National Library of Energy BETA

Sample records for rem roentgen equivalent

  1. REMS Webinar Survey

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Do you have any recommended topics or activities for future webinars? 4. Which of these topics may be of interest to you: ORPS Occupational Codes CAIRS Statistical Analysis REMS ...

  2. REMS Webinar Survey | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REMS Webinar Survey REMS Webinar Survey Survey for the inaugural DOE REMS Webinar that was held on Tuesday, March 8, 2016 at 1:00 pm EST. PDF icon REMS Webinar Survey More Documents & Publications Radiation Exposure Monitoring Systems Data Submittal Notification EERE's Usability and Analysis Techniques Guidebook

  3. 2014 Renewable Energy Markets (REM) Conference

    Broader source: Energy.gov [DOE]

    Renewable Energy Markets (REM) is the clean energy industry's most important annual event focused on the states, businesses, organizations, and households that choose clean, renewable electricity...

  4. REMS Program Policy for submitting of Personally Identifiable...

    Broader source: Energy.gov (indexed) [DOE]

    REMS database and reporting radiation exposure records, please visit the REMS website at: http:energy.govehsspolicy-guidance- reportsdatabasesoccupational-radiation-exposure...

  5. ORISE: DOE's Radiation Exposure Monitoring System (REMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring System (REMS) ORISE maintains large database of radition exposure records for the U.S. Department of Energy ORISE staff monitoring radiation data for DOE Rule 10 CFR 835...

  6. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  7. Plutonium 239 Equivalency Calculations

    SciTech Connect (OSTI)

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  8. REMS Program Policy for submitting of Personally Identifiable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Environment, Health, Safety and Security (AU) systems has identified that the radiation exposure records submitted to the Radiation Exposure Monitoring System (REMS)...

  9. I PHAEi:'I:. REM E :ACTO N

    Office of Legacy Management (LM)

    PHAEi:'I:. REM E :ACTO N *S0= =F* ltw :::.: .:- :.i.- * :: ..: ** :::::::::::::::::: I. .'Sl4.l . g .... 1/X's~~~ ::i':-:i::11:!:i':' :o::: : :::: ::::::. :. : * , :! ::: If'000;St;:ffULHS 0-;0y~Ar 0 PtS'tltl05 i; t 000; H~~i; 0 t~t < The Oak Ridge Institute for Science and Education (ORISE) was established by the U.S. Department of Energy to undertake national and international programs in science and engineering education, training and management systems, energy and environment systems, and

  10. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  11. NGPL Production, Gaseous Equivalent

    U.S. Energy Information Administration (EIA) Indexed Site

    NGPL Production, Gaseous Equivalent Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. 144,086 152,538 148,859 150,870 148,450 139,621 1973-2016

  12. NGPL Production, Gaseous Equivalent

    Gasoline and Diesel Fuel Update (EIA)

    NGPL Production, Gaseous Equivalent Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. 144,086 152,538 148,859 150,870 148,450 139,621 1973-2016

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012

  13. Waste Determination Equivalency - 12172

    SciTech Connect (OSTI)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)

  14. Facility Representative Qualification Equivalencies Based on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Representative Qualification Equivalencies Based on Previous Experience Facility Representative Qualification Equivalencies Based on Previous Experience The referenced ...

  15. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  16. Facility Representative Qualification Equivalencies Based on Previous

    Energy Savers [EERE]

    Experience | Department of Energy Facility Representative Qualification Equivalencies Based on Previous Experience Facility Representative Qualification Equivalencies Based on Previous Experience The referenced document has been used by the Department of Energy, Idaho Operations Office (DOE-ID) to grant equivalencies to candidates undergoing qualification as a Facility Representative (FR) using the FR Functional Area Qualification Standards (FAQS). Since the generation of the referenced

  17. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  18. Nearly Equivalent Inter- and Intramolecular Hydrogen Bonding...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Bonding in 1,3,5-Triamino-2,4,6-trinitrobenzene at High Pressure Citation Details In-Document Search Title: Nearly Equivalent Inter- and Intramolecular Hydrogen ...

  19. The endotopism semigroups of an equivalence relation

    SciTech Connect (OSTI)

    Zhuchok, Yu V; Toichkina, E A

    2014-05-31

    In this work we investigate six types of endotopism semigroups for a given equivalence relation. Necessary and sufficient conditions for the existence of all such endotopisms are presented. Conditions for the regularity and coregularity of each of the endotopism semigroups of agiven type are established. The notion of the endotype of abinary relation with respect to its endotopisms is introduced and the endotype of an arbitrary equivalence relation is calculated. Bibliography: 26 titles.

  20. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy

    SciTech Connect (OSTI)

    Wang, Xudong; Charlton, Michael A.; Esquivel, Carlos; Eng, Tony Y.; Li, Ying; Papanikolaou, Nikos

    2013-09-15

    Purpose: To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (H{sub n,D} and H{sub G}), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied.Methods: A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The H{sub n,D} and H{sub G} were measured using an Andersson–Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO{sup ®} phantom.Results: Within the measurement uncertainty, there is no significant difference between the H{sub n,D} and H{sub G} with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (±0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (±1.6) min and 15.3 (±4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test.Conclusions: This work indicates that there is no significant change of the H{sub n,D} and H{sub G} in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.

  1. Equivalence between XY and dimerized models

    SciTech Connect (OSTI)

    Campos Venuti, Lorenzo; Roncaglia, Marco

    2010-06-15

    The spin-1/2 chain with XY anisotropic coupling in the plane and the XX isotropic dimerized chain are shown to be equivalent in the bulk. For finite systems, we prove that the equivalence is exact in given parity sectors, after taking care of the precise boundary conditions. The proof is given constructively by finding unitary transformations that map the models onto each other. Moreover, we considerably generalized our mapping and showed that even in the case of fully site-dependent couplings the XY chain can be mapped onto an XX model. This result has potential application in the study of disordered systems.

  2. CP Violation, Neutral Currents, and Weak Equivalence

    DOE R&D Accomplishments [OSTI]

    Fitch, V. L.

    1972-03-23

    Within the past few months two excellent summaries of the state of our knowledge of the weak interactions have been presented. Correspondingly, we will not attempt a comprehensive review but instead concentrate this discussion on the status of CP violation, the question of the neutral currents, and the weak equivalence principle.

  3. Headquarters Facilities Master Security Plan - Chapter 16, Equivalenci...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Headquarters Facilities Master Security Plan - Chapter 16, Equivalencies and Exemptions Headquarters Facilities Master Security Plan - Chapter 16, Equivalencies and Exemptions June...

  4. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed...

    Office of Scientific and Technical Information (OSTI)

    Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media Citation Details In-Document Search Title: Equivalent Continuum Modeling for Shock Wave Propagation in ...

  5. Headquarters Facilities Master Security Plan- Chapter 16, Equivalencies and Exemptions

    Broader source: Energy.gov [DOE]

    2016 Headquarters Facilities Master Security Plan - Chapter 16, Equivalencies and Exemptions Describes DOE Headquarters procedures for requesting Equivalencies and Exemptions to DOE security directives.

  6. Headquarters Facilities Master Security Plan - Chapter 16, Equivalenci...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6, Equivalencies and Exemptions Headquarters Facilities Master Security Plan - Chapter 16, Equivalencies and Exemptions June 2015 2015 Headquarters Facilities Master Security Plan...

  7. Chapter_16_Equivalencies_and_Exemptions

    Office of Environmental Management (EM)

    6 Equivalencies and Exemptions DOE security orders and manuals often require certain measures to be taken to protect DOE security interests. In some cases, a DOE organization may be unable to comply with the requirements as specified in the directive, but can achieve the security goal in another equally effective manner. In other cases, the security requirement cannot be met as prescribed. DOE Order 251.1C, Departmental Directives Program, Paragraph 6a(3)(c), establishes a process for requesting

  8. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect (OSTI)

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  9. Equivalencies/Exemptions - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equivalencies/Exemptions by Website Administrator Microsoft Word Document icon Action_Memo_for_Exemptions or Equivalencies.doc - Microsoft Word Document, 31 KB (32256 bytes) Document Actions Print this

  10. REMS submittal notice 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Be sure to use the secure data file submittal web page at: https:apps.orau.govCER... Color photographs and graphic images are encouraged, and selected images will be included ...

  11. REMS submittal notice 2015

    Broader source: Energy.gov (indexed) [DOE]

    notice are also available at: http:energy.govehsspolicy-guidance- reportsdatabasesoccupational-radiation-exposure. 1. Annual Monitoring Records Monitoring records are...

  12. PMCDP Certification and Equivalency Guidelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equivalency Guidelines PMCDP Certification and Equivalency Guidelines This Certification and Equivalency Guidelines (CEG) establishes the U.S. Department of Energy (DOE) competency requirements for all DOE federal project management personnel to be certified as DOE Federal Projects Directors (FPDs) in accordance with DOE Order 361.1C, Acquisition Career Management Program, Chapter V (Project Management Career Development Program [PMCDP]). The purpose of the CEG is to provide requirements for

  13. Development of an Equivalent Wind Plant Power-Curve: Preprint

    SciTech Connect (OSTI)

    Wan, Y. H.; Ela, E.; Orwig, K.

    2010-06-01

    Development of an equivalent wind plant power-curve becomes highly desirable and useful in predicting plant output for a given wind forecast. Such a development is described and summarized in this paper.

  14. Effects of fracture distribution and length scale on the equivalent

    Office of Scientific and Technical Information (OSTI)

    continuum elastic compliance of fractured rock masses (Journal Article) | SciTech Connect Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses Citation Details In-Document Search Title: Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses Authors: Gutierrez, Marte ; Youn, Dong-Joon Publication Date: 2015-12-01 OSTI Identifier: 1224355 Grant/Contract

  15. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media Citation Details In-Document Search Title: Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both

  16. Choice of an equivalent black body solar temperature

    SciTech Connect (OSTI)

    Parrott, J.E. )

    1993-09-01

    In the course of modeling the performance of photovoltaic solar cells for space use, it became desirable to set up a black body spectrum equivalent to the standard Air Mass Zero (AMO) solar spectrum. A method of calculating the equivalent black body solar surface temperature, based on irradiance and photon number flux derived from the AMO spectrum, is presented. It does not require knowledge of the angle subtended by the sun at the earth's surface. The value obtained is 5730 +/- 90 K.

  17. Nearly Equivalent Inter- and Intramolecular Hydrogen Bonding in

    Office of Scientific and Technical Information (OSTI)

    1,3,5-Triamino-2,4,6-trinitrobenzene at High Pressure (Journal Article) | SciTech Connect Nearly Equivalent Inter- and Intramolecular Hydrogen Bonding in 1,3,5-Triamino-2,4,6-trinitrobenzene at High Pressure Citation Details In-Document Search Title: Nearly Equivalent Inter- and Intramolecular Hydrogen Bonding in 1,3,5-Triamino-2,4,6-trinitrobenzene at High Pressure Authors: Manaa, M R ; Fried, L E Publication Date: 2011-10-24 OSTI Identifier: 1226974 Report Number(s): LLNL-JRNL-508473

  18. Wave propagation in equivalent continuums representing truss lattice materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; Barton, Nathan R.

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures consisting of these lattice materials, but the design of such structures will require accurate, efficient simulation techniques. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss is complicated by microinertial effects. This paper derives a dynamic equivalent continuum model for periodic truss structures and verifiesmore » it against detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long-wavelength characteristics of the response such as anisotropic elastic soundspeeds. The formulation presented here also improves upon previous work by preserving equilibrium at truss joints for affine lattice deformation and by improving numerical stability by eliminating vertices in the effective yield surface.« less

  19. Equivalence of optical and electrical noise equivalent power of hybrid NbTiN-Al microwave kinetic inductance detectors

    SciTech Connect (OSTI)

    Janssen, R. M. J.; Endo, A.; Visser, P. J. de; Klapwijk, T. M.; Baselmans, J. J. A.

    2014-11-10

    We have measured and compared the response of hybrid NbTiN-Al Microwave Kinetic Inductance Detectors (MKIDs) to changes in bath temperature and illumination by sub-mm radiation. We show that these two stimulants have an equivalent effect on the resonance feature of hybrid MKIDs. We determine an electrical noise equivalent power (NEP) from the measured temperature responsivity, quasiparticle recombination time, superconducting transition temperature, and noise spectrum, all of which can be measured in a dark environment. For the two hybrid NbTiN-Al MKIDs studied in detail, the electrical NEP is within a factor of two of the optical NEP, which is measured directly using a blackbody source.

  20. Rem&al Action Performed

    Office of Legacy Management (LM)

    ... any, listed in the SPOCs on the Web site of the Office of individual application notice. ... See, 18 CFR 385.2001(a)(l)(iii) and the instructions on the Commission' s web site at ...

  1. Distributed resonance self-shielding using the equivalence principle

    SciTech Connect (OSTI)

    Altiparmakov, D.

    2012-07-01

    This paper presents an extension of the equivalence principle to allow distributed resonance self-shielding in a multi-region fuel configuration. Rational expansion of fuel-to-fuel collision probability is applied in order to establish equivalence between the actual fuel configuration and a homogeneous mixture of hydrogen and resonant absorber, which is a commonly used model to calculate library tables of resonance integrals. The main steps in derivation are given along with the basic physics assumptions on which the presented approach relies. The method has been implemented in the lattice code WIMS-AECL and routinely used for calculation of CANDU-type reactor lattices. Its capabilities are illustrated by comparison of WIMS-AECL and MCNP results of {sup 238}U resonance capture in a CANDU lattice cell. In order to determine optimal rational expansion of fuel-to-fuel collision probability, the calculations were carried out by varying the number of rational terms from 1 to 6. The results show that 4 terms are sufficient. The further increase of the number of terms affects the computing time, while the impact on accuracy is negligible. To illustrate the convergence of the results, the fuel subdivision is gradually refined varying the number of fuel pin subdivisions from 1 to 32 equal-area annuli. The results show very good agreement with the reference MCNP calculation. (authors)

  2. On The Equivalence of Soft and Zero-Bin Subtractions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: On The Equivalence of Soft and Zero-Bin Subtractions Citation Details In-Document Search Title: On The Equivalence of Soft and Zero-Bin Subtractions You are ...

  3. Demonstration of the Equivalence of Soft and Zero-Bin Subtractions...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Demonstration of the Equivalence of Soft and Zero-Bin Subtractions Citation Details In-Document Search Title: Demonstration of the Equivalence of Soft and Zero-Bin ...

  4. The impact of equivalence ratio oscillations on combustion dynamics in a backward-facing step combustor

    SciTech Connect (OSTI)

    Murat Altay, H.; Speth, Raymond L.; Hudgins, Duane E.; Ghoniem, Ahmed F.

    2009-11-15

    The combustion dynamics of propane-air flames are investigated in an atmospheric pressure, atmospheric inlet temperature, lean, premixed backward-facing step combustor. We modify the location of the fuel injector to examine the impact of equivalence ratio oscillations arriving at the flame on the combustion dynamics. Simultaneous pressure, velocity, heat-release rate and equivalence ratio measurements and high-speed video from the experiments are used to identify and characterize several distinct operating modes. When the fuel is injected far upstream from the step, the equivalence ratio arriving at the flame is steady and the combustion dynamics are controlled only by flame-vortex interactions. In this case, different dynamic regimes are observed depending on the operating parameters. When the fuel is injected close to the step, the equivalence ratio arriving at the flame exhibits oscillations. In the presence of equivalence ratio oscillations, the measured sound pressure level is significant across the entire range of lean mean equivalence ratios even if the equivalence ratio oscillations arriving at the flame are out-of-phase with the pressure oscillations. The combustion dynamics are governed primarily by the flame-vortex interactions, while the equivalence ratio oscillations have secondary effects. The equivalence ratio oscillations could generate variations in the combustion dynamics in each cycle under some operating conditions, destabilize the flame at the entire range of the lean equivalence ratios, and increase the value of the mean equivalence ratio at the lean blowout limit. (author)

  5. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    DOE Patents [OSTI]

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  6. An analytical method to calculate equivalent fields to irregular symmetric and asymmetric photon fields

    SciTech Connect (OSTI)

    Tahmasebi Birgani, Mohamad J.; Chegeni, Nahid; Zabihzadeh, Mansoor; Hamzian, Nima

    2014-04-01

    Equivalent field is frequently used for central axis depth-dose calculations of rectangular- and irregular-shaped photon beams. As most of the proposed models to calculate the equivalent square field are dosimetry based, a simple physical-based method to calculate the equivalent square field size was used as the basis of this study. The table of the sides of the equivalent square or rectangular fields was constructed and then compared with the well-known tables by BJR and Venselaar, et al. with the average relative error percentage of 2.5 ± 2.5% and 1.5 ± 1.5%, respectively. To evaluate the accuracy of this method, the percentage depth doses (PDDs) were measured for some special irregular symmetric and asymmetric treatment fields and their equivalent squares for Siemens Primus Plus linear accelerator for both energies, 6 and 18 MV. The mean relative differences of PDDs measurement for these fields and their equivalent square was approximately 1% or less. As a result, this method can be employed to calculate equivalent field not only for rectangular fields but also for any irregular symmetric or asymmetric field.

  7. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOE Patents [OSTI]

    Condreva, K.J.

    1997-01-14

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attenuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power. 4 figs.

  8. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOE Patents [OSTI]

    Condreva, Kenneth J.

    1997-01-01

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attentuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power.

  9. Demonstration of a Full-core Reactivity Equivalence for FeCrAl...

    Office of Scientific and Technical Information (OSTI)

    Demonstration of a Full-core Reactivity Equivalence for FeCrAl Enhanced Accident Tolerant Fuel in BWRs Citation Details In-Document Search Title: Demonstration of a Full-core ...

  10. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent

    Office of Scientific and Technical Information (OSTI)

    High-Explosive Charges (Technical Report) | SciTech Connect Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges Citation Details In-Document Search Title: Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges Authors: Fournier, K B ; Walton, O R ; Benjamin, R ; Dunlop, W H Publication Date: 2014-09-29 OSTI Identifier: 1171337 Report Number(s): LLNL-TR-662280 DOE Contract Number: DE-AC52-07NA27344

  11. Demonstration of a Full-core Reactivity Equivalence for FeCrAl Enhanced

    Office of Scientific and Technical Information (OSTI)

    Accident Tolerant Fuel in BWRs (Conference) | SciTech Connect Demonstration of a Full-core Reactivity Equivalence for FeCrAl Enhanced Accident Tolerant Fuel in BWRs Citation Details In-Document Search Title: Demonstration of a Full-core Reactivity Equivalence for FeCrAl Enhanced Accident Tolerant Fuel in BWRs Authors: George, Nathan M [1] ; Powers, Jeffrey J [1] ; Maldonado, G Ivan [1] ; Worrall, Andrew [1] ; Terrani, Kurt A [1] + Show Author Affiliations ORNL Publication Date: 2015-01-01

  12. Development of a Full-core Reactivity Equivalence for FeCrAl Enhanced

    Office of Scientific and Technical Information (OSTI)

    Accident Tolerant Fuel in BWRs (Conference) | SciTech Connect Development of a Full-core Reactivity Equivalence for FeCrAl Enhanced Accident Tolerant Fuel in BWRs Citation Details In-Document Search Title: Development of a Full-core Reactivity Equivalence for FeCrAl Enhanced Accident Tolerant Fuel in BWRs Authors: George, Nathan M [1] ; Powers, Jeffrey J [1] ; Maldonado, G Ivan [1] ; Worrall, Andrew [1] ; Terrani, Kurt A [1] + Show Author Affiliations ORNL Publication Date: 2015-01-01 OSTI

  13. ,"U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production, Gaseous Equivalent (Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  14. Canister storage building compliance assessment SNF project NRC equivalency criteria - HNF-SD-SNF-DB-003

    SciTech Connect (OSTI)

    BLACK, D.M.

    1999-08-11

    This document presents the Project's position on compliance with the SNF Project NRC Equivalency Criteria--HNF-SD-SNF-DE-003, Spent Nuclear Fuel Project Path Forward Additional NRC Requirements. No non-compliances are shown The compliance statements have been reviewed and approved by DOE. Open items are scheduled to be closed prior to project completion.

  15. Sex-specific tissue weighting factors for effective dose equivalent calculations

    SciTech Connect (OSTI)

    Xu, X.G. [Rensselaer Polytechnic Inst., Troy, NY (United States); Reece, W.D. [Texas A& M Univ., College Station, TX (United States)

    1996-01-01

    The effective dose equivalent was defined in the International Commission on Radiological Protection Publication 26 in 1977 and later adopted by the U.S. Nuclear REgulatory Commission. To calculate organ doses and effective dose equivalent for external exposures using Monte Carlo simulations, sex-specific anthropomorphic phantoms and sex-specific weighting factors are always employed. This paper presents detailed mathematical derivation of a set of sex-specific tissue weighting factors and the conditions which the weighting factors must satisfy. Results of effective dose equivalent calculations using female and male phantoms exposed to monoenergetic photon beams of 0.08, 0.3, and 1.0 MeV are provided and compared with results published by other authors using different sex-specific weighting factors and phantoms. The results indicate that females always receive higher effective dose equivalent than males for the photon energies and geometries considered and that some published data may be wrong due to mistakes in deriving the sex-specific weighting factors. 17 refs., 2 figs., 2 tabs.

  16. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  17. REM Handling Procedures | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROPOSING A NEW STRATEGICALLY LOCATED AMERIFLUX TOWER SITE IN MISSOURI (Technical Report) | SciTech Connect REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW STRATEGICALLY LOCATED AMERIFLUX TOWER SITE IN MISSOURI Citation Details In-Document Search Title: REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW STRATEGICALLY LOCATED AMERIFLUX TOWER SITE IN MISSOURI by June 14, 2004, the MOFLUX site was fully instrumented and data

  18. Effects of fuel type and equivalence ratios on the flickering of triple flames

    SciTech Connect (OSTI)

    Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A.

    2009-02-15

    An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

  19. The Equivalent Thermal Resistance of Tile Roofs with and without Batten Systems

    SciTech Connect (OSTI)

    Miller, William A

    2013-01-01

    Clay and concrete tile roofs were installed on a fully instrumented attic test facility operating in East Tennessee s climate. Roof, attic and deck temperatures and heat flows were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventionally pigmented and direct-nailed asphalt shingle roof. The data were used to benchmark a computer tool for simulation of roofs and attics and the tool used to develop an approach for computing an equivalent seasonal R-value for sub-tile venting. The approach computed equal heat fluxes through the ceilings of roofs having different combinations of surface radiation properties and or building constructions. A direct nailed shingle roof served as a control for estimating the equivalent thermal resistance of the air space. Simulations were benchmarked to data in the ASHRAE Fundamentals for the thermal resistance of inclined and closed air spaces.

  20. Equivalence of integral and differential methods of generating accurately solvable potentials of the steady Schroedinger equation

    SciTech Connect (OSTI)

    Samsonov, B.F.

