Sample records for release highlights spot

  1. Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights LANS invests in STEM education for the people of Northern New Mexico through student scholarships, education grants, master teachers' support, and workforce training. We...

  2. Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlights LANS invests in

  3. HIGHLIGHTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal HeatonHEP/NERSC/ASCRJune 2012 2HighlightsCobalt

  4. highlight

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 201230 Highlights International Oil00

  5. highlights

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 201230 Highlights International Oil000

  6. highlights

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 201230 Highlights International

  7. Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3Education » Higher Education

  8. Experimental Highlights

    E-Print Network [OSTI]

    Dainton, John

    2010-01-01T23:59:59.000Z

    Highlights at the 13th International Conference on Elastic & Diffractive Scattering (EDS09) of the presentations of new experimental results and developments are presented and discussed.

  9. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland Science Stockpile2015Highlights Science Highlights

  10. Experimental Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photo shows one of theHall

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014References byLaboratoryResearchRegime

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014References

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014ReferencesStereo Photogrammetry Reveals

  14. Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014ReferencesStereo Photogrammetry

  15. DNA microarray (spot) .

    E-Print Network [OSTI]

    1. DNA microarray DNA (spot) . DNA probe , probe (hybridization) . DNA microarray cDNA oligonucleotide oligonucleotide cDNA probe . oligonucleotide microarray , DNA , probe . oligonucleotide microarray probe

  16. Utility spot pricing, California

    E-Print Network [OSTI]

    Schweppe, Fred C.

    1982-01-01T23:59:59.000Z

    The objective of the present spot pricing study carried out for SCE and PG&E is to develop the concepts which wculd lead to an experimental design for spot pricing in the two utilities. The report suggests a set of experiments ...

  17. Laser programs highlights 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report provides highlights of the Lawrence Livermore National Laboratories` laser programs. Laser uses and technology assessment and utilization are provided.

  18. CFN | Research Highlights Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Functional Nanomaterials Research Highlights Archives lithium ion battery cell Peering into How Rechargeable Lithium Ion Batteries Function Wednesday, March 18, 2015...

  19. Top Quark Highlights

    E-Print Network [OSTI]

    Christian Schwanenberger

    2010-04-28T23:59:59.000Z

    Highlights of top quark physics presented at the 2009 Europhysics Conference on High Energy Physics from 16-22 July 2009 in Krakow, Poland, are reviewed.

  20. LANSCE | News & Media | Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy release in fission Expereimental setup for mass yield measurements. The nuclear fission process consists of a nucleus splitting into two fragments with a significant...

  1. MAIN APPLICATIONS Spot welding

    E-Print Network [OSTI]

    De Luca, Alessandro

    IRB 6400 MAIN APPLICATIONS Spot welding Press tending Material handling Machine tending Palletizing N Poke welding All IRB 6400R-versions have Foundry Plus protection. For details, see under manipulator 6400PE 1600 kg Others 2060 - 2390 kg ENVIRONMENT Ambient temperature Manipulator 5 50C Relative

  2. Highlights | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlightsHighlights

  3. Highlights | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlightsHighlights

  4. Highlights | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlightsHighlights

  5. highlights.PDF

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 201230 Highlights1998 Highlights World

  6. highlights.html

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 201230 Highlights1998 Highlights

  7. highlights.html

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 201230 Highlights1998 Highlights8,

  8. highlights.html

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 201230 Highlights1998 Highlights8,1998

  9. 42 Highlights Introduction

    E-Print Network [OSTI]

    Haak, Hein

    42 Highlights Introduction Wind is an important driving force for wave growth and surge. Knowledge of extreme wind speed levels in the coastal regions of the Netherlands and over inland water bodies boundary conditions. The KNMI-HYDRA project aims at providing an updated wind climatology for the Dutch

  10. Research Highlights Nature Nanotechnology

    E-Print Network [OSTI]

    Mller, Markus

    2009 APS Research Highlights Nature Nanotechnology Published online: 17 July 2009 | doi:10 perfect fluid. Phys. Rev. Lett. 103, 025301 (2009). | Article |1. Nature Nanotechnology ISSN 1748 : Nature Nanotechnology http://www.nature.com/nnano/reshigh/2009/0709/full/nnano.2009.222.html 1 of 1 18

  11. Submitted to LLB highlights 2011 Doxorubicin Loaded Magnetic Polymersomes

    E-Print Network [OSTI]

    triggered by magnetic induction was evidenced using the anticancer drug doxorubicin (DOX), which is co the DOX release. In this highlight paper, we describe a convenient way to prepare fully bi

  12. NP Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAboutAdministrationhighlights/ The

  13. Highlights From SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlights LANS invests

  14. highlights.PDF

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 201230 Highlights

  15. Experimental Highlights - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,Energy Consumers |experimental highlights

  16. Sandia Energy - Highlights - HPC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPowerHighlights - Energy ResearchHPC

  17. News and Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 CarbonNews ReleasesPeople

  18. SPPS Science Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u a l r e pSince the development

  19. Science Highlights | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels...

  20. Dermoscopy of black-spot poison ivy

    E-Print Network [OSTI]

    Rader, Ryan K; Mu, Ruipu; Shi, Honglan; Stoecker, William V; Hinton, Kristen A

    2012-01-01T23:59:59.000Z

    CT, Bean AS. Black-spot poison ivy: A rare phenomenon. J AmJG, Lucky AW. Black spot poison ivy: A report of 5 cases andis unique for black-spot poison ivy. The UFLC-MS/MS urushiol

  1. DOE National Laboratory Releases Annual Accomplishments Report

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory has released its annual accomplishments report, highlighting breakthroughs in research and technology development to address the nation's energy, economic, and environmental challenges.

  2. Department of Energy Releases New 'Billion-Ton' Study Highlighting...

    Office of Environmental Management (EM)

    biomass resources identified in the report could be used to produce clean, renewable biofuels, biopower, or bioproducts. For example, with continued developments in biorefinery...

  3. DOE Releases New Video on Electric Vehicles, Highlights Administration...

    Energy Savers [EERE]

    robotics, chemistry and physics classrooms and labs at Detroit's Cass Technical High School, where they will meet with students involved in STEM education programs at Cass Tech,...

  4. DOE Releases New Video on Electric Vehicles, Highlights Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and PolicyCybersecurity Threats | Department

  5. DOE Releases New Video on Electric Vehicles, Highlights Administration

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergyBoilers |Carbon-CaptureU.S.States | DepartmentPowerSupport

  6. Department of Energy Releases New 'Billion-Ton' Study Highlighting

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof a SecondSupport

  7. Utility spot pricing study : Wisconsin

    E-Print Network [OSTI]

    Caramanis, Michael C.

    1982-01-01T23:59:59.000Z

    Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

  8. Highlights

    Gasoline and Diesel Fuel Update (EIA)

    Residual Fuel Oil Crude Oil RAC Figure HL1. Crude Oil and Petroleum Product Wholesale Prices Energy Information Administration Petroleum Marketing Annual 1996 xi a...

  9. Highlights

    U.S. Energy Information Administration (EIA) Indexed Site

    of product dominated world oil markets. Opening the year, the Organization of Petroleum Exporting Countries (OPEC) initiated a new program of production quotas that...

  10. Highlights

    U.S. Energy Information Administration (EIA) Indexed Site

    decreased draws on crude oil stocks, which in turn affected prices. Plentiful wellhead production, particularly in Organization of Petroleum Exporting Countries (OPEC) nations,...

  11. HIGHLIGHTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Common cobalt may replace pricier, rare metal relatives * Potential applications: biofuel production, carbon dioxide reduction, basic necessary chemistry - 2 - LOS ALAMOS,...

  12. Highlights

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has Driving ComeJanuary 2010

  13. Highlights

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in Review W

  14. Highlights

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in Review

  15. Highlights

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in Review8

  16. Highlights

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in Review89

  17. Texas Rice, Highlights in Research

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    for release. The varieties have allowed the introduction by BASF Corporation and use of Newpath, Beyond, and Clearpath herbicides in rice production. Newpath control of red rice has been very important in many production regions of Texas. Optimum red rice...

  18. Financial Highlights: Annual Report 1987.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1988-02-01T23:59:59.000Z

    Federal Columbia River Power System for the fiscal year ended September 30, 1987. This report covers: Financial highlights; Letter to the Secretary; The Financial Year in Review; Power Sales; Meeting the Region's Power Needs; Building for the Future; Regional Operations; BPA, the Council and Fish; 50th Anniversary; New Headquarters Building; Energizing the Community; Financial Section; Auditor's Report; and Financial Statements.

  19. Highlights of Spring 2011 Environmental

    E-Print Network [OSTI]

    Niebur, Ernst

    Highlights of Spring 2011 Environmental Politics and Policy Political and International Relations Theory Spotlight: The Middle East Beltway Politics and American Ideals Issues in International Our Planet Emma Huvos Political Science Class of 2013 The American Dream: One Size Fits All Maxi

  20. Blind spots between quantum states

    E-Print Network [OSTI]

    Eduardo Zambrano; Alfredo M Ozorio de Almeida

    2009-09-30T23:59:59.000Z

    The overlap of a large quantum state with its image, under tiny translations, oscillates swiftly. We here show that complete orthogonality occurs generically at isolated points. Decoherence, in the Markovian approximation, lifts the correlation minima from zero much more quickly than the Wigner function is smoothed into a positive phase space distribution. In the case of a superposition of coherent states, blind spots depend strongly on positions and amplitudes of the components, but they are only weakly affected by relative phases and the various degrees and directions of squeezing. The blind spots for coherent state triplets are special in that they lie close to an hexagonal lattice: Further superpositions of translated triplets, specified by nodes of one of the sublattices, are quasi-orthogonal to the original triplet and to any state, likewise constructed on the other sublattice.

  1. EM Highlights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM Highlights Advisory Board

  2. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPowerHighlights - Energy Research

  3. Highlights from BNL and RHIC 2014

    E-Print Network [OSTI]

    M. J. Tannenbaum

    2015-04-10T23:59:59.000Z

    Highlights of news from Brookhaven National Laboratory (BNL) and results from the Relativistic Heavy Ion Collider (RHIC) in the period July 2013-June 2014 are presented. It was a busy year for news, most notably a U. S. Government shutdown for 16 days beginning October 1, 2013 due to the lack of an approved budget for FY2014. Even with this unusual government activity, the $\\sqrt{s_{NN}}=200$ GeV Au+Au Run14 at RHIC was the best ever with integrated luminosity exceeding the sum of all previous runs. Additionally there was a brief He$^3$+Au run to continue the study of collective flow in small systems which was reinforced by new results presented on identified particle flow in d+Au. The other scientific highlights are also mostly concerned with ``soft (low $p_T$)'' physics complemented by the first preliminary results of reconstructed jets from hard-scattered partons in Au+Au collisions at RHIC . The measurements of transverse energy ($E_T$) spectra in p-p, d+Au and Au+Au collisions, which demonstrated last year that constituent quarks are the fundamental elements of particle production in all 3 systems, led to the conclusion that the two-component ansatz which has been used to represent $E_T$ distributions as a function of centrality is simply a proxy for the number of constituent quark participants as well as to an explanation of the surprising elliptical flow results from U+U collisions. An extensive discussion of the latest measurements in Au+Au of net-charge and net-proton distributions represented by Cumulants of the distributions and plans for a Beam Energy Scan at RHIC to look for a QCD critical point is presented and compared to the claim implied by a press release during the 2011 ISSP.

  4. Highlights | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlights

  5. Science News & Highlights | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" FindHighlights0 Click ORNL

  6. ARM - Research Highlights: Notable Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51Instruments RelatedHighlightsNotable Research

  7. Science and Technology Highlights | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland ScienceInnovationScience and Technology Highlights

  8. Highlights Archive | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundles to Living Highlights Archive

  9. EIA - Annual Energy Outlook 2012 Early Release

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Report Number: DOEEIA-0383ER(2012) This release is an abridged version of the Annual Energy Outlook that highlights changes in the AEO Reference case projections for key energy...

  10. Resistance Spot Welding of Galvanized Steel: Part II. Mechanisms of Spot Weld Nugget Formation

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ( l Resistance Spot Welding of Galvanized Steel: Part II. Mechanisms of Spot Weld Nugget Formation S. A. GEDEON and T. W. EAGAR Dynamic inspection monitoring of the weld current, voltage, resistance of material variations and weld process parameter modifications on resistance spot welding of coated

  11. BLIND SPOTS OF QUALITATIVE SIMULATORS Nuri Tasdemir

    E-Print Network [OSTI]

    BLIND SPOTS OF QUALITATIVE SIMULATORS by Nuri Tasdemir BS, in Electrical and Electronics in Computer Engineering Bogazici University 2007 #12;ii BLIND SPOTS OF QUALITATIVE SIMULATORS APPROVED BY: Prof. A.C. Cem Say . . . . . . . . . . . . . . . . . . . (Thesis Supervisor) Prof. H. Levent Akin

  12. News Release FOR IMMEDIATE RELEASE

    E-Print Network [OSTI]

    Acton, Scott

    News Release FOR IMMEDIATE RELEASE May 9, 2014 For more information, contact Cindy S. Roberts Cindy.Roberts@dars.virginia.gov (540) 470-8556 or Betsy McElfresh Betsy.McElfresh@dars.virginia.gov (804) 662-7532 HERSHEY'S HR. The event, hosted by DARS' Shenandoah Valley regional field offices, will honor Hershey's and other area

  13. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  14. Oak Ridge National Laboratory Science & Technology Highlights

    E-Print Network [OSTI]

    Pennycook, Steve

    & Technology Highlights Oak Ridge National Laboratory ORNL Works to Bring Zero-Energy Housing to the Masses

  15. Friction Stir Spot Welding of Advanced High Strength Steels ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    does not contain any proprietary or confidential information Friction Stir Spot Welding of Advanced High Strength Steels (AHSS) (13056 ORNL, 13055 PNNL) Friction Stir Spot...

  16. CMB Cold Spot from Inflationary Feature Scattering

    E-Print Network [OSTI]

    Wang, Yi

    2015-01-01T23:59:59.000Z

    We propose a "feature-scattering" mechanism to explain the cosmic microwave background cold spot seen from {\\it WMAP} and {\\it Planck} maps. If there are hidden features in the potential of multi-field inflation, the inflationary trajectory can be scattered by such features. The scattering is controlled by the amount of isocurvature fluctuations, and thus can be considered as a mechanism to convert isocurvature fluctuations into curvature fluctuations. This mechanism predicts localized cold spots (instead of hot ones) on the CMB. In addition, it may also bridge a connection between the cold spot and a dip on the CMB power spectrum at $\\ell \\sim 20$.

