Powered by Deep Web Technologies
Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building Energy Data Exchange Specification Scoping Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building Energy Data Exchange Specification Scoping Report Building Energy Data Exchange Specification Scoping Report The Building Energy Data Exchange Specification (BEDES),...

2

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

3

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

4

Better Buildings Alliance Equipment Performance Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

5

Better Buildings Alliance Equipment Performance Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

6

Building Energy Data Exchange Specification Scoping Report  

Energy.gov (U.S. Department of Energy (DOE))

Building Energy Data Exchange Specification Scoping Report. The Building Energy Data Exchange Specification (BEDES), developed by DOE, is a uniform format is intended to make it easier for external stakeholders to use DOE tools, streamline reporting for DOE programs, and help unlock the full utility of the data that the DOE collects.

7

Better Buildings Neighborhood Program: Related Federal Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Related Federal Programs to someone by E-mail Share Better Buildings Neighborhood Program: Related Federal Programs on Facebook Tweet about Better Buildings Neighborhood Program: Related Federal Programs on Twitter Bookmark Better Buildings Neighborhood Program: Related Federal Programs on Google Bookmark Better Buildings Neighborhood Program: Related Federal Programs on Delicious Rank Better Buildings Neighborhood Program: Related Federal Programs on Digg Find More places to share Better Buildings Neighborhood Program: Related Federal Programs on AddThis.com... Our History Related Federal Programs Why Energy Efficiency Upgrades Contacts Related Federal Programs Related Links

8

Better Buildings Alliance Equipment Performance Specifications  

Energy.gov (U.S. Department of Energy (DOE))

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

9

Building Energy Data Exchange Specification (BEDES) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Building Energy Data Exchange Specification Commercial Buildings » Building Energy Data Exchange Specification (BEDES) Building Energy Data Exchange Specification (BEDES) The Building Energy Data Exchange Specification (BEDES, pronounced "beads" or /bi:ds/) is designed to support analysis of the measured energy performance of commercial, multifamily, and residential buildings, by providing a common data format, definitions, and an exchange protocol for building characteristics, efficiency measures, and energy use. Challenge One of the primary challenges to expanding the building energy efficiency retrofit market is the lack of empirical data on the energy performance and physical and operational characteristics of commercial, multifamily, and residential buildings. This makes it difficult for building-level

10

Building America Climate-Specific Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America » Building America America » Building America Climate-Specific Guidance Building America Climate-Specific Guidance Building America Climate-Specific Guidance Building America's Best Practices guides and case studies demonstrate real world solutions for improving the energy performance and quality of new and existing homes in five major climate regions. Find examples of proven high-performance home building and remodeling in your area by selecting a climate zone below. In addition, you may view technology-specific building solutions that work across all climates. Cold and Very Cold Climates Hot-Dry and Mixed-Dry Climates Hot-Humid Climates Marine Climates Mixed-Humid Climates All Climates For additional, updated information on hundreds of building science topics that can help you build or retrofit to the most recent high-performance

11

"Building Energy Data Exchange Specification"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification" Building Energy Data Exchange Specification" "Version 2.3" "application/vnd.ms-excel" "Overview:" "This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships. " "BEDES is used for the DOE Building Performance Database (BPD) as well as the Standard Energy Efficiency Disclosure (SEED) platform, as shown below. Note that SEED includes additional fields that are outside BPD scope (e.g. property address and auditor contact information)."

12

Guide Specifications: An Overlooked Avenue for Promoting Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide Specifications: An Overlooked Avenue for Promoting Building Energy Guide Specifications: An Overlooked Avenue for Promoting Building Energy Efficiency Title Guide Specifications: An Overlooked Avenue for Promoting Building Energy Efficiency Publication Type Conference Proceedings Year of Publication 2000 Authors Coleman, Philip, and Alexander T. Shaw Conference Name 2000 ACEEE Summer Study on Energy Efficiency in Buildings Volume 4 Pagination 47-54 Date Published 01/2000 Abstract Guide specifications, the templates from which individual building project specifications are based, can be written to require high-efficiency products or systems. This paper documents a few selected instances where federal, state, or commercial guide specifications have incorporated such provisions, resulting in estimated annual savings in 2010 of over $30 million. The argument is made that promoting higher efficiency through guide specifications has several advantages over other avenues, including the improvement of building codes. The paper calls for increased attention to this overlooked opportunity from the energy policy community.

13

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate-Specific Guidance Climate-Specific Guidance The Map of the United States shows climate zones in different colors. The Marine zone contains the Pacific coast from the Canadian border to mid-California. The Hot-dry/Mixed-Dry zone contains the rest of California and follows the US border to mid-Texas. The Hot-Humid zone covers eastern Texas through Florida and includes Puerto Rico and Hawaii. The Mixed-Humid zone covers the mid-central to mid-eastern regions of the country. The Cold/Very Cold zone contains all of the Northern United States. Hot-Dry / Mixed-Dry Marine Hot-Humid Mixed-Humid Cold / Very Cold Select a climate zone from the map above, and view a listing of climate regions by county in the Guide to Determining Climate Regions: Volume 7.1 to view climates by county.

14

Plant Award Specification Sheet | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Specification Sheet Specification Sheet Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

15

Technology & System Specifications | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

& System Specifications & System Specifications Activities Technology Solutions Teams Public Sector Teams Market Solutions Teams Technology & System Specifications The Better Buildings Alliance Technology Solutions Teams develop specifications for you to customize and use to obtain quotes for high-efficiency products and services. Collective support for these product and performance specifications demonstrates a market need to manufacturers and leads to greater product availability, higher quality, and more competitive pricing. Get started by clicking below. Available Specifications Sign your support for the Wireless Meter Challenge and review the specification The wireless meter challenge has been launched to catalyze the development of low cost metering solutions. Meters are an integral component of energy

16

Building DomainSpecific Search Engines with Machine Learning Techniques  

E-Print Network (OSTI)

.netpart.com lets the user search over company pages by hostname, company name, and location. ffl wwwBuilding Domain­Specific Search Engines with Machine Learning Techniques Andrew McCallum zy Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract Domain­specific search engines

McCallum, Andrew

17

Development of discrete event system specification (DEVS) building performance models for building energy design  

Science Journals Connector (OSTI)

The discrete event system specification (DEVS) is a formalism for describing simulation models in a modular fashion. In this study, it is exploited by forming submodels that allow different professions involved in the building design process to work ... Keywords: DEVS, energy simulation in building design, modular BPS, stochastic occupant models

Huseyin Burak Gunay; Liam O'Brien; Rhys Goldstein; Simon Breslav; Azam Khan

2013-04-01T23:59:59.000Z

18

OpenADR Specification to Ease Saving Power in Buildings  

ScienceCinema (OSTI)

A new data model developed by researchers at the Department of Energys Lawrence Berkeley National Laboratory and their colleagues at other universities and in the private sector will help facilities and buildings save power through automated demand response technology, and advance the development of the Smart Grid. http://newscenter.lbl.gov/press-releases/2009/04/27/openadr-specification/

Piette, Mary Ann

2013-05-29T23:59:59.000Z

19

Related Links | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links Related Links Regional Energy Efficiency Organizations MEEA NEEP NEEA SEEA SWEEP SPEER Midwest Energy Efficiency Alliance (MEEA) IL, IN, IA, KS, KY, ND, NE, MI, MN, MO, OH, SD, WI The Midwest Energy Efficiency Alliance (MEEA) is a collaborative network advancing energy efficiency in the Midwest to support sustainable economic development and environmental preservation. MEEA raises awareness, facilitates energy efficiency programs and strengthens policy across the nine-state region. MEEA brings together a respected network of members, partners, board and staff, and inspires others to create new technologies, new products and new ways of thinking when it comes to energy efficiency. Codes Contact Isaac Elnecave Senior Policy Manager ielnecave@mwalliance.org phone: (312)784-7253

20

U.S. Department of Energy Building Energy Data Exchange Specification  

Energy.gov (U.S. Department of Energy (DOE))

This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships.

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Building America Climate-Specific Guidance | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

leaders who represent the very best in innovation on the path to zero energy ready homes. Image of the front of a house. Building America's Best Practices guides and case...

22

Building a Conceptual Skeleton for Enterprise Architecture Specifications  

Science Journals Connector (OSTI)

This paper describes a way to build a conceptual model for diversified purposes of modelling Enterprise Architectures (EA). It is commonly known that, due to the complexity, Enterprise Architectures need to be considered from several viewpoints. This ...

Veikko Halttunen; Antti Lehtinen; Riku Nyknen

2006-05-01T23:59:59.000Z

23

OpenADR Specification to Ease Saving Power in Buildings  

SciTech Connect

A new data model developed by researchers at the Department of Energys Lawrence Berkeley National Laboratory and their colleagues at other universities and in the private sector will help facilities and buildings save power through automated demand response technology, and advance the development of the Smart Grid.

