.........................................................................................................3 Project Management Plan - Purpose

  1. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03T23:59:59.000Z

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

  2. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03T23:59:59.000Z

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1, dated 1-16-2013, cancels DOE O 415.1.

  3. IT Project Manager

    Broader source: Energy.gov [DOE]

    This position is located in the IT Project Management Office (JP). A successful candidate in this position will serve as an IT Program Manager and technical expert responsible for directly managing...

  4. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY

    E-Print Network [OSTI]

    COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 · The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation 400 cubic yards of the dredged material had been buried in the "Clay Pits" area south of the Colorado

  5. Integrated Project Management System description

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Integrated Program Management System (IPMS) Description is a ``working`` document that describes the work processes of the Uranium Mill Tailings Remedial Action Project Office (UMTRA) and IPMS Group. This document has undergone many revisions since the UMTRA Project began; this revision not only updates the work processes but more clearly explains the relationships between the Project Office, contractors, and other participants. The work process flow style has been revised to better describe Project work and the relationships of participants. For each work process, more background and guidance on ``why`` and ``what is expected`` is given. For example, a description of activity data sheets has been added in the work organization and the Project performance and reporting processes, as well as additional detail about the federal budget process and funding management and improved flow charts and explanations of cost and schedule management. A chapter has been added describing the Cost Reduction/Productivity Improvement Program. The Change Control Board (CCB) procedures (Appendix A) have been updated. Project critical issues meeting (PCIM) procedures have been added as Appendix B. Budget risk assessment meeting procedures have been added as Appendix C. These appendices are written to act as stand-alone documentation for each process. As the procedures are improved and updated, the documentation can be updated separately.

  6. Tank SY-102 remediation project summary report: ASPEN modeling

    SciTech Connect (OSTI)

    Punjak, W.A.; Schreiber, S.B.; Yarbro, S.L.

    1995-05-01T23:59:59.000Z

    The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. As a part of this program, personnel at Los Alamos National Laboratory (LANL) have developed and demonstrated a flow sheet to remediate tank SY-102, which is located in the 200 West Area and contains high-level radioactive waste. In the conceptual design report issued earlier, an ASPEN plus{trademark} computer model of the flow sheet was presented. This report documents improvements in the flow sheet model after additional thermodynamic data for the actinide species were incorporated.

  7. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    SciTech Connect (OSTI)

    Not Available

    1988-04-01T23:59:59.000Z

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document.

  8. Voluntary Protection Program Onsite Review, Soil and Groundwater Remediation Project- March 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Soil and Groundwater Remediation Project is performing at a level deserving DOE-VPP recognition.

  9. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC).

  10. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90%...

  11. Project Overview: Successful Field-Scale in SITU Thermal NAPL Remediation

    SciTech Connect (OSTI)

    Butherus, Michael [S.M. Stoller Corporation; Ingle, David S. [S.M. Stoller Corporation; Juhlin, Randall [S.M. Stoller Corporation; Daniel, Joseph [S.M. Stoller Corporation; none,

    2004-10-24T23:59:59.000Z

    The U.S. Department of Energy (DOE) successfully completed a field-scale remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at the Northeast Site on the Young-Rainey Science, Technology, and Research (STAR) Center, Largo, Florida. The Young-Rainey STAR Center is a former DOE facility that was previously known as the Pinellas Plant and the Pinellas STAR Center. The remediation project encompassed an area of 10,000 ft2 and depths extending to 35 ft below ground surface. Prior to the remediation, DOE evaluated technologies that had the potential to remove NAPLs from the subsurface at the site. Because of site conditions (clay lenses and an underlying clay layer that were thought to be contaminated), steam injection and electrical heating were considered to be the only technologies that had the potential to remove these NAPLs. In July 2001, DOEs contractor awarded a subcontract for removal of NAPLs from a portion of the Northeast Site. The technologies used for remediation were a combination of steam-enhanced extraction and Electro-Thermal Dynamic Stripping Process, an electrical resistive heating technology. Construction of the remediation system was completed in September 2002. Remedial operations began immediately after construction, and active heating ended in February 2003. After operations were completed, confirmatory sampling was conducted during a 6-month period to verify the level of cleanup achieved. Additional confirmatory sampling was conducted 18 months after operations ended. Analytical results of the confirmatory sampling showed that NAPL concentrations were reduced significantly below the required cleanup goals and, in most cases, below the regulatory maximum contaminant levels. Lessons learned relative to the design, construction, operation, confirmatory sampling approach, and subcontracting could benefit managers of similar remediation projects.

  12. Enforcement Project Management Handbook. Directive (Final)

    SciTech Connect (OSTI)

    Not Available

    1989-07-01T23:59:59.000Z

    The publication is a basic reference and training manual to assist EPA Superfund field personnel (Remedial Project Managers and On Scene Coordinators) in planning, negotiating, and managing potentially responsible party (PRP) searches and PRP-lead actions at Superfund sites. It provides an overview of each phase of the Superfund enforcement process and discusses specific roles and responsibilities of the RPM/OSC in the process.

  13. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

  14. WSSRAP chemical plant geotechnical investigations for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    This document has been prepared for the United states Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) by the Project Management Contractor (PMC), which consists of MK-Ferguson Company (MKF) and Morrison Knudsen Corporation Environmental Services Group (MKES) with Jacobs Engineering Group (JEG) as MKF's predesignated subcontractor. This report presents the results of site geotechnical investigations conducted by the PMC in the vicinity of the Weldon Spring chemical plant and raffinate pits (WSCP/RP) and in potential on-site and off-site clayey material borrow sources. The WSCP/RP is the proposed disposal cell (DC) site. 39 refs., 24 figs., 12 tabs.

  15. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07T23:59:59.000Z

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  16. Tank waste remediation system characterization project quality policies

    SciTech Connect (OSTI)

    Board, D.C.

    1997-09-24T23:59:59.000Z

    This quality plan describes the system used by Characterization Project management to achieve quality. This plan is comprised of eleven quality policies which, when taken together, form a management system deployed to achieve quality. This quality management system is based on the customer`s quality requirements known as the `RULE`, 10 CFR 830.120, Quality Assurance.

  17. Tank waste remediation system characterization project quality policies

    SciTech Connect (OSTI)

    Trible, T.C., Westinghouse Hanford

    1996-07-31T23:59:59.000Z

    This quality plan describes the system used by Characterization Project management to achieve quality. This plan is comprised on eleven quality policies which, when taken together, form a management system deployed to achieve quality. This quality management system is based on the customer`s quality requirements known as the `RULE`, 10 CFR 830.120, Quality Assurance.

  18. Uranium Mill Tailings Remedial Action (UMTRA) Surface Project: Project plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-08-11T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) [Public Law (PL) 95-604, 42 United States Code (USC) 7901], hereinafter referred to as the ``Act,`` authorizes the US Department of Energy (DOE) to stabilize and control surface tailings and ground water contamination. To fulfill this mission, the DOE has established two projects under the Uranium Mill Tailings Remedial Action (UMTRA) Project Office. The Ground Water Project was established in April 1991 as a major project and a separate project plan will be prepared for that portion of the mission. This project plan covers the UMTRA Surface Project, a major system acquisition (MSA).

  19. Savannah River Remediation (SRR) Expanded Staff Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River Remediation Delivering the Mission Dave Olson President and Project Manager January 27, 2012 SRS Executive Management Community Discussion 2 * Liquid Waste Funding...

  20. Uranium Mill Tailings Remedial Action Project (UMTRAP) Public Participation Plan

    SciTech Connect (OSTI)

    NONE

    1981-05-01T23:59:59.000Z

    The purpose of this Public Participation Plan is to explain the Department of Energy`s plan for involving the public in the decision-making process related to the Uranium Mill Tailings Remedial Action (UMTRA) Project. This project was authorized by Congress in the Uranium Mill Tailings Radiation Control Act of 1978. The Act provides for a cooperative effort with affected states and Indian tribes for the eventual cleanup of abandoned or inactive uranium mill tailings sites, which are located in nine western states and in Pennsylvania. Section 111 of the Act states, ``in carrying out the provisions of this title, including the designation of processing sites, establishing priorities for such sites, the selection of remedial actions and the execution of cooperative agreements, the Secretary (of Energy), the Administrator (of the Environmental Protection Agency), and the (Nuclear Regulatory) Commission shall encourage public participation and, where appropriate, the Secretary shall hold public hearings relative to such matters in the States where processing sites and disposal sites are located.`` The objective of this document is to show when, where, and how the public will be involved in this project.

  1. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

  2. Tank SY-102 remediation project: Flowsheet and conceptual design report

    SciTech Connect (OSTI)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Dunn, S.L.; Jarvinen, G.D.; Marsh, S.F.; Pope, N.G.; Agnew, S.; Birnbaum, E.R.; Thomas, K.W.; Ortic, E.A.

    1994-01-01T23:59:59.000Z

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. A major program in TWRS is pretreatment which was established to process the waste prior to disposal. Pretreatment is needed to resolve tank safety issues and to separate wastes into high-level and low-level fractions for subsequent immobilization and disposal. There is a fixed inventory of actinides and fission products in the tank which must be prepared for disposal. By segregating the actinides and fission products from the bulk of the waste, the tank`s contents can be effectively managed. Due to the high public visibility and environmental sensitivity of this problem, real progress and demonstrated efforts toward addressing it must begin as soon as possible. As a part of this program, personnel at the Los Alamos National Laboratory (LANL) have developed and demonstrated a flowsheet to remediate tank SY-102 which is located in the 200 West Area and contains high-level radioactive waste. This report documents the results of the flowsheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. The tank waste was characterized using both a tank history approach and an exhaustive evaluation of the available core sample analyses. This report also presents a conceptual design complete with a working material flow model, a major equipment list, and cost estimates.

  3. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07T23:59:59.000Z

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  4. Environmental restoration and remediation technical data management plan

    SciTech Connect (OSTI)

    Key, K.T.; Fox, R.D.

    1994-02-01T23:59:59.000Z

    The tasks performed in the Remedial Investigation/Feasibility Study (RI/FS) work plan for each Hanford Site operable unit must meet the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et. al 1992). An extensive amount of data will be generated in the evaluation and remediation of hazardous waste sites at the Site. The data must be of sufficient quality, as they will be used to evaluate the need, select the method(s), and support the full remediation of the waste sites as stipulated in the Tri-Party Agreement. In particular, a data management plan (DMP) is to be included in an RI/FS work plan for managing the technical data obtained during the characterization of an operable unit, as well as other data related to the study of the operable unit. Resource Conservation and Recovery Act of 1976 (RCRA) sites are involved in the operable unit. Thus, the data management activities for the operable unit should be applied consistently to RCRA sites in the operable unit as well. This DMP provides common direction for managing-the environmental technical data of all defined operable units at the Hanford Site during the RI/FS activities. Details specific to an operable unit will be included in the actual work plan of that operable unit.

  5. Project Management Plans | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Management Plans Project Management Plans The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to...

  6. Project management is not an accidental profession .

    E-Print Network [OSTI]

    Thobejane, Magarule Hendrick

    2008-01-01T23:59:59.000Z

    ??This study investigates project management as a professional discipline and project manager as a professional person. Projects and the role of the project manager in (more)

  7. Mr. Wm. Turpin Ballard Remedial Project Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A) parties at the November 17, 2011, FFA meeting that SWMU 12 be classified as no further action. If you have any questions or require additional information, please contact Lisa...

  8. Environmental Management (EM) Cleanup Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-24T23:59:59.000Z

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and provides guidance on environmental management cleanup projects. Canceled by DOE N 251.105.

  9. Learning Management System Transition Project

    E-Print Network [OSTI]

    Learning Management System Transition Project Kickoff Jim Snell Director Instructional Technology Services #12;History · Texas A&M started using the Campus Edition WebCT learning management system (LMS Process March 2012 · Project manager hired March 2012 · ITS project team assigned April 2012 · Contract

  10. Project Management Guide | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Project Management Guide Project Management Guide The purpose of this document is to present an overview of project management processes that can be consistently and repeatably...

  11. Contract/Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarter Overall Contract and Project Management

  12. Miamisburg Environmental Management Project Archived Soil & Groundwate...

    Office of Environmental Management (EM)

    Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports...

  13. Fernald Environmental Management Project Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald...

  14. UMTRA Project Office Records Management Plan

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office maintains two distinct records handling areas. One of the areas is maintained by a Technical Assistance Contractor (TAC), and is referred to as the UMTRA Project Document Control Center (UPDCC). The UPDCC manages all UMTRA records except those dealing with contracts, personnel, budgeting, finance, and any other documents which are of a purely administrative nature. The second area, the UMTRA Project Administrative Files Collection (UPAFC), contains all those records listed above that are not managed by the UPDCC. This Records Management Plan (RMP) for the UPAFC will be the framework for identifying the elements and activities that relate to the management and operational aspects involved in the handling of UPAFC. Guidelines for the program will be obtained from US Department of Energy (DOE) Orders. DOE Orders implement the guidelines issued by the National Archives and Records Administration (NARA), the final authority for records management. The RMP will address the life cycle of records, including their creation, maintenance, use, and disposition.

  15. Radiological Survey Results for Areas A1 North, A5A, A6, and B2 at the Molycorp Washington Remediation Project, Washington, Pennsylvania

    SciTech Connect (OSTI)

    W.C. Adams

    2007-03-13T23:59:59.000Z

    Perform radiological surveys of the Molycorp Washington Remediation Project (MWRP) facility in Washington, Pennsylvania

  16. Risk Management In Major Projects

    E-Print Network [OSTI]

    Baker, Scott William

    The integration of risk management in major projects within the construction and oil and gas industries has never been more significant especially as these projects are becoming larger and more complex. The increased ...

  17. Southern Region Watershed Management Project

    E-Print Network [OSTI]

    Coordinators and the organization, management and activities of the Southern Region Water Quality Planning1 Southern Region Watershed Management Project September 15, 2000 to September 14, 2005 Terminal responding to water quality and conservation issues with educational assistance, technology development

  18. Public participation in UMTRA Project program management

    SciTech Connect (OSTI)

    Majors, M.J.; Ulland, L.M. [Weston (Roy F.), Inc., Albuquerque, NM (United States)

    1993-12-31T23:59:59.000Z

    Innovative techniques for overcoming barriers to public participation on the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project have led to improved communications with stakeholders at project sites and improved communications within the project. On the UMTRA Project, it`s been shown that an effective public participation program is an essential element to successful project implementation.

  19. Calculation of the number of cancer deaths prevented by the Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Miller, M.L.; Pomatto, C.B. (Roy F. Weston, Inc., Albuquerque, NM (United States)); Cornish, R.E. (Dept. of Energy, Albuquerque, NM (United States). Albuquerque Operations Office)

    1999-05-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action Project has completed remedial action at 22 uranium mill tailings sites and about 5,000 properties (vicinity properties) where tailings were used in construction, at a total cost of $1.45 billion. This paper uses existing data from Environmental Impact Statements and Environmental Assessments, and vicinity property calculations, to determine the total number of cancer deaths averted by the Uranium Mill Tailings Remedial Action Project. The cost-effectiveness of remediating each site, the vicinity properties, and the entire project is calculated. The cost per cancer death averted was four orders of magnitude higher at the least cost-effective site than at the most cost-effective site.

  20. Tank waste remediation system privatization phase 1 infrastructure project W-519, project execution plan

    SciTech Connect (OSTI)

    Parazin, R.J.

    1998-08-28T23:59:59.000Z

    This Project Execution Plan (PEP) defines the overall strategy, objectives, and contractor management requirements for the execution phase of Project W-519 (98-D403), Privatization Phase 1 Infrastructure Support, whose mission is to effect the required Hanford site infrastructure physical changes to accommodate the Privatization Contractor facilities. This plan provides the project scope, project objectives and method of performing the work scope and achieving objectives. The plan establishes the work definitions, the cost goals, schedule constraints and roles and responsibilities for project execution. The plan also defines how the project will be controlled and documented.

  1. The Department of Energy, Office of Environmental Restoration and Waste Management: Project performance study

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Office of Environmental Restoration and Waste Management (EM) of the US Department of Energy commissioned Independent Project Analysis, Inc. (IPA) to perform this Project Performance Study to provide a quantitative analysis determining how well EM develops and executes environmental remediation and waste management projects. The approach consisted of collecting detailed data on a sample of 65 completed and ongoing EM projects conducted since 1984. These data were then compared with key project characteristics and outcomes from 233 environmental remediation projects (excluding EM) in IPA`s Environmental Remediation Database and 951 projects In IPA`s Capital Projects Database. The study establishes the standing of the EM system relative to other organizations, and suggests areas and opportunities for improvement.

  2. Technical Project Managers

    E-Print Network [OSTI]

    Joseph W. Tillman; Anne Robertson; Emma Lou George

    1991-01-01T23:59:59.000Z

    been subjected to the Agency's peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii FOREWORD Waste Minimization (WM) is a policy that was specifically mandated by the US. Congress in the 1984 Hazardous and Solid Wastes AmehdmentS to the Resource Conservation and Recovery Act (RCRA). This mandate, coupled with other RCRA provisions that have led to unprecedented increases in the costs of waste management, have heightened general interest in WM. A strong contributing factor has been a desire on the part of generators to reduce their environmental impairment liabilities under the provisions of the Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA, or "Superfund"). Because of these increasing costs and liability exposure, WM has become more and more attractive economically. More recently (in early 1989), as part of ks effort to reduce the amount of wastes generated, EPA made source reduction and recycling top priorities for environmental research, development, and implementation projects sponsored by the Agency. EPAs Risk Reduction Engineering Laboratory (RREL) and Office of

  3. Radiation Protection Considerations at USACE Formerly Utilized Sites Remedial Action Program (FUSRAP) Projects

    SciTech Connect (OSTI)

    Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

    2008-07-01T23:59:59.000Z

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) was initially authorized by Congress in 1974. FUSRAP was enacted to address residual radioactive contamination associated with numerous sites across the U.S. at which radioactive material (primarily Uranium ores and related milling products) had been processed in support of the nation's nuclear weapons program dating back to the Manhattan Project and the period immediately following World War II. In October 1997, Congress transferred the management of this program from the Department of Energy to the United States Corp of Engineers. Through this program, the Corps addresses the environmental remediation of certain sites once used by DOE's predecessor agencies, the Manhattan Engineer District and the Atomic Energy Commission. The waste at FUSRAP sites consists mainly of low levels of uranium, thorium and radium, along with some mixed wastes. Upon completion of remedial activities, these sites are transferred to DOE for long-term stewardship activities. This paper presents and contrasts the radiological conditions and recent monitoring results associated with five large ongoing FUSRAP projects including Maywood, N.J.; the Linde site near Buffalo, N.Y.; Colonie in Albany N.Y. and the St Louis, Mo. airport and downtown sites. The radiological characteristics of soil and debris at each site and respective regulatory clean up criteria is presented and contrasted. Some differences are discussed in the radiological characteristics of material at some sites that result in variations in radiation protection monitoring programs. Additionally, summary data for typical personnel radiation exposure monitoring results are presented. In summary: 1. The FUSRAP projects for which data and observations are reported in this paper are considered typical of the radiological nature of FUSRAP sites in general. 2. These sites are characterized by naturally occurring uranium and thorium series radionuclides in soil and debris, at concentrations typically < E4 pCi/ gram total activity. 3. Although external exposure rates are generally low resulting in few exposures above background, occasional 'hot spots' are observed in the 1- 10 mR / hr range or higher. However personnel and general area external exposure monitoring programs consistently demonstrate very low potential for external exposure at theses sites. 4. Potential for airborne exposure is controlled by wetting and misting techniques during excavation and movement of materials. Air sampling and bioassay programs confirm low potential for airborne exposure of workers at these sites. 5. Radiation protection and health physics monitoring programs as implemented at these sites ensure that exposures to personal are maintained ALARA. (authors)

  4. NNSA project receives DOE Secretary's Award for Project Management...

    National Nuclear Security Administration (NNSA)

    project receives DOE Secretary's Award for Project Management Improvement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  5. Project Hanford management contract quality improvement project management plan

    SciTech Connect (OSTI)

    ADAMS, D.E.

    1999-03-25T23:59:59.000Z

    On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process.

  6. Vegetative covers: Special study. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1988-11-01T23:59:59.000Z

    This report describes the findings of a special study on the use of vegetative covers to stabilize tailings piles for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The principal rationale for using plants would be to establish a dynamic system for controlling water balance. Specifically, vegetation would be used to intercept and transpire precipitation to the atmosphere, rather than allowing water to drain into the tailings and mobilize contaminants. This would facilitate compliance with groundwater standards proposed for the UMTRA Project by the Environmental Protection Agency. The goals of the study were to (1) evaluate the feasibility of using vegetative covers on UMTRA Project piles, (2) define the advantages and disadvantages of vegetative covers, and (3) develop general guidelines for their use when such use seems reasonable. The principal method for the study was to analyze and apply to the UMTRA Project the results of research programs on vegetative covers at other US Department of Energy (DOE) waste management facilities. The study also relied upon observations made of existing stabilized piles at UMTRA Project sites (Shiprock, New Mexico; Burrell, Pennsylvania; and Clive, Utah) where natural vegetation is growing on the rock-covered surfaces. Water balance and erosion models were also used to quantify the long-term performance of vegetative covers planned for the topslopes of stabilized piles at Grand Junction and Durango, Colorado, two UMTRA Project sites where the decision was made during the course of this special study to use vegetative covers. Elements in the design and construction of the vegetative covers at these two sites are discussed in the report, with explanations of the differing features that reflect differing environmental conditions.

  7. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  8. Project Management Plan Solution Stabilization

    SciTech Connect (OSTI)

    SATO, P.K.

    1999-08-31T23:59:59.000Z

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process.

  9. MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION

    E-Print Network [OSTI]

    MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION April 13, 2004 Prepared for. Wright Street Littleton, CO 80127 #12;MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI Site Remediation By: Date: Robert Krumberger Project Manager New Horizons Environmental Consultants, Inc. Approved By

  10. Confirmatory radiological survey of the Grand Junction Projects Office Remedial Action Project exterior portions, 1989-1995

    SciTech Connect (OSTI)

    Forbes, G.H.; Egidi, P.V.

    1997-04-01T23:59:59.000Z

    The purpose of this independent assessment was to provide the U.S. Department of Energy (DOE) with an independent verification (IV) that the soil at the Grand Junction Projects Office (GJPO) complies with applicable DOE guidelines. Oak Ridge National Laboratory/ Environmental Technology Section (ORNL/ETS) which is also located at the GJPO, was assigned by DOE as the Independent Verification Contractor (IVC). The assessment included reviews of the decontamination and decommissioning plan, annual environmental monitoring reports, data in the pre- and post-remedial action reports, reassessment reports and IV surveys. Procedures and field methods used during the remediation were reviewed, commented on, and amended as needed. The IV surveys included beta-gamma and gamma radiation scans, soil sampling and analyses. Based on the data presented in the post-remedial action report and the results of the IV surveys, the remediation of the outdoor portions of the GJPO has achieved the objectives. Residual deposits of uranium contamination may exist under asphalt because the original characterization was not designed to identify uranium and subsequent investigations were limited. The IVC recommends that this be addressed with the additional remediation. The IVC is working with the remedial action contractor (RAC) to assure that final documentation WM be sufficient for certification. The IVC will address additional remediation of buildings, associated utilities, and groundwater in separate reports. Therefore, this is considered a partial verification.

  11. Exploration and project management Sylvain Lenfle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to manage innovation. We argue that, in line with the work on project classification, a distinction should1 Exploration and project management Sylvain Lenfle University of Cergy-Pontoise Management of Project Management, Vol. 6, n°5, p. 469-478, July. Abstract Project management in academic studies tends

  12. Material Stabilization Project Management Plan

    SciTech Connect (OSTI)

    SPEER, D.R.

