Powered by Deep Web Technologies
Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"Building Energy Data Exchange Specification"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification" "Version 2.3" "applicationvnd.ms-excel" "Overview:" "This document describes the DOE Building Energy Data Exchange Specification...

2

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

3

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

4

Better Buildings Alliance Equipment Performance Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

5

Better Buildings Alliance Equipment Performance Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

6

Preventing Building-Related Symptom Complaints in Office Buildings  

E-Print Network (OSTI)

1 Preventing Building-Related Symptom Complaints in Office Buildings Mark J. Mendell1* , Terry; 4 CH2M Hill; 5 Indoor Environmental Engineering; 6 Environmental Building Sciences, Inc.; 7 National practical strategies for preventing building- related symptoms in office buildings, based on the experience

Diamond, Richard

7

Better Buildings Neighborhood Program: Related Federal Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Related Federal Programs to someone by E-mail Share Better Buildings Neighborhood Program: Related Federal Programs on Facebook Tweet about Better Buildings Neighborhood Program: Related Federal Programs on Twitter Bookmark Better Buildings Neighborhood Program: Related Federal Programs on Google Bookmark Better Buildings Neighborhood Program: Related Federal Programs on Delicious Rank Better Buildings Neighborhood Program: Related Federal Programs on Digg Find More places to share Better Buildings Neighborhood Program: Related Federal Programs on AddThis.com... Our History Related Federal Programs Why Energy Efficiency Upgrades Contacts Related Federal Programs Related Links

8

Lighting technology specifications for relighting federal buildings  

SciTech Connect

Under a Federal Relighting Initiative (FRI) project, a set of Master Lighting Technology Specifications was developed for use by the Federal sector in relighting buildings. The specifications were to cover all major lighting technologies. The initial set was developed and issued for extensive peer review in December 1991. Extensive comments were received from industry, Federal sector participants (DOD, GSA, NASA, DOE, etc.), national laboratories, professional lighting organizations, private lighting professionals, and recognized experts in the lighting community. The document underwent extensive revision and was reissued in June 1992 for a second round of peer review. The current FRI Lighting Technology Specifications are organized into two sections: (1) Technical Notes and (2) Master Specifications. The Technical Notes contain explanations that enable the users to understand the background and reasons for specification requirements. The Master Specifications are organized in the Construction Specifications Institute (CSI) format and are intended to form the basis for competitive bidding and contracting to undertake relighting initiatives.

Harris, L. [USDOE, Washington, DC (United States); Purcell, C. [Pacific Northwest Lab., Richland, WA (United States); Gordon, H. [Burt Hill Kosar Rittelmann Associates (United States); McKay, H. [McKay (Hayden) Lighting Design (United States)

1992-10-01T23:59:59.000Z

9

Building Energy Data Exchange Specification (BEDES) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Building Energy Data Exchange Specification Commercial Buildings » Building Energy Data Exchange Specification (BEDES) Building Energy Data Exchange Specification (BEDES) The Building Energy Data Exchange Specification (BEDES, pronounced "beads" or /bi:ds/) is designed to support analysis of the measured energy performance of commercial, multifamily, and residential buildings, by providing a common data format, definitions, and an exchange protocol for building characteristics, efficiency measures, and energy use. Challenge One of the primary challenges to expanding the building energy efficiency retrofit market is the lack of empirical data on the energy performance and physical and operational characteristics of commercial, multifamily, and residential buildings. This makes it difficult for building-level

10

Related Links on High-Performance Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Below are related links to resources for incorporating energy efficiency and renewable energy into high-performance commercial and residential buildings.

11

Building America Climate-Specific Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America » Building America America » Building America Climate-Specific Guidance Building America Climate-Specific Guidance Building America Climate-Specific Guidance Building America's Best Practices guides and case studies demonstrate real world solutions for improving the energy performance and quality of new and existing homes in five major climate regions. Find examples of proven high-performance home building and remodeling in your area by selecting a climate zone below. In addition, you may view technology-specific building solutions that work across all climates. Cold and Very Cold Climates Hot-Dry and Mixed-Dry Climates Hot-Humid Climates Marine Climates Mixed-Humid Climates All Climates For additional, updated information on hundreds of building science topics that can help you build or retrofit to the most recent high-performance

12

"Building Energy Data Exchange Specification"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification" Building Energy Data Exchange Specification" "Version 2.3" "application/vnd.ms-excel" "Overview:" "This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships. " "BEDES is used for the DOE Building Performance Database (BPD) as well as the Standard Energy Efficiency Disclosure (SEED) platform, as shown below. Note that SEED includes additional fields that are outside BPD scope (e.g. property address and auditor contact information)."

13

Guide Specifications: An Overlooked Avenue for Promoting Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide Specifications: An Overlooked Avenue for Promoting Building Energy Guide Specifications: An Overlooked Avenue for Promoting Building Energy Efficiency Title Guide Specifications: An Overlooked Avenue for Promoting Building Energy Efficiency Publication Type Conference Proceedings Year of Publication 2000 Authors Coleman, Philip, and Alexander T. Shaw Conference Name 2000 ACEEE Summer Study on Energy Efficiency in Buildings Volume 4 Pagination 47-54 Date Published 01/2000 Abstract Guide specifications, the templates from which individual building project specifications are based, can be written to require high-efficiency products or systems. This paper documents a few selected instances where federal, state, or commercial guide specifications have incorporated such provisions, resulting in estimated annual savings in 2010 of over $30 million. The argument is made that promoting higher efficiency through guide specifications has several advantages over other avenues, including the improvement of building codes. The paper calls for increased attention to this overlooked opportunity from the energy policy community.

14

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate-Specific Guidance Climate-Specific Guidance The Map of the United States shows climate zones in different colors. The Marine zone contains the Pacific coast from the Canadian border to mid-California. The Hot-dry/Mixed-Dry zone contains the rest of California and follows the US border to mid-Texas. The Hot-Humid zone covers eastern Texas through Florida and includes Puerto Rico and Hawaii. The Mixed-Humid zone covers the mid-central to mid-eastern regions of the country. The Cold/Very Cold zone contains all of the Northern United States. Hot-Dry / Mixed-Dry Marine Hot-Humid Mixed-Humid Cold / Very Cold Select a climate zone from the map above, and view a listing of climate regions by county in the Guide to Determining Climate Regions: Volume 7.1 to view climates by county.

15

Plant Award Specification Sheet | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Specification Sheet Specification Sheet Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

16

Technology & System Specifications | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

& System Specifications & System Specifications Activities Technology Solutions Teams Public Sector Teams Market Solutions Teams Technology & System Specifications The Better Buildings Alliance Technology Solutions Teams develop specifications for you to customize and use to obtain quotes for high-efficiency products and services. Collective support for these product and performance specifications demonstrates a market need to manufacturers and leads to greater product availability, higher quality, and more competitive pricing. Get started by clicking below. Available Specifications Sign your support for the Wireless Meter Challenge and review the specification The wireless meter challenge has been launched to catalyze the development of low cost metering solutions. Meters are an integral component of energy

17

Development of discrete event system specification (DEVS) building performance models for building energy design  

Science Conference Proceedings (OSTI)

The discrete event system specification (DEVS) is a formalism for describing simulation models in a modular fashion. In this study, it is exploited by forming submodels that allow different professions involved in the building design process to work ... Keywords: DEVS, energy simulation in building design, modular BPS, stochastic occupant models

Huseyin Burak Gunay; Liam O'Brien; Rhys Goldstein; Simon Breslav; Azam Khan

2013-04-01T23:59:59.000Z

18

Building Energy Software Tools Directory: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

BLAST, EnergyPlus, Genopt, SPARK, Energy-10, and Building Design Advisor BLDG-SIM - A free e-mail list for all building energy simulation program users to ask questions to...

19

Trends in Building-Related Energy and Carbon Emissions  

U.S. Energy Information Administration (EIA)

An analysis of trends in energy consumption and energy-related carbon emissions in U.S. buildings, 1970-1998.

20

Step 6. Construct the Building to Meet Plans and Specifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Resource Center...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Building robust Reputation Systems for travel-related services  

Science Conference Proceedings (OSTI)

There is a serious robust issue of building Reputation Systems for travel-related services, such as hotel, restaurant, etc. This paper proposes an advanced clustering approach, Suspicion Degree Meter (SDM), to rank suspects with respect to manipulative ... Keywords: Silicon,Indexes,Robustness,Analytical models,Feature extraction,Buildings,Context

Huiying Duan; Peng Yang

2012-07-01T23:59:59.000Z

22

Related Links | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links Related Links Regional Energy Efficiency Organizations MEEA NEEP NEEA SEEA SWEEP SPEER Midwest Energy Efficiency Alliance (MEEA) IL, IN, IA, KS, KY, ND, NE, MI, MN, MO, OH, SD, WI The Midwest Energy Efficiency Alliance (MEEA) is a collaborative network advancing energy efficiency in the Midwest to support sustainable economic development and environmental preservation. MEEA raises awareness, facilitates energy efficiency programs and strengthens policy across the nine-state region. MEEA brings together a respected network of members, partners, board and staff, and inspires others to create new technologies, new products and new ways of thinking when it comes to energy efficiency. Codes Contact Isaac Elnecave Senior Policy Manager ielnecave@mwalliance.org phone: (312)784-7253

23

The systems phenomenon in buildings and its application to construction specifications  

E-Print Network (OSTI)

This thesis proposes that the holistic quality of a building can be improved by modifying the way that it is represented in the specifications document. It develops a construction specifications format based on a substantive ...

Skendzel, Richard A. (Richard Adam)

1994-01-01T23:59:59.000Z

24

U.S. Department of Energy Building Energy Data Exchange Specification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification Building Energy Data Exchange Specification Version 2.3 2/15/13 Overview: This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships. BEDES is used for the DOE Building Performance Database (BPD) as well as the Standard Energy Efficiency Disclosure (SEED) platform, as shown below. Note that SEED includes additional fields that are outside BPD scope (e.g. property address and auditor contact information). This documentation is intended to provide stakeholders an understanding the overall data scheme and data

25

Procurement specifications : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and...

26

New Catalytic Approach Builds Molecules with Specific Functionality...  

Office of Science (SC) Website

hydrocarbons to produce specific functionality are central to the development of advanced technologies that can provide dramatic improvements in the utilization of energy. The...

27

Development of a Model Specification for Performance MonitoringSystems for Commercial Buildings  

SciTech Connect

The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: (1) performance metrics; (2) measurement system requirements; (3) data acquisition and archiving; and (4) data visualization and reporting. The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance. The paper reviews the potential benefits of performance monitoring, describes the specification guide and discusses briefly the ways in which it could be implemented. A prototype advanced visualization tool is also described, along with its application to performance monitoring. The paper concludes with a description of the ways in which the specification and the visualization tool are being disseminated and deployed.

Haves, Philip; Hitchcock, Robert J.; Gillespie, Kenneth L.; Brook, Martha; Shockman, Christine; Deringer, Joseph J.; Kinney,Kristopher L.

2006-08-01T23:59:59.000Z

28

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

E-Print Network (OSTI)

building operations. Energy and Buildings 33, (8):783791.Laboratory Buildings. Energy and Buildings 34 Geoghegan,consumption data. Energy and Buildings 24, Hampton, Dave.

O'Donnell, James

2008-01-01T23:59:59.000Z

29

Changes related to "ConSol (Building Industry Research Alliance...  

Open Energy Info (EERE)

Login | Sign Up Wiki Browse Latinoamrica Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy...

30

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

31

Alaska-Specific Amendments to the IECC 2009 | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska-Specific Amendments to the IECC 2009 Alaska-Specific Amendments to the IECC 2009 This document is a list of Alaska-specific amendments to the 2009 International Energy Conservation Code, adopted by the Alaska Housing Finance Corporation (AHFC) on March 9, 2011. It is meant to be read in conjunction with the 2009 IECC and ASHRAE Standard 62.2-2010 which may be purchased at local bookstores or online. These amendments comprise both the residential and commercial Building Energy Efficiency Standards (BEES) for AHFC-funded residential mortgage loans and energy rebates, and energy retrofits of public buildings. These amendments supplant the BEES amendments to the 2006 IECC for residential projects as adopted on June 17, 2009, and include the amendments previously made to the 2009 IECC known as

32

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

33

Building debris  

E-Print Network (OSTI)

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

34

Methodological Framework for Analysis of Buildings-Related Programs with BEAMS, 2008  

Science Conference Proceedings (OSTI)

The U.S. Department of Energys (DOEs) Office of Energy Efficiency and Renewable Energy (EERE) develops official benefits estimates for each of its major programs using its Planning, Analysis, and Evaluation (PAE) Team. PAE conducts an annual integrated modeling and analysis effort to produce estimates of the energy, environmental, and financial benefits expected from EEREs budget request. These estimates are part of EEREs budget request and are also used in the formulation of EEREs performance measures. Two of EEREs major programs are the Building Technologies Program (BT) and the Weatherization and Intergovernmental Program (WIP). Pacific Northwest National Laboratory (PNNL) supports PAE by developing the program characterizations and other market information necessary to provide input to the EERE integrated modeling analysis as part of PAEs Portfolio Decision Support (PDS) effort. Additionally, PNNL also supports BT by providing line-item estimates for the Programs internal use. PNNL uses three modeling approaches to perform these analyses. This report documents the approach and methodology used to estimate future energy, environmental, and financial benefits using one of those methods: the Building Energy Analysis and Modeling System (BEAMS). BEAMS is a PC-based accounting model that was built in Visual Basic by PNNL specifically for estimating the benefits of buildings-related projects. It allows various types of projects to be characterized including whole-building, envelope, lighting, and equipment projects. This document contains an overview section that describes the estimation process and the models used to estimate energy savings. The body of the document describes the algorithms used within the BEAMS software. This document serves both as stand-alone documentation for BEAMS, and also as a supplemental update of a previous document, Methodological Framework for Analysis of Buildings-Related Programs: The GPRA Metrics Effort, (Elliott et al. 2004b). The areas most changed since the publication of that previous document are those discussing the calculation of lighting and HVAC interactive effects (for both lighting and envelope/whole-building projects). This report does not attempt to convey inputs to BEAMS or the methodology of their derivation.

Elliott, Douglas B.; Dirks, James A.; Hostick, Donna J.

2008-09-30T23:59:59.000Z

35

Chlorofluorocarbon environmental issues related to conservation acquisition in commercial buildings  

SciTech Connect

Recent scientific evidence strongly suggests that the release of large quantities of chlorofluorocarbon (CFC) gases into the atmosphere will result in environmentally harmful long-term effects. Because of those effects, a massive worldwide effort is currently under way to ban their use. At request of the Bonneville Power Administration, the Pacific Northwest Laboratory conducted a literature search to identify the issues surrounding the CFC phaseout. The search was focused on how these issues impact the commercial building sector. Information was obtained that describes: How the release of CFCs into the atmosphere may affect the global environment; legislative and regulatory programs initiated to restrict CFCs; potential impacts the reduced CFC supply will have on commercial buildings; the most promising CFC substitute technologies; and the potential costs of CFC restriction. 11 refs., 2 tabs.

Marseille, T.J.; Baechler, M.C.

1990-09-01T23:59:59.000Z

36

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

37

Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards  

SciTech Connect

In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

2010-04-08T23:59:59.000Z

38

Specification and cost manual for energy retrofits on small commercial and multifamily buildings  

DOE Green Energy (OSTI)

This specification/cost manual was prepared as part of DOE's technical assistance to the states, utilities and other groups participating in the Commercial and Apartment Conservation Service (CACS) program. The intention is to provide a set of standardized specifications and cost information for the CACS program measures. The material was designed to be used primarily by contractors and others in preparing cost estimates at the request of CACS utilities. This information can also be used by CACS participants in preparing state plans, analyzing which measures are best-suited for their particular climates, computing paybacks, and carrying out audits. In addition, this publication may be of interest to the wider audience involved in the energy retrofit field, ranging from architects and engineers to energy auditors and building inspectors. Each specification contains several categories of information: title; description; recommendations; materials; installation; maintenance; cost information; material cost variables, installation cost variables, regional variables, and safety/hazard issues. The document is divided into six sections: building envelope and service insulation measures; HVAC measures: simple systems; HVAC measures: complex systems; lighting system measures; active solar system measures; and passive solar system measures.

Bircher, C.; Carlisle, N.; Hunter, K.; MacDonald, M.; Shapira, H.; Vineyard, T.A.; Kolb, J.

1984-07-01T23:59:59.000Z

39

Pro-forma issued January 20091 Programme Specification HNC Building Services  

E-Print Network (OSTI)

requirements of CIBSE (chartered institute of Building Services #12;Pro-forma issued January 20092 Engineers

St Andrews, University of

40

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

SciTech Connect

Building performance assessment for the operational phase of a building's life cycle is heuristic, typically working from available historical metered data and focusing on bulk energy assessment. Building Management Systems are used in the operational phase of the building to control the building's internal environment according to the design criteria outlined during the design phase. Recent developments in mechanisms that communicate building performance such as standardized building performance objectives and metrics enable the use of the output from whole building energy simulation tools by nontechnical personnel and all project stakeholders. This paper proposes to specify and demonstrate the utilization of an Information Delivery Tool that supports optimum holistic environmental and energy analysis aimed at an established profile of building managers utilizing standardized performance objectives and metrics.