2009-04-24T23:59:59.000Z

24

U.S. Department of Energy Building Energy Data Exchange Specification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification Building Energy Data Exchange Specification Version 2.3 2/15/13 Overview: This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships. BEDES is used for the DOE Building Performance Database (BPD) as well as the Standard Energy Efficiency Disclosure (SEED) platform, as shown below. Note that SEED includes additional fields that are outside BPD scope (e.g. property address and auditor contact information). This documentation is intended to provide stakeholders an understanding the overall data scheme and data

25

Development of a Model Specification for Performance MonitoringSystems for Commercial Buildings  

SciTech Connect

The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: (1) performance metrics; (2) measurement system requirements; (3) data acquisition and archiving; and (4) data visualization and reporting. The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance. The paper reviews the potential benefits of performance monitoring, describes the specification guide and discusses briefly the ways in which it could be implemented. A prototype advanced visualization tool is also described, along with its application to performance monitoring. The paper concludes with a description of the ways in which the specification and the visualization tool are being disseminated and deployed.

Haves, Philip; Hitchcock, Robert J.; Gillespie, Kenneth L.; Brook, Martha; Shockman, Christine; Deringer, Joseph J.; Kinney,Kristopher L.

2006-08-01T23:59:59.000Z

26

A Market-Specific Methodology for a Commercial Building Energy Performance Index  

Science Journals Connector (OSTI)

The scaling of energy efficiency initiatives in the commercial building sector ... methodologies that do not adequately model patterns of energy consumption, nor provide accurate measures of relative energy perfo...

Constantine E. Kontokosta

2014-08-01T23:59:59.000Z

27

Power Signatures as Characteristics of Commercial and Related Buildings  

E-Print Network (OSTI)

This paper proposes the use of "power signatures" as an important concept for building energy analysis. Power signatures are considered to contain "energy or power characteristics" of a building. Developing relationships between energy...

MacDonald, M.

1988-01-01T23:59:59.000Z

28

Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text-alternative version of the LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification webcast.

29

Alaska-Specific Amendments to the IECC 2009 | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska-Specific Amendments to the IECC 2009 Alaska-Specific Amendments to the IECC 2009 This document is a list of Alaska-specific amendments to the 2009 International Energy Conservation Code, adopted by the Alaska Housing Finance Corporation (AHFC) on March 9, 2011. It is meant to be read in conjunction with the 2009 IECC and ASHRAE Standard 62.2-2010 which may be purchased at local bookstores or online. These amendments comprise both the residential and commercial Building Energy Efficiency Standards (BEES) for AHFC-funded residential mortgage loans and energy rebates, and energy retrofits of public buildings. These amendments supplant the BEES amendments to the 2006 IECC for residential projects as adopted on June 17, 2009, and include the amendments previously made to the 2009 IECC known as

30

Specification buying as it relates to private brand merchandising  

E-Print Network (OSTI)

SPECIFICATION BUYING AS IT RELATES TO PRIVATE BRAND MERCHANDISING A Thesis By CLED B, TARVER Sub&sotted to the Graduate College of the Texas ASK University in partial fulfill&sent of the re&luire&sents for the deCree of RASTER OF BUSINESS..., -ttis?t?k2t+g' . : t Pl SPECIFICATION BtJYINCi AS IT RELATES TO PRIVATE BRAND XERCHANDISINC A Thesis CLED B TARVER Appro ed as to style and oontent byt Chairean owmitte Neebe r) ad of Departeent) ( eeber) (Nomber) Nay, 1964 a'-. w". T1, : 4...

Tarver, Cleo B

2012-06-07T23:59:59.000Z

31

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

32

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

33

Interaction between building design, management, household and individual factors in relation to energy use for space heating in apartment buildings  

Science Journals Connector (OSTI)

Abstract In Stockholm, 472 multi-family buildings with 7554 dwellings has been selected by stratified random sampling. Information about building characteristics and property management was gathered from each property owners. Energy use for space heating was collected from the utility company. Perceived thermal comfort, household and personal factors were assessed by a standardized self-administered questionnaire, answered by one adult person in each dwelling, and a proportion of each factor was calculated for each building. Statistical analysis was performed by multiple linear regression models with control for relevant factors all at the same time in the model. Energy use for heating was significantly related to the building age, type of building and ventilation, length of time since the last heating adjustment, ownership form, proportion of females, and proportion of occupants expressing thermal discomfort. How beneficial energy efficiency measures will be may depend on the relationship between energy use and factors related to the building and the property maintenance together with household and personal factors, as all these factors interact with each other. The results show that greater focus should be on real estate management and maintenance and also a need for research with a gender perspective on energy use for space heating.

Karin Engvall; Erik Lampa; Per Levin; Per Wickman; Egil fverholm

2014-01-01T23:59:59.000Z

34

Methodological Framework for Analysis of Buildings-Related Programs with BEAMS, 2008  

SciTech Connect

The U.S. Department of Energys (DOEs) Office of Energy Efficiency and Renewable Energy (EERE) develops official benefits estimates for each of its major programs using its Planning, Analysis, and Evaluation (PAE) Team. PAE conducts an annual integrated modeling and analysis effort to produce estimates of the energy, environmental, and financial benefits expected from EEREs budget request. These estimates are part of EEREs budget request and are also used in the formulation of EEREs performance measures. Two of EEREs major programs are the Building Technologies Program (BT) and the Weatherization and Intergovernmental Program (WIP). Pacific Northwest National Laboratory (PNNL) supports PAE by developing the program characterizations and other market information necessary to provide input to the EERE integrated modeling analysis as part of PAEs Portfolio Decision Support (PDS) effort. Additionally, PNNL also supports BT by providing line-item estimates for the Programs internal use. PNNL uses three modeling approaches to perform these analyses. This report documents the approach and methodology used to estimate future energy, environmental, and financial benefits using one of those methods: the Building Energy Analysis and Modeling System (BEAMS). BEAMS is a PC-based accounting model that was built in Visual Basic by PNNL specifically for estimating the benefits of buildings-related projects. It allows various types of projects to be characterized including whole-building, envelope, lighting, and equipment projects. This document contains an overview section that describes the estimation process and the models used to estimate energy savings. The body of the document describes the algorithms used within the BEAMS software. This document serves both as stand-alone documentation for BEAMS, and also as a supplemental update of a previous document, Methodological Framework for Analysis of Buildings-Related Programs: The GPRA Metrics Effort, (Elliott et al. 2004b). The areas most changed since the publication of that previous document are those discussing the calculation of lighting and HVAC interactive effects (for both lighting and envelope/whole-building projects). This report does not attempt to convey inputs to BEAMS or the methodology of their derivation.

Elliott, Douglas B.; Dirks, James A.; Hostick, Donna J.

2008-09-30T23:59:59.000Z

35

Building Envelope Air Leakage Failure in Small Commercial Buildings Related to the Use of Suspended Tile Ceilings  

E-Print Network (OSTI)

buildings, they usually have a suspended tile ceiling between the conditioned space and ceiling or attic space. Testing indicates that the building envelope in small commercial buildings is substantially less airtight than residential buildings and the cause...

Withers, C. R.; Cummings, J. B.

2000-01-01T23:59:59.000Z

36

Hermes: a simple and efficient algorithm for building the AOC-poset of a binary relation  

Science Journals Connector (OSTI)

Given a relation ? on a set of objects and a set of attributes, the AOC-poset (Attribute/Object Concept poset), is...Hermes..., a simple and efficient algorithm for building an AOC-poset which runs in...

Anne Berry; Alain Gutierrez

2014-10-01T23:59:59.000Z

37

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

window related primary energy consumption of the US building= 1.056 EJ. Primary energy consumption includes a site-to-the amount of primary energy consumption required by space

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

38

Indoor air quality issues related to the acquisition of conservation in commercial buildings  

SciTech Connect

The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

1990-09-01T23:59:59.000Z

39

SPECIFICATION AND IMPLEMENTATION OF IFC BASED PERFORMANCE METRICS TO SUPPORT BUILDING LIFE CYCLE ASSESSMENT OF HYBRID  

E-Print Network (OSTI)

with the introduction of tighter building codes have done little to stem the poor energy performance in commercial on owners to quantify the energy usage of their buildings against benchmarks set by government energy (LBNL), Berkeley, CA, USA ABSTRACT Minimising building life cycle energy consumption is becoming

40

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Satisfaction and self-estimated performance in relation to indoor environmental parameters and building features  

E-Print Network (OSTI)

Conference on Healthy Buildings, Brisbane, Queensland.Conference on Healthy Buildings, Brisbane, Queensland.Conference on Healthy Buildings, Brisbane, Queensland.

Wargocki, Pawel; Frontczak, Monika; Schiavon, Stefano; Goins, John; Arens, Ed; Zhang, Hui

2012-01-01T23:59:59.000Z

42

LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification  

Energy.gov (U.S. Department of Energy (DOE))

This March 26, 2009 webcast presented information about the Commercial Building Energy Alliances' (CBEA) efforts to explore the viability of LED site lighting in commercial parking lots. LED...

43

U.S. Department of Energy Building Energy Data Exchange Specification...  

Office of Environmental Management (EM)

in Office Buildings: a London Field Experiment Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report How to align field guides and standards to the Standard...