    1999-09-01T23:59:59.000Z

    This plan presents the overall objectives, description, justification and planning for the plutonium Finishing Plant (PFP) Materials Stabilization project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev. 0. This is the top-level definitive project management document that specifies the technical (work scope), schedule, and cost baselines to manager the execution of this project. It describes the organizational approach and roles/responsibilities to be implemented to execute the project. This plan is under configuration management and any deviations must be authorized by appropriate change control action. Materials stabilization is designated the responsibility to open and stabilize containers of plutonium metal, oxides, alloys, compounds, and sources. Each of these items is at least 30 weight percent plutonium/uranium. The output of this project will be containers of materials in a safe and stable form suitable for storage pending final packaging and/or transportation offsite. The corrosion products along with oxides and compounds will be stabilized via muffle furnaces to reduce the materials to high fired oxides.

  13. UMTRA Surface Project management action process document: Final. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites.

  14. U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation Center

    E-Print Network [OSTI]

    1 U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation Center Summary of the Materials Management Stakeholder Committee Teleconference Wednesday, July 29, 2009 meeting of the Materials Management Committee (March 31, 2009): Because it is not always clear whether

  15. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-03T23:59:59.000Z

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  16. SAMPLING AND ANALYSIS PLAN CSMRI SITE REMEDIATION

    E-Print Network [OSTI]

    Littleton, CO 80127 #12;CSMRI Site Remediation Quality Assurance Project Plan March 30, 2004 SAMPLING Environmental Consultants, Inc. Approved By: Date: Sally Cuffin Project Quality Assurance Manager New Horizons...................................................................................................................................3 2.5 Decision Rules

  17. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    NAVARRO, J.E.

    2001-03-07T23:59:59.000Z

    The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.

  18. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

  19. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    SciTech Connect (OSTI)

    Heiser,J.; Sullivan, T.

    2009-06-30T23:59:59.000Z

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the decontamination process(es). In the case of an entire building, the value may be obvious; it's costly to replace the structure. For a smaller item such as a vehicle or painting, the cost versus benefit of decontamination needs to be evaluated. This will be determined on a case by case basis and again is beyond the scope of this report, although some thoughts on decontamination of unique, personal and high value items are given. But, this is clearly an area that starting discussions and negotiations early on will greatly benefit both the economics and timeliness of the clean up. In addition, high value assets might benefit from pre-event protection such as protective coatings or HEPA filtered rooms to prevent contaminated outside air from entering the room (e.g., an art museum).

  20. TANK FARM REMEDIATION TECHNOLOGY DEVELOPMENT PROJECT AN EXERCISE IN TECHNICAL & REGULATORY COLLABORATION

    SciTech Connect (OSTI)

    JARAYSI, M.N.

    2007-01-08T23:59:59.000Z

    The Tank Farm Remediation Technology Development Project at the Hanford Site focuses on waste storage tanks, pipelines and associated ancillary equipment that are part of the C-200 single-shell tank (SST) farm system located in the C Tank Farm. The purpose of the project is to obtain information on the implementation of a variety of closure activities and to answer questions on technical, operational and regulatory issues associated with closure.

  1. Project Management Foundation 21 hours, $895

    E-Print Network [OSTI]

    Alabama in Huntsville, University of

    Project Management Foundation 21 hours, $895 The fundamental project management processes. In group exercises, participants gain an understanding of how the project management processes are used during each phase of a project to build a better, more effective project plan. Topics Include

  2. EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project

    Broader source: Energy.gov [DOE]

    This EISassesses the potential programmatic impacts of conducting the Ground Water Project, provides a method for determining the site-specific ground water compliance strategies, and provides...

  3. Project Management Practices

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 ProgramID Project Name

  4. Contract/Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarter Overall Contract and Project

  5. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    SciTech Connect (OSTI)

    Gelles, C. M.; Sheppard, F. R.

    2002-02-26T23:59:59.000Z

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

  6. Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report

    SciTech Connect (OSTI)

    Morris, R.

    1996-05-01T23:59:59.000Z

    Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.

  7. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  8. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan]. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  9. Contents of environmental impact statements prepared for the Uranium Mill Tailings Remedial Action Project. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This document presents two versions of the outline for the environmental impact statements (EISS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the statements; it lists only the titles of sections. The second is a guide to the contents of the statements which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements and the definitions of terms established by the Council on Environmental Quality as well as DOE Order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements. These requirements and definitions are implicity part of the outline. The outline presented in this document will guide the preparation of EISs Guidelines for preparation of environmental assessments for the UMTRA Project are available.

  10. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  11. Uranium Mill Tailings remedial action project waste minimization and pollution prevention awareness program plan

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The purpose of this plan is to establish a waste minimization and pollution prevention awareness (WM/PPA) program for the U.S. Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The program satisfies DOE requirements mandated by DOE Order 5400.1. This plan establishes planning objectives and strategies for conserving resources and reducing the quantity and toxicity of wastes and other environmental releases.

  12. Project Management | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergyProject ManagementProject

  13. Proceedings of the 1993 international conference on nuclear waste management and environmental remediation. Volume 2: High level radioactive waste and spent fuel management

    SciTech Connect (OSTI)

    Ahlstroem, P.E.; Chapman, C.C.; Kohout, R.; Marek, J. [eds.

    1993-12-31T23:59:59.000Z

    This conference was held in 1993 in Prague, Czech Republic to provide a forum for exchange of state-of-the-art information on radioactive waste management. Volume 2 contains 109 papers divided into the following sections: recent developments in environmental remediation technologies; decommissioning of nuclear power reactors; environmental restoration site characterization and monitoring; decontamination and decommissioning of other nuclear facilities; prediction of contaminant migration and related doses; treatment of wastes from decontamination and decommissioning operations; management of complex environmental cleanup projects; experiences in actual cleanup actions; decontamination and decommissioning demolition technologies; remediation of obsolete sites from uranium mining and milling; ecological impacts from radioactive environmental contamination; national environmental management regulations--issues and assessments; significant issues and strategies in environmental management; acceptance criteria for very low-level radioactive wastes; processes for public involvement in environmental activities and decisions; recent experiences in public participation activities; established and emerging environmental management organizations; and economic considerations in environmental management. Individual papers have been processed separately for inclusion in the appropriate data bases.

  14. Project Management vs. Systems Engineering Management: A Practitioners' View on

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Project Management vs. Systems Engineering Management: A Practitioners' View on IntegratingPROJECT MANAGEMENT VS. SYSTEMS ENGINEERING MANAGEMENT Received 3 August 2010; Revised 18 December 2010 (wileyonlinelibrary.com). DOI 10.1002/sys.20187 ABSTRACT While most Systems Engineering Management (SEM) applications

  15. Engineering Project Management Using The Engineering Cockpit

    E-Print Network [OSTI]

    Engineering Project Management Using The Engineering Cockpit A collaboration platform for project managers and engineers Thomas Moser, Richard Mordinyi, Dietmar Winkler and Stefan Biffl Christian Doppler Laboratory "Software Engineering Integration for Flexible Automation Systems" Vienna University of Technology

  16. Project Manager, TBD Job Description Questionnaire (JDQ)

    E-Print Network [OSTI]

    Barrash, Warren

    Project Manager, TBD Job Description Questionnaire (JDQ) Professional Staff Instructions What with a disability in regard to job application procedures, the hiring or discharge of employees, employee Below to Certify Approval or Disapproval: Approval Disapproval ( ) ( ) TBD, Project Manager

  17. CRAD, Management - Idaho Accelerated Retrieval Project Phase...

    Broader source: Energy.gov (indexed) [DOE]

    Management - Idaho Accelerated Retrieval Project Phase II CRAD, Management - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

  18. Document management guidelines for distributed project networks

    E-Print Network [OSTI]

    Hameri, A P; Himyr, Nils-Joar

    1999-01-01T23:59:59.000Z

    This paper provides the project engineer with guidelines or a checklist on tasks that must be considered, defined and documented before the project can successfully implement a document management system in geographically distributed project environment. Topics ranging from configuration management, approval process, document types, user administration and document naming are covered. The underlying cases of the paper are that of CERN (European Laboratory for Particle Physics) and its latest accelerator project, together with the Nordisk Industrifond -funded Connecting Distributed Competencies (NI#: 98082) project, with a focus on distributed shipbuilding processes. Keywords: distributed project management, product data management, networking, document management, virtual workspaces

  19. US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-21T23:59:59.000Z

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

  20. Office of Acquisition and Project Management ...

    Energy Savers [EERE]

    ; Office of Acquisition and Project Management Certifications Program Updated 102012 Course Provider Date Complete CON 216 LEGAL...

  1. Environmental management of water projects

    SciTech Connect (OSTI)

    Gangstad, E.O.; Stanley, R.A.

    1987-01-01T23:59:59.000Z

    This book is divided in three parts and contains the following: PART I: ENVIRONMENTAL ASSESSMENTS. Environmental conditions for water resource projects. Characteristics of some large scale reservoirs. Biological parameters of the TVA Eurasian watermilfoil management program. Ecological parameters influencing aquatic plant growth. Biological parameters influencing growth and reproduction of hydrilla. PART II: EVALUATION OF SELECTED AQUATIC HERBICIDES. Technical review of the factors affecting 2,4-D for aquatic use. Technical review of the factors affecting endothall for aquatic use. Technical review of factors affecting diquat for aquatic use. Technical review of the factors affecting use of dicamba. Technical review of the factors affecting aquatic use of dichlobenil. PART III: EVALUATION OF VEGETATION MANAGEMENT PROGRAMS. Strategies for aquatic vegetation management. (A) conversion of factors for U.S. and metric units. (B) Glossary of terms. Index.

  2. Update on Service Management project

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    GS and IT Service Management project status meeting -------------------------------------------------------------------------- Distribution: Sigurd Lettow, Frederic Hemmer, Thomas Pettersson, David Foster, Matti Tiirakari, GS&IT; Service Providers When and where: Thursday 2nd September at 10:00-11:30 in IFiltration Plant (222-R-001) Dear All, We would like to inform you about progress made on different topics like the Service Catalogue, the new Service Management Tool and the Service Desk. We would also like to present the plan for when we hope to "go live" and what this will mean for all of you running and providing services today. We will need your active support and help in the coming months to make this happen. GS&IT; Service Management Teams Reinoud Martens, Mats Moller

  3. Update on Service Management project

    SciTech Connect (OSTI)

    None

    2011-02-28T23:59:59.000Z

    GS and IT Service Management project status meeting -------------------------------------------------------------------------- Distribution: Sigurd Lettow, Frederic Hemmer, Thomas Pettersson, David Foster, Matti Tiirakari, GS&IT; Service Providers When and where: Thursday 2nd September at 10:00-11:30 in IFiltration Plant (222-R-001) Dear All, We would like to inform you about progress made on different topics like the Service Catalogue, the new Service Management Tool and the Service Desk. We would also like to present the plan for when we hope to "go live" and what this will mean for all of you running and providing services today. We will need your active support and help in the coming months to make this happen. GS&IT; Service Management Teams Reinoud Martens, Mats Moller

  4. Finance and supply management project execution plan

    SciTech Connect (OSTI)

    BENNION, S.I.

    1999-02-10T23:59:59.000Z

    As a subproject of the HANDI 2000 project, the Finance and Supply Management system is intended to serve FDH and Project Hanford major subcontractor with financial processes including general ledger, project costing, budgeting, and accounts payable, and supply management process including purchasing, inventory and contracts management. Currently these functions are performed with numerous legacy information systems and suboptimized processes.

  5. Managing projects utilizing self-managed teams and managerial toolkits

    E-Print Network [OSTI]

    Mathur, Praveen, S. M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Project Management is an essential function in most software companies today. With increasing complexity and inter connectivity between software projects, it is not surprising that managing such large scale development ...

  6. Project Management Business Process Project Delivery Processes Includes VE Budget

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Project Management Business Process Project Delivery Processes Includes VE Budget Schedule Activities that do/could feed into PMBP LEGEND VE Cost Avoidance Program Coverage Document Results (Before, could use the value methodology to facilitate after action review. The project manager is responsible

  7. Uranium Mill Tailings Remedial Action Project fiscal year 1997 annual report to stakeholders

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The fiscal year (FY) 1997 annual report is the 19th report on the status of the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. In 1978, Congress directed the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction or landscaping. Cleanup has been undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the groundwater project. This report addresses specifics about the UMTRA surface project.

  8. Fiscal year 1996 annual report to stakeholders, Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This is the Fiscal Year (FY) 1996 annual report on the status of the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. In 1978, Congress directed the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction of landscaping. Cleanup is being undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the ground water project. This report addresses specifics about the surface phase of the UMTRA Project.

  9. Policy and procedures for classification of Class III groundwater at UMTRA Project sites. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has recently proposed groundwater regulations for the US Department of Energy's )DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. These regulations allow the application of supplemental standards at UMTRA Project sites in specific situations. The designation of groundwater as Class III permits the application of supplemental standards. This document discusses a final UMTRA Project policy and procedures for identifying Class III groundwater, including identification of a review area, definition of water quality, quantification of aquifer yield, and identification of methods reasonably employed for public water supply systems. These items, either individually or collectively, need to be investigated in order to determine if groundwaters at UMTRA Project sites are Class III. This document provides a framework for the DOE to determine Class III groundwaters.

  10. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  11. Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project - status of project to date January 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This document describes the progress made by the Missouri Department of Natural Resources (MDNR) during the fourth year (1996) of the Agreement in Support (AIS) in its oversight role of the Weldon Springs Site Remedial Action Project (WSSRAP). The fourth year at the Weldon Springs Site shows sustained progress as the project moves through the final design and into the remedial action phases of the Chemical Plant Operable Unit. The remedial action phase includes the Foundations Removal work package, Chemical Solidification and Stabilization, and disposal cell.

  12. Project Management and Analysis Project Conception and Execution

    E-Print Network [OSTI]

    Sohoni, Milind

    by the World Bank at a cost of $ 600,000. The objectives of the project are: Analyze the supply and demandTD 608 Project Management and Analysis Part I Project Conception and Execution Milind Sohoni Discussion () January 29, 2008 1 / 3 #12;The K-East Ward Water Project Proceed to the web location: www

  13. Mobile water treatment plant special study. Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. To begin implementation of Phase 11 groundwater remediation, the US Department of Energy (DOE) requested that (1) the Technical Assistance Contractor (TAC) conduct a study to provide for the design of a mobile water treatment plant to treat groundwater extracted during site characterization studies at completed Phase I UMTRA sites, and (2) the results of the TAC investigations be documented in a special study report. This special study develops the design criteria for a water treatment plant that can be readily transported from one UMTRA site to another and operated as a complete treatment system. The 1991 study provides the basis for selecting a mobile water treatment system to meet the operating requirements recommended in this special study. The scope of work includes the following: Determining contaminants, flows, and loadings. Setting effluent quality criteria. Sizing water treatment unit(s). Evaluating non-monetary aspects of alternate treatment processes. Comparing costs of alternate treatment processes. Recommending the mobile water treatment plant design criteria.

  14. Selection of water treatment processes special study. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. The restoration of contaminated aquifers is to be undertaken in Phase II of the UMTRA Project. To begin implementation of Phase II, DOE requested that groundwater restoration methods and technologies be investigated by the Technical Assistance Contractor (TAC). and that the results of the TAC investigations be documented in special study reports. Many active and passive methods are available to clean up contaminated groundwater. Passive groundwater treatment includes natural flushing, geochemical barriers, and gradient manipulation by stream diversion or slurry walls. Active groundwater.cleanup techniques include gradient manipulation by well extraction or injection. in-situ biological or chemical reclamation, and extraction and treatment. Although some or all of the methods listed above may play a role in the groundwater cleanup phase of the UMTRA Project, the extraction and treatment (pump and treat) option is the only restoration alternative discussed in this report. Hence, all sections of this report relate either directly or indirectly to the technical discipline of process engineering.

  15. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  16. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  17. Incorporating Sustainability into Brownfield Remediation and Redevelopment in Mega-project: Experience and Lessons Learnt at the London Olympic Park

    E-Print Network [OSTI]

    Hou, Deyi; Al-Tabbaa, Abir; Hellings, Jan

    2014-01-01T23:59:59.000Z

    network established in 2007 in the UK) and CL:AIRE (Contaminated Land: Applications in Real Environments - a UK not-for-profit organisation founded in 1999), sustainable remediation is defined as remediation that eliminates and/or controls... D, CEng, FICE Professor at University of Cambridge Jan Hellings, MBA, PhD, DIC, MSc, CEng, FICE former Project Sponsor at Olympic Delivery Authority Keyword: Pollution, Sustainability, Land reclamation Page 2 of 16 ABSTRACT The 2012 London...

  18. CNS-ProjectManagement-Guidelines-200010.doc 1 / 3 CNS Project Management Procedures and Guidelines

    E-Print Network [OSTI]

    Shihadeh, Alan

    CNS-ProjectManagement-Guidelines-200010.doc 1 / 3 CNS Project Management Procedures and Guidelines (Rev. October 2000) Staffing and Project Management This section is intended to provide business an application. Following an analysis phase, which may be performed by CNS in collaboration with the project

  19. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  20. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    SciTech Connect (OSTI)

    Phillips, D.R.

    1994-07-01T23:59:59.000Z

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  1. Contents of environmental assessments prepared for the Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This document presents two versions of the outline for the environmental assessments (EAS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the assessments; it lists only the titles of sections. The second is a guide to the contents of the assessments which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements (40 CFR Part 1501) and the definitions of terms (40-' CFR Part 1508) established by the Council on Environmental Quality as well as DOE order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements (10 CFR Part 1022). These requirements and definitions are implicitly part of the outline. The outline presented in this document will guide the preparation of EAs. The UMTRA Project EAs will be used in determining whether the DOE should prepare an environmental impact statement or a finding of no significant impact for the actions at each of the sites. If no impact statement is necessary, the environmental assessment for that site will aid the DOE in complying with the National Environmental Policy Act before beginning remedial actions. If an impact statement is needed, the assessment will aid its preparation. These purposes, established by the Council on Environmental Quality in 40 CFR Part 1508.9(a), have guided the construction of the outline presented in this document. Remedial actions at each site will include the cleanup of properties in the vicinity of the tailings sites that have been contaminated by the tailings.

  2. Contents of environmental assessments prepared for the Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This document presents two versions of the outline for the environmental assessments (EAS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the assessments; it lists only the titles of sections. The second is a guide to the contents of the assessments which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements (40 CFR Part 1501) and the definitions of terms (40-` CFR Part 1508) established by the Council on Environmental Quality as well as DOE order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements (10 CFR Part 1022). These requirements and definitions are implicitly part of the outline. The outline presented in this document will guide the preparation of EAs. The UMTRA Project EAs will be used in determining whether the DOE should prepare an environmental impact statement or a finding of no significant impact for the actions at each of the sites. If no impact statement is necessary, the environmental assessment for that site will aid the DOE in complying with the National Environmental Policy Act before beginning remedial actions. If an impact statement is needed, the assessment will aid its preparation. These purposes, established by the Council on Environmental Quality in 40 CFR Part 1508.9(a), have guided the construction of the outline presented in this document. Remedial actions at each site will include the cleanup of properties in the vicinity of the tailings sites that have been contaminated by the tailings.

  3. Selling Energy Conservation Projects to Top Management

    E-Print Network [OSTI]

    Jonsson, K. A.

    1983-01-01T23:59:59.000Z

    A guide to presenting proposals on Energy Conservation Projects by plant engineers to their top level management, in order to get approval for Energy Conservation Projects. Through the author's past experience he ascertained that many Energy...

  4. CRAD, Emergency Management - Idaho Accelerated Retrieval Project...

    Broader source: Energy.gov (indexed) [DOE]

    Idaho Accelerated Retrieval Project Phase II CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

  5. Acquisition and Project Management Awards Presentations - Ingrid...

    Energy Savers [EERE]

    - Ingrid Kolb, Director, Office of Management Secretary's Achievement Award Seismic Life-Safety, Modernization & Replacement (Seismic Ph 2)Secretary's Award for Project...

  6. Contents of environmental impact statements prepared for the Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This document presents two versions of the outline for the environmental impact statements (EISS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the statements; it lists only the titles of sections. The second is a guide to the contents of the statements which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements and the definitions of terms established by the Council on Environmental Quality as well as DOE Order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements. These requirements and definitions are implicity part of the outline. The outline presented in this document will guide the preparation of EISs Guidelines for preparation of environmental assessments for the UMTRA Project are available.

  7. Determination of aerosol size distributions at uranium mill tailings remedial action project sites

    SciTech Connect (OSTI)

    Newton, G.J.; Reif, R.H. [CWM Federal Environmental Services, Inc., Albuquerque, NM (United States); Hoover, M.D.

    1994-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has an ongoing program, the Uranium Mill Tailings Remedial Action (UMTRA) Project, to stabilize piles of uranium mill tailings in order to reduce the potential radiological hazards to the public. Protection of workers and the general public against airborne radioactivity during remedial action is a top priority at the UMTRA Project. The primary occupational radionuclides of concern are {sup 230}Th, {sup 226}Ra, {sup 210}Pb, {sup 210}Po, and the short-lived decay products of {sup 222}Rn with {sup 230}Th causing the majority of the committed effective dose equivalent (CEDE) from inhaling uranium mill tailings. Prior to this study, a default particle size of 1.0 {mu}m activity median aerodynamic diameter (AMAD) was assumed for airborne radioactive tailings dust. Because of recent changes in DOE requirements, all DOE operations are now required to use the CEDE methodology, instead of the annual effective dose equivalent (AEDE) methodology, to evaluate internal radiation exposures. Under the transition from AEDE to CEDE, with a 1.0 {mu}m AMAD particle size, lower bioassay action levels would be required for the UMTRA Project. This translates into an expanded internal dosimetry program where significantly more bioassay monitoring would be required at the UMTRA Project sites. However, for situations where the particle size distribution is known to differ significantly from 1.0 {mu}m AMAD, the DOE allows for corrections to be made to both the estimated dose to workers and the derived air concentration (DAC) values. For particle sizes larger than 1.0 {mu}m AMAD, the calculated CEDE from inhaling tailings would be relatively lower.

  8. Reactivity of Peroxynitrite: Implications for Hanford Waste Management and Remediation

    SciTech Connect (OSTI)

    James K. Hurst

    2003-11-06T23:59:59.000Z

    The purpose of this grant has been to provide basic chemical research in support of a major project undertaken at Brookhaven National Laboratory (BNL) whose purpose was to provide better understanding of the complex chemical processes occurring an nuclear storage tanks on the Hanford reservation. More specifically, the BNL grant was directed at evaluating the extend of radiation-induced formation of peroxynitrite anion (ONOO) in the tanks and its possible use in was incorporated as a subcontract EMSP 73824, but was later changed to an independent grant to avoid unnecessary duplication of administrative support at both WSU and BNL.

  9. Managing Legacy Records for Formerly Utilized Sites Remedial Action Program

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost ProductionManagementSites | Department of

  10. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-20T23:59:59.000Z

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  11. Project Management and Analysis Project Conception and Execution

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 608 Project Management and Analysis Part I Project Conception and Execution Milind Sohoni of the paper? How does the author compare India and Pakistan? Do you agree with the cost-benefit analysis? What are your criticisms? Compare the CBA with our 6-goat system. Comment on the viability of the project

  12. Project management improves well control events

    SciTech Connect (OSTI)

    Oberlender, G.D. [Oklahoma State Univ., Stillwater, OK (United States); Abel, L.W. [Wild Well Control Inc., Spring, TX (United States)

    1995-07-10T23:59:59.000Z

    During a well control operation, the efficient use of personnel and equipment, through good project management techniques, contributes to increased safety and ensures a quality project. The key to a successful blowout control project is to use all resources in the most efficient manner. Excessive use of resources leads to unnecessary expenditures and delays in bringing the project under control. The Kuwait well control project, which involved more than 700 blowouts, was accomplished in a much shorter time (8 months) than first estimated (5 years). This improvement partly resulted from the application of sound project management techniques. These projects were prime examples of the need for a formal project management approach to handling wild well projects. There are many examples of projects that were successful in controlling wells but were economic disasters. Only through the effective application of project management can complex well control projects be completed in reasonable time frames at reasonable cost. The paper describes team management, project scope, organizational structures, scheduling, tracking models, critical path method, and decision trees.