    1995-09-01

    It is proven that the well-known nonlocal (i.e., based on integral transformations) methods of generating accurately solvable potentials of the one-dimensional steady Schroedinger equation are equivalent to multiple use of the local (i.e., based on a differential transformation) method known as the Darboux transformation. New accurately solvable potentials with a hydrogen-like spectrum are obtained, and several functions of the lowest states of the discrete spectrum are presented.

  1. Flame Inhibition by Phosphorus-Containing Compounds over a Range of Equivalence Ratios

    SciTech Connect (OSTI)

    Jayaweera, T M; Melius, C F; Pitz, W J; Westbrook, C K; Korobeinichev, O P; Shvartsberg, V M; Shmakov, A G; Rybitskaya, I V; Curran, H

    2004-03-17

    There is much interest in the combustion mechanism of organophosphorus compounds (OPCs) due to their role as potential halon replacements in fire suppression. A continuing investigation of the inhibition activity of organophosphorus compounds under a range of equivalence ratios was performed experimentally and computationally, as measured by the burning velocity. Updates to a previous mechanism were made by the addition and modification of reactions in the mechanism for a more complete description of the recombination reactions. In this work, the laminar flame speed is measured experimentally and calculated numerically for a premixed propane/air flame, under a range of equivalence ratios, undoped and doped with dimethyl methylphosphonate (DMMP). A detailed investigation of the catalytic cycles involved in the recombination of key flame radicals is made for two equivalence ratios, lean and rich. From this, the importance of different catalytic cycles involved in the lean versus rich case is discussed. Although the importance of certain cycles is different under different stoichiometries, the OPCs are similarly effective across the range, demonstrating the robustness of OPCs as flame suppressants. In addition, it is shown that the phosphorus compounds are most active in the high temperature region of the flame. This may, in part, explain their high level of inhibition effectiveness.

  2. Combinatorial theory of the semiclassical evaluation of transport moments. I. Equivalence with the random matrix approach

    SciTech Connect (OSTI)

    Berkolaiko, G.; Kuipers, J.

    2013-11-15

    To study electronic transport through chaotic quantum dots, there are two main theoretical approaches. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the transport in the semiclassical approximation and studies correlations among sets of classical trajectories. There are established evaluation procedures within the semiclassical evaluation that, for several linear and nonlinear transport moments to which they were applied, have always resulted in the agreement with random matrix predictions. We prove that this agreement is universal: any semiclassical evaluation within the accepted procedures is equivalent to the evaluation within random matrix theory. The equivalence is shown by developing a combinatorial interpretation of the trajectory sets as ribbon graphs (maps) with certain properties and exhibiting systematic cancellations among their contributions. Remaining trajectory sets can be identified with primitive (palindromic) factorisations whose number gives the coefficients in the corresponding expansion of the moments of random matrices. The equivalence is proved for systems with and without time reversal symmetry.

  3. Formulating a simplified equivalent representation of distribution circuits for PV impact studies.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Broderick, Robert Joseph; Grijalva, Santiago

    2013-04-01

    With an increasing number of Distributed Generation (DG) being connected on the distribution system, a method for simplifying the complexity of the distribution system to an equivalent representation of the feeder is advantageous for streamlining the interconnection study process. The general characteristics of the system can be retained while reducing the modeling effort required. This report presents a method of simplifying feeders to only specified buses-of-interest. These buses-of-interest can be potential PV interconnection locations or buses where engineers want to verify a certain power quality. The equations and methodology are presented with mathematical proofs of the equivalence of the circuit reduction method. An example 15-bus feeder is shown with the parameters and intermediate example reduction steps to simplify the circuit to 4 buses. The reduced feeder is simulated using PowerWorld Simulator to validate that those buses operate with the same characteristics as the original circuit. Validation of the method is also performed for snapshot and time-series simulations with variable load and solar energy output data to validate the equivalent performance of the reduced circuit with the interconnection of PV.

  4. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    SciTech Connect (OSTI)

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar; Schreuder, Andries Niek; Keole, Sameer

    2012-06-15

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range, modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment conditions, the H/D value per uncollimated beam size for uniform scanning beams was slightly lower than that from a passive scattering beam and higher than that from a pencil beam scanning beam, within a factor of 2. Minimizing beam scanning area could effectively reduce neutron dose equivalent for uniform scanning beams, down to the level close to pencil beam scanning.

  5. SU-E-T-329: Tissue-Equivalent Phantom Materials for Neutron Dosimetry in Proton Therapy

    SciTech Connect (OSTI)

    Halg, R; Lomax, A; Clarke, S; Wieger, B; Pryser, E; Arghal, R; Pozzi, S; Bashkirov, V; Schulte, R; Schneider, U

    2014-06-01

    Purpose: To characterize tissue equivalence of phantom materials in terms of secondary neutron production and dose deposition from neutrons produced in radiation therapy phantom materials in the context of proton therapy using Monte Carlo simulations and measurements. Methods: In order to study the influence of material choice on neutron production in therapeutic proton beams, Monte Carlo simulations using the Geant4 and MCNPX-PoliMi transport codes were performed to generate the neutron fields produced by protons of 155 and 200 MeV. A simple irradiation geometry was used to investigate the effect of different materials. The proton beams were stopped in slab phantoms to study the production of secondary neutrons. The investigated materials were water, Lucite, and tissue-equivalent phantom materials (CIRS Inc., Norfolk, VA). Neutron energy spectra and absorbed dose by neutrons and their secondary particles were scored. In addition, simulations were performed for reference tissues (ICRP/ICRU) to assess tissue equivalence with respect to neutron generation and transport. In order to benchmark the simulation results, measurements were performed with a system developed at the University of Michigan; organic liquid scintillators were used to detect the neutron emissions from the irradiation of tissue-equivalent materials. Additionally, the MPPost code was used to calculate the scintillator response from the MCNPX-PoliMi output. Results: The simulated energy spectra and depth dose curves of the neutrons produced in different phantom materials showed similar shape. The differences of spectra and fluences between all studied materials and reference tissues were well within the achievable precision of neutron dosimetry. The shape of the simulated detector response of the liquid scintillators agreed well with measurements on the proton beamline. Conclusion: Based on Geant4 and MCNPX-PoliMi simulations, the investigated materials appear to be suitable to study the production of neutrons in proton therapy. MC simulations were verified with neutron measurements in therapeutic proton beams. This work was funded in part by the ANDANTE grant of the European Commission in the 7th Framework Program.

  6. Equivalent circuit analysis of radiative coupling in monolithic tandem solar cells

    SciTech Connect (OSTI)

    Lan, Dongchen E-mail: d.lan@unswalumni.com; Green, Martin A.

    2015-06-29

    As solar cell efficiency improves towards the Shockley-Queisser limit, so does the radiative efficiency of the cell. For tandem stacks of cells where energy conversion efficiency now exceeds 46%, radiative coupling between the cells is becoming increasingly important to consider in cell design, measurement, and performance prediction. We show how an equivalent circuit model can capture the complex radiative interactions between cells in such tandem stacks, allowing more insight into the impact on cell performance. The circuit's use is demonstrated by deriving results relevant to the critical step of eliminating coupling effects from measured cell spectral responses.

  7. On the Equivalence of Trapped Colloids, Pinned Vortices, and Spin Ice

    SciTech Connect (OSTI)

    Nisoli, Cristiano

    2014-04-23

    We investigate the recently reported analogies between pinned vortices in nano-structured superconductors or colloids in optical traps, and spin ice materials. The frustration of the two models, one describing colloids and vortices, the other describing spin ice, differs essentially. However, their effective energetics is made identical by the contribution of an emergent field associated to a topological charge. This equivalence extends to the local low-energy dynamics of the ice manifold, yet breaks down in lattices of mixed coordination, because of topological charge transfer between sub-latices.

  8. http://www.hss.energy.gov/csa/analysis/rems/rems/ri.htm

    National Nuclear Security Administration (NNSA)

    6th 7th 8th 9th Year 2010 2009 2008 2007 2006 2005 Program Office All Energy Efficiency and Renewable Energy National Nuclear Security Administration Office of Civilian ...

  9. http://www.hss.energy.gov/csa/analysis/rems/rems/ri.htm

    National Nuclear Security Administration (NNSA)

    Renewable Energy National Nuclear Security Administration Office of Civilian Radioactive Waste Management Office of Environmental Management Office of Fossil Energy Operations...

  10. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect (OSTI)

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  11. Lineal energy calibration of mini tissue-equivalent gas-proportional counters (TEPC)

    SciTech Connect (OSTI)

    Conte, V.; Moro, D.; Colautti, P.; Grosswendt, B.

    2013-07-18

    Mini TEPCs are cylindrical gas proportional counters of 1 mm or less of sensitive volume diameter. The lineal energy calibration of these tiny counters can be performed with an external gamma-ray source. However, to do that, first a method to get a simple and precise spectral mark has to be found and then the keV/{mu}m value of this mark. A precise method (less than 1% of uncertainty) to identify this markis described here, and the lineal energy value of this mark has been measured for different simulated site sizes by using a {sup 137}Cs gamma source and a cylindrical TEPC equipped with a precision internal {sup 244}Cm alpha-particle source, and filled with propane-based tissue-equivalent gas mixture. Mini TEPCs can be calibrated in terms of lineal energy, by exposing them to {sup 137}Cesium sources, with an overall uncertainty of about 5%.

  12. An equivalent circuit model and power calculations for the APS SPX crab cavities.

    SciTech Connect (OSTI)

    Berenc, T. )

    2012-03-21

    An equivalent parallel resistor-inductor-capacitor (RLC) circuit with beam loading for a polarized TM110 dipole-mode cavity is developed and minimum radio-frequency (rf) generator requirements are calculated for the Advanced Photon Source (APS) short-pulse x-ray (SPX) superconducting rf (SRF) crab cavities. A beam-loaded circuit model for polarized TM110 mode crab cavities was derived. The single-cavity minimum steady-state required generator power has been determined for the APS SPX crab cavities for a storage ring current of 200mA DC current as a function of external Q for various vertical offsets including beam tilt and uncontrollable detuning. Calculations to aid machine protection considerations were given.

  13. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Moyer, Bruce A

    2012-12-01

    The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

  14. Lean-burn hydrogen spark-ignited engines: the mechanical equivalent to the fuel cell

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.

    1996-10-01

    Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios, so that NO[sub x] emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency. In this paper, a simplified engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many 1345 experimental points obtained in a recent evaluation of a hydrogen research engine. The experimental data are used to adjust the empirical constants in the heat release rate and heat transfer correlation. The adjusted engine model predicts pressure traces, indicated efficiency and NO,, emissions with good accuracy over the range of speed, equivalence ratio and manifold pressure experimentally covered.

  15. Investigation of critical equivalence ratio and chemical speciation in flames of ethylbenzene-ethanol blends

    SciTech Connect (OSTI)

    Therrien, Richard J.; Ergut, Ali; Levendis, Yiannis A.; Richter, Henning; Howard, Jack B.; Carlson, Joel B.

    2010-02-15

    This work investigates five different one-dimensional, laminar, atmospheric pressure, premixed ethanol/ethylbenzene flames (0%, 25%, 50%, 75% and 90% ethanol by weight) at their soot onset threshold ({phi}{sub critical}). Liquid ethanol/ethylbenzene mixtures were pre-vaporized in nitrogen, blended with an oxygen-nitrogen mixture and, upon ignition, burned in premixed one-dimensional flames at atmospheric pressure. The flames were controlled so that each was at its visual soot onset threshold, and all had similar temperature profiles (determined by thermocouples). Fixed gases, light volatile hydrocarbons, polycyclic aromatic hydrocarbons (PAH), and oxygenated aromatic hydrocarbons were directly sampled at three locations in each flame. The experimental results were compared with a detailed kinetic model, and the modeling results were used to perform a reaction flux analysis of key species. The critical equivalence ratio was observed to increase in a parabolic fashion as ethanol concentration increased in the fuel mixture. The experimental results showed increasing trends of methane, ethane, and ethylene with increasing concentrations of ethanol in the flames. Carbon monoxide was also seen to increase significantly with the increase of ethanol in the flame, which removes carbon from the PAH and soot formation pathways. The PAH and oxygenated aromatic hydrocarbon values were very similar in the 0%, 25% and 50% ethanol flames, but significantly lower in the 75% and 90% ethanol flames. These results were in general agreement with the model and were reflected by the model soot predictions. The model predicted similar soot profiles for the 0%, 25% and 50% ethanol flames, however it predicted significantly lower values in the 75% and 90% ethanol flames. The reaction flux analysis revealed benzyl to be a major contributor to single and double ring aromatics (i.e., benzene and naphthalene), which was identified in a similar role in nearly sooting or highly sooting ethylbenzene flames. The presence of this radical was significantly reduced as ethanol concentration was increased in the flames, and this effect in combination with the lower carbon to oxygen ratios and the enhanced formation of carbon monoxide, are likely what allowed higher equivalence ratios to be reached without forming soot. (author)

  16. Electrically detected magnetic resonance modeling and fitting: An equivalent circuit approach

    SciTech Connect (OSTI)

    Leite, D. M. G.; Batagin-Neto, A.; Nunes-Neto, O.; Gmez, J. A.; Graeff, C. F. O.

    2014-01-21

    The physics of electrically detected magnetic resonance (EDMR) quadrature spectra is investigated. An equivalent circuit model is proposed in order to retrieve crucial information in a variety of different situations. This model allows the discrimination and determination of spectroscopic parameters associated to distinct resonant spin lines responsible for the total signal. The model considers not just the electrical response of the sample but also features of the measuring circuit and their influence on the resulting spectral lines. As a consequence, from our model, it is possible to separate different regimes, which depend basically on the modulation frequency and the RC constant of the circuit. In what is called the high frequency regime, it is shown that the sign of the signal can be determined. Recent EDMR spectra from Alq{sub 3} based organic light emitting diodes, as well as from a-Si:H reported in the literature, were successfully fitted by the model. Accurate values of g-factor and linewidth of the resonant lines were obtained.

  17. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - II. Verifications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Choi, Sooyoung; Kong, Chidong; Lee, Deokjung; Williams, Mark L.

    2015-03-09

    A new methodology has been developed recently to treat resonance self-shielding in systems for which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. The theoretical development adopts equivalence theory in both micro- and macro-level heterogeneities to provide approximate analytical expressions for the shielded cross sections, which may be interpolated from a table of resonance integrals or Bondarenko factors using a modified background cross section as the interpolation parameter. This paper describes the first implementation of the theoretical equations in a reactor analysis code. In order to reduce discrepancies caused bymore » use of the rational approximation for collision probabilities in the original derivation, a new formulation for a doubly heterogeneous Bell factor is developed in this paper to improve the accuracy of doubly heterogeneous expressions. This methodology is applied to a wide range of pin cell and assembly test problems with varying geometry parameters, material compositions, and temperatures, and the results are compared with continuous-energy Monte Carlo simulations to establish the accuracy and range of applicability of the new approach. It is shown that the new doubly heterogeneous self-shielding method including the Bell factor correction gives good agreement with reference Monte Carlo results.« less

  18. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - I. Theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Williams, Mark L.; Lee, Deokjung; Choi, Sooyoung

    2015-03-04

    A new methodology has been developed to treat resonance self-shielding in doubly heterogeneous very high temperature gas-cooled reactor systems in which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. This new method first homogenizes the fuel grain and matrix materials using an analytically derived disadvantage factor from a two-region problem with equivalence theory and intermediate resonance method. This disadvantage factor accounts for spatial self-shielding effects inside each grain within the framework of an infinite array of grains. Then the homogenized fuel compact is self-shielded using a Bondarenko method to accountmore » for interactions between the fuel compact regions in the fuel lattice. In the final form of the equations for actual implementations, the double-heterogeneity effects are accounted for by simply using a modified definition of a background cross section, which includes geometry parameters and cross sections for both the grain and fuel compact regions. With the new method, the doubly heterogeneous resonance self-shielding effect can be treated easily even with legacy codes programmed only for a singly heterogeneous system by simple modifications in the background cross section for resonance integral interpolations. This paper presents a detailed derivation of the new method and a sensitivity study of double-heterogeneity parameters introduced during the derivation. The implementation of the method and verification results for various test cases are presented in the companion paper.« less

  19. On the equivalence of the RTI and SVM approaches to time correlated analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Croft, S.; Favalli, A.; Henzlova, D.; Santi, P. A.

    2014-11-21

    Recently two papers on how to perform passive neutron auto-correlation analysis on time gated histograms formed from pulse train data, generically called time correlation analysis (TCA), have appeared in this journal [1,2]. For those of us working in international nuclear safeguards these treatments are of particular interest because passive neutron multiplicity counting is a widely deployed technique for the quantification of plutonium. The purpose of this letter is to show that the skewness-variance-mean (SVM) approach developed in [1] is equivalent in terms of assay capability to the random trigger interval (RTI) analysis laid out in [2]. Mathematically we could alsomore » use other numerical ways to extract the time correlated information from the histogram data including for example what we might call the mean, mean square, and mean cube approach. The important feature however, from the perspective of real world applications, is that the correlated information extracted is the same, and subsequently gets interpreted in the same way based on the same underlying physics model.« less

  20. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - II. Verifications

    SciTech Connect (OSTI)

    Choi, Sooyoung; Kong, Chidong; Lee, Deokjung; Williams, Mark L.

    2015-03-09

    A new methodology has been developed recently to treat resonance self-shielding in systems for which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. The theoretical development adopts equivalence theory in both micro- and macro-level heterogeneities to provide approximate analytical expressions for the shielded cross sections, which may be interpolated from a table of resonance integrals or Bondarenko factors using a modified background cross section as the interpolation parameter. This paper describes the first implementation of the theoretical equations in a reactor analysis code. In order to reduce discrepancies caused by use of the rational approximation for collision probabilities in the original derivation, a new formulation for a doubly heterogeneous Bell factor is developed in this paper to improve the accuracy of doubly heterogeneous expressions. This methodology is applied to a wide range of pin cell and assembly test problems with varying geometry parameters, material compositions, and temperatures, and the results are compared with continuous-energy Monte Carlo simulations to establish the accuracy and range of applicability of the new approach. It is shown that the new doubly heterogeneous self-shielding method including the Bell factor correction gives good agreement with reference Monte Carlo results.

  1. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - I. Theory

    SciTech Connect (OSTI)

    Williams, Mark L.; Lee, Deokjung; Choi, Sooyoung

    2015-03-04

    A new methodology has been developed to treat resonance self-shielding in doubly heterogeneous very high temperature gas-cooled reactor systems in which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. This new method first homogenizes the fuel grain and matrix materials using an analytically derived disadvantage factor from a two-region problem with equivalence theory and intermediate resonance method. This disadvantage factor accounts for spatial self-shielding effects inside each grain within the framework of an infinite array of grains. Then the homogenized fuel compact is self-shielded using a Bondarenko method to account for interactions between the fuel compact regions in the fuel lattice. In the final form of the equations for actual implementations, the double-heterogeneity effects are accounted for by simply using a modified definition of a background cross section, which includes geometry parameters and cross sections for both the grain and fuel compact regions. With the new method, the doubly heterogeneous resonance self-shielding effect can be treated easily even with legacy codes programmed only for a singly heterogeneous system by simple modifications in the background cross section for resonance integral interpolations. This paper presents a detailed derivation of the new method and a sensitivity study of double-heterogeneity parameters introduced during the derivation. The implementation of the method and verification results for various test cases are presented in the companion paper.

  2. Development of an equivalent diameter expression for vertical U-tubes used in ground-coupled heat pumps

    SciTech Connect (OSTI)

    Gu, Y.; O`Neal, D.L.

    1998-12-31

    An expression for the equivalent diameter was developed for the heat transfer of a vertical U-tube heat exchanger used in applications of ground-coupled heat pumps. The expression was derived using the assumptions of steady-state heat transfer and concentricity of one leg and the borehole. Potential errors in applying the results to a transient start-up problem are also quantified and discussed in this paper, using transient cylindrical heat source solutions available in the literature. A conformal mapping technique was used to develop a solution to examine the errors in evaluating the external thermal resistance with a concentricity assumption. The principle of superposition of multiple heat sources was applied in the present work. The results show that the equivalent diameter depends on the tube diameter and the leg spacing. The ratio of the calculated equivalent diameter to the tube diameter can be two or greater.

  3. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    SciTech Connect (OSTI)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D.; McCrory, R. L.

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6??10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  4. Package Equivalent Reactor Networks as Reduced Order Models for Use with CAPE-OPEN Compliant Simulation

    SciTech Connect (OSTI)

    Meeks, E.; Chou, C. -P.; Garratt, T.

    2013-03-31

    Engineering simulations of coal gasifiers are typically performed using computational fluid dynamics (CFD) software, where a 3-D representation of the gasifier equipment is used to model the fluid flow in the gasifier and source terms from the coal gasification process are captured using discrete-phase model source terms. Simulations using this approach can be very time consuming, making it difficult to imbed such models into overall system simulations for plant design and optimization. For such system-level designs, process flowsheet software is typically used, such as Aspen Plus® [1], where each component where each component is modeled using a reduced-order model. For advanced power-generation systems, such as integrated gasifier/gas-turbine combined-cycle systems (IGCC), the critical components determining overall process efficiency and emissions are usually the gasifier and combustor. Providing more accurate and more computationally efficient reduced-order models for these components, then, enables much more effective plant-level design optimization and design for control. Based on the CHEMKIN-PRO and ENERGICO software, we have developed an automated methodology for generating an advanced form of reduced-order model for gasifiers and combustors. The reducedorder model offers representation of key unit operations in flowsheet simulations, while allowing simulation that is fast enough to be used in iterative flowsheet calculations. Using high-fidelity fluiddynamics models as input, Reaction Design’s ENERGICO® [2] software can automatically extract equivalent reactor networks (ERNs) from a CFD solution. For the advanced reduced-order concept, we introduce into the ERN a much more detailed kinetics model than can be included practically in the CFD simulation. The state-of-the-art chemistry solver technology within CHEMKIN-PRO allows that to be accomplished while still maintaining a very fast model turn-around time. In this way, the ERN becomes the basis for high-fidelity kinetics simulation, while maintaining the spatial information derived from the geometrically faithful CFD model. The reduced-order models are generated in such a way that they can be easily imported into a process flowsheet simulator, using the CAPE-OPEN architecture for unit operations. The ENERGICO/CHEMKIN-PRO software produces an ERN-definition file that is read by a dynamically linked library (DLL) that can be easily linked to any CAPE-OPEN compliant software. The plug-in unitoperation module has been successfully demonstrated for complex ERNs of coal gasifiers, using both Aspen Plus and COFE process flowsheet simulators through this published CAPE-OPEN interface.

  5. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    SciTech Connect (OSTI)

    Xavier, MA; Trimboli, MS

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.

  6. MODIFYING A 60 YEAR OLD STACK SAMPLING SYSTEM TO MEET ANSI N13.1-1999 EQUIVALENCY

    SciTech Connect (OSTI)

    SIMMONS, F.M.