O' Donnell, James; Keane, Marcus; Bazjanac, Vladimir

2008-07-01T23:59:59.000Z

42

Indoor air quality issues related to the acquisition of conservation in commercial buildings  

Science Conference Proceedings (OSTI)

The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

1990-09-01T23:59:59.000Z

43

Methodological Framework for Analysis of Buildings-Related Programs: The GPRA Metrics Effort  

SciTech Connect

The requirements of the Government Performance and Results Act (GPRA) of 1993 mandate the reporting of outcomes expected to result from programs of the Federal government. The U.S. Department of Energys (DOEs) Office of Energy Efficiency and Renewable Energy (EERE) develops official metrics for its 11 major programs using its Office of Planning, Budget Formulation, and Analysis (OPBFA). OPBFA conducts an annual integrated modeling analysis to produce estimates of the energy, environmental, and financial benefits expected from EEREs budget request. Two of EEREs major programs include the Building Technologies Program (BT) and Office of Weatherization and Intergovernmental Program (WIP). Pacific Northwest National Laboratory (PNNL) supports the OPBFA effort by developing the program characterizations and other market information affecting these programs that is necessary to provide input to the EERE integrated modeling analysis. Throughout the report we refer to these programs as buildings-related programs, because the approach is not limited in application to BT or WIP. To adequately support OPBFA in the development of official GPRA metrics, PNNL communicates with the various activities and projects in BT and WIP to determine how best to characterize their activities planned for the upcoming budget request. PNNL then analyzes these projects to determine what the results of the characterizations would imply for energy markets, technology markets, and consumer behavior. This is accomplished by developing nonintegrated estimates of energy, environmental, and financial benefits (i.e., outcomes) of the technologies and practices expected to result from the budget request. These characterizations and nonintegrated modeling results are provided to OPBFA as inputs to the official benefits estimates developed for the Federal Budget. This report documents the approach and methodology used to estimate future energy, environmental, and financial benefits produced by technologies and practices supported by BT and by WIP. However, the approach is general enough for analysis of buildings-related technologies, independent of any specific program. An overview describes the GPRA process and the models used to estimate energy savings. The body of the document describes the algorithms used and the diffusion curve estimates.

Elliott, Douglas B.; Anderson, Dave M.; Belzer, David B.; Cort, Katherine A.; Dirks, James A.; Hostick, Donna J.

2004-06-18T23:59:59.000Z

44

Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems  

SciTech Connect

Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offering an accurate method of quantitatively assessing building performance.

Morrissey, Elmer; O' Donnell, James; Keane, Marcus; Bazjanac, Vladimir

2004-03-29T23:59:59.000Z

45

Step 5. Document the design of the building in plans and specification...  

NLE Websites -- All DOE Office Websites (Extended Search)

Forms can range from simple forms listing the minimum requirements for that climate zone for a simple residential building, to multipart, multipage forms for complex commercial...

46

Federally Funded Programs Related to Building Energy Use: Overlaps, Challenges, and Opportunities for Collaboration  

SciTech Connect

As energy efficiency in buildings continues to move from discreet technology development to an integrated systems approach, the need to understand and integrate complementary goals and targets becomes more pronounced. Whether within Department of Energys (DOE) Building Technologies Program (BTP), across the Office of Energy Efficiency and Renewable Energy (EERE), or throughout DOE and the Federal government, mutual gains and collaboration synergies exist that are not easily achieved because of organizational and time constraints. There also cases where federal agencies may be addressing similar issues, but with different (and sometimes conflicting) outcomes in mind. This report conducts a comprehensive inventory across all EERE and other relevant Federal agencies of potential activities with synergistic benefits. A taxonomy of activities with potential interdependencies is presented. The report identifies a number of federal program objectives, products, and plans related to building energy efficiency and characterizes the current structure and interactions related to these plans and programs. Areas where overlap occurs are identified as are the challenges of addressing issues related to overlapping goals and programs. Based on the input gathered from various sources, including 20 separate interviews with federal agency staff and contractor staff supporting buildings programs, this study identifies a number of synergistic opportunities and makes recommends a number of areas where further collaboration could be beneficial.

Cort, Katherine A.; Butner, Ryan S.; Hostick, Donna J.

2010-10-01T23:59:59.000Z

47

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

48

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

49

Plant control building design requirements specification (RADL Item 7-26)  

DOE Green Energy (OSTI)

The room areas required for the upper level of the building are identified and described. Architectural/structural and electrical requirements are stated, as are requirements for the space HVAC system. (LEW)

Not Available

1980-04-01T23:59:59.000Z

50

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

E-Print Network (OSTI)

CIBSE. 2004. CIBSE Guide F: Energy ef?ciency in buildings.methods include CIBSE Guide F, Energy Star, Dutch NEN 2916 (Energy simulated zone temperature and the actual zone tempera- ture. This table guides

O'Donnell, James

2008-01-01T23:59:59.000Z

51

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

52

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

53

Safety of Building Occupants  

Science Conference Proceedings (OSTI)

... systems have evolved in response to specific ... behavior, needs of emergency responders, or ... behavior during building emergencies, the Building ...

2013-07-17T23:59:59.000Z

54

Isomorph-free model enumeration: a new method for checking relational specifications  

Science Conference Proceedings (OSTI)

Software specifications often involve data structures with huge numbers of value, and consequently they cannot be checked using standard state exploration or model-checking techniques. Data structures can be expressed with binary relations, and operations ... Keywords: formal specification, model checking, model finding, object models, pruning, relational calculus, relational specifications, symmetry

Daniel Jackson; Somesh Jha; Craig A. Damon

1998-03-01T23:59:59.000Z

55

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

NLE Websites -- All DOE Office Websites (Extended Search)

Window-Related Energy Consumption in the US Window-Related Energy Consumption in the US Residential and Commercial Building Stock Joshua Apte and Dariush Arasteh, Lawrence Berkeley National Laboratory LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate

56

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

solar gains with highly insulating windows, which leads to windows with positive heating energy flows offsetting buildingBuilding Heating Loads (Trillion BTU/yr) Year Made Number of Buildings (Thousands, 1993) U Factor SHGC Window Window SolarSolar Window Cond Window Infiltration Non-Window Infiltration Other Loads Total Loads Total Loads Window Properties Total Building Heating

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

57

Energy conservation standards for new federal residential buildings: A decision analysis study using relative value discounting  

SciTech Connect

This report presents a reassessment of the proposed standard for energy conservation in new federal residential buildings. The analysis uses the data presented in the report, Economic Analysis: In Support of Interim Energy Conservation Standards for New Federal Residential Buildings (June 1988)-to be referred to as the EASIECS report. The reassessment differs from that report in several respects. In modeling factual information, it uses more recent forecasts of future energy prices and it uses data from the Bureau of the Census in order to estimate the distribution of lifetimes of residential buildings rather than assuming a hypothetical 25-year lifetime. In modeling social preferences decision analysis techniques are used in order to examine issues of public values that often are not included in traditional cost-benefit analyses. The present report concludes that the public would benefit from the proposed standard. Several issues of public values regarding energy use are illustrated with methods to include them in a formal analysis of a proposed energy policy. The first issue places a value on costs and benefits that will occur in the future as an irreversible consequence of current policy choices. This report discusses an alternative method, called relative value discounting which permits flexible discounting of future events-and the possibility of placing greater values on future events. The second issue places a value on the indirect benefits of energy savings so that benefits accrue to everyone rather than only to the person who saves the energy. This report includes non-zero estimates of the indirect benefits. The third issue is how the costs and benefits discussed in a public policy evaluation should be compared. In summary, selection of individual projects with larger benefit to cost ratios leads to a portfolio of projects with the maximum benefit to cost difference. 30 refs., 6 figs., 16 tabs. (JF)

Harvey, C. (Houston Univ., TX (USA). Coll. of Business Administration); Merkhofer, M.M.; Hamm, G.L. (Applied Decision Analysis, Inc., Menlo Park, CA (USA))

1990-07-02T23:59:59.000Z

58

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

59

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Study: Window % of Consumption 1. Categorize component loads

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

60

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

DOE Office of Energy Efficiency and Renewable Energy (2005).Office of Energy Efficiency and Renewable Energy. : http://for Energy Efficiency and Renewable Energy, Building

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Building Technologies Office: Subscribe to Building America Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

62

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

63

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

64

Specific features in building hardware-software complexes operating in real-time: An example of test rig used in periodic tests of reducers  

Science Conference Proceedings (OSTI)

Test rig for periodic tests of reducers is involved as an example to discuss specific features in building automatic test systems (ATS); the test rig is designed at ZAO NPP MIKS Engineering. A certain approach to ATS design based on adaptation of universal ...

A. A. Urakov; M. A. Rylov; D. S. Shutov; P. G. Dorofeev

2011-05-01T23:59:59.000Z

65

Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys  

Science Conference Proceedings (OSTI)

This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

Belzer, David B.

2004-09-04T23:59:59.000Z

66

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

67

Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Specifications Grid connection Hardwired Connector type CHAdeMo Approximate size (H x W x D inches) 38 x 69 x 21 Charge level DC Fast Charge Input voltage 480 VAC - 3 Phase...

68

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

69

Specific  

NLE Websites -- All DOE Office Websites (Extended Search)

Specific Specific energy for pulsed laser rock drilling Z. Xu, a) C. B. Reed, and G. Konercki Technology Development Division, Argonne National Laboratory, Argonne, Illinois 60540 R. A. Parker b) Parker Geoscience Consulting, LLC, Arvada, Colorado 80403 B. C. Gahan Gas Technology Institute, Des Plains, Illinois 60018 S. Batarseh c) and R. M. Graves Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado 80401 H. Figueroa Petroleos de Venezuela INTEVEP, S.A., Caracas 1070A, Venezuela N. Skinner Halliburton Energy Service, Carrollton, Texas 75006 ͑Received 20 December 2001; accepted for publication 19 August 2002͒ Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided

70

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

71

Solar heating and cooling of buildings: activities of the private sector of the building community and its perceived needs relative to increased activity  

SciTech Connect

A description of the state of affairs existing in the private sector of the building community between mid-1974 and mid-1975 with regard to solar heating and cooling of buildings is presentd. Also, information on the needs perceived by the private sector with regard to governmental actions (besides research) required to induce widespread application of solar energy for the heating and cooling of buildings is given. The information is based on surveys, data obtained at workshops, sales literature of manufacturers, symposia, and miscellaneous correspondence. Selected interests and projects of individuals and organizations are described. (WHK)

1976-01-01T23:59:59.000Z

72

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

73

Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Building Design October 16, 2013 - 4:41pm Addthis Planning, Programming & Budgeting Building Design Project Construction Integrating renewable energy within Federal new construction or major renovations is critical at each phase of the design process. This overview covers considerations for renewable energy in the design phases of a construction project, including choosing the design team, the design team charrette, preliminary design, schematic design, design development, and construction documents. Information on this page introduces each of the design phases and provides a link to deeper-level information. Key Actions in Building Design Require specific renewable energy experience and skills for design team. Prioritize energy-related program

74

Solar collector related research and development in the United States for heating and cooling of buildings  

DOE Green Energy (OSTI)

Some of the research funded by the Research and Development Branch of the Heating and Cooling Division of Solar Energy of the United States Energy Research and Development Administration is described. Specifically, collector and collector materials research is reported on during FY-1977. The R and D Branch has funded research in open and closed cycle liquid heating flat plate collectors, air heating flat plate collectors, heat pipe collectors, concentrating collectors, collector heat transfer studies, honeycomb glazings, evacuated tube collectors, ponds both salt gradient and viscosity stabilized, materials exposure testing, collector testing standards, absorber surface coatings, and corrosion studies. A short description of the nature of the research is provided as well as a presentation of the significant results.

Collier, R.K.

1978-01-01T23:59:59.000Z

75

Window-Related Energy Consumption in the US Residential andCommercial Building Stock  

SciTech Connect

We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

Apte, Joshua; Arasteh, Dariush

2006-06-16T23:59:59.000Z

76

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

77

Screening Protocol for Iodine-Specific Getters in YMP-Related Invert Applications  

SciTech Connect

This document defines a standardized screening protocol for use in developing iodine ''getters'' for placement in the proposed YMP-repository invert. The work was funded by the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology International (S&T) during 2004-2005. First, the likely environmental conditions in the invert are reviewed as a basis for defining the thermal and geochemical regimes in which a getter must function. These considerations, then, served as the basis for laying out a hierarchy of materials screening tests (Table 1). An experimental design for carrying out these screening tests follows next. Finally, the latter half of the document develops methods for preparing test solutions with chemistries that relate to various aspects of the YMP-repository environment (or, at least to such representations as were available from program documents late in 2004). Throughout the document priority was given to defining procedures that would quickly screen out unpromising candidate materials with a minimum amount of labor. Hence, the proposed protocol relies on batch tests over relatively short times, and on a hierarchy of short pre-test conditioning steps. So as not to repeat the mistakes (and frustrations) encountered in the past (notably in preparing WIPP test brines) particular care was also given to developing standardized test solution recipes that could be prepared easily and reproducibly. This document is principally intended for use as a decision-making tool in evaluating and planning research activities. It is explicitly NOT a roadmap for qualifying getters for actual placement in the repository. That would require a comprehensive test plan and a substantial consensus building effort. This document is also not intended to provide a complete list of all the tests that individuals may wish to carry out. Various materials will have their own peculiar concerns that will call for additional specialized tests. In many cases additional research will also be needed to verify the exact nature of the chemical process responsible for scavenging the iodine from the test solutions.

J.L. Krumhansl; J.D. Pless; J.B. Chwirka

2006-07-17T23:59:59.000Z

78

Screening protocol for iodine-specific getters in YMP-related invert applications.  

Science Conference Proceedings (OSTI)

This document defines a standardized screening protocol for use in developing iodine ''getters'' for placement in the proposed YMP-repository invert. The work was funded by the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology International (S&T) during 2004-2005. First, the likely environmental conditions in the invert are reviewed as a basis for defining the thermal and geochemical regimes in which a getter must function. These considerations, then, served as the basis for laying out a hierarchy of materials screening tests (Table 1). An experimental design for carrying out these screening tests follows next. Finally, the latter half of the document develops methods for preparing test solutions with chemistries that relate to various aspects of the YMP-repository environment (or, at least to such representations as were available from program documents late in 2004). Throughout the document priority was given to defining procedures that would quickly screen out unpromising candidate materials with a minimum amount of labor. Hence, the proposed protocol relies on batch tests over relatively short times, and on a hierarchy of short pre-test conditioning steps. So as not to repeat the mistakes (and frustrations) encountered in the past (notably in preparing WIPP test brines) particular care was also given to developing standardized test solution recipes that could be prepared easily and reproducibly. This document is principally intended for use as a decision-making tool in evaluating and planning research activities. It is explicitly NOT a roadmap for qualifying getters for actual placement in the repository. That would require a comprehensive test plan and a substantial consensus building effort. This document is also not intended to provide a complete list of all the tests that individuals may wish to carry out. Various materials will have their own peculiar concerns that will call for additional specialized tests. In many cases additional research will also be needed to verify the exact nature of the chemical process responsible for scavenging the iodine from the test solutions.

Krumhansl, James Lee; Pless, Jason; Chwirka, J. Benjamin

2006-07-01T23:59:59.000Z

79

Adapting Bro into SCADA: building a specification-based intrusion detection system for the DNP3 protocol  

Science Conference Proceedings (OSTI)

When SCADA systems are exposed to public networks, attackers can more easily penetrate the control systems that operate electrical power grids, water plants, and other critical infrastructures. To detect such attacks, SCADA systems require an intrusion ... Keywords: Bro, DNP3, SCADA, specification-based intrusion detection system

Hui Lin; Adam Slagell; Catello Di Martino; Zbigniew Kalbarczyk; Ravishankar K. Iyer

2013-01-01T23:59:59.000Z

80

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... State Solar Energy Legislation of 1976: A Review of Statutes Relating to Buildings. Final Report. State Solar Energy Legislation ...

82

Maximum relative excitation of a specific vibrational mode via optimum laser-pulse duration  

E-Print Network (OSTI)

For molecules and materials responding to femtosecond-scale optical laser pulses, we predict maximum relative excitation of a Raman-active vibrational mode with period T when the pulse has a full-width-at-halfmaximum duration tau approximate to 0.42T. This result follows from a general analytical model, and is precisely confirmed by detailed density-functional-based dynamical simulations for C(60) and a carbon nanotube, which include anharmonicity, nonlinearity, no assumptions about the polarizability tensor, and no averaging over rapid oscillations within the pulse. The mode specificity is, of course, best at low temperature and for pulses that are electronically off-resonance, and the energy deposited in any mode is proportional to the fourth power of the electric field.

Zhou, Xiang; Lin, Zhibin; Jiang, Chenwei; Gao, Meng; Allen, Roland E.

2010-01-01T23:59:59.000Z

83

Building Songs 3  

E-Print Network (OSTI)

. Sman shad building song 3.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 2.WAV Title of track Building Songs 3 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

84

Building Songs 2  

E-Print Network (OSTI)

. Sman shad building song 2.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 3.WAV Title of track Building Songs 2 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

85

18 December 2006 BUILDING INSULATION  

E-Print Network (OSTI)

18 December 2006 07200-1 BUILDING INSULATION CONSTRUCTION STANDARD SPECIFICATION SECTION 07200 BUILDING INSULATION PART 1 - GENERAL 1.01 Summary.....................................................................................5 2.04 Pre-Engineered Building Insulation

86

Building Energy Software Tools Directory: DOE Sponsored Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Sponsored Tools DOE Sponsored Tools The Department of Energy sponsors continued development of a variety of building energy software tools. See the following for more information about software tools now under development: Whole-Building Energy Performance Simulation EnergyPlus A new-generation building energy simulation program from the creators of BLAST and DOE-2. DOE-2 An hourly, whole-building energy analysis program which calculates energy performance and life-cycle cost of operation. The current version is DOE-2.1E. Building Design Advisor Provides building decision-makers with the energy-related information they need beginning in the initial, schematic phases of building design through the detailed specification of building components and systems. SPARK Models complex building envelopes and mechanical systems that are beyond

87

Subscribe to Building America Updates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subscribe to Building America Updates Subscribe to Building America Updates Subscribe to Building America Updates Sign up to receive e-mail notices of news and events related to the Building America program. Building America will send periodic notices which provide information related to: Improving efficiency of new and existing homes Research team projects and activities Best Practices Guides, case studies, and technical publications Residential building efficiency and system-specific expert meetings. Once you've submitted your e-mail address below, you will have a chance to subscribe to other information resources available from DOE's Office of Energy Efficiency and Renewable Energy. Building America Updates Keep current with upcoming events and news by subscribing to Building America updates.