  13. Final audit report of remedial action construction at the UMTRA Project Falls City, Texas, site

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This final audit report for the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site summarizes the radiological audits and the quality assurance (QA) in-process surveillances, audits, and final close-out inspection performed by the U.S. Department of Energy (DOE) and Technical Assistance Contractor (TAC). It also summarizes U.S. Nuclear Regulatory Commission (NRC) surveillances. One radiological audit and three radiological surveillances were performed at the Falls City site. These surveillances and audit, which resulted in 31 observations, focused primarily on processing site activities and were performed on the following dates: 3-6 August 1992, 29-30 October 1992, 22-26 March 1993, and 1-3 November 1993. All outstanding radiological issues were closed out at the completion of the construction activities. Six QA in-process surveillances, which resulted in 71 observations, were performed at the Falls City site on the following dates: 22-24 July 1992, 23-25 November 1992, 17-19 May 1993, 16-18 August 1993, 13-15 October 1993, and 2-4 February 1994. All outstanding issues were closed out with the February surveillance on 3 March 1994. The DOE/TAC remedial action close-out inspections of the Falls City site, which resulted in 56 observations, were conducted 9-10 June 1994 and 26 July 1994. The inspections were closed out on 26 January 1995. The NRC performed three on-site construction reviews (OSCR), resulting in seven observations of remedial action construction activities that occurred during site visits. The OSCRs were performed 9 December 1992, 12 May 1993, and 25 October 1993. Since all audit and surveillance observations and recommendations have been closed out, this final audit report segment of the site certification process is complete.

  14. Department of Energy Project Management System

    SciTech Connect (OSTI)

    Not Available

    1981-01-08T23:59:59.000Z

    This manual provides guidance to all appropriate personnel for implementation of DOE Project Management Policy. It sets forth the principles and requirements that govern the development, approval, and execution of DOE's outlay programs as embodied within the Project Management System (PMS). Its primary goal is to assure application of sound management principles providing a disciplined, systematic, and coordinated approach resulting in efficient planning, organization, coordination, budgeting, management, review, and control of DOE projects. The provisions of this manual are mandatory for the Department's Major Systems Acquisitions (MSA's) and Major Projects and will be used for other projects to the extent practicable. Department's project-management task is over 250 projects, with a total estimated cost in excess of $24 billion at completion. This diverse array of project activities requires a broad spectrum of scientific, engineering, and management skills to assure that they meet planned technical and other objectives and are accomplished on schedule, within cost and scope, and that they serve the purposes intended. In recognition of these requirements and the Department's ever-increasing magnitude of responsibilities, an interim Project Management System was established and has been in use for over a year. This manual constitutes an update of the system based on the experience gained and lessons learned during this initial period.

  15. Senior Project Manager/Project Management Scientist The Vaccine Research Center (VRC) has an opening for an innovative senior project manager

    E-Print Network [OSTI]

    Martin, Alex

    for an innovative senior project manager with a solid foundation in life sciences, classic management skills to science in a project management role. The VRC, an intramural component of the National Institute Project Manager/Project Management Scientist The Vaccine Research Center (VRC) has an opening

  16. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01T23:59:59.000Z

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  17. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    SciTech Connect (OSTI)

    G. L. Schwendiman

    2006-07-01T23:59:59.000Z

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

  18. Review and analysis of proposed EPA groundwater standards for the UMTRA Project. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-10-01T23:59:59.000Z

    The Title I groundwater standards for inactive uranium mill tailings sites, which were promulgated on January 5, 1983, by the US Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action (UMTRA) Project, were remanded to the EPA on September 3, 1985, by the US Tenth Circuit Court of Appeals. The Court instructed the EPA to compile general groundwater standards for all sites. On September 24, 1987, the EPA published proposed standards in response to the remand. This Summary Report includes an evaluation of the potential effects of the proposed EPA groundwater standards on the UMTRA Project as well as a discussion of the DOE's position on the proposed standards. This report is accompanied by a detailed Technical Report and Appendices which provide supporting information and analyses. This Summary Report results from a study undertaken to: determine the impact of the proposed standards on the UMTRA Project; and recommend provisions for the implementation of the final standards that will minimize adverse impact to the conduct of the UMTRA Project while ensuring protection of human health and the environment. Specifically, the following were considered: the flexibility of the proposed standards; interpretations of the proposed standards; the extent of aquifer restoration that may be required to implement the proposed standards at each site; the costs of aquifer restoration; and design changes necessary to meet the standards.

  19. Automated transportation management system (ATMS) software project management plan (SPMP)

    SciTech Connect (OSTI)

    Weidert, R.S., Westinghouse Hanford

    1996-05-20T23:59:59.000Z

    The Automated Transportation Management System (ATMS) Software Project Management plan (SPMP) is the lead planning document governing the life cycle of the ATMS and its integration into the Transportation Information Network (TIN). This SPMP defines the project tasks, deliverables, and high level schedules involved in developing the client/server ATMS software.

  20. U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

  1. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

  2. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect (OSTI)

    T. M. Blakley; W. D. Schofield

    2007-09-10T23:59:59.000Z

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  3. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites. Final report and users` guide

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

  4. Tucson Solar Village: Project management

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    The Tucson Solar Village is a Design/Build Project In Sustainable Community Development which responds to a broad spectrum of energy, environmental, and economic challenges. This project is designed for 820 acres of undeveloped State Trust Land within the Tucson city limits; residential population will be five to six thousand persons with internal employment provided for 1200. This is a 15 year project (for complete buildout and sales) with an estimated cost of $500 million. Details of the project are addressed with emphasis on the process and comments on its transferability.

  5. Project Management Plan Examples 1- 80

    Broader source: Energy.gov [DOE]

    The following material has been extracted from several project management plans. The order in which it is presented is arbitrary. Thedescriptions below should be used to navigate to the subject of...

  6. Preplanning guidance document for groundwater restoration. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    This document is intended to present decision makers on the Uranium Mill Tailings Remedial Action (UMTRA) Project with a strategy for evaluating the need for and accomplishing groundwater restoration at those UMTRA Project sites that will require restoration as specified in Subpart B of 40 CFR 192. A synopsis of the Uranium Mill Tailings Restoration Control Act (UMTRCA) and a discussion of the proposed US Environmental Protection Agency (EPA) groundwater cleanup standards in 40 CFR 192 are provided to define the regulatory basis of groundwater cleanup. Once the EPA groundwater standards are finalized, this document may be revised, depending on the changes in the final standards. A procedure for determining the need for groundwater restoration is outlined and a cost-effective strategy for selecting, designing, implementing, and evaluating appropriate restoration procedures is presented. The determination of the need for groundwater restoration is based on the EPA groundwater cleanup standards and must be compatible with and complementary to the National Environmental Policy Act (NEPA) process. Therefore, this document describes a programmatic approach for compliance with the NEPA process.

  7. Environmental project management using fast track methods to save time and money

    SciTech Connect (OSTI)

    Kulick, E.J. [Eaton Corp., Cleveland, OH (United States); Havener, M.C. [Hydro Group, Inc., Bridgewater, NJ (United States)

    1994-12-31T23:59:59.000Z

    In 1992, Eaton Corporation (a major manufacturer of automotive, electronic controls and truck components) expedited installation of a groundwater recovery and treatment system to contain and remove a chlorinated solvent plume. The contamination (caused by a previous owner) was present in groundwater at significant concentrations in the unconsolidated material and fractured rock beneath the site. Standard groundwater project procedures typically involve completion of plume delineation prior to remediation. However, substantial delays were anticipated due to agency review of investigation reports and non-technical off site issues. Therefore, Eaton partnered with the state agency and initiated a ``fast track`` project approach. This paper presents a case history describing both project management methods and the technical approach used to expedite installation of the remediation system, and identify the resulting benefits. The approach allowed Eaton to bypass regulatory delays and install a barrier well system to contain and treat contaminated groundwater within eight months. It demonstrates how well established project management practices can be applied to site remediation to avoid costly delays, expedite project completion and protect the environment.

  8. Meeting the Challenge: Integrating Acquisition and Project Management...

    Energy Savers [EERE]

    Meeting the Challenge: Integrating Acquisition and Project Management - J. E. Surash, P.E. Meeting the Challenge: Integrating Acquisition and Project Management - J. E. Surash,...

  9. Security Analysis and Project Management Systems | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Analysis and Project Management Systems SHARE Security Analysis and Project Management Systems ORNL brings together the subject matter experts with programmers to design,...

  10. Earned Value Management System (EVMS) and Project Analysis Standard...

    Broader source: Energy.gov (indexed) [DOE]

    Management System (EVMS) and Project Analysis Standard Operating Procedure (EPASOP)- March 2014 Earned Value Management System (EVMS) and Project Analysis Standard Operating...

  11. Secretary Moniz to Present Project Management Reforms to the...

    Energy Savers [EERE]

    Moniz to Present Project Management Reforms to the National Academy of Public Administration Secretary Moniz to Present Project Management Reforms to the National Academy of Public...

  12. EERE Project Management Center Database PIA, The Office of Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy...

  13. DOE Acquisition and Project Management (APM) Glossary of Terms...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Acquisition and Project Management (APM) Glossary of Terms Handbook FINAL VERSION 9-30-2014 DOE Acquisition and Project Management (APM) Glossary of Terms Handbook FINAL...

  14. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

  15. Uranium Mill Tailings Remedial Action Project, fiscal year 1995 annual report to stakeholders

    SciTech Connect (OSTI)

    NONE

    1995-09-30T23:59:59.000Z

    In 1978, Congress authorized the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction or landscaping projects. Cleanup is being undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the ground water project. This report addresses specifics about both phases of the UMTRA Project. DOE`s UMTRA Project is the world`s largest materials management project ever undertaken to reduce or eliminate risk to the general public from exposure to potentially hazardous and radioactive materials. With an estimated cost at completion of nearly $2 billion for both phases of the UMTRA Project, and with the responsibility for encapsulating and isolating almost one-fourth of all the uranium mill tailings generated across the entire US (more than 44 million cubic yards), the UMTRA Project and its people have achieved a long record of safely and effectively completing its mission. It continually enhances its national reputation through its diligent process and cost efficiency as well as its international recognition for its technological innovation.

  16. Waste management project technical baseline description

    SciTech Connect (OSTI)

    Sederburg, J.P.

    1997-08-13T23:59:59.000Z

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  17. Stanford University Dept. of Project Management

    E-Print Network [OSTI]

    Raymond, Jennifer L.

    Stanford University Dept. of Project Management Compacting the Sand for the Hot Water Piping Hall Wilbur Hall Kim H Resid Green Library Crothers Hall Main Quad Knight Management Center (see INSET Hse. Clock Tower Galvez Modular Sweet Hall Bookstore Law School Crothers Memorial Encina Commons

  18. Staffing Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-03T23:59:59.000Z

    This Guide provides an approach to determining the appropriate level and type of federal personnel needed to effectively plan, direct, and oversee project execution. Admin Chg 1, dated 10-12-11, cancels DOE G 413.3-19.

  19. Project management plan for Project W-320, Tank 241-C-106 sluicing

    SciTech Connect (OSTI)

    Phillips, D.R.

    1994-12-01T23:59:59.000Z

    This Project Management Plan establishes the organization, plans, and systems for management of Project W-320 as defined in DOE Order 4700.1, Project Management System (DOE 1987).

  20. 1992 North Dakota Economic Impact Study for the Uranium Mill Tailings Remedial Action Project, Belfield and Bowman, North Dakota

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The goal of the Uranium Mill Tailings Remedial Action (UMTRA) Project in North Dakota is to improve the environment and reduce the negative health effects associated with residual radioactive material (RRM) from the inactive processing sites at Belfield and Bowman, North Dakota. A secondary benefit of the UMTRA Project is economic gain. The 1992 North Dakota Economic Impact Study (NDEIS) analyzes the impact of the remedial actions at the inactive Belfield and Bowman processing sites and their associated vicinity properties. This analysis is based on the assumption that the state of North Dakota will provide 10 percent of the funding required for remediation. For every dollar the state of North Dakota invests in the Belfield and Bowman onsite portion of the UMTRA Project, it will realize $5.04 in gross labor income (i.e., gross labor income divided by the state's total funding requirement). For every dollar the state of North Dakota invests, it will realize a net return of $3.04 (i.e., net benefit divided by the state's total funding requirement). This reflects only labor expenditure and employment impact. ff state and local non-labor tax benefits were considered in the net economic benefit, North Dakota could receive significantly more than $3.04 for each dollar it invests. The UMTRA Project work at Belfield and Bowman will benefit the state of North Dakota. Benefits include a reduction in the negative health effects caused by low-level RRM, an improvement in the environment, and increased economic growth.

  1. Weldon Spring Site Remedial Action Project quarterly environmental data summary for second quarter 1998

    SciTech Connect (OSTI)

    NONE

    1998-08-11T23:59:59.000Z

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the second quarter of 1998 is enclosed. The data presented constitutes the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the database during the second quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the database and KPA data are not merged into the regular database. All data received and verified during the second quarter were within a permissible range of variability, except for those listed. Above normal occurrences are cited for groundwater, air, and NPDES data. There were no above normal occurrences for springs or surface water. The attached tables present the most recent data for air and the data merged into the database during the second quarter 1998 for groundwater, NPDES, surface water, and springs.

  2. Project L-070, ``300 Area process sewer piping system upgrade`` Project Management Plan

    SciTech Connect (OSTI)

    Wellsfry, H.E.

    1994-09-16T23:59:59.000Z

    This document is the project management plan for Project L-070, 300 Area process sewer system upgrades.

  3. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

  4. Weldon Spring Site environmental report for calendar year 1993. Weldon Springs Site Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This Site Environmental Report for Calendar Year 1993 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels, and to summarize trends and/or changes in contaminant concentrations from environmental monitoring program. In 1993, the maximum committed dose to a hypothetical individual at the chemical plant site perimeter was 0.03 mrem (0.0003 mSv). The maximum committed dose to a hypothetical individual at the boundary of the Weldon Spring Quarry was 1.9 mrem (0.019 mSv). These scenarios assume an individual walking along the perimeter of the site-once a day at the chemical plant/raffinate pits and twice a day at the quarry-250 days per year. This hypothetical individual also consumes fish, sediment, and water from lakes and other bodies of water in the area. The collective dose, based on an effected population of 112,000 was 0.12 person-rem (0.0012 person-Sv). This calculation is based on recreational use of the August A. Busch Memorial Conservation Area and the Missouri Department of Conservation recreational trail (the Katy Trail) near the quarry. These estimates are below the U.S. Department of Energy requirement of 100 mrem (I mSv) annual committed effective dose equivalent for all exposure pathways. Results from air monitoring for the National Emission Standards for Hazardous Air Pollutants (NESHAPs) program indicated that the estimated dose was 0.38 mrem, which is below the U.S. Environmental Protection Agency (EPA) standard of 10 mrem per year.

  5. Grand Junction Projects Office Remedial Action Project: Feasibility test of real-time radiation monitoring during removal of surface contamination from concrete floors

    SciTech Connect (OSTI)

    Leino, R.; Corle, S.

    1995-10-01T23:59:59.000Z

    This feasibility test was conducted to determine if real-time radiation-monitoring instruments could be mounted on decontamination machines during remediation activities to provide useful and immediate feedback to equipment operators. The U.S. Department of Energy (DOE) sponsored this field test under the Grand Junction Projects Office Remedial Action Project (GJPORAP) to identify a more efficient method to remove radiological contamination from concrete floor surfaces. This test demonstrated that project durations and costs may be reduced by combining radiation-monitoring equipment with decontamination machines. The test also demonstrated that a microprocessor-based instrument such as a radiation monitor can withstand the type of vibration that is characteristic of floor scabblers with no apparent damage. Combining radiation-monitoring equipment with a decontamination machine reduces the time and costs required to decontaminate concrete surfaces. These time and cost savings result from the reduction in the number of interim radiological surveys that must be conducted to complete remediation. Real-time radiation monitoring allows equipment operators to accurately monitor contamination during the decontamination process without support from radiological technicians, which also reduces the project duration and costs. The DOE Grand Junction Projects Office recommends more extensive and rigorous testing of this real-time radiation monitoring to include a variety of surfaces and decontamination machines. As opportunities arise, additional testing will be conducted under GJPORAP.

  6. Alternatives for management of wastes generated by the formerly utilized sites remedial action program and supplement

    SciTech Connect (OSTI)

    Gilbert, T.L.; Peterson, J.M.; Vocke, R.W.; Alexander, J.K.

    1983-03-01T23:59:59.000Z

    Alternatives for disposal or stabilization of the wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP) are identified and compared, with emphasis on the long-term aspects. These wastes consist of soil material and rubble containing trace amounts of radionuclides. A detailed pathway analysis for the dose to the maximally exposed individual is carried out using an adaptation of the natural analogue method. Comparisons of the different alternatives, based on the results of the pathway analysis and qualitative cost considerations, indicate that, if the hazard is such that the wastes must be removed and disposed of rather than stabilized in place, disposal by immediate dispersal is preferable to containment, and containment followed by slow planned dispersal is preferable to containment without dispersal. The Supplement presents refinements of work that was reported at the 1982 International Decommissioning Symposium. The new material consists of revisions of the estimates of the predicted potential dose to the maximally exposed individual and a more detailed comparative assessment of the radiological impacts of alternatives for management of wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP).

  7. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  9. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  10. Project Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartmentEnergy GeneralSandy madeProject Managementprovides

  11. Office of Energy Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 Wholesale Power Rate SchedulesOffice of EEREEnergy Project

  12. Managing site remediation using pathway analysis, application to a semi-arid site

    SciTech Connect (OSTI)

    Rutz, E.E.; Ijaz, T.; Wood, R.P.; Eckart, R.E. [Univ. of Cincinnati, OH (United States). Dept. of Mechanical, Industrial and Nuclear Engineering

    1993-12-31T23:59:59.000Z

    This paper discusses the application of pathway analysis methodology to evaluate alternatives associated with remediation of a semi-arid site. Significant aspects of remediation include potential land uses, soil cleaning techniques and restoration alternatives. Important environmental transport pathways and dominant radionuclides are identified using pathway analysis. The remediation strategy is optimized based on results of the analysis.

  13. Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)

    SciTech Connect (OSTI)

    Tucker, M.D. [Sandia National Labs., Albuquerque, NM (United States). Site Restoration Technology Program Office; Valdez, J.M.; Khan, M.A. [IT Corp., Albuquerque, NM (United States)

    1995-06-01T23:59:59.000Z

    The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project.

  14. Project Manager | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada winsProgressProject ManagementProject Manager

  15. Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-12T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1993. To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are: Direct employment was estimated at 894 workers; An estimated 89 percent of all direct employment was local; Secondary employment resulting from remedial action at the active Colorado UMTRA Project sites and the Grand Junction vicinity property program is estimated at 546 workers. Total employment (direct and secondary) is estimated at 1440 workers for the period of study (July 1, 1992, to June 30, 1993). An estimated $24.1 million was paid in wages to UMTRA workers in Colorado during FY1993; Direct and secondary wage earnings were estimated at $39.9 million; Income tax payments to the state of Colorado were estimated at $843,400 during FY1993; The gross economic impact of UMTRA Project activities in the state of Colorado is estimated at $70 million during the 1-year study period; and the net economic benefit to the state of Colorado was estimated at $57.5 million, or $5.90 per dollar of funding provided by Colorado. This figure includes both direct and secondary benefits but does not include the impact of alternative uses of the state funding.

  16. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    SciTech Connect (OSTI)

    Rodriguez, M.

    2010-12-17T23:59:59.000Z

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing plan as well as facility processing rates. These lessons learned, challenges, and improvements will be discussed to aid other sites in their efforts to conduct similar activities.

  17. A New Tool for Effective and Efficient Project Management

    SciTech Connect (OSTI)

    Willett, Jesse A.

    2011-12-01T23:59:59.000Z

    Organizations routinely handle thousands of projects per year, and it is difficult to manage all these projects concurrently. Too often, projects do not get the attention they need when they need it. Management inattention can lead to late projects or projects with less than desirable content and/or deliverables. This paper discusses the application of Visual Project Management (VPM) as a method to track and manage projects. The VPM approach proved to be a powerful management tool without the overhead and restrictions of traditional management methods.

  18. Completion report for the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This report documents the results of the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory (ORNL). The work performed is compared with that proposed in the statement of work and the service contract specification for the maintenance action to remediate tanks 3013, 3004-B, T-30, and 3001-B. The Federal Facility Agreement (FFA) among the U.S. Environmental Protection Agency (EPA), the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE) requires that all tanks, which have been removed from service and are designated in the FFA as Category D, must be remediated in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. The Environmental Restoration Program`s inactive tank removal program strategy and plans for remediating the inactive LLLW tanks were documented in a report issued in January 1995 (Inactive Tanks Remediation Program Strategy and Plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER-297). The inactive (Category D) tanks were initially screened for remediation according to risk, remediation technology required, level of instrumentation available, interferences with other piping and equipment, location, and available sludge removal techniques and storage requirements. On the basis of this preliminary screening, the tanks were assigned to one of five batches (I through V) for consideration of remedial action alternatives, and these batches were tentatively scheduled for remedial actions. The eight links tentatively assigned to Batch I were divided into two groups (Series I and Series II).

  19. 1991 New Mexico economic impact study for the Uranium Mill Tailings Remedial Action Project, Ambrosia Lake, New Mexico, site

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    The University of New Mexico Bureau of Business and Economic Research completed an abbreviated cost-benefit analysis of the income and employment impact of the US Department of Energy (DOE) and contractor offices in Albuquerque. Since the Project Office will have a significant positive impact on the State`s economy (shown on Table 8), the impact is combined with the impact of remedial actions at the Ambrosia Lake site to highlight the cost-benefit of the entire Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project at the Ambrosia Lake site will generate $12.509 million in gross labor income in New Mexico between 1989 and 1994. This includes $1.161 million in federal tax revenue, $1.015 million in State personal income tax revenue, and seven thousand in local tax revenue. The UMTRA Project will generate the equivalent of 84 full-time jobs during the peak year of remedial action at Ambrosia Lake site. New Mexico`s total funding requirement for the UMTRA Project is estimated to be $2.963 million. The net economic benefit of the Ambrosia Lake portion of the UMTRA Project to New Mexico after the State`s share of the project`s cost, the federal income tax, and the $0.936 million income impact of the alternate use of the State funding are subtracted, will be $7.451 million between 1990 and 1994. In Fiscal Year 1990 the UMTRA Project DOE and contractor offices in Albuquerque directly employed 163 people. Another 78 jobs were also maintained in support of the industry sector and 166 jobs were also maintained in other sections of the New Mexico economy. It is estimated that $19 million dollars of income was generated and 1.949 million of State and local taxes were collected. The University of New Mexico study shows that for every dollar the State of New Mexico invests in the UMTRA Project, it will realize $95.05 in gross labor income. This corresponds to a net return on the States investment in the Project of $97.20 for every dollar invested.

  20. Web-Based Project Management Tools

    E-Print Network [OSTI]

    Chapman, Clark R.

    Web-Based Project Management Tools Southwest Research Institute® San Antonio, Texas #12;With more any web browser; other client software is not required because the system resides on SwRI's web server using the PIMS include: Cassini (INMS) Deep Impact THEMIS AIM STEREO IMAGE Orbital Express CHIPS

  1. Richland Environmental Restoration Project management action process document

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This document is the prescribed means for providing direct input to the US Department of Energy Headquarters regarding the status, accomplishments, strategy, and issues of the Richland Environmental Restoration Project. The project mission, organizational interfaces, and operational history of the Hanford Site are provided. Remediation strategies are analyzed in detail. The document includes a status of Richland Environmental Restoration project activities and accomplishments, and it presents current cost summaries, schedules, and technical baselines.

  2. """,,,,. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlilINATION RECIPIENT:University of Tennessee PROJECT TITLE : Rooftop Solar Challenge: Inducing PV Market...

  3. US. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    ""'' US. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:Office of the Govemor, Nevada Siale Office of Energy PROJECT TITLE: Program Year 2012...

  4. UNEP-GEF Renewable Energy Project Financial Risk Management in...

    Open Energy Info (EERE)

    Financial Risk Management 1 "This UNEPGEF targeted research project aims to catalyse new thinking in the risk management area, examining existing instruments and approaches and...