  17. Measuring microfocus focal spots using digital radiography

    SciTech Connect (OSTI)

    Fry, David A [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Measurement of microfocus spot size can be important for several reasons: (1) Quality assurance during manufacture of microfocus tubes; (2) Tracking performance and stability of microfocus tubes; (3) Determining magnification (especially important for digital radiography where the native spatial resolution of the digital system is not adequate for the application); (4) Knowledge of unsharpness from the focal spot alone. The European Standard EN 12543-5 is based on a simple geometrical method of calculating focal spot size from unsharpness of high magnification film radiographs. When determining microfocus focal spot dimensions using unsharpness measurements both signal-to-noise (SNR) and magnification can be important. There is a maximum accuracy that is a function of SNR and therefore an optimal magnification. Greater than optimal magnification can be used but it will not increase accuracy.

  18. An investigation of the dynamic separation of spot welds under plane tensile pulses

    SciTech Connect (OSTI)

    Ma, Bohan; Fan, Chunlei; Chen, Danian, E-mail: chdnch@nbu.edu.cn; Wang, Huanran; Zhou, Fenghua [Mechanics and Materials Science Research Center, Ningbo University, Zhejiang 315211 (China)

    2014-08-07T23:59:59.000Z

    We performed ultra-high-speed tests for purely opening spot welds using plane tensile pulses. A gun system generated a parallel impact of a projectile plate onto a welded plate. Induced by the interactions of the release waves, the welded plate opened purely under the plane tensile pulses. We used the laser velocity interferometer system for any reflector to measure the velocity histories of the free surfaces of the free part and the spot weld of the welded plate. We then used a scanning electron microscope to investigate the recovered welded plates. We found that the interfacial failure mode was mainly a brittle fracture and the cracks propagated through the spot nugget, while the partial interfacial failure mode was a mixed fracture comprised ductile fracture and brittle fracture. We used the measured velocity histories to evaluate the tension stresses in the free part and the spot weld of the welded plate by applying the characteristic theory. We also discussed the different constitutive behaviors of the metals under plane shock loading and under uniaxial split Hopkinson pressure bar tests. We then compared the numerically simulated velocity histories of the free surfaces of the free part and the spot weld of the welded plate with the measured results. The numerical simulations made use of the fracture stress criteria, and then the computed fracture modes of the tests were compared with the recovered results.

  19. Light stops, blind spots, and isospin violation in the MSSM

    E-Print Network [OSTI]

    Crivellin, Andreas; Procura, Massimiliano; Tunstall, Lewis C

    2015-01-01T23:59:59.000Z

    In the framework of the MSSM, we examine several simplified models where only a few superpartners are light. This allows us to study WIMP-nucleus scattering in terms of a handful of MSSM parameters and thereby scrutinize their impact on dark matter direct-detection experiments. Focusing on spin-independent WIMP-nucleon scattering, we derive simplified, analytic expressions for the Wilson coefficients associated with Higgs and squark exchange. We utilize these results to study the complementarity of constraints due to direct-detection, flavor, and collider experiments. We also identify parameter configurations that produce (almost) vanishing cross sections. In the proximity of these so-called blind spots, the amount of isospin violation is found to be much larger than typically expected in the MSSM. This feature is a generic property of parameter regions where cross sections are suppressed, and highlights the importance of a careful analysis of the nucleon couplings and the associated hadronic uncertainties. T...

  20. Secretary Bodman Highlights Alternative Energy Cooperation in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Energy Cooperation in the United Arab Emirates Secretary Bodman Highlights Alternative Energy Cooperation in the United Arab Emirates January 21, 2008 - 10:38am Addthis...

  1. Efficiency Exchange Conference Highlights Energy Efficiency Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Exchange Conference Highlights Energy Efficiency Innovations and Trends Northwest electric power industry connects on the latest energy efficiency programs and...

  2. Efficiency Exchange highlights energy efficiency innovations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Exchange highlights energy efficiency innovations and trends Northwest electric power industry connects on the latest energy efficiency programs and strategies Portland,...

  3. Highlights Highlights

    U.S. Energy Information Administration (EIA) Indexed Site

    affairs influenced prices periodically, they did not exert an unprecedented level of control over mar- ket activity. The year began on a fairly ordinary note as mild winter...

  4. Highlights Highlights

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in

  5. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect (OSTI)

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29T23:59:59.000Z

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to single spots to release hybridized DNA. This work leverages LLNL expertise in optics, microfluids, and bioinformatics.

  6. News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNews Releases

  7. Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll,PhysicsPoweringEnrichmentUserKitReleases

  8. Summary Slides of ALS Industry Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlight ALSNews Volume 15 Caribou Biosciences Has Roots at ALS - 09.24.2014 Vol. 357 13 Lithium-Battery Dendrite Growth: A New View 8.3.2 04.30.2014 Vol. 352 12 IBM Probes...

  9. Highlights from NNSA's Decade of Success

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    On April 28, 2010, the National Nuclear Security Administration celebrated its 10-year anniversary with a series of events aimed at highlighting a decade of success across the nuclear security enterprise. This slideshow features images from the past 10 years.

  10. TRANSIENT THERMAL BEHAVIOR IN RESISTANCE SPOT WELDING

    E-Print Network [OSTI]

    Eagar, Thomas W.

    temperature response during resistance spot welding was measured and discussed with various process parameters that the measurement of temperature profiles developed during the welding process is very important in this respect composition on galvanized steel, the temperature distribution during welding was monitored in a one

  11. THE OCCURRENCE OF SPOT, LEIOSTOMUS XANTHURUS, AND

    E-Print Network [OSTI]

    of postlarval spot and Atlantic croaker within the Cape Fear River estuary, N.C., above a steam electric power, National Marine Fisheries Service, NOAA, Beaufort, NC 28516. 'Brunswick Steam Electric Plant, Cape Fear. 'Brunswick Steam Electric Plant, Cape Fear Studies. Ocean larval fish, November 1976-1978. Environmental

  12. Measuring microfocal spots using digital radiography

    SciTech Connect (OSTI)

    Fry, David A [Los Alamos National Laboratory; Ewert, Uwe [BAM

    2009-01-01T23:59:59.000Z

    Measurement of microfocus spot size can be important for several reasons: (1) Quality assurance during manufacture of microfocus tubes; (2) Tracking performance and stability of microfocus tubes; (3) Determining magnification is especially important for digital radiography where the native spatial resolution of the digital system is not adequate for the application; and (4) Knowledge of unsharpness from the focal spot alone. The European Standard EN 12543-5 is based on a simple geometrical method of calculating focal spot size from unsharpness of high magnification film radiographs. The following equations are used for the focal spot size measurement: By similar triangles the following equations are presupposed: f/a = U/b and M = (a+b)/a. These equations can be combined to yield the well known expression: U = f(M - 1). Solving for f, f = U/(M-1). Therefore, the focal spot size, f, can be calculated by measuring the radiographic unsharpness and magnification of a known object. This is the basis for these tests. The European standard actually uses one-half of the unsharpness (which are then added together) from both sides of the object to avoid additional unsharpness contributions due to edge transmission unsharpness of the round test object (the outside of the object is measured). So the equation becomes f = (1/2 U{sub 1} + 1/2 U{sub 2})/(M-1). In practice 1/2 U is measured from the 50% to the 90% signal points on the transition profile from ''black'' to ''white,'' (positive image) or attenuated to unattenuated portion of the image. The 50% to 90% points are chosen as a best fit to an assumed Gaussian radiation distribution from the focal spot and to avoid edge transmission effects. 1/2 U{sub 1} + 1/2 U{sub 2} corresponds about to the full width at half height of a Gaussian focal spot. A highly absorbing material (Tungsten, Tungsten Alloy, or Platinum) is used for the object. Either wires or a sphere are used as the object to eliminate alignment issues. One possibility is to use the wires in the ASTM E2002 unsharpness gage and take two orthogonal images. The signal levels in the image need to be linear with radiation exposure and so may need conversion if a nonlinear detector is used to acquire the image.

  13. NEWS RELEASE For Immediate Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate1, Issue 23 NETL NEVIS- 97NEWS RELEASE For

  14. Friction Stir Spot Welding of Advanced High Strength Steels ...

    Energy Savers [EERE]

    Stir Spot Welding of Advanced High Strength Steels (AHSS) Friction Stir Spot Welding of Advanced High Strength Steels (AHSS) Presentation from the U.S. DOE Office of Vehicle...

  15. Solar Renewable Energy Credits (SRECs) Spot Market Program

    Broader source: Energy.gov [DOE]

    NOTE: While interested parties can still trade DE SRECs in the spot market, the spot market in itself is limited since most of the SRECs produced are part of the SREC Purchase Program, or the SREC...

  16. Improving Diesel Engine Sweet-spot Efficiency and Adapting it...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Sweet-spot Efficiency and Adapting it to Improve Duty-cycle MPG - plus Increasing Propulsion and Reducing Cost Improving Diesel Engine Sweet-spot Efficiency and...

  17. EECBG Success Story: Bright Green Spot: Fort Worth Library |...

    Broader source: Energy.gov (indexed) [DOE]

    Bright Green Spot: Fort Worth Library EECBG Success Story: Bright Green Spot: Fort Worth Library September 30, 2010 - 9:53am Addthis Fort Worth's Central Library is seeing...

  18. Bright Green Spot: Fort Worth Library | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Bright Green Spot: Fort Worth Library Bright Green Spot: Fort Worth Library September 30, 2010 - 4:07pm Addthis Lindsay Gsell Fort Worth's Central Library is seeing tremendous...

  19. Prediction of cooling rate and microstructure in laser spot welds

    E-Print Network [OSTI]

    Cambridge, University of

    during laser spot welding of low alloy steel. A transient heat transfer model that takes into account

  20. Coal-ash spills highlight ongoing risk to ecosystems

    SciTech Connect (OSTI)

    Chatterjee, R.

    2009-05-01T23:59:59.000Z

    Two recent large-scale spills of coal combustion waste have highlighted the old problem of handling the enormous quantity of solid waste produced by coal. Both spills happened at power plants run by the Tennessee Valley Authority (TVA). In December 2008 a holding pond for coal ash collapsed at a power plant in Kingstom, Tenn., releasing coal-ash sludge onto farmland and into rivers: in January 2009 a break in a pipe removing water from a holding pond for gypsum caused a spill at Widows Creek Fossil Plant in Stevenson, Ala. The article discusses the toxic outcome of such disasters on ecosystems, quoting work by Willaim Hopkins at Virginia Polytechnic Institute and State University and recommendations and reports of the US EPA. 2 photos.

  1. Population Assessment of the Northern Spotted Owl in

    E-Print Network [OSTI]

    Owl Management Plan. Within our survey areas, Spotted Owl occupancy declined by 49% between 1992.C. Conservation Foundation Carla B. Lenihan, Ministry of Sustainable Resource Management #12;Population Assessment of the Northern Spotted Owl in British Columbia 1992-2001 Page 1 Abstract In 1997, the Spotted Owl Management Plan

  2. Automated Spot Weld Inspection using Infrared Thermography

    SciTech Connect (OSTI)

    Chen, Jian [ORNL] [ORNL; Zhang, Wei [ORNL] [ORNL; Yu, Zhenzhen [ORNL] [ORNL; Feng, Zhili [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

  3. Brookhaven highlights, October 1979-September 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Highlights are given for the research areas of the Brookhaven National Laboratory. These areas include high energy physics, physics and chemistry, life sciences, applied energy science (energy and environment, and nuclear energy), and support activities (including mathematics, instrumentation, reactors, and safety). (GHT)

  4. Brookhaven highlights - Brookhaven National Laboratory 1995

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  5. EM international activities. February 1997 highlights

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    EM International Highlights is a brief summary of on-going international projects within the Department of Energy`s Office of Environmental Management (EM). This document contains sections on: Global Issues, activities in Western Europe, activities in central and Eastern Europe, activities in Russia, activities in Asia and the Pacific Rim, activities in South America, activities in North America, and International Organizations.

  6. Structural Differences Mouse-over highlighting shows

    E-Print Network [OSTI]

    Munzner, Tamara

    regions accordingly · See individual nucleotides in the context· See individual nucleotides in the context· See individual nucleotides in the context· See individual nucleotides in the context of a sequence Finding motifs · Interactive mouse-over highlighting · Search for nucleotide or codon strings · Simple

  7. prescription drug program highlights retail pharmacy prescriptions

    E-Print Network [OSTI]

    Scharer, John E.

    prescription drug program highlights SHIP retail pharmacy prescriptions The informedRx retail interactions and duplicate therapies. Brand name and generic drugs are included in your pharmacy benefit, but you will save the most money by selecting generic drug options when available. On myinformedRx.com you

  8. University of Maryland Campus Sustainability Highlights

    E-Print Network [OSTI]

    Yorke, James

    -minute campus sustainability overview that includes the Presidents Climate Commitment, energy in the Department of Facilities Management and 3 Office of Sustainability staff are now LEED (Leadership in Energy1 University of Maryland Campus Sustainability Highlights Calendar Year 2009 New Campus Activities

  9. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    SciTech Connect (OSTI)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15T23:59:59.000Z

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

  10. Light stops, blind spots, and isospin violation in the MSSM

    E-Print Network [OSTI]

    Andreas Crivellin; Martin Hoferichter; Massimiliano Procura; Lewis C. Tunstall

    2015-03-11T23:59:59.000Z

    In the framework of the MSSM, we examine several simplified models where only a few superpartners are light. This allows us to study WIMP-nucleus scattering in terms of a handful of MSSM parameters and thereby scrutinize their impact on dark matter direct-detection experiments. Focusing on spin-independent WIMP-nucleon scattering, we derive simplified, analytic expressions for the Wilson coefficients associated with Higgs and squark exchange. We utilize these results to study the complementarity of constraints due to direct-detection, flavor, and collider experiments. We also identify parameter configurations that produce (almost) vanishing cross sections. In the proximity of these so-called blind spots, the amount of isospin violation is found to be much larger than typically expected in the MSSM. This feature is a generic property of parameter regions where cross sections are suppressed, and highlights the importance of a careful analysis of the nucleon couplings and the associated hadronic uncertainties. This becomes especially relevant once the increased sensitivity of future direct-detection experiments corners the MSSM into these regions of parameter space.

  11. 13 Recent highlights The 1997/1998

    E-Print Network [OSTI]

    Haak, Hein

    13 Recent highlights The 1997/1998 The 1997/1998 El Niño: a record event. · El Niño, out. Seldom has a meteorological phenomenon attracted so much attention as the El Niño of 1997/1998. It has something extraordinary had happened. This was completely different during the 1997/1998 El Niño. Early 1997

  12. Science Highlight Archives: 1995-2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office ofScienceScience Highlight

  13. Berkeley Lab's SPOT Suite Transforms Beamline Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historianBenefits offorSPOT Suite Transforms

  14. ClearSpot Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpot Energy Jump to: navigation, search

  15. General Dynamics and Nissan Case Studies Highlight Benefits of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Dynamics and Nissan Case Studies Highlight Benefits of Superior Energy Performance General Dynamics and Nissan Case Studies Highlight Benefits of Superior Energy...