88

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

89

Building America  

Science Conference Proceedings (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

90

Building and Fire Publications  

Science Conference Proceedings (OSTI)

With the exception of a few analyses of the impacts of ANSI/ASHRAE Standard 62-1989 and energy use in specific buildings, the energy use in ...

91

Massachusetts' Green Buildings Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Pagination 8 Date Published 092002 Abstract Green buildings can provide a niche market for renewable energy technologies. Specifically, renewable energy technologies may...

92

The Economics of Green Building  

E-Print Network (OSTI)

returns to the investments in green buildings. Section Vproperty investments; the economic premium to green buildinggreen buildings relative to those of comparable high quality property investments,

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

93

Fear of criminal victimization in relation to specific locations on a college campus.  

E-Print Network (OSTI)

??M.A. Feelings of fear on a college campus are driven by physical characteristics of a specific location as well as the demographics and past experiences (more)

Steinmetz, Nancy M., 1955-

2012-01-01T23:59:59.000Z

94

Building Technologies Office: Strategic Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Plans to Strategic Plans to someone by E-mail Share Building Technologies Office: Strategic Plans on Facebook Tweet about Building Technologies Office: Strategic Plans on Twitter Bookmark Building Technologies Office: Strategic Plans on Google Bookmark Building Technologies Office: Strategic Plans on Delicious Rank Building Technologies Office: Strategic Plans on Digg Find More places to share Building Technologies Office: Strategic Plans on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home

95

Building Technologies Office: Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinar Archives to Webinar Archives to someone by E-mail Share Building Technologies Office: Webinar Archives on Facebook Tweet about Building Technologies Office: Webinar Archives on Twitter Bookmark Building Technologies Office: Webinar Archives on Google Bookmark Building Technologies Office: Webinar Archives on Delicious Rank Building Technologies Office: Webinar Archives on Digg Find More places to share Building Technologies Office: Webinar Archives on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program

96

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

97

Building Technologies Office: Commercial Building Energy Asset Scoring Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoring Tool to someone by E-mail Scoring Tool to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

98

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

99

A constraint solver for software engineering : finding models and cores of large relational specifications  

E-Print Network (OSTI)

Relational logic is an attractive candidate for a software description language, because both the design and implementation of software often involve reasoning about relational structures: organizational hierarchies in the ...

Torlak, Emina, 1979-

2009-01-01T23:59:59.000Z

100

General Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Specifications of the Infield Buildings of the Advanced Photon Source L8-78 Martin Knott January 1987 This LS note is the result of a series of meetings, conversations and private...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Compare Activities by Building Age  

U.S. Energy Information Administration (EIA) Indexed Site

Activities by Building Age Activities by Building Age Compare Activities by ... Building Age Median Age of Building by Building Type Vacant buildings, retail stores (other than malls), and religious worship buildings tended to be the oldest buildings. Food sales buildings (which were predominantly convenience stores) and outpatient health care buildings were mainly newer buildings. Figure showing median age of building by building type. If you need assistance viewing this page, please call 202-586-8800. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: July 24, 2002 Page last modified: May 4, 2009 2:52 PM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/compareage.html If you are having any technical problems with this site, please contact the EIA

102

Building Songs 1  

E-Print Network (OSTI)

. Sman shad building song 1.WAV Length of track 00:01:36 Related tracks (include description/relationship if appropriate) Sman shad building song 2 Title of track Building Songs Translation of title Description (to be used in archive entry...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

103

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

104

Characterization of commercial building appliances. Final report  

SciTech Connect

This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

1993-08-01T23:59:59.000Z

105

NREL: Buildings Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL publishes a variety of documents related to its research, including technical reports, brochures, and presentations. Read the information below to find out how to find a publication about buildings research at NREL. Accessing Research Papers Buildings Technical Highlights Research Papers - Commercial Research Papers - Residential Accessing Buildings Research Documents Documents produced by NREL related to buildings technologies may be accessed online in several different ways. National Renewable Energy Laboratory Publications Database The NREL Publications Database covers building technology documents written or edited by NREL staff and subcontractors from 1977 to the present. The database includes technical reports as well as outreach publications such

106

ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

SciTech Connect

The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

Authors, Various

1979-12-01T23:59:59.000Z

107

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

108

Webinar: Introduction to Pre-engineered Metal Building Envelope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinar: Introduction to Pre-engineered Metal Building Envelope Webinar: Introduction to Pre-engineered Metal Building Envelope Commissioning Webinar: Introduction to Pre-engineered Metal Building Envelope Commissioning November 22, 2013 1:00PM EST The metal building industry produces more than 50% of all new low-rise nonresidential construction in the United States. These buildings serve many different end uses, including commercial, industrial, institutional, and educational applications. In this introduction to commissioning for building envelopes, participants will learn about the benefits of pre-engineered metal building envelope commissioning, stakeholders and participants, current guidelines and standards related to commissioning and envelope-specific commissioning tests. The information in this webinar will also be widely applicable to

109

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

110

Building Retrofits: Energy Conservation and Employee Retention Considerations in Medium-Size Commercial Buildings  

E-Print Network (OSTI)

Commercial buildings are among the largest consumers of energy. In an attempt to control and reduce operating expenses, building owners and organizations leasing commercial space are pursuing energy efficiency measures to generate a higher return on investment. In this study, an extensive literature review is used to identify and discuss energy efficiency considerations for medium-size building owners and how savings from these measures may benefit organizations through employee satisfaction and retention. For the purpose of this study, the specific topics related to commercial building energy efficiency that were investigated include (1) outcomes of building retrofits (2) corporate social responsibility and performance; (3) performance of energy efficient buildings; (4) employee commitment, satisfaction productivity and organizational profitability; (5) green companies and employee attraction; (6) the cost of turnover. There is little literature specifically focused on the impact that energy efficient buildings have on medium-sized building owners and no literature that quantifies the financial benefits through a reduction in employee turnover or attrition. Facility managers of all building sizes will benefit from gaining (1) a broad understanding of the impact of energy efficiency measures on employees (2) the ability to articulate the impact of the buildings role on employee productivity, turnover and other HR related issues (3) the insight needed to contribute to strategic discussions within their organization about how facilities can benefit organizational profitability. This research does not attempt to claim or determine a causal relationship between energy efficiency and employee turnover however it does discuss issues that that could affect employee attrition.. Further research to determine this causality would benefit the study of energy efficiency and its total impact on organizations.

Freeman, Janice

2013-05-01T23:59:59.000Z

111

Federal Buildings Supplemental Survey 1993  

Reports and Publications (EIA)

The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE's Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP's specifications; therefore, these data do not statistically represent all Federal buildings in the country .

Information Center

1995-11-01T23:59:59.000Z

112

Intelligent Building Control System for EPBD Certification Support  

E-Print Network (OSTI)

Building commissioning is a developing concept also in the Czech Republic. At present time only some aspects of building commissioning are implemented as a part of the facility management and energy auditing processes that are related to EPBD implementation. The project, presented in this paper, aims to find ways of energy-efficient operation of existing and designed energy- efficient buildings and is based on the fact that many buildings designed according to modern principles, in its operation does not behave as expected. The project is investigating and developing procedures to help change the current often intuitive approach to operate buildings in a systematic activity, taking into account energy conservation. Modern control systems of intelligent HVAC buildings could provide not only the information needed for the operational control of building, but also to detect faults and to evaluate the energy performance of the building. Under the IEA Annex 47 project, authors started to develop tools that support additional aspects of the commissioning process, including new control system for building energy services. The paper is focused on specification of new function of building control system, providing information for existing building EPBD certification. Results in terms of implementation of this function into existing building energy control system are discussed.

Kabele, K.

2011-01-01T23:59:59.000Z

113

Building Technologies Office: Commercial Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Commercial Building Activities on Google Bookmark Building Technologies Office: Commercial Building Activities on Delicious...

114

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

115

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

116

Chapter 3: Building Siting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

117

Better Buildings Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kristen Taddonio DOE/EERE/BTO/Commercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce building energy use by 50 percent, saving ~$2.2 trillion in energy-related costs. CBI Program Goals: New Buildings - Demonstrate 50% cost-effective savings at a convincing scale by 2020 (EISA 2007) - Demonstrate 100% cost-effective savings at a convincing scale by 2030 (EISA 2007) Existing Buildings

118

An analysis of heating and cooling conservation features in commercial buildings  

SciTech Connect

One purpose of this study is to estimate the relationship in commercial buildings between conservation investments, fuel prices, building occupancy and building characteristics for new buildings and for existing buildings. The database is a nationwide survey of energy in commercial buildings conducted by the Energy Information Administration (EIA) in 1906. Some simple cross-tabulations indicate that conservation measures vary with building size, building age, and fuel used for building heating. Regression estimates of a conservation model indicate that the number of conservation model indicate that the number of conservation features installed during construction is a positive function of the price of the heating fuel at the time of construction. Subsequent additions of conservation features are positively correlated with increases in heating fuel prices. Given the EIA projection of relatively stable future energy prices, the number of retrofits may not increase significantly. Also, energy efficiency in new buildings may not continue to increase relative to current new buildings. If fuel prices affect consumption via initial conservation investments, current fuel prices, marginal or average, are not the appropriate specification. The fuel price regression results indicate that conservation investments in new buildings are responsive to market signals. Retrofits are less responsive to market signals. The number of conservation features in a building is not statistically related to the type of occupancy (owner versus renter), which implies that conservation strategies are not impeded by the renting or leasing of buildings.

Sutherland, R.J.

1990-01-01T23:59:59.000Z

119

An analysis of heating and cooling conservation features in commercial buildings  

SciTech Connect

One purpose of this study is to estimate the relationship in commercial buildings between conservation investments, fuel prices, building occupancy and building characteristics for new buildings and for existing buildings. The database is a nationwide survey of energy in commercial buildings conducted by the Energy Information Administration (EIA) in 1906. Some simple cross-tabulations indicate that conservation measures vary with building size, building age, and fuel used for building heating. Regression estimates of a conservation model indicate that the number of conservation model indicate that the number of conservation features installed during construction is a positive function of the price of the heating fuel at the time of construction. Subsequent additions of conservation features are positively correlated with increases in heating fuel prices. Given the EIA projection of relatively stable future energy prices, the number of retrofits may not increase significantly. Also, energy efficiency in new buildings may not continue to increase relative to current new buildings. If fuel prices affect consumption via initial conservation investments, current fuel prices, marginal or average, are not the appropriate specification. The fuel price regression results indicate that conservation investments in new buildings are responsive to market signals. Retrofits are less responsive to market signals. The number of conservation features in a building is not statistically related to the type of occupancy (owner versus renter), which implies that conservation strategies are not impeded by the renting or leasing of buildings.

Sutherland, R.J.

1990-12-31T23:59:59.000Z

120

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cook County- LEED Requirements for County Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

122

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

123

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

124

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

125

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

126

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

127

Building Technologies Office: Existing Commercial Reference Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

You can also view related resources: an archive of past reference buildings files a ZIP file containing the TMY2 weather data that were used to generate the following...

128

Types of Lighting in Commercial Buildings - Building Size and Year  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting and Building Size and Year Constructed Lighting and Building Size and Year Constructed Building Size Smaller commercial buildings are much more numerous than larger commercial buildings, but comprise less total floorspace-the 1,001 to 5,000 square feet category includes more than half of total buildings, but just 11 percent of total floorspace. In contrast, just 5 percent of buildings are larger than 50,000 square feet, but they account for half of total floorspace. Lighting consumes 38 percent of total site electricity. Larger buildings consume relatively more electricity for lighting than smaller buildings. Nearly half (47%) of electricity is consumed by lighting in the largest buildings (larger than 500,000 square feet). In the smallest buildings (1,001 to 5,000 square feet), one-fourth of electricity goes to lighting

129

How BEDES Relates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Building Energy Data Exchange Specification Commercial Buildings » Building Energy Data Exchange Specification » How BEDES Relates How BEDES Relates Below is some detail regarding how BEDES relates to various tools and specifications with similar use cases. More detailed information on these efforts and others can be found in the scoping report. How BEDES Relates to Federal Tools There was widespread recognition by stakeholders of the value already provided by federal analytical tools, such as Portfolio Manager, the asset scoring tools, and Buildings Performance Database (BPD). Stakeholders also anticipate the value that Standard Energy Efficiency Database platform (SEED) will provide when it is complete. Aligning the data formats for all these tools and activities would reduce the data management burden for

130

BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint  

DOE Green Energy (OSTI)

A zero net energy (ZNE) building produces as much energy on-site as it uses on an annual basis--using a grid-tied, net-metered photovoltaic (PV) system and active solar. The optimal path to ZNE extends from a base case to the ZNE building through a series of energy-saving building designs with minimal energy-related owning and operating costs. BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from among predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options and the Building America Benchmark in a linked options library spreadsheet.

Christensen, C.; Horowitz, S.; Givler, T.; Courtney, A.; Barker, G.

2005-04-01T23:59:59.000Z

131

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

132

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

133

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

134

Commercial Buildings Characteristics, 1992  

Science Conference Proceedings (OSTI)

Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

Not Available

1994-04-29T23:59:59.000Z

135

Resource Center | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center FAQs Publications Resource Guides eLearning Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Resource Center The U.S. Department of Energy (DOE), through the Building Energy Codes Program (BECP) Resource Center, provides a comprehensive collection of information, resources, and technical assistance designed to answer questions and address issues related to energy codes. This includes frequently asked questions, publications, model adoption policies, compliance software and tools, and training/eLearning modules based on best practices. BECP's team of building energy codes experts is also available to answer specific questions submitted through the web-based help desk.

136

Federal Buildings Supplemental Survey -- Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Survey > Overview Survey > Overview Overview Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Divider Line Highlights on Federal Buildings The Federal Buildings Supplemental Survey 1993 provides building-level energy-related characteristics for a special sample of commercial buildings owned by the Government. Extensive analysis of the data was not conducted because this report represents the 881 responding buildings (buildings for which interviews were completed) and cannot be used to generalize about Federal buildings in each region. Crosstabulations of the data from the 881 buildings are provided in the Detailed Tables section.

137

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

138

Portraits of buildings  

E-Print Network (OSTI)

The photography of architecture is more than a simple tool to record facts about specific buildings. Photography can be used to communicate insights and perceptions about the role of architecture in society and our personal ...

Alter, Robert H

1981-01-01T23:59:59.000Z

139

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of Building Types Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

140

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Building Design Advisor  

SciTech Connect

The Building Design Advisor (BDA) is a software environment that supports the integrated use of multiple analysis and visualization tools throughout the building design process, from the initial, schematic design phases to the detailed specification of building components and systems. Based on a comprehensive design theory, the BDA uses an object-oriented representation of the building and its context, and acts as a data manager and process controller to allow building designers to quickly navigate through the multitude of descriptive and performance parameters addressed by the analysis and visualization tools linked to the BDA. Through the Browser the user can edit the values of input parameters and select any number of input and/or output parameters for display in the Decision Desktop. The Desktop allows building designers to compare multiple design alternatives with respect to any number of parameters addressed by the tools linked to the BDA.

Papamichael, K.; LaPorta, J.; Chauvet, H.; Collins, D.; Trzcinski, T.; Thorpe, J.; Selkowitz, S.

1996-03-01T23:59:59.000Z

142

Trends in Commercial Buildings--Overview  

Gasoline and Diesel Fuel Update (EIA)

Home > Trends in Commercial Buildings > Commercial Buildings Energy Consumption Survey Survey Methodology Sampling Error, Standard Errors, and Relative Standard Errors The...

143

User innovation in digital design and construction : dialectical relations between standard BIM tools and specific user requirements  

E-Print Network (OSTI)

The use of Building Information Modeling (BIM) tools is increasing across the Architectural, Engineering and Construction (AEC) industry. This technology is being adopted in many different countries, in a wide range of ...

Soto Ogueta, Carolina M

2012-01-01T23:59:59.000Z

144

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

145

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

146

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

147

Building Technologies Office: Climate Zones  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Zones to Climate Zones to someone by E-mail Share Building Technologies Office: Climate Zones on Facebook Tweet about Building Technologies Office: Climate Zones on Twitter Bookmark Building Technologies Office: Climate Zones on Google Bookmark Building Technologies Office: Climate Zones on Delicious Rank Building Technologies Office: Climate Zones on Digg Find More places to share Building Technologies Office: Climate Zones on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

148

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy Consumption Survey (CBECS) > Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 and 2003 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

149

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

150

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

151

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

152

Vacant Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

of 275 thousand cubic feet per building, 29.9 cubic feet per square foot, at an average cost of 475 per thousand cubic feet. Energy Consumption in Vacant Buildings by Energy...

153

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

154

Building Technologies Office: Building America Solution Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Solution Center Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR® checklists, alphabetical lists, a house diagram with selectable components, and an information map. Logged-in users can quickly save any of these elements into their personal Field Kit.

155

Prototype Buildings  

Science Conference Proceedings (OSTI)

... The SDC D buildings, designed for Seattle, Washington, used special moment frames (SMFs) with reduced beam section (RBS) connections. ...

2013-02-08T23:59:59.000Z

156

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

157

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

158

Cranfield University Building 41 (Stafford Cripps Building)  

E-Print Network (OSTI)

Cranfield University Building 41 (Stafford Cripps Building) Building 41, formally known as the Stafford Cripps Building, has been transformed into a new Learning and Teaching Facility. Proposed ground

159

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

160

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Better Buildings Challenge on Google Bookmark Building Technologies Office: Better Buildings Challenge on Delicious Rank...