  5. CSMRI Site Remediation Quality Assurance Project Plan March 30, 2004 TABLE OF CONTENTS

    E-Print Network [OSTI]

    and stockpiling of material from a former settling pond, off-site disposal of the stockpile, building cleanup 2004) was published that specified the off-site disposal of the affected material. The purpose of this Task Plan is to control the remediation process for the off-site disposal of the metals

  6. The MSc Strategic Project Management prepares graduates to be future leaders in project-based

    E-Print Network [OSTI]

    Painter, Kevin

    About The MSc Strategic Project Management prepares graduates to be future leaders in project employment prior to graduation. Programme Structure The MSc Strategic Project Management has a single intake-based environments by developing knowledge and skills in both business strategy and project management

  7. Safeguards and Security Program and Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-18T23:59:59.000Z

    The proposed revision to this Department of Energy Guide focuses on alignment of guidance for implementing key safeguard and security components to the DOE capital asset acquisition process with the revised DOE O 413.3B, Program and Project Management for Acquisition of Capital Assets, the revised DOE O 470.4B, Safeguard and Security Program, and the new series of DOE Orders replacing the DOE M 470.4 series of manuals.

  8. A PROJECT MANAGEMENT CAUSAL LOOP DIAGRAM T. Michael Toole1

    E-Print Network [OSTI]

    Toole, T. Michael

    A PROJECT MANAGEMENT CAUSAL LOOP DIAGRAM T. Michael Toole1 Accepted for the 2005 ARCOM Conference several deficiencies in current project management analytical techniques. This paper facilitates the integration of system dynamics into project management by providing an overview of system dynamics principles

  9. Systems Engineering Integrating Project Management, Science, Engineering, and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Systems Engineering Integrating Project Management, Science, Engineering, and Mission Operations Capabilities LASP performs comprehensive systems engineering. Systems engineers develop and manage requirements · Technical coordination · System architecture and design process · Requirements definition and management

  10. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project

    SciTech Connect (OSTI)

    Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))

    1984-12-01T23:59:59.000Z

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

  11. How to accelerate the Fernald remediation

    SciTech Connect (OSTI)

    Yates, M.K. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States). Fernald Environmental Management Project; Reising, J. [USDOE Cincinnati, OH (United States)

    1996-01-10T23:59:59.000Z

    The Fernald Environmental Management Project is unique among Department of Energy (DOE) sites by virtue of successful efforts by the Fernald Environmental Restoration Management Corporation (FERMCO) and DOE-Fernald Area Office (FN) in securing a stak-eholder-assisted final site closure vision and all Record of Decisions (ROD) or Interim RODs required to set the stage for final remediation. DOE and FERMCO have agreed in principle on a Ten Year Plan which accelerates all activities to remediate the site in approximately half the target schedule. This paper presents the path that led to the current Ten Year Plan, the key elements of the plan and the implementation strategies.

  12. Leadership behaviors of effective project managers in construction project organizations in Texas

    E-Print Network [OSTI]

    Haney, Harvey Joe

    1989-01-01T23:59:59.000Z

    A study involving twenty-six construction firms, which practice project management in Texas, examined whether thirteen leadership behaviors could be associated with effective project managers. The data indicated that supervisors and subordinates...

  13. UMTRA Surface Project management action process document. Final report: Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    A critical mission of the US Department of Energy (DOE) is the planning, implementation, and completion of environmental restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC) from the late 1940s into the 1970s. Among these facilities are the 24 former uranium mill sites designed in the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.) Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designated sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project only; a separate MAP document has been prepared for the UMTRA Ground Water Project.

  14. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01T23:59:59.000Z

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  15. IT Project Management Practices Guide Page 1 of 83 ASU, HSC, TTU, TTUS IT Project Management Practices Guide

    E-Print Network [OSTI]

    Rock, Chris

    . Application of Project Management ­ distinguishes what types of work should and should not be categorized of Project Management Types of Work The Guide should be used for the management of Information Technology management methodologies outlined within the Guide. Upcoming/potential work should be analyzed to determine

  16. Project management plan for project W-320, tank 241-C-106 sluicing

    SciTech Connect (OSTI)

    Leliefeld, K.W.

    1996-02-02T23:59:59.000Z

    This Project Management Plan establishes the organization, plans, and systems for management of Project W-320 as defined in DOE Order 4700.1, Project Management System (DOE 1987). The sluicing is for retrieving high-heat waste from single shell tank 241-C-106.

  17. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  18. Project Management Methodology | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergyProject Management Methodology

  19. Project Management Principles | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergyProject Management

  20. Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project

    SciTech Connect (OSTI)

    Wilson-Nichols, M.J.; Egidi, P.V.; Roemer, E.K.; Schlosser, R.M.

    2000-09-01T23:59:59.000Z

    f I The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficial use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m3 of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain wi th 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity.

  1. IT PROJECT MANAGEMENT PROGRAM A ten-week program covering best practices in IT project management

    E-Print Network [OSTI]

    Schaefer, Marcus

    with managing and working with people such as team composition and leadership, conflict resolution and politics Professional, and the software will also be available in the Institute's dedicated laboratory. YOU WILL LEARN: · Development Methodologies · System Architecture · Organizing and Staffing the Project Team · Conflict

  2. Risk Management Plan Electron Beam Ion Source Project

    E-Print Network [OSTI]

    Risk Management Plan for the Electron Beam Ion Source Project (EBIS) Project # 06-SC-002 at Brookhaven National Laboratory Upton, NY For the U.S. Department of Energy Office of Science Office of Nuclear Physics (SC ­ 26) #12;1. Background and References 1.1 Background The EBIS Project will manage

  3. Project management process ontologies: a proof of concept

    E-Print Network [OSTI]

    Winstanley, Graham

    to be familiar. #12;A large number of written procedures incurs the risk that project progress is slowed becauseProject management process ontologies: a proof of concept Robert T. Hughes Department of Computing of representing project management processes as ontologies. The proof of concept is the creation of a prototype

  4. ASBESTOS PROJECT MANAGEMENT University of California, San Diego

    E-Print Network [OSTI]

    Aluwihare, Lihini

    in advance if the renovation and demolition project with friable asbestos-containing materials is over 1601 ASBESTOS PROJECT MANAGEMENT University of California, San Diego UC San Diego project managers to maintenance, repair, and construction of UC-owned and leased buildings where asbestos-containing materials

  5. extension.uci.edu/apm AdvancedProjectManagement

    E-Print Network [OSTI]

    Rose, Michael R.

    exams offered through the Project Management Institute, Inc. Program Management Professional (PgMP) PMI Scheduling Professional (PMI-SP) PMI Agile Certified Practitioner (PMI-ACP) Visit the Project Management Institute at pmi.org for more details. Certificate Requirements Individuals must complete courses totaling

  6. Project management in practice : Evaluating a case project through project management theories.

    E-Print Network [OSTI]

    Uusitalo, Jenni

    2013-01-01T23:59:59.000Z

    ??The purpose of this thesis was to evaluate a case project and to study whether it was carried out in a correct manner; meaning that (more)

  7. INDEPENDENT TECHNICAL REVIEW OF THE C-400 INTERIM REMEDIAL PROJECT PHASE I RESULTS, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B.; Rossabi, J.; Stewart,L.; Richards, W.

    2010-10-29T23:59:59.000Z

    The groundwater and soil in the vicinity of the C-400 Building at the Paducah Gaseous Diffusion Plant (PGDP), is contaminated with substantial quantities of industrial solvents, primarily trichoroethene (TCE). This solvent 'source' is recognized as a significant challenge and an important remediation target in the overall environmental cleanup strategy for PGDP. Thus, the cleanup of the C-400 TCE Source is a principal focus for the Department of Energy (DOE) and its contractors, and for PGDP regulators and stakeholders. Using a formal investigation, feasibility study and decision process, Electrical Resistance Heating (ERH) was selected for the treatment of the soil and groundwater in the vicinity of C-400. ERH was selected as an interim action to remove 'a significant portion of the contaminant mass of TCE at the C-400 Cleaning Building area through treatment' with the longer term goal of reducing 'the period the TCE concentration in groundwater remains above its Maximum Contaminant Level (MCL).' ERH is a thermal treatment that enhances the removal of TCE and related solvents from soil and groundwater. The heterogeneous conditions at PGDP, particularly the high permeability regional gravel aquifer (RGA), are challenging to ERH. Thus, a phased approach is being followed to implement this relatively expensive and complex remediation technology. Conceptually, the phased approach encourages safety and efficiency by providing a 'lessons learned' process and allowing appropriate adjustments to be identified and implemented prior to follow-on phase(s) of treatment. More specifically, early deployment targeted portions of the challenging RGA treatment zone with relatively little contamination reducing the risk of adverse collateral impacts from underperformance in terms of heating and capture. Because of the importance and scope of the C-400 TCE source remediation activities, DOE chartered an Independent Technical Review (ITR) in 2007 to assess the C-400 ERH plans prior to deployment and a second ITR to evaluate Phase I performance in September 2010. In this report, these ITR efforts are referenced as the '2007 ITR' and the 'current ITR', respectively. The 2007 ITR document (Looney et al., 2007) provided a detailed technical evaluation that remains relevant and this report builds on that analysis. The primary objective of the current ITR is to provide an expedited assessment of the available Phase I data to assist the PGDP team as they develop the lessons learned from Phase I and prepare plans for Phase II.

  8. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect (OSTI)

    Miller, S.J.

    1995-11-01T23:59:59.000Z

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  9. Management and operating contractor plan for transition to the project Hanford Management Contractor

    SciTech Connect (OSTI)

    Waite, J.L., Westinghouse Hanford

    1996-06-27T23:59:59.000Z

    This is Revision 1 to the M{ampersand}O Contractor Plan for Transition to the Project Hanford Management Contractor.

  10. Project Information Form Project Title Integrating Management of Truck and Rail Systems in Los Angeles

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Integrating Management of Truck and Rail Systems in Los or organization) Volvo Research and Educational Foundation- $79,604.00 Total Project Cost $79,604.00 Agency ID of Research Project This project will develop models to optimize the balance of freight demand across rail

  11. The Dynamics of Project Management: An Investigation of the Impacts of Project Process and Coordination on Performance

    E-Print Network [OSTI]

    Ford, David N.

    The Dynamics of Project Management: An Investigation of the Impacts of Project Process by ....................................................................................................................................................... John D. Sterman Professor of Management Science Research Advisor Certified ___________________________________________________________________ Chairman, Departmental Committee on Graduate Students #12;#12;The Dynamics of Project Management

  12. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Chernoff, A.R. (USDOE Albuquerque Field Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office); Lacker, D.K. (Texas State Dept. of Health, Austin, TX (United States). Bureau of Radiation Control)

    1992-09-01T23:59:59.000Z

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  13. Analysis of infiltration through a clay radon barrier at an UMTRA disposal cell. Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    An infiltration study was initiated in January 1988 to assess the percent saturation in, and infiltration through, clay radon barriers of typical Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cells. Predicting infiltration through the radon barrier is necessary to evaluate whether the disposal cell will comply with the proposed US Environmental Protection Agency (EPA) groundwater protection standards (40 CFR 192). The groundwater standards require demonstrating that tailings seepage will not cause background concentrations or maximum concentration limits (MCLs) to be exceeded at the downgradient edge of the disposal facility (the point of compliance, or POC). This demonstration generally consists of incorporating the predicted seepage flux and the concentration of the specific hazardous constituents into a contaminant transport model, and predicting the resultant concentrations at the POC. The infiltration study consisted of a field investigation to evaluate moisture conditions in the radon barrier of the completed Shiprock, New Mexico, UMTRA Project disposal cell and previously completed UMTRA Project disposal cells at Clive, Utah, and Burrell, Pennsylvania. Coring was conducted to measure percent saturation profiles in the radon barriers at these disposal cells. In addition, a detailed investigation of the Shiprock radon barrier was conducted to establish the effects of meteorological stresses on moisture conditions in the filter layer and radon barrier. The Shiprock infiltration study was also intended to characterize hydraulic gradients and operational unsaturated hydraulic conductivities in the radon barrier.

  14. Responsiveness summary for the remedial investigation/feasibility study for management of the bulk wastes at the Weldon Spring quarry, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Peterson, J.M.; MacDonell, M.M.

    1990-08-01T23:59:59.000Z

    The US Department of Energy (DOE) is responsible for conducting remedial actions at the Weldon Spring site in St. Charles County, Missouri, under its Surplus Facilities Management Program. The site consists of a quarry and a chemical plant area located about 6.4 km (4 mi) northeast of the quarry. The quarry is surrounded by the Weldon Spring Wildfire Area and is near an alluvial well field that constitutes a major source of potable water for St. Charles County; the nearest supply well is located about 0.8 km (0.5 mi) southeast of the quarry. From 1942 to 1969, the quarry was used for the disposal of various radioactively and chemically contaminated materials. Bulk wastes in the quarry consist of contaminated soils and sediments, rubble, metal debris, and equipment. As part of overall site remediation, DOE is proposing to conduct an interim remedial action at the quarry to manage the radioactively and chemically contaminated bulk wastes contained therein. Potential remedial action alternatives for managing the quarry bulk wastes have been evaluated consistent with US Environmental Protection Agency (EPA) guidance for conducting remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The contents of these documents were developed in consultation with EPA Region VII and the state of Missouri and reflect the focused scope defined for this interim remedial action. 9 refs.

  15. Project scheduling using fuzzy PERT and risk management

    E-Print Network [OSTI]

    Yoo, Wi Sung

    2012-06-07T23:59:59.000Z

    Program evaluation and review techniques (PERT) is an efficient tool for large project management. In actual project control decisions, classical PERT, which is based upon beta distribution, presents a few deficiencies. Generally speaking, classical...

  16. EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:City...

    Broader source: Energy.gov (indexed) [DOE]

    u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:City of San Antonio Page I of2 STATE : TX PROJECT TITLE: Texas Solar Collaboration to...

  17. Project Management Update - Paul Bosco, Director, Office of Acquisitio...

    Office of Environmental Management (EM)

    PM Update - Paul Bosco, Director, Office of Acquisition & Project Mgt More Documents & Publications Are We There Yet? - Mike Peek, Director, Project Management (MA-63) R1A Slide 1...

  18. Course Profile: Project Management Course Number: LIS 7415

    E-Print Network [OSTI]

    Berdichevsky, Victor

    development life cycle 5. project management 6. operating and managing systems 7. modeling of system of information systems and their functions 2. components of information systems 3. system architecture 4. system

  19. Proceedings of the 1993 international conference on nuclear waste management and environmental remediation. Volume 3: Environmental remediation and environmental management issues

    SciTech Connect (OSTI)

    Baschwitz, R.; Kohout, R.; Marek, J.; Richter, P.I.; Slate, S.C. [eds.

    1993-12-31T23:59:59.000Z

    This conference was held in 1993 in Prague, Czech Republic to provide a forum for exchange of state-of-the-art information on radioactive waste management. Papers are divided into the following sections: Low/Intermediate level waste disposal from an international viewpoint; Solid waste volume reduction, treatment and packaging experience; Design of integrated systems for management of nuclear wastes; Mixed waste (hazardous and radioactive) treatment and disposal; Advanced low/intermediate level waste conditioning technologies including incineration; National programs for low/intermediate waste management; Low/Intermediate waste characterization, assay, and tracking systems; Disposal site characterization and performance assessment; Radioactive waste management and practices in developing countries; Waste management from unconventional (e.g. VVER) nuclear power reactors; Waste minimization, avoidance and recycling in nuclear power plants; Liquid waste treatment processes and experience; Low/Intermediate waste storage facilities--design and experience; Low/Intermediate waste forms and acceptance criteria for disposal; Management of non-standard or accident waste; and Quality assurance and control in nuclear waste management. Individual papers have been processed separately for inclusion in the appropriate data bases.

  20. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17T23:59:59.000Z

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  1. DEPARTMENT OF ENERGY EE RE PROJECT MANAGEMENT CENTER NEPA DETERMINATIO...

    Broader source: Energy.gov (indexed) [DOE]

    best management practices will be fol lowed for farming the biomass feedstock. This project is comprised of actions to conserve energy as well as information gathering for...

  2. Business Manangement System(BMS), RL-2008/Project Hanford Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Manangement System(BMS), RL-2008Project Hanford Management Contract PHMC (Flour), Office of the Chief Information Officer Business Manangement System(BMS), RL-2008...

  3. Environmental Management Construction Project Review of the Savannah...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluations Activity Report for the Shadowing of the Environmental Management Construction Project Review of the Savannah River Site Salt Waste Processing Facility on July...

  4. U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation (MMR) Center

    E-Print Network [OSTI]

    and technologies in our world today and taking the longer view in solving problems. Introductions Amy Dindal that we should look at ways to supply power to remediation systems with renewable energy). (Ken Feathers) · Use or dispose of byproducts from biofuels, such as acrylic glycerin. (Dan Powell

  5. Project Management Plan (PMP) for International Atomic Energy Agency (IAEA) Safeguards Project

    SciTech Connect (OSTI)

    BARTLETT, W.D.

    1999-09-14T23:59:59.000Z

    This plan presents the overall objectives, description, justification and planning for the PFP IAEA project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP) HNF-3617 Rev 0.

  6. La Jolla Children's Pool Beach Management and Water Quality Improvement Project

    E-Print Network [OSTI]

    Elwany, Hany; Flick, Reinhard; Nichols, Jean; Lindquist, Anne-Lise

    1998-01-01T23:59:59.000Z

    POOL BEACH MANAGEMENT AND WATER QUALITY IMPROVEMENT PROJECTPool Beach Management and Water Quality Improvements ProjectPool Beach Management and Water Quality Improvements Project

  7. Tank waste remediation system privatization phase I infrastructure and project W-519 and QA implementation plan

    SciTech Connect (OSTI)

    HUSTON, J.J.

    1999-08-19T23:59:59.000Z

    This document has been prepared to identify the quality requirements for all products/activities developed by or for Project W-519. This plan is responsive to the Numatec Hanford Corporation, Quality Assurance Program Plan, NHC-MP-001.

  8. Mapping The Best Practices of XP and Project Management: Well defined approach for Project Manager

    E-Print Network [OSTI]

    Javed, Muhammad; Hussain, Shahid; Ahmad, Shakeel

    2010-01-01T23:59:59.000Z

    Software engineering is one of the most recent additions in various disciplines of system engineering. It has emerged as a key obedience of system engineering in a quick succession of time. Various Software Engineering approaches are followed in order to produce comprehensive software solutions of affordable cost with reasonable delivery timeframe with less uncertainty. All these objectives are only satisfied when project's status is properly monitored and controlled; eXtreme Programming (XP) uses the best practices of AGILE methodology and helps in development of small size software very sharply. In this paper, authors proposed that via XP, high quality software with less uncertainty and under estimated cost can be developed due to proper monitoring and controlling of project. Moreover, authors give guidelines that how activities of project management can be embedded into development life cycle of XP to enhance the quality of software products and reduce the uncertainty.

  9. Recommendations for improvements to program and project management

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) has operated with a balanced matrix organization for over sixteen years. Much of the work at the Laboratory is accomplished with good customer satisfaction through programs, projects, and matrix management. During the past several years concerns about program and project management at ORNL have been expressed by both the Department of Energy and ORNL staff. In May 1993 the ORNL Division/Program/Office Directors Caucus chartered a ``fox team`` to identity and to recommend improvements to matrix management that would lead to resolution of these concerns. Nine experienced ORNL staff members served on this Matrix Management Upgrade Solutions Team (MMUST). The MMUST adopted a four-phase approach in which they first gathered information and then developed and proposed recommended actions. In the fourth phase the team was available to support implementation of the recommendations. They began work in June 1993, gathering and evaluating information in biweekly meetings for six months. Recommendations developed in October and November 1993 were presented to ORNL management in December. The MMUST issued three principal recommendations based on their evaluation of the information gathered. They are: Renew and enhance the ORNL management commitment to matrix management, program managers, and project managers; Implement actions to ensure career path parity between the program/project manager family of positions and the technical line manager family of positions across all directorates and divisions; and Clarify and document program/project manager roles, responsibilities, and authorities.

  10. Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid

    E-Print Network [OSTI]

    California at Davis, University of

    ,365 Total Project Cost $58,365 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates April 1, 2014Project Information Form Project Title Advanced Energy Management Strategy Development for Plug ­ September 30, 2015 Brief Description of Research Project Plug-in hybrid vehicles (PHEVs) have great

  11. Project Information Form Project Title Managing Roadway Systems to Reduce GHG Emissions and Improve

    E-Print Network [OSTI]

    California at Davis, University of

    or organization) $25,217 Total Project Cost $25,217 Agency ID or Contract Number DTRT13-G-UTC29 Start and EndProject Information Form Project Title Managing Roadway Systems to Reduce GHG Emissions and Improve Dates 4/1/14 ­ 3/30/15 Brief Description of Research Project There have been a variety of traffic

  12. How the Lean Management System is Working on a Closure Project - 13242

    SciTech Connect (OSTI)

    Mowery, Carol [Washington Closure Hanford, 2620 Fermi, Richland, Washington, 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington, 99354 (United States)

    2013-07-01T23:59:59.000Z

    Washington Closure Hanford, LLC (WCH) manages the River Corridor Closure Project (RCCP), a 10-year contract, in which WCH will clean up 220 mi{sup 2} of contaminated land at the Hanford Site in Richland, Washington. Strategic planning sessions in 2009 identified key performance areas that were essential to closure and in which focused change could result in dramatic performance improvement. Lean Management Systems (Lean) was selected as the methodology to achieve the desired results. The Lean Process is built upon the fundamentals of the power of respect for people and the practice of continuous process improvement. Lean uses week-long, focused sessions that teach a selected team the techniques to recognize waste within their own work processes, propose potential solutions, and then conduct experiments during the week to test their solutions. In 2011, the Lean process was implemented in the Waste Operations organization. From there it was expanded to closure documents, field remediation, and decommissioning and demolition. WCH identified the following Lean focus areas: 1) closure document processes that required extensive internal preparation, and lengthy external review and approval cycles; 2) allocation of limited transportation and waste disposal resources to meet aggressive remediation schedules; 3) effective start-of-the-day routines in field operations; 4) improved excavation and load-out processes; and 5) approaches to strengthen safety culture and support disciplined operations. Since the introduction of Lean, RCCP has realized many successes and also gained some unexpected benefits. (authors)

  13. UMTRA Project remedial action planning and disposal cell design to comply with the proposed EPA (Environmental Protection Agency) standards (40 CFR Part 192)

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project involves stabilizing 24 inactive uranium mill tailings piles in 10 states. Remedial work must meet standards established by the US Environmental Protection Agency (EPA). Remedial action must be designed and constructed to prevent dispersion of the tailings and other contaminated materials, and must prevent the inadvertent use of the tailings by man. This report is prepared primarily for distribution to parties involved in the UMTRA Project, including the US Nuclear Regulatory Commission (NRC), and states and tribes. It is intended to record the work done by the DOE since publication of the proposed EPA groundwater protection standards, and to show how the DOE has attempted to respond and react in a positive way to the new requirements that result from the proposed standards. This report discusses the groundwater compliance strategies now being defined and implemented by the DOE, and details the changes in disposal cell designs that result from studies to evaluate ways to facilitate compliance with the proposed EPA groundwater protection standards. This report also serves to record the technical advances, planning, and progress made on the UMTRA Project since the appearance of the proposed EPA groundwater protection standards. The report serves to establish, document, and disseminate technical approaches and engineering and groundwater information to people who may be interested or involved in similar or related projects. 24 refs., 27 figs., 8 tabs.

  14. Environmental analysis and data report prepared for the environmental assessment of remedial action at the Lowman uranium mill tailings site near Lowman, Idaho. [Urnanium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lowman, Idaho. The Lowman EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the effects of their actions on the environment. It examines the short-term and the long-term effects of the US Department of Energy's (DOE) proposed remedial action for the Lowman site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement will be prepared. If the impacts are not judged to be significant, the DOE may issue a Finding of No Significant Impact and implement the proposed action. The information and data presented in this environmental analyses and data report are for background purposes only and are not required as part of the NEPA decision-making process.