  16. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...

    Office of Environmental Management (EM)

    Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

  17. May 29 Tribal Renewable Energy Webinar to Highlight Regional...

    Broader source: Energy.gov (indexed) [DOE]

    9 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May...

  18. Science Magazine Highlight: Moving Towards Near Zero Platinum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Presentation slides and speaker...

  19. Energy Secretary Bodman in Turkey to Highlight Importance of...

    Office of Environmental Management (EM)

    in Turkey to Highlight Importance of Expanding Oil and Gas Supply and Infrastructure Energy Secretary Bodman in Turkey to Highlight Importance of Expanding Oil and Gas Supply and...

  20. Secretary of Energy and Rep. Chabot Highlight Clean Coal and...

    Energy Savers [EERE]

    Secretary of Energy and Rep. Chabot Highlight Clean Coal and Hydrogen Research and Tout America's Economic Growth in Ohio Secretary of Energy and Rep. Chabot Highlight Clean Coal...

  1. FreedomCAR and Fuel Partnership 2008 Highlights of Technical...

    Energy Savers [EERE]

    8 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2008 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  2. FreedomCAR and Fuel Partnership 2007 Highlights of Technical...

    Energy Savers [EERE]

    7 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2007 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  3. FreedomCAR and Fuel Partnership 2009 Highlights of Technical...

    Energy Savers [EERE]

    9 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2009 Highlights of Technical Accomplishments This report summarizes key technical accomplishments achieved...

  4. FreedomCAR and Fuel Partnership 2010 Highlights of Technical...

    Energy Savers [EERE]

    10 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2010 Highlights of Technical Accomplishments This report summarizes key technical accomplishments...

  5. FreedomCAR and Fuel Partnership 2006 Highlights of Technical...

    Energy Savers [EERE]

    6 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2006 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  6. FreedomCAR and Fuel Partnership 2004 Highlights of Technical...

    Energy Savers [EERE]

    4 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2004 Highlights of Technical Accomplishments Report containing brief summaries of key accomplishments of...

  7. FreedomCAR and Fuel Partnership 2005 Highlights of Technical...

    Energy Savers [EERE]

    5 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2005 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  8. ARPA-E FY2010 Annual Report Highlights Transformational Projects...

    Energy Savers [EERE]

    Annual Report Highlights Transformational Projects Since Agency's Establishment ARPA-E FY2010 Annual Report Highlights Transformational Projects Since Agency's Establishment...

  9. For Immediate Release --Monday, October 27, 2014 University of Lethbridge highlights for the

    E-Print Network [OSTI]

    Hossain, Shahadat

    . 27, 6 to 8:50 p.m. University Hall C610 Clark completed her master's degree-382-7105, jarrett.duncan@uleth.ca Music at Noon series ­ Sheila Christie Tuesday, Oct will talk about the safety and effectiveness of the HPV vaccine in this free

  10. University of Delaware | CCEI Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite Map Site MapPublicationsResearch Highlights

  11. SSRL Science Highlights Archive | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0

  12. Friction Stir Spot Welding of Advanced High Strength Steels II...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steels II Friction Stir Spot Welding of Advanced High Strength Steels II 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

  13. Jefferson Lab Medical Imager Spots Breast Cancer | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eric Rosen, Duke University Medical Center Jefferson Lab Medical Imager Spots Breast Cancer March 3, 2005 Newport News, VA - A study published in the February issue of the...

  14. An inequality for potentials and the hotspots conjecture

    E-Print Network [OSTI]

    2003-06-04T23:59:59.000Z

    inequality, by the conformal invariance of Brownian motion, implies a result of Pascu [13] on hotspots for certain symmetric convex domains. ?Supported in...

  15. FY 1996 Congressional budget request: Budget highlights

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The FY 1996 budget presentation is organized by the Department`s major business lines. An accompanying chart displays the request for new budget authority. The report compares the budget request for FY 1996 with the appropriated FY 1995 funding levels displayed on a comparable basis. The FY 1996 budget represents the first year of a five year plan in which the Department will reduce its spending by $15.8 billion in budget authority and by $14.1 billion in outlays. FY 1996 is a transition year as the Department embarks on its multiyear effort to do more with less. The Budget Highlights are presented by business line; however, the fifth business line, Economic Productivity, which is described in the Policy Overview section, cuts across multiple organizational missions, funding levels and activities and is therefore included in the discussion of the other four business lines.

  16. Physical Sciences 2007 Science & Technology Highlights

    SciTech Connect (OSTI)

    Hazi, A U

    2008-04-07T23:59:59.000Z

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  17. Statistical Modeling of Spot Instance Prices in Public Cloud Environments

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Statistical Modeling of Spot Instance Prices in Public Cloud Environments Bahman Javadi, Ruppa K resources has introduced many trade-offs between price, per- formance and recently reliability. Amazon's Spot Instances (SIs) create a competitive bidding option for the public Cloud users at lower prices

  18. Cinematography of Resistance Spot Welding of Galvanized Steel Sheet

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Cinematography of Resistance Spot Welding of Galvanized Steel Sheet Preweld and postweld current modifications on the resistance spot welding of galvanized steel sheet are analyzed using high phenomena through out the weld process are discussed. In addition. the duration of current modifi cation

  19. Modelling spot and forward prices for energy companies

    E-Print Network [OSTI]

    Bhulai, Sandjai

    Modelling spot and forward prices for energy companies Dafydd Steele MSc Stochastics and Financial forward and spot prices for energy com- panies. The two main ways of modelling power prices are stochastic Mathematics dafydd.steele@edf-energy.com August 5, 2010 #12;Abstract The focus of this thesis is on modelling

  20. Modified Fresnel zone plates that produce sharp Gaussian focal spots

    E-Print Network [OSTI]

    Jahns, Jrgen

    Modified Fresnel zone plates that produce sharp Gaussian focal spots Qing Cao and Jurgen Jahns Fresnel zone plate that can produce an approximate Gaussian focal spot is proposed for the focusing of 7.7 nm can be produced by a modified Fresnel zone plate with a minimum structure size of 30 nm

  1. Hot Spot Conditions during Cavitation in Water Yuri T. Didenko,

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Hot Spot Conditions during Cavitation in Water Yuri T. Didenko, William B. McNamara III-13 the effective hot spot temperature during aqueous cavitation remains unresolved. Given the importance of aqueous cavitation (sonography and bioeffects of ultrasound, sonochemical remediation of aqueous pollutants

  2. Argonne National Laboratory Research Highlights 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The research and development highlights are summarized. The world's brightest source of X-rays could revolutionize materials research. Test of a prototype insertion device, a key in achieving brilliant X-ray beams, have given the first glimpse of the machine's power. Superconductivity research focuses on the new materials' structure, economics and applications. Other physical science programs advance knowledge of material structures and properties, nuclear physics, molecular structure, and the chemistry and structure of coal. New programming approaches make advanced computers more useful. Innovative approaches to fighting cancer are being developed. More experiments confirm the passive safety of Argonne's Integral Fast Reactor concept. Device simplifies nuclear-waste processing. Advanced fuel cell could provide better mileage, more power than internal combustion engine. New instruments find leaks in underground pipe, measure sodium impurities in molten liquids, detect flaws in ceramics. New antibody findings may explain ability to fight many diseases. Cadmium in cigarettes linked to bone loss in women. Programs fight deforestation in Nepal. New technology could reduce acid rain, mitigate greenhouse effect, enhance oil recovery. Innovative approaches transfer Argonne-developed technology to private industry. Each year Argonne educational programs reach some 1200 students.

  3. New User Facilities Web Page Highlights Work at National Laboratories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    User Facilities Web Page Highlights Work at National Laboratories New User Facilities Web Page Highlights Work at National Laboratories January 15, 2014 - 12:00am Addthis The User...

  4. Secretary Chu to Visit Houston to Highlight Obama's State of...

    Energy Savers [EERE]

    Visit Houston to Highlight Obama's State of the Union Address, Discuss "All of the Above" Energy Strategy Secretary Chu to Visit Houston to Highlight Obama's State of the Union...

  5. Energy Secretary Highlights One-Year Anniversary of the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Highlights One-Year Anniversary of the Energy Policy Act of 2005 at Iowa Wind Turbine Facility Energy Secretary Highlights One-Year Anniversary of the Energy Policy Act of 2005 at...

  6. Feast or famine: 1992 spot market review

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    There was nothing temperate about the uranium spot market in 1992. It was a year of extremes. Demand took off at a brisk pace early in the year as utilities, enticed by low U3O8 prices and interest rates, stepped up their discretionary purchases. With the NUKEM price range sinking to an all-time low of US$6.75-7.70 in November 1991, utilities reckoned that prices had bottomed out and decided to buy and hold material. Indeed, the upper end of NUKEM's range remained below $8.00 per lb for much of the first half of 1992. The main cause of low prices was the flood of imports from the crumbling Soviet Union and its successor, the Commonwealth of Independent States [CIS]. The CIS republics quickly embraced a free-market philosophy to boost their faltering economies, and several hoped to use uranium as a source of badly-needed hard currency. But they were about to get a harsh introduction to capitalism. It came in the form of government intervention, in both the US and Europe. In May, the US Department of Commerce made its preliminary determination that the uranium-producing republics of the CIS were selling material in the US at less than fair market value. The antidumping case was eventually settled in October when the CIS republics [Russia, Ukraine, Uzbekistan, Kazakhstan, Tajikistan and Kyrgyzstan] signed suspension agreements subjecting CIS origin uranium to price and quantity quotas in the US.

  7. Finite Cosmology and a CMB Cold Spot

    SciTech Connect (OSTI)

    Adler, R.J.; /Stanford U., HEPL; Bjorken, J.D.; /SLAC; Overduin, J.M.; /Stanford U., HEPL

    2006-03-20T23:59:59.000Z

    The standard cosmological model posits a spatially flat universe of infinite extent. However, no observation, even in principle, could verify that the matter extends to infinity. In this work we model the universe as a finite spherical ball of dust and dark energy, and obtain a lower limit estimate of its mass and present size: the mass is at least 5 x 10{sup 23}M{sub {circle_dot}} and the present radius is at least 50 Gly. If we are not too far from the dust-ball edge we might expect to see a cold spot in the cosmic microwave background, and there might be suppression of the low multipoles in the angular power spectrum. Thus the model may be testable, at least in principle. We also obtain and discuss the geometry exterior to the dust ball; it is Schwarzschild-de Sitter with a naked singularity, and provides an interesting picture of cosmogenesis. Finally we briefly sketch how radiation and inflation eras may be incorporated into the model.

  8. Wall and laser spot motion in cylindrical hohlraums

    SciTech Connect (OSTI)

    Huser, G.; Courtois, C.; Monteil, M.-C. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2009-03-15T23:59:59.000Z

    Wall and laser spot motion measurements in empty, propane-filled and plastic (CH)-lined gold coated cylindrical hohlraums were performed on the Omega laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Wall motion was measured using axial two-dimensional (2D) x-ray imaging and laser spot motion was perpendicularly observed through a thinned wall using streaked hard x-ray imaging. Experimental results and 2D hydrodynamic simulations show that while empty targets exhibit on-axis plasma collision, CH-lined and propane-filled targets inhibit wall expansion, corroborated with perpendicular streaked imaging showing a slower motion of laser spots.

  9. EMSL Quarterly Highlights Report: 4th Quarter, FY08

    SciTech Connect (OSTI)

    Showalter, Mary Ann

    2008-11-24T23:59:59.000Z

    This report outlines the science highlights, publications, and other happenings at EMSL in 4th quarter of FY08.

  10. Hot Links to Cool Spots - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years ofHonors Member

  11. High-power-density spot cooling using bulk thermoelectrics

    E-Print Network [OSTI]

    Zhang, Y; Shakouri, A; Zeng, G H

    2004-01-01T23:59:59.000Z

    model, the cooling power densities of the devices can alsothe cooling power densities 224 times. Experimentally, the14 4 OCTOBER 2004 High-power-density spot cooling using bulk

  12. OE Releases Third Issue of Energy Emergency Preparedness Quarterly (July 2012)

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability (OE) has released the third issue of the Energy Emergency Preparedness Quarterly (EEPQ), designed to briefly highlight a few of the energy...

  13. OE Releases 2013 Issue 2 of Energy Emergency Preparedness Quarterly (April 2013)

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability (OE) has released Volume 2, Issue 2 of the Energy Emergency Preparedness Quarterly (EEPQ), designed to briefly highlight a few of the energy preparedness activities that occur each quarter.

  14. OE Releases Second Issue of Energy Emergency Preparedness Quarterly (April 2012)

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability (OE) has released the second issue of the Energy Emergency Preparedness Quarterly (EEPQ), designed to briefly highlight a few of the energy preparedness activities that occur each quarter.

  15. On the burn topology of hot-spot-initiated reactions

    SciTech Connect (OSTI)

    Hill, Larry G [Los Alamos National Laboratory; Zimmermann, Bjorn [WOLFRAM RESEARCH INC.; Nichols, Albert L [LLNL

    2009-01-01T23:59:59.000Z

    We determine the reaction progress function for an ideal hot spot model problem. The considered problem has an exact analytic solution that can derived from a reduction of Nichols statistical hot spot model. We perform numerical calculations to verify the analytic solution and to illustrate the error realized in real, finite systems. We show how the baseline problem, which does not distinguish between the reactant and product densities, can be scaled to handle general cases for which the two densities differ.

  16. Potential Release Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    found. Some examples of potential release sites include septic tanks and associated drain lines chemical storage areas wastewater outfalls material disposal areas incinerators...

  17. RMOTC - News - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the performance of its Applied Oil Technology (AOT(tm)) in reducing crude oil's viscosity to lower transportation costs (PDF) June 2011 | Press Releases Geothermal research...

  18. Accidental Release Program (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Accidental Release Prevention Regulation contains requirements for owners or operators of stationary sources having regulated extremely hazardous substances onsite to develop and...

  19. PRESS RELEASE FROM NEUROPSYCHOPHARMACOLOGY

    E-Print Network [OSTI]

    Cai, Long

    likelihood of drug addiction A PDF of the paper mentioned on this release can be found in the Academic take great care not to hype the papers mentioned on our press releases, but are sometimes accused in better understanding this devastating condition and lead to new treatments. Postpartum depression, which

  20. Energy Department Issues New Report, Highlights the Success and...

    Broader source: Energy.gov (indexed) [DOE]

    more than 65 gigawatts of untapped hydropower potential in U.S. rivers and streams. Huge Potential for Hydropower: Assessment Highlights New Possible Clean Energy Sources...