    2006-06-14

    The 291-T-1 stack was constructed in 1944 to support ongoing missions associated with the Hanford Project. Recent changes in the plant mission required a revision to the existing license of the stack that was operating as a minor emission unit. The Environmental Protection Agency (EPA) and the Washington Department of Health (WDOH) deemed this revision to be a significant modification, thereby requiring the stack to operate to the ANSI N13.1-1999 sampling and monitoring requirements. Because the stack is similar to other stacks on the Hanford site, allowance was made by EPA to demonstrate equivalency to the ANSI standard via calculations in lieu of actual testing. Calculations were allowed for determining the deposition, nozzle transmission and aspiration ratios, but measurements were required for the stack flow coefficient of variation (COV). The equivalency determination was to be based on the requirements of Table 6 of the ANSI N13.1-1999 Standard.

  7. Measurement of the neutron spectrum and ambient neutron dose rate equivalent from the small 252Cf source at 1 meter

    SciTech Connect (OSTI)

    Radev, R.

    2015-07-07

    NASA Langley Research Center requested a measurement of the neutron spectral distribution and fluence from the 252Cf source (model NS-120, LLNL serial # 7001677, referred as the SMALL Cf source) and determination of the ambient neutron dose rate equivalent and kerma at 100 cm for the Radiation Budget Instrument Experiment (Rad- X). The dosimetric quantities should be based on the neutron spectrum and the current neutron-to-dose conversion coefficients.

  8. Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing: Supplemental Report on Penetration Software Algorithms

    SciTech Connect (OSTI)

    Davis, M.; Costyk, D.; Narang, A.

    2005-03-01

    This report supplements the July 2003 report ''Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing'' (NREL/SR-560-33909). The original report presented methods for calculating penetration limits for distributed energy resources interconnected with distribution circuits of utility-owned electric power systems. This report describes the algorithms required to develop application software to calculate penetration limits. The original report can be found at http://www.nrel.gov/docs/fy03osti/33909.pdf.

  9. On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids

    SciTech Connect (OSTI)

    Sai Venkata Ramana, A.

    2014-04-21

    The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids.

  10. DOE Radiation Exposure Monitoring System (REMS) Data Update

    SciTech Connect (OSTI)

    Rao, Nimi; Hagemeyer, Derek

    2012-05-05

    This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

  11. A discussion on the interpretation and characterization of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials

    SciTech Connect (OSTI)

    O'hara, John F; Azad, Abul K

    2008-01-01

    A metafilm (also referred to as a metasurface) is the surface equivalent of a metamaterial. More precisely, a metafilm is a surface distribution of suitable chosen electrically small scatterers. Metafilms are becoming popular as an alternative to full three-dimensional metamaterials. Unfortunately, many papers in the literature present incorrect interpretations and mischaracterizations of these metafilms. In fact, some of the characterizations presented in the literature result in non-unique parameters for a uniquely defined metafilm. In this paper we discuss an appropriate interpretation and characterization of metafilms and present a correct manner to characterize a metafilm. Additionally, we illustrate the error that results from an incorrect characterization of metafilms. We present various examples to emphasize these points. Finally we present a retrieval approach for determining the uniquely defined quantities (the electric and magnetic susceptibilities of its constituent scatterers) that characterize a metafilm.

  12. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    DOE Patents [OSTI]

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  13. Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094

    SciTech Connect (OSTI)

    Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted

    2012-07-01

    Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

  14. Dose equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  15. EnergyEquivalents.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy.Gov Presents: Understanding The Grid Energy.Gov Presents: Understanding The Grid Addthis Topic Smart Grid The U.S. Department of Energy is making a series of announcements to support its Grid Modernization Initiative. As we do so, we realize many of you may be wondering: what does "grid modernization" mean? Watch this video to find out Program | Department of Energy

    Graduates » Energy/National Nuclear Security Administration (NNSA) Career Pathways Program Energy/National

  16. Establishing LED Equivalency

    SciTech Connect (OSTI)

    2011-10-01

    Solid-state lighting program technology fact sheet that provides guidance for comparing products based on LED or other light source technologies.

  17. GS Equivalency Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for General Schedule (i.e., annual) positions. The Chart provides guidance for Human Resource Specialists and Assistants in making qualification determinations when BPA...

  18. NGPL Production, Gaseous Equivalent

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado-Kansas 13 2014-2014 Colorado-Utah 34 2014-2014 Florida 0 0 0 0 233 1968-2014 Florida-Florida 233 2014-2014 Gulf of Mexico 0 0 87,478 70,292 75,648 2007-2014 Gulf of ...

  19. WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242

    SciTech Connect (OSTI)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E.; Lucero, Randy P.

    2012-07-01

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge waste for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard three source tubes seen in debris PDP drums. Available line sources (Eu-152) were placed in the spiral tubes to further accomplish the desired uniform distribution of radionuclides. The standard PDP drum (PDP matrix drum 005) and PDP sources were used to determine the lower limits of detection (LLD) and TMU. Analysis results for the sludge drum matrix case for two HPGe detectors were tabulated and evaluated. NNSS has accepted the methodology and results of the measurements towards demonstrating equivalence to CBFO certified systems. In conclusion, the WES-WGS and CMR-OPS gamma spectroscopy teams at LANL have defined and performed measurements that serve to establish and demonstrate equivalency with the processes used by CBFO certified NDA systems. The supplemental measurements address four key areas in Appendix A of DOE/WIPP-02-3122: Annual Calibration Confirmation and Performance Check measurements; LLD determination; and TMU definition. For these measurements the containers, matrices and activity loadings are selected to represent items being assayed in real LLW cases. The LLD and the TMU bounding measurements are to be performed one time and will not be required to be repeated in future campaigns. The annual calibration and performance check measurements were performed initially and planned to repeat in annual campaigns in order to maintain NNSS certification. PDP sources and a PDP sludge drum as well as Eu-152 line sources and a spiral sludge drum were used for the measurements. In all cases, the results for accuracy and precision (%R and %RSD, respectively) were within allowable ranges as defined by the WIPP PDP program. LLD (or MDC) results were established for all the ten WIPP reportable radionuclides and U-235, and the MDC for Pu-239 was established in all cases to be well under 100 nCi/g. Useful results for reducing estimated uncertainties were established and an interesting unexpected case of high bias was observed and will be applied toward this end. (authors)

  20. A reconsideration of the noise equivalent power and the data analysis procedure for the infrared imaging video bolometers

    SciTech Connect (OSTI)

    Pandya, Shwetang N. Sano, Ryuichi; Peterson, Byron J.; Kobayashi, Masahiro; Mukai, Kiyofumi; Pandya, Santosh P.

    2014-12-15

    The infrared imaging video bolometer (IRVB) used for measurement of the two-dimensional (2D) radiation profiles from the Large Helical Device has been significantly upgraded recently to improve its signal to noise ratio, sensitivity, and calibration, which ultimately provides quantitative measurements of the radiation from the plasma. The reliability of the quantified data needs to be established by various checks. The noise estimates also need to be revised and more realistic values need to be established. It is shown that the 2D heat diffusion equation can be used for estimating the power falling on the IRVB foil, even with a significant amount of spatial variation in the thermal diffusivity across the area of the platinum foil found experimentally during foil calibration. The equation for the noise equivalent power density (NEPD) is re-derived to include the errors in the measurement of the thermophysical and the optical properties of the IRVB foil. The theoretical value estimated using this newly derived equation matches closely, within 5.5%, with the mean experimental value. The change in the contribution of each error term of the NEPD equation with rising foil temperature is also studied and the blackbody term is found to dominate the other terms at elevated operating temperatures. The IRVB foil is also sensitive to the charge exchange (CX) neutrals escaping from the plasma. The CX neutral contribution is estimated to be marginally higher than the noise equivalent power (NEP) of the IRVB. It is also established that the radiation measured by the IRVB originates from the impurity line radiation from the plasma and not from the heated divertor tiles. The change in the power density due to noise reduction measures such as data smoothing and averaging is found to be comparable to the IRVB NEPD. The precautions that need to be considered during background subtraction are also discussed with experimental illustrations. Finally, the analysis algorithm with all the improvements is validated and found to reproduce the input power well within 10% accuracy. This article answers many fundamental questions relevant to the IRVB and illustrates the care to be exercised while processing the IRVB data.

  1. SU-E-T-130: Dosimetric Evaluation of Tissue Equivalent Gel Dosimeter Using Saccharide in Radiotherapy System

    SciTech Connect (OSTI)

    Cho, Y; Lee, D; Jung, H; Ji, Y; Kim, K; Chang, U; Kwon, S

    2014-06-01

    Purpose: In this study, the dose responses of the MAGIC gel with various concentrations and type of saccharide are examined to clarify the roles of mono and disaccharide in the polymerization process. Then we focused on the tissue equivalence and dose sensitivity of MAGIC gel dosimeters. Methods: The gel is composed of HPLC, 8% gelatin, 2 10-3 M L-ascorbic acid, 1.8 10-2 M hydroquinone, 8 10-5 M copper(II)sulfate and 9% methacrylic acid, new polymer gels are synthesized by adding glucose(monosaccharide), sucrose(disaccharide) and urea in the concentration range of 5?35%. For irradiation of the gel, cesium-137 gamma-ray irradiator was used, radiation dose was delivered from 5?50 Gy. MRI images of the gel were acquired by using a 3.0 T MRI system. Results: When saccharide and urea were added, the O/C, O/N and C/N ratios agreed with those of soft tissue with 1.7%. The dose-response of glucose and sucrose gel have slope-to-intercept ratio of 0.044 and 0.283 respectively. The slope-to-ratio is one important determinant of gel sensitivity. R-square values of glucose and sucrose gel dosimeters were 0.984 and 0.994 respectively. Moreover when urea were added, the slope-to-intercept ratio is 0.044 and 0.073 respectively. R-square values of mono and disaccharide gel were 0.973 and 0.989 respectively. When a saccharide is added into the MAGIC gel dosimeter, dose sensitivity is increased. However when urea were added, dose sensitivity is slightly decreased. Conclusion: In this study, it was possible to obtain the following conclusions by looking at the dose response characteristics after adding mono-, di-saccharide and urea to a MAGIC gel dosimeter. Saccharide was a tendency of increasing dose sensitivity with disaccharide. Sa.ccharide is cost effective, safe, soft tissue equivalent, and can be used under various experimental conditions, making it a suitable dosimeter for some radiotherapy applications.

  2. Best available control technology (BACT) equivalent for the control of volatile organic emissions from paint dipping operations

    SciTech Connect (OSTI)

    Blankenship, W.R.; Pugh, C.W. Jr.

    1999-07-01

    This paper provides details of a study conducted to demonstrate an equivalent method of Best Available Control Technology (BACT) compliance for volatile organic emissions from dip coating of certain miscellaneous metal parts. The study was proposed to show that the total volatile organic compound (VOC) emissions from 3.8 lb of VOC/gallon coating formulations were no greater than the total VOC emissions from 3.5 lb/gallon formulations used under the same conditions for coating steel joists. The presumptive BACT standard enforced by the Virginia Department of Environmental Quality (DEQ) for dip coating of steel joists is 3.5 lb/gallon. The requirement of 3.5 lb/gallon was derived from the US Environmental Protection Agency Guideline Series Control of Volatile Organic Emissions from Existing Stationary Sources--Volume 6: Surface Coating of Miscellaneous Metal Parts and Products. On June 5, 1998 the source completed a 12 month, full scale comparison study under a consent order with the Virginia DEQ. During the study period, the source made daily measurements of product produced, paint used, and emissions from the control and test paint tanks, and reported data to EPA and the DEQ every two months. The study concluded that a 26 percent reduction in paint usage and a 20 percent reduction in emissions was achieved in the test tanks using a 3.8 lb/gal coating compared to the control tanks using a 3.5 lb/gal coating. This study enables the source to achieve greater emission reductions than the presumptive BACT level and at the same time reduce painting costs by 34%. This study provides positive results for the environment, the steel joist industry, and the construction industry. This study could impact EPA's current Maximum Achievable Control Technology (MACT) rule development for Miscellaneous Metal Parts and Products and national VOC rules for this source category under Section 183(e) of the Clean Air Act.

  3. Measurement of the ambient gamma dose equivalent and kerma from the small 252Cf source at 1 meter and the small 60Co source at 2 meters

    SciTech Connect (OSTI)

    Carl, W. F.

    2015-07-30

    NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.

  4. Radiological Worker Training

    Broader source: Energy.gov (indexed) [DOE]

    ... could exceed an equivalent dose to the whole body of 1 rem in any 1 hour at 30 cm from ... radiation symbol colored magenta or black on a yellow background. 2. Signs shall be ...

  5. Radiological Worker Training

    Broader source: Energy.gov (indexed) [DOE]

    ... receiving an equivalent dose to the whole body in excess of 0.1 rem (100 mrem), but ... radiation symbol colored magenta (or black) on a yellow background, reading: ...

  6. Radiological Worker Training

    Broader source: Energy.gov (indexed) [DOE]

    ... could exceed an equivalent dose to the whole body of 0.1 rem in any one hour at 30 ... for signs: Yellow background Black or magenta radiation symbol Clear and ...

  7. Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals

    SciTech Connect (OSTI)

    Levi, Michele [Institut d'Astrophysique de Paris, Universit Pierre et Marie Curie, CNRS-UMR 7095, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2014-12-01

    The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date.

  8. Enjebi Island dose assessment

    SciTech Connect (OSTI)

    Robison, W.L.; Conrado, C.L.; Phillips, W.A.

    1987-07-01

    We have updeated the radiological dose assessment for Enjebi Island at Enewetak Atoll using data derived from analysis of food crops grown on Enjebi. This is a much more precise assessment of potential doses to people resettling Enjebi Island than the 1980 assessment in which there were no data available from food crops on Enjebi. Details of the methods and data used to evaluate each exposure pathway are presented. The terrestrial food chain is the most significant potential exposure pathway and /sup 137/Cs is the radionuclide responsible for most of the estimated dose over the next 50 y. The doses are calculated assuming a resettlement date of 1990. The average wholebody maximum annual estimated dose equivalent derived using our diet model is 166 mremy;the effective dose equivalent is 169 mremy. The estimated 30-, 50-, and 70-y integral whole-body dose equivalents are 3.5 rem, 5.1 rem, and 6.2 rem, respectively. Bone-marrow dose equivalents are only slightly higher than the whole-body estimates in each case. The bone-surface cells (endosteal cells) receive the highest dose, but they are a less sensitive cell population and are less sensitive to fatal cancer induction than whole body and bone marrow. The effective dose equivalents for 30, 50, and 70 y are 3.6 rem, 5.3 rem, and 6.6 rem, respectively. 79 refs., 17 figs., 24 tabs

  9. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013 equivalency. Under the defined process conditions and associated material specifications, the high-purity PuO{sub 2} produced in HBL presents no unique safety concerns for packaging or storage in the 3013 required configuration. The PuO{sub 2} produced using the HBL flow sheet conditions will have a higher specific surface area (SSA) than PuO{sub 2} stabilized at 950 C and, consequently, under identical conditions will adsorb more water from the atmosphere. The greatest challenge to HBL operators will be controlling moisture content below 0.5 wt %. However, even at the 0.5 wt % moisture limit, the maximum acceptable pressure of a stoichiometric mixture of hydrogen and oxygen in the 3013 container is greater than the maximum possible pressure for the HBL PuO{sub 2} product.

  10. SU-E-T-411: Characterization of Novel Water-Equivalent PRESAGE for Megavoltage and Kilovoltage X-Ray Beam Dosimetry

    SciTech Connect (OSTI)

    Alqathami, M; Ibbott, G; Blencowe, A

    2014-06-01

    Purpose: To introduce and characterize novel water-equivalent PRESAGE dosimeters for megavoltage and kilovoltage X-ray beam dosimetry. Methods: Three novel metal-optimized PRESAGE dosimeters referred to as MO-PRESAGE 1, 2 and 3 were formulated. The radiological properties were key factors that were considered when formulating the new dosimeters. All formulations were prepared in spectrophotometric cuvettes, irradiated with a 6 MV X-ray beam, and the change in optical density was measured using a spectrophotometer. Their sensitivity, post-response stability, and water equivalency were investigated. Results: The results showed that all three formulations exhibited radiological properties closer to water than any of the commercially available PRESAGE formulations. For example, the novel MO-PRESAGE 1, 2 and 3 have mass densities only 3.9-4.4% higher than that of water, whereas the mass density for the commercial formulation is 5.3% higher. The novel formulations have almost identical Zeff values to that of water (7.42), while the Zeff for the commercial formulation was 3.7% higher than that of water. In addition, the MO-PRESAGE 3 formulation showed mass and energy attenuation coefficients that deviated from those of water by less than 50% relative to the commercial formulation. Furthermore, the reduced Zeff of the three different MOPRESAGE formulations resulted in a maximum variation in the probability of photoelectric absorption of 1.3 times than of water, compared to 1.8 times that of water for the commercial formulation. MO-PRESAGE 3 was also more sensitive to radiation than the other two new formulations introduced in this work due to the presence of alkylbromide radical initiators in the MO-PRESAGE 3 formulation. Conclusion: All three novel MOPRESAGE dosimeter formulations displayed excellent radiological properties, superior to any of the commercially available PRESAGE formulations and thus can be used for the dosimetry of clinical megavoltage and kilovoltage X-ray beams.

  11. Dose-equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  12. High quality HfO{sub 2}/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8?nm equivalent oxide thickness

    SciTech Connect (OSTI)

    Barth, Michael; Datta, Suman; Bruce Rayner, G.; McDonnell, Stephen; Wallace, Robert M.; Bennett, Brian R.; Engel-Herbert, Roman

    2014-12-01

    We investigate in-situ cleaning of GaSb surfaces and its effect on the electrical performance of p-type GaSb metal-oxide-semiconductor capacitor (MOSCAP) using a remote hydrogen plasma. Ultrathin HfO{sub 2} films grown by atomic layer deposition were used as a high permittivity gate dielectric. Compared to conventional ex-situ chemical cleaning methods, the in-situ GaSb surface treatment resulted in a drastic improvement in the impedance characteristics of the MOSCAPs, directly evidencing a much lower interface trap density and enhanced Fermi level movement efficiency. We demonstrate that by using a combination of ex-situ and in-situ surface cleaning steps, aggressively scaled HfO{sub 2}/p-GaSb MOSCAP structures with a low equivalent oxide thickness of 0.8?nm and efficient gate modulation of the surface potential are achieved, allowing to push the Fermi level far away from the valence band edge high up into the band gap of GaSb.

  13. LCLS CDR Chapter 14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 4 Radiological Considerations TECHNICAL SYNOPSIS The radiation protection issues for the LCLS are normally encountered at both high-energy electron linacs and synchrotron radiation facilities. The SLAC Radiological Control Manual [1] specifies an annual total effective dose equivalent limit to workers from both internal and external radiation sources of 5 rem. In addition, SLAC maintains an administrative control level of 1.5 rem. Radiation dose criteria used in design of the LCLS radiation

  14. SU-E-T-403: Measurement of the Neutron Ambient Dose Equivalent From the TrueBeam Linac Head and Varian 2100 Clinac

    SciTech Connect (OSTI)

    Harvey, M; Pollard, J; Wen, Z; Gao, S

    2014-06-01

    Purpose: High-energy x-ray therapy produces an undesirable source of stray neutron dose to healthy tissues, and thus, poses a risk for second cancer induction years after the primary treatment. Hence, the purpose of this study was to measure the neutron ambient dose equivalent, H*(10), produced from the TrueBeam and Varian 2100 linac heads, respectively. Of particular note is that there is no measured data available in the literature on H*(10) production from the TrueBeam treatment head. Methods: Both linacs were operated in flattening filter mode using a 15 MV x-ray beam on TrueBeam and an 18 MV x-ray beam for the Varian 2100 Clinac with the jaws and multileaf collimators in the fully closed position. A dose delivery rate of 600 MU/min was delivered on the TrueBeam and the Varian 2100 Clinac, respectively and the H*(10) rate was measured in triplicate using the WENDI-2 detector located at multiple positions including isocenter and longitudinal (gun-target) to the isocenter. Results: For each measurement, the H*(10) rate was relatively constant with increasing distance away from the isocenter with standard deviations on the order of a tenth of a mSv/h or less for the given beam energy. In general, fluctuations in the longitudinal H*(10) rate between the anterior-posterior couch directions were approximately a percent for both beam energies. Conclusion: Our preliminary results suggest an H*(10) rate of about 30 mSv/h (40 mSv/h) or less for TrueBeam (Varian Clinac 2100) for all measurements considered in this study indicating a relatively low contribution of produced secondary neutrons to the primary therapeutic beam.

  15. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B.; Shuman, Rob

    2012-04-18

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  16. DOE 2012 Occupational Radiation Exposure October 2013

    SciTech Connect (OSTI)

    2012-02-02

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED increased by 3% from 2011 to 2012. Additional analyses show that the dose distribution in 2012 was similar to the distribution in 2011. In 2012, 13% of the monitored workers received a measurable TED and the average measurable TED, 0.069 rem, was less than 2% of the DOE limit. From 2011 to 2012, the collective TED and the number of individuals with measurable TED decreased 17.1% and 19%, respectively. These decreases were mainly due to an overall reduction of D&D activities at the PFP and TRU retrieval activities at Hanford; a 78% decrease in the number of targeted waste drums that were processed at the Idaho Site’s Accelerated Retrieval Project (ARP) from 5,566 drums in 2011 to a total of 1,211 drums processed in 2012; and ALARA initiatives employed site wide at SRS. In addition, the decreases were the result of decreased American Recovery and Reinvestment Act (ARRA) activities and continuing D&D, particularly at the DOE sites that comprise the majority of DOE collective dose. Over the past 5 years, the size of the monitored workforce has remained at a fairly stable level (within 12%), while the collective dose has varied up to 37%. No reported doses exceeded the DOE occupational limit of 5 rems TED in 2012 and no reported doses exceeded the DOE ACL of 2 rems TED.

  17. ORISE Video: What are the differences between rad/gray and rem/sievert in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measuring radiation?

  18. Analysis of radiation exposure for naval personnel at Operation GREENHOUSE. Technical report

    SciTech Connect (OSTI)

    Thomas, C.; Weitz, R.; Gminder, R.; Goetz, J.; Stuart, J.

    1982-07-30

    The radiological environments are reconstructed for seven ships and the residence islands of Eniwetok Atoll that received fallout during operation GREENHOUSE (April-May 1951) as a result of Shots DOG, EASY, and ITEM. From the reconstructed operations and radiological environments, equivalent personnel film-badge doses are calculated and compared with actual film-badge data available for six of the ships. Considering the increased time spent topside by badged personnel as opposed to an average crewmember, correlation between calculations and dosimetry is good. Average shipboard doses range from a low of 0.13 rem for the crew of the USNS LT. ROBERT CRAIG to a high of 1.14 rem for the crew of the USNS SGT. CHARLES E. MOWER. Average doses on the residence islands of Eniwetok Atoll range from 2.75 rem to 3.10 rem.