  15. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  16. Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 ProgramID Project NameDepartment

  17. Twelve Steps to Successful Energy Project Management

    E-Print Network [OSTI]

    Smith, W. P.

    by following twelve steps. These steps, which can be grouped into three phases, are outlined in the accompanying flow chart. Phase l, project initiation, includes idea generation, project defi nition and scope, preliminary economics, project support...-range reward for a valuable energy con servation suggestion generally is individual recognition. If interest and participation in the program are to continue, all ideas should be responded to promptly. ~2. Project Definition and Scope (Specifi ?~_tions...

  18. Project Management through States Benjamin Menhorn

    E-Print Network [OSTI]

    Ulm, Universität

    not only in cost and time overruns but also in a high cancellation rate of such projects. For hardware]. Costs and duration of a project are adjusted by a questionnaire which determines its complexity in order to get more and more complex projects under control and keep them within certain cost and duration

  19. Clear Creek, Texas Flood Risk Management Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ) of 1996 requires four distinct steps for an evaluation of economic benefits and costs for projects for an evaluation of economic benefits and costs for projects were conducted and displayed in the Economic Appendix Economic Evaluation. The non-Federal projects (FEMA buyout and detention on Marys Creek) augments

  20. Project Management Career Development Program | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    In 1998, DOE defined its acquisition workforce to include contract specialistscontacting officers, purchasing agents, financial assistance specialists, property managers, and...

  1. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    SciTech Connect (OSTI)

    None

    1996-10-01T23:59:59.000Z

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC 7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in accordance with the final standards. The EPA reserves the right to modify the ground water standards, if necessary, based on changes in EPA drinking water standards. Appendix A contains a copy of the 1983 EPA ground water compliance standards, the 1987 proposed changes to the standards, and the 1995 final rule. Under UMTRA, DOE is responsible for bringing the designated processing sites into compliance with the EPA ground water standards and complying with all other applicable standards and requirements. The U.S. Nuclear Regulatory Commission (NRC) must concur with DOE's actions. States are full participants in the process. The DOE also must consult with any affected Indian tribes and the Bureau of Indian Affairs. Uranium processing activities at most of the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as but not limited to uranium and nitrates. The purpose of the UMTRA Ground Water Project is to eliminate or reduce to acceptable levels the potential health and environmental consequences of milling activities by meeting the EPA ground water standards.

  2. Cleanup protocols when encountering thorium-230 at U.S. DOE Uranium Mill Tailings Remedial Action (UMTRA) Project sites

    SciTech Connect (OSTI)

    Miller, M.L.; Hylko, J.M.; Cornish, R.E.

    1995-12-31T23:59:59.000Z

    The passage of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, established the regulatory framework, under which the US EPA charged with developing standards for the cleanup and disposal of tailings at 24 designated inactive uranium processing sites located in 10 states. 40 CFR 192.12 requires that the concentration of Ra-226 in land averaged over any area of 100 square meters shall not exceed the background level by more than 5 pCi/g, averaged over the first 15 cm of soil below the surface, 15 pCi/g, averaged over 15-cm-thick layers of soils more than 15 cm below the surface. However, Th-230 is not specifically addressed by the EPA in 40 CFR 192.12, which naturally decays with a half-life of 77,000 years to form Ra-226. Consequently, the cleanup of the initial Ra-226 contamination according to the standards will not necessarily mitigate against the eventual ingrowth of residual Ra-226 with time, due to the radioactive decay of residual Th-230. Therefore, to direct the excavation of residual Th-230, four generic protocols are being used at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, as follows: Determining the allowable remaining concentration of Th-230 in surface and subsurface soils; Encountering Th-230 contamination in the unsaturated subsurface soil; Encountering Th-230 contamination in the saturated zone; and Verification sampling. The four generic protocols, developed in conjunction with the supplemental standards provision, ensure protection of the general public by reducing exposures to levels that are As Low As Reasonably Achievable, while considering practical measures necessary to excavate Th-230 under conditions encountered at the UMTRA Project site.

  3. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect (OSTI)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01T23:59:59.000Z

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  4. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    SciTech Connect (OSTI)

    MCLELLAN, G.W.

    2007-02-07T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with permitting, scheduling, costs, stakeholders and technical issues. To meet the customer's needs and deadlines, the project was managed with conscientious discipline and application of sound project management principles in the Project Management Institute's Project Management Body of Knowledge. Several factors contributed to project success. Extensive planning and preparation were conducted, which was instrumental to contract and procurement management. Anticipating issues and risks, CH2M HILL prepared well defined scope and expectations, particularly for safety. To ensure worker safety, the project management team incorporated CH2M HILL's Integrated Safety Management System (ISMS) into the project and included safety requirements in contracting documents and baseline planning. The construction contractor DelHur Industries, Inc. adopted CH2M HILL's safety program to meet the procurement requirement for a comparable ISMS safety program. This project management approach contributed to an excellent safety record for a project with heavy equipment in constant motion and 63,555 man-hours worked. The project manager worked closely with ORP and Ecology to keep them involved in project decisions and head off any stakeholder or regulatory concerns. As issues emerged, the project manager addressed them expeditiously to maintain a rigorous schedule. Subcontractors and project contributors were held to contract commitments for performance of the work scope and requirements for quality, budget and schedule. Another element of project success extended to early and continual involvement of all interested in the project scope. Due to the public sensitivity of constructing a landfill planned for radioactive waste as well as offsite waste, there were many stakeholders and it was important to secure their agreement on scope and time frames. The project had multiple participants involved in quality assurance surveillances, audits and inspections, including the construction contractor, CH2M HILL, ORP, the Washington State Department of Ecology, and independent certified quality assurance an

  5. Uranium Mill Tailings Remedial Action fiscal year 1992 roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is funded and managed as two separate projects: Surface remediation (UMTRA-S) and Groundwater compliance (UMTRA-G). Surface remediation is a Major System Acquisition and has been completed at 10 sites, 7 sites are under construction, and 7 sites are in the planning stage. The planning stages of the UMTRA-G Project, a major project, began in April 1991. A programmatic environmental impact statement (PEIS) has been started. Site characterization work and baseline risk assessment will begin FY 1993. Thus, the UMTRA-S Project is a mature and ongoing program with the roles of various organizations well defined, while the UMTRA-G Project is still being formulated and the interfaces between the DOE, states and tribes, and the EPA are being established. The Office of Environmental Restoration and Waste Management (EM) directed that all projects under its authority develop roadmaps for their activities. The UMTRA Project Roadmap was developed by the UMTRA Project Office with input from the TAC, RAC, the GJPO, and assistance from SAIC. A single roadmap has been prepared for both the UMTRA-S and UMTRA-G Projects. This was deemed appropriate due to the close relationship between the projects and to the fact that the same Government and contractor personnel are preparing the roadmaps. Roadmap development is a planning process that focuses on issue identification, root-cause analysis, and issues resolution. The methodology is divided into three phases: assessment, analysis, and issues resolution.

  6. 1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-10-22T23:59:59.000Z

    The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado's Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community's infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

  7. 1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project. Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1991-10-22T23:59:59.000Z

    The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado`s Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community`s infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

  8. Office of Acquisition and Project Management

    Office of Environmental Management (EM)

    Management Office of Nuclear Materials Disposition Office of Waste Treatment PlantTank Farm Program 1122012 16 reduce planning, design, and construction costs and maintenance...

  9. EM Focuses on Contract, Project Management Improvements in Three...

    Broader source: Energy.gov (indexed) [DOE]

    EM, as well as best practices from EM sites such as Paducah and Oak Ridge," said Jack Surash, EM Deputy Assistant Secretary for Acquisition and Project Management. "The goal was...

  10. Safeguards and Security for Program and Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-11-15T23:59:59.000Z

    This Guide provides approaches for implementing security provisions within the functional areas contained in DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets. Canceled by DOE G 413.3-3A.

  11. Project Based Energy Conservation vs. Management Based Energy Conservation

    E-Print Network [OSTI]

    Judy, K.; O'Brien, S.

    Basic American Foods (BAF) is the largest potato dehydrator worldwide. This paper will trace the shift from a Project Based to Management Based energy conservation program. Second only to raw material, energy is one of the highest expenses at BAF...

  12. Leading change management projects in international cross-cultural settings

    E-Print Network [OSTI]

    Repoux, Charles

    2014-01-01T23:59:59.000Z

    In an increasingly complex world for Multinational Companies, it is difficult for managers to keep a firm grasp over the global projects they are tasked to implement. Many of them lead teams operating across country borders, ...

  13. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETEIU...

    Broader source: Energy.gov (indexed) [DOE]

    u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETEIU-IlNATION RECIPIENT:University of Hawaii Page 1 of2 STATE: HI PROJECf TITLE: Development of High Yield Tropical...

  14. Impacts of project management on real option values

    E-Print Network [OSTI]

    Bhargav, Shilpa Anandrao

    2005-02-17T23:59:59.000Z

    reduces the value of real options. The example of resource allocation is used to test this hypothesis. Based on the results, it is concluded that project management reduces the value of real options by reducing variance of the exercise signal...

  15. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    SciTech Connect (OSTI)

    Crawford, C.; Jantzen, C.

    2012-02-02T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product, which is one of the objectives of this current study, is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. FBSR testing of a Hanford LAW simulant and a WTP-SW simulant at the pilot scale was performed by THOR Treatment Technologies, LLC at Hazen Research Inc. in April/May 2008. The Hanford LAW simulant was the Rassat 68 tank blend and the target concentrations for the LAW was increased by a factor of 10 for Sb, As, Ag, Cd, and Tl; 100 for Ba and Re (Tc surrogate); 1,000 for I; and 254,902 for Cs based on discussions with the DOE field office and the environmental regulators and an evaluation of the Hanford Tank Waste Envelopes A, B, and C. It was determined through the evaluation of the actual tank waste metals concentrations that some metal levels were not sufficient to achieve reliable detection in the off-gas sampling. Therefore, the identified metals concentrations were increased in the Rassat simulant processed by TTT at HRI to ensure detection and enable calculation of system removal efficiencies, product retention efficiencies, and mass balance closure without regard to potential results of those determinations or impacts on product durability response such as Toxicity Characteristic Leach Procedure (TCLP). A WTP-SW simulant based on melter off-gas analyses from Vitreous State Laboratory (VSL) was also tested at HRI in the 15-inch diameter Engineering Scale Test Demonstration (ESTD) dual reformer at HRI in 2008. The target concentrations for the Resource Conservation and Recovery Act (RCRA) metals were increased by 16X for Se, 29X for Tl, 42X for Ba, 48X for Sb, by 100X for Pb and Ni, 1000X for Ag, and 1297X for Cd to ensure detection by the an

  16. Project Management Plan - Small Producers Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada winsProgress ReportProjectProjectProjectRPSEA

  17. Position Description Project Manager, Office of Community and Economic Development

    E-Print Network [OSTI]

    Position Description Project Manager, Office of Community and Economic Development Full will support all aspects of the success of CSU's Office of Community and Economic Development projects from to the Director and Assistant Director of the Community and Economic Development Office of Colorado State

  18. CRAD, Management- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  19. EM Contributes Expertise to Comprehensive Resource on Managing Nuclear Projects

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. EM officials wrote a chapter of a recently published book, Managing Nuclear Projects A Comprehensive Management Resource, which covers a range of areas with emphasis on process, requirements and lessons learned. Authors from France, Germany, Argentina, Belgium, Finland, Austria, and the U.S. contributed to the book.

  20. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOEs Idaho site.

  1. CRAD, Emergency Management- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Emergency Management program at the Idaho Accelerated Retrieval Project Phase II.

  2. Quality Assurance Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-27T23:59:59.000Z

    This Guide provides acceptable approaches for implementing the Quality Assurance requirements and criteria of DOE O 413.3A related to the development and implementation of a Quality Assurance Program for the project. No cancellations.

  3. Federal Staffing Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-03T23:59:59.000Z

    This Guide provides an approach to determining the appropriate level and type of federal personnel needed to effectively plan, direct, and oversee project execution. Superseded by DOE G 413.3-19 Admin Chg 1.

  4. Information Technology Program/Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-01-20T23:59:59.000Z

    To close this policy gap the Office of the CIO (OCIO) proposes to develop a new order with departmental guidance on essential processes, documentation, and critical decision-points for IT projects.

  5. Management and Development of the Western Resources Project

    SciTech Connect (OSTI)

    Terry Brown

    2009-03-09T23:59:59.000Z

    The purpose of this project was to manage the Western Resources Project, which included a comprehensive, basin-wide set of experiments investigating the impacts of coal bed methane (CBM; a.k.a. coal bed natural gas, CBNG) production on surface and groundwater in the Powder River Basin in Wyoming. This project included a number of participants including Apache Corporation, Conoco Phillips, Marathon, the Ucross Foundation, Stanford University, the University of Wyoming, Montana Bureau of Mines and Geology, and Western Research Institute.

  6. Online Project Management Certification Syllabus Project management has evolved into a business practice that is closely aligned with the organizational and strategic goals of today's

    E-Print Network [OSTI]

    Reisslein, Martin

    1 Online Project Management Certification Syllabus Overview Project management has evolved. No matter what product or service a business offers, it has projects that must be delivered on time, on budget within scope and with much greater predictability. Project management provides established

  7. U.S. DEPARThlFNT OF ENFRGY EERE PROJECT MANAGEMENT CENTER NFPA...

    Broader source: Energy.gov (indexed) [DOE]

    PROJECT MANAGEMENT CENTER NFPA DETEIU.llNATION RECIPIENT:Fairbanks North Star Borough PROJECT TITLE: Fairbanks Geothermal Energy Project Page 1 of2 STATE: AK Funding Opportunity...

  8. UA Museum Expansion Project Project Manager: Carol Adamczak, 474-7362

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    . Life/Safety Renovation. Complete by February 07. Patty Ice Rink Improvements Project Manager: Marc of the Patty Ice Arena. Install new dehumidification and water treatment system inside the rink. Replace

  9. Control Account Manager (CAM) Responsibilities Control Account Manager (CAM) responsibilities are listed in the PPPL Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Procedures. Below is a brief summary of those responsibilities: Prior to project start: · Develop Work are listed in the PPPL Project Management System Description (PMSD) and PMSD Appendix E Supporting Breakdown Structure (WBS) with project team and stakeholders · Plan the work and identify tasks

  10. A project management focused framework for assuring quality work processes

    SciTech Connect (OSTI)

    Gamsby, S.O.; Mize, J.D. [Allied Signal, Inc., Albuquerque, NM (United States). Federal Mfg. and Technologies; Reid, R.A. [New Mexico Univ., Albuquerque, NM (United States)

    1996-10-01T23:59:59.000Z

    Federal Manufacturing & Technologies/New Mexico (FM&T/NM) of AlliedSignal is an organization of approximately 300 associates providing operations support, engineering, and other technical services for DOE, New Mexico`s National Laboratories, etc. Work performed is primarily project-oriented and ranges from executing a major long-term contract for retrofitting and maintaining a large fleet of escort vehicles to creating a single, small, prototype electronic device for measuring radiation in a unique environment. FM&T/NM is functionally organized and operates in a classic matrix format with functional departments providing personnel with technical expertise, necessary physical resources, and administrative support to several project-based groups. Like most matrix-based organizations that provide support to diverse customers, FM&T/NM has encountered problems that occur when a group of project managers is expected to work together in using and scheduling a shared set of limited resources for the good of the organization as a whole. The framework for managing projects that we present focuses on developing, understanding, and managing the relationships between the functional organization structure, the system of work processes, and the management of projects. FM&T/NM retains its functional structure which primarily assigns personnel to work processes. The evolving role of the process leader focuses primarily on designing, managing, and improving the process, and the interactions among the subprocesses. The project manager is responsible for (1) translating customer requirements into product specifications, (2) determining the sequence of activities needed to meet project goals, (3) scheduling the required work processes, (4) monitoring project progress, (5) providing liaison between the customer and process leaders, and (6) having the desired product and/or service delivered to a satisfied customer in a timely manner.

  11. Project Management Guide for DOE appraisals

    SciTech Connect (OSTI)

    Bendure, A.O. [Sandia National Labs., Albuquerque, NM (United States); Bowers, J.L.; Daniel, V.R.; Renfrow, R.M. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1993-04-01T23:59:59.000Z

    This guide defines a process to provide exemplary support to a DOE assessment team and highlights ``lessons learned`` from the first TSA of the Kansas City Plant which was performed April 21--April 30, 1992. DOE currently plans to conduct TSAs annually at the KCD. This guide can be used to prepare for future Tiger Team Reviews, TSAS, or ES&H Progress Assessments. The guide will be modified periodically to reflect improvements in the appraisal management process as the DOE appraisal process evolves. The process, or portions thereof, described in this manual is expected to be applicable to managing a Conduct of Operations Assessment.

  12. Project Management Guide for DOE appraisals

    SciTech Connect (OSTI)

    Bendure, A.O. (Sandia National Labs., Albuquerque, NM (United States)); Bowers, J.L.; Daniel, V.R.; Renfrow, R.M. (Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.)

    1993-04-01T23:59:59.000Z

    This guide defines a process to provide exemplary support to a DOE assessment team and highlights lessons learned'' from the first TSA of the Kansas City Plant which was performed April 21--April 30, 1992. DOE currently plans to conduct TSAs annually at the KCD. This guide can be used to prepare for future Tiger Team Reviews, TSAS, or ES H Progress Assessments. The guide will be modified periodically to reflect improvements in the appraisal management process as the DOE appraisal process evolves. The process, or portions thereof, described in this manual is expected to be applicable to managing a Conduct of Operations Assessment.

  13. 1992 North Dakota Economic Impact Study for the Uranium Mill Tailings Remedial Action Project, Belfield and Bowman, North Dakota. Preliminary final report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The goal of the Uranium Mill Tailings Remedial Action (UMTRA) Project in North Dakota is to improve the environment and reduce the negative health effects associated with residual radioactive material (RRM) from the inactive processing sites at Belfield and Bowman, North Dakota. A secondary benefit of the UMTRA Project is economic gain. The 1992 North Dakota Economic Impact Study (NDEIS) analyzes the impact of the remedial actions at the inactive Belfield and Bowman processing sites and their associated vicinity properties. This analysis is based on the assumption that the state of North Dakota will provide 10 percent of the funding required for remediation. For every dollar the state of North Dakota invests in the Belfield and Bowman onsite portion of the UMTRA Project, it will realize $5.04 in gross labor income (i.e., gross labor income divided by the state`s total funding requirement). For every dollar the state of North Dakota invests, it will realize a net return of $3.04 (i.e., net benefit divided by the state`s total funding requirement). This reflects only labor expenditure and employment impact. ff state and local non-labor tax benefits were considered in the net economic benefit, North Dakota could receive significantly more than $3.04 for each dollar it invests. The UMTRA Project work at Belfield and Bowman will benefit the state of North Dakota. Benefits include a reduction in the negative health effects caused by low-level RRM, an improvement in the environment, and increased economic growth.

  14. CSE 4322: Software Project Management 1 Instructor

    E-Print Network [OSTI]

    Csallner, Christoph

    Software: What Really Works, and Why We Believe It. O'Reilly. 2010. 3. Frederick P. Brooks: The Mythical: Effective Java. 2nd edition. Prentice Hall, 2008. 7. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha (written) · 20% project presentations (oral) 10.1 Grade Distribution A from 85%, B from 70%, C from 60%, D

  15. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect (OSTI)

    BERGMAN TB; STEFANSKI LD; SEELEY PN; ZINSLI LC; CUSACK LJ

    2012-09-19T23:59:59.000Z

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  16. Brownfield landfill remediation under the Illinois EPA site remediation program

    SciTech Connect (OSTI)

    Beck, J.; Bruce, B.; Miller, J.; Wey, T.

    1999-07-01T23:59:59.000Z

    Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

  17. 2011 Project Management Workshop | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 Projects ToDepartmentAwards

  18. Data Management System of the DIRAC Project

    E-Print Network [OSTI]

    Haen, Christophe; Tsaregorodtsev, Andrei

    2015-01-01T23:59:59.000Z

    The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks. In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. The DIRAC DMS is in use by several user communities now. The contribution will present the experience of the LHCb exper...

  19. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01T23:59:59.000Z

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  20. Proceedings of ICEM'03: International Conference on Environmental Remediation and Radioactive Waste Management

    E-Print Network [OSTI]

    Sheffield, University of

    and Radioactive Waste Management September 21 - 25, 2003, Examination Schools, Oxford, England ICEM03 for the U.S. strategic defense arsenal. A large inventory of radioactive and mixed waste has accumulated the behavior of a high sodium glass buried in a loamy soil. The radioactive waste glass (K-26) made from actual

  1. Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484

    SciTech Connect (OSTI)

    Simiele, Connie J.; Blackford, L. Ty [CH2M HILL Plateau Remediation Contract - CHPRC (United States)] [CH2M HILL Plateau Remediation Contract - CHPRC (United States); West, Lori D. [East Tennessee Materials and Energy Corporation - M and EC (United States)] [East Tennessee Materials and Energy Corporation - M and EC (United States)

    2013-07-01T23:59:59.000Z

    Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to resource scarcity; limited cross-training capability; and reduced capability to respond to changes in DOE priorities. Finally, there are many challenges to achieving these cost savings. With a workforce nearing retirement effective succession planning becomes critical to success and requires establishing a balance between the cost of hiring and training and cost-saving activities. With six active waste management facilities spread across nearly 15 square miles, scheduling and deploying cross-trained surveillance and maintenance teams is a logistical challenge, particularly as the loss of funding has not diminished emphasis by regulatory agencies placed on the safe and compliant performance of DOE and its contractors. As reflected in Table I, efficiencies are currently being implemented on the Hanford Plateau Remediation Contract (PRC) that deliver cost savings that align with the current site budget while maintaining critical capabilities. It is currently estimated that these efficiencies will result in a cost savings of approximately $9 million for FY13 in base and minimum safe operations on the PRC - a cost reduction of more than 13 percent over FY12 and nearly 30 percent over FY09 levels. (authors)

  2. The three-dimensional matrix -- An evolution in project management

    SciTech Connect (OSTI)

    Glidewell, D.

    1996-09-01T23:59:59.000Z

    In the Functional Department Dimension, functional departments such as project management, design, and construction would be maintained to maximize consistency among project teams, evenly allocate training opportunities, and facilitate the crossfeeding of lessons learned and innovative ideas. Functional departments were also determined to be the surest way of complying uniformly with all project control systems required by the Department of Energy (Sandia`s primary external customer). The Technical Discipline dimension was maintained to enhance communication within the technical disciplines, such as electrical engineering, mechanical engineering, civil engineering, etc., and to evenly allocate technical training opportunities, reduce technical obsolescence, and enhance design standards. The third dimension, the Project Dimension, represents the next step in the project management evolution at Sandia, and together with Functional Department and Technical Discipline Dimensions constitutes the three-dimensional matrix. It is this Project Dimension that will be explored thoroughly in this paper, including a discussion of the specific roles and responsibilities of both management and the project team.

  3. Ashtabula Environmental Management Project Main Extrusion Plant Demolition Project. Demolition of the Ashtabula Environmental Management Project's Main Extrusion Plant

    SciTech Connect (OSTI)

    Colborn, Kurt; Johnson, Kathryn K.

    2003-02-27T23:59:59.000Z

    Significant progress was made this year toward closure of the Department of Energy's Ashtabula Environmental Management Project (AEMP) with the demolition of the 9-building Main Extrusion Plant Complex. The 44,000 square foot building complex formerly housed uranium extrusion facilities and equipment. At the start of the project in October of 2001, the buildings still contained a RCRA Part B storage area, operating mixed waste treatment facilities, active waste shredding and compacting process areas, and a state EPA permitted HEPA ventilation system. This paper presents a discussion of the multidisciplinary effort to bring the building to a safe shutdown condition in just six months, including relocation of existing process areas, utility isolation, and preliminary decontamination. Also discussed is the demolition strategy in which portions of the facility remained active while demolition was proceeding in other areas. Other details of the technical approach to the demolition are also discussed, including innovative techniques for demolition, galbestos removal, contamination control, and waste minimization. These techniques contributed to the early completion of demolition in July of 2002, fully two months ahead of schedule and $1.5 million under budget.