44

Using XML to Build Efficient Transaction-Time Temporal Database Systems on Relational Databases  

E-Print Network (OSTI)

(virtual) representations of the database history, (b) XQuery to express powerful temporal queriesUsing XML to Build Efficient Transaction-Time Temporal Database Systems on Relational Databases the ArchIS system that achieves full-functionality transaction-time databases without re- quiring temporal

Zaniolo, Carlo

45

Japan-Mexico Rectors' Summit "Building-up innovative relations for a knowledge-based society"  

E-Print Network (OSTI)

Japan-Mexico Rectors' Summit "Building-up innovative relations for a knowledge-based society" Joint Statement On June 29, 2011, the Japan-Mexico Rectors' Summit was hosted by the University of Tokyo, at which the importance of elevating the strategic partnership between Mexico and Japan to a new stage through

Katsumoto, Shingo

46

Human comfort and self-estimated performance in relation to indoor environmental parameters and building features  

E-Print Network (OSTI)

In: Proceedings of Healthy Buildings Conference, Syracuse,In: Proceedings of Healthy Buildings Conference, Budapest,International Conference Healthy Buildings, Syracuse, NY USA

Frontczak, Monika

2012-01-01T23:59:59.000Z

47

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

48

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

49

E-Print Network 3.0 - age-specific gun-related homicide Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

gun-related homicide Search Powered by Explorit Topic List Advanced Search Sample search results for: age-specific gun-related homicide Page: << < 1 2 3 4 5 > >> 1 U.S. Department...

50

SPECIFIC AIMS: The Maxwell M. Wintrobe Research Building has served as a central research building for the University of Utah School of Medicine for nearly 30 years. However, the current facilities no longer meet  

E-Print Network (OSTI)

of Neurobiology & Anatomy. Aim 2 - To design and create a sustainable research environment that is energy the University of Utah's goals for sustainable design and energy efficiency. The second step is to fully remodelSPECIFIC AIMS: The Maxwell M. Wintrobe Research Building has served as a central research building

Marc, Robert E.

51

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building Technologies, U.S.and Renewable Energy (2005). 2005 Buildings Energy Databook,Buildings Energy Databook Table 1.2.3 (US DOE Office of Energy Efficiency and Renewable

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

52

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

53

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

54

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

NLE Websites -- All DOE Office Websites (Extended Search)

Window-Related Energy Consumption in the US Window-Related Energy Consumption in the US Residential and Commercial Building Stock Joshua Apte and Dariush Arasteh, Lawrence Berkeley National Laboratory LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate

55

2014-09-30 Issuance: Buildings-to-Grid Integration and Related...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Residential Buildings End-Use Equipment and Appliances May 2, 2014 Technical Meeting: Reference Guide for a Transaction-Based Building Controls Framework...

56

Web-Based Method to Generate Specific Energy Consumption Data for the Evaluation and Optimization of Building Operation  

E-Print Network (OSTI)

5 University Karlsruhe (TH) - Department of Architecture Building Physics and Technical Building Services 0100200300400500600700800 ABCDEFGHI detailed analysis ACEGI benchmarkingand selection 0100200300400500600700800 12345678910 optimisation... consumption of electricity and heat arith. mean limit for heating energy demand: 95 kWh/m?y * for buildings with an average building compactness of 0,95 [building envelope/volume] * according to the German building code of 1995 University Karlsruhe (TH...

Wagner, A.; Wambsgan, M.; Froehlich, S.

2004-01-01T23:59:59.000Z

57

Dr. James Freihaut is a member of the AE mechanical option faculty. His current research focus is on building systems related  

E-Print Network (OSTI)

energy systems for buildings and communities of buildings in parallel with the design tools curriculum, integrated with his research pursuits, which focus on emerging building science issues. He is on building systems related energy and indoor air quality. Freihaut has developed an indoor aerosol laboratory

Yener, Aylin

58

Building comparable synthetic health-related indicators of air quality in cities  

E-Print Network (OSTI)

: air pollution, spatial variation, indicator, cities, environmental epidemiology halshs-00551471 pollution. Two questions are addressed: How can one build comparable pollution indicators, at the global? How can one build comparable pollution indicators that take into consideration the daily pollution

Paris-Sud XI, Université de

59

Relative risk site evaluation for buildings 7740 and 7741 Fort Campbell, Kentucky  

SciTech Connect

Buildings 7740 and 7741 are a part of a former nuclear weapon`s storage and maintenance facility located in the southeastern portion of Fort Campbell, Kentucky. This underground tunnel complex was originally used as a classified storage area beginning in 1949 and continuing until 1969. Staff from the Pacific Northwest National Laboratory recently completed a detailed Relative Risk Site Evaluation of the facility. This evaluation included (1) obtaining engineering drawings of the facility and associated structures, (2) conducting detailed radiological surveys, (3) air sampling, (4) sampling drainage systems, and (5) sampling the underground wastewater storage tank. Ten samples were submitted for laboratory analysis of radionuclides and priority pollutant metals, and two samples submitted for analysis of volatile organic compounds. No volatile organic contaminants were detected using field instruments or laboratory analyses. However, several radionuclides and metals were detected in water and/or soil/sediment samples collected from this facility. Of the radionuclides detected, only {sup 226}Ra may have come from facility operations; however, its concentration is at least one order of magnitude below the relative-risk comparison value. Several metals (arsenic, beryllium, cadmium, copper, mercury, lead, and antimony) were found to exceed the relative-risk comparison values for water, while only arsenic, cadmium, and lead were found to exceed the relative risk comparison values for soil. Of these constituents, it is believed that only arsenic, beryllium, mercury, and lead may have come from facility operations. Other significant hazards posed by the tunnel complex include radon exposure and potentially low oxygen concentrations (<19.5% in atmosphere) if the tunnel complex is not allowed to vent to the outside air. Asbestos-wrapped pipes, lead-based paint, rat poison, and possibly a selenium rectifier are also present within the tunnel complex.

Last, G.V.; Gilmore, T.J.; Bronson, F.J.

1998-01-01T23:59:59.000Z

60

A systematic approach for diagnosing service failure: Service-specific FMEA and grey relational analysis approach  

Science Journals Connector (OSTI)

In any organization, the importance of failure management cannot be mentioned by a single word. However, most failure analysis is dominated by the manufacturing sector, despite the increasing importance of the service sector. In response, this paper proposes a systematic approach for identifying and evaluating potential failures using a service-specific failure mode and effect analysis (service-specific FMEA) and grey relational analysis. The proposed approach consists of two stages: construction of service-specific FMEA and application of grey relational analysis. The first stage, construction of service-specific FMEA, aims at incorporating the service specific characteristics to the traditional FMEA, providing 3 dimensions and 19 sub-dimensions, encompassing the service characteristics. At the second stage, grey relational analysis is applied to calculate the risk priority of each failure mode to deal with the necessities of a flexible evaluation framework under these interrelated multi-dimensions. The proposed approach is expected to help the service managers to manage the service failure within the systematic framework. This paper contributes to the field in that it incorporates the service-specific characteristics to the traditional FMEA, as well as providing the appropriate evaluation framework using grey relational analysis.

Youngjung Geum; Yangrae Cho; Yongtae Park

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

62

Specific  

NLE Websites -- All DOE Office Websites (Extended Search)

Specific Specific energy for pulsed laser rock drilling Z. Xu, a) C. B. Reed, and G. Konercki Technology Development Division, Argonne National Laboratory, Argonne, Illinois 60540 R. A. Parker b) Parker Geoscience Consulting, LLC, Arvada, Colorado 80403 B. C. Gahan Gas Technology Institute, Des Plains, Illinois 60018 S. Batarseh c) and R. M. Graves Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado 80401 H. Figueroa Petroleos de Venezuela INTEVEP, S.A., Caracas 1070A, Venezuela N. Skinner Halliburton Energy Service, Carrollton, Texas 75006 ͑Received 20 December 2001; accepted for publication 19 August 2002͒ Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided

63

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

roughly 2.7% of total US energy consumption. The final tworoughly 1.5% of total US energy consumption. The final twoSpace Conditioning Energy Consumption in US Buildings Annual

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

64

Building Technologies Office: Subscribe to Building America Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

65

Envelope-related energy demand: A design indicator of energy performance for residential buildings in early design stages  

Science Journals Connector (OSTI)

The architectural design variables which most influence the energy performance of a building are the envelope materials, shape and window areas. As these start to be defined in the early design stages, designers require simple tools to obtain information about the energy performance of the building for the design variations being considered at this phase. The shape factor is one of those tools, but it fails to correlate with energy demand in the presence of important solar gains. This paper presents a new design indicator of energy performance for residential buildings, the Envelope-Related Energy Demand (ERED), which aims to overcome the shortcomings of the shape factor while maintaining a reasonable simplicity of use. The inputs to ERED are areas of envelope elements (floor, walls, roofs and windows), U-values of envelope materials, solar heat gain coefficients (SHGC) of windows and site related parameters, concerning temperature and solar irradiation. ERED was validated against detailed simulation results of 8000 hypothetical residential buildings, varying in envelope shape, window areas and materials. Results show that there is a strong correlation between ERED and simulated energy demand. These results confirm the adequacy of ERED to assist design decisions in early stages of the design process.

Vasco Granadeiro; Joo R. Correia; Vtor M.S. Leal; Jos P. Duarte

2013-01-01T23:59:59.000Z

66

Disease-Specific Symptoms and Health-Related Quality of Life in Children and Adolescents with Inflammatory Bowel Disease  

E-Print Network (OSTI)

This study assesses generic and disease-specific Health-Related Quality of Life (HRQOL) in children and adolescents with Inflammatory Bowel Disease (IBD). More specifically, the purpose of the study is to address the relationship between disease...

Vaughan-Dark, Chelsea Ann

2013-07-17T23:59:59.000Z

67

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

68

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

69

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

70

Building operating systems services: An architecture for programmable buildings.  