  1. Secretary Chu and Energy Department Officials to Highlight Obama...

    Office of Environmental Management (EM)

    visits nationwide will highlight American-made energy resources like natural gas and biofuels, and focus on the important role American scientists, engineers and entrepreneurs are...

  2. U.S. DRIVE Highlights of Technical Accomplishments 2011: Super...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 U.S. DRIVE Highlight Advanced Combustion and Emission Control 2011 Super Duty Diesel Truck with NO x Aftertreatment Diesel engine aftertreatment: Minimizing NO x emissions...

  3. EMSL Quarterly Highlights Report: 2nd Quarter, Fiscal Year 2009

    SciTech Connect (OSTI)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-05-04T23:59:59.000Z

    This report outlines the highlights, staff and user accomplishments, and publications that occured during FY09, 2nd quarter at EMSL.

  4. Brookhaven highlights, October 1, 1989--September 30, 1990

    SciTech Connect (OSTI)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.; Kuper, J.B.H. (eds.)

    1990-01-01T23:59:59.000Z

    This report discusses research being conducted at Brookhaven National Laboratory. Highlights from all the department are illustrated. The main topics are on accelerator development and applications. (LSP)

  5. Secretary Bodman in Illinois Highlights Scientific Research Investment...

    Energy Savers [EERE]

    Bodman in Illinois Highlights Scientific Research Investments to Advance America's Innovation April 11, 2007 - 12:36pm Addthis ROMEOVILLE, IL - U.S. Secretary of Energy...

  6. Oct. 25 Lecture Highlights Treatment Technology of HU's Proton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oct. 25 Lecture Highlights Treatment Technology of HU's Proton Therapy Institute Cynthia Keppel Hampton University Proton Therapy Institute Scientific and Technical Director,...

  7. White House Highlights New DOE Measures to Advance Renewable...

    Office of Environmental Management (EM)

    studies conducted by the Energy Department's Lawrence Berkeley National Laboratory (LBNL) highlight the decline of solar energy costs across utility, residential and commercial...

  8. Brookhaven Highlights, October 1, 1987--September 30, 1988

    SciTech Connect (OSTI)

    Rowe, M.S.; Cohen, A.; Seubert, L.; Horner Kuper, J.B. (eds.)

    1988-01-01T23:59:59.000Z

    This report highlights Brookhaven National Laboratory's research activities for fiscal year 1988. Research programs range from physics and chemistry to medical and biology. (JF)

  9. DOE Highlights Clean Energy Jobs, Announces Major New Energy...

    Energy Savers [EERE]

    these technologies, but with continued investments in innovation, this is a race we can win." Earlier this week, the solar industry also released a new report showing the...

  10. Friction Stir Spot Welding of DP780 Carbon Steel

    SciTech Connect (OSTI)

    Santella, Michael L [ORNL; Hovanski, Yuri [ORNL; Frederick, David Alan [ORNL; Grant, Glenn J [ORNL; Dahl, Michael E [ORNL

    2010-01-01T23:59:59.000Z

    Friction stir spot welds were made in uncoated and galvannealed DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1 to 10 s. Increasing tool rotation speed from 800 to 1600 rev min{sup -1} increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap shear strengths exceeding 10 {center_dot} 3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

  11. SAND20096226 Unlimited Release

    E-Print Network [OSTI]

    Plimpton, Steve

    SAND20096226 Unlimited Release Printed October 2009 Crossing the Mesoscale No-Man's Land via method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length

  12. Rad-Release

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    The R&D 100 Award winning Rad-Release Chemical Decontamination Technology is a highly effective (up to 99% removal rate), affordable, patented chemical-foam-clay decontamination process tailored to specific radiological and metal contaminants, which is applicable to a wide variety of substrates. For more information about this project, visit http://www.inl.gov/rd100/2011/rad-release/

  13. Rad-Release

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The R&D 100 Award winning Rad-Release Chemical Decontamination Technology is a highly effective (up to 99% removal rate), affordable, patented chemical-foam-clay decontamination process tailored to specific radiological and metal contaminants, which is applicable to a wide variety of substrates. For more information about this project, visit http://www.inl.gov/rd100/2011/rad-release/

  14. australian wholesale spot: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    australian wholesale spot First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 FirstChoice Wholesale...

  15. SPOT PRICING FRAMEWORK FOR LOSS GUARANTEED INTERNET SERVICE CONTRACTS

    E-Print Network [OSTI]

    Kalyanaraman, Shivkumar

    . In a two-component approach to pricing, a nonlinear pricing scheme is used for cost recovery and a utility for cost recovery, and (ii) an options-based approach to price the risk of deviations in the loss based QoSPOT PRICING FRAMEWORK FOR LOSS GUARANTEED INTERNET SERVICE CONTRACTS Aparna Gupta Decision

  16. Bright Spots in the South Carolina the Economy

    E-Print Network [OSTI]

    Almor, Amit

    Bright Spots in the South Carolina the Economy 2012 African American Economic Summit Doug Woodward Professor of Economics #12;Overview · Why we should worry. ­ Global economy and financial contagion. ­ U.S. economy and political uncertainty. · Why we should be happy. ­ South Carolina economy healing. · Robust

  17. Quantifying intrapopulation variability in stable isotope data for Spotted Seatrout

    E-Print Network [OSTI]

    111 Quantifying intrapopulation variability in stable isotope data for Spotted Seatrout (Cynoscion of the National Marine Fisheries Service, NOAA. Abstract--Stable isotope (SI) values of carbon (13C) and nitrogen patterns of enrichment in fish caught from coastal to off- shore sites and as a function of fish size

  18. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect (OSTI)

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr. [Institute for Diagnostic Imaging Research, Physics Department, University of Windsor, 292 Essex Hall, 401 Sunset Ave. N9B 3P4 Windsor, Ontario (Canada)

    2010-02-22T23:59:59.000Z

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  19. Spot Convenience Yield Models for Energy Michael Ludkovski

    E-Print Network [OSTI]

    Ludkovski, Mike

    . This is not true for some commodities, such as electricity. Even for mature markets like crude oil where spot of fu- ture asset and current consumption values. However, unlike financial deriva- tives, storage, the agent has the option of flexibility with regards to consumption (no risk of commodity shortage

  20. Front Vehicle Blind Spot Translucentization Based on Augmented Reality

    E-Print Network [OSTI]

    Wang, Yuan-Fang

    Front Vehicle Blind Spot Translucentization Based on Augmented Reality Che-Tsung Lin, Yu-Chen Lin--Recently, WAVE/DSRC has become an attrac- tive technology for vehicular safety applications. Vehicles with WAVE/DSRC devices can communicate with their neighboring vehicles to exchange information to achieve collaborative

  1. STEP Utility Data Release Form

    Broader source: Energy.gov [DOE]

    STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  2. Physical and Life Sciences 2008 Science & Technology Highlights

    SciTech Connect (OSTI)

    Correll, D L; Hazi, A U

    2009-05-06T23:59:59.000Z

    This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

  3. DOE's "Creating a Star on Earth" video highlights PPPL's magnetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's "Creating a Star on Earth" video highlights PPPL's magnetic fusion research March 5, 2014 Tweet Widget Google Plus One Share on Facebook A screenshot from the U.S. Department...

  4. Kellogg and Russ Forest projects. 2002 Project sand highlights

    E-Print Network [OSTI]

    Kellogg and Russ Forest projects. 2002 Project sand highlights MacCready Reserve a new property of insects Galeerucella calmariensis,and G.pusilla to control purple loosestrife on May 13. #12;New Project

  5. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    SciTech Connect (OSTI)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02T23:59:59.000Z

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  6. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    SciTech Connect (OSTI)

    Showalter, Mary Ann

    2008-01-28T23:59:59.000Z

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  7. Energy Department to Highlight Expansion of Minorities in Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AM - 4:30 PM RSVP Media wishing to attend should email RSVP@hq.doe.gov Follow along on social media with DOEMIE Addthis Related Articles Energy Department to Highlight...

  8. Highlights of the Fall 2013 Implementation Guidelines for

    E-Print Network [OSTI]

    Su, Xiao

    Highlights of the Fall 2013 Implementation Guidelines for Presidential Directive 2009-05 Maureen not permit financial aid for classes not required for the degree.) #12;THANKYOU!!! Fall 2013 Implementation

  9. Raman Scattering from 1,3-Propanedithiol at a Hot Spot: Theory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from 1,3-Propanedithiol at a Hot Spot: Theory Meets Experiment. Raman Scattering from 1,3-Propanedithiol at a Hot Spot: Theory Meets Experiment. Abstract: We compute the Raman...

  10. Fermilab | Newsroom | Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophotoReleases Subscribe to the

  11. Hanford Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged Inmedia/pressRelease.cfm Hanford

  12. EGG AND LARVAL DEVELOPMENT OF THE SPOT, LEIOSTOMUS XANTHURUS (SCIAENIDAE)l

    E-Print Network [OSTI]

    Atlantic and GulfofMexico coasts from Massachusetts Bay to the Bay of Campeche (Johnson 1978). Spot spawns

  13. OPTICAL SPECTROSCOPY OF CANDIDATE HOT SPOTS IN RADIO GALAXIES AND QUASARS

    E-Print Network [OSTI]

    Martini, Paul

    of a few hot spots (Simkin 1978), surveys by Saslaw, Tyson, & Crane (1978; STC) and Crane, Tyson, & Saslaw

  14. IMPROVING MULTI-LATTICE ALIGNMENT BASED SPOKEN KEYWORD SPOTTING Hui Lin, Alex Stupakov and Jeff Bilmes

    E-Print Network [OSTI]

    Noble, William Stafford

    , such as when- ever it is inconvenient, unsafe, or impossible for the user to enter a search query using and the utterance being searched is beneficial for spoken keyword spotting. In this paper, we introduce several im- prove the performance of spoken keyword spotting. Index Terms-- Spoken keyword spotting, lattice

  15. The NordPool Market The spot and electricity forward relation

    E-Print Network [OSTI]

    Pfeifer, Holger

    The NordPool Market The spot and electricity forward relation Spot price modelling HJM approach to forwards Conclusions Modelling and pricing in electricity markets Fred Espen Benth Work in collaboration and electricity forward relation Spot price modelling HJM approach to forwards Conclusions Overview

  16. Press Release Corporate Communications

    E-Print Network [OSTI]

    Haller-Dintelmann, Robert

    Page: 1/2 Press Release Corporate Communications Karolinenplatz 5 D-64289 Darmstadt Germany Your.ch@pvw.tu- darmstadt.de Internet: http://www.tu- darmstadt.de/presse e-mail: presse@tu-darmstadt.de On Cloud Nine TU). She intends to use the funding for basic research into the programming of software that will be fit

  17. SAND932591 Unlimited Release

    E-Print Network [OSTI]

    McCurley, Kevin

    SAND93­2591 Unlimited Release First Printed October 1992 Revised October 29, 1993 Revised June 22. This new algorithm is called SHA­1. In this report we describe a portable and efficient implementation information used in their construction. \\Lambda This work was performed under U.S. Department of Energy

  18. When Barriers to Markets Fail: Pipeline Deregulation, Spot Markets, and the Topology of the Natural Gas Market

    E-Print Network [OSTI]

    De Vany, Arthur; Walls, W. David

    1992-01-01T23:59:59.000Z

    Experimental Research on Deregulation, natural Gas Pipelineto MarketsFail: Pipeline Deregulation,Spot Markets,and theto Markets Fall: Deregulation, Spot Markets, And the

  19. Impulsive Spot Heating and Thermal Explosion of Interstellar Grains Revisited

    E-Print Network [OSTI]

    Ivlev, A V; Vasyunin, A; Caselli, P

    2015-01-01T23:59:59.000Z

    The problem of impulsive heating of dust grains in cold, dense interstellar clouds is revisited theoretically, with the aim to better understand leading mechanisms of the explosive desorption of icy mantles. It is rigorously shown that if the heating of a reactive medium occurs within a sufficiently localized spot (e.g., heating of mantles by cosmic rays), then the subsequent thermal evolution is characterized by a single dimensionless number $\\lambda$. This number identifies a bifurcation between two distinct regimes: When $\\lambda$ exceeds a critical value (threshold), the heat equation exhibits the explosive solution, i.e., the thermal (chemical) explosion is triggered. Otherwise, thermal diffusion causes the deposited heat to spread over the entire grain -- this regime is commonly known as the whole-grain heating. The theory allows us to find a critical combination of the physical parameters that govern the explosion of icy mantles due to impulsive spot heating. In particular, the calculations suggest tha...

  20. Multi-spot ignition in type Ia supernova models

    E-Print Network [OSTI]

    Roepke, F K; Niemeyer, J C; Woosley, S E

    2005-01-01T23:59:59.000Z

    We present a systematic survey of the capabilities of type Ia supernova explosion models starting from a number of flame seeds distributed around the center of the white dwarf star. To this end we greatly improved the resolution of the numerical simulations in the initial stages. This novel numerical approach facilitates a detailed study of multi-spot ignition scenarios with up to hundreds of ignition sparks. Two-dimensional simulations are shown to be inappropriate to study the effects of initial flame configurations. Based on a set of three-dimensional models, we conclude that multi-spot ignition scenarios may improve type Ia supernova models towards better agreement with observations. The achievable effect reaches a maximum at a limited number of flame ignition kernels as shown by the numerical models and corroborated by a simple dimensional analysis.

  1. Multi-spot ignition in type Ia supernova models

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt; J. C. Niemeyer; S. E. Woosley

    2005-10-17T23:59:59.000Z

    We present a systematic survey of the capabilities of type Ia supernova explosion models starting from a number of flame seeds distributed around the center of the white dwarf star. To this end we greatly improved the resolution of the numerical simulations in the initial stages. This novel numerical approach facilitates a detailed study of multi-spot ignition scenarios with up to hundreds of ignition sparks. Two-dimensional simulations are shown to be inappropriate to study the effects of initial flame configurations. Based on a set of three-dimensional models, we conclude that multi-spot ignition scenarios may improve type Ia supernova models towards better agreement with observations. The achievable effect reaches a maximum at a limited number of flame ignition kernels as shown by the numerical models and corroborated by a simple dimensional analysis.