  19. Two-dimensional [sup 1]H-NMR EXSY study of the fluxional behavior of the novel carbenium ion complex [FvMo[sub 2](CO)[sub 4]([mu],[eta][sup 2],[eta][sup 3]-MeC[equivalent to]CCH[sub 2])][BF[sub 4

    SciTech Connect (OSTI)

    Amouri, H.E.; Besace, Y.; Vollhardt, K.P.C.; Ball, G.E. Lawrence Berkeley Lab., CA ); Vaissermann, J. )

    1993-03-01

    The title compound [FuMo[sub 2](CO)[sub 4]([mu],[eta][sup 2],[eta][sup 3]-MeC[equivalent to]CCH[sub 2])][BF[sub 4

  20. Designating Responsibility for Equivalencies or Exemptions from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PPPO); Jack R. Craig, Director, Consolidated Business Center Ohio (CBC); James R. Cooper, Deputy Manager for Idaho Cleanup Project (ID); Susan M. Cange, Assistant Manager for...

  1. Nearly Equivalent Inter- and Intramolecular Hydrogen Bonding...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC52-07NA27344 Resource Type: Journal Article Resource Relation: Journal Name: Journal of Physical Chemistry. C; Journal Volume: 116; Journal Issue: 3 ...

  2. Time-temperature equivalence in Martensite tempering

    SciTech Connect (OSTI)

    Hackenberg, Robert E.; Thomas, Grant A.; Speer, John G.; Matlock, David K.; Krauss, George

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  3. Chapter_16_Equivalencies_and_Exemptions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the level of additional risk and the measures implemented to reduce risk to a ... Chapter 16-1 At HQ, the Head of Element must submit requests for exemptions from security ...

  4. Property:Equivalent URI | Open Energy Information

    Open Energy Info (EERE)

    anenergysolutions.orgcontent2010-vehicle-technologies-market-report + A A Compendium of Utility-Sponsored Energy-Efficient Rebate Programs + http:cleanenergysolutions.org...

  5. NGPL Production, Gaseous Equivalent at Processing Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 2012-2012 Colorado 53,590 67,607 82,637 90,801 81,943 1967-2012 Florida 22 0 0 0 0 1968-2012 Illinois 42 31 345 1,043 0 1967-2012 Indiana 0 0 0 0 0 1979-2012 Kansas 28,302...

  6. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  7. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  8. Assessing Equivalent Viscous Damping Using Piping System test Results

    SciTech Connect (OSTI)

    Nie, J.; Morante, R.

    2010-07-18

    The specification of damping for nuclear piping systems subject to seismic-induced motions has been the subject of many studies and much controversy. Damping estimation based on test data can be influenced by numerous factors, consequently leading to considerable scatter in damping estimates in the literature. At present, nuclear industry recommendations and nuclear regulatory guidance are not consistent on the treatment of damping for analysis of nuclear piping systems. Therefore, there is still a need to develop a more complete and consistent technical basis for specification of appropriate damping values for use in design and analysis. This paper summarizes the results of recent damping studies conducted at Brookhaven National Laboratory.

  9. Estimating Radiation Risk from Total Effective Dose Equivalent...

    National Nuclear Security Administration (NNSA)

    0 Tc 0.37 No. 1Tj 5.25 0 TD 0.098 Tc 0 Tw (No.) Tj 15.755 -13.5 TD 0.3to Tw ( ) Tj 5.25 0 TD F1 10.5 Tf -0.1925 Tc 0 5 Report 0 1Tj 5.25 0 TD 0.098 Tc 0 Tw 8No. 7 0 TD -0.IRRPC,

  10. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed...

    Office of Scientific and Technical Information (OSTI)

    In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the ...

  11. NGPL Production, Gaseous Equivalent at Processing Plants (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    44,086 152,538 148,859 150,870 148,450 139,621 1973

  12. Estimating Radiation Risk from Total Effective Dose Equivalent...

    National Nuclear Security Administration (NNSA)

    of Dose to the Public, DOE Report DOEEH-0070, July 1988. DOE, 1988b. Internal Dose Conversion Factors for Calculation of Dose to the Public, DOE Report DOEEH-0071, July 1988. ...

  13. METHOD OF USING AND MANUFACTURING PLASTIC EQUIVALENT TO ORGANIC MATERIALS

    DOE Patents [OSTI]

    Shonka, F.R.; Rose, J.E.; Failla, G.

    1961-10-24

    Compositions of matter that have the radiation response of animal muscle tissue, bone, or air were prepared. These compositions are composed of specific proportions of three or more of the following constituents: polyethylene plastic, polyamide plastic, oil furnace black, silica, and calcium fluoride. (AEC)

  14. Effects of fracture distribution and length scale on the equivalent...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 7; Journal Issue: 6; Journal ID: ISSN 1674-7755 Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: Country unknown...

  15. Macroencapsulation Equivalency Guidance for Classified Weapon Components and NNSSWAC Compliance

    SciTech Connect (OSTI)

    Poling, J.

    2012-05-15

    The U.S. Department of Energy (DOE) complex has a surplus of classified legacy weapon components generated over the years with no direct path for disposal. The majority of the components have been held for uncertainty of future use or no identified method of sanitization or disposal. As more weapons are retired, there is an increasing need to reduce the amount of components currently in storage or on hold. A process is currently underway to disposition and dispose of the legacy/retired weapons components across the DOE complex.

  16. U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent...

    U.S. Energy Information Administration (EIA) Indexed Site

    61 67 1982 71 65 69 65 64 62 63 61 59 60 61 62 1983 72 64 66 62 62 60 63 66 64 68 68 75 1984 79 69 71 69 69 67 69 68 65 69 68 74 1985 77 70 71 66 66 63 65 65 64 66 66 75 1986 76 67 ...

  17. NGPL Production, Gaseous Equivalent at Processing Plants (Summary...

    U.S. Energy Information Administration (EIA) Indexed Site

    066,366 1,134,473 1,250,012 1,356,709 1,608,148 1,717,894 1930-2015 Federal Offshore Gulf of Mexico 0 0 87,478 70,292 75,648 2007-2014 Alabama 19,059 17,271 7,133 7,675 7,044 ...

  18. Dark-Matter-Induced Violation of the Weak Equivalence Principle

    SciTech Connect (OSTI)

    Carroll, Sean M.; Mantry, Sonny [California Institute of Technology, Pasadena, California 91125 (United States); Ramsey-Musolf, Michael J. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); California Institute of Technology, Pasadena, California 91125 (United States); Stubbs, Christoper W. [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States)

    2009-07-03

    A long-range fifth force coupled to dark matter can induce a coupling to ordinary matter if the dark matter interacts with standard model fields. We consider constraints on such a scenario from both astrophysical observations and laboratory experiments. We also examine the case where the dark matter is a weakly interacting massive particle, and derive relations between the coupling to dark matter and the coupling to ordinary matter for different models. Currently, this scenario is most tightly constrained by galactic dynamics, but improvements in Eoetvoes experiments can probe unconstrained regions of parameter space.

  19. Physical Sciences Facility Air Emission Control Equivalency Evaluation

    SciTech Connect (OSTI)

    Brown, David M.; Belew, Shan T.

    2008-10-17

    This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

  20. Operation and biasing for single device equivalent to CMOS

    DOE Patents [OSTI]

    Welch, James D.

    2001-01-01

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of field induced carriers. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents. Operation of the gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems under typical bias schemes is described, and simple demonstrative five mask fabrication procedures for the inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  1. Effects of Ignition Quality and Fuel Composition on Critical Equivalence

    Broader source: Energy.gov (indexed) [DOE]

    Ratio | Department of Energy Our research shows that fuel can be blended to have a low ignition quality, which is desirable for high-efficiency advanced combustion, and with a high n-paraffin content to reduce CO and THC. PDF icon deer12_lilik.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Fuel Properties to Enable Lifted Flame Combustion Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications A University

  2. DOE Radiation Exposure Monitoring System (REMS) Data Update Presented at the 32nd Annual International Dosimetry and Records Symposium, June 3-6, Scottsdale, AZ

    SciTech Connect (OSTI)

    2013-01-01

    This slide-show presents the 2012 draft data for DOE occupational radiation exposure, compares those data with last year and the last five years, and clarifies reporting data.

  3. Liquid Effluent Retention Facility (LERF) Final Hazard Category Determination

    SciTech Connect (OSTI)

    HUTH, L.L.

    2001-06-06

    The Liquid Effluent Retention Facility was designed to store 242-A Evaporator process condensate and other liquid waste streams for treatment at the 200 East Area Effluent Treatment Facility. The Liquid Effluent Retention Facility has been previously classified as a Category 3 Nonreactor Nuclear Facility. As defined in Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE 1992, DOE 1997), Category 3 Nuclear Facilities have the potential for significant localized (radiological) consequences. However, based on current facility design, operations, and radioactive constituent concentrations, the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences and is categorized as a Radiological Facility. This report documents the final hazard categorization process performed in accordance with DOE Order 5480.23, Nuclear Safety Analysis Reports. This report describes the current configuration and operations of the Liquid Effluent Retention Facility. Also included is a preliminary hazard categorization, which is based on current and proposed radioactive and hazardous material inventories, a preliminary hazards and accident analysis, and a final hazard category determination. The results of the hazards and accident analysis, based on the current configuration and operations of the Liquid Effluent Retention Facility and the current and proposed radioactive and hazardous material inventories, demonstrate that the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences. Based on the final hazard category analysis, the Liquid Effluent Retention Facility is a Radiological Facility. The final hazard category determination is based on a comparative evaluation of the consequence basis for the Category 3 threshold quantities to the calculated consequences for credible releases The basis for the Category 3 threshold quantities is 10 rem-equivalent man at 30 meters (98 feet) (DOE 1992, DOE 1997). The calculated 12 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, are 3.50 rem and 1.32 rem, respectively, which based upon the original hazard categorization criteria (DOE 1992) classified the Liquid Effluent Retention Facility as a Radiological Facility. Comparison of the calculated 24 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, 7.00 rem and 2.64 rem respectively, confirmed the Liquid Effluent Retention Facility classification as a Radiological Facility under the current hazard categorization criteria (DOE 1997). Both result in dose consequence values less than the allowable, 10 rem, meeting the requirements for categorizing the Liquid Effluent Retention Facility as a Radiological Facility.

  4. Occupational Radiation Exposure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technical Support Contacts: REMS Project or any regulationspolicy issues: Nirmala Rao | (301) 903-2297 *E-mail Contact Preferred REMS System Support: Derek Hagemeyer | (865)...

  5. West Valley

    Office of Environmental Management (EM)

    * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements...

  6. Analysis of radiation exposure for personnel on the residence islands of Enewetak Atoll after Operation Greenhouse, 1951-1952. Technical report, 3 December 85-20 April 1987

    SciTech Connect (OSTI)

    Thomas, C.; Goetz, J.; Klemm, J.

    1987-04-20

    The radiological environments and reconstructed for the residence islands of Enewetak Atoll following the roll-up phase of Operation GREENHOUSE in May 1951. The residence islands received fallout during Operation GREEHOUSE (April/May 1951) as a result of Shots, DOG, EASY, and ITEM. From the reconstructed radiological environments and assumed personnel activity scenarios, equivalent personnel film badge doses are calculated, by month, from June 1951 to June 1952. For a individual assigned to Enewetak Atoll during this period, a mean dose of 1.5-2.0 rem would have been accrued, depending on the residence island to which he was assigned.

  7. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012

    SciTech Connect (OSTI)

    D. E. Lewis D. A. Hagemeyer Y. U. McCormick

    2012-07-07

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor (LWR) licensees was 83 person-rem. This represents a 14% decrease from the value reported for 2009 (96 person-rem). The decrease in collective dose for commercial nuclear power reactors was due to an 11% decrease in total outage hours in 2010. During outages, activities involving increased radiation exposure such as refueling and maintenance are performed while the reactor is not in operation. The average annual collective dose per reactor for boiling water reactors (BWRs) was 137 personrem for 35 BWRs, and 55 person-rem for 69 pressurized water reactors (PWRs). Analyses of transient individual data indicate that 29,333 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient individuals by multiple licensees. The adjustment to account for transient individuals has been specifically noted in footnotes in the figures and tables for commercial nuclear power reactors. In 2010, the average measurable dose per individual for all licensees calculated from reported data was 0.13 rem. Although the average measurable dose per individual from data submitted by licensees was 0.13 rem, a corrected dose distribution resulted in an average measurable dose per individual of 0.17 rem.

  8. Radiation Exposure Monitoring Systems Data Reporting Guide

    Broader source: Energy.gov [DOE]

    Instructions for preparing occupational exposure data for submittal to the Radiation Exposure Monitoring System (REMS) repository.

  9. New Stochastic Annual Limits on Intake for Selected Radionuclides

    SciTech Connect (OSTI)

    Carbaugh, Eugene H.

    2009-08-24

    Annual limits on intake (ALI) have historically been tabulated by the International Commission on Radiological Protection (e.g., ICRP 1979, 1961) and also by the Environmental Protection Agency (EPA 1988). These compilations have been rendered obsolete by more recent ICRP dosimetry methods, and, rather than provide new ALIs, the ICRP has opted instead to provide committed dose coefficients from which an ALI can be determined by a user for a specific set of conditions. The U.S. Department of Energy historically has referenced compilations of ALIs and has defined their method of calculation in its radiation protection regulation (10 CFDR 835), but has never provided a specific compilation. Under June 2007 amendments to 10 CFR 835, ALIs can be calculated by dividing an appropriate dose limit, either 5-rem (0.05 Sv) effective dose or 50 rem (0.5 Sv) equivalent dose to an individual organ or tissue, by an appropriate committed dose coefficient. When based on effective dose, the ALI is often referred to as a stochastic annual limit on intake (SALI), and when based on the individual organ or tissue equivalent limit, it has often been called a deterministic annual limit on intake (DALI).

  10. U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 75 62 52 48 52 55 61 70 73 74 1940's 80 115 119 122 143 160 165 189 210 224 1950's 260 292 319 340 354 377 418 434 458 498 1960's 543 592 624 670 723 753 739 785 828 867 1970's 906 883 908 917 887 872 854 863 852 808 1980's 777 775 762 790 838 816 800 812 816 785 1990's 784 835 872 886 889 908 958 964 938 973 2000's 1,016 954 957 876 927 876 906 930 953 1,024 2010's 1,066 1,134 1,250 1,357 1,608

  11. The International Framework for Maintaining Equivalence and Traceability in Radionuclide Metrology

    SciTech Connect (OSTI)

    Woods, Mike; Sahagia, Maria

    2008-08-14

    Confidence that a testing or calibration laboratory consistently obtains reliable results is of major importance to users of laboratory services and participation in proficiency testing schemes provides laboratories with an objective means of assessing and demonstrating the level of confidence that can be ascribed to the reliability of the data they are producing. That level of confidence, in turn, depends on the quality of the proficiency tests and, in particular, on the accuracy of the property values associated with the test samples. In the ideal situation, the relevant property value, such as the activity of a particular radionuclide in a test matrix, will be directly traceable to the SI via comparisons with a national or international metrology institute (NMI). This, in turn, begs the question of, how reliable are the results from that NMI.Demonstration of that reliability at the highest metrological levels is achieved through inter-laboratory comparisons that are conducted between national and international metrological institutes. These are coordinated primarily by the Bureau International des Poids et Mesures (BIPM) via Key Comparisons or by comparisons within Regional Metrological Organisations (RMOs), with the results from those RMO exercises being linked to the BIPM Key Comparison results. Such programmes have been in place for many years but they have grown in importance and frequency over the past decade. Tabulation of these comparison data has been regularized recently and made available to the user communities via the BIPM Key Comparison Database (KCDB).In the field of ionizing radiation, the radionuclide metrology discipline exhibits a number of special features. For example, these include the number of potential radionuclides in a user sample; the variety of physical and chemical formats that may be presented; the statistical and temporal effects of radioactive decay; the variations in primary standardization techniques; and the restricted applicability of those primary standardization techniques to the full range of potential radionuclides and activities. Each of these, singly or in combination, ensure that there can never be a fully comprehensive set of Key Comparisons which will cover the requirements of the user community and, in turn, compromise the ability to provide a full range of proficiency tests for testing and calibration laboratories.These problems are discussed, in the context of radioactivity measurements, together with the structure and range of Key Comparisons and associated databases at the highest international level that are currently in place to underpin the proficiency tests that are necessary for the user communities in this field of application.

  12. rbstmultiprince.f; Equivalent Dipole Polarizability Inversion of Time Domain Electromagnetic Induction Data

    Energy Science and Technology Software Center (OSTI)

    2006-10-01

    This software, rbstmultiprince.f, computes polarizations and positions from electromagnetic data and is used in conjunction with technology to detect UXO. This software was funded by the ESTCP program of the DoD. This code makes use of third party code from the 1970s and 1980s that appears to have entered the public domain and is available for free download via the website netlib.org. The code was first developed by the author while he was employed atmore » UCB and funded by the SERDP of the U.S. Army.« less

  13. Thermal lag test engines evaluated and compared to equivalent Stirling engines

    SciTech Connect (OSTI)

    Tailer, P.L.

    1995-12-31

    Thermal lag engines run both free piston and with pistons kinematically linked. Free piston, a thermal lag engine may be the simplest of all piston engines as it is valveless and has only one moving part, the piston. Horizontal and vertical thermal lag engines with substantially identical cooled pistons and cylinders are tested and evaluated, particularly as to power density. The horizontal engine has an elongated, small diameter heated chamber and the vertical engine has a large diameter flat heated chamber. Both heated chambers may be altered in volume to maximize engine power at optimum compression ratios. The power density of unpressurized thermal lag engines is compared to that of early commercial Stirling cycle unpressurized air engines. The comparison indicates the potential for applying well-known modern Stirling technology to thermal lag engines.

  14. Biasing, operation and parasitic current limitation in single device equivalent to CMOS, and other semiconductor systems

    DOE Patents [OSTI]

    Welch, James D.

    2003-09-23

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of applied gate voltage field induced carriers in essentially intrinsic, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at substantially equal doping levels, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at different doping levels, and containing a single metallurgical doping type, and functional combinations thereof. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents utilizing material(s) which form rectifying junctions with both N and P-type semiconductor whether metallurigically or field induced.

  15. Estimation of Equivalent Sea Level Cosmic Ray Exposure for Low Background Experiment

    SciTech Connect (OSTI)

    Greene, Austen T.; Orrell, John L.

    2012-08-25

    While scientists at CERN and other particle accelerators around the world explore the boundaries of high energy physics, the Majorana project investigates the other end of the spectrum with its extremely sensitive, low background, low energy detector. The MAJORANA DEMONSTRATOR aims to detect neutrinoless double beta decay (0???), a rare theoretical process in which two neutrons decay into two protons and two electrons, without the emission of the two antineutrinos that are a product of a normal double beta decay. This process is only possible if and therefore a detection would prove the neutrino is a Majorana particle, meaning that it is its own antiparticle [Aaselth et al. 2004] . The existence of such a decay would also disprove lepton conservation and give information about the neutrino's mass.

  16. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    SciTech Connect (OSTI)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  17. Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points

    SciTech Connect (OSTI)

    Handley, Kim M.; Wrighton, Kelly C.; Miller, Christopher S.; Wilkins, Michael J.; Kantor, Rose S.; Thomas, Brian C.; Williams, Kenneth H.; Gilbert, Jack A.; Long, Philip E.; Banfield, Jillian F.

    2015-03-01

    We explored the impact of the starting community composition and structure on ecosystem response to perturbations using organic carbon amendment experiments. Subsurface sediment was partitioned into flow-through columns, and the microbial communities were initially stimulated in situ by addition of acetate as a carbon and electron donor source. This drove community richness and evenness down, and pushed the system into a new biogeochemical state characterized by iron reduction. Reconstructed near-full-length 16S rRNA gene sequence analysis indicated a concomitant enrichment of Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After 10 to 12 days, acetate was exchange for lactate in a subset of columns. Following the clear onset of sulfate reduction (35 days after acetate-amendment), acetate was substituted for lactate in additional columns. Acetatestimulated communities differed markedly during each biogeochemical regime and at each lactate-switch. Regardless, however, of when communities were switched to lactate, they followed comparable trajectories with respect to composition and structure, with convergence evident one week after each switch, and marked after one month of lactate amendment. During sulfate reduction all treatments were enriched in Firmicutes and a number of species likely involved in sulfate reduction (notably Desulfobulbus, Desulfosporosinus, Desulfitobacterium and Desulfotomaculum). Lactate treatments were distinguished by substantially lower relative abundances of Desulfotomaculum and Bacteroidetes, and enrichments of Psychrosinus and Clostridiales species. Results imply that the structure of the starting community was not significant in controlling organism selection in community succession.

  18. Defense Program Equivalencies for Technical Qualification Standard Competencies12/12/1995

    Broader source: Energy.gov [DOE]

    Defense Programs has undertaken an effort to compare the competencies in the GeneralTechnical Base Qualification Standard and the Functional Area Qualification Standards withvarious positions in...

  19. General Technical Base Qualification Equivalencies Based On Previous Experience, 12/12/95

    Broader source: Energy.gov [DOE]

    "The header lists the general field of experience, Commercial Nuclear Power or Navy Nuclear PowerProgram, with all other categories under these two areas. The subheader lists the position title of...

  20. Demonstration of the Equivalence of Soft and Zero-Bin Subtractions...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; CORRELATION ...

  1. On The Equivalence of Soft and Zero-Bin Subtractions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DEEP INELASTIC SCATTERING; FACTORIZATION; FORM ...

  2. System and method to determine electric motor efficiency using an equivalent circuit

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G.

    2015-10-27

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  3. System and method to determine electric motor efficiency using an equivalent circuit

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G.

    2011-06-07

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  4. Three cardiovirus Leader proteins equivalently inhibit four different nucleocytoplasmic trafficking pathways

    SciTech Connect (OSTI)

    Ciomperlik, Jessica J.; Basta, Holly A.; Palmenberg, Ann C.

    2015-10-15

    Cardiovirus infections inhibit nucleocytoplasmic trafficking by Leader protein-induced phosphorylation of Phe/Gly-containing nucleoporins (Nups). Recombinant Leader from encephalomyocarditis virus, Theiler's murine encephalomyelitis virus and Saffold virus target the same subset of Nups, including Nup62 and Nup98, but not Nup50. Reporter cell lines with fluorescence mCherry markers for M9, RS and classical SV40 import pathways, as well as the Crm1-mediated export pathway, all responded to transfection with the full panel of Leader proteins, showing consequent cessation of path-specific active import/export. For this to happen, the Nups had to be presented in the context of intact nuclear pores and exposed to cytoplasmic extracts. The Leader phosphorylation cascade was not effective against recombinant Nup proteins. The findings support a model of Leader-dependent Nup phosphorylation with the purpose of disrupting Nup-transportin interactions. - Highlights: • Nup98, but not Nup50 becomes phosphorylated by cardiovirus Leader protein-dependent mechanisms. • At least four independent nucleocytoplasmic trafficking pathways are inhibited by this process. • Nups must be presented in a nuclear pore context for Leader-directed phosphorylation. • Leader, by itself, does not cause activation of cellular kinases.