  4. Increase Productivity - Implement Energy Management Systems with Project Management Techniques

    E-Print Network [OSTI]

    Spinner, M. P.

    1984-01-01T23:59:59.000Z

    Engineering Manager of this small but active division, I devote a big part of my time on justifying energy expenditures and the means to reduce these costs. Ten years ago energy costs were one tenth of today's costs and just about three percent of the division...

  5. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01T23:59:59.000Z

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  6. GRADUATE FACULTY-STUDENT PROJECT: School of Management Development Office: Marketing and Development Intern

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    GRADUATE FACULTY-STUDENT PROJECT: School of Management Development Office: Marketing at: Email address: Anticipated Graduation Date: GRADUATE FACULTY-STUDENT PROJECT: (Only graduate level students may be considered for this project) School of Management Development Office: Marketing

  7. project management | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions3 weProject

  8. Improving Project Management | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment ofDepartment of EnergyImproving Project

  9. Report: EM Acquisition and Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department of Energy onACQUISITION AND PROJECT

  10. Project Management Coordination Office | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergy ProgressProjectEnergy

  11. Project Management Coordination Office Organization Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID Project Name FY TotalLDRD -

  12. Project Management Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID Project Name FYProject

  13. CNS Project Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy- Mixed HumidBingThis2, 2015SubpartJune 2012CNS Project

  14. UMTRA Ground Water Project management action process document

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  15. Program and Project Management for the Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-13T23:59:59.000Z

    To provide Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), project management direction for the acquisition of capital assets that are delivered on schedule, within budget, and fully capable of meeting mission performance and environmental, safety and health standards. (Cancels DOE O 430.1A, paragraphs 6e(7); 7a(3); 7b(11); 7b(14); 7c(4), (6), (7), (11) and (16); 7d(4) and (8); 7e(3), (10), and (17); Attachment 1, Definitions (items 30 - Line Item Project; item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). Cancels DOE N 430.1 and DOE O 430.1A (in part). Canceled by DOE O 413.3 Chg 1.

  16. Program and Project Management for the Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-13T23:59:59.000Z

    To provide Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), project management direction for the acquisition of capital assets that are delivered on schedule, within budget, and fully capable of meeting mission performance and environmental, safety and health standards. Cancels DOE O 430.1A, paragraphs 6e(7); 7a(3); 7b(11); 7b(14); 7c(4), (6), (7), (11) and (16); 7d(4) and (8); 7e(3), (10), and (17); Attachment 1, Definitions (items 30 - Line Item Project; item 42 - Project, item 48 - Strategic System; and Attachment 2, Contractor Requirements Document paragraph 1d regarding a project management system. Cancels DOE N 430.1 and DOE O 430.1A (in part). Canceled by DOE O 413.3A.

  17. Remediation of Uranium Impacted Sediments in a Watercourse - 12486

    SciTech Connect (OSTI)

    Shephard, E.; Walter, N.; Downey, H.; Collopy, P. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Conant, J. [ABB, Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

    2012-07-01T23:59:59.000Z

    In 2009, remediation was initiated for a non-operational fuel cycle facility previously used for government contract work. Between 2009 and the spring of 2011, remediation efforts were focused on demolition of contaminated buildings and removal of contaminated soil. In the late spring of 2011, the last phase of remediation commenced involving the removal of contaminated sediments from portions of a 1,200 meter long gaining stream. Planning and preparation for remediation of the stream began in 2009 with submittal of permit applications to undertake construction activities in a wetland area. The permitting process was lengthy and involved securing permits from multiple agencies. However, early and frequent communication with stakeholders played an integral role in efficiently obtaining the permit approvals. Frequent communication with stakeholders throughout the planning and remediation process also proved to be a key factor in timely completion of the project. The remediation of the stream involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation and disposal. Many safeguards were employed to protect several species of concern in the work area, water management during project activities, challenges encountered during the project, methods of Final Status Survey, and stream restoration. The planning and permitting effort for the Site Brook remediation began in May 2009 and permits were approved and in place by February 2011. The remediation and restoration of the Site Brook began in April 2011 and was completed in November 2011. The remediation of the Site Brook involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation, disposal, FSS, and restoration. Early and frequent communications with stakeholders proved to be a key factor in timely completion of the project. Challenges encountered during the remediation effort were overcome by proper planning and having preparedness procedures in place prior to executing the work. With the remediation and restoration successfully completed, the only remaining task is to monitor/maintain the restoration for 10 years. (authors)

  18. Syllabus Fall 2014 | APS 1019 Leadership in Project Management | Dr. Haig Baronikian 1 A) Title: APS1019 Leadership in Project Management

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    people and managing resources to achieve the intended project outcomes and benefits. Leadership is often, Strategy and Project Management Vision, Mission and Values! Strategic Planning and the Balanced Scorecard and Project Management 2 Organizational Culture Organizational Culture plays one of the largest roles

  19. Program and Project Management for the Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-18T23:59:59.000Z

    To provide the Department of Energy (DOE), including the National Nuclear Security Administration, with project management direction for the acquisition of capital assets with the goal of delivering projects on schedule, within budget, and fully capable of meeting mission performance, safeguards and security, and environmental, safety, and health standards. Cancels DOE O 413.3. Canceled by DOE O 413.3A Chg 1.

  20. The Management of the Plateau Remediation Contract, OAS-L-13-03

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11, 2008Energy TheManagement ofThe

  1. Hanford's 100-HX Pump and Treat Project - a Successful Blend of Science, Technology, Construction, and Project Management - 12412

    SciTech Connect (OSTI)

    Albin, Kenneth A.; Bachand, Marie T.; Biebesheimer, Fred H.; Neshem, Dean O.; Smoot, John L. [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

    2012-07-01T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) recently completed construction and start-up of the $25 million 100-HX Groundwater Pump and Treat Project for the Department of Energy (DOE) at its Hanford Reservation site in Washington State. From the onset, the 100-HX Project Leadership Team was able to successfully blend the science and technology of a state-of-the-art groundwater pump and treat system with the principles, tools, and techniques of traditional industrial-type construction and project management. From the 1940's through most of the 1980's, the United States used the Hanford Site to produce nuclear material for national defense at reactor sites located along the Columbia River. While the reactors were operational, large volumes of river water were treated with sodium dichromate (to inhibit corrosion of the reactor piping) and used as a coolant for the reactors. After a single pass through the reactor and before being discharged back to the river, the coolant water was sent to unlined retention basins to cool and to allow the short-lived radioactive contaminants to decay. As a result of these operations, hexavalent chromium was introduced to the vadose zone, and ultimately into the groundwater aquifer and the adjacent Columbia River. In addition, numerous leaks and spills of concentrated sodium dichromate stock solution over the lifetime of reactor operations led to higher concentrations of chromate in the vadose zone and groundwater in localized areas. As a result, the 100 Area was included in the National Priorities List sites under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA). The mission of the 100-HX Project is to significantly reduce the concentration of hexavalent chromium in the groundwater by treating up to 3.8 billion gallons (14,300 mega-liters) of contaminated water over its first nine years of operations. In order to accomplish this mission, groundwater scientists and geologists using sophisticated scientific modeling optimized the 100-HX's approximately 0.7 square mile (181 hecto-meters) extraction and injection well field to support continuous operation of a maximum of 800 gallons (3,028 liters) per minute, 24 hours per day, and 7 days per week. The use of traditional resin technology for the plant's ion exchange system required a change out of the resin every 12 weeks and shipment to an offsite facility 1,500 miles (2,414 kilometers) away for regeneration. Instead, the project leadership pursued newer technology with a disposable resin that could be disposed of on-site and would require less frequent change outs, reducing the project's life cycle costs by more than $16 million. Constructing the facility had its own challenges. The well field location overlapped ecologically sensitive lands where bald eagles and native wildlife use the land for their mating habitat for nearly half of the year. Building locations had to be planned around historically and culturally sensitive areas, and around another contractor's remediation work zones. Also, the size of the well field required a transfer (pumping) facility and installation of more than 60 miles (97 kilometers) of high-density polypropylene pipe, 23 miles (38 kilometers) of power cable, and 28 miles (46 kilometers) of control cable. Along with schedule and budget constraints typical of any fast-track project, the project team dealt with severe resource constraints due to competing projects across the Hanford Site caused by the influx of American Recovery and Reinvestment Act stimulus funding. In addition, the project team itself was stretched between completing another $25 million dollar construction project while designing and constructing this project. In order to save money, the project schedule was compressed by three months from the original baseline schedule. This was made possible by the strong use of project management principles throughout the design, construction, and testing phases, as well as implementation of many lessons learned from a similar construction project. In summary, the 100-HX

  2. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  3. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01T23:59:59.000Z

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  4. Seawater Air Conditioning for Downtown Engineering Project Manager

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Seawater Air Conditioning for Downtown Honolulu Scott Higa Engineering Project Manager Honolulu Seawater Air Conditioning, LLC Abstract As a tropical island state, Hawaii has a year-round demand for air conditioning. Conventional air conditioning systems are energy intensive and represent close to 50 percent

  5. Project Management - The People Make the Difference

    SciTech Connect (OSTI)

    DELOZIER, M.P.

    2001-01-15T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. manages the high level nuclear waste tanks for the Department of Energy's Office of River Protection, at the Hanford site in southeastern Washington State. The Hanford tanks contain more than 53 million gallons of waste, 200 million curies (three times that released by Chernobyl), and 67 of the 177 tanks have leaked at some time in the past. The current company has been responsible for the tanks since fall 1996. Previous to 1996, there is a long history of the Hanford tank farms being the bane of DOE Environmental Management. One tank would periodically and spontaneously release large quantities of flammable gas. Another tank, which does not have double containment as now required by law, self-boiled and required the addition of more than 5,000 gallons of water per month to maintain temperatures within the design parameters of the tank. Only a single-wall steel pipe with limited leak detection was available to transfer waste the 7-mile route from the western-most tank farms to a waste evaporator. The regulators, public, and congress had little confidence that DOE or its contractors knew the chemical, physical, or nuclear characteristics of the tanks contents. The nuclear safety controls were so complex and varied for different tanks and different operations, that very few employees understood the hazards and the control requirements. In fact, in 1993, congress found it necessary to pass a law restricting the operations of 54 of the 177 tanks due to safety concerns--these tanks are known as ''watch list'' tanks. This was a bleak picture--DOE's most hazardous nuclear waste storage site--and no one really knew what was in the tanks and control measures were akin to bandaids and bailing wire. This is not the condition today. No tanks spontaneously belch gas above the flammability limit of hydrogen. All tanks have consistent flammable gas controls that are understood by the tank farm workers. A new doubly contained transfer line, with redundant leak detection systems, routinely transports waste across the 7 miles from the west to east tanks. The high-heat tank has been emptied. A new ventilation system services the doubly contained tanks with the highest heat content. The Defense Nuclear Facilities Safety Board, a presidential appointed group that oversees DOE nuclear safety, has declared that the tank contents are sufficiently characterized. The systems and a plan are in place to remove residual pumpable liquids from the non-compliant single-shell tanks by 2004. More than half of the tanks have been removed from the ''watch list'' and the rest will be removed within the next year. And, a comprehensive plan exists to retrieve the waste, send it to a treatment plant, and close the tank farms.

  6. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    SciTech Connect (OSTI)

    DADO MA

    2008-07-31T23:59:59.000Z

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  7. Evaluation of the Eological Management and Enhancement Alernative for Remediation of the K1007-P1 Pond

    SciTech Connect (OSTI)

    Peterson, M.J.

    2005-10-31T23:59:59.000Z

    An evaluation of the human and ecological risks associated with the P1 Pond and surrounding environs was conducted as part of the ETTP Site-Wide Remedial Investigation. The RI provides the basis for the focus on PCBs as the most important unacceptable risk to human and ecological health in the pond. Other P1 contaminants, media, or pathways of risk to receptors are identified in the RI, but are not addressed as a major risk reduction goal for the ETTP Site-Wide Feasibility Study. Therefore, the goal of the Ecological Management alternative is to reduce unacceptable risks associated with PCBs in fish. Many of the actions proposed for this alternative, however, are likely to reduce risks associated with other contaminants and their pathways. The high PCB concentrations in fish from the P1 Pond are most certainly due in part to the current ecological condition of the pond that maximizes PCB biomagnification. This basic assumption and the factors contributing to it were evaluated by conducting an intensive field study of the P1 Pond in the summer of 2004 (for a thorough presentation of current P1 Pond biological conditions, see Peterson et al. 2005). Major hypotheses regarding the P1 Pond's current fish community, PCB fate and transport processes, pond vegetation, and limnological conditions that contribute to the high PCB levels in fish were validated by the study (Appendix A), The results of the 2004 ecological assessment, in concert with long-term datasets obtained as part of the ETTP Biological Monitoring and Abatement Program (BMAP) and recent abiotic sampling for the RI, provide the basis for the assessment of current conditions.

  8. Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project

    SciTech Connect (OSTI)

    SINCLAIR, J.C.

    1999-05-03T23:59:59.000Z

    This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex.

  9. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    None

    2007-05-03T23:59:59.000Z

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, Quality Assurance Requirements, ANSI/ASQC E4-2004, Quality Systems for Environmental Data and Technology Programs Requirements with Guidance for Use, and ISO 14001-2004, Environmental Management Systems, have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, Quality Assurance Program, identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, QA Program Implementation, identifies the TAC organizations that have responsibility for implementing the QA program requirements; and Appendix C of the QA Manual provides comparison tables that identify where the requirements of other standards are addressed in the QA Manual.

  10. MEM Project Guidelines revised 6/25/09 Master of Environmental Management

    E-Print Network [OSTI]

    (including an estimate of hours of work and materials for each task) Project Because the MEM projectMEM Project Guidelines revised 6/25/09 Master of Environmental Management Project Guidelines Project Overview: The culminating experience of students seeking a Master of Environmental Management

  11. U.S. DEPARThfENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETElUrINATION RECIPIENT: Marquette University PROJECT TITLE : Anaerobic Biotechnology for Renewable Energy Page 1 of2 STATE;...

  12. Potl,,]) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT: North Carolina State University- North Carolina Solar Center PROJECT TITLE: Southem Mid-Atlantic Provider of...

  13. U.S. DEPARTIVEENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DE 'URA TTNATION RECIPIENT:Texas Tech University STATE: TX PROJECT TITLE : Great Plains Wind Power Test Facility Funding...

  14. IT Project risk management in the financial sector: an exploratory study .

    E-Print Network [OSTI]

    Mbokane, Stuart Ezrom

    2008-01-01T23:59:59.000Z

    ??This study investigates project risk management in information technology (IT) environment. The intention is to identify factors that will improve project success in the financial (more)

  15. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    ." ,., U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:TRAVIS COUNTY TEXAS PROJECT TITLE: County of Travis, Texas 700 Lavaca Street...

  16. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETERMINATION RECIPIENT :lowa Economic Development Authority - Energy Division PROJECT TITLE: Iowa Slate Energy Program...

  17. U.S. DEP.ARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATION RECIPIENT:Auburn University STATE:AL PROJECT Biomass to Liquid Fuels and Electric Power Research TITLE: Funding Opportunity...

  18. u.s. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPINT:California Center for Sustainable Energy Page 1 of2 STATE: CA PROJECT TITLE : Streamlining Solar Standards &...

  19. Using critical chain project management methodologies to build a production schedule

    E-Print Network [OSTI]

    Poppe, Clayton D. (Clayton Douglas)

    2009-01-01T23:59:59.000Z

    Critical Chain project management methodologies have been used for the last ten years to manage a wide range of projects. These methods, which apply Eli Goldratt's Theory of Constraints, have demonstrated the ability to ...

  20. Crossing innovation & product projects management: A comparative analysis in automotive industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Crossing innovation & product projects management: A comparative analysis in automotive industry Keywords: organizational learning, new product projects portfolio, innovation management, automotive in automotive industry INTRODUCTION Projectification and platform approaches have been two main transformation

  1. Program and Project Management for the Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-07-28T23:59:59.000Z

    The Order provides project management direction for the acquisition of capital assets that are delivered on schedule, within budget, and capable of meeting mission performance and environmental safety and health standards. The page change incorporates requirements of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 413.3. Canceled by DOE O 413.3B dated 11-29-10.

  2. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01T23:59:59.000Z

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  3. Idea-Nation: A Unique Framework for Managing Crowd-Sourced Projects

    E-Print Network [OSTI]

    Palmer, Joseph

    2014-12-19T23:59:59.000Z

    through a management frame work for inter-organizational crowd-sourced projects called Idea-Nation....

  4. Fluid management plan for the Project Shoal Area Offsites Subproject

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The US Department of Energy, Nevada Operations Office (DOE/NV) has initiated the Offsites Subproject to characterize the hazards posed to human health and the environment as a result of underground nuclear testing activities at facilities other than the Nevada Test Site (NTS). A primary Subproject objective is to gather adequate data to characterize the various Subproject sites through the collection of surface and subsurface soil samples and by drilling several wells for the collection of groundwater data. The Project Shoal Area (PSA) is one of the Subproject`s Nevada sites and is subject to the requirements set forth in the Federal Facility Compliance Agreement and Consent Order (FFACO) (DOE, 1996a). In accordance with the FFACO, a Corrective Action Investigation Plan (CAIP) has been developed for work at the PSA (designated as Corrective Action Unit Number 416). This Fluid Management Plan (FMP) provides guidance for the management of fluids generated from wells constructed at the PSA. Long-term monitoring and future activities at the site, if required, will be set forth in additional documents as required by the FFACO. The ultimate method for disposition of fluids generated by site operations depends upon sample analysis and process knowledge in relation to fluid management criteria. Section 2 describes well site operations; Section 3 discusses fluid management criteria; Section 4 includes the fluid monitoring program; Section 5 presents the fluid management strategy; Section 6 provides for fluid management during routine well monitoring; and Section 7 contains reporting criteria.

  5. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part B, Remedial action, robotics/automation, waste management

    SciTech Connect (OSTI)

    Fellows, R.L. [ed.

    1993-02-26T23:59:59.000Z

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration (ER) and waste management (WN) problems at the Oak Ridge K-25 Site. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remediation, decontamination, and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume 3 B provides the Technology Evaluation Data Sheets (TEDS) for ER/WM activities (Remedial Action Robotics and Automation, Waste Management) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than each technology in Vol. 2. The TEDS are arranged alphanumerically by the TEDS code number in the upper right corner of each data sheet. Volume 3 can be used in two ways: (1) technologies that are identified from Vol. 2 can be referenced directly in Vol. 3 by using the TEDS codes, and (2) technologies and general technology areas (alternatives) can be located in the index in the front of this volume.

  6. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  7. DI!P.~ThIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    DIP.ThIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETFlUvITNATION RECIPIENT:Ocean Renewable Power Company PROJECT TITLE: OCGen Module Mooring Project Page 1 of3 STATE: ME...

  8. assess remediation performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation...

  9. The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanfords 300 Area Uranium Plume Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-31T23:59:59.000Z

    The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused on multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  11. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect (OSTI)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  12. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    SciTech Connect (OSTI)

    Campbell, Don; Barton, David [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada)] [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada); Case, Glenn [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)] [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)

    2013-07-01T23:59:59.000Z

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibility for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary construction activities for the Port Hope LTWMF commenced in 2012 and are scheduled to continue over the next few years. The first cell of the engineered containment mound is scheduled to be constructed in 2015 with waste placement into the Port Hope LTWMF anticipated over the following seven year period. (authors)

  13. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    SciTech Connect (OSTI)

    Borgeson, M.E.

    1994-11-09T23:59:59.000Z

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

  14. The UMTRA PEIS: A strategy for groundwater remediation

    SciTech Connect (OSTI)

    Burt, C.; Ulland, L.; Weston, R.F.; Metzler, D. (DOE, Albuquerque, NM (United States))

    1993-01-01T23:59:59.000Z

    A programmatic environmental impact statement (PEIS) was initiated in 1992 for the uranium mill tailings remedial action (UMTRA) program. The PEIS kicked off the groundwater restoration phase of UMTRA, a project involving remediation of 24 sites in ten states and tribal lands contaminated with tailings from uranium mining and milling operations. The U.S. Department of Energy (DOE) agreed, in early 1992, that a PEIS was an appropriate strategy to comply with the National Environmental Policy Act (NEPA) for this second, groundwater phase of the project. This decision recognized that although a parallel effort was being undertaken in preparing a PEIS for DOE's Environmental Restoration/Waste Management (ER/WM) program, characteristics and the maturity of the UMTRA project made it more appropriate to prepare a separate PEIS. The ER/WM PEIS is intended to examine environmental restoration and waste management issues from a very broad perspective. For UMTRA, with surface remediation completed or well under way at 18 of the 24 sites, a more focused programmatic approach for groundwater restoration is more effective than including the UMTRA project within the ER/WM environmental impact statements. A separate document allows a more focused and detailed analysis necessary to efficiently tier site-specific environmental assessments for groundwater restoration at each of the 24 UMTRA former processing sites.

  15. 2014 DOE Project Management Workshop Meeting the Challenge-Integrated Acquisition and Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issue ofOffice | Department4 U.S.DOE Project

  16. Information flow in the DAMA Project beyond database managers: Information flow managers

    SciTech Connect (OSTI)

    Russell, L. [Argonne National Lab., IL (United States); Wolfson, O.; Yu, C. [Illinois Univ., Chicago, IL (United States)

    1996-03-01T23:59:59.000Z

    To meet the demands of commercial data traffic on the information highway, a new look at managing data is necessary. One projected activity, sharing of point-of-sale information, is being considered in the Demand Activated Manufacturing Project of the American Textile Partnership project. A scenario is examined in which 100,000 retail outlets communicate over a period of days. They provide the latest estimate of demand for sewn products across a chain of 26,000 suppliers through the use of bill-of-materials explosions at four levels of detail. A new paradign the information flow manager, is developed to handle this situation, including the case where members of the supply chain fail to communicate and go out of business. Techniques for approximation are introduced to keep estimates of demand as current as possible.

  17. A New Project Execution Methodology; Integrating Project Management Principles with Quality Project Execution Methodologies

    E-Print Network [OSTI]

    Schriner, Jesse J.

    2008-07-25T23:59:59.000Z

    On an annual basis, there are numerous reports in regards to a particular company or functions inability to execute on a large number of projects. The reasons vary widely from a lack of an initial understanding of what the customer was really...

  18. 1993 International conference on nuclear waste management and environmental remediation, Prague, Czech Republic, September 5--11, 1993. Combined foreign trip report

    SciTech Connect (OSTI)

    Slate, S.C. [comp.; Allen, R.E. [ed.

    1993-12-01T23:59:59.000Z

    The purpose of the trip was to attend the 1993 International Conference on Nuclear Waste Management and Environmental Remediation. The principal objective of this conference was to facilitate a truly international exchange of information on the management of nuclear wastes as well as contaminated facilities and sites emanating from nuclear operations. The conference was sponsored by the American Society of Mechanical Engineers, the Czech and Slovak Mechanical Engineering Societies, and the Czech and Slovak Nuclear Societies in cooperation with the Commission of the European Communities, the International Atomic Energy Agency, and the OECD Nuclear Agency. The conference was cosponsored by the American Nuclear Society, the Atomic Energy Society of Japan, the Canadian Nuclear Society, the (former USSR) Nuclear Society, and the Japan Society of Mechanical Engineers. This was the fourth in a series of biennial conferences, which started in Hong Kong, in 1987. This report summarizes shared aspects of the trip; however, each traveler`s observations and recommendations are reported separately.

  19. Cost of presumptive source term Remedial Actions Laboratory for energy-related health research, University of California, Davis

    SciTech Connect (OSTI)

    Last, G.V.; Bagaasen, L.M.; Josephson, G.B.; Lanigan, D.C.; Liikala, T.L.; Newcomer, D.R.; Pearson, A.W.; Teel, S.S.