  2. Magnetic fields, spots and weather in chemically peculiar stars

    E-Print Network [OSTI]

    O. Kochukhov

    2007-11-30T23:59:59.000Z

    New observational techniques and sophisticated modelling methods has led to dramatic breakthroughs in our understanding of the interplay between the surface magnetism, atomic diffusion and atmospheric dynamics in chemically peculiar stars. Magnetic Doppler images, constructed using spectropolarimetric observations of Ap stars in all four Stokes parameters, reveal the presence of small-scale field topologies. Abundance Doppler mapping has been perfected to the level where distributions of many different chemical elements can be deduced self-consistently for one star. The inferred chemical spot structures are diverse and do not always trace underlying magnetic field geometry. Moreover, horizontal chemical inhomogeneities are discovered in non-magnetic CP stars and evolving chemical spots are observed for the first time in the bright mercury-manganese star alpha And. These results show that in addition to magnetic fields, another important non-magnetic structure formation mechanism acts in CP stars.

  3. A statistical study of bright spot reflection parameters

    E-Print Network [OSTI]

    Godwin, David Lee

    1981-01-01T23:59:59.000Z

    cal Study of Bright Spot Reflection Parameters. (December 1981) David Lee Godwin, B. S. , Pepperdine University Chairman of Adv1sory Committee: Dr. T. W. Spencer A data set consisting of two seismic lines served as the basis of study... obtained from each of the seismic lines were compared to deter- mine if the presence of commercial quantities of gas could be identified. The measurement process revealed that the interval travel time measurements between the marker horizons...

  4. Imaging of semiconductors using a flying laser spot scanning system

    E-Print Network [OSTI]

    Richardson, Thomas William

    1982-01-01T23:59:59.000Z

    in silicon p-n junctions was a direct result of this research. Verification of the experimental findings include analysis using other characterization techniques such as X-ray topo- graphy, electrical testing and preferential chemical etching... Image (I. R. Radiation) . . 22 Flying Spot Scanner Photo Image (Visible Radiation) . 23 15 Photo Image Showing Crystal Defects 24 16 Sirtl Etch Photomicrograph of Lattice Crystal Defects 25 17 Photo Image Showing Laser Induced Lifetime Changes 26...

  5. Pacific Islands Region News Release

    E-Print Network [OSTI]

    Pacific Islands Region News Release Contact: Wende Goo FOR IMMEDIATE RELEASE 808-721-4098 May 27 of these unique twins by contributing more than 100 hours of work to construct a holding pen for the young seal

  6. Press Releases | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel...

  7. Press Releases | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Videos Press Releases Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels...

  8. 32 ISSP Activity Report 2009 Highlights of Joint Research

    E-Print Network [OSTI]

    Katsumoto, Shingo

    32 ISSP Activity Report 2009 Highlights of Joint Research Synchrotron Radiation Laboratory radiation. The operation time of these beamlines are about 4000 hours and the number of users is more than performance computing environment. In particular, the SCC selectively promotes and supports large

  9. High Strength Composite Conductors 2009 NHMFL Science Highlight for NSF

    E-Print Network [OSTI]

    Weston, Ken

    High Strength Composite Conductors 2009 NHMFL Science Highlight for NSF DMR-Award 0654118 Magnet-Award 0654118 Magnet Science and Technology International Collaborations This work is a result Science & Engineering, McMaster University, Canada and Dr. A. Misra from Los Alamos National Laboratory

  10. Molecular Plant RESEARCH HIGHLIGHT Rhizosphere Microbes as Essential Partners for

    E-Print Network [OSTI]

    Hirt, Heribert

    to stress signals such as drought, heat, salinity, herbivory, and pathogens (Hirt, 2009). Some responsesMolecular Plant RESEARCH HIGHLIGHT Rhizosphere Microbes as Essential Partners for Plant Stress microbial associations for stress tolerance and survival. Although many plants lack the adaptive capability

  11. Walker Institute for Climate System Research Research Highlights

    E-Print Network [OSTI]

    Lucarini, Valerio

    . The UK act calls for national risk assessments and for bodies such as water and energy utilities Director's outlook 3 About us 4 Understanding 7 African rainfall 8 Climate variability and change;3 Director's outlook Welcome to our first issue of Research Highlights. This publication gives you

  12. Pellet ELM Pacing Developments DIII-D December Experiment Highlights

    E-Print Network [OSTI]

    Pellet ELM Pacing Developments ­ DIII-D December Experiment Highlights L.R. Baylor1, T.C. Jernigan1 issue for ITER. ELM Pacing has been shown to reduce the ELM size. · In support of ITER, the pellet injector gun design has been modified to produce small pellets at slow speeds. · The new injector gun

  13. FUEL CELL TECHNOLOGIES PROGRAM Highlights from U.S.

    E-Print Network [OSTI]

    FUEL CELL TECHNOLOGIES PROGRAM Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Transformation Activities DOE supported projects have spurred companies to order >3,000 fuel cell powered liftOn, Inc. (with fuel cell deployments at AT&T and Pacific Gas & Electric sites) and Sprint Nextel

  14. Highlights of the MCTP Symposium on Higgs Boson Physics

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Highlights of the MCTP Symposium on Higgs Boson Physics MCTP Higgs Symposium webpage: http Sharma #12;Pursuing the Higgs Boson in 2010--2011 Present Experimental Limits on the Higgs Boson---status of the Tevatron search Prospects for the Tevatron in 2010--2011 The LHC Higgs boson search at s=7 TeV with 1

  15. Conference highlights of "Toward a New Millennium in Galaxy Morphology"

    E-Print Network [OSTI]

    Christopher J. Conselice

    1999-10-19T23:59:59.000Z

    A summary of the highlights of the conference, "Toward a New Millennium in Galaxy Morphology" is presented. In this review, I cover the major topics addressed at the conference, including both the observational and theoretical frameworks suggested for understanding the morphology of galaxies.

  16. PhysicsHighlight Proton radiography at Los Alamos National Laboratory

    E-Print Network [OSTI]

    PhysicsHighlight Proton radiography at Los Alamos National Laboratory Proton Radiography, invented at Los Alamos National Laboratory, employs a high-energy proton beam to image the properties and behavior of materials driven by high explosives. A series of proton radiographs of disks (left to right) aluminum

  17. TRINITY ACCESS PROGRAMMES (TAP) HIGHLIGHTS OF 2009-10

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    TRINITY ACCESS PROGRAMMES (TAP) HIGHLIGHTS OF 2009-10 Trinity Access Programmes #12;INTRODUCTION Trinity is a university that strives to eliminate barriers and create opportunity; we want the best and brightest to know that Trinity is the university for them, regardless of socio-economic background

  18. For Immediate Release --Monday, October 20, 2014 University of Lethbridge highlights for the week of Oct. 20

    E-Print Network [OSTI]

    Hossain, Shahadat

    themselves when it comes to dire predictions about the future, including peak oil, peak food, over-population, climate change, disease pandemics and more. Contact

  19. Top Spot is an intelligent advertising product that targets your most suitable listings to the right people

    E-Print Network [OSTI]

    Peters, Richard

    Top Spot is an intelligent advertising product that targets your most suitable listings to the right people by suburb and price. Top Spot listings appear at the top of the search results page estate agency both before and after signing up to Top Spot. 72% MORE VIEWS^ Advertising with Top Spot

  20. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01T23:59:59.000Z

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  1. For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ProgramsFIRST Center VideoApril 15,

  2. For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ProgramsFIRST Center VideoApril

  3. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 CarbonNews Releases Access news

  4. Responses for Public Release

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Dr.ResponseEnergyfor Public Release

  5. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21, 2004

  6. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21, 20045

  7. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21,

  8. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21,7 News

  9. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21,7 News

  10. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21,7 News

  11. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21,7 News

  12. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21,7 News

  13. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21,7 News

  14. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21,7 News

  15. News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21,7 News

  16. WIPP News Releases - 1998

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading* (star)8 News Releases DOE

  17. WIPP News Releases - 1999

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading* (star)8 News Releases DOE9

  18. WIPP News Releases - 2000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading* (star)8 News Releases

  19. WIPP News Releases - 2001

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading* (star)8 News Releases1

  20. WIPP News Releases - 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading* (star)8 News Releases12

  1. WIPP News Releases - 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading* (star)8 News Releases123

  2. WIPP News Releases - 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading* (star)8 News Releases1235

  3. WIPP News Releases - 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading* (star)8 News Releases1235

  4. WIPP News Releases - 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading* (star)8 News Releases1235

  5. The Information Role of Spot Prices and Inventories

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S.6, 2014 IndependentInformation Role of Spot

  6. Spot Prices for Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables TablesPricesSpot Prices (Crude

  7. Imager Spots and Samples Tiny Tumors | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot SpringsemployedImager Spots and Samples

  8. EM Highlights Advisory Board Contributions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM Highlights Advisory Board Contributions

  9. 11/12/11 Journal of Geophysical Research -Atmospheres: Editors' Highlight 1/1www.agu.org/cgi-bin/highlights/highlights.cgi?action=show&doi=10.1029/20

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    11/12/11 Journal of Geophysical Research - Atmospheres: Editors' Highlight 1/1www.agu.org/cgi-bin/highlights/highlights.cgi?action=show&doi=10.1029/20 2011. American Geophysical Union. All Rights Reserved. AGU: Jo nal of Geoph ical Re ea ch

  10. March market review. [Spot market prices for uranium (1993)

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    The spot market price for uranium in unrestricted markets weakened further during March, and at month end, the NUEXCO Exchange Value had fallen $0.15, to $7.45 per pound U3O8. The Restricted American Market Penalty (RAMP) for concentrates increased $0.15, to $2.55 per pound U3O8. Ample UF6 supplies and limited demand led to a $0.50 decrease in the UF6 Value, to $25.00 per kgU as UF6, while the RAMP for UF6 increased $0.75, to $5.25 per kgU. Nine near-term uranium transactions were reported, totalling almost 3.3 million pounds equivalent U3O8. This is the largest monthly spot market volume since October 1992, and is double the volume reported in January and February. The March 31 Conversion Value was $4.25 per kgU as UF6. Beginning with the March 31 Value, NUEXCO now reports its Conversion Value in US dollars per kilogram of uranium (US$/kgU), reflecting current industry practice. The March loan market was inactive with no transactions reported. The Loan Rate remained unchanged at 3.0 percent per annum. Low demand and increased competition among sellers led to a one-dollar decrease in the SWU Value, to $65 per SWU, and the RAMP for SWU declined one dollar, to $9 per SWU.

  11. Hot spot-derived shock initiation phenomena in heterogeneous nitromethane

    SciTech Connect (OSTI)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Stephen A [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory; Dattelbaum, Andrew M [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The addition of solid silica particles to gelled nitromethane offers a tractable model system for interrogating the role of impedance mismatches as one type of hot spot 'seed' on the initiation behaviors of explosive formulations. Gas gun-driven plate impact experiments are used to produce well-defined shock inputs into nitromethane-silica mixtures containing size-selected silica beads at 6 wt%. The Pop-plots or relationships between shock input pressure and rundistance (or time)-to-detonation for mixtures containing small (1-4 {micro}m) and large (40 {micro}m) beads are presented. Overall, the addition of beads was found to influence the shock sensitivity of the mixtures, with the smaller beads being more sensitizing than the larger beads, lowering the shock initiation threshold for the same run distance to detonation compared with neat nitromethane. In addition, the use of embedded electromagnetic gauges provides detailed information pertaining to the mechanism of the build-up to detonation and associated reactive flow. Of note, an initiation mechanism characteristic of homogeneous liquid explosives, such as nitromethane, was observed in the nitromethane-40 {micro}m diameter silica samples at high shock input pressures, indicating that the influence of hot spots on the initiation process was minimal under these conditions.

  12. The magnetic configuration of a delta-spot

    E-Print Network [OSTI]

    Balthasar, Horst; Louis, Rohan E; Verma, Meetu; Denker, Carsten

    2013-01-01T23:59:59.000Z

    Sunspots, which harbor both magnetic polarities within one penumbra, are called delta-spots. They are often associated with flares. Nevertheless, there are only very few detailed observations of the spatially resolved magnetic field configuration. We present an investigation performed with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope in Tenerife. We observed a sunspot with a main umbra and several additional umbral cores, one of them with opposite magnetic polarity (the delta-umbra). The delta-spot is divided into two parts by a line along which central emissions of the spectral line Ca II 854.2 nm appear. The Evershed flow comming from the main umbra ends at this line. In deep photospheric layers, we find an almost vertical magnetic field for the delta-umbra, and the magnetic field decreases rapidly with height, faster than in the main umbra. The horizontal magnetic field in the direction connecting main and delta-umbra is rather smooth, but in one location next to a bright penumbral featu...

  13. Transformation from spots to waves in a model of actin pattern formation

    E-Print Network [OSTI]

    Stephen Whitelam; Till Bretschneider; Nigel J. Burroughs

    2009-05-18T23:59:59.000Z

    Actin networks in certain single-celled organisms exhibit a complex pattern-forming dynamics that starts with the appearance of static spots of actin on the cell cortex. Spots soon become mobile, executing persistent random walks, and eventually give rise to traveling waves of actin. Here we describe a possible physical mechanism for this distinctive set of dynamic transformations, by equipping an excitable reaction-diffusion model with a field describing the spatial orientation of its chief constituent (which we consider to be actin). The interplay of anisotropic actin growth and spatial inhibition drives a transformation at fixed parameter values from static spots to moving spots to waves.

  14. Host-specific strain of Stemphylium causes leaf spot disease of California spinach

    E-Print Network [OSTI]

    Koike, Steven T.; Henderson, Diana M.; Butler, Edward E.

    2001-01-01T23:59:59.000Z

    spinach culti- vars developed leaf spots within 2 weeks, while the wateras onto spinach lines used in downy mildew research. A water

  15. Optimal spot market inventory strategies in the presence of cost and price risk

    E-Print Network [OSTI]

    Guo, X.; Kaminsky, P.; Tomecek, P.; Yuen, M.

    2011-01-01T23:59:59.000Z

    Optimal spot market inventory strategies in the presence ofeither increase or decrease inventory by buying or sellingof actively managing inventory during the period rather than

  16. COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS

    SciTech Connect (OSTI)

    S.O. Bader

    1999-10-18T23:59:59.000Z

    The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be conservatively applied to confined CSNF assemblies.

  17. 28 March 2011 Press release for immediate release

    E-Print Network [OSTI]

    Bristol, University of

    28 March 2011 Press release for immediate release A jog a day keeps osteoporosis away A short burst, these are unlikely to offer much protection against the risk of osteoporosis in later life. This is the key finding such as walking. This is consistent with previous findings that women entering the menopause who combined

  18. Press release For Immediate Release Seattle, USA. June 6, 2008

    E-Print Network [OSTI]

    and the high prices for wood pellets in Europe. The rapid expansion in global trade of biomass is likelyPress release For Immediate Release Seattle, USA. June 6, 2008 Global trade of woody biomass has almost doubled in five years With the increasing demand for woody biomass, global trade of particularly

  19. Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

  20. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    SciTech Connect (OSTI)

    D. Ray Johnson; Sidney Diamond

    2000-06-19T23:59:59.000Z

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given.