E-Print Network (OSTI)

7.3.2 Building Performance Analysis . . . . . . 7.4 RelatedWork 2.1 Building Physical Design . . . . . . . . . .3.2.6 Building Applications . . . . . . . . . . .

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

71

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network (OSTI)

in building total energy consumption and related costs (overin building total energy consumption and related costs (overin building total energy consumption and related costs (over

Bailey, Trevor

2013-01-01T23:59:59.000Z

72

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

73

RELATED LINKS Green Technology for  

E-Print Network (OSTI)

have been certified to the National Green Building Standard, which was approved earlier this year by the American National Standards Institute. Preferences for specific green building techniques are decidedlyRELATED LINKS Green Technology for 2009: See the Photos Green Building: Getting Past the Media Hype

74

Attachment 2 UC Berkeley EI-LOTO "Equipment Specific" Procedure Equip. Name: _______________________________ Building: __________________________________ Location/Room Number: _____________________  

E-Print Network (OSTI)

of work here: Instructions: Follow the steps to create a written sequence for de-energizing, lockout / training for the equipment-specific lockout process. Discuss with workers how equipment energy isolation

Cohen, Ronald C.

75

Hermes: a simple and efficient algorithm for building the AOC-poset of a binary relation  

Science Journals Connector (OSTI)

Given a relation 𝓡 ? 𝓞 𝓐 on a set 𝓞 of objects and a set 𝓐 of attributes, the AOC-poset (Attribute/Object Concept poset), is the partial order defined on the "introducers" of objects and attributes in the ...

Anne Berry, Alain Gutierrez, Marianne Huchard, Amedeo Napoli, Alain Sigayret

2014-10-01T23:59:59.000Z

76

The relative variational model: A topological view of matter and its properties: Specific heat and enthalpy  

SciTech Connect

Formal definitions of convergence, connected-ness and continuity were established to characterize and describe the crystalline solid and its properties as a unified notion in the topological space. The crystalline solid is a previously empty space that has been filled with atoms and phonons, i.e., the crystal is built with packages of matter and energy in a regular and orderly repetitive pattern along three orthogonal dimensions of the space. The spatial occupation of the atom in the crystal structure is determined by its mean vibrational volume. Thus, the changes of volume and the changes of internal energy are intrinsically linked. In fact, physical and material properties are the interdependent and bijective quantifications associated with variations of the internal energy. These properties are modeled by means of an intrinsic and invariable form function: the Relative Variational Model. In this paper, the Debye's integral of the heat capacity at constant volume is analytically solved. The experimental data of the specific heat at constant pressure and the enthalpy variations are also analytically depicted by the model in the temperature range of 0 K up to the melting point. The data reductions were applied to the oxides Al{sub 2}O{sub 3} and UO{sub 2}. (authors)

Dias, M. S.; De Vasconcelos, V.; Mattos, J. R. L. [Center for Development of the Nuclear Technology - CDTN, National Commission for the Nuclear Energy - CNEN, PO Box: 941, 30.161-970, Belo Horizonte, Minas Gerais (Brazil); Jordao, E. [Chemistry Engineering Dept., Campinas State Univ., FEQ/ UNICAMP, Av. Albert Einstein, 500, 13083-852, Campinas, Sao Paulo (Brazil)

2012-07-01T23:59:59.000Z

77

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

78

Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Building Design October 16, 2013 - 4:41pm Addthis Planning, Programming & Budgeting Building Design Project Construction Integrating renewable energy within Federal new construction or major renovations is critical at each phase of the design process. This overview covers considerations for renewable energy in the design phases of a construction project, including choosing the design team, the design team charrette, preliminary design, schematic design, design development, and construction documents. Information on this page introduces each of the design phases and provides a link to deeper-level information. Key Actions in Building Design Require specific renewable energy experience and skills for design team. Prioritize energy-related program

79

The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings  

Science Journals Connector (OSTI)

Abstract This paper aims to investigate the socio-economic, dwelling and appliance related factors that have significant or non-significant effects on domestic electricity consumption. To achieve this aim, a comprehensive literature review of international research investigating these factors was undertaken. Although papers examining the factors affecting electricity demand are numerous, to the authors knowledge, a comprehensive analysis taking stock of all previous findings has not previously been undertaken. The review establishes that no less than 62 factors potentially have an effect on domestic electricity use. This includes 13 socio-economic factors, 12 dwelling factors and 37 appliance factors. Of the 62 factors, four of the socio-economic factors, seven of the dwelling factors, and nine of the appliance related factors were found to unambiguously have a significant positive effect on electricity use. This paper contributes to a better understanding of those factors that certainly affect electricity consumption and those for which effects are unclear and require further research. Understanding the effects of factors can support both the implementation of effective energy policy and aid prediction of future electricity consumption in the domestic sector.

Rory V. Jones; Alba Fuertes; Kevin J. Lomas

2015-01-01T23:59:59.000Z

80

Window-Related Energy Consumption in the US Residential andCommercial Building Stock  

SciTech Connect

We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

Apte, Joshua; Arasteh, Dariush

2006-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building and Buildings, Scotland: Draft Building Standards (Scotland) Regulations, 1961  

E-Print Network (OSTI)

These regulations, made under the Building (Scotland) Act, 1959, prescribe standards for buildings for the purposes of Part II of that Act. The matters in relation to which standards have been prescribed are described in ...

Her Majesty's Stationary Office

1961-01-01T23:59:59.000Z

82

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

83

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

84

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

85

Associations of indoor carbon dioxide concentrations and environmental susceptibilities with mucous membrane and lower respiratory building related symptoms in the BASE study: Analyses of the 100 building datas et  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Erdmann, Christine A.

2010-01-01T23:59:59.000Z

86

A constraint solver for software engineering : finding models and cores of large relational specifications  

E-Print Network (OSTI)

Relational logic is an attractive candidate for a software description language, because both the design and implementation of software often involve reasoning about relational structures: organizational hierarchies in the ...

Torlak, Emina, 1979-

2009-01-01T23:59:59.000Z

87

A Methodology for Developing Performance-Related Specifications for Pavement Preservation Treatments  

E-Print Network (OSTI)

Current materials and construction specifications for pavement preservation treatments are predominantly prescriptive and they have little or no methodical linkage between initial treatment quality and future performance. There is an imperative...

Liu, Litao

2013-09-23T23:59:59.000Z

88

Special Building Renovations  

Energy.gov (U.S. Department of Energy (DOE))

A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

89

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

90

Building 32 35 Building 36  

E-Print Network (OSTI)

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

91

Building Energy Software Tools Directory: DOE Sponsored Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Sponsored Tools DOE Sponsored Tools The Department of Energy sponsors continued development of a variety of building energy software tools. See the following for more information about software tools now under development: Whole-Building Energy Performance Simulation EnergyPlus A new-generation building energy simulation program from the creators of BLAST and DOE-2. DOE-2 An hourly, whole-building energy analysis program which calculates energy performance and life-cycle cost of operation. The current version is DOE-2.1E. Building Design Advisor Provides building decision-makers with the energy-related information they need beginning in the initial, schematic phases of building design through the detailed specification of building components and systems. SPARK Models complex building envelopes and mechanical systems that are beyond

92

Subscribe to Building America Updates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subscribe to Building America Updates Subscribe to Building America Updates Subscribe to Building America Updates Sign up to receive e-mail notices of news and events related to the Building America program. Building America will send periodic notices which provide information related to: Improving efficiency of new and existing homes Research team projects and activities Best Practices Guides, case studies, and technical publications Residential building efficiency and system-specific expert meetings. Once you've submitted your e-mail address below, you will have a chance to subscribe to other information resources available from DOE's Office of Energy Efficiency and Renewable Energy. Building America Updates Keep current with upcoming events and news by subscribing to Building America updates.

93

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

94

Relative age-specific radiation dose commitment factors for major radionuclides released from nuclear fuel facilities  

SciTech Connect

During the licensing process for nuclear fuel facilities, committed dose equivalents must be calculated for potential exposures to people in the area around these facilities. These committed dose equivalents are usually calculated from tabulated dose-conversion factors that convert the quantity of radioactive material potentially taken in by individuals through ingestion or inhalation. For calculating committed dose equivalents to children, the Nuclear Regulatory Commission has in the past appealed to age-specific dose-conversion factors listed in NUREG-0172 (1977), which is based on a computational methodology found in ICRP Publication 2 (1959). Since the publication of NUREG-0172 new models and new concepts of risk have been provided in ICRP Publications 26 and 30 (1977, 1979). These documents provide a detailed methodology for calculating dose-conversion factors for the various radionuclides for an adult reference man. In this report are tabulated age-specific dose-conversion factors, given as multiples of the adult values, for inhalation or ingestion of each of the following isotopes: U-234, U-235, U-238, Th-228, Th-230, Th-232, Ra-226, Ra-228, Pb-210, or Po-210. Our methodology is consistent as far as practical with that of ICRP Publications 26 and 30, but we have modified and extended the ICRP methodology as necessary to include age dependence and to include metabolic and dosimetric information that has been developed since the issuance of these ICRP documents.

Cristy, M.; Leggett, R.W.; Dunning, D.E. Jr.; Eckerman, K.F.