    1995-12-01T23:59:59.000Z

    A Remedial Investigation/Feasibility Study (RI/FS) is in progress at the Laboratory for Energy Related Health Research (LEHR) at the University of California, Davis. The purpose of the RI/FS is to gather sufficient information to support an informed risk management decision regarding the most appropriate remedial actions for impacted areas of the facility. In an effort to expedite remediation of the LEHR facility, the remedial project managers requested a more detailed evaluation of a selected set of remedial actions. In particular, they requested information on both characterization and remedial action costs. The US Department of Energy -- Oakland Office requested the assistance of the Pacific Northwest National Laboratory to prepare order-of-magnitude cost estimates for presumptive remedial actions being considered for the five source term operable units. The cost estimates presented in this report include characterization costs, capital costs, and annual operation and maintenance (O&M) costs. These cost estimates are intended to aid planning and direction of future environmental remediation efforts.

  20. Contacts for IT Project Management | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnnProject Management

  1. Project Manager Ned Sauthoff Talks About US ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada winsProgressProject Management

  2. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    HORHOTA, M.J.

    2000-12-21T23:59:59.000Z

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  3. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01T23:59:59.000Z

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  4. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30T23:59:59.000Z

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  5. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01T23:59:59.000Z

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  6. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    VOLKMAN, D.D.

    1999-10-27T23:59:59.000Z

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  7. Remedial design through effective electronic associations

    SciTech Connect (OSTI)

    Deis, J.L.; Wankum, R.D.

    1999-07-01T23:59:59.000Z

    Black and Veatch Special Projects Corp. (BVSPC) used an environmental data management system (EDMS) to consolidate x-ray fluorescence (XRF), global positioning system (GPS), and laboratory analytical data into a unique and flexible electronic database. Cost savings were acknowledged in all phases of the remedial design due to the development and use of the EDMS and its distinct associations with various electronic software packages. The EDMS allowed effective and efficient completion of the remedial design investigation of the Oronogo-Duenweg Mining Belt Site. The Site is a 125-year old mining community in Jasper County, Missouri. Approximately 6,500 residences are now located within the 60 square-mile Superfund Site where lead and zinc were mined. Smelting and mining activities were conducted in several areas throughout the community. These operations left approximately 9 million tons of mine wastes at the Site upon completion of the mining activities. The purpose of the remedial design investigation was to quantify and identify the residential yards that were adversely affected by these activities.

  8. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    SciTech Connect (OSTI)

    Jacobsen, P.H.

    1997-09-23T23:59:59.000Z

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  9. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    SciTech Connect (OSTI)

    Slaybaugh, R.R.

    1997-08-29T23:59:59.000Z

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  10. Top Management Involvement in the Adoption of Energy Efficiency Projects

    E-Print Network [OSTI]

    Blass, Vered; Corbett, Charles J.; Delmas, Magali A; Muthulingam, Suresh

    2011-01-01T23:59:59.000Z

    of Recommendations Top Management * Energy Costs/Sales TopTop Management Top Management * Energy Costs/Sales TopTop Management Top Management * Energy Costs/Sales Top

  11. Configuration Management Plan for Tank Farm Restoration and Safe Operations Project W-314

    SciTech Connect (OSTI)

    MCGREW, D.L.

    2000-04-19T23:59:59.000Z

    The Configuration Management Plan for Project W-314 describes the systems, processes and procedures for implementation of applicable configuration management practices described in HNF-0842, Volume 111, Section 3.1, ''Configuration Management Implementation''. This plan is tailored specifically for use by Project W-314.

  12. Risk Management Plan for Tank Farm Restoration and Safe Operations Project W-314

    SciTech Connect (OSTI)

    MCGREW, D.L.

    2000-04-19T23:59:59.000Z

    The Risk Management Plan for Project W-314 describes the systems, processes and procedures for implementation of applicable risk management practices described in HNF-0842, Volume IV, Section 2.6, ''Risk Management''. This plan is tailored specifically for use by Project W-314.

  13. Using Critical Chain Project Management Methodologies to Build a Production Schedule

    E-Print Network [OSTI]

    de Weck, Olivier L.

    . It is the proper management of the essential project details across functions: materials, labor activities the proper management of materials and labor activities. Costs and activity durations were estimated usingUsing Critical Chain Project Management Methodologies to Build a Production Schedule By Clayton D

  14. Environmental management compliance reengineering project, FY 1997 report

    SciTech Connect (OSTI)

    VanVliet, J.A.; Davis, J.N.

    1997-09-01T23:59:59.000Z

    Through an integrated reengineering effort, the Idaho National Engineering and Environmental Laboratory (INEEL) is successfully implementing process improvements that will permit safe and compliant operations to continue during the next 5 years, even though $80 million was removed from the Environmental Management (EM) program budget. A 2-year analysis, design, and implementation project will reengineer compliance-related activities and reduce operating costs by approximately $17 million per year from Fiscal Year (FY) 1998 through 2002, while continuing to meet the INEEL`s environment, safety, and health requirements and milestone commitments. Compliance reengineer`s focus is improving processes, not avoiding full compliance with environmental, safety, and health laws. In FY 1997, compliance reengineering used a three-phase approach to analyze, design, and implement the changes that would decrease operating costs. Implementation for seven specific improvement projects was completed in FY 1997, while five projects will complete implementation in FY 1998. During FY 1998, the three-phase process will be repeated to continue reengineering the INEEL.

  15. Comparison of Construction Manager at Risk and Integrated Project Delivery Performance on Healthcare Projects: A Comparative Case Study

    E-Print Network [OSTI]

    Bilbo, David; Bigelow, Ben F.; Escamilla, Edelmiro; Lockwood, Christa

    2014-04-03T23:59:59.000Z

    Comparison of Construction Manager at Risk and Integrated Project Delivery Performance on Healthcare Projects: A Comparative Case Study XXX, XXX, XXX, and XXX XXX XXXX XXXX XXX, XXXX#7;#7; This study provides information and a basic overview..., Integrated Project Delivery, Contracts #7;#7;Introduction For most of the 20th century, construction projects were primarily completed under the Design-Bid-Build (DBB) delivery method. As the building industry and global competition has increased, a demand...

  16. Implementation of a Project Management System for Improvement to City, State's Design and Construction Capital Project Delivery

    E-Print Network [OSTI]

    Thompson, Chad C.

    2007-05-18T23:59:59.000Z

    management, process improvement suggestions as well as staff supplements necessary for the completion of the backlog. This included the development of standard processes and procedures for the use by the combined City and consultant staff. The initial... combination of full time staff and consultant supplementary staff funded by the project?s individual budgets. In addition to completing the project backlog, this staff has documented the processes and procedures EMGT 835 Field Project 21 Chad Thompson...

  17. Environmental compliance assessment findings for Weldon Spring Site Remedial Action Program

    SciTech Connect (OSTI)

    Sigmon, C.F.; Levine, M.B.

    1990-03-02T23:59:59.000Z

    This report presents the results of an environmental assessment conducted at Weldon Spring Site Remedial Action Project (WSSRAP) in St. Charles County, Missouri, in accordance with the Formerly Utilized Sites Remedial Action Program (FUSRAP) Environmental Compliance Assessment Checklists. The purpose of this assessment was to evaluate the compliance of the site with applicable federal and Missouri environment regulations. Assessments activities included the following: review of site records, reports ,and files; inspection of the WSSRAP storage building, other selected buildings, and the adjacent grounds; and interviews with project personnel. This assessment was conducted on August 28-30, 1989. The assessment covered five management areas as set forth in the Checklist: Hazardous Waste Management, Polychlorinated Biphenyls (PCBs) Management; Air Emissions; Wastewater Discharges and Petroleum Management. No samples were collected. 1 ref., 2 figs., 1 tab.

  18. SP-100, a project manager`s view. Technical information report

    SciTech Connect (OSTI)

    Truscello, V.C.

    1983-12-01T23:59:59.000Z

    Born to meet the special needs of America`s space effort, the SP-100 Program testifies to the cooperation among government agencies. The Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), and the Defense Advanced Research Projects Agency (DARPA) are working together to produce a 100-kW power system for use in outer space. At this point in the effort, it is appropriate to review: The approach to meet program goals; the status of activities of the Project Office, managed by the Jet Propulsion Laboratory (JPL); and, because this is a meeting on materials, answers beings developed by the Project Office to vital questions on refractory alloy technology.

  19. 1995 annual epidemiologic surveillance report for Fernald Environmental Management Project

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The US Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. During the past several years, a number of DOE sites have participated in the Epidemiologic Surveillance Program. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report provides a summary of epidemiologic surveillance data collected from the Fernald Environmental Management Project (FEMP) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at FEMP and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

  20. Management of water extracted from carbon sequestration projects

    SciTech Connect (OSTI)

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11T23:59:59.000Z

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods for managing very large volumes of water most of which will contain large quantities of salt and other dissolved minerals. Produced water from oil and gas production also typically contains large quantities of dissolved solids. Therefore, many of the same practices that are established and used for managing produced water also may be applicable for extracted water. This report describes the probable composition of the extracted water that is removed from the formations, options for managing the extracted water, the pros and cons of those options, and some opportunities for beneficial use of the water. Following the introductory material in Chapter 1, the report is divided into chapters covering the following topics: (Chapter 2) examines the formations that are likely candidates for CO{sub 2} sequestration and provides a general evaluation of the geochemical characteristics of the formations; (Chapter 3) makes some preliminary estimates of the volume of water that could be extracted; (Chapter 4) provides a qualitative review of many potential technologies and practices for managing extracted water and for each technology or management practice, pros and cons are provided; (Chapter 5) explores the potential costs of water management; and (Chapter 6) presents the conclusions.

  1. U.S. DEPARTl\\IIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    cll.clJ) U.S. DEPARTlIIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETER.lVllNATION Page 1 of2 RECIPIENT: Third Wave Systems, Inc. STATE: MN PROJECT TITLE: Sustainable...

  2. DFPARThIFN'I OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DI...

    Broader source: Energy.gov (indexed) [DOE]

    DFPARThIFN'I OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DIrnu.nNATION RECIPIENT:Kansas Corporation Commission - Renewable Energy Subgrant PROJECT T ITLE : City of Chanute GSHP...

  3. u.s~ DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVllNATION RECIPIENT:OKlahoma Municipal Power Authority STATE: OK PROJECT OKLAHOMA SEP ARRA - OMPA Large System...

  4. New techniques in project portfolio management don't stifle innovation with excessive phasing and gates

    E-Print Network [OSTI]

    Fisher, Cameron (Cameron Ardell Mayhew)

    2014-01-01T23:59:59.000Z

    Managing multiple ideas, candidate initiatives and in-flight projects across diverse business units is a large challenge for major organizations. Overseeing global demand for projects as well as resource needs, risks, ...

  5. U.S. DEPARTl\\lmNT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    .oum U.S. DEPARTllmNT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERI.IIINATION RECIPIENT:Commonwealth of PA - DEP PROJECT TITLE : FY 2012-13 State Energy Program Formula...

  6. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA...

    Broader source: Energy.gov (indexed) [DOE]

    u :. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETTIUllNATION Page 1 00 RCIPIENT:lIJinois Department of Commerce & Economic Opportunity STATE: IL PROJECT...

  7. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVDNAT...

    Broader source: Energy.gov (indexed) [DOE]

    DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVDNATION RECIPIENT:WA Dept. of Commerce STATE: WA PROJECT SEP ARRA - SIRTI - NuElement Bio Aviation Fuel...

  8. DEPAR TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlV

    Broader source: Energy.gov (indexed) [DOE]

    AUIJ) u.s. DEPAR TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlV IINATION RECIPIENT:Clean Energy Finance and Investment Authority PROJECT TITl.E: SunShot New England ...

  9. u.s. DEPARTlIlENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    lincoln u.s. DEPARTlIlENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlIlINATION Pagc 1 of3 STATE: NE PROJECT TITLE: EECBG DE- EE 0000664 City of Lincoln Statement of Work...

  10. DEPART:rvIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINAT...

    Broader source: Energy.gov (indexed) [DOE]

    rvIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION .Page 1 ot 1. RECIPIENT:County of Greenville, SC STATE: SC PROJECT TITLE: EECBG - Sidewalks near schools Funding...

  11. DTI'.-\\RTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETFIU...

    Broader source: Energy.gov (indexed) [DOE]

    DTI'.-RTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETFIU.IINATION RECIPIENT: National Outdoor Leadership School PROJECT TITLE: NOLR RM EECBG retrofit 2 Page 1 of2 STATE:...

  12. IH'.O), u.s. DEP.-'.RT1IENT OF ENERGY EERE PROJECT MANAGEMENT...

    Broader source: Energy.gov (indexed) [DOE]

    DEP.-'.RT1IENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlJINATION RECIPIENT:City of Orlando PROJECT TITLE : City of Orlando - SOW (S) Page 1 of2 STATE: FL Funding...

  13. u.s. DEPARTl\\IENT OF ENERG Y EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    DEPARTlIENT OF ENERG Y EERE PROJECT MANAGEMENT CENTER NEPA DETERlIIINATION Page I of2 STATE: NC PROJECT TITLE: Charlotte Activity 13 - Vehicular Wayfinding and ParkingNariable...

  14. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAG EMEN T CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    EERE PROJECT MANAG EMEN T CENTER NEPA DETERlilNATION Page 1 of2 STATE: VA PROJECT TITLE: Green Vision Community Energy Program and Evergreen Municipal Energy Efficiency Program-...

  15. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERl...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERl1INATION REel PI ENT:Contra Costa Economic Partnership Page I of2 STATE: CA PROJECT TITLE: The Diablo Regional Distributed...

  16. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    lA'Al ) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT: City of Chicago PROJECT TITLE: Chicago Region SunShot Initiative Page 1 of2 STATE: IL...

  17. A system dynamics view of project management firefighting at a startup company

    E-Print Network [OSTI]

    Chiang, Melvin H. (Melvin Hsiang)

    2008-01-01T23:59:59.000Z

    Fire fighting in project management is the unplanned allocation of resources to either fix problems or speed completion of a project. In a startup company environment, fire fighting oftentimes becomes the norm rather than ...

  18. ESD.36J / 1.432J System and Project Management, Fall 2003

    E-Print Network [OSTI]

    Lyneis, James

    The course is designed for students in the System Design and Management (SDM) program and therefore assumes that you already have a basic knowledge of project management. The objective is to introduce advanced methods and ...

  19. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  20. u.s. DEPARTl'vIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT: Pennsylvania State University PROJECI TITLE : Northem MidAtlantic Provider of Solar Instructor Training...

  1. U.S. DEP_UUMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    DEPUUMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:University of Central Florida PROJECf TITLE: PV Manufacturing Consortium Page 1 of2 STATE: Fl...

  2. u.s. DEPARTrvIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    DEPARTrvIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERl-IINATION RECIPIENT:Oklahoma Municipal Power Authority PROJECf TITLE : OKLAHOMA SEP ARRA - OMPA Large System...

  3. Various Project Management Reports | U.S. DOE Office of Science...

    Office of Science (SC) Website

    .pdf file (394KB), July 2004 DOE National Laboratories Improvement Council (NLIC) White Paper on Management of Major Research Facility Construction Projects .pdf file (42KB),...

  4. Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  5. Selecting Mold Remediation Contractors

    E-Print Network [OSTI]

    Renchie, Don L.

    2005-10-05T23:59:59.000Z

    Texas has strict regulations that govern mold remediation companies. Before contracting for mold remediation work, consumers should know what the law requires of remediation companies and what such contracts should contain....

  6. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    SciTech Connect (OSTI)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01T23:59:59.000Z

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  7. to appear in Proc. of Project Management Institute research conference, July 2004, London (www.pmi.org) 1 Project Portfolio Earned Value Management Using Treemaps

    E-Print Network [OSTI]

    Golbeck, Jennifer

    to appear in Proc. of Project Management Institute research conference, July 2004, London (www.pmi research conference, July 2004, London (www.pmi.org) 2 devour the data, synthesize it, and draw conclusions

  8. CENTRAL PLATEAU REMEDIATION

    SciTech Connect (OSTI)

    ROMINE, L.D.

    2006-02-01T23:59:59.000Z

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  9. Fiver years of uranium mine and mill decommissioning in Germany: Progress of the Wismut environmental remediation project

    SciTech Connect (OSTI)

    Mager, D. [German Federal Ministry of Economics, Bonn (Germany)

    1996-12-31T23:59:59.000Z

    With the end of the Cold War and the fall of the iron curtain Germany inherited in 1990 by its reunification the legacy of 45 years of unrestricted, intensive uranium mining in the eastern part of Germany. The environmental damages and risks related to widespread soil and groundwater contamination, caused by huge tailings ponds and numerous waste rock piles in one of Germany`s most densely populated areas, made it necessary to implement one of the world`s largest environmental clean-up programs. 13 billion German Marks (8.7 billion US-$) will be spent within approx. 20 years for decommissioning and environmental restoration efforts. Five years after the start-up of the Wismut project considerable results have been achieved. Conceptual work, even regarding technically difficult issues of the program, is far advanced, and about one third of the physical work program has been completed. At the former mining and milling locations significant improvements of the environmental situation have been achieved. The further on-schedule progress of the Wismut program is an important prerequisite for the socio-economical development in the former uranium mining districts.

  10. Staff exchange with Chemical Waste Management. Final project report

    SciTech Connect (OSTI)

    Harrer, B.J.; Barak, D.W.

    1993-12-01T23:59:59.000Z

    Original objective was transfer of PNL technology and expertise in computational chemistry and waste flow/treatment modeling to CWM. Identification and characterization of a broader portfolio of PNL`s environmental remediation technologies with high potential for rapid application became the focus of the exchange, which included E-mail exchanges. Of the 14 technologies discussed, the following were identified as being of high interest to CWM: six phase soil heating (in-situ heating), high energy electrical corona, RAAS/ReOpt{trademark} (remedial, expert system), TEES{trademark} (catalytic production of methane from biological wastes), PST (process for treating petroleum sludge). CWM`s reorganization and downsizing reduced the potential benefits to industry, but a proposal for transfer and application of PST to Wheelabrator was made.

  11. Investigation of Project Management Planning Practices for Renovation of Historical Buildings in Urban Contexts Located in Texas

    E-Print Network [OSTI]

    Escamilla, Edelmiro

    2012-07-16T23:59:59.000Z

    This study investigated the relationship between Project Management Planning (PMP) practices and project success for preservation projects of historical significance located in an urban context. The planning for these projects was also emphasized...

  12. U.S. DEPARTMENT OF ENERGYCONTRACT AND PROJECT MANAGEMENT

    Energy Savers [EERE]

    establishing project baselines. 2. DOE does not have an adequate number of federal contracting and project personnel with the ap- propriate skills (e.g., cost estimating,...

  13. EERE PROJECT MANAGEMENT CENTER NFPA DETFIU.fiNATION

    Broader source: Energy.gov (indexed) [DOE]

    standards and sample analysis); small-scale research and development projects: and small-scale pilot projects (generally less than two years) conducted to verify a concept...

  14. Program & Project Management For The Acquisition Of Capital Assets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3, 2011 Operational Organization Chart (FY 11) Office of Engineering & Construction Management POLICY - GUIDANCE -OVERSIGHT Pete Check Deputy Director Les Novitsky - Management...

  15. GL074 Financial Summary with Management Level & Project Purpose (Excluding Agency and Multi-Year Funds)

    E-Print Network [OSTI]

    Shull, Kenneth R.

    GL074 Financial Summary with Management Level & Project Purpose (Excluding Agency and Multi-Year Funds) (notes on running the report) Reporting Cognos 12/13/2010-vlr GL074 Financial Summary of the new filters found in the Cognos report GL074 Financial Summary with Management Level & Project Purpose

  16. Spent Nuclear Fuel Project document control and Records Management Program Description

    SciTech Connect (OSTI)

    MARTIN, B.M.

    2000-05-18T23:59:59.000Z

    The Spent Nuclear Fuel (SNF) Project document control and records management program, as defined within this document, is based on a broad spectrum of regulatory requirements, Department of Energy (DOE) and Project Hanford and SNF Project-specific direction and guidance. The SNF Project Execution Plan, HNF-3552, requires the control of documents and management of records under the auspices of configuration control, conduct of operations, training, quality assurance, work control, records management, data management, engineering and design control, operational readiness review, and project management and turnover. Implementation of the controls, systems, and processes necessary to ensure compliance with applicable requirements is facilitated through plans, directives, and procedures within the Project Hanford Management System (PHMS) and the SNF Project internal technical and administrative procedures systems. The documents cited within this document are those which directly establish or define the SNF Project document control and records management program. There are many peripheral documents that establish requirements and provide direction pertinent to managing specific types of documents that, for the sake of brevity and clarity, are not cited within this document.

  17. Implementation of UMTRA Project Environmental Audit Action Plan status report for period ending September 30, 1992. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    This report provides the status of implementation of corrective actions for findings made in an Environmental Audit conducted by DOE Headquarters, Office of Environmental Audit, in June 1991. An Action Plan, dated December 1991, was developed to address the findings. The Action Plan was approved by DOE Headquarters, Office of Environment, Safety and Health, in July 1992. This report provides status for each activity listed in the approved Action Plan. Of 48 findings identified in the August 1991 Environmental Audit Report, 4 required no action, 5 were combined with others and actions to correct 19 are complete. Although it appears no progress has been made since the last status report was issued, UMTRA has completed 89% of the findings identified, compared to 72% identified in the last status report. The table below lists the 20 findings where actions are still underway, the current projected completion date, the organization(s) responsible for taking action on the finding, and the UMTRA Project Off ice staff member assigned responsibility for the finding.

  18. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  19. PUREX/UO{sub 3} deactivation project management plan

    SciTech Connect (OSTI)

    Washenfelder, D.J.

    1993-12-01T23:59:59.000Z

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.

  20. Multifamily Retrofit Project Manager Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01T23:59:59.000Z

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Retrofit Project Manager JTA identifies and catalogs all of the tasks performed by multifamily retrofit project managers, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  1. CO3120 Computer Science with Management Project Credits: 30 Convenor: Dr S. Yang Semester: 1 + 2

    E-Print Network [OSTI]

    Yang, Shengxiang

    CO3120 Computer Science with Management Project Credits: 30 Convenor: Dr S. Yang Semester: 1 + 2 Subject Knowledge Aims Students will select a project topic chosen from an area of Computer Science. Course Description The purpose of the Computer Science Project is for the student to combine knowledge

  2. DEPARTIIIENT OF ENERGY EE RE PROJECT MANAG EM ENT CENT ER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    Irmo u.s. DEPARTIIIENT OF ENERGY EE RE PROJECT MANAG EM ENT CENT ER NEPA DETElThIINAIION PROJECT TITl.E: Irma Charing Cross Sidewalk Project ARRA-EECBG Page 1 of2 fJ Wl G) STATE:...

  3. Fernald Environmental Management Project 1995 site environmental report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The Fernald site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This 1995 Site Environmental Report provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA.

  4. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

  5. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  6. Uranium Mill Tailings Remedial Action 1993 Roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ``Lack of sufficient human resources,`` remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0.

  7. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01T23:59:59.000Z

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  8. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    to make changes to the scope or objective of your project you are required to contact the Project Officer identified in Block 11 of the Notice of Financial Assistance Award before...