  1. EM Highlights Idaho Site's 2014 Accomplishments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM Highlights Advisory Board ContributionsIdaho

  2. Highlights | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlights LANSCenter

  3. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U CO1)ProgramsScience Highlights

  4. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U CO1)ProgramsScience HighlightsScience

  5. Science Highlights | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" Find ScienceDemosHighlights

  6. Science Highlights | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" FindHighlights Basic Energy

  7. Science Highlights | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" FindHighlights Basic

  8. Science Highlights | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" FindHighlights BasicScience

  9. Science Highlights | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" FindHighlights

  10. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" FindHighlights0 Click on icons

  11. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" FindHighlights0 Click on icons1

  12. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" FindHighlights0 Click on icons12

  13. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" FindHighlights0 Click on

  14. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland Science Stockpile2015HighlightsScience

  15. Highlight Archives | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L80's »RegionalsScience Highlights »

  16. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray IrwinandRobertofScience Highlights

  17. Recent report highlights impace of emission trading on energy efficiency

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The Department of Energy recently released a report which concluded that of the incentives provided by the Clean Air Act Amendments of 1990, the most significant of these is the likely to be the emission cap. This cap provides incentives to reduce the rate of growth in electricity generation. The report said that a bonus allowance reserve offers utilities additional incentive to increase energy efficiency and seems likely to stimulate greater use of IRP, although it`s direct rewards to utilities now ma be less attractive than originally anticipated.

  18. High Performance Alkaline Fuel Cell Membranes > Research Highlights >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry| Center forResearch

  19. Highlights | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3Education » Higher

  20. Highlights | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3Education » HigherCenter

  1. STIMULUS SNAPSHOTS Highlights From the Past Two Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n uSTEM Outreach SHARE

  2. Sandia Energy - BES Highlight: Stress-Induced Nanoparticle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6Andy ArmstrongCrystallization

  3. Princeton Plasma Physics Laboratory FY2003 Annual Highlights

    SciTech Connect (OSTI)

    Editors: Carol A. Phillips; Anthony R. DeMeo

    2004-08-23T23:59:59.000Z

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

  4. AUTOMATIC HOT SPOT DETECTION AND SEGMENTATION IN WHOLE BODY FDG-PET IMAGES Haiying Guan1

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    AUTOMATIC HOT SPOT DETECTION AND SEGMENTATION IN WHOLE BODY FDG-PET IMAGES Haiying Guan1 , Toshiro a system for automatic hot spots detection and segmentation in whole body FDG-PET images. The main in clinical PET images. 1.INTRODUCTION Positron emission tomography (PET) using fluorine-18 de- oxyglucose

  5. Ichthyophthirius multifiliis (White Spot) Infections in Ruth Francis-Floyd and Peggy Reed2

    E-Print Network [OSTI]

    Watson, Craig A.

    CIR920 Ichthyophthirius multifiliis (White Spot) Infections in Fish1 Ruth Francis-Floyd and Peggy that causes "Ich" or "white spot disease." This disease is a major prob- lem to aquarists and commercial fish producers world wide. Ichthyophthirius is an important disease of tropical fish, goldfish, and food fish

  6. Stochastic Dominance Tests for Risk Lovers: with Application to Oil Spot and Futures Markets

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    Stochastic Dominance Tests for Risk Lovers: with Application to Oil Spot and Futures Markets for risk averters and risk lovers to study the performance of the oil spot and futures markets in both pre that there is no arbitrage opportunity between these two markets and conclude that market efficiency and market rationality

  7. The Effects of the Dysfunctional Spot Market for Electricity in California

    E-Print Network [OSTI]

    The Effects of the Dysfunctional Spot Market for Electricity in California on the Cost of Forward), the Consortium for Electric Reliability Technology Solutions (CERTS) program on Reliability and Markets at the U Cruz, California. #12;ABSTRACT The unexpectedly high spot prices for electricity in the summer of 2000

  8. Resistance Spot Welding of Galvanized Steel: Part I. Material Variations and Process Modifications

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ( l Resistance Spot Welding of Galvanized Steel: Part I. Material Variations and Process to determine their effects on the acceptable range of resistance spot welding conditions for galvanized steel upsloping and downsloping of the weld current, preheat current, postheat current, electrode tip geometry

  9. Forecasting electricity spot market prices with a k-factor GIGARCH process.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Forecasting electricity spot market prices with a k-factor GIGARCH process. Abdou Kâ Diongue this method to the German electricity price market for the period August 15, 2000 - De- cember 31, 2002 and we, Pelacchi and Venturini (2002) investigate several markets. In addition, electricity spot prices exhibit

  10. Subauroral proton spots visualize the Pc1 source A. G. Yahnin,1

    E-Print Network [OSTI]

    California at Berkeley, University of

    Subauroral proton spots visualize the Pc1 source A. G. Yahnin,1 T. A. Yahnina,1 and H. U. Frey2 observations from the IMAGE spacecraft revealed a new type of proton aurora ­ subauroral proton spots, which map onto the vicinity of the plasmapause. It has been suggested that this proton aurora is produced

  11. Control of Black Spot of Roses with Sulphur-Copper Dust.

    E-Print Network [OSTI]

    Lyle, E. W. (Eldon W.)

    1944-01-01T23:59:59.000Z

    -off. Black spot was controlled with dusting (less than 0.1% of leaflet infection on September 23) and 3nt to ;easoll e and - - the CONTROL OF BLACK SPOT OF ROSES WITH SULPHUR-COPPER DUST 23 Table 10. Effect of time of cutting off understock tope...

  12. FY 1995 research highlights: PNL accomplishments in OER programs

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  13. Wildlife studies on the Hanford Site: 1993 Highlights report

    SciTech Connect (OSTI)

    Cadwell, L.L. [ed.

    1994-04-01T23:59:59.000Z

    The Pacific Northwest Laboratory (PNL) Wildlife Resources Monitoring Project was initiated by DOE to track the status of wildlife populations to determine whether Hanford operations affected them. The project continues to conduct a census of wildlife populations that are highly visible, economically or aesthetically important, and rare or otherwise considered sensitive. Examples of long-term data collected and maintained through the Wildlife Resources Monitoring Project include annual goose nesting surveys conducted on islands in the Hanford Reach, wintering bald eagle surveys, and fall Chinook salmon redd (nest) surveys. The report highlights activities related to salmon and mollusks on the Hanford Reach of the Columbia River; describes efforts to map vegetation on the Site and efforts to survey species of concern; provides descriptions of shrub-steppe bird surveys, including bald eagles, Canada geese, and hawks; outlines efforts to monitor mule deer and elk populations on the Site; and describes development of a biological database management system.

  14. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    SciTech Connect (OSTI)

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H [Hokkaido University, Sapporo, Hokkaido (Japan)

    2014-06-01T23:59:59.000Z

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 0.98 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  15. Commercial SNF Accident Release Fractions

    SciTech Connect (OSTI)

    J. Schulz

    2004-11-05T23:59:59.000Z

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the container that confines the fuel assemblies could provide an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. This analysis, however, does not take credit for the additional barrier and establishes only the total release fractions for bare unconfined intact commercial SNF assemblies, which may be conservatively applied to confined intact commercial I SNF assemblies.

  16. Progress in tritium retention and release modeling for ceramic breeders

    SciTech Connect (OSTI)

    Raffray, A.R.; Federici, G. [Max-Planck-Institut fuer Plasmaphysik, Muenchen (Germany)] [and others

    1994-12-31T23:59:59.000Z

    An important aspect of the design and analysis of ceramic breeder blankets is the ability to predict the phenomenological behavior of tritium in the ceramic breeder under operating reactor conditions. By understanding the behavior of tritium in such materials, analysis and accurate predictions can be made regarding the blanket tritium release and inventory which are key design issues based on safety and fuel self-sufficiency considerations. This paper highlights the progress in tritium modeling over the last decade. Key tritium transport mechanisms are briefly described along with the more recent and sophisticated models developed to help understand them. Recent experimental data are highlighted and model calibration and validation discussed. Finally, example applications to blanket cases are shown as illustration of current predictions for ceramic breeder blanket tritium inventory.

  17. Decision making in coastal fisheries conflict: the case of red drum and spotted seatrout legislation in Texas

    E-Print Network [OSTI]

    Christian, Richard Travis

    1986-01-01T23:59:59.000Z

    Stricter Measures Called For The TPWD Increases Regulations on Red and Spotted Seatrout Illegal Netting 61 65 66 Drum TABLE OF CONTENTS (continued) IV CASE FINDINGS (continued) The Opposition Increases The Legislative Process Economic Impact... and spotted seatrout caught in Texas February 12 May 19 H. B. 980 S. B. 139 Called for a halt to harvest of red drum and spotted seatrout in Texas by all persons February 12 killed Red drum and spotted seat rout to be made permanently illegal...

  18. MEDIA RELEASE 17 May 2012

    E-Print Network [OSTI]

    Pedersen, Tom

    heating systems known as District Energy (DE) Systems generate heat at a centralMEDIA RELEASE 17 May 2012 District Energy heating an effective way for BC communities to reduce greenhouse gases? Centralized

  19. PRESS RELEASE 2 February 2010

    E-Print Network [OSTI]

    PRESS RELEASE 2 February 2010 Replica house flooded by 196,000 gallons of water to test flood extensive hydraulic laboratory at Wallingford. To streamline the test procedures, HR Wallingford have

  20. The Energy Department's Geothermal Technologies Office Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

  1. Changes in release cycles for EIA's

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Annual Energy Outlook Full Edition will be released in spring 2014, including analysis of energy issues and many alternative scenarios. Shorter will be released in late 2014 or...

  2. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...

    Energy Savers [EERE]

    Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los...

  3. Radiological Release Accident Investigation Report - Phase 1...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Accident Investigation Report - Phase 1 Radiation Report Radiological Release Accident Investigation Report - Phase 1 Radiation Report Phase 1 of this accident...

  4. Hot spot generation in energetic materials created by long-wavelength infrared radiation

    SciTech Connect (OSTI)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S.; Dlott, Dana D., E-mail: dlott@illinois.edu [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-02-10T23:59:59.000Z

    Hot spots produced by long-wavelength infrared (LWIR) radiation in an energetic material, crystalline RDX (1,3,5-trinitroperhydro-1,3,5-triazine), were studied by thermal-imaging microscopy. The LWIR source was a CO{sub 2} laser operating in the 28-30?THz range. Hot spot generation was studied using relatively low intensity (?100?W cm{sup ?2}), long-duration (450 ms) LWIR pulses. The hot spots could be produced repeatedly in individual RDX crystals, to investigate the fundamental mechanisms of hot spot generation by LWIR, since the peak hot-spot temperatures were kept to ?30?K above ambient. Hot spots were generated preferentially beneath RDX crystal planes making oblique angles with the LWIR beam. Surprisingly, hot spots were more prominent when the LWIR wavelength was tuned to be weakly absorbed (absorption depth ?30??m) than when the LWIR wavelength was strongly absorbed (absorption depth ?5??m). This unexpected effect was explained using a model that accounts for LWIR refraction and RDX thermal conduction. The weakly absorbed LWIR is slightly focused underneath the oblique crystal planes, and it penetrates the RDX crystals more deeply, increasing the likelihood of irradiating RDX defect inclusions that are able to strongly absorb or internally focus the LWIR beam.

  5. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOE Patents [OSTI]

    Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.

    1987-09-04T23:59:59.000Z

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.

  6. Wildlife studies on the Hanford site: 1994 Highlights report

    SciTech Connect (OSTI)

    Cadwell, L.L. [ed.

    1995-04-01T23:59:59.000Z

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population.

  7. May market review. [Spot market prices for uranium (1993)

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    Seven uranium transactions totalling nearly three million pounds equivalent U3O8 were reported during May, but only two, totalling less than 200 thousand pounds equivalent U3O8, involved concentrates. As no discretionary buying occurred during the month, and as near-term supply and demand were in relative balance, prices were steady, while both buyers and sellers appeared to be awaiting some new market development to signal the direction of future spot-market prices. The May 31, 1993, Exchange Value and the Restricted American market Penalty (RAMP) for concentrates were both unchanged at $7.10, and $2.95 per pound U3O8, respectively. NUEXCO's judgement was that transactions for significant quantities of uranium concentrates that were both deliverable in and intended for consumption in the USA could have been concluded on May 31 at $10.05 per pound U3O8. Two near-term concentrate transactions were reported in which one US utility purchased less than 200 thousand pounds equivalent U3O8 from two separate sellers. These sales occurred at price levels at or near the May 31 Exchange Value plus RAMP. No long-term uranium transactions were reported during May. Consequently, the UF6 Value decreased $0.20 to $24.30 per kgU as UF6, reflecting some weakening of the UF6 market outside the USA.

  8. Energy Secretary Steven Chu to Travel to Bay Area to Highlight...

    Energy Savers [EERE]

    Steven Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the...

  9. Secretary Chu Highlights All-of-the-Above Energy Strategy in...

    Energy Savers [EERE]

    Highlights All-of-the-Above Energy Strategy in Senate Budget Testimony Secretary Chu Highlights All-of-the-Above Energy Strategy in Senate Budget Testimony February 16, 2012 -...

  10. Sketching Shadows and Highlights to Position Lights Pierre Poulin Karim Ratib Marco Jacques

    E-Print Network [OSTI]

    Montréal, Université de

    of shadows or highlights. Extended light sources are positioned by sketches of umbra or penum­ bra]. These points are considered to be in an umbra or a penumbra region, or in a highlight region. Then, by a system

  11. X-ray imaging with monochromatic and small focal spot size sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of x-ray energy and intensity (under investigation) Measurements at the Elettra (Trieste) synchrotron Edge Response Function at ATF * Spot size * He Pipe added * 10 7 10 8...

  12. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    SciTech Connect (OSTI)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Berk, H. L. [Department of Physics, University of Texas, Austin, Texas 78712 (United States)

    2014-10-15T23:59:59.000Z

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  13. Influence of spot size on propagation dynamics of laser-produced tin plasma

    E-Print Network [OSTI]

    Harilal, S S

    2007-01-01T23:59:59.000Z

    ?Color online? Images of the tin plume recorded with 280 ? mdynamics of laser-produced tin plasma S. S. Harilal a?dynamics of an expanding tin plume for various spot sizes

  14. Retinal response of Macaca mulatta to picosecond laser pulses of varying energy and spot size

    E-Print Network [OSTI]

    Roach, William P.

    We investigate the relationship between the laser beam at the retina (spot size) and the extent of retinal injury from single ultrashort laser pulses. From previous studies it is believed that the retinal effect of single ...