1986-06-01T23:59:59.000Z

95

Better Buildings Data and Summary Report- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Dale Hoffmeyer, U.S. Department of Energy The purpose of this project is to collect data from organizations awarded financial assistance (i.e., Better Buildings Neighborhood Program grantees) to test energy upgrade business models and improve building energy efficiency across the country. This data is used to populate the Building Technologies Offices (BTOs) Buildings Performance Database (BPD), track grantee progress, evaluate impact, and identify successful strategies. This project further supports the missions of both the Office of Energy Efficiency and Renewable Energy and BTO to lower barriers to energy efficiency in buildingsspecifically their efforts related to improving program design and more efficient data management.

96

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

97

Building Technologies Office: Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinar Archives to Webinar Archives to someone by E-mail Share Building Technologies Office: Webinar Archives on Facebook Tweet about Building Technologies Office: Webinar Archives on Twitter Bookmark Building Technologies Office: Webinar Archives on Google Bookmark Building Technologies Office: Webinar Archives on Delicious Rank Building Technologies Office: Webinar Archives on Digg Find More places to share Building Technologies Office: Webinar Archives on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program

98

Building Technologies Office: Strategic Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Plans to Strategic Plans to someone by E-mail Share Building Technologies Office: Strategic Plans on Facebook Tweet about Building Technologies Office: Strategic Plans on Twitter Bookmark Building Technologies Office: Strategic Plans on Google Bookmark Building Technologies Office: Strategic Plans on Delicious Rank Building Technologies Office: Strategic Plans on Digg Find More places to share Building Technologies Office: Strategic Plans on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home

99

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

100

Building Technologies Office: Commercial Building Energy Asset Scoring Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoring Tool to someone by E-mail Scoring Tool to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Characterization of commercial building appliances. Final report  

SciTech Connect

This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

1993-08-01T23:59:59.000Z

102

Compare Activities by Building Age  

U.S. Energy Information Administration (EIA) Indexed Site

Activities by Building Age Activities by Building Age Compare Activities by ... Building Age Median Age of Building by Building Type Vacant buildings, retail stores (other than malls), and religious worship buildings tended to be the oldest buildings. Food sales buildings (which were predominantly convenience stores) and outpatient health care buildings were mainly newer buildings. Figure showing median age of building by building type. If you need assistance viewing this page, please call 202-586-8800. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: July 24, 2002 Page last modified: May 4, 2009 2:52 PM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/compareage.html If you are having any technical problems with this site, please contact the EIA

103

How BEDES Relates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Building Energy Data Exchange Specification Commercial Buildings » Building Energy Data Exchange Specification » How BEDES Relates How BEDES Relates Below is some detail regarding how BEDES relates to various tools and specifications with similar use cases. More detailed information on these efforts and others can be found in the scoping report. How BEDES Relates to Federal Tools There was widespread recognition by stakeholders of the value already provided by federal analytical tools, such as Portfolio Manager, the asset scoring tools, and Buildings Performance Database (BPD). Stakeholders also anticipate the value that Standard Energy Efficiency Database platform (SEED) will provide when it is complete. Aligning the data formats for all these tools and activities would reduce the data management burden for

104

NREL: Buildings Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL publishes a variety of documents related to its research, including technical reports, brochures, and presentations. Read the information below to find out how to find a publication about buildings research at NREL. Accessing Research Papers Buildings Technical Highlights Research Papers - Commercial Research Papers - Residential Accessing Buildings Research Documents Documents produced by NREL related to buildings technologies may be accessed online in several different ways. National Renewable Energy Laboratory Publications Database The NREL Publications Database covers building technology documents written or edited by NREL staff and subcontractors from 1977 to the present. The database includes technical reports as well as outreach publications such

105

Understanding the Needs of Arkansas School Districts Relative to Building Use and Control Utility Tracking Personnel and Facility Planning  

E-Print Network (OSTI)

to highest. The division between small and large districts is noted. 1 small districts account for onl enrollment, but make up 45% of building square footage statewide [3]. It there is a large disparity sm l l METHODS school respondi cont Li were... responses of smal districts versus those of large districts were found t be statistically significant (P < 0.05) for statements 2, 3, 4, 5, 8, 9, 10, 11, and 15. For the remaining statements (1, 6, 7, 12, 13, 14, and 16), there was not a significant...

Keazer, J. A.; Nutter, D. W.

2006-01-01T23:59:59.000Z

106

Webinar: Introduction to Pre-engineered Metal Building Envelope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinar: Introduction to Pre-engineered Metal Building Envelope Webinar: Introduction to Pre-engineered Metal Building Envelope Commissioning Webinar: Introduction to Pre-engineered Metal Building Envelope Commissioning November 22, 2013 1:00PM EST The metal building industry produces more than 50% of all new low-rise nonresidential construction in the United States. These buildings serve many different end uses, including commercial, industrial, institutional, and educational applications. In this introduction to commissioning for building envelopes, participants will learn about the benefits of pre-engineered metal building envelope commissioning, stakeholders and participants, current guidelines and standards related to commissioning and envelope-specific commissioning tests. The information in this webinar will also be widely applicable to

107

2014-09-30 Issuance: Buildings-to-Grid Integration and Related Areas of Research; Notice of Availability and Request for Public Comment  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of availability and request for public comment regarding buildings-to-grid integration and related areas of research, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 30, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

108

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

109

Resource Center | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center FAQs Publications Resource Guides eLearning Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Resource Center The U.S. Department of Energy (DOE), through the Building Energy Codes Program (BECP) Resource Center, provides a comprehensive collection of information, resources, and technical assistance designed to answer questions and address issues related to energy codes. This includes frequently asked questions, publications, model adoption policies, compliance software and tools, and training/eLearning modules based on best practices. BECP's team of building energy codes experts is also available to answer specific questions submitted through the web-based help desk.

110

Cook County- LEED Requirements for County Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

111

On Opposition in Spherical Buildings and Twin Buildings  

E-Print Network (OSTI)

On Opposition in Spherical Buildings and Twin Buildings Peter Abramenko 1 \\Lambda Hendrik Van apartments in twin buildings by means of the opposition relation on chambers. We also characterize adjacency of chambers in twin buildings by means of opposition of chambers. As an application, we study maps which

Bielefeld, University of

112

THE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION  

E-Print Network (OSTI)

research in the areas of residential building design and construction, sustainable buildings, energy issues in residential buildings, lifecycle analysis of buildings and related infrastructure, and sustainable landTHE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION The College

Guiltinan, Mark

113

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

114

Chapter 3: Building Siting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

115

Better Buildings Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kristen Taddonio DOE/EERE/BTO/Commercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce building energy use by 50 percent, saving ~$2.2 trillion in energy-related costs. CBI Program Goals: New Buildings - Demonstrate 50% cost-effective savings at a convincing scale by 2020 (EISA 2007) - Demonstrate 100% cost-effective savings at a convincing scale by 2030 (EISA 2007) Existing Buildings

116

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

117

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

118

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network (OSTI)

'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAYBUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

119

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

120

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was slightly above average. Lodging buildings were one of the few...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Types of Lighting in Commercial Buildings - Building Size and Year  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting and Building Size and Year Constructed Lighting and Building Size and Year Constructed Building Size Smaller commercial buildings are much more numerous than larger commercial buildings, but comprise less total floorspace-the 1,001 to 5,000 square feet category includes more than half of total buildings, but just 11 percent of total floorspace. In contrast, just 5 percent of buildings are larger than 50,000 square feet, but they account for half of total floorspace. Lighting consumes 38 percent of total site electricity. Larger buildings consume relatively more electricity for lighting than smaller buildings. Nearly half (47%) of electricity is consumed by lighting in the largest buildings (larger than 500,000 square feet). In the smallest buildings (1,001 to 5,000 square feet), one-fourth of electricity goes to lighting

122

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

123

Building Information Modeling - A Minimum Mathematical Configuration  

E-Print Network (OSTI)

In the current context, the standardization of building construction is not limited to a specific country or to a specific building code. Trade globalization has emphasized the need for standardization in the process of exchange of design...

Bhandare, Ruchika

2012-10-19T23:59:59.000Z

124

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of Building Types Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

125

Federal Buildings Supplemental Survey -- Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Survey > Overview Survey > Overview Overview Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Divider Line Highlights on Federal Buildings The Federal Buildings Supplemental Survey 1993 provides building-level energy-related characteristics for a special sample of commercial buildings owned by the Government. Extensive analysis of the data was not conducted because this report represents the 881 responding buildings (buildings for which interviews were completed) and cannot be used to generalize about Federal buildings in each region. Crosstabulations of the data from the 881 buildings are provided in the Detailed Tables section.

126

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

127

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per and lower energy usage was reviewed. This factor is contained in the adopted Green Building Code Section 9 for the May 5, 2010 California Energy Commission business meeting. Thank you. John LaTorra Building Inspection

128

Analysis of the Chinese Market for Building Energy Efficiency  

SciTech Connect

China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of Chinas policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses Chinas policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in Chinas cities, and they have been a driving force behind the expansion of Chinas markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take deep dives into the trends affecting key building components. This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of Chinas policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

Yu, Sha; Evans, Meredydd; Shi, Qing

2014-03-20T23:59:59.000Z

129

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

130

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

131

Isolation and characterization of species-specific repetitive DNA sequences of G. longicalyx relative to G. hirsutum  

E-Print Network (OSTI)

phylogeny. Initially, the species-specific nature of G. sturtianum and G. longicalyx repetitive sequence clones were used in hybridizations to Southern blots of G. hirsutum and G. sturtianum or G. longicalyx genomic DNA. Thirteen of 118 G. longicalyx...