  5. System and method to determine electric motor efficiency using an equivalent circuit

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G

    2015-11-06

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  6. DEMONSTRATION OF EQUIVALENCY OF CANE AND SOFTWOOD BASED CELOTEX FOR MODEL 9975 SHIPPING PACKAGES

    SciTech Connect (OSTI)

    Watkins, R; Jason Varble, J

    2008-05-27

    Cane-based Celotex{trademark} has been used extensively in various Department of Energy (DOE) packages as a thermal insulator and impact absorber. Cane-based Celotex{trademark} fiberboard was only manufactured by Knight-Celotex Fiberboard at their Marrero Plant in Louisiana. However, Knight-Celotex Fiberboard shut down their Marrero Plant in early 2007 due to impacts from hurricane Katrina and other economic factors. Therefore, cane-based Celotex{trademark} fiberboard is no longer available for use in the manufacture of new shipping packages requiring the material as a component. Current consolidation plans for the DOE Complex require the procurement of several thousand new Model 9975 shipping packages requiring cane-based Celotex{trademark} fiberboard. Therefore, an alternative to cane-based Celotex{trademark} fiberboard is needed. Knight-Celotex currently manufactures Celotex{trademark} fiberboard from other cellulosic materials, such as hardwood and softwood. A review of the relevant literature has shown that softwood-based Celotex{trademark} meets all parameters important to the Model 9975 shipping package.

  7. Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing

    SciTech Connect (OSTI)

    Davis, M.; Costyk, D.; Narang, A.

    2003-07-01

    This study determines the magnitude of distributed resources that can be added to a distribution circuit without causing undesirable conditions or equipment damage.

  8. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    J. Miller; D. Shafer; K. Gray; B. Church; S.Campbell; B. Holz

    2005-08-15

    This study has shown that, based upon measurements from industry standard radiation detection instruments, such as the RS model RSS-131 PICs in a controlled configuration, a person may be exposed to gamma radiation above background when in close proximity to some LLW trucks. However, in approximately half (47.7 percent) the population of trucks measured in this study, a person would receive no exposure above background at a distance of 1.0 m (3.3 ft) away from a LLW truck. An additional 206 trucks had net exposures greater than zero, but equal to or less than 1 {micro}R/h. Finally, nearly 80 percent of the population of trucks (802 of 1,012) had net exposures less than or equal to 10 {micro}R/h. Although there are no shipping or exposure standards at 1.0 m (3.3 ft) distance, one relevant point of comparison is the DOT shipping standard of 10 mrem/h at 2.0 m (6.6 ft) distance. Assuming a one-to-one correspondence between Roentgens and Rems, then 903 trucks (89.2 percent of the trucks measured) were no greater than one percent of the DOT standard at 1.0 m (3.3 ft). Had the distance at which the trucks been measured increased to 2.0 m (6.6 ft), the net exposure would be even less because of the increase in distance between the truck and the receptor. However, based on the empirical data from this study, the rate of decrease may be slower than for either a point or line source as was done for previous studies (Gertz, 2001; Davis et al., 2001). The highest net exposure value at 1.0 m (3.3 ft) distance, 11.9 mR/h, came from the only truck with a value greater than 10 mR/h at 1.0 m (3.3 ft) distance.

  9. Is Tritium Over-regulated, Part 2: Should the TFG Support Higher...

    Office of Environmental Management (EM)

    ... a lower release fraction * Gaseous oxide (steam) release would have thermal buoyancy * ... Rem 0.2 Rem* 12000 particle * Pu-239 Injection dose conversion factor 2.5 E9 CEDECi ...

  10. Monte Carlo prompt dose calculations for the National Ingition Facility

    SciTech Connect (OSTI)

    Latkowski, J.F.; Phillips, T.W.

    1997-01-01

    During peak operation, the National Ignition Facility (NIF) will conduct as many as 600 experiments per year and attain deuterium- tritium fusion yields as high as 1200 MJ/yr. The radiation effective dose equivalent (EDE) to workers is limited to an average of 03 mSv/yr (30 mrem/yr) in occupied areas of the facility. Laboratory personnel determined located outside the facility will receive EDEs <= 0.5 mSv/yr (<= 50 mrem/yr). The total annual occupational EDE for the facility will be maintained at <= 0.1 person-Sv/yr (<= 10 person- rem/yr). To ensure that prompt EDEs meet these limits, three- dimensional Monte Carlo calculations have been completed.

  11. Industrial safety and applied health physics. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    In connection with personnel monitoring, there were no external or internal exposures to personnel which exceeded the standards for radiation protection as defined in DOE Manual Chapter 0524. Only 55 employees received whole-body dose equivalent of one rem or greater. The highest whole-body dose equivalent to an employee was 2.8 rem. The highest internal exposure was less than one-half of a maximum permissible dose for any calendar quarter. During 1979, 57 portable health physics instruments were added to the inventory and 75 retired. The total number in service on January 1, 1979, was 977. With regards to environmental monitoring, there were no releases of gaseous waste from the Laboratory which were of a level that required an incident report to DOE. There were no releases of liquid radioactive waste from the Laboratory which were of a level that required an incident report to DOE. Soil samples were collected at all perimeter and remote monitoring stations and analyzed for eleven radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.01 to 0.06 pCi/g, and the uranium-235 content ranged from 0.01 to 0.05 pCi/g. Grass samples were collected at all perimeter and remote monitoring stations and analyzed for twelve radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.001 to 0.010 pCi/g, and uranium-235 content ranged from 0.001 to 0.010 pCi/g. Two radiation incidents involving radioactive materials were recorded during 1979. This compares with 14 incidents in 1978. (ERB)

  12. Final Report, Volume 4, The Development of Qualification Standards for Cast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    SciTech Connect (OSTI)

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 ???¢????????Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels???¢??????? for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope???????® and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation was carried out between the ferrite content, hardness values and the type of fracture. SEM was also carried out on the corrosion samples in order to see the difference on the surface after corrosion analysis has been carried out. Energy Dispersive Spectroscopy was carried out on the material acquired from Foundry D in order to determine the variation in the amount of the chemical composition of various elements when the material is subjected to different heat treatment schedules. X-Ray analysis was also carried out in order to verify whether it is possible to identify the different phases present in the material. Volume percentage of ferrite was also calculated from X-Ray diffraction and compared with the Feritscope???????® and ASTM E562 Manual Point Count data in order to determine whether X-Ray Diffraction is a suitable method for carrying out qualitative analysis of different phases present. From the various tests that were conducted, it was concluded that since ASTM A923 Methods adequately identifies the presence of intermetallic phases in A890 ???¢???????? 5A grade Cast Super Duplex Stainless Steel A890 ???¢???????? 5A can be directly included in ASTM A923. Correlation was determined between all the ASTM A923 Test Methods A, B and C and Test Method B were identified as the best method for detecting the presence of detrimental intermetallic phases. The micrographs from the A890-4A grade (now in ASTM A923) were identified as applicable for the A890-5A grade to compare and detect the presence of intermetallic phases. Using these micrographs one can verify whether an A890-5A sample has an unaffected, affected or a possibly

  13. Final Report, Volume 4, The Develpoment of Qualification Standards forCast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    SciTech Connect (OSTI)

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope{reg_sign} and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation was carried out between the ferrite content, hardness values and the type of fracture. SEM was also carried out on the corrosion samples in order to see the difference on the surface after corrosion analysis has been carried out. Energy Dispersive Spectroscopy was carried out on the material acquired from Foundry D in order to determine the variation in the amount of the chemical composition of various elements when the material is subjected to different heat treatment schedules. X-Ray analysis was also carried out in order to verify whether it is possible to identify the different phases present in the material. Volume percentage of ferrite was also calculated from X-Ray diffraction and compared with the Feritscope{reg_sign} and ASTM E562 Manual Point Count data in order to determine whether X-Ray Diffraction is a suitable method for carrying out qualitative analysis of different phases present. From the various tests that were conducted, it was concluded that since ASTM A923 Methods adequately identifies the presence of intermetallic phases in A890-5A grade Cast Super Duplex Stainless Steel A890-5A can be directly included in ASTM A923. Correlation was determined between all the ASTM A923 Test Methods A, B and C and Test Method B were identified as the best method for detecting the presence of detrimental intermetallic phases. The micrographs from the A890-4A grade (now in ASTM A923) were identified as applicable for the A890-5A grade to compare and detect the presence of intermetallic phases. Using these micrographs one can verify whether an A890-5A sample has an unaffected, affected or a possibly affected structure. It was also observed that when compared to the A890-4A grade A890-5A grade is more sensitive to heat treatment. From the ferrite and hardness measurement a correlation was developed between toughness, volume percentage ferrite and hardness of the material. From SEM and EDS the type of intermetallic phase present and its chemical composition was determined. The best method for calculating volume percentage ferrite was determined between the Ferits

  14. SU-E-T-464: On the Equivalence of the Quality Correction Factor for Pencil Beam Scanning Proton Therapy

    SciTech Connect (OSTI)

    Sorriaux, J; Paganetti, H; Testa, M; Giantsoudi, D; Schuemann, J; Bertrand, D; Orban de Xivry, J.; Lee, J; Palmans, H; Vynckier, S; Sterpin, E

    2014-06-01

    Purpose: In current practice, most proton therapy centers apply IAEA TRS-398 reference dosimetry protocol. Quality correction factors (kQ) take into account in the dose determination process the differences in beam qualities used for calibration unit and for treatment unit. These quality correction factors are valid for specific reference conditions. TRS-398 reference conditions should be achievable in both scattered proton beams (i.e. DS) and scanned proton beams (i.e. PBS). However, it is not a priori clear if TRS-398 kQ data, which are based on Monte Carlo (MC) calculations in scattered beams, can be used for scanned beams. Using TOPAS-Geant4 MC simulations, the study aims to determine whether broad beam quality correction factors calculated in TRS-398 can be directly applied to PBS delivery modality. Methods: As reference conditions, we consider a 101010 cm{sup 3} homogeneous dose distribution delivered by PBS system in a water phantom (32/10 cm range/modulation) and an air cavity placed at the center of the spread-out-Bragg-peak. In order to isolate beam differences, a hypothetical broad beam is simulated. This hypothetical beam reproduces exactly the same range modulation, and uses the same energy layers than the PBS field. Ion chamber responses are computed for the PBS and hypothetical beams and then compared. Results: For an air cavity of 220.2 cm{sup 3}, the ratio of ion chamber responses for the PBS and hypothetical beam qualities is 0.9991 0.0016. Conclusion: Quality correction factors are insensitive to the delivery pattern of the beam (broad beam or PBS), as long as similar dose distributions are achieved. This investigation, for an air cavity, suggests that broad beam quality correction factors published in TRS-398 can be applied for scanned beams. J. Sorriaux is financially supported by a public-private partnership involving the company Ion Beam Applications (IBA)

  15. Estimation of m.w.e (meter water equivalent) depth of the salt mine of Slanic Prahova, Romania

    SciTech Connect (OSTI)

    Mitrica, B.; Margineanu, R.; Stoica, S.; Petcu, M.; Brancus, I. M.; Petre, M.; Toma, G.; Saftoiu, A.; Apostu, A.; Jipa, A.; Lazanu, I.; Sima, O.; Haungs, A.; Rebel, H.

    2010-11-24

    A new mobile detector was developed in IFIN-HH, Romania, for measuring muon flux at surface and in underground. The measurements have been performed in the salt mines of Slanic Prahova, Romania. The muon flux was determined for 2 different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measurements of the muon flux at surface at different altitudes were performed. Based on the results, the depth of the 2 galleries was established at 610 and 790 m.w.e. respectively.

  16. SU-E-T-591: Measurement and Monte Carlo Simulation of Stray Neutrons in Passive Scattering Proton Therapy: Needs and Challenges

    SciTech Connect (OSTI)

    Farah, J; Bonfrate, A; Donadille, L; Dubourg, N; Lacoste, V; Martinetti, F; Sayah, R; Trompier, F; Clairand, I [IRSN - Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-roses (France); Caresana, M [Politecnico di Milano, Milano (Italy); Delacroix, S; Nauraye, C [Institut Curie - Centre de Protontherapie d Orsay, Orsay (France); Herault, J [Centre Antoine Lacassagne, Nice (France); Piau, S; Vabre, I [Institut de Physique Nucleaire d Orsay, Orsay (France)

    2014-06-01

    Purpose: Measure stray radiation inside a passive scattering proton therapy facility, compare values to Monte Carlo (MC) simulations and identify the actual needs and challenges. Methods: Measurements and MC simulations were considered to acknowledge neutron exposure associated with 75 MeV ocular or 180 MeV intracranial passively scattered proton treatments. First, using a specifically-designed high sensitivity Bonner Sphere system, neutron spectra were measured at different positions inside the treatment rooms. Next, measurement-based mapping of neutron ambient dose equivalent was fulfilled using several TEPCs and rem-meters. Finally, photon and neutron organ doses were measured using TLDs, RPLs and PADCs set inside anthropomorphic phantoms (Rando, 1 and 5-years-old CIRS). All measurements were also simulated with MCNPX to investigate the efficiency of MC models in predicting stray neutrons considering different nuclear cross sections and models. Results: Knowledge of the neutron fluence and energy distribution inside a proton therapy room is critical for stray radiation dosimetry. However, as spectrometry unfolding is initiated using a MC guess spectrum and suffers from algorithmic limits a 20% spectrometry uncertainty is expected. H*(10) mapping with TEPCs and rem-meters showed a good agreement between the detectors. Differences within measurement uncertainty (1015%) were observed and are inherent to the energy, fluence and directional response of each detector. For a typical ocular and intracranial treatment respectively, neutron doses outside the clinical target volume of 0.4 and 11 mGy were measured inside the Rando phantom. Photon doses were 210 times lower depending on organs position. High uncertainties (40%) are inherent to TLDs and PADCs measurements due to the need for neutron spectra at detector position. Finally, stray neutrons prediction with MC simulations proved to be extremely dependent on proton beam energy and the used nuclear models and cross sections. Conclusion: This work highlights measurement and simulation limits for ion therapy radiation protection applications.

  17. Reporting Occupational Radiation Exposure Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reporting Occupational Radiation Exposure Data Reporting Occupational Radiation Exposure Data IMPORTANT NOTICE: Due to increasing security concerns for the protection of Personnally Identifiable Information (PII), AU-23 has issued a policy statement regarding the submission of radiation exposure records to REMS. This policy should be implemented immediately by all organizations reporting radiation exposure records to REMS in accordance with the REMS Reporting Guide. DOE sites are required to

  18. Request For Report Of Radiation Exposure History Form

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) form to submit a dose history request to the Radiation Exposure Monitoring System (REMS).

  19. Microsoft Word - o420.2cRevCom11-9-10

    National Nuclear Security Administration (NNSA)

    ... consequences for credible postulated accident scenarios that potentially exceed 1 rem ... consequences could result from either an accident or a malfunction of equipment that is ...

  20. Exhibit A-1. Labor Categories and Occupation Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Service Workers 0512 0513 0521 0524 0525 Firefighters Security Guards Food Service ... No. of Individuals with New Intakes* Collective CEDE Dose from Intake (person-rem) Average ...

  1. Program Plan | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Plan Revised Program Plan approval is pending, new program direction concepts are described in a 3-pager, here. 151124 REMS Slides

  2. Radiological Worker Training Power Point Slides for App. A

    Broader source: Energy.gov (indexed) [DOE]

    ... Individual Annual Limit General Employee: Whole Body (internal and external) 5.0 rem " " ... Overhead 2.23 Signs * Yellow background * Black or magenta radiation symbol * Clear and ...

  3. Environment/Health/Safety (EHS): Databases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and to write evaluation reports) HMS - Hazard Management System Laser Management System Lessons Learned Best Practices REMS - Radiation Exposure Monitoring System SJHA Database...

  4. WE-D-17A-05: Measurement of Stray Radiation Within An Active Scanning Proton Therapy Facility: EURADOS WG9 Intercomparison Exercise of Active Dosimetry Systems

    SciTech Connect (OSTI)

    Farah, J; Trompier, F; Stolarczyk, L; Klodowska, M; Liszka, M; Olko, P; Algranati, C; Fellin, F; Schwarz, M; Domingo, C; Romero-Exposito, M; Dufek, V; Frojdh, E; George, S; Harrison, R; Kubancak, J; Ploc, O; Knezevic, Z; Majer, M; Miljanic, S; and others

    2014-06-15

    Purpose: Intercomparison of active dosemeters in the measurement of stray radiation at the Trento active-scanning proton therapy facility. Methods: EURADOS WG9 carried out a large intercomparison exercise to test different dosemeters while measuring secondary neutrons within a 230 MeV scanned proton therapy facility. Detectors included two Bonner Sphere Spectrometers (BSS), three tissue equivalent proportional counters (TEPCHawk) and six rem-counters (Wendi II, Berthold, RadEye, a regular and an extended-range Anderson and Braun NM2B counters). Measurements of neutron ambient dose equivalents, H*(10), were done at several positions inside (8 positions) and outside (3 positions) the treatment room while irradiating a water tank phantom with a 10 10 10 cc field. Results: A generally good agreement on H*(10) values was observed for the tested detectors. At distance of 2.25 m and angles 45, 90 and 180 with respect to the beam axis, BSS and proportional counters agreed within 30%. Higher differences (up to 60%) were observed at the closest and farthest distances, i.e. at positions where detectors sensitivity, energy, fluence and angular response are highly dependent on neutron spectra (flux and energy). The highest neutron H*(10) value, ?60 microSv/Gy, was measured at 1.15 m along the beam axis. H*(10) decreased significantly with the distance from the isocenter dropping to 1.1 microSv/Gy at 4.25 m and 90 from beam axis, ?2 nanoSv/Gy at the entrance of the maze, 0.2 nanoSv/Gy at the door outside the room and below detection limit in the gantry control room and at an adjacent room. These values remain considerately lower than those of passively scattered proton beams. BSS and Hawk unfolded spectra provide valuable inputs when studying the response of each detector. Conclusion: TEPCs and BSS enable accurate measurements of stray neutrons while other rem-meters also give satisfactory results but require further improvements to reduce uncertainties.

  5. Radionuclide Air Emission Report for 2009

    SciTech Connect (OSTI)

    Wahl, Linnea

    2010-06-01

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the EPA radioactive air emission regulations in 40CFR61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2009, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2009 is 7.0 x 10{sup -3} mrem/yr (7.0 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.5 x 10{sup -1} person-rem (1.5 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2009.

  6. Radionuclide Air Emission Report for 2007

    SciTech Connect (OSTI)

    Wahl, Linnea; Wahl, Linnea

    2008-06-13

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). The EPA regulates radionuclide emissions that may be released from stacks or vents on buildings where radionuclide production or use is authorized or that may be emitted as diffuse sources. In 2007, all Berkeley Lab sources were minor stack or building emissions sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]), there were no diffuse emissions, and there were no unplanned emissions. Emissions from minor sources either were measured by sampling or monitoring or were calculated based on quantities received for use or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, Version 3.0, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2007 is 1.2 x 10{sup -2} mrem/yr (1.2 x 10{sup -4} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) EPA dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 3.1 x 10{sup -1} person-rem (3.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2007.

  7. Radionuclide Air Emission Report for 2008

    SciTech Connect (OSTI)

    Wahl, Linnea

    2009-05-21

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2008, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources include more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2008 is 5.2 x 10{sup -3} mrem/yr (5.2 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.1 x 10{sup -1} person-rem (1.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2008.

  8. DOE Occupational Radiation Exposure Report - User Survey

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 5 Analysis of Individual Dose Data 1 2 3 4 5 Doses above 2 rems ACL 1 2 3 4 5 Doses in Excess of 5 rems 1 2 3 4 5 Intakes of Radioactive Material 1 2 3 4 5 Analysis of Site Data...

  9. Technical Justification: Technical Justification of Equivalency for Surface Impoundment Requirements for the Temporary Storage Area Basin and Site Water Treatment Plant Equalization Basin.

    Office of Legacy Management (LM)

  10. Equivalence of donor and acceptor fits of temperature dependent Hall carrier density and Hall mobility data: Case of ZnO

    SciTech Connect (OSTI)

    Brochen, Stphane; Feuillet, Guy; Pernot, Julien

    2014-04-28

    In this work, statistical formulations of the temperature dependence of ionized and neutral impurity concentrations in a semiconductor, needed in the charge balance equation and for carrier scattering calculations, have been developed. These formulations have been used in order to elucidate a confusing situation, appearing when compensating acceptor (donor) levels are located sufficiently close to the conduction (valence) band to be thermally ionized and thereby to emit (capture) an electron to (from) the conduction (valence) band. In this work, the temperature dependent Hall carrier density and Hall mobility data adjustments are performed in an attempt to distinguish the presence of a deep acceptor or a deep donor level, coexisting with a shallower donor level and located near the conduction band. Unfortunately, the present statistical developments, applied to an n-type hydrothermal ZnO sample, lead in both cases to consistent descriptions of experimental Hall carrier density and mobility data and thus do not allow to determine the nature, donor or acceptor, of the deep level. This demonstration shows that the emission of an electron in the conduction band, generally assigned to a (0/+1) donor transition from a donor level cannot be applied systematically and could also be attributed to a (?1/0) donor transition from an acceptor level. More generally, this result can be extended for any semiconductor and also for deep donor levels located close to the valence band (acceptor transition)

  11. Personnel radiation exposure in HTGR plants

    SciTech Connect (OSTI)

    Su, S.; Engholm, B.A.

    1980-01-01

    Occupational radiation exposures in high-temperature gas-cooled reactor (HTGR) plants were assessed. The expected rate of dose accumulations for a large HTGR steam cycle (HTGR-SC) unit is 0.07 man-rem/MW(e)y, while the design basis is 0.17 man-rem/MW(e)y. The comparable figure for actual light water reactor (LWR) experience is 1.3 man-rem/MW(e)y. The favorable HTGR occupational exposure is supported by results from the Peach Bottom Unit No. 1 HTGR and Fort St. Vrain HTGR plants and by operating experience at British gas-cooled reactor (GCR) stations.

  12. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    SciTech Connect (OSTI)

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  13. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water heaters and electric heating and air conditioning systems. A centralized computer system monitored the power demand and sent a radio signal to the REMS units to cycle off...

  14. Radiation Exposure Monitoring Systems Data Submittal Notification

    Broader source: Energy.gov [DOE]

    Monitoring records are required to be reported to the Department of Energy (DOE) Radiation Records Repository by March 31 under DOE Order 231.1B and in accordance with the REMS Reporting Guide.

  15. ORISE: Understanding Radiation Video Series from REAC/TS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    media and the general public. Radiation Dose Explained (1:07) Differences Between RadGray and RemSievert (1:37) Radiation Exposure vs. Radioactive Contamination (1:34) How...