  15. April market review. [Spot market prices for uranium (1993)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The spot market price for uranium outside the USA weakened further during April, and at month end, the NUEXCO Exchange Value had fallen $0.35, to $7.10 per pound U3O8. This is the lowest Exchange Value observed in nearly twenty years, comparable to Values recorded during the low price levels of the early 1970s. The Restricted American Market Penalty (RAMP) for concentrates increased $0.40, to $2.95 per pound U3O8. Transactions for significant quantities of uranium concentrates that are both deliverable in and intended for consumption in the USA could have been concluded on April 30 at $10.05 per pound U3O8, up $0.05 from the sum of corresponding March Values. Four near-term concentrates transactions were reported, totalling nearly 1.5 million pounds equivalent U3O8. One long-term sale was reported. The UF6 Value also declined, as increased competition among sellers led to a $0.50 decrease, to $24.50 per kgU as UF6. However, the RAMP for UF6 increased $0.65, to $5.90 per kgU as UF6, reflecting an effective US market level of $30.40 per kgU. Two near term transactions were reported totalling approximately 1.1 million pounds equivalent U3O8. In total, eight uranium transactions totalling 28 million pounds equivalent U3O8 were reported, which is about average for April market activity.

  16. Photovoltaic ground fault and blind spot electrical simulations.

    SciTech Connect (OSTI)

    Flicker, Jack David; Johnson, Jay

    2013-06-01T23:59:59.000Z

    Ground faults in photovoltaic (PV) systems pose a fire and shock hazard. To mitigate these risks, AC-isolated, DC grounded PV systems in the United States use Ground Fault Protection Devices (GFPDs), e.g., fuses, to de-energize the PV system when there is a ground fault. Recently the effectiveness of these protection devices has come under question because multiple fires have started when ground faults went undetected. In order to understand the limitations of fuse-based ground fault protection in PV systems, analytical and numerical simulations of different ground faults were performed. The numerical simulations were conducted with Simulation Program with Integrated Circuit Emphasis (SPICE) using a circuit model of the PV system which included the modules, wiring, switchgear, grounded or ungrounded components, and the inverter. The derivation of the SPICE model and the results of parametric fault current studies are provided with varying array topologies, fuse sizes, and fault impedances. Closed-form analytical approximations for GFPD currents from faults to the grounded current carrying conductor-known as %E2%80%9Cblind spot%E2%80%9D ground faults-are derived to provide greater understanding of the influence of array impedances on fault currents. The behavior of the array during various ground faults is studied for a range of ground fault fuse sizes to determine if reducing the size of the fuse improves ground fault detection sensitivity. The results of the simulations show that reducing the amperage rating of the protective fuse does increase fault current detection sensitivity without increasing the likelihood of nuisance trips to a degree. Unfortunately, this benefit reaches a limit as fuses become smaller and their internal resistance increases to the point of becoming a major element in the fault current circuit.

  17. Interfacial analysis of the ex-situ reinforced phase of a laser spot welded Zr-based bulk metallic glass composite

    SciTech Connect (OSTI)

    Wang, Huei-Sen, E-mail: huei@isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, 81148, Kaohsiung, Taiwan (China); Chen, Hou-Guang [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China); Jang, Jason Shian-Ching [Institute of Materials Science and Engineering and Department of Mechanical Engineering, National Central University, Chung-Li 32001, Taiwan (China); Lin, Dong-Yih [Department of Chemical and Materials Engineering, National University of Kaohsiung, 81148, Kaohsiung, Taiwan (China); Gu, Jhen-Wang [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China)

    2013-12-15T23:59:59.000Z

    To study the interfacial reaction of the ex-situ reinforced phase (Ta) of a Zr-based ((Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8})Si{sub 0.75} + Ta{sub 5}) bulk metallic glass composite after laser spot welding, the interfacial regions of the reinforced phases located at specific zones in the welds including the parent material, weld fusion zone and heat affected zone were investigated. Specimen preparation from the specific zones for transmission electron microscopy analysis was performed using the focused ion beam technique. The test results showed that the reinforced phases in the parent material, weld fusion zone and heat affected zone were all covered by an interfacial layer. From microstructure analysis, and referring to the phase diagram, it was clear that the thin layers are an intermetallic compound ZrCu phase. However, due to their different formation processes, those layers show the different morphologies or thicknesses. - Highlights: An ex-situ Zr-based BMG composite was laser spot welded. The interfacial regions of the RPs located at PM, WFZ and HAZ were investigated. The RPs in the PM, WFZ and HAZ were all covered by a ZrCu interfacial layer. Due to different formation processes, those layers show the different morphology.

  18. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    SciTech Connect (OSTI)

    Nick Soelberg; Joe Enneking

    2011-05-01T23:59:59.000Z

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  19. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOE Patents [OSTI]

    Zhang, Jian-Shi (Shanghai, CN); Giometti, Carol S. (Glenview, IL); Tollaksen, Sandra L. (Montgomery, IL)

    1989-01-01T23:59:59.000Z

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  20. Nuclear energy release from fragmentation

    E-Print Network [OSTI]

    Cheng Li; S. R. Souza; M. B. Tsang; Feng-Shou Zhang

    2015-05-09T23:59:59.000Z

    Nuclear energy released by splitting Uranium and Thorium isotopes into two, three, four, up to eight fragments with nearly equal size are studied. We found that the energy released come from equally splitting the $^{235,238}$U and $^{230,232}$Th nuclei into to three fragments is largest. The statistical multifragmentation model is employed to calculate the probability of different breakup channels for the excited nuclei. Weighing the the probability distributions of fragments multiplicity at different excitation energies for the $^{238}$U nucleus, we found that an excitation energy between 1.2 and 2 MeV/u is optimal for the $^{235}$U, $^{238}$U, $^{230}$Th and $^{232}$Th nuclei to release nuclear energy of about 0.7-0.75 MeV/u.

  1. Nuclear energy release from fragmentation

    E-Print Network [OSTI]

    Li, Cheng; Tsang, M B; Zhang, Feng-Shou

    2015-01-01T23:59:59.000Z

    Nuclear energy released by splitting Uranium and Thorium isotopes into two, three, four, up to eight fragments with nearly equal size are studied. We found that the energy released come from equally splitting the $^{235,238}$U and $^{230,232}$Th nuclei into to three fragments is largest. The statistical multifragmentation model is employed to calculate the probability of different breakup channels for the excited nuclei. Weighing the the probability distributions of fragments multiplicity at different excitation energies for the $^{238}$U nucleus, we found that an excitation energy between 1.2 and 2 MeV/u is optimal for the $^{235}$U, $^{238}$U, $^{230}$Th and $^{232}$Th nuclei to release nuclear energy of about 0.7-0.75 MeV/u.

  2. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Estimating the Volatility of Wholesale Electricity Spot Prices in the US

    E-Print Network [OSTI]

    Marathe, Achla

    permission. Estimating the Volatility of Wholesale Electricity Spot Prices in the US Lester Hadsell; Achla

  3. Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance

    SciTech Connect (OSTI)

    Li Heng; Sahoo, Narayan; Poenisch, Falk; Suzuki, Kazumichi; Li Yupeng; Li Xiaoqiang; Zhang Xiaodong; Gillin, Michael T.; Zhu, X. Ronald [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Lee, Andrew K. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2013-02-15T23:59:59.000Z

    Purpose: The purpose of this work was to assess the monitor unit (MU) values and position accuracy of spot scanning proton beams as recorded by the daily treatment logs of the treatment control system, and furthermore establish the feasibility of using the delivered spot positions and MU values to calculate and evaluate delivered doses to patients. Methods: To validate the accuracy of the recorded spot positions, the authors generated and executed a test treatment plan containing nine spot positions, to which the authors delivered ten MU each. The spot positions were measured with radiographic films and Matrixx 2D ion-chambers array placed at the isocenter plane and compared for displacements from the planned and recorded positions. Treatment logs for 14 patients were then used to determine the spot MU values and position accuracy of the scanning proton beam delivery system. Univariate analysis was used to detect any systematic error or large variation between patients, treatment dates, proton energies, gantry angles, and planned spot positions. The recorded patient spot positions and MU values were then used to replace the spot positions and MU values in the plan, and the treatment planning system was used to calculate the delivered doses to patients. The results were compared with the treatment plan. Results: Within a treatment session, spot positions were reproducible within {+-}0.2 mm. The spot positions measured by film agreed with the planned positions within {+-}1 mm and with the recorded positions within {+-}0.5 mm. The maximum day-to-day variation for any given spot position was within {+-}1 mm. For all 14 patients, with {approx}1 500 000 spots recorded, the total MU accuracy was within 0.1% of the planned MU values, the mean (x, y) spot displacement from the planned value was (-0.03 mm, -0.01 mm), the maximum (x, y) displacement was (1.68 mm, 2.27 mm), and the (x, y) standard deviation was (0.26 mm, 0.42 mm). The maximum dose difference between calculated dose to the patient based on the plan and recorded data was within 2%. Conclusions: The authors have shown that the treatment log file in a spot scanning proton beam delivery system is precise enough to serve as a quality assurance tool to monitor variation in spot position and MU value, as well as the delivered dose uncertainty from the treatment delivery system. The analysis tool developed here could be useful for assessing spot position uncertainty and thus dose uncertainty for any patient receiving spot scanning proton beam therapy.

  4. MEDIA RELEASE 10 February 2011

    E-Print Network [OSTI]

    Pedersen, Tom

    If British Columbia ramps up production to become a major electricity exporter there is no guaranteeMEDIA RELEASE 10 February 2011 Report reveals gaps in BC's electricity export policy framework Solutions (PICS). The report, The Export Question: Designing Policy for British Columbia Electricity Trade

  5. PRESS RELEASE 6 April 2010

    E-Print Network [OSTI]

    PRESS RELEASE 6 April 2010 Green office design and fit out company Morgan Lovell has become establishing processes and systems to improve energy efficiency at its London office. This has included fitting Marc Edney BSI Group Press Office Tel: +44 (0)20 8996 6330 (24 hours) Email: pressoffice

  6. CSR Press Release Submitted by

    E-Print Network [OSTI]

    CSR Press Release Submitted by: Categories: Posted: Energy Efficiency Listed as the Top Sustainability Issue New report says companies that take sustainability through an integrated approach are more likely to achieve their desired outcomes. Envido Sustainability, Environment Jul 30, 2010 11:48 AM EST

  7. Sea Level Rise Media Release

    E-Print Network [OSTI]

    Hu, Aixue

    Sea Level Rise Media Release Coverage Report 07/06/2009 Melting Ice Could Lead to Massive Waves 06/11/2009 Rising sea levels could see U.S. Atlantic coast cities make hard choices; Where to let Baltimore Chronicle & Sentinel, The 06/08/2009 Rapid rise in sea levels on East Coast predicted Pittsburgh

  8. HIGHLIGHTS 2006 | HIGHLIGHTS 2006 HIGHLIGHTS 2006

    E-Print Network [OSTI]

    Falge, Eva

    production (Nature, January 12, 2006). EINE THEORIE FR RASENDE RISSE Wenn Materialien zerreien, dann werden deformation conditions near a moving crack. Their study further shows that in rubber-like materials

  9. Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)] [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2013-08-15T23:59:59.000Z

    The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 ?s), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (?10 ns) current rise when a spot is formed. It induces high frequency (10100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.

  10. Neutron-absorber release device

    DOE Patents [OSTI]

    VAN Erp, Jan B. (Hinsdale, IL); Kimont, Edward L. (Evergreen Park, IL)

    1976-01-01T23:59:59.000Z

    A resettable device is provided for supporting an object, sensing when an environment reaches a critical temperature and releasing the object when the critical temperature is reached. It includes a flexible container having a material inside with a melting point at the critical temperature. The object's weight is supported by the solid material which gives rigidity to the container until the critical temperature is reached at which point the material in the container melts. The flexible container with the now fluid material inside has insufficient strength to support the object which is thereby released. Biasing means forces the container back to its original shape so that when the temperature falls below the melting temperature the material again solidifies, and the object may again be supported by the device.

  11. 2012 Microgrid Workshop Summary Released

    Broader source: Energy.gov [DOE]

    The Department of Energy has released the summary report from the July 30-31, 2012 Microgrid Workshop presented by the Office of Electricity Delivery and Energy Reliability at the Illinois Institute of Technology in Chicago. The workshop was held in response to discussions at the preceding DOE Microgrid Workshop, held in August 2011, which called for sharing lessons learned and best practices for system integration from existing projects in the U.S. (including military microgrids) and internationally.

  12. Department of Energy Releases 2014 Strategic Plan

    Broader source: Energy.gov [DOE]

    The Department of Energy released its 2014 Strategic Plan, a comprehensive blueprint to guide the agency's core mission.

  13. Webinar: Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording of the webinar, Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells, originally presented on April 25, 2011.

  14. PISCES FY11 Research Highlight Tritium accumulation within the ITER vessel is expected to be dominated

    E-Print Network [OSTI]

    PISCES FY11 Research Highlight Tritium accumulation within the ITER vessel is expected vessel. Another possible technique to mitigate tritium accumulation in these codeposited surfaces

  15. Meeting Action Items and Highlights from the Bio-Derived Liquids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) & Hydrogen Production Technical Team Research Review Meeting Action Items and Highlights...

  16. In Minnesota, U.S. Deputy Secretary of Energy Poneman Highlights...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Minnesota, U.S. Deputy Secretary of Energy Poneman Highlights Clean Energy Industries That Are Driving American Manufacturing Growth In Minnesota, U.S. Deputy Secretary of...

  17. Cleared for public release, distribution unlimited

    E-Print Network [OSTI]

    Feigenbaum, Joan

    Cleared for public release, distribution unlimited A Study on The Network as Economy #12;Cleared for public release, distribution unlimited The Premise Modern technological networks are on a collision for public release, distribution unlimited Network-centric Operations are at Risk Increasingly pervasive

  18. Controlled release of ibuprofen by mesomacroporous silica

    SciTech Connect (OSTI)

    Santamara, E., E-mail: esthersantamaria@ub.edu; Maestro, A.; Porras, M.; Gutirrez, J.M.; Gonzlez, C.

    2014-02-15T23:59:59.000Z

    Structured mesomacroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)poly(propylene oxide)poly(ethylene oxide) (EO{sub 19}PO{sub 39}EO{sub 19}) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorptiondesorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered mesomacroporous materials. The effect of the materials properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system. - Graphical abstract: Ibuprofen release profiles for the materials obtained from samples P84{sub m}eso (black diamonds), P84{sub 2}0% (white squares), P84{sub 5}0% (black triangles), P84{sub 7}5% (white diamonds), P84{sub 7}5% functionalized by grafting (black squares) and P84{sub 7}5% functionalized by co-condensation method (white triangles). Display Omitted - Highlights: Ordered mesomacroporous material is used as a controlled delivery system for ibuprofen. Incorporation of macropores in mesoporous silica improves ibuprofen adsorption. Mesomacroporous structures provide a lower delivery than mesoporous silica. APTES functionalization in mesomacroporous materials improves ibuprofen adsorption and delivery behaviour.