Landrum, Charles Perry

2012-06-07T23:59:59.000Z

132

Building Technologies Office: Building America Solution Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Solution Center Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR® checklists, alphabetical lists, a house diagram with selectable components, and an information map. Logged-in users can quickly save any of these elements into their personal Field Kit.

133

Building Technologies Office: Climate Zones  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Zones to Climate Zones to someone by E-mail Share Building Technologies Office: Climate Zones on Facebook Tweet about Building Technologies Office: Climate Zones on Twitter Bookmark Building Technologies Office: Climate Zones on Google Bookmark Building Technologies Office: Climate Zones on Delicious Rank Building Technologies Office: Climate Zones on Digg Find More places to share Building Technologies Office: Climate Zones on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

134

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy Consumption Survey (CBECS) > Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 and 2003 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

135

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

136

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

137

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

138

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

139

Sustainable Buildings  

Science Journals Connector (OSTI)

The construction and real estate sectors are in a state of change: ... operated differently, i.e. more sustainably. Sustainable building means to build intelligently: the focus ... comprehensive quality concept t...

Christine Lemaitre

2012-01-01T23:59:59.000Z

140

Building technologies  

SciTech Connect

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

142

Building Energy Software Tools Directory: BuildingSim  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingSim BuildingSim BuildingSim logo BuildingSim allows users to model a building and analyze the heating and cooling energy costs in any climate. Users can create any building—from a one-room apartment up to a 100+ floor skyscraper--and account for everything from window coverings to shade trees. BuildingSim uses actual hourly weather data from over 90 climates around the world to numerically solve the full thermodynamic differential equations every minute of the year, giving the user the actual energy use down to the cent. The simulation algorithm fully accounts for thermostat and HVAC controls, allowing the user to analyze the effects of different thermostat algorithms (programmable thermostats, setback, split-zone, etc.) on the energy costs for a specific building and climate. Screen Shots

143

Conflict of Interest Relating Specifically to Technology Transfer Agreements The University increasingly grants the right to exploit its IP and/or know-how to commercial  

E-Print Network (OSTI)

Conflict of Interest Relating Specifically to Technology Transfer Agreements The University that may arise as a result of technology transfer transactions. 1. When a primary candidate for a technology transfer agreement is identified and before any agreement is negotiated, the Industrial Liaison

Schellekens, Michel P.

144

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

145

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

146

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

147

Building America Building Science Education Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Science Education Roadmap Building America Building Science Education Roadmap This roadmap outlines steps that U.S. Department of Energy Building America program must take...

148

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

149

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

150

Building Name BuildingAbbr  

E-Print Network (OSTI)

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

151

Commercial Building Partnerships Replication and Diffusion  

SciTech Connect

This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners replication efforts of technologies and approaches used in the CBP project to the rest of the organizations building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

2013-09-16T23:59:59.000Z

152

NASA Net Zero Energy Buildings Roadmap  

SciTech Connect

In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

2014-10-01T23:59:59.000Z

153

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

154

Specific Viscosity  

Science Journals Connector (OSTI)

n Equal to the relative viscosity of the same solution minus one. It represents the increase in viscosity that may be contributed by the polymeric solute. The specific viscosity, ?sp is defined by th...

Jan W. Gooch

2011-01-01T23:59:59.000Z

155

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

156

Building bridges to successful alliance formation: extending our understanding of performance related determinants focusing on small- and medium-sized businesses  

Science Journals Connector (OSTI)

The purpose of this study is to build on previous research (Royer et al., 2003) into the relationship between the self/partner reputation and alliance formation using 'Real-World' competitors. Theoretical studies and case studies have progressed the field substantially but have also been subject to a number of limitations. This study includes complex considerations including motivation for alliance, number of potential partners available, resource wealth of potential partners, and past history with potential partners. The focus of this study is on cooperative arrangements of small- and medium-sized firms (SMEs). In the dynamic environment, SMEs with their traditional resource limitations often have to bundle resources with others to survive. It was argued that the study of alliance formation was particularly relevant to smaller business entities. Representatives from 50 Australian engineering organisations were involved in the study. The findings suggest considerable implications for theoretical propositions relating to the complexity of alliance formation for SMEs and the design demonstrates methodological enhancements relevant to the field.

Roland H. Simons; Susanne Royer

2006-01-01T23:59:59.000Z

157

Building Technologies Office: Performance Metrics Tiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Metrics Performance Metrics Tiers to someone by E-mail Share Building Technologies Office: Performance Metrics Tiers on Facebook Tweet about Building Technologies Office: Performance Metrics Tiers on Twitter Bookmark Building Technologies Office: Performance Metrics Tiers on Google Bookmark Building Technologies Office: Performance Metrics Tiers on Delicious Rank Building Technologies Office: Performance Metrics Tiers on Digg Find More places to share Building Technologies Office: Performance Metrics Tiers on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

158

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

159

Building Technologies Office: House Simulation Protocols Report  

NLE Websites -- All DOE Office Websites (Extended Search)

House Simulation House Simulation Protocols Report to someone by E-mail Share Building Technologies Office: House Simulation Protocols Report on Facebook Tweet about Building Technologies Office: House Simulation Protocols Report on Twitter Bookmark Building Technologies Office: House Simulation Protocols Report on Google Bookmark Building Technologies Office: House Simulation Protocols Report on Delicious Rank Building Technologies Office: House Simulation Protocols Report on Digg Find More places to share Building Technologies Office: House Simulation Protocols Report on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

160

Building Technologies Program | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Program Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across disciplines to support federally-and privately-funded research. ORNL's buildings research is directed and funded primarily by the DOE Office of Energy Efficiency and Renewable Energy, specifically the Building Technologies Program. The Federal Energy Management Program, Geothermal Technologies Program, Advanced Manufacturing Office,Office of Weatherization and Intergovernmental Program, Policy and International Affairs, Concentrating Solar Power Program, Sustainability Performance Office, and other partners also support ORNL's research to develop new building technologies. Building Technologies Office

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Technologies Office: Energy Systems Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Energy Systems Innovations to someone by E-mail Share Building Technologies Office: Energy Systems Innovations on Facebook Tweet about Building Technologies Office: Energy Systems Innovations on Twitter Bookmark Building Technologies Office: Energy Systems Innovations on Google Bookmark Building Technologies Office: Energy Systems Innovations on Delicious Rank Building Technologies Office: Energy Systems Innovations on Digg Find More places to share Building Technologies Office: Energy Systems Innovations on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

162

BuildingSync File Download | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy audit data, developed using the standard energy data terminology defined in the Building Energy Data Exchange Specification (BEDES). Learn more about BuildingSync or view...

163

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

164

Relationalism  

E-Print Network (OSTI)

This article contributes to the debate of the meaning of relationalism and background independence, which has remained of interest in theoretical physics from Newton versus Leibniz through to foundational issues for today's leading candidate theories of quantum gravity. I contrast and compose the substantially different Leibniz--Mach--Barbour (LMB) and Rovelli--Crane (RC) uses of the word `relational'. Leibniz advocated primary timelessness and Mach that `time is to be abstracted from change'. I consider 3 distinct viewpoints on Machian time: Barbour's, Rovelli's and my own. I provide four expansions on Barbour's taking configuration space to be primary: to (perhaps a weakened notion of) phase space, categorizing, perspecting and propositioning. Categorizing means considering not only object spaces but also the corresponding morphisms and then functors between such pairs. Perspecting means considering the set of subsystem perspectives; this is an arena in which the LMB and Rovelli approaches make contact. By propositioning, I mean considering the set of propositions about a physical (sub)system. I argue against categorization being more than a formal pre-requisite for quantization in general; however, perspecting is a categorical operation, and propositioning leads one to considering topoi, with Isham and Doering's work represents one possibility for a mathematically sharp implementation of propositioning. Further applications of this article are arguing for Ashtekar variables as being relational in LMB as well as just the usually-ascribed RC sense, relationalism versus supersymmetry, string theory and M-theory. The question of whether scale is relational is also considered, with quantum cosmology in mind.

Edward Anderson

2014-07-15T23:59:59.000Z

165

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

166

Buildings Performance Metrics Terminology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Commercial Building Initiative Page 1 Energy's Commercial Building Initiative Page 1 January 2009 Buildings Performance Metrics Terminology To clarify how the terms are used in the Department of Energy's Performance Metrics Research Project, a list of terms related to performance metrics are defined and include examples and comments. Visit www.commercialbuildings.energy.gov/performance_metrics.html to learn more. Baseline - a standard reference case used as a basis for comparison Examples: a simulation model of an ASHRAE 90.1 compliant building, control building, measurement of energy consumption prior to application of an energy conservation measure Comments: Establishing a clearly defined baseline very important and is often the most difficult task. Defining a repeatable baseline is essential if the work is to be compared to results of other

167

Buildings Energy Databook  

Buildings Energy Data Book (EERE)

2 BUILDINGS 2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered an evolving document as it will be will be periodically updated and additional data will be incorporated. Users are requested to submit additional data (e.g., more current, widely accepted, and/or better documented data) and suggested changes to the contacts below. Please provide full source references along with all data.

168

An examination of a specific network of poetics from the realm of language-image-sound relations  

E-Print Network (OSTI)

It is my intention in this paper to examine the network of poetic relations which I explore in my art work. This document is divided into two main sections: part one deals with a number of art historical foci in regard to ...