162

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

163

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

164

Building Energy Software Tools Directory: BuildingSim  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingSim BuildingSim BuildingSim logo BuildingSim allows users to model a building and analyze the heating and cooling energy costs in any climate. Users can create any building—from a one-room apartment up to a 100+ floor skyscraper--and account for everything from window coverings to shade trees. BuildingSim uses actual hourly weather data from over 90 climates around the world to numerically solve the full thermodynamic differential equations every minute of the year, giving the user the actual energy use down to the cent. The simulation algorithm fully accounts for thermostat and HVAC controls, allowing the user to analyze the effects of different thermostat algorithms (programmable thermostats, setback, split-zone, etc.) on the energy costs for a specific building and climate. Screen Shots

165

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

166

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

167

Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

to meet the elements of these specifications but are constructing multifamily buildings, flat roof residential structures, or buildings without attic access, or using alternatives...

168

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

169

Database Supported Bacnet Data Acquisition System for Building Energy Diagnostics  

E-Print Network (OSTI)

This paper reports a tool that can be used to acquire and store the BACnet (A Data Communication Protocol for Building Automation and Control Networks) data for the purpose of building energy system Fault Detection and Diagnostics (FDD). Building Automation Control (BAC) systems have become a common practice in recently constructed buildings in the United States. Although building operational data could readily be collected for various analysis purposes, there is still a debate in building community which or what FDD method is better in terms of performance matrix, such as false alarm rate and training data requirement, etc. Therefore, from the user's perspective, it is potentially beneficial to try out different FDD methods before the deployment, or even develop a dedicated FDD method in a specific case. This is the motivation for development of the BACnet data storage system discussed in this paper, which could then be used together with BACnet data acquisition module in an open source Building Control Virtual Test Bed (BCVTB) environment [2]. This paper discusses (1) Relational database schema development for the purpose of storing building operational data and FDD analysis data (2) Development of the connector in BCVTB that enables the transition from the BACnet module to the database module and (3)Testing of the integrated system in a real building. The relational database is intended to be general and detailed enough so that it can be applied to different buildings and projects with various complexity without any major structure change. The BACnet-reader to database connector enables seamless data flow from commercial BACnet system to user's customized workstation. The integrated system enables users to analyze building operational data in an effective and efficient way, which helps achieve automated FDD in buildings.

Li, Z.; Augenbroe, G.

2011-01-01T23:59:59.000Z

170

Building Energy Software Tools Directory: CYPE-Building Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Germany India Ireland Israel Italy Japan Netherlands New Zealand Portugal Russia South Africa Spain Sweden Switzerland United Kingdom United States Related Links CYPE-Building...

171

Building Technologies Program | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Program Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across disciplines to support federally-and privately-funded research. ORNL's buildings research is directed and funded primarily by the DOE Office of Energy Efficiency and Renewable Energy, specifically the Building Technologies Program. The Federal Energy Management Program, Geothermal Technologies Program, Advanced Manufacturing Office,Office of Weatherization and Intergovernmental Program, Policy and International Affairs, Concentrating Solar Power Program, Sustainability Performance Office, and other partners also support ORNL's research to develop new building technologies. Building Technologies Office

172

Building Technologies Office: Energy Systems Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Energy Systems Innovations to someone by E-mail Share Building Technologies Office: Energy Systems Innovations on Facebook Tweet about Building Technologies Office: Energy Systems Innovations on Twitter Bookmark Building Technologies Office: Energy Systems Innovations on Google Bookmark Building Technologies Office: Energy Systems Innovations on Delicious Rank Building Technologies Office: Energy Systems Innovations on Digg Find More places to share Building Technologies Office: Energy Systems Innovations on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

173

Building Technologies Office: Performance Metrics Tiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Metrics Performance Metrics Tiers to someone by E-mail Share Building Technologies Office: Performance Metrics Tiers on Facebook Tweet about Building Technologies Office: Performance Metrics Tiers on Twitter Bookmark Building Technologies Office: Performance Metrics Tiers on Google Bookmark Building Technologies Office: Performance Metrics Tiers on Delicious Rank Building Technologies Office: Performance Metrics Tiers on Digg Find More places to share Building Technologies Office: Performance Metrics Tiers on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

174

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

175

Building Technologies Office: House Simulation Protocols Report  

NLE Websites -- All DOE Office Websites (Extended Search)

House Simulation House Simulation Protocols Report to someone by E-mail Share Building Technologies Office: House Simulation Protocols Report on Facebook Tweet about Building Technologies Office: House Simulation Protocols Report on Twitter Bookmark Building Technologies Office: House Simulation Protocols Report on Google Bookmark Building Technologies Office: House Simulation Protocols Report on Delicious Rank Building Technologies Office: House Simulation Protocols Report on Digg Find More places to share Building Technologies Office: House Simulation Protocols Report on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

176

Commercial Building Partnerships Replication and Diffusion  

SciTech Connect

This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners replication efforts of technologies and approaches used in the CBP project to the rest of the organizations building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

2013-09-16T23:59:59.000Z

177

Buildings Energy Databook  

Buildings Energy Data Book (EERE)

2 BUILDINGS 2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered an evolving document as it will be will be periodically updated and additional data will be incorporated. Users are requested to submit additional data (e.g., more current, widely accepted, and/or better documented data) and suggested changes to the contacts below. Please provide full source references along with all data.

178

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

179

Buildings Performance Metrics Terminology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Commercial Building Initiative Page 1 Energy's Commercial Building Initiative Page 1 January 2009 Buildings Performance Metrics Terminology To clarify how the terms are used in the Department of Energy's Performance Metrics Research Project, a list of terms related to performance metrics are defined and include examples and comments. Visit www.commercialbuildings.energy.gov/performance_metrics.html to learn more. Baseline - a standard reference case used as a basis for comparison Examples: a simulation model of an ASHRAE 90.1 compliant building, control building, measurement of energy consumption prior to application of an energy conservation measure Comments: Establishing a clearly defined baseline very important and is often the most difficult task. Defining a repeatable baseline is essential if the work is to be compared to results of other

180

Federal Energy Management Program: Building Life Cycle Cost Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis; Non-Energy Project BLCC conducts economic analyses by evaluating the relative cost effectiveness of alternative buildings and building-related systems or components....

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

182

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

183

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

184

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

185

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

186

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

187

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

188

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Full Report Full Report Energy Information Administration > Commercial Buildings Energy Consumption Survey > Overview of Commercial Buildings Overview of Commercial Buildings, 2003 Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: ● total nearly 4.9 million buildings ● comprise more than 71.6 billion square feet of floorspace ● consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) ●

189

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

190

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

191

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

192

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... high rise buildings; building collapse; disasters; fire ... adhesive strength; building codes; cohesive ... materials; thermal conductivity; thermal insulation ...

193

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

194

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

195

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

196

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

197

Chapter 8: Constructing the Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: : Constructing the Building Developing a Construction Plan Writing Effective Construction Documents Safeguarding Design Goals During Construction Protecting the Site Low-Impact Construction Processes Protecting Indoor Air Quality Managing Construction Waste LANL | Chapter 8 Constructing the Building Developing a Construction Plan A high-performance design is a great achievement, but it doesn't mean much if the building isn't then built as intended. Getting from design to a completed project happens in two stages: 1) development of construction documents and 2) actual construction. To successfully implement a sustainable design, the construction docu- ments must accurately convey the specifics that deter- mine building performance, and they have to set up

198

Existing Commercial Reference Buildings Constructed Before 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 The files on this page contain commercial reference building models for existing buildings constructed before 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

199

Hawaii | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

at least as energy efficient as the statewide code. State Specific Research Impacts of ASHRAE.1-2007 for Commercial Buildings in the State of Hawaii (BECP Report, Sept. 2009)...

200

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

Buildings Energy Consumption Survey (CBECS) and NationalBuilding Energy Consumption Survey (CBECS) and 2) Nationalnational survey of energy-related building characteristics, energy consumption,

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

and analysis of building energy efficiency in China.in evaluating relative building energy performance in Chinabuildings. The available building energy use data are for

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

202

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Measured Performance of Building Integrated Photovoltaic Panels. Round 2. Measured Performance of Building Integrated Photovoltaic Panels. ...

203

Related Links on Greensburg, Kansas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg, Kansas Greensburg, Kansas Related Links on Greensburg, Kansas Below are related links to resources specifically for Kansas on building with energy efficiency and renewable energy technologies. Learn more about deployment efforts in Greensburg, Kansas. Efficiency Kansas Efficiency Kansas is a loan program from the State Energy Office at the Kansas Corporation Commission that helps homes and businesses access low-interest financing through partner lenders and utilities, identify and implement energy-efficiency improvements, and save on monthly utility bills. Greensburg Sustainable Building Database The Greensburg Sustainable Building Database showcases green building projects in Greensburg, Kansas. The case studies in this database offer ideas for rebuilding energy efficiently and include detailed information

204

Risk time-window specification and its impact on the assessment of medication-related adverse events.  

E-Print Network (OSTI)

??Post-marketing studies using medical administrative databases are often conducted to assess medication-related adverse events (AE). The determination of the risk time-window, defined as the period (more)

Cournoyer, Daniel.

2006-01-01T23:59:59.000Z

205

Sustainable Buildings and Campuses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Campuses and Campuses Sustainable Buildings and Campuses October 4, 2013 - 4:18pm Addthis Sustainable Buildings and Campuses The Federal Energy Management Program (FEMP) provides strategies, best practices, and resources to help Federal agencies implement sustainable design practices within Federal buildings and facilities. Learn about: Sustainable building design basics Federal requirements Sustainability for existing buildings Sustainable design for new construction and major renovations Life cycle cost analysis for sustainability Energy security planning Case studies Interagency Sustainability Working Group. Also see Sustainable Building Contacts. Addthis Related Articles Energy Department Training Breaks New Ground Sustainable Building Contacts Commissioning Training Available

206

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network (OSTI)

Buildings Energy Consumption Survey (CBECS) and Nationalnational survey of energy-related building characteristics, and energy consumption,

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

207

The KTOI Ecosystem Project Relational Database : a Report Prepared by Statistical Consulting Services for KTOI Describing the Key Components and Specifications of the KTOI Relational Database.  

DOE Green Energy (OSTI)

Data are the central focus of any research project. Their collection and analysis are crucial to meeting project goals, testing scientific hypotheses, and drawing relevant conclusions. Typical research projects often devote the majority of their resources to the collection, storage and analysis of data. Therefore, issues related to data quality should be of foremost concern. Data quality issues are even more important when conducting multifaceted studies involving several teams of researchers. Without the use of a standardized protocol, for example, independent data collection carried out by separate research efforts can lead to inconsistencies, confusion and errors throughout the larger project. A database management system can be utilized to help avoid all of the aforementioned problems. The centralization of data into a common relational unit, i.e. a relational database, shifts the responsibility for data quality and maintenance from multiple individuals to a single database manager, thus allowing data quality issues to be assessed and corrected in a timely manner. The database system also provides an easy mechanism for standardizing data components, such as variable names and values uniformly across all segments of a project. This is particularly an important issue when data are collected on a number of biological/physical response and explanatory variables from various locations and times. The database system can integrate all segments of a large study into one unit, while providing oversight and accessibility to the data collection process. The quality of all data collected is uniformly maintained and compatibility between research efforts ensured. While the physical database would exist in a central location, access will not be physically limited. Advanced database interfaces are created to operate over the internet utilizing a Web-based relational database, allowing project members to access their data from virtually anywhere. These interfaces provide users with the ability to upload, download, edit, and search data remotely, creating a dynamic system that is continually updated with the most recent information. At the same time, data are protected through user access restrictions, by implementing user profiles and password protected security. This accessibility could be set to any combination of read/write/edit abilities from an administrator capacity with full access to all data, to a highly restricted public access capability limited to general project information. Generation of customized summary reports and basic graphical routines could also be obtained through a Web-based interference. Using these types of features, users could produce summary tables, track trends of specified response variables over time or location, and compare results from various disciplines. Exploration of data in this manner can help users to better define and clarify their research goals and provide a means of integrating various aspects of a larger research project.

Shafii, Bahman [Statistical Consulting Services

2009-09-24T23:59:59.000Z

208

ASSESSMENTOF BETA PARTICLE FLUX FROM SURFACE CONTAMINATION AS A RELATIVE INDICATOR FOR RADIONUCLIDE DISTRIBUTION ON EXTERNAL SURFACES OF A MULTI-STORY BUILDING IN PRIPYAT  

SciTech Connect

How would we recover if a Radiological Dispersion Device (e.g., dirty bomb) or Improvised Nuclear Device were to detonate in a large city? In order to assess the feasibility of remediation following such an event, several issues would have to be considered, including the levels and characteristics of the radioactive contamination, the availability of the required resources to accomplish decontamination, and the planned future use of the city's structures and buildings. Presently little is known about the distribution, redistribution, and migration of radionuclides in an urban environment. However, Pripyat, a city substantially contaminated by the Chernobyl Nuclear Power Plant accident, may provide some answers. The main objective of this study was to determine the radionuclide distribution on a Pripyat multi-story building, which had not been previously decontaminated and therefore could reflect the initial fallout and its further natural redistribution on external surfaces. The 7-story building selected was surveyed from the ground floor to the roof on horizontal and vertical surfaces along seven ground-to-roof transections. Some of the results from this study indicate that the upper floors of the building had higher contamination levels than the lower floors. The authors consequently recommend that existing decontamination procedures for tall structures be re-examined and modified accordingly.

Farfan, E.

2009-11-17T23:59:59.000Z

209

Hayward's Green Building Ordinance  

E-Print Network (OSTI)

Please accept on behalf of the City of Hayward this request for California Energy Commission (CEe) review and approval of Hayward's Green Building Ordinance.and related energy cost effectiveness study, which will mandate exceeding the 2008 Energy Code standards. As we have discussed previously, Hayward adopted a Green Building Ordinance last fall (see attached Tab 1). The Ordinance requires that new construction and non-residential development exceeding 1,000 square feet comply with the City's green building ordinance standards (described below), if a permit application is submitted for such developments after August 1 of this year, or after the CEC and Building Standards Commission (BSe) approve such standards. Hayward's ordinance indicates that new residential development shall be GreenPaint Rated, meaning achieving energy efficiency at least 15 % above State standards. Build It Green staff, who oversee the GreenPaint Rated program, have indicated that their new standards/guidelines will require projects Rated to exceed 2008 State energy efficiency standards by at least 15 % in order to be GreenPoint Rated. Their current standards require exceeding 2005 State energy efficiency standards by at least 15%. For non-residential development, certain standards related to energy efficiency need to be met in one of three ways: the lighting load for fixtures shall be reduced by at least 15 % below 2008 Title 24

Joe Loyer

2009-01-01T23:59:59.000Z

210

An examination of a specific network of poetics from the realm of language-image-sound relations  

E-Print Network (OSTI)

It is my intention in this paper to examine the network of poetic relations which I explore in my art work. This document is divided into two main sections: part one deals with a number of art historical foci in regard to ...

Seaman, Bill

1985-01-01T23:59:59.000Z

211

Special Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Building Renovations Special Building Renovations Special Building Renovations October 16, 2013 - 4:58pm Addthis A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following Federal building types with specific design considerations for renewable energy: data centers, historic buildings, hospitals, laboratories, remote facilities, residential, and warehouses and service buildings. Data Centers Because data centers account for an ever-growing amount of energy consumption, designing high efficiency data centers is both a sustainable and economic option. Coupled with energy efficiency measures, renewable energy technologies can provide some opportunities for data centers. Since

212

1999 Commercial Buildings Characteristics--CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of CBECS Building Types Description of CBECS Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the sub-categories were combined into the more general categories that are found in the detailed tables. These categories are consistent with prior years.

213

Buildings Energy Data Book: 7.1 National Legislation  

Buildings Energy Data Book (EERE)

4 4 Energy Independence and Security Act 2007, High Performance Commercial Buildings Create the Office of Commercial High Performance Green Buildings The Office of Commercial High Performance Green Buildings with The Office of Federal High Performance Green Buildings will establish a High Performance Green Buildings Clearinghouse to disseminate research through outreach, education, and technical assistance Zero Net Energy Initiative for Commercial Buildings was also included establishing specific goals: -- Net zero energy use in all new commercial buildings constructed by 2030 -- Net zero energy use in 50% of the United State commercial building stock by 2040 -- Net zero energy use in the entire United States commercial building stock by 2050 Source(s):

214

Project: Contaminant Control in High-Performance Buildings  

Science Conference Proceedings (OSTI)

... Specifically, the use of building materials with low VOC emissions may allow energy savings by lowering outdoor air ventilation requirements. ...

2013-01-15T23:59:59.000Z

215

Building Technologies Office: Top Innovations 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Top Innovations 2012 to Top Innovations 2012 to someone by E-mail Share Building Technologies Office: Top Innovations 2012 on Facebook Tweet about Building Technologies Office: Top Innovations 2012 on Twitter Bookmark Building Technologies Office: Top Innovations 2012 on Google Bookmark Building Technologies Office: Top Innovations 2012 on Delicious Rank Building Technologies Office: Top Innovations 2012 on Digg Find More places to share Building Technologies Office: Top Innovations 2012 on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program

216

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

217

48 the building is.  

U.S. Energy Information Administration (EIA)

48 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

218

59 the building is.  

U.S. Energy Information Administration (EIA)

59 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

219

83 the building is.  

U.S. Energy Information Administration (EIA)

83 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

220

Commercial Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies...

222

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Events on Twitter Bookmark Building Technologies Office: Events on Google Bookmark Building Technologies Office: Events on Delicious Rank Building Technologies...

223

Building Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: About on Twitter Bookmark Building Technologies Office: About on Google Bookmark Building Technologies Office: About on Delicious Rank Building Technologies...

224

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

225

Better Buildings Neighborhood Program: Better Buildings Partners...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Partners Gather to Plan for the Future to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners Gather to Plan for the Future...