  19. arsenic stimulates release: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    releasing hormones LHFSH-RH for comparison Paris-Sud XI, Universit de 122 DRIFT BOTTLE RELEASES DRIFT BOTTLE RELEASES Environmental Sciences and Ecology Websites Summary:...

  20. Real-time spot size camera for pulsed high-energy radiographic machines

    SciTech Connect (OSTI)

    Watson, S.A.

    1993-06-01T23:59:59.000Z

    The focal spot size of an x-ray source is a critical parameter which degrades resolution in a flash radiograph. For best results, a small round focal spot is required. Therefore, a fast and accurate measurement of the spot size is highly desirable to facilitate machine tuning. This paper describes two systems developed for Los Alamos National Laboratory`s Pulsed High-Energy Radiographic Machine Emitting X-rays (PHERMEX) facility. The first uses a CCD camera combined with high-brightness floors, while the second utilizes phosphor storage screens. Other techniques typically record only the line spread function on radiographic film, while systems in this paper measure the more general two-dimensional point-spread function and associated modulation transfer function in real time for shot-to-shot comparison.

  1. Real-time spot size camera for pulsed high-energy radiographic machines

    SciTech Connect (OSTI)

    Watson, S.A.

    1993-01-01T23:59:59.000Z

    The focal spot size of an x-ray source is a critical parameter which degrades resolution in a flash radiograph. For best results, a small round focal spot is required. Therefore, a fast and accurate measurement of the spot size is highly desirable to facilitate machine tuning. This paper describes two systems developed for Los Alamos National Laboratory's Pulsed High-Energy Radiographic Machine Emitting X-rays (PHERMEX) facility. The first uses a CCD camera combined with high-brightness floors, while the second utilizes phosphor storage screens. Other techniques typically record only the line spread function on radiographic film, while systems in this paper measure the more general two-dimensional point-spread function and associated modulation transfer function in real time for shot-to-shot comparison.

  2. Electron depletion via cathode spot dispersion of dielectric powder into an overhead plasma

    SciTech Connect (OSTI)

    Gillman, Eric D. [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375 (United States)] [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375 (United States); Foster, John E. [Department of Nuclear Engineering and Radiological Sciences (NERS), University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, Michigan 48109 (United States)] [Department of Nuclear Engineering and Radiological Sciences (NERS), University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, Michigan 48109 (United States)

    2013-11-15T23:59:59.000Z

    The effectiveness of cathode spot delivered dielectric particles for the purpose of plasma depletion is investigated. Here, cathode spot flows kinetically entrain and accelerate dielectric particles originally at rest into a background plasma. The time variation of the background plasma density is tracked using a cylindrical Langmuir probe biased approximately at electron saturation. As inferred from changes in the electron saturation current, depletion fractions of up to 95% are observed. This method could be exploited as a means of communications blackout mitigation for manned and unmanned reentering spacecraft as well as any high speed vehicle enveloped by a dense plasma layer.

  3. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1992-01-01T23:59:59.000Z

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  4. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1992-12-01T23:59:59.000Z

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  5. PROGRAM HIGHLIGHTS Private donations support some of our most exciting initiatives.

    E-Print Network [OSTI]

    Lewis, Robert Michael

    PROGRAM HIGHLIGHTS Private donations support some of our most exciting initiatives. CAROL WOODY with the Bronx Defenders. Charlotte writes: "I am now more motivated than ever to reform the criminal "justice of the highlights of our students' experiences is designing a Community Action Project in GSWS 205: Introduction

  6. The IACOB spectroscopic database: recent updates and first data release

    E-Print Network [OSTI]

    Simn-Daz, S; Apellniz, J Maz; Castro, N; Herrero, A; Garcia, M; Prez-Prieto, J A; Caon, N; Alacid, J M; Camacho, I; Dorda, R; Godart, M; Gonzlez-Fernndez, C; Holgado, G; Rbke, K

    2015-01-01T23:59:59.000Z

    The IACOB project is an ambitious long-term project which is contributing to step forward in our knowledge about the physical properties and evolution of Galactic massive stars. The project aims at building a large database of high-resolution, multi-epoch, spectra of Galactic OB stars, and the scientific exploitation of the database using state-of-the-art models and techniques. In this proceeding, we summarize the latest updates of the IACOB spectroscopic database and highlight some of the first scientific results from the IACOB project; we also announce the first data release and the first public version of the iacob-broad tool for the line-broadening characterization of OB-type spectra.

  7. News Releases | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 Carbon NanotubeNewsroomReleases

  8. News Releases | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSizeprogramProjectReleases

  9. News Releases | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News Releases December 21,7

  10. Media Contact: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneoTechnologyCHPRC News Release AugustMore

  11. Media Contact: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneoTechnologyCHPRC News Release

  12. Media Contacts: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneoTechnologyCHPRC News Release Susan For

  13. Media Contacts: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneoTechnologyCHPRC News ReleaseFebruary

  14. Media Contacts: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneoTechnologyCHPRC News ReleaseFebruaryJuly

  15. Details of the Electro-Mechanical (E/M) Impedance Health Monitoring of Spot-Welded Structural Joints

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 Details of the Electro-Mechanical (E/M) Impedance Health Monitoring of Spot-Welded Structural sensors for health monitoring spot-welded structural joints. Experiments were performed on aluminum-electric transducer; Crack propagation; Crack detection. 1. INTRODUCTION Health monitoring of structural joints

  16. Price-based Congestion-Control in Wi-Fi Hot Spots Roberto Battiti(*), Marco Conti(**), Enrico Gregori(**), Mikalai Sabel(*)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    if they are in the transmission range of an access point. A new business model, named Wi-Fi Hot Spots, is now emerging to exploit offer with Wi-Fi. To reach an efficient use of the scarce bandwidth resources, market mechanisms the potentialities of this technology. A hot spot is a "critical" business area, e.g., airports, stations, hotels

  17. Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Forecasting the conditional volatility of oil spot and futures prices with structural breaks of oil spot and futures prices using three GARCH-type models, i.e., linear GARCH, GARCH with structural that oil price fluctuations influence economic activity and financial sector (e.g., Jones and Kaul, 1996

  18. Experimental results obtained during fatigue testing of a spot-welded lap-shear structural-joint specimen are

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    in a number of industries. Spot welding is the traditional method of assembly for steel-based automotive and construction of vehicular structures indicate a strong diversification of material usage, with aluminum and polymeric composites projected to play a major role. While aluminum is amenable to both spot welding

  19. Spot size dependence of laser accelerated protons in thin multi-ion foils Tung-Chang Liu,1,a)

    E-Print Network [OSTI]

    polarized laser beam irradiates an ultra-thin foil and accelerates nearly the whole foil by the radiationSpot size dependence of laser accelerated protons in thin multi-ion foils Tung-Chang Liu,1,a) Xi of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi

  20. Multi-Scale Multi-physics Methods Development for the Calculation of Hot-Spots in the NGNP

    SciTech Connect (OSTI)

    Downar, Thomas; Seker, Volkan

    2013-04-30T23:59:59.000Z

    Radioactive gaseous fission products are released out of the fuel element at a significantly higher rate when the fuel temperature exceeds 1600C in high-temperature gas-cooled reactors (HTGRs). Therefore, it is of paramount importance to accurately predict the peak fuel temperature during all operational and design-basis accident conditions. The current methods used to predict the peak fuel temperature in HTGRs, such as the Next-Generation Nuclear Plant (NGNP), estimate the average fuel temperature in a computational mesh modeling hundreds of fuel pebbles or a fuel assembly in a pebble-bed reactor (PBR) or prismatic block type reactor (PMR), respectively. Experiments conducted in operating HTGRs indicate considerable uncertainty in the current methods and correlations used to predict actual temperatures. The objective of this project is to improve the accuracy in the prediction of local "hot" spots by developing multi-scale, multi- physics methods and implementing them within the framework of established codes used for NGNP analysis. The multi-scale approach which this project will implement begins with defining suitable scales for a physical and mathematical model and then deriving and applying the appropriate boundary conditions between scales. The macro scale is the greatest length that describes the entire reactor, whereas the meso scale models only a fuel block in a prismatic reactor and ten to hundreds of pebbles in a pebble bed reactor. The smallest scale is the micro scale--the level of a fuel kernel of the pebble in a PBR and fuel compact in a PMR--which needs to be resolved in order to calculate the peak temperature in a fuel kernel.

  1. BETO Announces June Webinar: Algal Biofuels Consortium Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results...

  2. Remotely releasable template and dome

    SciTech Connect (OSTI)

    Allen, G.G. Jr.

    1986-12-02T23:59:59.000Z

    This patent describes a remotely releasable template assembly for precision placement of a template of the type having at least one sleeve member for placing about a well casing stub extending from the sea floor, comprising: mating means mounted with the template for demountably coupling the template to a complementary end of a drill string extending from a support structure located above the well casing stub. The mating means is positioned near the template assembly center of balance when the template assembly is demountably coupled to the drill string; the vertical axis of the drill string being essentially parallel to the longitudinal axis of the sleeve member when the drill string is demountably couple to the template assembly; the end of the drill string includes a gyroscopic orientation means for detecting the deviation of the template from a desired bearing; and the mating means maintains the template semi-ridgidly coupled to the drill string until the template is controllably released from the drill string; whereby the rotation of the drill string about the vertical axis of the drill string rotates the template assembly into the desired orientation.

  3. Brookhaven highlights

    SciTech Connect (OSTI)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L. (eds.)

    1992-01-01T23:59:59.000Z

    This publication provides a broad overview of the research programs and efforts being conducted, built, designed, and planned at Brookhaven National Laboratory. This work covers a broad range of scientific disciplines. Major facilities include the Alternating Gradient Synchrotron (AGS), with its newly completed booster, the National Synchrotron Light Source (NSLS), the High Flux Beam Reactor (HFBR), and the RHIC, which is under construction. Departments within the laboratory include the AGS department, accelerator development, physics, chemistry, biology, NSLS, medical, nuclear energy, and interdepartmental research efforts. Research ranges from the pure sciences, in nuclear physics and high energy physics as one example, to environmental work in applied science to study climatic effects, from efforts in biology which are a component of the human genome project to the study, production, and characterization of new materials. The paper provides an overview of the laboratory operations during 1992, including staffing, research, honors, funding, and general laboratory plans for the future.

  4. JLF Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center atdiffusivities inJLF Forms JLF Target

  5. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" Find ScienceDemos ScienceScience

  6. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" Find ScienceDemos

  7. CPT Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 - HOISTING30, 2006COV6,5,5

  8. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland Science Stockpile2015

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch Finds VitaminResearchClouds,

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch Finds

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsA New Approach for

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsA New Approach

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsA New ApproachA Novel

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsA New ApproachA

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsA New ApproachAFilling

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsA New

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsA NewIntersecting Cold

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsA NewIntersecting

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsA

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsASingle Particle

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsASingle ParticleThe

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsASingle

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsASingleAssessing Impact

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsASingleAssessing

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsASingleAssessingThe Two

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch FindsASingleAssessingThe

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearchMaking Sense of Convective

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7Research Form Research

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7Research Form ResearchThe

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7Research Form

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7Research FormImportance of

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7Research FormImportance

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7Research FormImportanceAn

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7Research

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7ResearchIntegrated Water

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7ResearchIntegrated

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7ResearchIntegratedCloud

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7ResearchIntegratedCloudARM

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7Observations of Microphysical

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7Observations of

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7Observations ofA Climatology of

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7Observations ofA Climatology

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7Observations ofA

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7Observations ofAEvaluation of

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7Observations ofAEvaluation

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7Observations

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7ObservationsQuantifying Error

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7ObservationsQuantifying

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7ObservationsQuantifyingStudy

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7ObservationsQuantifyingStudyA

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARM Products in Reanalysis

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARM Products in

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARM Products inUsing ARM

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARM Products inUsing

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARM Products

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARM ProductsSub-Grid Scale

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARM ProductsSub-Grid

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARM

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARMTheoretical Formulation

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARMTheoretical

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARMTheoreticalInfluence of

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARMTheoreticalInfluence

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of ARMTheoreticalInfluenceThe

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use of

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARM Science Applications of

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARM Science Applications

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARM Science

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARM ScienceOptical Depth

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARM ScienceOptical

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARM ScienceOpticalImproving

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARM

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARM M-PACE Data Used to

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARM M-PACE Data Used

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARM M-PACE Data

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARM M-PACE

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARM M-PACEWide Angle

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARM M-PACEWide

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARM M-PACEWideThreshold

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARM

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARMMinimal Shortwave

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARMMinimal ShortwaveThe

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARMMinimal

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARMMinimalHow Much

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARMMinimalHow MuchA

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use ofARMARMMinimalHow

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2Use

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRad Goes Global Download

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRad Goes Global

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRad Goes GlobalSmall Ice

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRad Goes GlobalSmall

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRad Goes

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRad GoesAerosol Effects

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRad GoesAerosol

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRad GoesAerosolCloud

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRad

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRadThe Surprisingly

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRadThe

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRadTheShortwave

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM QCRadTheShortwaveMeasuring

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARM

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMA Simple Algorithm to Find

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMA Simple Algorithm to

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMA Simple Algorithm

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMA Simple

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMA SimpleForcing Boundary

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMA SimpleForcing

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMA SimpleForcingRetrieving

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMA

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMAVertical Air Motion

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMAVertical Air

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMAVertical AirEstimating

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMAVertical

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMAVerticalRadiative Forcing

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMAVerticalRadiative

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2UseARMAVerticalRadiativeUsing

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PBSingle-Scattering Properties of

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PBSingle-Scattering Properties

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PBSingle-Scattering PropertiesThe

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PBSingle-Scattering PropertiesTheIce

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PBSingle-Scattering

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PBSingle-ScatteringAnalyzing the

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PBSingle-ScatteringAnalyzing

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PBSingle-ScatteringAnalyzingGlobal

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating Single Column Models with

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating Single Column Models

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating Single Column ModelsTo Be

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating Single Column ModelsTo

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating Single Column

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating Single ColumnRemote Sensing

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating Single ColumnRemote

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating Single

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating SingleSPLAT Makes Its Mark

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating SingleSPLAT Makes Its

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating SingleSPLAT Makes

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % AValidating SingleSPLAT MakesEvaluating