Seaman, Bill

1985-01-01T23:59:59.000Z

169

Buildings Database  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

170

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

171

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

172

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

173

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

174

Related Links on Greensburg, Kansas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg, Kansas Greensburg, Kansas Related Links on Greensburg, Kansas Below are related links to resources specifically for Kansas on building with energy efficiency and renewable energy technologies. Learn more about deployment efforts in Greensburg, Kansas. Efficiency Kansas Efficiency Kansas is a loan program from the State Energy Office at the Kansas Corporation Commission that helps homes and businesses access low-interest financing through partner lenders and utilities, identify and implement energy-efficiency improvements, and save on monthly utility bills. Greensburg Sustainable Building Database The Greensburg Sustainable Building Database showcases green building projects in Greensburg, Kansas. The case studies in this database offer ideas for rebuilding energy efficiently and include detailed information

175

Farm Buildings  

Science Journals Connector (OSTI)

... is intended to guide the American farmer and agricultural student in designing and constructing farm buildings. It is stated that farm ... . It is stated that farm buildings have had their most rapid development in America in the years since 1910. Prior ...

1923-03-24T23:59:59.000Z

176

Building diagnosable distributed systems  

E-Print Network (OSTI)

Building diagnosable distributed systems Petros Maniatis Intel Research Berkeley ICSI ­ Security] Project response@R (R, K, SI) lookup response Specification #12;2/8/2006 Petros Maniatis9 Strawman Design Join lookup.NI == node.NI Join lookup.NI == succ.NI Select K in (N, S] Project response@R (R, K, SI

Maniatis, Petros

177

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

178

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

179

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

180

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Full Report Full Report Energy Information Administration > Commercial Buildings Energy Consumption Survey > Overview of Commercial Buildings Overview of Commercial Buildings, 2003 Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: ● total nearly 4.9 million buildings ● comprise more than 71.6 billion square feet of floorspace ● consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) ●

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network (OSTI)

In: Proceedings of Healthy Buildings 2009, Syracuse, NY,In: Proceedings of Healthy Buildings 2006, Lisbon, 2006;V.residences. Proceedings of Healthy Buildings 2009, Syracuse,

Mendell, Mark

2014-01-01T23:59:59.000Z

182

Building America Residential Buildings Energy Efficiency Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

183

Building Energy Optimization Analysis Method (BEopt) - Building...  

Energy Savers (EERE)

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

184

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

185

Chapter 8: Constructing the Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: : Constructing the Building Developing a Construction Plan Writing Effective Construction Documents Safeguarding Design Goals During Construction Protecting the Site Low-Impact Construction Processes Protecting Indoor Air Quality Managing Construction Waste LANL | Chapter 8 Constructing the Building Developing a Construction Plan A high-performance design is a great achievement, but it doesn't mean much if the building isn't then built as intended. Getting from design to a completed project happens in two stages: 1) development of construction documents and 2) actual construction. To successfully implement a sustainable design, the construction docu- ments must accurately convey the specifics that deter- mine building performance, and they have to set up

186

Better Buildings  

E-Print Network (OSTI)

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

187

Building America Webinar: High Performance Building Enclosures: Part I, Existing Homes  

Energy.gov (U.S. Department of Energy (DOE))

This webinar, presented on May 21, 2014, focused on specific Building America projects that have implemented technical solutions to retrofit building enclosures to reduce energy use and improve durability.

188

Archive Reference Buildings by Building Type: Warehouse  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

189

Archive Reference Buildings by Building Type: Supermarket  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

190

Existing Commercial Reference Buildings Constructed Before 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 The files on this page contain commercial reference building models for existing buildings constructed before 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

191

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

CONSERVATION IN BUILDINGS AND ANALYTIC MODELING Footnotes tobuilding -- and so are inaccurate for passive solar modeling.modeling described above for only one specific hour and one specific building

Goldstein, David Baird

2011-01-01T23:59:59.000Z

192

Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables  

Reports and Publications (EIA)

The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

2008-01-01T23:59:59.000Z

193

Sustainable Buildings and Campuses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Campuses and Campuses Sustainable Buildings and Campuses October 4, 2013 - 4:18pm Addthis Sustainable Buildings and Campuses The Federal Energy Management Program (FEMP) provides strategies, best practices, and resources to help Federal agencies implement sustainable design practices within Federal buildings and facilities. Learn about: Sustainable building design basics Federal requirements Sustainability for existing buildings Sustainable design for new construction and major renovations Life cycle cost analysis for sustainability Energy security planning Case studies Interagency Sustainability Working Group. Also see Sustainable Building Contacts. Addthis Related Articles Energy Department Training Breaks New Ground Sustainable Building Contacts Commissioning Training Available

194

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE))

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

195

Building Scale DC Microgrids  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

196

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE))

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

197

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE))

Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

198

Special Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Building Renovations Special Building Renovations Special Building Renovations October 16, 2013 - 4:58pm Addthis A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following Federal building types with specific design considerations for renewable energy: data centers, historic buildings, hospitals, laboratories, remote facilities, residential, and warehouses and service buildings. Data Centers Because data centers account for an ever-growing amount of energy consumption, designing high efficiency data centers is both a sustainable and economic option. Coupled with energy efficiency measures, renewable energy technologies can provide some opportunities for data centers. Since

199

1999 Commercial Buildings Characteristics--CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of CBECS Building Types Description of CBECS Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the sub-categories were combined into the more general categories that are found in the detailed tables. These categories are consistent with prior years.

200

Buildings Energy Data Book: 7.1 National Legislation  

Buildings Energy Data Book (EERE)

4 4 Energy Independence and Security Act 2007, High Performance Commercial Buildings Create the Office of Commercial High Performance Green Buildings The Office of Commercial High Performance Green Buildings with The Office of Federal High Performance Green Buildings will establish a High Performance Green Buildings Clearinghouse to disseminate research through outreach, education, and technical assistance Zero Net Energy Initiative for Commercial Buildings was also included establishing specific goals: -- Net zero energy use in all new commercial buildings constructed by 2030 -- Net zero energy use in 50% of the United State commercial building stock by 2040 -- Net zero energy use in the entire United States commercial building stock by 2050 Source(s):

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hidden buildings  

Science Journals Connector (OSTI)

... to charge to research grants a portion of the costs of constructing and financing new buildings. What this means is that institutions confident that their researchers would be well supported ... that institutions confident that their researchers would be well supported have

1991-11-28T23:59:59.000Z

202

AB 2160 GREEN BUILDING REPORT FOR SUBMISSION TO THE GOVERNOR'S  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION AB 2160 GREEN BUILDING REPORT FOR SUBMISSION TO THE GOVERNOR'S GREEN and Resource-Efficient (Green Building) Projects to the Governor's Green Action Team on several topics related to the 2004 Green Building Initiative

203

Historic Building Renovations  

Energy.gov (U.S. Department of Energy (DOE))

When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

204

Building Technologies Office: Top Innovations 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Top Innovations 2012 to Top Innovations 2012 to someone by E-mail Share Building Technologies Office: Top Innovations 2012 on Facebook Tweet about Building Technologies Office: Top Innovations 2012 on Twitter Bookmark Building Technologies Office: Top Innovations 2012 on Google Bookmark Building Technologies Office: Top Innovations 2012 on Delicious Rank Building Technologies Office: Top Innovations 2012 on Digg Find More places to share Building Technologies Office: Top Innovations 2012 on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program

205

Vermont | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont Last updated on 2013-06-03 Current News The Vermont Commercial Building Energy Standards (CBES) became effective January 3, 2012. The CBES incorporates elements of the 2012 IECC. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information 2011 Vermont Commercial Building Energy Standards (CBES) are based on the 2009 IECC. Commercial Building Energy Standards Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Vermont (BECP Report, Sept. 2009) Approximate Energy Efficiency More energy efficient than 2009 IECC Effective Date 01/03/2012 Adoption Date 10/03/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No

206

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

207

Building Performance Simulation  

E-Print Network (OSTI)

of Three Building Energy Modeling Programs:andD. Zhu. Buildingenergymodelingprogramscomparison:Comparison of building energy modeling programs: HVAC

Hong, Tianzhen

2014-01-01T23:59:59.000Z

208

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

209

Building Performance Simulation  

E-Print Network (OSTI)

technologies, integrated design, building operation andperformance, integrated buildingdesignandoperation,Integrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

210

Building Energy Modeling  

Energy.gov (U.S. Department of Energy (DOE))

Building energy simulationphysics-based calculation of building energy consumptionis a multi-use tool for building energy efficiency.

211

Building Performance Simulation  

E-Print Network (OSTI)

Y (2008). DeSTAn integrated building simulation toolkit,Part ? : Fundamentals. Building Simulation, 1: 95 ? 110.Y (2008). DeSTAn integrated building simulation toolkit,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

212

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

213

Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors  

SciTech Connect

A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

1989-10-01T23:59:59.000Z

214

A model and framework for reliable build systems Derrick Coetzee  

E-Print Network (OSTI)

A model and framework for reliable build systems Derrick Coetzee Anand Bhaskar George Necula, requires prior specific permission. #12;A model and framework for reliable build systems Derrick Coetzee- distributed, incremental, parallel build systems. We de- fine a general model for resources accessed by build

Necula, George

215

Federal Buildings Supplemental Survey 1993  

SciTech Connect

The Energy Information Administration (EIA) of the US Department of Energy (DOE) is mandated by Congress to be the agency that collects, analyzes, and disseminates impartial, comprehensive data about energy including the volume consumed, its customers, and the purposes for which it is used. The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE`s Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP`s specifications; therefore, these data do not statistically represent all Federal buildings in the country. The purpose of the FBSS was threefold: (1) to understand the characteristics of Federal buildings and their energy use; (2) to provide a baseline in these three Federal regions to measure future energy use in Federal buildings as required in EPACT; and (3) to compare building characteristics and energy use with the data collected in the CBECS.