226

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

227

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

228

Home Energy Ratings and Building Performance  

E-Print Network (OSTI)

This paper provides an overview of the Home Energy Rating System (HERS). A short summary of the origination and history of the HERS system will lead to a more detailed description of the inspection and testing protocol. The HERS rating provides an accepted method to determine home efficiency based on standards developed and overseen by the Residential Energy Services Network (RESNET), a not-for-profit corporation. The paper will discuss the effect of various building systems and effects of local climate as they affect the rating score of a proposed or completed structure. The rating is used to determine the most cost effective mechanical systems, building envelope design including window and door types, effect of various roofing materials and radiant barriers. The paper will conclude by comparing specifics of an actual report to the construction characteristics of a home as they relate to the HERS Rating and the result.

Gardner, J.C.

2008-12-01T23:59:59.000Z

229

Green Building- Efficient Life Cycle  

E-Print Network (OSTI)

Energy saving does not just apply to traffic, production or agriculture. Buildings are also contributing to the climate change. The focus here is on the energy they use and on their CO2 emissions. Each year, Siemens invests more than two billion euros in the appropriate research and development. For customers, this means that Siemens is already providing them with energy efficient solutions that save resources and reduce emissions. Siemens Real Estate (SRE) has taken on the task of ensuring that Siemens AG will become 20 percent more energy efficient by 2011, and it has turned an efficiency program for existing real estate, which has been in existence since 2005, into an integrated green building initiative. This initiative comprises the components Sustainable Building Design, Life Cycle Cost Analysis, Green Building Certification and Natural Resources Management. These components are deliberately arranged around the life cycle of the real estate concerned. This allows a different emphasis to be placed on the different questions in each project phase and each phase of a buildings life and for them to be answered in a targeted manner. Sustainable Building Design comes into effect during the tasking and preliminary planning phase of a building project; and, by providing a specially developed sustainability manual, it helps with the definition of target values and the drawing up of efficiency strategies for the planning of the building. The manual epitomizes, and sets out clearly, the attitude of SRE to all building-specific sustainability matters. In addition, it is used in the offering of rewards for project competitions. As a result, through a selection of different energy-efficiency measures that have been roughly conceived beforehand, the primary energy consumption can already be restricted in the project definition phase. Life Cycle Cost Analysis comes into effect when the blueprint for buildings is being drawn up. Up to now, when components and systems were being chosen, the main focus was usually on the investment costs involved. By using a cost tool developed specifically to meet the needs of the company, SRE will in future be able to estimate the component-specific utilization costs such as cleaning, maintenance, and the use of energy at an early planning stage. Green Building Certification is used in building projects during the planning and implementation phase, and it thus ensures the quality of the new real estate over the long term. Siemens is implementing the Green Building Program of the European Commission in new building projects and renovation work in EU countries. In all other countries that are not taking part in the EU Green Building Program, SRE uses certification in accordance with LEED (Leadership in Energy and Environmental Design). In the LEED certification, a transparent and easy-to-use catalog of criteria is employed to make an assessment of the use of energy and other aspects of sustainability, such as the selection of the plot of land, the efficient use of water, the quality of air within buildings, and the selection of materials. This ensures that a neutral and independent assessment is made of all new building and large-scale renovation projects. The action program Natural Resources Management rounds off the range of measures in the area of existing real estate. The aim of the program is to identify and highlight all latent efficiency potential in existing buildings. This includes, for instance, modernizing the control equipment used for the heating and ventilation systems. This entails replacing electrical power units with more efficient models, and retrofitting fans and pumps with frequency converters. Sixty buildings have now been inspected, and savings of almost eight million Euros have been achieved. The average payback period is less than two years. One example of this is an old Siemens building from the 1970s at the Munich-Perlach site. Through energy optimization, it has been possible to cu

Kohns, R.

2008-10-01T23:59:59.000Z

230

Building Technologies Office: Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by...

231

Building Technologies Office: Building Energy Software Tools...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Links This directory provides information on 404 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings. The energy tools...

232

Building Technologies Office: Commercial Building Research and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

233

Building Technologies Office: Contact the Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

234

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

for technical information on building products, materials, new technologies, business management, and housing systems. DOE's Residential Building Energy Codes - Resource for...

235

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Technologies Office Search Search Help Building Technologies Office HOME...

236

Building Technologies Office: Building America Research Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science...

237

Building Technologies Office: Building Envelope Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building...

238

Vermont | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont Last updated on 2013-06-03 Current News The Vermont Commercial Building Energy Standards (CBES) became effective January 3, 2012. The CBES incorporates elements of the 2012 IECC. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information 2011 Vermont Commercial Building Energy Standards (CBES) are based on the 2009 IECC. Commercial Building Energy Standards Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Vermont (BECP Report, Sept. 2009) Approximate Energy Efficiency More energy efficient than 2009 IECC Effective Date 01/03/2012 Adoption Date 10/03/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No

239

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

SciTech Connect

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

Aden, Nathaniel; Qin, Yining; Fridley, David

2010-09-15T23:59:59.000Z

240

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

SciTech Connect

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

Aden, Nathaniel; Qin, Yining; Fridley, David

2010-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

242

84 the building is.  

U.S. Energy Information Administration (EIA)

84 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: LCEA009449 Keywords:

243

87 the building is.  

U.S. Energy Information Administration (EIA)

87 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: STRO000469 Keywords:

244

80 the building is.  

U.S. Energy Information Administration (EIA)

80 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

245

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC400003 Keywords:

246

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

247

97 the building is.  

U.S. Energy Information Administration (EIA)

97 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

248

78 the building is.  

U.S. Energy Information Administration (EIA)

78 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC200470 Keywords:

249

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Emergency Response Operations ... Safety Investigation of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ...

250

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... rise buildings; building collapse; disasters; fire safety ... structural analysis; structural damage; structural response ...

251

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ... structures; thermal response; flameproofing; radiative ...

252

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... systems; surface temperature; deflection; insulation; thermometers; structural ... effects of fires in buildings, for use ... the analysis of building response to ...

253

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building materials; thermal conductivity; databases; insulation; building technology; density; fibrous glass; guarded hot plate; heat flow; insulation ...

254

Federal Buildings Supplemental Survey 1993  

SciTech Connect

The Energy Information Administration (EIA) of the US Department of Energy (DOE) is mandated by Congress to be the agency that collects, analyzes, and disseminates impartial, comprehensive data about energy including the volume consumed, its customers, and the purposes for which it is used. The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE`s Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP`s specifications; therefore, these data do not statistically represent all Federal buildings in the country. The purpose of the FBSS was threefold: (1) to understand the characteristics of Federal buildings and their energy use; (2) to provide a baseline in these three Federal regions to measure future energy use in Federal buildings as required in EPACT; and (3) to compare building characteristics and energy use with the data collected in the CBECS.

NONE

1995-11-01T23:59:59.000Z

255

Duct thermal performance models for large commercial buildings  

SciTech Connect

Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

Wray, Craig P.

2003-10-01T23:59:59.000Z

256

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

257

The positive and negative effects of building humidification  

SciTech Connect

Authors' codes and standards frequently discuss single effects of humidification without examining the overall aspects of it. The ASHRAE 90-75 Standard for Energy Conservation in New Buildings states the following regarding the control of winter humidity: If a HVAC Systems is equipped with a means for adding moisture to maintain specific selected humidities in spaces or zones, a humidistat shall be provided. This device shall be capable of being set to prevent new energy from being used to prevent space relative humidity above 30%. Where a humidistat is used in a HVAC system for controlling moisture removal to maintain specific selected humidities in spaces or zones, it shall be capable of being set to prevent new energy being used to produce a space relative humidity below 60%. This statement has been incorporated in the standard to do one thing only: reduce energy consumption in buildings by limiting the relative humidity to 30% in winter. This paper will discuss other aspects of adding humidity to buildings in winter: comfort, health, static electricity, hygiene, maintenance, control for building condensation, initial cost, the need for the measurement of humidity to determine if a humidification system is performing its function, and the synergistic effect of humidity on other atmospheric components.

Green, G.H.

1982-01-01T23:59:59.000Z

258

Building Technologies Office: Technical Update Meeting - Summer 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Update Technical Update Meeting - Summer 2012 to someone by E-mail Share Building Technologies Office: Technical Update Meeting - Summer 2012 on Facebook Tweet about Building Technologies Office: Technical Update Meeting - Summer 2012 on Twitter Bookmark Building Technologies Office: Technical Update Meeting - Summer 2012 on Google Bookmark Building Technologies Office: Technical Update Meeting - Summer 2012 on Delicious Rank Building Technologies Office: Technical Update Meeting - Summer 2012 on Digg Find More places to share Building Technologies Office: Technical Update Meeting - Summer 2012 on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

259

Cooling Strategies Based on Indicators of Thermal Storage in Commercial Building Mass  

E-Print Network (OSTI)

Building thermal mass and multi-day regimes of hot weather are important, yet poorly understood, contributors to cooling energy requirements. This paper develops load-shifting sub-cooling and precooling equipment operating strategies to address a specific instance of this phenomenon, in which thermal storage by building mass over weekends exacerbates Monday cooling energy requirements. The study relies on computer simulations of energy use for a large, office building prototype in El Paso, TX using the DOE-2 building energy analysis program. The economic value of the strategies is evaluated with direct reference to utility rate schedules and a crude measure of thermal storage is related to the energy impacts of the strategies. The indicators are based on core zone air temperatures, which are sampled a t night when HVAC systems are not in use. The suggestion is made that the results and proposed strategies could be adapted for use by computerized energy management systems to reduce building energy operating costs.

Eto, J. H.

1985-01-01T23:59:59.000Z

260

Specifying Fenestration Products for Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

brochure which explains how this relatively new and low-cost technology can reduce cooling loads in commercial buildings without any loss in visible light or change in...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Energy Software Tools Directory: IWEC  

NLE Websites -- All DOE Office Websites (Extended Search)

PC Mac UNIX Internet Tools by Country Related Links IWEC IWEC logo. Contains "typical" weather data in ASCII format files, suitable for use with building energy simulation...

262

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical...

263

Building Energy Software Tools Directory: SUNDAY  

NLE Websites -- All DOE Office Websites (Extended Search)

than 50. Audience Energy professionals, architects, builders, civil engineers, and homeowners. Input Parameters on building components, weather data, and related information....

264

Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors  

Science Conference Proceedings (OSTI)

A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

1989-10-01T23:59:59.000Z

265

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

266

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

7.1 National Legislation 7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 7 outlines national climate change legislation, tax incentives, Federal regulations, and State programs that have influenced building energy consumption. Section 7.1 summarizes the past 40 years of national energy legislation beginning with the Clean Air Act of 1970. Section 7.2 describes the energy efficiency-related Federal tax incentives created in the last 5 years. Sections 7.3 through 7.7 describe the energy and water efficiency standards currently or soon to be in effect for residential and commercial HVAC equipment, appliances, lighting, and water-consuming products. Section 7.8 covers building energy codes. Following is a summary of the energy legislation discussed in this chapter:

267

Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings  

SciTech Connect

The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

Dentz, J.

2011-10-01T23:59:59.000Z

268

Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings  

SciTech Connect

The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

Dentz, J.

2011-10-01T23:59:59.000Z

269

Building America Solution Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America America Solution Center Building America Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR®

270

Building Extraction Using Lidar Data  

E-Print Network (OSTI)

Accurate 3D surface models in urban areas are essential for a variety of applications, such as visualization, GIS, and mobile communications. Since manual surface reconstruction is very costly and time consuming, the development of automated algorithms is of great importance. On the other hand LIDAR data is a relatively new technology for obtaining Digital Surface Models (DSM) of the earths surface. It is a fast method for sampling the earths surface with a high density and high point accuracy. In this paper a new approach for building extraction from LIDAR data is presented. The approach utilizes the geometric properties of urban buildings for the reconstruction of the building wire-frames from the LIDAR data. We start by finding the candidate building points that are used to populate a plane parameter space. After filling the plane parameter space, we find the planes that can represent the building roof surfaces. Roof regions are then extracted and the plane parameters are refined using a robust estimation technique and the geometric constraint between adjacent roof facets. The region boundaries are extracted and used to form the building wire-frames. The algorithm is tested on two buildings from a locally acquired LIDAR data sets. The test results show some success in extracting urban area buildings. 1.

Ahmed F. Elaksher; James S. Bethel

2002-01-01T23:59:59.000Z

271

California commercial building energy benchmarking  

SciTech Connect

Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

Kinney, Satkartar; Piette, Mary Ann

2003-07-01T23:59:59.000Z

272

Alabama State Certification of Commercial Building Codes | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Codes Commercial Building Codes In response to the U.S. Department of Energy's July 20, 2011 notice of determination in the Federal Register regarding ANSI/ASHRAE/IESNA Standard 90.1-2007, Alabama certifies that it has reviewed and adopted the provisions of its Alabama Energy and Residential Code to include the requirement for non-state-funded buildings to comply with the 2009 International Energy Conservation Code, and by reference ASHRAE 90.1-2007. Publication Date: Wednesday, May 15, 2013 Alabama Commercial Certification.pdf Document Details Last Name: Adams Initials: TL Affiliation: Alabama Department of Economic and Community Affairs Focus: Adoption Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-2007 2009 IECC Document type: State-specific Target Audience:

273

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

274

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

275

Ontology Development for Low-Energy Building Embedded Commissioning  

E-Print Network (OSTI)

This paper presents the results of initial work in developing an ontology for improving information exchange and automation in building system commissioning practices. In our previous research dealing with the derivation of product models from building commissioning process models, we found that there is a need to categorize and classify information items, which are available in commissioning process descriptions. In addition, the relationship between these items should be clearly defined to establish a topological relationship between items necessary for specifying product models. Ontology development is the way to categorize and classify domain knowledge information and items into inter-related concepts. Ontology assembles information in the form of concept hierarchies (taxonomies), axioms, and semantic relationships, which allow natural language to be presented unambiguously. A glossary (a lower form of ontology) specific to building commissioning tasks was developed as a first step. In the second step, an ontology for use in commissioning software applications was developed.

Lee, K. J.; Akin, O.; Akinci, B.; Garrett, J.; Bushby, S.

2009-11-01T23:59:59.000Z

276

Acoustical and Noise Control Criteria and Guidelines for Building Design and Operations  

E-Print Network (OSTI)

Noise, vibration and acoustical design, construction, commissioning and operation practices influence building cost, efficiency, performance and effectiveness. Parameters for structural vibration, building systems noise, acoustics and environmental noise crossing property boundaries will be presented with brief case studies illustrating noise and vibration problems with successful solutions. Building mechanical, power, and plumbing systems contribute to building operations noise and vibration, which affects building occupants, sensitive installations, and functional uses. Various noise and vibration design criteria, field measurements, design concepts and specifications can be applied in facilities to achieve noise mitigation and vibration control to enhance building operations and reduce tenant or neighbor problems. Concepts for enhancement will be presented that achieve specific program criteria and improve the built environment for occupants and functional uses, including items to incorporate in specifications and construction documents. Concepts relating to noise and vibration control can also reduce short and long-term operations costs and save energy. Acoustical designs can be implemented in new construction to achieve specific requirements for LEED certification in healthcare and educational facilities. Common problems, objective criteria, sensitive installations, and solutions will be presented to offer a basic understanding of effective noise and vibration control for central plant equipment, power systems, transformers, standby generators, and roof mounted HVAC equipment.

Evans, J. B.; Himmel, C. N.

2009-11-01T23:59:59.000Z

277

Glossary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary Site Map Printable Version Development Adoption Compliance Regulations Resource Center FAQs Publications Resource Guides eLearning Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Glossary The following is a compilation of building energy-code related terms and acronyms used on the Building Energy Codes website and throughout the building construction industry. Select a letter to navigate through the glossary: Filter A (25) B (22) C (41) D (27) E (27) F (15) G (12) H (21) I (20) K (5) L (11) M (16) N (15) O (11) P (21) R (22) S (37) T (14) U (12) V (11) W (10) Z (1) AAMA Architectural Aluminum Manufacturers Association. Above-Grade Wall A wall that is not a below-grade wall. Above-Grade Walls Those walls (Section 802.2.1) on the exterior of the building and

278

Building Envelope Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Envelope Research Building Envelope Research Building Envelope Research The Emerging Technology team conducts research into technologies and processes related to the building envelope. The goal of these efforts is to help reduce the amount of energy used in the building envelope by 20% compared to 2010 levels. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst in developing new materials, coatings, and systems designed to improve energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building that's under construction. Building foundation insulation systems can help improve energy efficiency, but are affected by variables that can be hard to detect, such moisture.

279

1999 Commercial Buildings Characteristics--Year Constructed  

U.S. Energy Information Administration (EIA) Indexed Site

Year Constructed Year Constructed Year Constructed More than one-third (37 percent) of the floorspace in commercial buildings was constructed since 1980 and more than one-half (55 percent) after 1969 (Figure 1). Less than one-third of floorspace was constructed before 1960. Detailed tables Figure 1. Distribution of Floorspace by Year Constructed, 1999 Figure 1. Distribution of Floorspace by Year Constructed, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Overall, relatively more buildings than floorspace were represented in the older age categories and more floorspace than buildings in the newer categories (see graphical comparison) because older buildings were smaller than more recently constructed buildings (Figure 2). Buildings constructed prior to 1960 were 11,700 square feet in size on average while those constructed after 1959 were 37 percent larger at 16,000 square feet per building.