  16. APPENDIX A:

    National Nuclear Security Administration (NNSA)

    ... Exposure Summary Report to DOE (ORISE coordinates for DOE-HQ) (REMS) Nasca Uploads on Web page Available on Database Info Copy Only DOE M 231.1-1A as identified in 10 CFR 851 No ...

  17. Program Plan | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal and Coal-Biomass to Liquids Program Plan Revised Program Plan approval is pending, new program direction concepts are described in a 3-pager, here. 151124 REMS Slides

  18. DOE 2012 Occupational Radiation Exposure Report

    Broader source: Energy.gov (indexed) [DOE]

    on the Department of Energy REMS Program Web Site at: http:www.hss.doe.govSESA... exposure at DOE, visit the DOE HSS web site at: http:www.hss.doe.govSESA...

  19. Microsoft Word - SRR-CWDA-2012-00026_R1_Text.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROM TANK 18 F-AREA TANK FARM SAVANNAH RIVER SITE March 2012 Prepared by: Savannah ... dose in person-rem - from nuclear power plant emissions and later changed the value to ...

  20. Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting

    Broader source: Energy.gov [DOE]

    This pamphlet is intended to provide a short summary of two specific HSS programs that aid in the oversight of radiation protection activities at DOE, Department of Energy Laboratory Accreditation Program (DOELAP) and Radiation Exposure Monitoring Systems (REMS)

  1. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1994. Twenty-seventh annual report

    SciTech Connect (OSTI)

    Thomas, M.L.; Hagemeyer, D.

    1996-01-01

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). Annual reports for 1994 were received from a total of 303 NRC licensees, of which 109 were operators of nuclear power reactors in commercial operation. Compilations of the reports submitted by the 303 licensees indicated that 152,028 individuals were monitored, 79,780 of whom received a measurable dose. The collective dose incurred by these individuals was 24,740 person-cSv (person-rem){sup 2} which represents a 15% decrease from the 1993 value. The number of workers receiving a measurable dose also decreased, resulting in the average measurable dose of 0.31 cSv (rem) for 1994. The average measurable dose is defined to be the total collective dose (TEDE) divided by the number of workers receiving a measurable dose. These figures have been adjusted to account for transient reactor workers. In 1994, the annual collective dose per reactor for light water reactor licensees (LWRs) was 198 person-cSv (person-rem). This represents a 18% decrease from the 1993 value of 242 person-cSv (person-rem). The annual collective dose per reactor for boiling water reactors (BWRs) was 327 person-cSv (person-rem) and, for pressurized water reactors (PWRs), it was 131 person-cSv (person-rem). Analyses of transient worker data indicate that 18,178 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1994, the average measurable dose calculated from reported data was 0.28 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.31 cSv (rem).

  2. Radiation Exposure Monitoring Systems Program Policy for Submitting of PII

    Energy Savers [EERE]

    information | Department of Energy Exposure Monitoring Systems Program Policy for Submitting of PII information Radiation Exposure Monitoring Systems Program Policy for Submitting of PII information ‎December 17, ‎2015 The REMS Program Policy for submitting of PII information in accordance with the Office of Environment, Health, Safety and Security (EHSS) under DOE Order 231.1B and the REMS Reporting Guide. PDF icon Radiation Exposure Monitoring Systems Program Policy for Submitting of

  3. REPORT OF SURVEY OF OAK RIDGE BUILDING 3597 HOT STORAGE GARDEN

    Office of Environmental Management (EM)

    note: The REMS Reporting Guide, the AU-23 policy on reporting PII data, and the annual data submittal notification are also available at: http://energy.gov/ehss/policy-guidance- reports/databases/occupational-radiation-exposure. 1. Annual Monitoring Records Monitoring records are required to be reported to the Department of Energy (DOE) Radiation Records Repository by March 31 under DOE Order 231.1B and in accordance with the online REMS Reporting Guide attached. These records form the basis for

  4. Weldon Spring Site environmental report for calendar year 1993. Weldon Springs Site Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This Site Environmental Report for Calendar Year 1993 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels, and to summarize trends and/or changes in contaminant concentrations from environmental monitoring program. In 1993, the maximum committed dose to a hypothetical individual at the chemical plant site perimeter was 0.03 mrem (0.0003 mSv). The maximum committed dose to a hypothetical individual at the boundary of the Weldon Spring Quarry was 1.9 mrem (0.019 mSv). These scenarios assume an individual walking along the perimeter of the site-once a day at the chemical plant/raffinate pits and twice a day at the quarry-250 days per year. This hypothetical individual also consumes fish, sediment, and water from lakes and other bodies of water in the area. The collective dose, based on an effected population of 112,000 was 0.12 person-rem (0.0012 person-Sv). This calculation is based on recreational use of the August A. Busch Memorial Conservation Area and the Missouri Department of Conservation recreational trail (the Katy Trail) near the quarry. These estimates are below the U.S. Department of Energy requirement of 100 mrem (I mSv) annual committed effective dose equivalent for all exposure pathways. Results from air monitoring for the National Emission Standards for Hazardous Air Pollutants (NESHAPs) program indicated that the estimated dose was 0.38 mrem, which is below the U.S. Environmental Protection Agency (EPA) standard of 10 mrem per year.

  5. Idaho National Engineering and Environmental Laboratory radiological control performance indicator report. Third quarter, calendar year 1997

    SciTech Connect (OSTI)

    1997-11-01

    This document provides a report and analysis of the Radiological Control Program through the third quarter of calendar year 1997 (CY-97) at the Idaho National Engineering and Environmental Laboratory (INEEL) under the direction of Lockheed Martin Idaho Technologies Company (LMITCO). This Performance Indicator Report is provided in accordance with Article 133 of the INEEL Radiological Control Manual. The INEEL collective occupational radiation exposure goal (deep dose) has been revised from 137 person-rem to 102.465 person-rem. Aggressive application of ALARA protective measures has resulted in a 66.834 person-rem deep dose compared to projected third quarter goal of 85.5 person-rem. Dose savings at the ICPP Tank Farm and rescheduling of some of the ROVER work account for most of the difference in the goal and actual dose year to date. Work at the ICPP Tank farm has resulted in about 14 rem dose savings. The RWMC has also reduced exposure by moving waste to new temporary storage facilities well ahead of schedule.

  6. The Soft X-Ray Cosmos: ROSAT Science Symposium and Data Analysis Workshop

    SciTech Connect (OSTI)

    Schlegel, E.M.

    1994-12-31

    These proceedings represent papers presented at the ROSAT Science Symposium and Data Analysis Workshop held in College Park, Maryland. The aim was to showcase the results obtained thus far using ROSAT, the Roentgen Satellite, and to provide a forum for discussion regarding the means for extracting the maximum amount of information from ROSAT data. The cosmic x-ray sources discussed, included the cataclysmic variables, the Algol binary systems, the dark matter, galactic clusters, blazars, and many others. Star formation by galaxy interactions was also discussed. There were ninety one papers presented at the conference and none of these have been abstracted for the Energy Science and Technology database. (AIP)

  7. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    SciTech Connect (OSTI)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Several methods to assure that the licensee has adequate funds for decommissioning are considered. The methods investigated (all based on expected decommissioning costs) range from a single payment when plant operations begin, to payments into a sinking fund during the normal plant operating period, to a single payment when normal plant operations cease and decommissioning begins.

  8. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    SciTech Connect (OSTI)

    Stone, Timothy Amos

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program implementation as LANL moves forward into production and use of the SAVY-3000 will all be addressed. The SAVY-3000 is intended as a work horse package for the DOE complex as a vented storage container primarily for plutonium in solid form.

  9. Industrial safety and applied health physics. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    Information is reported in sections entitled: radiation monitoring; Environmental Management Program; radiation and safety surveys; industrial safety and special projects; Office of Operational Safety; and training, lectures, publications, and professional activities. There were no external or internal exposures to personnel which exceeded the standards for radiation protection as defined in DOE Manual Chapter 0524. Only 35 employees received whole body dose equivalents of 10 mSv (1 rem) or greater. There were no releases of gaseous waste from the Laboratory which were of a level that required an incident report to DOE. There were no releases of liquid radioactive waste from the Laboratory which were of a level that required an incident report to DOE. The quantity of those radionuclides of primary concern in the Clinch River, based on the concentration measured at White Oak Dam and the dilution afforded by the Clinch River, averaged 0.16 percent of the concentration guide. The average background level at the Perimeter Air Monitoring (PAM) stations during 1980 was 9.0 ..mu..rad/h (0.090 ..mu..Gy/h). Soil samples were collected at all perimeter and remote monitoring stations and analyzed for eleven radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 1.5 Bq/kg (0.04 pCi/g), and the uranium-235 content ranged from 0.7 Bq/kg (0.02 pCi/g) to 16 Bq/kg (0.43 pCi/g). Grass samples were collected at all perimeter and remote monitoring stations and analyzed for twelve radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.04 Bq/kg (0.001 pCi/g) to 0.07 Bq/kg (0.002 pCi/g), and the uranium-235 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 12 Bq/kg (0.33 pCi/g).

  10. Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems

    SciTech Connect (OSTI)

    Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B.

    1992-05-01

    In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

  11. Savannah River Site 1992 ALARA goals

    SciTech Connect (OSTI)

    Smith, L.S.

    1992-01-01

    The ALARA Goals for the Savannah River Site (SRS) for 1992 have been established by the operating Divisions/Departments and totaled for the anticipated scope of sitewide work. Goals for maximum individual exposure and personnel contamination cases have been reduced from 1991 actual data. The goal for assimilations of radionuclides remains at zero. The 633.20 rem cumulative exposure goal is constituted of special work operations and base routine operations, respectively 244.68 rem and 388.52 rem. The cumulative exposure goal is an increase of 50% over the 1991 data to support the start up to K Reactor, operations of FB Line and scheduled special work. The 633.20 rem is 4% less than the 1990 data. Additionally, three reduction goals have been established to demonstrate a decrease in the Site overall radiological hazard. These reduction goals are for the size of airborne activity and contamination areas and the number of contamination events occurring outside a radiologically controlled area (RCA). The ALARA program is documented in the recently revised SRS ALARA Guide (October 1991).

  12. Population dose commitments due to radioactive releases from nuclear power plant sites in 1986

    SciTech Connect (OSTI)

    Baker, D.A. )

    1989-10-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1986. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 66 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 31 person-rem to a low of 0.0007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.7 person-rem. The total population dose for all sites was estimated at 110 person-rem for the 140 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup -6} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. 12 refs.

  13. Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1977

    SciTech Connect (OSTI)

    Baker, D. A.

    1980-10-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1977. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ, Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 220 person-rem to a low of 0.003 person-rem with an arithmetic mean of 16 person-rem. The total population dose for all sites was estimated at 700 person-rem for the 92 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10{sup -5} mrem to a high of 0.1 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  14. Dose commitments due to radioactive releases from nuclear power plant sites in 1989

    SciTech Connect (OSTI)

    Baker, D.A. )

    1993-02-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1989. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix I design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 14 person-rem to a low of 0.005 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 84 person-rem for the 140 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix I design objectives.

  15. Population dose commitments due to radioactive releases from nuclear power plant sites in 1984

    SciTech Connect (OSTI)

    Baker, D.A.

    1988-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10/sup -6/ mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  16. Population dose commitments due to radioactive releases from nuclear power plant sites in 1983

    SciTech Connect (OSTI)

    Baker, D.A.; Peloquin, R.A.

    1987-04-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1983. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 52 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 45 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 170 person-rem for the 100 million people considered at risk.

  17. Population dose commitments due to radioactive releases from Nuclear-Power-Plant Sites in 1979

    SciTech Connect (OSTI)

    Baker, D.A.; Peloquin, R.A.

    1982-12-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1979. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 1300 person-rem to a low of 0.0002 person-rem with an arithmetic mean of 38 person-rem. The total population dose for all sites was estimated at 1800 person-rem for the 94 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10/sup -6/ mrem to a high of 0.7 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  18. Population dose commitments due to radioactive releases from nuclear power plant sites in 1985

    SciTech Connect (OSTI)

    Baker, D.A.

    1988-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commericial power reactors operating during 1985. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 61 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 73 person-rem to a low of 0.011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 200 person-rem for the 110 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 5 /times/ 10/sup /minus/6/ mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  19. Population dose commitments due to radioactive releases from nuclear-power-plant sites in 1978

    SciTech Connect (OSTI)

    Peloquin, R.A.; Schwab, J.D.; Baker, D.A.

    1982-06-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1978. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 200 person-rem to a low of 0.0004 person-rem with an arithmetic mean of 14 person-rem. The total population dose for allsites was estimated at 660 person-rem for the 93 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 3 x 10/sup -6/ mrem to a high of 0.08 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  20. Population dose commitments due to radioactive releases from nuclear power plant sites in 1982. Volume 4

    SciTech Connect (OSTI)

    Baker, D.A.; Peloquin, R.A.

    1986-06-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1982. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 51 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments from both liquid and airborne pathways ranged from a high of 30 person-rem to a low of 0.007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 130 person-rem for the 100 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 6 x 10/sup -7/ mrem to a high of 0.06 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  1. Zero Energy Ready Home Certificate Examples | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certificate Examples Zero Energy Ready Home Certificate Examples These certificates are printed from RESNET Accredited Software, examples from REM/Rate and from EnergyGauge. PDF icon Remrate Cert.pdf More Documents & Publications 2016 U.S. Department of Energy Race to Zero Student Design Competition Guide Review of Selected Home Energy Auditing Tools Overview of Existing Home Energy Labels

  2. FORMATION BY IRRADIATION OF AN EXPANDED, CELLULAR, POLYMERIC BODY

    DOE Patents [OSTI]

    Charlesby, A.; Ross, M.

    1958-12-01

    The treatment of polymeric esters of methacrylic acid having a softening polnt above 40 icient laborato C to form an expanded cellular mass with a smooth skin is discussed. The disclosed method comprises the steps of subjecting the body at a temperature below the softenpoint to a dose of at least 5 x lO/sup 6/ roentgen of gamma radiation from cobalt-60 source until its average molecular weight is reduced to a value within the range of 3 x lO/sup 5/ to 10/sup 4/, and heating at a temperature within the range of 0 to lO icient laborato C above its softening point to effect expansion.

  3. Water freezing and ice melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  4. THE HIGH BACKGROUND RADIATION AREA IN RAMSAR IRAN: GEOLOGY, NORM, BIOLOGY, LNT, AND POSSIBLE REGULATORY FUN

    SciTech Connect (OSTI)

    Karam, P. A.

    2002-02-25

    The city of Ramsar Iran hosts some of the highest natural radiation levels on earth, and over 2000 people are exposed to radiation doses ranging from 1 to 26 rem per year. Curiously, inhabitants of this region seem to have no greater incidence of cancer than those in neighboring areas of normal background radiation levels, and preliminary studies suggest their blood cells experience fewer induced chromosomal abnormalities when exposed to 150 rem ''challenge'' doses of radiation than do the blood cells of their neighbors. This paper will briefly describe the unique geology that gives Ramsar its extraordinarily high background radiation levels. It will then summarize the studies performed to date and will conclude by suggesting ways to incorporate these findings (if they are borne out by further testing) into future radiation protection standards.

  5. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997

    SciTech Connect (OSTI)

    R. B. Evans; D. Roush; R. W. Brooks; D. B. Martin

    1998-08-01

    The results of the various monitoring programs for 1997 indicated that radioactivity from the Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.2 person-rem (2 x 10-3 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0005% of the estimated 43,700 person-rem (437 person-Sv) population dose from background radioactivity.

  6. Validating Savings Claims of Cold Climate Zero Energy Ready Homes

    SciTech Connect (OSTI)

    Williamson, J.; Puttagunta, S.

    2015-06-05

    This study was intended to validate actual performance of three ZERHs in the Northeast to energy models created in REM/Rate v14.5 (one of the certified software programs used to generate a HERS Index) and the National Renewable Energy Laboratory’s Building Energy Optimization (BEopt™) v2.3 E+ (a more sophisticated hourly energy simulation software). This report details the validation methods used to analyze energy consumption at each home.

  7. ELECTRIC CONTACT MEANS

    DOE Patents [OSTI]

    Grear, J.W. Jr.

    1959-03-10

    A switch adapted to maintain electrical connections under conditions of vibration or acceleration is described. According to the invention, thc switch includes a rotatable arm carrying a conductive bar arranged to close against two contacts spaced in the same plane. The firm and continuous engagement of the conductive bar with the contacts is acheived by utilizeing a spring located betwenn the vbar and athe a rem frzme and slidable mounting the bar in channel between two arms suspendef from the arm frame.

  8. ORISE: Worker Health Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Exposure Data Collection Protecting Human Subjects How ORISE is Making a Difference Overview Argonne Electronic Medical Records System Beryllium Testing and Surveillance Radiation Exposure Information and Reporting System (REIRS) U.S. Department of Energy Radiation Exposure Monitoring System (REMS) DOE IISP 10-Year Summary Report Resources Overview Reports Peer-Reviewed Journal Articles Human Subjects Resource Book How to Work With Us Contact Us Oak Ridge Institute for Science

  9. ORISE: Worker Health Studies - Beryllium Exposure Studies and Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beryllium Testing Vendor Populations Beryllium Associated Worker Registry Beryllium Testing Laboratory Radiation Exposure Data Collection Protecting Human Subjects How ORISE is Making a Difference Overview Argonne Electronic Medical Records System Beryllium Testing and Surveillance Radiation Exposure Information and Reporting System (REIRS) U.S. Department of Energy Radiation Exposure Monitoring System (REMS) DOE IISP 10-Year Summary Report Resources Overview Reports Peer-Reviewed Journal

  10. Electroexcitation of the Δ(1232)3/2+ and Δ(1600)3/2+ in a light-front relativistic quark model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aznauryan, Inna G.; Burkert, Volker D.

    2015-09-30

    The magnetic-dipole form factor and the ratios REM and RSM for the γ* N → Δ(1232)3/2+ transition are predicted within light-front relativistic quark model up to photon virtuality Q2=12 GeV2. Furthermore, we predict the helicity amplitudes of the γ* N → Δ(1600)3/2+ transition assuming the Δ(1600)3/2+ is the first radial excitation of the ground state Delta(1232)3/2+.

  11. Measurement of the N ---> Delta+(1232) transition at high momentum transfer by pi0 electroproduction

    SciTech Connect (OSTI)

    M. Ungaro; K. Joo; P. Stoler

    2006-06-01

    The measurement of the differential cross section of the exclusive electroproduction reaction gamma*p --> pi^0p in W region of the Delta^+(1232) resonance is reported. The magnetic form factor (G*_M) and ratios of electric to magnetic and scaler to magnetic multipole amplitudes R_EM = E_1+/M_1+ and R_SM = S_1+/M_1+ for the gamma*p --> Delta+(1232) transition are extracted in the framework of a unitary isobar model.

  12. Occupational Radiation Exposures at the Department of Energy | Department

    Energy Savers [EERE]

    of Energy Occupational Radiation Exposures at the Department of Energy Occupational Radiation Exposures at the Department of Energy Nimi Rao*, U.S. Department of Energy ; Derek Hagemeyer, Oak Ridge Institute for Science and Education Abstract: The DOE Radiation Exposure Monitoring System (REMS) project began in 1969 under the AEC and has undergone significant evolutions since inception. The system serves as the central repository for occupational radiation exposure records for all

  13. ORISE: Advanced Radiation Medicine | REAC/TS Continuing Medical Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Advanced Radiation Medicine Dates Scheduled Register Online August 15-19, 2016 Fee: $275 Maximum enrollment: 28 30 hours AMA PRA Category 1 Credits(tm) This 4½-day course includes more advanced information for medical practitioners. This program is academically more rigorous than the REM course and is primarily for Physicians, Physician Assistants, Nurse Practitioners, and Nurses desiring an advanced level of information on the diagnosis and management of ionizing radiation injuries

  14. ORISE: Worker Health Studies - Radiation Exposure Data Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How ORISE is Making a Difference Overview Argonne Electronic Medical Records System Beryllium Testing and Surveillance Radiation Exposure Information and Reporting System (REIRS) U.S. Department of Energy Radiation Exposure Monitoring System (REMS) DOE IISP 10-Year Summary Report Resources Overview Reports Peer-Reviewed Journal Articles Human Subjects Resource Book How to Work With Us Contact Us Oak Ridge Institute for Science Education Radiation Exposure Data Collection ORISE manages large,

  15. Requests for Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requests for Information Requests for Information How to Request Further Information Requests for information (other than dose histories) should be directed to: Ms. Nirmala Rao Program Manager DOE REMS Project Manager AU-23, Germantown Building U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585-1290 (301) 903-2297 NIMI.RAO@hq.doe.gov How to Request Dose Histories From a DOE Facility To obtain records of occupational exposure directly from a DOE site click here: DOE

  16. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    SciTech Connect (OSTI)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  17. Radiator Labs | Department of Energy

    Office of Environmental Management (EM)

    Department of Energy Radiation Exposure Monitoring Systems Data Submittal Notification Radiation Exposure Monitoring Systems Data Submittal Notification December 17, 2015 Monitoring records are required to be reported to the Department of Energy (DOE) Radiation Records Repository by March 31 under DOE Order 231.1B and in accordance with the REMS Reporting Guide. These records form the basis for the analysis presented in the DOE Occupational Radiation Exposure annual report. In July of 2007,

  18. An updated dose assessment for Rongelap Island

    SciTech Connect (OSTI)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  19. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (GdLu)

    SciTech Connect (OSTI)

    Mioduski, Tomasz; Gumi?ski, Cezary; Zeng, Dewen

    2015-06-15

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF{sub 4} and YbF{sub 2} (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation. Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  20. Effects of Ignition Quality and Fuel Composition on Critical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Our research shows ...

  1. The Geometry Of Disorder: Theoretical Investigations Of Quasicrystals...

    Office of Scientific and Technical Information (OSTI)

    Of Quasicrystals And Frustrated Magnets: Quasi-Crystals And Quasi-Equivalence: ... Of Quasicrystals And Frustrated Magnets: Quasi-Crystals And Quasi-Equivalence: ...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    tax on a gallon equivalent basis. Alternative fuels include natural gas, propane, hydrogen, and hythane. A gallon equivalent is defined as 5.660 pounds (lbs.) of compressed...

  3. RBSTMULTIPRINCE.F

    Energy Science and Technology Software Center (OSTI)

    003073MLTPL00 rbstmultiprince.f; Equivalent Dipole Polarizability Inversion of Time Domain Electromagnetic Induction Data

  4. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.