  9. Overview of Science and Technology Improvements at Office of Legacy Management Sites

    SciTech Connect (OSTI)

    Morrison, S.; Bartlett, T.; Boylan, J.; Carpenter, C.; Miller, D. [S.M. Stoller Corporation, Grand Junction, Colorado (United States); Kothari, V. [U.S. Department of Energy, Office of Legacy Management, West Virginia (United States)

    2007-07-01T23:59:59.000Z

    The U.S. Department of Energy Office of Legacy Management (LM) supports science and technology (S and T) initiatives to more effectively manage LM sites, help protect human health and the environment, and reduce long-term costs of site maintenance and remediation by ensuring that sound engineering and scientific principles are used. Through the use of telemetry, LM's SOARS (System Operation and Analysis of Remote Sites) project provides project scientists and engineers with timely information needed to evaluate, maintain, and optimize remediation systems, while limiting the amount of required travel. This paper presents three recent S and T activities focused on enhancing remediation of ground water at LM sites. (authors)

  10. Comparison of management, overhead, and direct costs of six projects managed by the Department of Energy and Government-Owned, Contractor-Operated Laboratories

    SciTech Connect (OSTI)

    Not Available

    1981-09-30T23:59:59.000Z

    The report covers management, overhead, and direct cost data on six DOE projects - three managed directly by DOE, and three managed for DOE by government-owned, contractor-operated (GOCO) laboratories. These data provide comparison for decisions on contracting out for project management services. (GHT)

  11. Successful Field-Scale In Situ Thermal NAPL Remediation at the Young-Rainey Star Center

    SciTech Connect (OSTI)

    Gavaskar, A.R. [ed.; Chen, A.S.C. [ed.; none,

    2004-05-04T23:59:59.000Z

    The U.S. Department of Energy (DOE) successfully completed a fieldscale remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at a site on the Young-Rainey Science, Technology, and Research (STAR) Center, Largo, Florida. The STAR Center is a former DOE facility. The remediation project covered an area of 930 m2 (10,000 ft2) and depths extending to 10.5 m (35 ft) below ground surface. In July 2001, DOEs contractor awarded a subcontract to SteamTech Environmental Services for removal of NAPLs from a portion of the Northeast Site. The technologies used for remediation were steam-enhanced extraction and Electro-Thermal Dynamic Stripping Process, an electrical resistive heating technology. McMillan-McGee Corporation implemented the process. Construction of the remediation system was completed in September 2002. Operations began immediately after construction, and active heating ended in February 2003. After operations were completed, confirmatory sampling was conducted over a 6-month period to verify the level of cleanup achieved. Results of the sampling showed that NAPL concentrations were reduced significantly below the required cleanup goals and, in most cases, below the regulatory maximum contaminant levels. Lessons learned relative to the design, construction, operation, confirmatory sampling approach, and subcontracting could benefit managers of similar remediation projects

  12. UMTRA Project Administrative Files Collection Records Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The UPAFC Records Management Plan is based on the life cycle of a record - the evolution of a record from creation until final disposition. There are three major phases in the life cycle of a record: (1) creation and receipt, (2) maintenance and use, and (3) disposition. Accordingly, the Records Management Plan is structured to follow each of those phases. During each of the three phases, some kind of control is mandatory. The Records Management Plan establishes appropriate standards, policies, and procedures to ensure adequate control is always maintained. It includes a plan for records management, a plan for records management training activities, and a plan for auditing and appraising the program.

  13. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    SciTech Connect (OSTI)

    Deeb, Rula A.; Hawley, Elisabeth L. [ARCADIS, U.S., 2000 Powell St., 7th Floor, Emeryville, California 94608 (United States)] [ARCADIS, U.S., 2000 Powell St., 7th Floor, Emeryville, California 94608 (United States)

    2013-07-01T23:59:59.000Z

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies that illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, time frame, and potential remedial effectiveness. This presentation is intended to inform DOE program managers, state regulators, practitioners and other stakeholders who are evaluating technical cleanup challenges within their own programs, and establishing programmatic approaches to evaluating and implementing long-term management approaches. Case studies provide examples of long-term management designations and strategies to manage and remediate groundwater at complex sites. At least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. Long-term management designations are not a way to 'do nothing' or walk away from a site. Instead, soil and groundwater within the zone is managed to be protective of human health and the environment. Understanding when and how to adopt a long-term management approach can lead to cost savings and the more efficient use of resources across DOE and at numerous other industrial and military sites across the U.S. This presentation provides context for assessing the use and appropriate role of alternative endpoints and supporting long-term management designations in final remedies. (authors)

  14. Texas A&M IT Project Management Office System Development Life Cycle Template Guide V1.0

    E-Print Network [OSTI]

    Texas A&M IT Project Management Office System Development Life Cycle Template Guide V1.0 #12;Texas A&M IT Project Management Office System Development Life Cycle Template Guide V1.0 Texas A...............................................................................................................................24 #12;Texas A&M IT Project Management Office System Development Life Cycle Template Guide V1.0 Texas

  15. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-12T23:59:59.000Z

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  16. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12T23:59:59.000Z

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  17. Effective Project Management Office Processes and Technology Transfer: Implementation of an Avaya Voice Over Internet Protocol Telephony System in Mexico

    E-Print Network [OSTI]

    Perez, Mary Louise

    2012-08-31T23:59:59.000Z

    This project-thesis examines the technical requirements of a Voice over Internet Protocol (VoIP) solution and is it advantageous for a Multinational Corporation (MNC) to utilize the Project Management Office (PMO) processes as defined by the Project...

  18. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    RECIPIENT: Maryland Energy Administration PROJECT TITLE : State Energy Program 2012 Formula Gr;:mt Page 1 of2 STATE: MD Funding Opportunity Announcement Number Procurement...

  19. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETI...

    Broader source: Energy.gov (indexed) [DOE]

    Arlington Agricultural Research Station Oconlo County, WI (existing well) Nicolet Forest Project, Oconto County, WI *Highway Pit, Clark County, WI https:llwww,eere-pmc.energy.govI...

  20. US DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINAT...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Security SEP ARRA EE000164 PROJECT TITLE: SEP Residential Ground Source Heat Pump Installations (6 ) Page I of2 STATE: MN Funding Opportunity Announcement Number...

  1. Management of Selected Advanced Research Projects Agency-Energy...

    Energy Savers [EERE]

    an audit performed in years that their spending exceeds 500,000. The new audits sectionmodule would also include documentation of management's review of audit report results....

  2. u.s DI!P.-\\RTlIII!NT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    DIP.-RTlIIINT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DI11'FlU.fiNATION RECIPIENT:Vennont Sustainable Jobs Fund PROJECf TITLE : Vennont Biofuels Initiative: Borderview...

  3. u.s. DEPARTI\\IENI OF ENERG Y EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERG Y EERE PROJECT MANAGEMENT CENTER NEPA DETERIIlNATION Page 1 01'2 RClPIENT;Oklahoma Municipal Power Authority STATE: OK PROJECf TITLE: OKlAHOMA SEP ARRA - OMPA OCP Large...

  4. E-Print Network 3.0 - aquifer management project Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    results for: aquifer management project Page: << < 1 2 3 4 5 > >> 1 Seymour Aquifer Water Quality The Seymour Aquifer is a shallow aquifer in Northwest Central Texas and the...

  5. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATI...

    Broader source: Energy.gov (indexed) [DOE]

    (lotI .. ) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATION RECI PIENT:Washinglon Siale Department of Commerce PROJEcr TITLE: Evergreen State Solar...

  6. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlIIINATION Page 1 of2 RECIPIENT:City of Baltimore STATE: MD PROJEcr TITLE: EECBG ProgramBike Parking RacksStand...

  7. ISSIGreviewProject Management Institute--Information Systems Specific Interest Group Fourth Quarter 2000

    E-Print Network [OSTI]

    2000 Volume 10, Number 4 Supporting Project Management in an Information Systems Environment PMI & SIG News:PMI & SIG News:PMI & SIG News:PMI & SIG News:PMI & SIG News: ISSIG Communications Update

  8. Identifying the Predictors of Female Project Managers' Salaries in the United States

    E-Print Network [OSTI]

    Kamranzadeh, Amineh

    2012-11-30T23:59:59.000Z

    This study seeks to explore the predictors of female project managers salary in the construction industry, and to analyze their impacts on determining the salary. Experience, age, marital status, motherhood, having children at home, and the number...

  9. Charging Up For Formula Sun Grand Prix By Jonathan Nutzmann, Project Manager

    E-Print Network [OSTI]

    Janssen, Michel

    Charging Up For Formula Sun Grand Prix By Jonathan Nutzmann, Project Manager The team is currently busy with training for our next race, Formula Sun Grand Prix, which is com- ing up May 2nd-7th

  10. Project management computer programs: an approach to a better selection and understanding

    E-Print Network [OSTI]

    Acevedo Bohorquez, Jorge Enrique

    1969-01-01T23:59:59.000Z

    PROJECT MANAGEMENT COMPUTER PROGRAMS: AN APPROACH TO A BETTER SELECTION AND UNDERSTANDING A Thesis Jorge Enrique Acevedo Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE August 1969 Major Subject: Civil Engineering PROJECT MANAGEMENT CO&1PUTER PROGRANS: AN APPROACH TO A BETTER SELECTION AND UNDERSTANDING A Thesis by Jorge Enrique Acevedo Approved as to style and ccntcnt by: (Chairman c...

  11. Technical assistance contractor Management Plan. Final [report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) and its major teaming partners [Roy F. Weston, Inc. (RFW), Sergent, Hauskins & Beckwith Agra, Inc. (SHB Agra), and Geraghty & Miller, Inc. (G&M)]. The first three companies have worked together effectively on the UMTRA Project for more than 10 years. With the initiation of the UMTRA Groundwater Project in April 1991, a need arose to increase the TAC`s groundwater technical breadth and depth, so G&M was brought in to augment the team`s capabilities. The TAC contract`s scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both surface and groundwater projects. The TAC team continues to support the DOE in completing surface remedial actions and initiating groundwater remediation work for start-up, characterization, design, construction oversight, and remedial operations. A key feature of the TAC`s management approach is the extensive set of communication systems implemented for the UMTRA Project. These systems assist all functional disciplines in performing UMTRA Project tasks associated with management, technical support, administrative support, and financial/project controls.

  12. Title of Project: Scoping Data Access and Integration Needs to Facilitate Better Management of Research Innovation

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Title of Project: Scoping Data Access and Integration Needs to Facilitate Better Management-Madison Participants: P.S. Sriraj, Paul Metaxatos, Piyushimita (Vonu) Thakuriah Status: Active Objective: This project of the intended use and value of these databases. 3. Identify existing access procedures to WisDOT databases

  13. SYLLABUS -aps1001h PROJECT MANAGEMENT January 2014 saved 2013-12-16

    E-Print Network [OSTI]

    (PMI) and recipient of an Outstanding Contribution award. He designed and presented the first course in Canada aligned with PMI's Project Management Body of Knowledge. Keith has been a member of the Project Professional by PMI, and as a Professional Engineer. Marking Scheme: 3% active participation in full class

  14. The development of a methodology to quantify the impacts of information management strategies on EPC projects

    E-Print Network [OSTI]

    Moreau, Karen Anne

    1997-01-01T23:59:59.000Z

    the importance of measuring the impacts at a total project-level. That is, the magnitude of impacts at the project-level were much lower than those observed at the activity or task level, thus providing a more realistic approximation of information management...

  15. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  16. draft 3/13/14 Session 6: Integrated Product Development and Project Management

    E-Print Network [OSTI]

    Martin, Gail

    D, Senior Vice President, Project Management, Endo 8:35 am 60 Decision Analysis Tools and Techniques Patricia Evans, PhD, Independent Consultant 9:35 am 50 Product Development Decision Making John Celona, JD:50 pm 45 Case Study 12: Balancing Risk and Return in Portfolio Management Patricia Evans, Ph

  17. US DEPARTMENT OF ENERGY EE RE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    refueling equipment (compression and fueling station) and the incremental cost of a eNG medium duty truck. The proposed project site is located at 17440 Highway 167, Dry Prong ,...

  18. US DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DEI...

    Broader source: Energy.gov (indexed) [DOE]

    project is located on the East River in New York County, New York. The East River is a 17-mile- long tidal strait connecting the waters of the Long Island Sound with those of the...

  19. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETFIU...

    Broader source: Energy.gov (indexed) [DOE]

    DETFIU.llNATION RECIPIENT:Battelie Memorial Institute Corporate PROJECT TITLE: Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) Page I of2 STATE: OH Funding Opportunity...

  20. Technical advantages and political necessity of public involvement in environmental remediation: The case of the U.S. and Russian weapons complexes

    SciTech Connect (OSTI)

    Shideler, J.C. [JK Research Associates, Inc., Arlington, VA (United States)

    1993-12-31T23:59:59.000Z

    Environmental remediation is an enormous challenge for the governments of the US, Russia, and other states in eastern and central Europe. Historically, governments have withheld issues related to nuclear weapons from public policy debate. As a result of revelations about human health impacts and environmental contamination, serious credibility problems exist for managers of weapons facilities. However, public involvement can contribute to better definition of problems, to identification of a range of potential solutions, and to increased public acceptance of outcomes. Decision makers can maximize the benefits of public involvement by integrating specific processes into their environmental remediation project planning and management.

  1. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    SciTech Connect (OSTI)

    Childs, Allen B.

    2002-03-01T23:59:59.000Z

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

  2. Decision management for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Roberds, W.J.; Haerer, H.A. (Golder Associates, Inc., Redmond, WA (United States)); Winterfeldt, D.V. (Decision Insights, Laguna Beach, CA (United States))

    1992-04-01T23:59:59.000Z

    The Hanford Environmental Dose Reconstruction (HEDR) Project is in the process of developing estimates for the radiation doses that individuals and population groups may have received as a result of past activities at the Hanford Reservation in Eastern Washington. A formal decision-aiding methodology has been developed to assist the HEDR Project in making significant and defensible decisions regarding how this study will be conducted. These decisions relate primarily to policy (e.g., the appropriate level of public participation in the study) and specific technical aspects (e.g., the appropriate domain and depth of the study), and may have significant consequences with respect to technical results, costs, and public acceptability.

  3. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    SciTech Connect (OSTI)

    Simpkin, Thomas J. [CH2M HILL, Denver, Colorado (United States); Favara, Paul [CH2M HILL, Gainesville, Florida (United States)

    2012-07-01T23:59:59.000Z

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this process also provides new opportunities to think differently and look at the bigger picture of the overall benefit we are providing with our remediation projects. The opportunities from the move towards GSR are very real. They will help us make remedial actions truly more beneficial to the environment and to society. They will also allow (or force) remediation practitioners to think outside of the usual realm of approaches to find newer and more beneficial technologies. (authors)

  4. Proceedings of the 1993 international conference on nuclear waste management and environmental remediation. Volume 1: Low and intermediate level radioactive waste management

    SciTech Connect (OSTI)

    Alexandre, D.; Baker, R.; Kohout, R.; Marke, J. [eds.

    1993-12-31T23:59:59.000Z

    This conference was held in 1993 in Prague, Czech Republic to provide a forum for exchange of state-of-the-art information on radioactive waste management. Sections of the proceedings include the following: engineered and geological barriers; radioactive transportation and related issues; national programs for HLW and spent fuel management; recent advances in HLW treatment; science and engineering of the repository system; national examples of spent fuel storage systems; disposal systems for HLW and spent fuel--design and status; reprocessing and its influence on waste quantities; qualification methods for HLW; site characterization and underground testing; science and engineering of HLW and spent fuel storage systems; transmutation and separations of radioactivity; disposal site selection approaches and issues; and safety assessments and methodology for repositories.

  5. Page | 1 Managed Print Project Outline Pull Printing

    E-Print Network [OSTI]

    Glasgow, University of

    by extending specialist printing facilities to all users. The principal drivers for the project are carbon. Estimates are: 40% reduction in CO2 (from 477,676kg to 286,857kg; 60% reduction in electricity usage from the completion of these initiatives. The UK government's introduction of the Carbon Reduction Commitments (CRC

  6. PROJECT GOALS Use electricity accounts and Building Management System

    E-Print Network [OSTI]

    benefits of altering lighting and computer management, and installing solar panels. Key recommendations The first energy saving option involved installing solar panels. Taking into account the parameters and power - were used to build baseline figures to gauge the impact of variations in temperature on total

  7. Data Management in an International Data Grid Project

    E-Print Network [OSTI]

    Hoschek, Wolfgang

    world-wide distributed next generation experiments in High- Energy Physics, Earth Observation to coherently manage and share Petabyte-range information volumes in high-throughput production-quality Grid, security and query optimisation. 1 1 Introduction In the year 2005 a new particle accelerator, the Large

  8. In Situ Remediation Integrated Program: FY 1994 program summary

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  9. COORDINATING HUMAN AND MATERIAL RESOURCES Construction project management is the art of directing and coordinating human and material

    E-Print Network [OSTI]

    Simaan, Nabil

    COORDINATING HUMAN AND MATERIAL RESOURCES Construction project management is the art of directing and coordinating human and material resources throughout the life of a project by using modern management. Today's construction engineers and managers are faced with unprecedented challenges in planning

  10. The Human Genome Project: Information access, management, and regulation. Final report

    SciTech Connect (OSTI)

    McInerney, J.D.; Micikas, L.B.

    1996-08-31T23:59:59.000Z

    The Human Genome Project is a large, internationally coordinated effort in biological research directed at creating a detailed map of human DNA. This report describes the access of information, management, and regulation of the project. The project led to the development of an instructional module titled The Human Genome Project: Biology, Computers, and Privacy, designed for use in high school biology classes. The module consists of print materials and both Macintosh and Windows versions of related computer software-Appendix A contains a copy of the print materials and discs containing the two versions of the software.

  11. ANG coal gasification project management control system report. [Great Plains project

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Much time, money and effort has been spent in the forefront of this project for project controls. The work breakdown structure for the systems has been custom designed. The systems, both manual and computerized, have been well scrutinized and chosen by ANG to represent the most cost effective and efficient way of controlling a project the magnitude of $1.5 billion. These systems have been developed in a manner so that information can be gathered as detailed or as summarized as necessary, and in the most timely and expeditious ways.

  12. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    SciTech Connect (OSTI)

    Childs, Allen

    2002-03-01T23:59:59.000Z

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  13. Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)

    SciTech Connect (OSTI)

    IT Corporation, Las Vegas

    2002-04-24T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations.

  14. 2012 Department of Energy Project Management Workshop | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 Projects

  15. Environmental management requirements/defensible costs project. Final report

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Lockheed Idaho Technologies Company (LITCO) used a systems engineering approach to develop the first formal requirements baseline for Idaho National Engineering Laboratory (INEL) Environmental Management (EM) Programs. The recently signed Settlement Agreement with the State of Idaho (Batt Agreement), along with dramatically reduced EM funding targets from Department of Energy (DOE) headquarters, drove the immediacy of this effort. Programs have linked top-level requirements to work scope to cost estimates. All EM work, grouped by decision units, was scrubbed by INEL EM programs and by an independent {open_quotes}Murder Board.{close_quotes} Direct participation of upper level management from LITCO and the DOE-Idaho Operations Office ensured best information and decisions. The result is a scrubbed down, defensible budget tied to top-level requirements for use in the upcoming DOE-Headquarters` budget workout, the Internal Review Board, the FY98 Activity Data Sheets submittal, and preparation of the FY97 control accounts and out-year plans. In addition to the remarkable accomplishments during the past eight weeks, major issues were identified and documented and follow-on tasks are underway which will lead to further improvements in INEL EM program management.

  16. 2011 Awards for Project Management | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 Projects ToDepartmentAwards for

  17. 2012 Awards for Project Management | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 Projects ToDepartmentAwards2

  18. 2013 Awards for Project Management | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 ProjectsEnergy 2Department of3

  19. 2014 Awards for Project Management | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 ProjectsEnergy4 Awards for

  20. 2014 DOE Project Management Workshop | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 ProjectsEnergy4 Awards for4 DOE

  1. 2015 DOE Acquisition and Project Management (APM) Workshop | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 ProjectsEnergy4Research

  2. Improving Project Management at the Department of Energy | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossaryEnergyImportant FilingEnergy Project

  3. Meeting the Challenge: Integrating Acquisition and Project Management - J.

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM Project Definitionof|Minutes: FebruaryMeetingE.

  4. Optional 2012 Project Management Workshop Course | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on Our National-Projects in the United States

  5. Project Management Institute Highlights Savannah River Nuclear Solutions in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID Project Name FY TotalLDRD

  6. U.S. DEPARTMENT OF ENERGYCONTRACT AND PROJECT MANAGEMENT

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track | DepartmentEnergy 29, 2008 -OF THE BOARD'S

  7. U.S. DEPARTMENT OF ENERGYCONTRACT AND PROJECT MANAGEMENT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of1:Project | Department ANNUALHQ F U.S

  8. Program & Project Management For The Acquisition Of Capital Assets

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItems at6 (April 2012)showsManagement

  9. Report on Acquisition and Project Management Continuous Improvement |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply Comments of Southern CompanyResearchManagement

  10. Active Network Management (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to: navigation, searchAccionaAcruxManagement (Smart

  11. PMCF;F2a U.S. DEPARTJ.V.IENT OF ENERGY EERE PROJECT MANAGEMENT...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERl.UNATION Page 1 of2 RECIPIENT:CA Community Colleges STATE:CA PROJECT TITLE : CAHawaii Provider of Solar Instructor...

  12. Control of Major-Accident Hazards Involving Land Transmission Charlotte BOUISSOU, Project Manager for Pipelines Risk Assessment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Control of Major-Accident Hazards Involving Land Transmission Pipelines Charlotte BOUISSOU, Project Nicolas DECHY, Project Manager for Accidents Analysis and Learning from Experience Contact : charlotte, this Directive does not apply to land transmission pipelines... According to several accidents analysis

  13. Sustainable waste management in Africa through CDM projects

    SciTech Connect (OSTI)

    Couth, R. [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

    2012-11-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.

  14. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    SciTech Connect (OSTI)

    DOE/NV

    2001-04-05T23:59:59.000Z

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  15. Program and Project Management Policy for the Planning, Programming, Budgeting, and Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-10T23:59:59.000Z

    To establish Department of Energy (DOE) program and project management policy for the planning, programming, budgeting, and acquisition of capital assets consistent with the following Office of Management and Budget (OMB) circulars: OMB Circular A-11, Part 3, Planning, Budgeting, and Acquisition of Capital Assets, and the supplement to Part 3, Capital Programming Guide; OMB Circular A-123; OMB Circular A-127; and OMB Circular A-130. Does not cancel other directives. Canceled by DOE N 251.99

  16. SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION

    SciTech Connect (OSTI)

    Kohn, J.; Nichols, R.; Looney, B.

    2011-05-12T23:59:59.000Z

    The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

  17. ICDF Complex Remedial Action Work Plan

    SciTech Connect (OSTI)

    W. M. Heileson

    2006-12-01T23:59:59.000Z

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  18. Site-specific analysis of the cobbly soils at the Grand Junction processing site. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    This report describes a recent site-specific analysis to evaluate the necessity of a recommendation to install a slurry trench around the Grand Junction processing site. The following analysis addresses the cobbly nature of the site's radiologically contaminated foundation soil, reassesses the excavation depths based on bulk radionuclide concentrations, and presents data-based arguments that support the elimination of the initially proposed slurry trench. The slurry trench around the processing site was proposed by the Remedial Action Contractor (RAC) to minimize the amount of water encountered during excavation. The initial depths of excavation developed during conceptual design, which indicated the need for a slurry wall, were reexamined as part of this analysis. This reanalysis, based on bulk concentrations of a cobbly subsoil, supports decreasing the original excavation depth, limiting the dewatering quantities to those which can be dissipated by normal construction activities. This eliminates the need for a slurry trench andseparate water treatment prior to permitted discharge.

  19. Managing Highly Innovative Projects: The Influence of Design Characteristics on Project Valuation

    E-Print Network [OSTI]

    Erzurumlu, S. Sinan; Davies, Jane; Joglekar, Nitin

    2014-04-16T23:59:59.000Z

    , Eaton Corporation, was funded for its battery management technology to optimize fuel economy of commercial hybrid vehicles. Coupled with battery models, Eatons technology would remove barriers to electric vehicle ownership and make them cost... ) may raise concerns about associated risks. For example, Phononic Devices in ARPA-E dataset, which was working on a novel method to convert waste heat into usable electric power, presented its current thermoelectric device design in its grant...

  20. Management and Conservation Article Sensitivity Analyses of a Population Projection Model of

    E-Print Network [OSTI]

    Clark, William R.

    habitat) and Palo Alto County (high composition of perennial habitat) into a 2-stage (young and adult whereas estimated kiid was !1 in 88% of simulations from Palo Alto. Our analyses of the relativeManagement and Conservation Article Sensitivity Analyses of a Population Projection Model of Ring