280

Application of software tools for moisture protection of buildings in  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of software tools for moisture protection of buildings in Application of software tools for moisture protection of buildings in different climate zones Title Application of software tools for moisture protection of buildings in different climate zones Publication Type Conference Paper Year of Publication 2009 Authors Krus, Martin, Thierry Stephane Nouidui, and Klaus Sedlbauer Conference Name 6th International Conference on Cold Climate, Heating, Ventilating and Air-Conditioning Conference Location Sisimiut, Groenland Abstract The application of software tools for moisture protection of buildings in different climatic zones is demonstrated in this paper. The basics of the programs are presented together with a typical application for a problem specific for the chosen climatic zone. A 1-D calculation has been performed for tropical climate zone with the improvement of a flat roof in Bangkok as an example. For half timbered buildings, which are common in the temperate zone with the 2-D model an infill insulation and its benefits are demonstrated. Finally the combined appliance of the whole building model and the mould risk prognosis model is shown in detail as a special case for the cold climate zone: In heated buildings of cold climate zones the internal climate with its low relative humidity in wintertime often causes discomfort and health problems for the occupants. In case of using air humidifier the risk of mould growth increases. Instead of an uncontrolled humidifying of the dry air an innovativecontrol system using a thermal bridge, which switches the humidifier off when condensation occurs is presented. To quantify the improvement in the comfort while preventing the risk of mould growth for a typical building comparative calculations of the resulting inner climates and its consequences on comfort have been performed.

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

282

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

283

Buildings without energy bills  

Science Conference Proceedings (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

284

Energy use in office buildings  

SciTech Connect

This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

None

1980-10-01T23:59:59.000Z

285

Energy Department Launches Better Buildings Workforce Guidelines Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Workforce Guidelines Better Buildings Workforce Guidelines Project Energy Department Launches Better Buildings Workforce Guidelines Project September 26, 2013 - 2:38pm Addthis The Energy Department today announced the Better Buildings Workforce Guidelines project to improve the quality and consistency of commercial building workforce training and certification programs for five key energy-related jobs: Energy Auditor, Commissioning Professional, Building/Stationary Engineer, Facility Manager, and Energy Manager. These voluntary workforce guidelines will support the Better Buildings Initiative goal of making commercial buildings 20% more energy efficient over the next 10 years, while helping businesses and communities save money by saving energy and creating new clean energy jobs across the country.

286

Country Report on Building Energy Codes in China  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

2009-04-15T23:59:59.000Z

287

Country Report on Building Energy Codes in India  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

2009-04-07T23:59:59.000Z

288

Country Report on Building Energy Codes in Korea  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

2009-04-17T23:59:59.000Z

289

Country Report on Building Energy Codes in Australia  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

2009-04-02T23:59:59.000Z

290

Country Report on Building Energy Codes in Japan  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

Evans, Meredydd; Shui, Bin; Takagi, T.

2009-04-15T23:59:59.000Z

291

Country Report on Building Energy Codes in Canada  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

Shui, Bin; Evans, Meredydd

2009-04-06T23:59:59.000Z

292

Country Report on Building Energy Codes in the United States  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

Halverson, Mark A.; Shui, Bin; Evans, Meredydd

2009-04-30T23:59:59.000Z

293

Current Activities in Support of Building Energy Codes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Program buildings.energy.gov Building Technologies Program buildings.energy.gov Current Activities in Support of Building Energy Codes Jeremy Williams Building Technologies Program Energy Efficiency and Renewable Energy U. S. Department of Energy March 2, 2012 2 | Building Technologies Program buildings.energy.gov 2 Purpose Purpose: To provide an update on DOE activities related to the development of proposed code changes and deployment of existing codes: - Goals and direction - Activity updates - Available resources 3 | Building Technologies Program buildings.energy.gov Goals and Direction 3 4 | Building Technologies Program buildings.energy.gov 30% Initiative for Increased Energy Savings * Commercial-Published in 2010 - ANSI/ASHRAE/IESNA Standard 90.1-2010 with savings of

294

A marine research lab in Maine : building coastal identity  

E-Print Network (OSTI)

If the design of a building originates from the place in which it is built, from the social traditions of that place, and from building traditions which are specific to local materials and climate, then it will project an ...

Marinace, F. Paul (Frank Paul)

1995-01-01T23:59:59.000Z

295

Table 2.9 Commercial Buildings Consumption by Energy Source ...  

U.S. Energy Information Administration (EIA)

parking garages. Web Page: For related information, ... "Commercial Buildings Energy Consumption Survey." 6 Distillate fuel oil, residual fuel oil, ...

296

Comparison of Building Energy Modeling Programs: Building Loads  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Building Energy Modeling Programs: Building Loads Title Comparison of Building Energy Modeling Programs: Building Loads Publication Type Report LBNL Report Number...

297

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes Resource Guide: COMMERCIAL BUILDINGS for Architects Prepared by: Building Energy Codes Program (BECP) and the American...

298

Toward a virtual building laboratory  

SciTech Connect

In order to achieve in a timely manner the large energy and dollar savings technically possible through improvements in building energy efficiency, it will be necessary to solve the problem of design failure risk. The most economical method of doing this would be to learn to calculate building performance with sufficient detail, accuracy and reliability to avoid design failure. Existing building simulation models (BSM) are a large step in this direction, but are still not capable of this level of modeling. Developments in computational fluid dynamics (CFD) techniques now allow one to construct a road map from present BSM's to a complete building physical model. The most useful first step is a building interior model (BIM) that would allow prediction of local conditions affecting occupant health and comfort. To provide reliable prediction a BIM must incorporate the correct physical boundary conditions on a building interior. Doing so raises a number of specific technical problems and research questions. The solution of these within a context useful for building research and design is not likely to result from other research on CFD, which is directed toward the solution of different types of problems. A six-step plan for incorporating the correct boundary conditions within the context of the model problem of a large atrium has been outlined. A promising strategy for constructing a BIM is the overset grid technique for representing a building space in a CFD calculation. This technique promises to adapt well to building design and allows a step-by-step approach. A state-of-the-art CFD computer code using this technique has been adapted to the problem and can form the departure point for this research.

Klems, J.H.; Finlayson, E.U.; Olsen, T.H.; Banks, D.W.; Pallis, J.M.

1999-03-01T23:59:59.000Z

299

Tennessee | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee Tennessee Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2006 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Tennessee (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2006 IECC Effective Date 07/01/2011 Adoption Date 06/02/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Tennessee DOE Determination Letter, May 31, 2013 Tennessee State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of Tennessee (BECP Report, Sept. 2009)

300

Energy Code Compliance in a Detailed Commercial Building Sample: The Effects of Missing Data  

SciTech Connect

Most commercial buildings in the U.S. are required by State or local jurisdiction to meet energy standards. The enforcement of these standards is not well known and building practice without them on a national scale is also little understood. To provide an understanding of these issues, a database has been developed at PNNL that includes detailed energy related building characteristics of 162 commercial buildings from across the country. For this analysis, the COMcheck? compliance software (developed at PNNL) was used to assess compliance with energy codes among these buildings. Data from the database for each building provided the program input with percentage energy compliance to the ASHRAE/IESNA Standard 90.1-1999 energy as the output. During the data input process it was discovered that some essential data for showing compliance of the building envelope was missed and defaults had to be developed to provide complete compliance information. This need for defaults for some data inputs raised the question of what the effect on documenting compliance could be due to missing data. To help answer this question a data collection effort was completed to assess potential differences. Using the program Dodge View, as much of the missing envelope data as possible was collected from the building plans and the database input was again run through COMcheck?. The outputs of both compliance runs were compared to see if the missing data would have adversely affected the results. Both of these results provided a percentage compliance of each building in the envelope and lighting categories, showing by how large a percentage each building either met or fell short of the ASHRAE/IESNA Standard 90.1-1999 energy code. The results of the compliance runs showed that 57.7 % of the buildings met or exceeded envelope requirements with defaults and that 68 % met or exceeded envelope requirements with the actual data. Also, 53.6 % of the buildings met or surpassed the lighting requirements in both cases. The dataset of 162 buildings is not large enough to accurately apply theses findings to all commercial buildings across the U.S., but it does provide a rough idea of what to generally expect. This database also has other uses such as characterization of commercial buildings by each specific data point and in splitting up the total of 162 buildings into smaller subsets to characterize such groups as large (>5000 sq ft) or small (<5000 sq ft) commercial buildings.

Biyani, Rahul K.; Richman, Eric E.

2003-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Optimisation of buildings' solar irradiation availability  

SciTech Connect

In order to improve the sustainability of new and existing urban settlements it is desirable to maximise the utilisation of the solar energy incident on the building envelope, whether by passive or active means. To this end we have coupled a multi-objective optimisation algorithm with the backwards ray tracing program RADIANCE which itself uses a cumulative sky model for the computation of incident irradiation (W h/m{sup 2}) in a single simulation. The parameters to optimise are geometric (the height of buildings up to their facade and the height and orientation of roofs), but with the constraint of maintaining an overall built volume, and the objective function is heating season solar irradiation offset by envelope heat losses. This methodology has been applied to a range of urban typologies and produces readily interpretable results. The focus of this work is on the design of new urban forms but the method could equally be applied to examine the relative efficiency of existing urban settlements, by comparison of existing forms with the calculated optima derived from relevant specifications of the building envelope. (author)

Kaempf, Jerome Henri; Montavon, Marylene; Bunyesc, Josep; Robinson, Darren [Solar Energy and Building Physics Laboratory, Station 18, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Bolliger, Raffaele [Industrial Energy Systems Laboratory, Station 9, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

2010-04-15T23:59:59.000Z

302

Thick Buildings [Standards  

E-Print Network (OSTI)

on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

Coffin, Christie Johnson

1995-01-01T23:59:59.000Z

303

Energy Efficiency Standards for Federal Buildings | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Site Map Printable Version Development Adoption Compliance Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards...

304

Florida | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Florida Last updated on 2013-11-18 Current News The triennial code change process is currently underway. Florida expects to be equivalent to ASHRAE 90.1-10 and IECC 2012 by early 2014. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information N/A Approved Compliance Tools Can use State specific EnergyGauge Summit FlaCom State Specific Research Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/15/2012 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Florida DOE Determination Letter, May 31, 2013 Florida State Certification of Commercial Building Codes Current Code State Specific Amendments / Additional State Code Information Florida Building Code

305

Building Technologies Office: Standard Energy Efficiency Data Platform  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Energy Standard Energy Efficiency Data Platform to someone by E-mail Share Building Technologies Office: Standard Energy Efficiency Data Platform on Facebook Tweet about Building Technologies Office: Standard Energy Efficiency Data Platform on Twitter Bookmark Building Technologies Office: Standard Energy Efficiency Data Platform on Google Bookmark Building Technologies Office: Standard Energy Efficiency Data Platform on Delicious Rank Building Technologies Office: Standard Energy Efficiency Data Platform on Digg Find More places to share Building Technologies Office: Standard Energy Efficiency Data Platform on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

306

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

307

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

308

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

309

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Building America Residential Research Better Buildings Alliance Solid-State Lighting Events ICMA 99th Annual Conference September 22-25, 2013 Register Now for the 2013...

310

Food Sales Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings, though they comprised only 1 percent of commercial floorspace. Their total energy intensity was the third highest of all the building types, and their electricity...

311

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was just slightly below the commercial average. Public assembly buildings...

312

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of this building in two challenging North American climates. ... building in its native climate were performed ... were formulated-a single-zone model with ...

313

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Planning for Construction and Building R&D. National Planning for Construction and Building R&D. (576 K) Wright ...

314

Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Kristen Taddonio DOEEEREBTOCommercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office...

315

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

316

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... These estimates, and other analyses of energy consumption in office buildings, are based on building energy analysis programs such as DOE-2. ...

317

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... keynote address entitled "Green Buildings - The White House Perspective ... in the areas of building materials, lighting, and indoor air ... Selected Papers. ...

318

Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading to Lessons Learned 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Program Problem Statement: Buildings consume 40% of energy in the United...

319

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... will build an instrument that will provide the building industry with better measurement capabilities to judge the effectiveness of thermal insulation ...

320

Case Study: Sick Building Syndrome in a Humid Climate  

E-Print Network (OSTI)

An indepth environmental investigation was conducted at a four-story building officing 1200 employees in Oklahoma. A preassessment and walkthrough of the facility revealed extensive ongoing renovations throughout the building. Renovations consisted of installations of new partitions, carpeting, ceiling tiles, and repainting. Management was receiving numerous complaints related to the indoor air quality from all parts of the building, particularly the unrenovated areas. The majority of employee complaints originated from the unrenovated second floor; in contrast, few complaints had been submitted from the finished fourth floor area. Due to the disparity in employee complaints from these two floors, the investigation focused on a comparison of the air quality on the second and fourth floors. The initial walkthrough revealed inordinate amounts of dust in the occupied space of the second floor. High humidity levels were measured throughout the building. Other potential problems -- i.e., poor lighting, job stress, poor air circulation, stuffy air, thermal discomfort. smokers in the area --were also noted at this point. Questionnaires were made available to occupants on both floors to attain a better understanding of employee problems and assist in formulating an investigation plan. Collectively the nonspecificity of the responses tended to indicate building-related problems often described by the term ''Sick Building Syndrome" (SBS). Based on the questionnaire responses, the walkthrough observations, and the lack of specific illnesses, the investigation focused on identification of and testing for sources of chemical and particulate emissions and possible inadequacies of the mechanical ventilation system in providing the necessary amount of outside air. Although the building investigation revealed few signs of biological contamination, problems of this nature are not uncommon in climates with high humidity. The potential for biological proliferation in buildings with excessive humidity are discussed in the paper. The SBS causation was multifactorial and thus could not be attributed to a single etiologic factor. Temperature and humidity problems were partially attributed to the inadequate provision of chilled water (at a low enough temperature) to ensure proper tempering and dehumidification of the supply air. These periodic excursions in temperature and relative humidity were compounded by an associated reduction in outside air which exacerbated the situation. Other recommendations had to do with improving the filtration system, balancing of the air handling system, improving the ventilation efficiency, separation of smokers and nonsmokers, and the infusion of a fastidious cleaning and maintenance program combined with an adequate supply of fresh air per ASHRAE 62-89 specifications.

Shaughnessy, R. J.; Levetin, E.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ImBuild: Impact of building energy efficiency programs  

SciTech Connect

As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

Scott, M.J.; Hostick, D.J.; Belzer, D.B.

1998-04-01T23:59:59.000Z

322

Opportunities of Conserving Energy on an Existing Institutional Building: Case Study  

E-Print Network (OSTI)

The building considered in this case study is a two-story facility with total floor area of 3588 square meter; it is mainly educational facility (classrooms, laboratories, and workshops) as well as staff offices. The building is cooled by an air-cooled reciprocating chillers which is operating round the clock. A preliminary energy audit technique was conducted to evaluate the building energy performance and identify opportunities of saving energy. In addition to the walk-through technique also mini-data loggers were installed in each zone to monitor dry-bulb temperatures, relative humidity, and light intensity over the year 2008. Specific ANSI/ASHRAE/IESNA Standard 100-2006 Energy Conservation in Existing Building measures were implemented in the building. The recorded data showed large deviation of dry-bulb temperatures from comfort range in many zones. The building simulated using DesignBuilder simulation program controlling the indoor temperature and using the set-back temperature schedules. These two parameters showed an opportunity of saving energy of the existing building by 35%, and 15% respectively. Finally, a cost analysis of implementing Building Management System (BMS) was analyzed; the result showed a pay-back period of less than six months was obtained.

Alajmi, A. F.

2010-01-01T23:59:59.000Z

323

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

324

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

325

Solar buildings. Overview: The Solar Buildings Program  

DOE Green Energy (OSTI)

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

326

NREL's Building Component Library for Use with Energy Models  

DOE Data Explorer (OSTI)

The Building Component Library (BCL) is the U.S. Department of Energys comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

327

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

328

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

329

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

330

Building Green in Greensburg: Business Incubator Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

331

Building Green in Greensburg: City Hall Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

332

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

333

Building Energy Software Tools Directory: Be06  

NLE Websites -- All DOE Office Websites (Extended Search)

Be06 Be06 Be06 logo Calculates the energy demand of buildings in relation to the new energy requirements in the 2006 additions to the Danish Building Regulations 1995 implementing the EU EPBD, Energy Performance of Building Directive. Be06 calculations are performed in accordance with the mandatory calculation procedure described in SBi-direction 213: Energy Demand of Buildings (In Danish: SBi-anvisning 213: Bygningers Energibehov). The software uses the mandatory calculation core also developed by the Danish Building Research Institute, SBi. Be06 calculates the expected energy demand to operate the heating and climate conditioning systems in all types of buildings e.g. houses, block of flats, offices, institutions, schools, shops and workshops. The Be06 software calculates the needed energy supply to a building for room

334

CBECS Building Types | Open Energy Information  

Open Energy Info (EERE)

CBECS Building Types CBECS Building Types Jump to: navigation, search The list below contains the Building Type classifications, also known as Principal Building Activity, established by the Commercial Buildings Energy Consumption Survey (CBECS) performed by the U.S. Energy Information Administration (EIA)[1]. Education Food Sales Food Service Health Care (Inpatient) Health Care (Outpatient) Lodging Mercantile (Enclosed and Strip Malls) Mercantile (Retail Other Than Mall) Office Other Public Assembly Public Order and Safety Religious Worship Service Vacant Warehouse and Storage References ↑ EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http://en.openei.org/w/index.php?title=CBECS_Building_Types&oldid=270205" What links here Related changes

335

Building Efficiency Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Efficiency Report Building Efficiency Report Building Efficiency Report Buildings use 40% of total energy in the United States - more than either the industrial or transportation sectors. Technical improvements and cost reductions (see Appendix 3) in building materials, components and energy management systems are enabling progress in reducing the nation's energy consumption and consequent greenhouse gas emissions with payback periods as low as 24 months. With responsibility and funding for the nation's largest set of building energy-related research, development and deployment programs, the Department of Energy (DOE) should lead efforts to ensure building energy efficiency is a national priority. One of the most important things DOE can do to reduce the country's energy use and dependence on fossil fuels is to actively lead the national

336

Building Efficiency Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Efficiency Report Building Efficiency Report Building Efficiency Report Buildings use 40% of total energy in the United States - more than either the industrial or transportation sectors. Technical improvements and cost reductions (see Appendix 3) in building materials, components and energy management systems are enabling progress in reducing the nation's energy consumption and consequent greenhouse gas emissions with payback periods as low as 24 months. With responsibility and funding for the nation's largest set of building energy-related research, development and deployment programs, the Department of Energy (DOE) should lead efforts to ensure building energy efficiency is a national priority. One of the most important things DOE can do to reduce the country's energy use and dependence on fossil fuels is to actively lead the national

337

Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions  

DOE Green Energy (OSTI)

This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code enacted in Section 1331 of the 2005 Energy Policy Act and noted in Internal Revenue Service Notice 2006-52. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning; and service hot water systems.