  5. Transuranic Waste Transportation Containers - Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Types of Containers Container Waste Type Status of Certification T RU PA CT -II Con tact-H andled Approved by NRC , August 1989 H alf P AC T Con tact-H andled Approved by NRC , November 2000 RH -72B Rem ote-H andled Approved by NRC , March 2000 . . . a critical step toward solving the nation's nuclear waste disposal problem Transuranic Waste Transportation Containers In 1980, the U.S. Department of Energy (DOE) committed to transporting transuranic radioactive waste to the Waste Isolation Pilot

  6. The Ames Process for Rare Earth Metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Process for Rare Earth Metals The Ames Process for the preparation of high purity rare earth metals (REM) is a descendent of the Ames Process for the preparation of uranium for the Manhattan Project - the metallothermic reduction of a metal-salt by an alkaline earth metal: 2RF3 + 3Ca -> 2R + 3CaF2 In this case the rare earth fluoride is reduced by calcium metal, resulting in the rare earth metal and a calcium fluoride slag. The fluoride input is prepared from high purity oxide via

  7. Bioassay Chart 5-22-14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ,000 mrem Site Employees' Positive Sample Results Millirems (not to scale) 10 8 9 7 2 6 4 3 1 5 0 Minimum Reporting Limit (10 mrem) Treatment Recommended Limit 5,000 mrem Federal Limit 1,000 3,000 4,000 2,000 5,000 If internal contamination is suspected to deliver a dose greater than 2 Rem (2,000 mrem), the manager of Radiation Control or designee may recommend treatment after consulting with an occupational medicine physician. May 22, 2014 Understanding the Bioassay Results Typical Average

  8. Strengthening Cyber Security

    Energy Savers [EERE]

    E n E rgyB i z November/December 2008 » TECHNOLOGY FRONTIER (Guest OpiniOn) remOte attaCks On systems that control power production and distribution are no longer hypothetical events. At least four utilities have been subjected to extortion demands by criminals who used the Internet to infect the utilities' computers and caused or threatened power outages. Cyber attacks have been used to disrupt power equipment in several regions outside the United States. In at least one case, the disruption

  9. DOE ISM REVIEW TEAM PRE-VISIT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BE THE FACE OF CLIMATE CHANGE W elcom ing Rem arks Adam Cohen, Chief Operating Officer Native Am erican Dance To Honor the Earth Emelie Jeffries and Company 2012 PPPL Green M achine Aw ards Presentation Adam Cohen, COO Native Dance To Honor The Earth. PRINCETON PLASMA PHYSICS LABORATORY Be A Face of Climate Change Presents Earth Week 2013 at RavensWing Productions presents The Four Directions Native American Dancers To dance is to pray, to pray is to heal, to heal is to give, to give is to live,

  10. ORISE: Agents of Opportunity for Terrorism Continuing Medical Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Agents of Opportunity for Terrorism On-line CME Course on Toxic Radiological Materials, Toxic Industrial Chemicals, and Toxic Industrial Materials Dates Scheduled Available 24/7 online. Fees and Credits Course Credits Type Costs AoO-TRMs (REM) Agents of Opportunity Day One 6.00 enduring $94.50 AoO-TIMs (ACMT) Agents of Opportunity Day Two 5.50 enduring $87.00 The Oak Ridge Institute for Science and Education (ORISE) is accredited by the Accreditation Council for Continuing Medical

  11. Summary - Small Column Ion Exchange (SCIX)Technology at the SRS

    Office of Environmental Management (EM)

    ETR R Un Baseline The Sm being The SC operat which Sr, and waste critical the SC deploy Specif exchan [CST]) CST, a (mono and so (RMF) maturi readin design moving The pu techni projec Site: S roject: S E Report Date: F ited States Sma Why DOE e SCIX System Pr mall Column Io developed at S CIX system is tions (ion excha function to rem d actinides) fro and prepare th l technology ele CIX system tha yment and thes fically the critica nge on a selec ) housed in an actinide and Sr osodium titanat

  12. Electrode with transparent series resistance for uniform switching of optical modulation devices

    DOE Patents [OSTI]

    Tench, D. Morgan; Cunningham, Michael A.; Kobrin, Paul H.

    2008-01-08

    Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.

  13. Microsoft Word - EP-WCRR-WO-DOP-0233 R28 final.doc

    Office of Environmental Management (EM)

    Section 1- Originator Request Document No.: EP-WCRR-WO-DOP-0233 I Revision No .: 28 Title: WCRRF Waste Characterization Glovebox Operations I Page _1_ of _ I Description of requested action (Attach numbered additional sheets if needed .): This procedure is being revised to allow for bagging a POC onto the WCG , to correct the actions to be taken if a drum is stuck on the WCG drum lift, and to allow for processing waste at greater than 10 rem/hr. This last issue makes the activity a High/Complex

  14. The dosimetric consequences of the new DOT LSA definition

    SciTech Connect (OSTI)

    Mis, F.J.

    1996-10-01

    As a result of the new regulations for the transportation of radioactive materials, the DOT and the NRC have implemented a rule designed to limit the activity in an LSA container. This is a new regulation designed to insure that the spirit of the law as well as the letter of the law are followed for LSA shipments. Specifically, it limits the dose rate at any location on an unshielded LSA container to less than 1 rem/hr at 3 meters. Other possible alternatives had been discussed prior to the implementation of this regulation including multiples of A{sub 2} values, as implemented by the French.

  15. Microsoft PowerPoint - 7_MARY_MCCDONNELL_JOHN_BALLARD_Tips for REporting requirements_presentations_4-29-14.ppt [Compatibility

    National Nuclear Security Administration (NNSA)

    Tips for Successful Reporting to NMMSS by DOE Contractors and NRC Licensees John Ballard, DOE Reconciliation Mary McConnell, NRC Reconciliation LINK Technologies Outline  The NMMSS process  Best Practices  Tips for success  Resources  Facility Performance 2 NMMSS Flow of Data (Generic Depiction of Data Flow) 3 DOE/NRC Form 741 DOE/NRC Form 740M DOE Form DP-749 * Hardcopies by mail (U) * Faxes (U) * Email (U) * REM (U) * CREM (C) * SIPRNet (C) * SecureNet (C) Sites or Facilities

  16. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 6. 8. cloud radiation field

    SciTech Connect (OSTI)

    Koch, G.E.

    1985-04-01

    The object of this study was to measure the relationship between the spatial distribution of the radioactive fission products and the resultant radioactive field in an atomic-bomb cloud. Data obtained by the high-intensity rate meters and the jet impactors lead to the following conclusions: (1) There is a definite correlation between the particulate fission-particle density and the gamma-radiation intensity measured within the cloud; (2) The effective energy of the gamma radiation within the atomic bomb cloud is quite low, being of the order of 200 keV; (3) The structure of the atomic bomb cloud resembles a chimney with puffs of radioactive matter in the flue of the chimney; (4) The average roentgen dose accumulated by a plane passing through a cloud of the type tested in the Dog and Easy Shots 210 sec after bomb detonation is approximately 125 r. The average contamination on a plane after passing through a cloud is between 10 and 20 r/hr; no contamination could be detected within the plane; (5) The gamma-radiation effects extend beyond the limits of the particulate radioactive fission products; and, (6) The visible cloud adn the fission-product particulate cloud from the bomb do not coincide exactly; the visible cloud extended beyond the fission-product-cloud in those instances where data were obtained.

  17. Estimated net value and uncertainty for automating ECCS switchover at PWRs

    SciTech Connect (OSTI)

    Walsh, B.; Brideau, J.; Comes, L.; Darby, J.; Guttmann, H.; Sciacca, F.; Souto, F.; Thomas, W.; Zigler, G.

    1996-02-01

    Question for resolution of Generic Safety Issue No. 24 is whether or not PWRs that currently rely on a manual system for ECCS switchover to recirculation should be required to install an automatic system. Risk estimates are obtained by reevaluating the contributions to core damage frequencies (CDFs) associated with failures of manual and semiautomatic switchover at a representative PWR. This study considers each separate instruction of the corresponding emergency operating procedures (EOPs), the mechanism for each control, and the relation of each control to its neighbors. Important contributions to CDF include human errors that result in completely coupled failure of both trains and failure to enter the required EOP. It is found that changeover to a semiautomatic system is not justified on the basis of cost-benefit analysis: going from a manual to a semiautomatic system reduces the CDF by 1.7 {times} 10{sup {minus}5} per reactor-year, but the probability that the net cost of the modification being less than $1, 000 per person-rem is about 20% without license renewal. Scoping analyses, using optimist assumptions, were performed for a changeover to a semiautomatic system with automatic actuation and to a fully automatic system; in these cases the probability of a net cost being less than $1,000/person-rem is about 50% without license renewal and over 95% with license renewal.

  18. Generalized ensemble method applied to study systems with strong first order transitions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, E.; Kim, J.; Keyes, T.

    2015-09-28

    At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub, where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM).more » This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. Lastly, the method is illustrated in a study of the very strong solid/liquid transition in water.« less

  19. DOE Basic Overview of Occupational Radiation Exposure_2011 pamphlet

    SciTech Connect (OSTI)

    ORAU

    2012-08-08

    This pamphlet focusses on two HSS activities that help ensure radiation exposures are accurately assessed and recorded, namely: 1) the quality and accuracy of occupational radiation exposure monitoring, and 2) the recording, reporting, analysis, and dissemination of the monitoring results. It is intended to provide a short summary of two specific HSS programs that aid in the oversight of radiation protection activities at DOE. The Department of Energy Laboratory Accreditation Program (DOELAP) is in place to ensure that radiation exposure monitoring at all DOE sites is precise and accurate, and conforms to national and international performance and quality assurance standards. The DOE Radiation Exposure Monitoring Systems (REMS) program provides for the collection, analysis, and dissemination of occupational radiation exposure information. The annual REMS report is a valuable tool for managing radiological safety programs and for developing policies to protect individuals from occupational exposure to radiation. In tandem, these programs provide DOE management and workers an assurance that occupational radiation exposures are accurately measured, analyzed, and reported.

  20. Chaninik Wind Group: Wind Heat Smart Grids

    Office of Environmental Management (EM)

    Wind Heat System Components * ETS heat output at high is equivalent to a Toyostove Laser 56 * .10 per kwh is equivalent to buying diesel at 2.90 per gallon * Current diesel ...

  1. Instructions for Preparing Occupational Exposure Data for Submittal...

    Broader source: Energy.gov (indexed) [DOE]

    for this monitoring period, in millirem. 45 Committed Equivalent Dose to the lungs (CEqD - LU) 189 7 302-308 The 50-year Committed Equivalent Dose to the lungs from the...

  2. 2006 Annual DOE Occupational Radiation Exposure Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Sieverts TEDE. Total.Effective.Dose.Equivalent TODE. Total.Organ.Dose.Equivalent TVA. Tennessee.Valley.Authority UNSCEAR. United.Nations.Scientific.Committee.on.the.Effects.of.Atom...

  3. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    SciTech Connect (OSTI)

    Oakley, Brian; Heacker, Fred; McMillan, Bill

    2013-07-01

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ?12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated to be 1-3 mSv/hr (100-300 mrem/hr) with an unshielded dose rate on the waste itself of over 10 mSv/hr (1 rem/hr). Additional equipment to be installed at the TWPC will include a new perma-con enclosure and a shielded/inert glovebox in the process building to repackage and stabilize the waste. All of the waste will be repackaged into Standard Pipe Overpacks. Most of the waste (21 of the 26 drums) is expected to be repackaged at the food-pack can level (i.e. the food-pack cans will not be opened). Five of the incoming waste containers are expected to be repackaged at the primary waste level. Three of the containers exceed the 200 gram Pu-239 Fissile Gram Equivalent (FGE) limit for the Standard Pipe Overpack. These three containers will be repackaged down to the primary waste level and divided into eight Standard Pipe Overpacks for shipment to WIPP. Two containers must be stabilized to eliminate any reactive plutonium hydrides that may be present. These containers will be opened in the inert, shielded glovebox, and the remaining corroded plutonium metal converted to a stable oxide form by using a 600 deg. C tube furnace with controlled oxygen feed in a helium carrier gas. The stabilized waste will then be packaged into two Standard Pipe Overpacks. Design and build out activities for the additional repackaging capabilities at the TWPC are scheduled to begin in Fiscal Year 2013 with repackaging, stabilization, and certification activities scheduled to begin in Fiscal Year 2014. Following repackaging and stabilization activities, the Standard Pipe Overpacks will be certified for disposal at WIPP utilizing Non-Destructive Examination (NDE) to verify the absence of prohibited items and Non-Destructive Assay (NDA) to verify the isotopic content under the TWPC WIPP certification program implemented by the Central Characterization Project (CCP). (authors)

  4. JM to Develop DOE P 364.1, Health and Safety Training Reciprocity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-12-19

    The policy will provide expectations for the acceptance of equivalent worker safety and health training across the DOE Complex.

  5. Method for finding the beam waist through ABCD matrix element adjustment

    SciTech Connect (OSTI)

    Evans, J.D.

    1988-12-15

    Laser beam parameters includingbeam waist are calculated for laser cavities using an equivalent lens waveguide approach.(AIP)

  6. Comparison of Energy Efficiency Incentive Programs: Rebates and...

    Open Energy Info (EERE)

    Energy Efficiency, - Utility Topics: Environmental Website: www.sciencedirect.comsciencearticlepiiS0957178709000460 Equivalent URI: cleanenergysolutions.orgcontent...

  7. Deployment of Demand Response as a Real-Time Resource in Organized...

    Open Energy Info (EERE)

    Focus Area: Crosscutting Topics: Potentials & Scenarios Website: www.sciencedirect.comsciencearticlepiiS1040619008000973 Equivalent URI: cleanenergysolutions.orgcontent...

  8. A European Supergrid for Renewable Energy: Local Impacts and...

    Open Energy Info (EERE)

    Focus Area: Renewable Energy Topics: Market Analysis Website: www.sciencedirect.comsciencearticlepiiS0959652611002447 Equivalent URI: cleanenergysolutions.orgcontent...

  9. Project Get Ready | Open Energy Information

    Open Energy Info (EERE)

    Equivalent URI http:cleanenergysolutions.orgcontentproject-get-ready-pgr-total-cost-vehicle-ownership-calculator-0, http:cleanenergysolutions.orgcontent...

  10. Appliance Energy Consumption in Australia | Open Energy Information

    Open Energy Info (EERE)

    ?viewPublicatio Equivalent URI: cleanenergysolutions.orgcontentappliance-energy-consumption-australi DeploymentPrograms: Industry Codes & Standards Regulations:...

  11. Piloting the Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    Equivalent URI: cleanenergysolutions.orgcontentpiloting-smart-grid Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in...

  12. UNEP-Bioenergy Decision Support Tool | Open Energy Information

    Open Energy Info (EERE)

    Free Equivalent URI: cleanenergysolutions.orgcontentbioenergy-decision-support-tool Language: English DeploymentPrograms: Public-Private Partnerships Regulations: Mandates...

  13. Dissecting the Cost of the Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    Equivalent URI: cleanenergysolutions.orgcontentdissecting-cost-smart-grid Language: English Policies: Regulations Regulations: "Resource Integration Planning,Cost...

  14. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan

    SciTech Connect (OSTI)

    Tegen, S.

    2006-05-01

    Report comparing the impacts to states from equivalent new electrical generation from wind, natural gas, and coal.

  15. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, Richard D.

    1993-01-01

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  16. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, R.D.

    1993-10-05

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  17. Field Assessment of Energy Audit Tools for Retrofit Programs

    SciTech Connect (OSTI)

    Edwards, J.; Bohac, D.; Nelson, C.; Smith, I.

    2013-07-01

    This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home’s energy performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Rating systems based on energy performance models, the focus of this report, can establish a home’s achievable energy efficiency potential and provide a quantitative assessment of energy savings after retrofits are completed, although their accuracy needs to be verified by actual measurement or billing data. Ratings can also show homeowners where they stand compared to their neighbors, thus creating social pressure to conform to or surpass others. This project field-tested three different building performance models of varying complexity, in order to assess their value as rating systems in the context of a residential retrofit program: Home Energy Score, SIMPLE, and REM/Rate.

  18. DOE occupational radiation exposure. Report 1992--1994

    SciTech Connect (OSTI)

    1997-05-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE`s performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace.

  19. Vibration monitoring/diagnostic techniques, as applied to reactor coolant pumps

    SciTech Connect (OSTI)

    Sculthorpe, B.R.; Johnson, K.M.

    1986-01-01

    With the increased awareness of reactor coolant pump (RCP) cracked shafts, brought about by the catastrophic shaft failure at Crystal River number3, Florida Power and Light Company, in conjunction with Bently Nevada Corporation, undertook a test program at St. Lucie Nuclear Unit number2, to confirm the integrity of all four RCP pump shafts. Reactor coolant pumps play a major roll in the operation of nuclear-powered generation facilities. The time required to disassemble and physically inspect a single RCP shaft would be lengthy, monetarily costly to the utility and its customers, and cause possible unnecessary man-rem exposure to plant personnel. When properly applied, vibration instrumentation can increase unit availability/reliability, as well as provide enhanced diagnostic capability. This paper reviews monitoring benefits and diagnostic techniques applicable to RCPs/motor drives.

  20. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K.

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  1. 1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Culp, T.; Cox, W.; Hwang, S.; Jones, A.; Longley, S.; Parsons, A.; Wolff, T.; Fish, J.; Ward, S.

    1992-11-01

    This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 {times} 10{sup {minus}3} mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had no discernible impact on the general public or on the environment.

  2. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Shyr, L.J.; Wiggins, T.; White, B.B.

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10{sup -4} millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories` operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  3. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Hwang, S.; Yeager, G.; Wolff, T.; Parsons, A.; Dionne, D.; Massey, C.; Schwartz, B.; Fish, J.; Thompson, D. ); Goodrich, M. )

    1991-05-01

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 {times} 10{sup {minus}3} mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs.

  4. 1989 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Hwang, S.; Chavez, G.; Phelan, J.; Parsons, A.; Yeager, G.; Dionne, D.; Schwartz, B.; Wolff, T.; Fish, J.; Gray, C.; Thompson, D.

    1990-05-01

    This 1989 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 8.8 {times} 10{sup {minus}4} mrem. The total Albuquerque population received a collective dose of 0.097 person-rem during 1989 from SNL, Albuquerque, operations. As in the previous year, SNL, Albuquerque, operations in 1989 had no adverse impact on the general public or on the environment. 46 refs., 20 figs., 31 tabs.

  5. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment.

  6. Preliminary safety assessment for an IFE target fabrication facility

    SciTech Connect (OSTI)

    Latkowski, J F; Reyes, S; Besenbruch, G E; Goodin, D T

    2000-10-13

    We estimate possible ranges of tritium inventories for an inertial fusion energy (IFE) target fabrication facility producing various types of targets and using various production technologies. Target fill is the key subtask in determining the overall tritium inventory for the plant. By segmenting the inventory into multiple, parallel production lines--each with its own fill canister--and including an expansion tank to limit releases, we are able to ensure that a target fabrication facility would meet the accident dose goals of 10 mSv (1 rem) set forth in the Department of Energy's Fusion Safety Standards. For indirect-drive targets, we calculate release fractions for elements from lithium to bismuth and show that nearly all elements meet the dose goal. Our work suggests directions for future R&D that will help reduce total tritium inventories and increase the flexibility of target fabrication facilities.

  7. Decontamination and decommissioning of the Argonne Thermal Source Reactor at Argonne National Laboratory - East project final report.

    SciTech Connect (OSTI)

    Fellhauer, C.; Garlock, G.; Mathiesen, J.

    1998-12-02

    The ATSR D&D Project was directed toward the following goals: (1) Removal of radioactive and hazardous materials associated with the ATSR Reactor facility; (2) Decontamination of the ATSR Reactor facility to unrestricted use levels; and (3)Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure). These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the ATSR Reactor facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The reactor aluminum, reactor lead, graphite piles in room E-111, and the contaminated concrete in room E-102 were the primary areas of concern. NES, Incorporated (Danbury, CT) characterized the ATSR Reactor facility from January to March 1998. The characterization identified a total of thirteen radionuclides, with a total activity of 64.84 mCi (2.4 GBq). The primary radionuclides of concern were Co{sup 60}, Eu{sup 152}, Cs{sup 137}, and U{sup 238}. No additional radionuclides were identified during the D&D of the facility. The highest dose rates observed during the project were associated with the reactor tank and shield tank. Contact radiation levels of 30 mrem/hr (0.3 mSv/hr) were measured on reactor internals during dismantlement of the reactor. A level of 3 mrem/hr (0.03 mSv/hr) was observed in a small area (hot spot) in room E-102. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem/yr (50 mSv/yr); the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  8. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998

    SciTech Connect (OSTI)

    T. R. Saffle; R. G. Mitchell; R. B. Evans; D. B. Martin

    2000-07-01

    The results of the various monitoring programs for 1998 indicated that radioactivity from the DOE's Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. Gross alpha and gross beta measurements, used as a screening technique for air filters, were investigated by making statistical comparisons between onsite or boundary location concentrations and the distant community group concentrations. Gross alpha activities were generally higher at distant locations than at boundary and onsite locations. Air samples were also analyzed for specific radionuclides. Some human-made radionuclides were detected at offsite locations, but most were near the minimum detectable concentration and their presence was attributable to natural sources, worldwide fallout, and statistical variations in the analytical results rather than to INEEL operations. Low concentrations of 137Cs were found in muscle tissue and liver of some game animals and sheep. These levels were mostly consistent with background concentrations measured in animals sampled onsite and offsite in recent years. Ionizing radiation measured simultaneously at the INEEL boundary and distant locations using environmental dosimeters were similar and showed only background levels. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.08 person-rem (8 x 10-4 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0002 percent of the estimated 43,7 00 person-rem (437 person-Sv) population dose from background radioactivity.

  9. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    SciTech Connect (OSTI)

    Beary, M.M.; Collier, C.D.; Fairobent, L.A.; Graham, R.F.; Mason, C.L.; McDuffee, W.T.; Owen, T.L.; Walker, D.H.

    1986-02-01

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the Receiving Basin for Offsite Fuels (RBOF). This Safety Analysis Report (SAR) documents an analysis of the F-Canyon operations and is an update to a section of a previous SAR. The previous SAR documented an analysis of the entire 200 Separations Area operations. This SAR documents an analysis of the F-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the conclusions of this SAR is found in the Systems Analysis. Some F-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the F-Canyon can be operated without undue risk to onsite or offsite populations and to the environment. In this report, risk is defined as the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological dose are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  10. Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET

    Office of Scientific and Technical Information (OSTI)

    CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION (Journal Article) | SciTech Connect Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION Citation Details In-Document Search Title: Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION We present theoretical predictions of the UV continuum luminosity function (UV LF) and

  11. THE WHITE HOUSE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIRECTIVES EXEMPTION/ EQUIVALENCY APPROVAL MEMORANDUM Actions Approved by the Secretarial Officer (Effective: April 8, 2015) NOTE: This action memorandum is used to request approval of an exemption or equivalency to an existing directive. Please use Calibri 12 point font, the standard for Action Memoranda. MEMORANDUM FOR THE PRINCIPAL THROUGH: NAME TITLE FROM: NAME TITLE SUBJECT: Exempting (Name the Program seeking Exemption/ Equivalency) from Department of Energy (Directive number and title).

  12. Ira, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ira, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5345134, -73.0620512 Show Map Loading map... "minzoom":false,"mappingservice":...