Deru, M.

2007-02-01T23:59:59.000Z

338

Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions  

SciTech Connect

This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code enacted in Section 1331 of the 2005 Energy Policy Act and noted in Internal Revenue Service Notice 2006-52. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning; and service hot water systems.

Deru, M.

2007-02-01T23:59:59.000Z

339

Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions, Second Edition  

SciTech Connect

This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code enacted in Section 1331 of the 2005 Energy Policy Act and noted in Internal Revenue Service Notice 2006-52. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning; and service hot water systems.

Deru, M.

2007-05-01T23:59:59.000Z

340

Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions, Second Edition  

SciTech Connect

This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code enacted in Section 1331 of the 2005 Energy Policy Act and noted in Internal Revenue Service Notice 2006-52. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning; and service hot water systems.

Deru, M.

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Existing Commercial Reference Buildings Constructed In or After 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed In or After Existing Commercial Reference Buildings Constructed In or After 1980 Existing Commercial Reference Buildings Constructed In or After 1980 The files on this page contain commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

342

Step 4. Inspect the Building During and After Construction | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

4. Inspect the Building During and After Construction 4. Inspect the Building During and After Construction A number of website resources offer checklists to help officials organize the many energy-code-related areas to inspect on the construction site. Several examples of different checklists are listed below. When applicable and approved for use, REScheck and COMcheck inspection checklists should be provided as part of the energy code compliance documentation for the building. REScheck/COMcheck checklists. The REScheck and COMcheck software programs generate reports that list the energy-code-related items to be inspected. The lists include mandatory items such as air leakage control, duct insulation and sealing, temperature controls, and lighting requirements, and can be used by officials to assist during on-site

343

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

344

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

345

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Results discussed include whole building air change rates, energy consumption and contaminant concentrations. The ...

346

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... economic analysis; energy conservation; energy economics; life cycle cost analysis; public buildings; renewable energy; water conservation ...

347

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: roofs; building integrated photovoltaics; photovoltaic cells; renewable energy; single-crystalline; solar energy Abstract: ...

348

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building technology; concretes; durability; effective medium theory; electrical conductivity; interfacial zone; mortar; percolation; fluid flow; sand ...

349

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: building technology; brazed plate; compact heat exchanger; evaporator; condenser; gravity Abstract: This study ...

350

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management systems. GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ...

351

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal insulation; building technology; guarded hot plate; thermal conductivity; thermal resistance; uncertainty; transmission; mathematical models ...

352

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... heaters; water heaters; blowing agents; insulation; residential buildings; physical properties; thermal conductivity; polyurethane foams Abstract: ...

353

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... computer simulation; technology utilization; insulation; thermal resistance; evaluation ... to the widespread use of building integrated photovoltaic ...

354

Evaluating Commercial Buildings for Statewide Compliance | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings for Statewide Compliance Commercial Buildings for Statewide Compliance The materials for this course may be used for in-person training courses, and are intended to provide the tools and specific training necessary to evaluate statewide commercial compliance with ASHRAE Standard 90.1. The course also provides useful training for the commercial provisions of the International Energy Conservation Code and general commercial field inspection for energy code compliance. The recommended background for taking this class is significant experience with plan review and/or inspection of commercial energy code provisions. Presenters: Course materials originally published by the DOE Building Energy Codes Program, July 16, 2010. Course Type: Training Materials Video In-person Downloads: Presentation Slides

355

Evaluating Residential Buildings for Statewide Compliance | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings for Statewide Compliance Residential Buildings for Statewide Compliance The materials for this course may be used for in-person training courses, and are intended to provide the tools and specific training necessary to evaluate residential compliance with the 2009 International Energy Conservation Code (IECC). The course also provides useful training in general residential field inspection for energy code compliance. The recommended background for taking this course is significant experience and/or certification on the IECC in a plan review or inspection capacity. Presenters: Course materials originally published by the DOE Building Energy Codes Program, July 16, 2010. Course Type: Training Materials Video In-person Downloads: Presentation Slides Presentation Slides Presentation Slides and Windows Media Videos

356

Small Commercial Building Re-tuning: A Primer  

SciTech Connect

To help building owners and managers address issues related to energy-efficient operation of small buildings, DOE has developed a Small Building Re-tuning training curriculum. This "primer" provides additional background information to understand some of the concepts presented in the Small Building Re-tuning training. The intent is that those who are less familiar with the buidling energy concepts will review this material before taking the building re-tuning training class.

Cort, Katherine A.; Hostick, Donna J.; Underhill, Ronald M.; Fernandez, Nicholas; Katipamula, Srinivas

2013-09-30T23:59:59.000Z

357

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

358

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

359

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

360

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE - Better Building  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

362

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

363

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

364

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

365

BECP News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

BECP News BECP News BECP News December 2012 Introduction The U.S. Department of Energy (DOE) Building Energy Codes Program newsletter (BECP News) encourages the exchange of information among stakeholders in the buildings arena. BECP News targets building professionals, state and local code officials, researchers, contractors, and utilities, as well as national associations and others involved in the design, construction, and commissioning of buildings. The goal of the newsletter is to facilitate the timely development and early adoption of, and compliance with, building energy codes and standards. Subscribe to updates Subscribe to BECP News to receive the latest on building energy code activities, software, and resources, or update your subscription to receive updates on specific topics of interest, including Compliance Tools,

366

DOE Commercial Building Benchmark Models: Preprint  

SciTech Connect

To provide a consistent baseline of comparison and save time conducting such simulations, the U.S. Department of Energy (DOE) has developed a set of standard benchmark building models. This paper will provide an executive summary overview of these benchmark buildings, and how they can save building analysts valuable time. Fully documented and implemented to use with the EnergyPlus energy simulation program, the benchmark models are publicly available and new versions will be created to maintain compatibility with new releases of EnergyPlus. The benchmark buildings will form the basis for research on specific building technologies, energy code development, appliance standards, and measurement of progress toward DOE energy goals. Having a common starting point allows us to better share and compare research results and move forward to make more energy efficient buildings.

Torcelini, P.; Deru, M.; Griffith, B.; Benne, K.; Halverson, M.; Winiarski, D.; Crawley, D. B.

2008-07-01T23:59:59.000Z

367

Ventilation measurements in large office buildings  

SciTech Connect

Ventilation rates were measured in nine office buildings using an automated tracer gas measuring system. The buildings range in size from a two-story federal building with a floor area of about 20,000 ft/sup 2/ (1900 m/sup 2/) to a 26-story office building with a floor area of 700,000 ft/sup 2/ (65,000 m/sup 2/). The ventilation rates were measured for about 100 hours in each building over a range of weather conditions. The results are presented and examined for variation with time and weather. In most cases, the ventilation rate of a building is similar for hot and cold weather. In mild weather, outdoor air is used to cool the building and the ventilation rate increases. In the buildings where infiltration is a significant portion of the total ventilation rate, this total rate exhibits a dependence on weather conditions. The measured ventilation rates are discussed in relation to the outdoor air intake strategy in each building. The ventilation rates are also compared to the design rates in the buildings and ventilation rates based on the ASHRAE Standard 62-81. Some of the buildings are at times operated at lower ventilation rates than recommended in Standard 62-81.

Persily, A.K.; Grot, R.A.

1985-01-01T23:59:59.000Z

368

Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117  

Science Conference Proceedings (OSTI)

This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential future residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility.

NONE

1994-12-01T23:59:59.000Z

369

Whole Building Energy Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Simulation Energy Simulation Whole Building Energy Simulation October 16, 2013 - 4:39pm Addthis Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations may be pursued. Whole building energy simulation software adequately assesses the interactions between complex building systems and equally complex schedules and utility rates structures for projects in specific locations throughout the world. Energy models incorporate actual building construction, internal load sources, and associated schedules using annual hourly weather data specific to the project location. These models can be used early in the design process when little information is known and updated, continually

370

Specification of an Information Delivery Tool to Support Optimal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Contacts Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings Title Specification of an Information...

371

Heat recovery in building envelopes  

SciTech Connect

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Some studies have indicated that application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. The major objective of this study was to provide an improved prediction of the energy load due to infiltration by introducing a correction factor that multiplies the expression for the conventional load. This paper discusses simplified analytical modeling and CFD simulations that examine infiltration heat recovery (IHR) in an attempt to quantify the magnitude of this effect for typical building envelopes. For comparison, we will also briefly examine the results of some full-scale field measurements of IHR based on infiltration rates and energy use in real buildings. The results of this work showed that for houses with insulated walls the heat recovery is negligible due to the small fraction of the envelope that participates in heat exchange with the infiltrating air. However; there is the potential for IHR to have a significant effect for higher participation dynamic walls/ceilings or uninsulated walls. This result implies that the existing methods for evaluating infiltration related building loads provide adequate results for typical buildings.

Walker, Iain S.; Sherman, Max H.

2003-08-01T23:59:59.000Z

372

Building America System Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

373

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

374

Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades to someone by E-mail Share Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Facebook Tweet about Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Twitter Bookmark Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Google Bookmark Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Delicious Rank Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Digg Find More places to share Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on AddThis.com... Our History Related Federal Programs Why Energy Efficiency Upgrades

375

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

376

Wyoming | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The International Conference of Building Officials (ICBO) Uniform Building Code, which is based on the 1989 Model Energy Code (MEC), may be adopted and enforced by local jurisdictions. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Wyoming (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than 2003 IECC Effective Date 08/13/2008 Code Enforcement Voluntary DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Wyoming DOE Determination Letter, May 31, 2013 Current Code None Statewide

377

COMcheck | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance » Software & Web Tools Compliance » Software & Web Tools Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center COMcheck Subscribe to updates To receive updates about compliance tools subscribe to the BECP Mailing List. Commercial Compliance Using COMcheck(tm) The COMcheck product group makes it easy for architects, builders, designers, and contractors to determine whether new commercial or high-rise residential buildings, additions, and alterations meet the requirements of the IECC and ASHRAE Standard 90.1, as well as several state-specific codes. COMcheck also simplifies compliance for building officials, plan checkers, and inspectors by allowing them to quickly determine if a building project

378

Nebraska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Nebraska Last updated on 2013-11-04 Current News Nebraska Legislature adopted the 2009 IECC/ASHRAE 90.1-2007. The code became effective August 27, 2011. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Cities and counties may adopt codes that differ from the Nebraska Energy Code; however, state law requires the adopted code to be equivalent to the Nebraska Energy Code. For existing buildings, only those renovations that will cost more than 50 percent of the replacement cost of the building must comply with the code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Nebraska (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

379

Kentucky | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Kentucky Last updated on 2013-08-02 Current News Kentucky moves forward with the 2009 IECC by reference in their updated 2007 Kentucky Building Code. 2009 IECC is effective 3/6/2011 with mandatory compliance beginning 6/1/2011. Kentucky residential code was also updated to the 2009 IECC. The code is effective 7/1/2012 with an enforcement date of 10/1/2012. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Amendments are contained in the latest update to the 2007 Kentucky Building Code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kentucky (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

380

Section 9.2 Building Commissioning: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

may be contracted as an additional service from a design- build or construction management provider. Regard- less of the specific contractual arrangements, provi- sions must...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Better Buildings Partners: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Network The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the...

382

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable...

383

Building Technologies Office: About the Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

and others to implement real-world energy saving opportunities. Commercial Building Basics Federal, state, and local governments as well as private companies, own, operate...

384

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial...

385

Building Technologies Office: Commercial Building Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

386

Building Technologies Office: About the Buildings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

387

Building Technologies Office: High Performance Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

388

Building Technologies Program: Building America Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

search Most Popular Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report) The addition of insulation to the exterior of buildings is an effective...

389

Better Buildings Partners: Better Buildings Residential Network...  

NLE Websites -- All DOE Office Websites (Extended Search)

work they are doing to advance energy efficiency. AFC First Alabama Energy Doctors Austin Energy BC Hydro Boulder County, Colorado Building Sustainable Solutions, LLC California...

390

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

391

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

392

Buildings and Energy in the 1980's - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings and Energy in the 1980's Buildings and Energy in the 1980's Overview Full Report Tables Analysis of energy consumption, expenditures, and other energy-related data for...

393

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

of 1. Figure 3-3 presents the design fan curve for one of 16be relatively minor. Building design fan curves indicate ato the building fan curves the design brake horsepower (BHP)

Shehabi, Arman

2010-01-01T23:59:59.000Z

394

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

395

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

396

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:47am Addthis YOU ARE HERE Step 2 Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type. Ultimately, building efficiency measures need to be evaluated at the building level before implementing them, but facility energy managers can evaluate the relative impact of different GHG reduction approaches using assumptions about the building characteristics and estimates of efficiency

397

Design and Optimization of Control Strategies and Parameters by Building and System Simulation  

E-Print Network (OSTI)

Control parameters for HVAC systems are usually set during the Initial Commissioning Process within the Acceptance Phase of buildings. The quality of the Testing, Adjusting and Balancing (TAB) depends primarily on the specifications of the designer and on the knowledge of the constructor (commissioning personnel). Often the TAB and thus the Initial Commissioning is considered as completed after the functionality and performance of the systems are proven. Therefore, further optimization concerning the energy consumption does not take place. The building and system simulation usually is used during the pre-design of buildings to determine and optimize the influence of the building envelope relating to the energy demand for heating and cooling. Furthermore it is sometimes used for dimensioning the HVAC systems and particular components during the design phase. Additional abilities of the simulation models to predict or even control the building operations are not used. The purpose of the chosen approach is to use the dynamic building and system simulation to design and verify control strategies and determine the exact setup for the control parameters. Therefore the models from the former design phases have to be adapted and extended so that the control strategies can be considered in the right way. This paper presents an example how to use the dynamic simulation to optimize the characteristic of a heating and cooling system of a school building.

Baumann, O.

2003-01-01T23:59:59.000Z

398

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

399

DOE Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

400

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

402

Postirradiation Testing Laboratory (327 Building)  

Science Conference Proceedings (OSTI)

A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompass health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct responsibility of the specific facility manager. The specific DOE Orders, regulations, industry codes/standards, guidance documents and good industry practices that serve as the basis for each element/subelement are identified and aligned with each subelement.

Kammenzind, D.E.

1997-05-28T23:59:59.000Z

403

NREL: Buildings Research - Residential Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

404

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

405

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

406

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

407

Benchmarking Buildings to Prioritize Sites for Emissions Analysis |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benchmarking Buildings to Prioritize Sites for Emissions Analysis Benchmarking Buildings to Prioritize Sites for Emissions Analysis Benchmarking Buildings to Prioritize Sites for Emissions Analysis October 7, 2013 - 10:54am Addthis YOU ARE HERE Step 2 When actual energy use by building type is known, benchmarking the performance of those buildings to industry averages can help establish those with greatest opportunities for GHG reduction. Energy intensity can be used as a basis for benchmarking by building type and can be calculated using actual energy use, representative buildings, or available average estimates from agency energy records. Energy intensity should be compared to industry averages, such as the Commercial Buildings Energy Consumption Survey (CBECS) or an agency specific metered sample by location. When a program has access to metered data or representative building data,

408

Design-Build Project Delivery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design-Build Project Delivery Design-Build Project Delivery Design-Build Project Delivery October 16, 2013 - 4:46pm Addthis Renewable energy must be integrated into each of the design phases. Noting that any agency may have specific processes during the development of a construction project, this section discusses key issues in the following phases of the design-build process: Planning and Programming Request for Qualifications Request for Proposal Construction Contract Design and Build Integrating renewable energy into design-bid-build strategy involves a few different approaches, which are covered in the main building design section of this guide. Planning and Programming The planning and programming phase should look the same regardless of whether the project is design-bid-build or design-build. An early team is

409

U.S. DOE Commercial Building Energy Asset Score  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Building Energy Asset Score Commercial Building Energy Asset Score Quick Start Guide To create a Commercial Building Energy Asset Score (Asset Score) for your building you need to complete the following six (6) steps using the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool). Although you are not required to carry out these steps in a specific order, the following sequence will most likely save you time. Input Basic Building Information * Click the New Building button to begin. * Enter building name, location, gross floor area, and year of construction. * Click the button to continue. Identify Building Use Type(s) * Select all applicable use types. * Choose from a variety of options including office, retail, multi-family, education, and

410

Whole Building Design Guide Courses | Open Energy Information  

Open Energy Info (EERE)

Whole Building Design Guide Courses Whole Building Design Guide Courses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Whole Building Design Guide Courses Agency/Company /Organization: National Institute of Building Sciences Focus Area: Buildings Resource Type: Training materials Website: www.wbdg.org/education/cont_education.php References: Whole Building Design Guide Courses[1] Background Continuing Education "Welcome to the WBDG continuing education system. The WBDG contains a wealth of information and is your gateway to up-to-date information on integrated 'Whole Building' Design Techniques and Technologies. The courses featured offer an introduction to whole building design concepts as well as more specific applications for design objectives, building types and operations and maintenance.

411

Overview of Commercial Buildings, 2003 - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) consumed 36 percent of energy for space heating and 21 percent for lighting (Figure 2) The CBECS is a national-level sample survey conducted quadrennially of buildings greater than 1,000 square feet in size that devote more than 50

412

PNNL EERE Program: Building Technologies Program (Overview)  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory, Energy Efficiency and Renewable Energy Program Laboratory, Energy Efficiency and Renewable Energy Program Home Program Areas Contacts Related Sites Energy Directorate PNNL Home Security & Privacy PNNL Buildings Program Overview PNNL Buildings Portfolio Science Foundation EE & Demand Response High-Performance Sustainable Design Codes and Standards Overcoming Market Barriers Analysis and Planning Key Buildings Projects Contacts Publications & Presentations PNNL Buildings Program Buildings account for about 40 percent of our nation's energy use. That's 72 percent of U.S. electricity and 55 percent of natural gas, resulting in 39 percent of U.S. carbon dioxide emissions and a range of other negative environmental impacts. The buildings sciences team at Pacific Northwest National Laboratory (PNNL) is committed to dramatically improving the

413

Historic Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historic Building Renovations Historic Building Renovations Historic Building Renovations October 16, 2013 - 4:52pm Addthis Renewable Energy Options for Historical Building Renovations Photovoltaics (PV) Solar Water Heating Geothermal Heat Pumps Biomass Heating When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

414

2007 CBECS Large Hospital Building Methodology Report  

Gasoline and Diesel Fuel Update (EIA)

Methodology Report Main Report | Methodology Report Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Data Collection The data in the Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 report and accompanying tables were collected in the 2007 round of the Commercial Buildings Energy Consumption Survey (CBECS). CBECS is a quadrennial survey is conducted by the Energy Information Administration (EIA) to provide basic statistical information about energy consumption and expenditures in United States commercial buildings and information about energy-related characteristics of these buildings. The survey was conducted in two phases, the Building Characteristics Survey and the Energy Supplier Survey. The Building Characteristics Survey collects information about selected

415

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

416

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

417

Building Technologies Office: Subscribe to Building Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

418

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

419

Building Energy Software Tools Directory: SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox SIMBAD Building and HVAC Toolbox logo. Performs transient simulations of HVAC plants with short time steps. SIMBAD Building and HVAC Toolbox is the...

420

Building Energy Software Tools Directory : SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox Back to Tool Screenshot for SIMBAD Building and HVAC Toolbox. Screenshot for SIMBAD Building and HVAC Toolbox...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in...

422

City of Scottsdale - Green Building Policy for Public Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings City of Scottsdale - Green Building Policy for Public Buildings City of Scottsdale - Green Building Policy for...

423

Building America Top Innovations 2013 Profile - Building America...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Building America Top Innovations 2013 Profile - Building America Solution Center PNNL set up the framework for the Building America Solution Center, a web tool connecting...

424

Energy Efficiency and Green Building Standards for State Buildings...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

425

High-Performance Building Requirements for State Buildings (South...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

426

Idaho | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Idaho Last updated on 2013-06-03 Current News As of January 1, 2011, all jurisdictions are required to comply with the 2009 IECC. Commercial Residential Code Change Current Code 2009 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Idaho (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 01/01/2011 Adoption Date 06/08/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Idaho DOE Determination Letter, May 31, 2013 Current Code 2009 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of Idaho (BECP Report, Sept. 2009)

427

Building Technologies Office: Appliance and Equipment Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Appliance & Equipment Standards...

428

CAUSES AND PREVENTION OF SYMPTOM COMPLAINTS IN OFFICE BUILDINGS: DISTILLING THE EXPERIENCE OF INDOOR  

E-Print Network (OSTI)

CAUSES AND PREVENTION OF SYMPTOM COMPLAINTS IN OFFICE BUILDINGS: DISTILLING THE EXPERIENCE Environmental Engineering; 6 Environmental Building Sciences, Inc.; 7 National Institute for Occupational Safety building-related symptoms in office buildings, for owners and managers. Ideas from six experienced building

Diamond, Richard

429

Effects of Material Moisture Adsorption and Desorption on Building Cooling Loads  

E-Print Network (OSTI)

Moisture adsorption and desorption (MAD) by internal building materials and furnishings can be significant in buildings. For many building cooling strategies, MAD may have overriding effects on building cooling loads. For example, natural ventilation of buildings in hot, humid climates has been shown to induce higher latent loads and higher room relative humidities during periods following the ventilation.

Fairey, P.; Kosar, D.

1988-01-01T23:59:59.000Z

430

Building Energy Software Tools Directory: SIP Scheming  

NLE Websites -- All DOE Office Websites (Extended Search)

SIP Scheming SIP Scheming Energy analysis and cost estimating software specifically designed for stressed skin insulating core (SSIC) panel producers; calculates results within a matter of minutes. SIP (Structural Insulated Panel) Scheming also analyzes conventional framing and frame panels, and can be used for residential or commercial building types. Keywords stressed skin insulating core panels Validation/Testing N/A Expertise Required Relatively little technical knowledge required; knowledge of ArchiCad, Excel and DOE-2 necessary to use export features. Users Beta test version available. Audience Manufacturers of stressed skin insulating core panels. Input Drawings input either by scanning or imported from a CAD program, or drawn directly using a basic set of drawing tools; construction of elements such

431

Literature Review of the Effects of Natural Light on Building Occupants  

Science Conference Proceedings (OSTI)

This paper presents summary findings from a literature search of the term ''daylighting''-using natural light in a building to offset or replace electric lighting. According to the Department of Energy's Office of Building Technology, State and Community Programs 2000 BTS Core Databook, in 1998, commercial buildings consumed 32% of the total electricity in the United States, of which more than one-third went to lighting. Using daylighting systems and turning off the lights will help reduce this energy load. Electrical lighting adds to both the electrical and cooling loads in a commercial building. Utility costs can be decreased when daylighting is properly designed to replace electrical lighting. Along with the importance of energy savings, studies have demonstrated the non-energy-related benefits of daylighting. We compiled the data from books, periodicals, Internet articles, and interviews. The books, periodicals, and Internet articles provided the background information used to identify the main subjects of the paper. The interviews provided us with details related to specific buildings and companies that have integrated daylighting into their buildings.

Edwards, L.; Torcellini, P.

2002-07-01T23:59:59.000Z

432

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

433

Building condition monitoring  

E-Print Network (OSTI)

The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Samouhos, Stephen V. (Stephen Vincent), 1982-

2010-01-01T23:59:59.000Z

434

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

435

Change in historic buildings  

E-Print Network (OSTI)

Change in historic buildings is inevitable. If these changes are not well-managed, the cityscape will be threatened because a city is composed of buildings. A good city should combine both growth and preservation. Controlling ...

Yin, Chien-Ni

1992-01-01T23:59:59.000Z

436

BUILDING PROCTOR December 2009  

E-Print Network (OSTI)

­ 1 Facilities Management Directory.......................................................................Maintenance ...............................................Maintenance ­ 15 Building Audit System to Facilities Management Dispatch Office (491-0077) who, in turn, addresses the maintenance needs. The building

437

Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

438

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

439

Building, landscape and section  

E-Print Network (OSTI)

All buildings have in their section a relationship to the landscape on which they are sited. Therefore we as inhabitants of these buildings may or may not have a relationship with the landscape. It is the supposition of ...

Johnson, Daniel B. (Daniel Bryant)

1992-01-01T23:59:59.000Z

440

Berkeley Lab Community Relations: Construction Information: Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

part of Berkeley Lab and occupies approximately 2.25 acres. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

442

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use. Investigation of the Impact ...

443

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of Entombment as a Decommission Option. ... Safety of Existing Federal Buildings: A Handbook. ... Madrzykowski, D. Manual of Evaluation Procedures ...

444

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Armed Forces Scientific Institute for Protection Technologies in the Field ... National Institute of Standards and Technology. ... Energy and Buildings, Vol. ...

445

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... in Operations, Maintenance, and Energy Costs for ... Strengthening, and Repair Technologies for Buildings ... Combustion Science and Technology, Vol. ...

446

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Cost-Effective Responses to Terrorist Risks in Constructed Facilities. ... building economics; disaster mitigation; economic analysis; homeland security ...

447

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... to the World Trade Center Disaster. ... World Trade Center; disasters; building collapse ... fires; flameproofing; steels; evacuation; response time; roofs ...

448

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

449

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ANSI/ASHRAE Standard 135-1995, BACnet. ...

450

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... office buildings; air intake; systems engineering; maintenance; occupants; air flow; diffusers; air quality; ventilation systems; ASHRAE 62-2007 ...

451

Construction and Building  

Science Conference Proceedings (OSTI)

... in building sector energy consumption by improving ... housing construction: improving energy efficiency and ... Reinforced Soil Bridge Pier Load Test ...

2000-03-07T23:59:59.000Z

452

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management system. Friend or Foe? ... Bushby, ST; Information Model for Building Automation Systems. Automation in Construction, Vol. ...

453

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... residential energy consumption. Field Study of the Effect of Wall Mass on the Heating and Cooling Loads of Residential Buildings. ...

454

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... insulation technologies are being developed in order to meet increasing stringent minimum efficiency standards for appliances and building ...

455

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Unfortunately, the equipment used to determine the thermal resistance of traditional building, insulation materials is not well suited for measuring ...

456

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal conductance; thermal insulation; test methods Abstract: Calibration measurements of thin heat flux sensors for building applications are ...

457

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Thermal Expansion 17th Symposium. Proceedings. Chapter 2: Building Insulation Materials. June 24-27, 2007, Birmingham ...

458

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... sprinklers; egress; fire spread; fire models; polyurethane foams; pyrotechnics; smoke; insulation; death; fire fatalities; building codes; fire codes ...

459

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Institute of Standards and Technology is building an advanced ... thermal transmission properties for specimens of thermal insulation 500 mm ...

460

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... 1993. Journal of Thermal Insulation and Building Environments, Vol. 17, 330-350, April 1994. Keywords: polyisocyanurate ...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... emergency plans. Stairwell Evacuation From Buildings: What We Know We Don't Know. NIST TN 1624; NIST Technical ...

462

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... F. NISTIR 7193; Appendix F; January 2005.Workshop to Define Information Needed by Emergency Responders During Building Emergencies. ...

463

Buildings Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Buildings Blog RSS November 5, 2013 The Building Technologies Office's Emerging Technologies Program works to advance new commerical building technologies that are expected to...

464

Buildings News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings News Buildings News RSS November 6, 2013 Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge National Program to Reduce Energy Use and Save...

465

California commercial building energy benchmarking  

E-Print Network (OSTI)

querying (building type, climate zone, etc) sufficient forBuilding Type Floor Area Climate Zone Building Age Heatingtype, and zip code/climate zone. A memo describing the

Kinney, Satkartar; Piette, Mary Ann

2003-01-01T23:59:59.000Z

466

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

Wall, L.W.

2009-01-01T23:59:59.000Z

467

Building Technologies Office: Bookmark Notice  

NLE Websites -- All DOE Office Websites (Extended Search)

in Commercial Buildings Commercial Building Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Energy Asset Score Building...

468

Building Technologies Program: ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Program: ENERGY STAR on Google Bookmark Building Technologies Program: ENERGY STAR on Delicious Rank Building...

469

Building Technologies Office: News Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

News Archives on Twitter Bookmark Building Technologies Office: News Archives on Google Bookmark Building Technologies Office: News Archives on Delicious Rank Building...

470

Building Technologies Office: Schedule Setting  

NLE Websites -- All DOE Office Websites (Extended Search)

Schedule Setting on Twitter Bookmark Building Technologies Office: Schedule Setting on Google Bookmark Building Technologies Office: Schedule Setting on Delicious Rank Building...

471

Building Technologies Office: ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Office: ENERGY STAR on Google Bookmark Building Technologies Office: ENERGY STAR on Delicious Rank Building...

472

Building Technologies Program: Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Peer Review on Twitter Bookmark Building Technologies Program: Peer Review on Google Bookmark Building Technologies Program: Peer Review on Delicious Rank Building...

473

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building...

474

Building Technologies Office: Process Rule  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Process Rule on Twitter Bookmark Building Technologies Office: Process Rule on Google Bookmark Building Technologies Office: Process Rule on Delicious Rank Building...

475

Building Insulation | Open Energy Information  

Open Energy Info (EERE)

Building Insulation Jump to: navigation, search TODO: Add description List of Building Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleBuildingInsulat...

476

Axioms of affine buildings  

E-Print Network (OSTI)

We prove equivalence of certain axiom sets for affine buildings. Along the lines a purely combinatorial proof of the existence of a spherical building at infinity is given. As a corollary we obtain that ``being an affine building'' is independent of the metric structure of the space.

Schwer, Petra N

2009-01-01T23:59:59.000Z

477

Building application stack (BAS)  

Science Conference Proceedings (OSTI)

Many commercial buildings have digital controls and extensive sensor networks that can be used to develop novel applications for saving energy, detecting faults, improving comfort, etc. However, buildings are custom designed, leading to differences in ... Keywords: building applications, controls, energy efficiency

Andrew Krioukov; Gabe Fierro; Nikita Kitaev; David Culler

2012-11-01T23:59:59.000Z

478

An Integrated Approach to Building Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Approach to Building Operation An Integrated Approach to Building Operation Speaker(s): David E. Claridge Date: April 16, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Buildings systems have historically been over-sized to minimize contractor/designer call-backs. It is widely recognized that this over-sizing leads to excessive chiller and boiler cycling with an attendant reduction in efficiency. The same design approach routinely leads to reduced efficiencies throughout the building systems. The same mentality pervades the operation of building systems. This customarily increases utility costs by at least 20%. This presentation will present specific examples of the deleterious effects of the "more is better" approach by examining the impact of too much differential pressure across a control

479

Meteorological modeling applications in building energy simulations  

SciTech Connect

Researchers use sophisticated computer models to predict building energy use. These models require extensive input data including building characteristics and dimensions, load schedules, and weather data. The typical source for weather data is the weather station at the nearest airport. Specifically, hourly values of ambient air temperature are necessary. The data obtained from local airports, however, may be significantly different from the actual weather experienced by a nearby residential building. Thus, using local airport data when simulating a residential building may yield inaccurate results. Furthermore, researchers interested in evaluating the potential for heat island mitigation schemes (such as urban tree planting programs) to decrease building air-conditioning energy use need a method for modifying the local airport data accordingly.

Sailor, D.J.; Akbari, H.

1992-08-01T23:59:59.000Z

480

350 City County Building  

Office of Legacy Management (LM)

(. (. - ,- Department of Eilqgy Washington, DC20585 ,. i x \ .The Honorable Wellington E. Webb .' '. ' 350 City County Building / Denver, Colorado 80202 ., ; Dear Mayor Webb: ., ~, Secretary of Energy' Hazel O'Leary has announced's new approach to openness in the Department of Energy,(OOE) and its communications with the public. In support of this initiative, we,are pleased to forward the'enclosed'information related to the former Uhiversity of Denver Research Institute site in your, jurisdiction that performed work for DOE's predecessor,agencies. This' i~nformation'is provided for your.informatibn, use,,and retention.. ; DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP) is responsible for identification of sitesused by DOE's predecessor agencies, determining

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NREL: Buildings Research - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Below are upcoming events related to buildings research. January 2014 Sustainable NREL Walking Campus Tour January 17, 2014, 9:00 - 10:30 Golden, CO Contact: Sarah Barba 303-275-3023 NREL exemplifies environmental sustainability throughout its operations. Visitors learn about renewable energy and energy efficiency research as well as see for themselves how the campus is demonstrating clean energy technologies, reducing waste, and eliminating atmospheric pollution. The Sustainable NREL Walking Campus Tour is a vigorous, outdoor walking tour, so visitors are urged to wear comfortable walking shoes and to dress for the weather. The tours start at the NREL Education Center and include the Research Support Facility, NREL Parking Garage, and Central Detention Pond.

482

Building Energy Software Tools Directory: SOLAR-5  

NLE Websites -- All DOE Office Websites (Extended Search)

South Africa Spain Sweden Switzerland United Kingdom United States Related Links SOLAR-5 SOLAR-5 logo. Displays 3-D plots of hourly energy performance for the whole building or...

483

Building Energy Software Tools Directory: SOLAR-5  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools by Platform PC Mac UNIX Internet Tools by Country Related Links SOLAR-5 SOLAR-5 logo. Displays 3-D plots of hourly energy performance for the whole building or...

484

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network (OSTI)

it is unclear how much wasted energy might be recovered, northe amount of energy and water wasted by building heating,of how much energy is being wasted relative to a physical

Bailey, Trevor

2013-01-01T23:59:59.000Z

485

Commercial Building Energy Efficiency Education Project  

SciTech Connect

The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

None

2013-01-13T23:59:59.000Z

486

Building Technologies Office: Sensor Suitcase for Small Commercial Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Suitcase for Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project to someone by E-mail Share Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Facebook Tweet about Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Twitter Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Google Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Delicious Rank Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Digg

487

Simplified Building Energy Model (SBEM): A Tool to Analyse Building...  

Open Energy Info (EERE)

list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes,...

488

A building life-cycle information system for tracking building performance metrics  

SciTech Connect

Buildings often do not perform as well in practice as expected during pre-design planning, nor as intended at the design stage. While this statement is generally considered to be true, it is difficult to quantify the impacts and long-term economic implications of a building in which performance does not meet expectations. This leads to a building process that is devoid of quantitative feedback that could be used to detect and correct problems both in an individual building and in the building process itself. One key element in this situation is the lack of a standardized method for documenting and communicating information about the intended performance of a building. This paper describes the Building Life-cycle Information System (BLISS); designed to manage a wide range of building related information across the life cycle of a building project. BLISS is based on the Industry Foundation Classes (IFC) developed by the International Alliance for Interoperability. A BLISS extension to th e IFC that adds classes for building performance metrics is described. Metracker, a prototype tool for tracking performance metrics across the building life cycle, is presented.

Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

1999-04-01T23:59:59.000Z

489

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

490

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

491