  13. Greater Sun Center, Florida: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Greater Sun Center, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.718086, -82.351759 Show Map Loading map... "minzoom":false,"map...

  14. Sun Prairie, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sun Prairie, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.1836046, -89.2137254 Show Map Loading map... "minzoom":false,"mappin...

  15. Sun City, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sun City, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7091878, -117.1972566 Show Map Loading map... "minzoom":false,"mapping...

  16. Sun City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sun City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5975393, -112.2718239 Show Map Loading map... "minzoom":false,"mappingser...

  17. Alternative Fuels Data Center: Alabama Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  18. Alternative Fuels Data Center: Idaho Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  19. Alternative Fuels Data Center: Nebraska Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  20. Word Pro - Untitled1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Adjustment for Fossil Fuel Equivalence. See "Primary Energy Consumption" in Glossary. 2 Includes electricity sales to each sector in addition to Primary Energy consumed in ...

  1. Alternative Fuels Data Center: New Jersey Transportation Data...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  2. Alternative Fuels Data Center: Iowa Transportation Data for Alternativ...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  3. ANL-08/04 Surveillance of Site A and Plot M

    Office of Legacy Management (LM)

    ... Where applicable, results are compared to the U. S. Department of Energy Radiation ... 28 the committed effective dose equivalent from consumption of water can be calculated. ...

  4. Alternative Fuels Data Center: Utah Transportation Data for Alternativ...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  5. Alternative Fuels Data Center: Mississippi Transportation Data...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  6. Alternative Fuels Data Center: Missouri Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  7. Alternative Fuels Data Center: New Mexico Transportation Data...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  8. Alternative Fuels Data Center: Maine Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  9. Alternative Fuels Data Center: Montana Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  10. Alternative Fuels Data Center: Tennessee Transportation Data...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  11. Alternative Fuels Data Center: South Dakota Transportation Data...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  12. Alternative Fuels Data Center: Maryland Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  13. Alternative Fuels Data Center: District of Columbia Transportation...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  14. Alternative Fuels Data Center: Vermont Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  15. Alternative Fuels Data Center: Kentucky Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  16. Alternative Fuels Data Center: Delaware Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  17. Alternative Fuels Data Center: Arkansas Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  18. Alternative Fuels Data Center: Oklahoma Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  19. Alternative Fuels Data Center: Rhode Island Transportation Data...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  20. Alternative Fuels Data Center: Nevada Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  1. Alternative Fuels Data Center: Massachusetts Transportation Data...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of ...

  2. Alternative Fuels Data Center: Hawaii Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  3. Job Counting Guidelines

    Office of Environmental Management (EM)

    Definitions and Guidelines for Counting Monthly and Quarterly EM Recovery Act Full Time Equivalents (FTEs) and Cumulative Head-Count The following updated definitions and...

  4. Riverdale Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Riverdale Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6018128, -121.0421102 Show Map Loading map......

  5. Maplewood Park, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Maplewood Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1356133, -80.5845173 Show Map Loading map... "minzoom":false,"mappings...

  6. Tangelo Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tangelo Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.4558386, -81.4459047 Show Map Loading map... "minzoom":false,"mapping...

  7. Walnut Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9680703, -118.2250723 Show Map Loading map... "minzoom":false,"mappingserv...

  8. Evergreen Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7205889, -87.7017175 Show Map Loading map... "minzoom":false,"mappingservice...

  9. Clearbrook Park, New Jersey: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Clearbrook Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.309831, -74.4645962 Show Map Loading map......

  10. Florham Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Florham Park, New Jersey: Energy Resources (Redirected from Florham Park, NJ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.787878, -74.3882072 Show Map...

  11. Stone Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9055862, -87.8836732 Show Map Loading map... "minzoom":false,"mappingservice...

  12. Mountain Park, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8442715, -84.1293605 Show Map Loading map... "minzoom":false,"mappingservice"...

  13. Laurel Park, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Park, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1245734, -81.6809391 Show Map Loading map... "minzoom":false,"mappings...

  14. Gloria Glens Park, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Glens Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0583883, -81.8979171 Show Map Loading map... "minzoom":false,"mappingservi...

  15. Azalea Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Azalea Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5411128, -81.3006237 Show Map Loading map... "minzoom":false,"mappings...

  16. Broadview Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Broadview Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.0995317, -80.2086585 Show Map Loading map... "minzoom":false,"mappi...

  17. Richton Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Richton Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.484479, -87.7033787 Show Map Loading map... "minzoom":false,"mapping...

  18. Indian Head Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Head Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7703092, -87.9022808 Show Map Loading map... "minzoom":false,"mappingse...

  19. Cedar Park, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cedar Park, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.505198, -97.8202888 Show Map Loading map... "minzoom":false,"mappingservi...

  20. Merrionette Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Merrionette Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6842004, -87.7003277 Show Map Loading map......

  1. Summit Park, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7457808, -111.6115928 Show Map Loading map... "minzoom":false,"mappingservice":"...

  2. Perry Park, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2566575, -104.9924844 Show Map Loading map... "minzoom":false,"mappingservic...

  3. Orland Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6303103, -87.8539425 Show Map Loading map... "minzoom":false,"mappingservice...

  4. Roosevelt Park, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.1964038, -86.2722804 Show Map Loading map... "minzoom":false,"mappingservice...

  5. Loveland Park, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Loveland Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.299781, -84.2632706 Show Map Loading map... "minzoom":false,"mappingser...

  6. Florham Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Florham Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.787878, -74.3882072 Show Map Loading map... "minzoom":false,"mappi...

  7. Aspen Park, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.539155, -105.2947148 Show Map Loading map... "minzoom":false,"mappingservice...

  8. Palos Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6672547, -87.8303315 Show Map Loading map... "minzoom":false,"mappingservice...

  9. St. Louis Park, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9482979, -93.3480051 Show Map Loading map... "minzoom":false,"mappingservic...

  10. Tinley Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tinley Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5733669, -87.7844944 Show Map Loading map... "minzoom":false,"mapping...

  11. View Park-Windsor Hills, California: Energy Resources | Open...

    Open Energy Info (EERE)

    Park-Windsor Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9929545, -118.3491169 Show Map Loading map......

  12. Baldwin Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0852868, -117.9608978 Show Map Loading map... "minzoom":false,"mappingserv...

  13. Midland Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9892643, -74.1406988 Show Map Loading map... "minzoom":false,"mappingservi...

  14. Oakland Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oakland Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1723065, -80.1319893 Show Map Loading map... "minzoom":false,"mapping...

  15. Kings Park, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.886209, -73.2573369 Show Map Loading map... "minzoom":false,"mappingservice"...

  16. Madison Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4514954, -74.3079248 Show Map Loading map... "minzoom":false,"mappingservi...

  17. South Park Township, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Park Township, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.29695, -79.993864 Show Map Loading map... "minzoom":false,"mapp...

  18. Big Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.780297, -111.7626535 Show Map Loading map... "minzoom":false,"mappingservice"...

  19. Citrus Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.0783497, -82.5698192 Show Map Loading map... "minzoom":false,"mappingservice"...

  20. Fern Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Fern Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6491649, -81.3511796 Show Map Loading map... "minzoom":false,"mappingser...

  1. Cambrian Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.2568879, -121.930789 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Valley Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.2928744, -95.737483 Show Map Loading map... "minzoom":false,"mappingservice"...

  3. Buena Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Buena Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8675143, -117.9981181 Show Map Loading map... "minzoom":false,"mappi...

  4. Galena Park, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.7335616, -95.2302123 Show Map Loading map... "minzoom":false,"mappingservice":"...

  5. Orchard Park, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7675593, -78.7439189 Show Map Loading map... "minzoom":false,"mappingservice...

  6. Manassas Park County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Park County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.7733495, -77.4386429 Show Map Loading map... "minzoom":false,"mapping...

  7. Seaside Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9267852, -74.0770806 Show Map Loading map... "minzoom":false,"mappingservi...

  8. Colonial Park, Pennsylvania: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Park, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3006446, -76.8096938 Show Map Loading map... "minzoom":false,"mappingser...

  9. Cliffside Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cliffside Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8214894, -73.9876388 Show Map Loading map......

  10. Overland Park, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Overland Park, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9822282, -94.6707917 Show Map Loading map... "minzoom":false,"mapping...

  11. Minerva Park, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Minerva Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0764526, -82.9437921 Show Map Loading map... "minzoom":false,"mappingser...

  12. Cascade-Chipita Park, Colorado: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Chipita Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9498727, -105.0031457 Show Map Loading map... "minzoom":false,"mappi...

  13. Village Park, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3930017, -158.0253941 Show Map Loading map... "minzoom":false,"mappingservice"...

  14. Palisades Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Palisades Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8481556, -73.997639 Show Map Loading map... "minzoom":false,"map...

  15. Loves Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Loves Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.3200189, -89.0581621 Show Map Loading map... "minzoom":false,"mappings...

  16. Highlands-Baywood Park, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Highlands-Baywood Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.5243879, -122.3475948 Show Map Loading map......

  17. West Menlo Park, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Menlo Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4335499, -122.2030209 Show Map Loading map... "minzoom":false,"mappi...

  18. Union Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.56385, -81.236017 Show Map Loading map... "minzoom":false,"mappingservice":"g...

  19. Sunland Park, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sunland Park, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.796496, -106.5799891 Show Map Loading map... "minzoom":false,"mapp...

  20. Woodlawn Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Woodlawn Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5114455, -97.6500419 Show Map Loading map... "minzoom":false,"mappi...

  1. Gulivoire Park, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gulivoire Park, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6133812, -86.2452839 Show Map Loading map... "minzoom":false,"mappi...

  2. Brook Park, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brook Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3983838, -81.8045788 Show Map Loading map... "minzoom":false,"mappingservi...

  3. Iowa Park, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9514847, -98.6686709 Show Map Loading map... "minzoom":false,"mappingservice":"...

  4. Warren Park, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Warren Park, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7819866, -86.0502615 Show Map Loading map... "minzoom":false,"mappings...

  5. Severna Park, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Severna Park, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.070388, -76.5452409 Show Map Loading map... "minzoom":false,"mapping...

  6. Ingalls Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ingalls Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5213, -88.033882 Show Map Loading map... "minzoom":false,"mappingser...

  7. Maple Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9075282, -88.5992494 Show Map Loading map... "minzoom":false,"mappingservice...

  8. South Park, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4221501, -110.793261 Show Map Loading map... "minzoom":false,"mappingservice"...

  9. Roeland Park, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Roeland Park, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0375053, -94.6321795 Show Map Loading map... "minzoom":false,"mappings...

  10. Maywood Park, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5528965, -122.5603714 Show Map Loading map... "minzoom":false,"mappingservice"...

  11. Bethel Park, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3275697, -80.0394977 Show Map Loading map... "minzoom":false,"mappingser...

  12. Schiller Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9558637, -87.8708965 Show Map Loading map... "minzoom":false,"mappingservice...

  13. Hanover Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9994722, -88.1450735 Show Map Loading map... "minzoom":false,"mappingservice...

  14. Lake Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.8003398, -80.0664305 Show Map Loading map... "minzoom":false,"mappingservice"...

  15. Gresham Park, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gresham Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7034405, -84.3143682 Show Map Loading map... "minzoom":false,"mapping...

  16. Willow Park, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7626286, -97.6505822 Show Map Loading map... "minzoom":false,"mappingservice":"...

  17. Hazel Park, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4625362, -83.1040912 Show Map Loading map... "minzoom":false,"mappingservice...

  18. Munds Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Munds Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.945574, -111.6401551 Show Map Loading map... "minzoom":false,"mappingse...

  19. Ridgefield Park, New Jersey: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Ridgefield Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8570442, -74.0215285 Show Map Loading map......

  20. Nicoma Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nicoma Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4911731, -97.3230893 Show Map Loading map... "minzoom":false,"mapping...

  1. Monterey Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Monterey Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0625106, -118.1228476 Show Map Loading map......

  2. Estes Park, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Estes Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3772059, -105.5216651 Show Map Loading map... "minzoom":false,"mapping...

  3. Bedford Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.769767, -87.798046 Show Map Loading map... "minzoom":false,"mappingservice":...

  4. Roxborough Park, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Roxborough Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4738776, -105.0852642 Show Map Loading map......

  5. Edgemont Park, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Edgemont Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7467016, -84.5935918 Show Map Loading map... "minzoom":false,"mappi...

  6. Pembroke Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pembroke Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.9878691, -80.1747687 Show Map Loading map... "minzoom":false,"mappin...

  7. Spring Park, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9352407, -93.6321817 Show Map Loading map... "minzoom":false,"mappingservic...

  8. Harrington Park, New Jersey: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Harrington Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9837089, -73.9798601 Show Map Loading map......

  9. Sherwood Park, Alberta: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Alberta: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 6146279 Coordinates 53.51684, -113.3187 Show Map Loading map......

  10. Calumet Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Calumet Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6628119, -87.6606037 Show Map Loading map... "minzoom":false,"mappin...

  11. Kendall Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4209391, -74.560711 Show Map Loading map... "minzoom":false,"mappingservic...

  12. Huntington Park, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9816812, -118.2250725 Show Map Loading map... "minzoom":false,"mappingserv...

  13. Fairview Park, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4414366, -81.8643039 Show Map Loading map... "minzoom":false,"mappingservice":"g...

  14. West Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.0116857, -82.5162068 Show Map Loading map... "minzoom":false,"mappingservice"...

  15. Washington Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1325859, -80.1811576 Show Map Loading map... "minzoom":false,"mappingservice"...

  16. Comstock Park, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Comstock Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0386368, -85.6700332 Show Map Loading map... "minzoom":false,"mappi...

  17. Biscayne Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Biscayne Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8825951, -80.1806025 Show Map Loading map... "minzoom":false,"mappin...

  18. Mangonia Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mangonia Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.760341, -80.0736529 Show Map Loading map... "minzoom":false,"mapping...

  19. La Grange Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Grange Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8347535, -87.861726 Show Map Loading map... "minzoom":false,"mappings...

  20. Belvedere Park, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Belvedere Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4606984, -84.9040969 Show Map Loading map... "minzoom":false,"mappi...

  1. Litchfield Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4933743, -112.3579364 Show Map Loading map... "minzoom":false,"mappingservice...

  2. Rochelle Park, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9073211, -74.0751412 Show Map Loading map... "minzoom":false,"mappingservi...

  3. Terrace Park, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Terrace Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1592269, -84.3071602 Show Map Loading map... "minzoom":false,"mappingser...

  4. Alondra Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alondra Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8894595, -118.3309073 Show Map Loading map... "minzoom":false,"map...

  5. Santa Cruz, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9922457, -106.0472452 Show Map Loading map... "minzoom":false,"mappingservice":"...

  6. White Sands, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sands, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.38319, -106.481499 Show Map Loading map... "minzoom":false,"mappingservic...

  7. Tesuque, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tesuque, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7616955, -105.9325214 Show Map Loading map... "minzoom":false,"mappings...

  8. Guadalupe County, New Mexico: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8235801, -104.8454619 Show Map Loading map... "minzoom":false,"mappingservice":"...

  9. Dona Ana County, New Mexico: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Ana County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.485767, -106.7234639 Show Map Loading map... "minzoom":false,"mappin...

  10. Radium Springs, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.501453, -106.926575 Show Map Loading map... "minzoom":false,"mappingser...

  11. Cuartelez, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cuartelez, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9948034, -106.0199355 Show Map Loading map... "minzoom":false,"mappin...

  12. Mesquite, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1645415, -106.6966649 Show Map Loading map... "minzoom":false,"mappingservice":"...

  13. Los Alamos County, New Mexico: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8496249, -106.3228338 Show Map Loading map... "minzoom":false,"mappingse...

  14. Cundiyo, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cundiyo, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9591921, -105.8964091 Show Map Loading map... "minzoom":false,"mappings...

  15. McKinley County, New Mexico: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7152472, -108.2377519 Show Map Loading map... "minzoom":false,"mappingse...

  16. Angel Fire, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Angel Fire, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3930879, -105.2850091 Show Map Loading map... "minzoom":false,"mappi...

  17. Eddy County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eddy County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4170622, -104.4723301 Show Map Loading map... "minzoom":false,"mapp...

  18. Cedar Grove, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1708774, -106.1900242 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  19. Socorro County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Socorro County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8837087, -106.7234639 Show Map Loading map......

  20. Rincon, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rincon, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6728583, -107.064739 Show Map Loading map... "minzoom":false,"mappingser...

  1. Rio Chiquito, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chiquito, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.0025, -105.90417 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Chimayo, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chimayo, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.0039131, -105.9469656 Show Map Loading map... "minzoom":false,"mappings...

  3. Espanola, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Espanola, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.0028011, -106.0578009 Show Map Loading map... "minzoom":false,"mapping...

  4. Hermosillo, Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hermosillo, Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 4004898 Coordinates 29.06667, -110.96667 Show Map Loading map......

  5. Chaves County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chaves County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4757392, -104.4723301 Show Map Loading map......

  6. Tijeras, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tijeras, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.084862, -106.386398 Show Map Loading map... "minzoom":false,"mappingser...

  7. Mesilla, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mesilla, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2700945, -106.8008376 Show Map Loading map... "minzoom":false,"mappings...

  8. Pojoaque, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pojoaque, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8928034, -106.0230784 Show Map Loading map... "minzoom":false,"mapping...

  9. Galisteo, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Galisteo, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3955945, -105.9464093 Show Map Loading map... "minzoom":false,"mapping...

  10. Bernalillo County, New Mexico: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Bernalillo County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0177854, -106.6291304 Show Map Loading map......

  11. Lea County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8968816, -103.3587288 Show Map Loading map... "minzoom":false,"mappingse...

  12. Torrance County, New Mexico: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Torrance County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6784317, -105.9699878 Show Map Loading map......

  13. Lincoln County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8853309, -105.4068079 Show Map Loading map... "minzoom":false,"mappingservice":"...

  14. Edgewood, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0614358, -106.1914141 Show Map Loading map... "minzoom":false,"mappingservice":"...

  15. Columbus, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8276002, -107.6400232 Show Map Loading map... "minzoom":false,"mappingservice":"...

  16. Glorieta, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Glorieta, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5830906, -105.7700174 Show Map Loading map... "minzoom":false,"mapping...

  17. Springer, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springer, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3611445, -104.5952668 Show Map Loading map... "minzoom":false,"mapping...

  18. El Rancho, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rancho, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.889192, -106.0797459 Show Map Loading map... "minzoom":false,"mappingser...

  19. Curry County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5751567, -103.2663479 Show Map Loading map... "minzoom":false,"mappingservice":"...

  20. Los Alamos, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alamos, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8880796, -106.3069722 Show Map Loading map... "minzoom":false,"mappingse...

  1. Cedar Crest, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Crest, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1075459, -106.3728019 Show Map Loading map... "minzoom":false,"mappingser...

  2. Harding County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8925537, -103.8216261 Show Map Loading map... "minzoom":false,"mappingservice":"...

  3. Hatch, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hatch, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6653572, -107.1530744 Show Map Loading map... "minzoom":false,"mappingser...

  4. North Valley, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1733771, -106.6233591 Show Map Loading map... "minzoom":false,"mappingse...

  5. Hidalgo County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hidalgo County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.93552, -108.7125791 Show Map Loading map... "minzoom":false,"map...

  6. Sierra County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.134596, -107.1011931 Show Map Loading map... "minzoom":false,"mappingservice":"g...

  7. Union County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3724334, -103.3587288 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  8. Rio Rancho, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rancho, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2600406, -106.7061395 Show Map Loading map... "minzoom":false,"mappingse...

  9. Otero County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6341716, -105.5943388 Show Map Loading map... "minzoom":false,"mappingservice":"...

  10. Raton, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Raton, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.9033581, -104.4391532 Show Map Loading map... "minzoom":false,"mappingser...

  11. Salem, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.707577, -107.2130762 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  12. San Juan County, New Mexico: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.761667, -107.905 Show Map Loading map... "minzoom":false,"mappingservice":"googlemap...

  13. Anthony, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0039897, -106.6058257 Show Map Loading map... "minzoom":false,"mappingservice":"...

  14. Lordsburg, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lordsburg, New Mexico: Energy Resources (Redirected from Lordsburg, NM) Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3503605, -108.7086649 Show Map Loading...

  15. South Valley, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0100487, -106.6780809 Show Map Loading map... "minzoom":false,"mappingse...

  16. Cuyamungue, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cuyamungue, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.869799, -106.008537 Show Map Loading map... "minzoom":false,"mapping...

  17. Alamo, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.4208918, -107.5108753 Show Map Loading map... "minzoom":false,"mappingservice":"...

  18. Maxwell, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Maxwell, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5400319, -104.5433229 Show Map Loading map... "minzoom":false,"mappings...

  19. La Cienega, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    La Cienega, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5628113, -106.1308561 Show Map Loading map... "minzoom":false,"mappi...

  20. Cibola County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cibola County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0947557, -107.8583868 Show Map Loading map......

  1. Jaconita, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Jaconita, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.88908, -106.024696 Show Map Loading map... "minzoom":false,"mappingser...

  2. Carnuel, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carnuel, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0639364, -106.4572452 Show Map Loading map... "minzoom":false,"mappings...

  3. Lamy, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lamy, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4814259, -105.8797413 Show Map Loading map... "minzoom":false,"mappingserv...

  4. Santa Teresa, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Teresa, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1533504, -106.6794817 Show Map Loading map... "minzoom":false,"mappingse...

  5. Dona Ana, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ana, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.391265, -106.815301 Show Map Loading map... "minzoom":false,"mappingservice...

  6. Sombrillo, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sombrillo, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9800238, -106.0400228 Show Map Loading map... "minzoom":false,"mappin...

  7. Catron County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Catron County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1515173, -108.4276047 Show Map Loading map......

  8. Los Cerrillos, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cerrillos, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4384889, -106.1198699 Show Map Loading map... "minzoom":false,"mappin...

  9. Madrid, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4067047, -106.1525226 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  10. Chupadero, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chupadero, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8225278, -105.9166877 Show Map Loading map... "minzoom":false,"mappin...

  11. Quay County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Quay County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9569924, -103.7289167 Show Map Loading map... "minzoom":false,"mapp...

  12. Chaparral, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chaparral, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.025929, -106.399456 Show Map Loading map... "minzoom":false,"mappings...

  13. Acomita Lake, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Acomita Lake, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0703192, -107.6136628 Show Map Loading map... "minzoom":false,"map...

  14. Alamogordo, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alamogordo, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8995325, -105.960265 Show Map Loading map... "minzoom":false,"mappin...

  15. Rio Arriba County, New Mexico: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6162892, -106.7234639 Show Map Loading map... "minzoom":false,"mappingse...

  16. Colfax County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colfax County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5799757, -104.4723301 Show Map Loading map......

  17. Sandoval County, New Mexico: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Sandoval County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6020667, -106.7234639 Show Map Loading map......

  18. Eagle Nest, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nest, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4383653, -107.3244921 Show Map Loading map... "minzoom":false,"mappingserv...

  19. De Baca County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    De Baca County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.2734196, -104.3791912 Show Map Loading map......

  20. Grant County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Grant County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9690805, -108.2377519 Show Map Loading map... "minzoom":false,"map...