NONE

1995-11-01T23:59:59.000Z

216

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

217

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

218

Model Building  

E-Print Network (OSTI)

In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly seen at HERA.

Paul H. Frampton

1997-06-03T23:59:59.000Z

219

Building Technologies Office: Technical Update Meeting - Summer 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Update Technical Update Meeting - Summer 2012 to someone by E-mail Share Building Technologies Office: Technical Update Meeting - Summer 2012 on Facebook Tweet about Building Technologies Office: Technical Update Meeting - Summer 2012 on Twitter Bookmark Building Technologies Office: Technical Update Meeting - Summer 2012 on Google Bookmark Building Technologies Office: Technical Update Meeting - Summer 2012 on Delicious Rank Building Technologies Office: Technical Update Meeting - Summer 2012 on Digg Find More places to share Building Technologies Office: Technical Update Meeting - Summer 2012 on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

220

Energy Department Launches Better Buildings Workforce Guidelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy-related jobs: Energy Auditor, Commissioning Professional, BuildingStationary Engineer, Facility Manager, and Energy Manager. These voluntary workforce guidelines will...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building America Solution Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America America Solution Center Building America Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR®

222

General Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

this note does not address such details as the storage ring entrance mazes or transformer pads since these are, more appropriately, part of the storage ring building speci-...

223

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

7.1 National Legislation 7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 7 outlines national climate change legislation, tax incentives, Federal regulations, and State programs that have influenced building energy consumption. Section 7.1 summarizes the past 40 years of national energy legislation beginning with the Clean Air Act of 1970. Section 7.2 describes the energy efficiency-related Federal tax incentives created in the last 5 years. Sections 7.3 through 7.7 describe the energy and water efficiency standards currently or soon to be in effect for residential and commercial HVAC equipment, appliances, lighting, and water-consuming products. Section 7.8 covers building energy codes. Following is a summary of the energy legislation discussed in this chapter:

224

Alabama State Certification of Commercial Building Codes | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Codes Commercial Building Codes In response to the U.S. Department of Energy's July 20, 2011 notice of determination in the Federal Register regarding ANSI/ASHRAE/IESNA Standard 90.1-2007, Alabama certifies that it has reviewed and adopted the provisions of its Alabama Energy and Residential Code to include the requirement for non-state-funded buildings to comply with the 2009 International Energy Conservation Code, and by reference ASHRAE 90.1-2007. Publication Date: Wednesday, May 15, 2013 Alabama Commercial Certification.pdf Document Details Last Name: Adams Initials: TL Affiliation: Alabama Department of Economic and Community Affairs Focus: Adoption Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-2007 2009 IECC Document type: State-specific Target Audience:

225

Application of software tools for moisture protection of buildings in  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of software tools for moisture protection of buildings in Application of software tools for moisture protection of buildings in different climate zones Title Application of software tools for moisture protection of buildings in different climate zones Publication Type Conference Paper Year of Publication 2009 Authors Krus, Martin, Thierry Stephane Nouidui, and Klaus Sedlbauer Conference Name 6th International Conference on Cold Climate, Heating, Ventilating and Air-Conditioning Conference Location Sisimiut, Groenland Abstract The application of software tools for moisture protection of buildings in different climatic zones is demonstrated in this paper. The basics of the programs are presented together with a typical application for a problem specific for the chosen climatic zone. A 1-D calculation has been performed for tropical climate zone with the improvement of a flat roof in Bangkok as an example. For half timbered buildings, which are common in the temperate zone with the 2-D model an infill insulation and its benefits are demonstrated. Finally the combined appliance of the whole building model and the mould risk prognosis model is shown in detail as a special case for the cold climate zone: In heated buildings of cold climate zones the internal climate with its low relative humidity in wintertime often causes discomfort and health problems for the occupants. In case of using air humidifier the risk of mould growth increases. Instead of an uncontrolled humidifying of the dry air an innovativecontrol system using a thermal bridge, which switches the humidifier off when condensation occurs is presented. To quantify the improvement in the comfort while preventing the risk of mould growth for a typical building comparative calculations of the resulting inner climates and its consequences on comfort have been performed.

226

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

227

California commercial building energy benchmarking  

SciTech Connect

Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

Kinney, Satkartar; Piette, Mary Ann

2003-07-01T23:59:59.000Z

228

State-based Modeling of Buildings and Facilities  

E-Print Network (OSTI)

.g. starting heating at unconventional times). Therefore we defined a methodology starting already at the design of the building leading to a formalized specification of the implementation of a building's management system, which seamlessly integrates...

Fisch, M.N.; Pinkernell, C.; Look, M.; Plesser, S.; Rumpe, B.

2011-01-01T23:59:59.000Z

229

A marine research lab in Maine : building coastal identity  

E-Print Network (OSTI)

If the design of a building originates from the place in which it is built, from the social traditions of that place, and from building traditions which are specific to local materials and climate, then it will project an ...

Marinace, F. Paul (Frank Paul)

1995-01-01T23:59:59.000Z

230

Glossary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary Site Map Printable Version Development Adoption Compliance Regulations Resource Center FAQs Publications Resource Guides eLearning Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Glossary The following is a compilation of building energy-code related terms and acronyms used on the Building Energy Codes website and throughout the building construction industry. Select a letter to navigate through the glossary: Filter A (25) B (22) C (41) D (27) E (27) F (15) G (12) H (21) I (20) K (5) L (11) M (16) N (15) O (11) P (21) R (22) S (37) T (14) U (12) V (11) W (10) Z (1) AAMA Architectural Aluminum Manufacturers Association. Above-Grade Wall A wall that is not a below-grade wall. Above-Grade Walls Those walls (Section 802.2.1) on the exterior of the building and

231

Florida | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Florida Last updated on 2013-11-18 Current News The triennial code change process is currently underway. Florida expects to be equivalent to ASHRAE 90.1-10 and IECC 2012 by early 2014. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information N/A Approved Compliance Tools Can use State specific EnergyGauge Summit FlaCom State Specific Research Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/15/2012 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Florida DOE Determination Letter, May 31, 2013 Florida State Certification of Commercial Building Codes Current Code State Specific Amendments / Additional State Code Information Florida Building Code

232

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

233

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

234

Tennessee | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee Tennessee Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2006 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Tennessee (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2006 IECC Effective Date 07/01/2011 Adoption Date 06/02/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Tennessee DOE Determination Letter, May 31, 2013 Tennessee State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of Tennessee (BECP Report, Sept. 2009)

235

1999 Commercial Buildings Characteristics--Year Constructed  

U.S. Energy Information Administration (EIA) Indexed Site

Year Constructed Year Constructed Year Constructed More than one-third (37 percent) of the floorspace in commercial buildings was constructed since 1980 and more than one-half (55 percent) after 1969 (Figure 1). Less than one-third of floorspace was constructed before 1960. Detailed tables Figure 1. Distribution of Floorspace by Year Constructed, 1999 Figure 1. Distribution of Floorspace by Year Constructed, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Overall, relatively more buildings than floorspace were represented in the older age categories and more floorspace than buildings in the newer categories (see graphical comparison) because older buildings were smaller than more recently constructed buildings (Figure 2). Buildings constructed prior to 1960 were 11,700 square feet in size on average while those constructed after 1959 were 37 percent larger at 16,000 square feet per building.

236

Building Envelope Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Envelope Research Building Envelope Research Building Envelope Research The Emerging Technology team conducts research into technologies and processes related to the building envelope. The goal of these efforts is to help reduce the amount of energy used in the building envelope by 20% compared to 2010 levels. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst in developing new materials, coatings, and systems designed to improve energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building that's under construction. Building foundation insulation systems can help improve energy efficiency, but are affected by variables that can be hard to detect, such moisture.

237

Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions  

SciTech Connect

This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code enacted in Section 1331 of the 2005 Energy Policy Act and noted in Internal Revenue Service Notice 2006-52. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning; and service hot water systems.

Deru, M.

2007-02-01T23:59:59.000Z

238

Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions, Second Edition  

SciTech Connect

This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code enacted in Section 1331 of the 2005 Energy Policy Act and noted in Internal Revenue Service Notice 2006-52. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning; and service hot water systems.

Deru, M.

2007-05-01T23:59:59.000Z

239

Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT  

E-Print Network (OSTI)

performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same...

Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

2012-01-01T23:59:59.000Z

240

Building Libraries  

Science Journals Connector (OSTI)

The package concept was introduced into Modelica to help organize definitions of models, connectors...etc. The idea was to allow for collections of related models to be bundled together. Packages which contain co...

Michael Tiller Ph.D.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

242

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

243

Energy Department Launches Better Buildings Workforce Guidelines Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Workforce Guidelines Better Buildings Workforce Guidelines Project Energy Department Launches Better Buildings Workforce Guidelines Project September 26, 2013 - 2:38pm Addthis The Energy Department today announced the Better Buildings Workforce Guidelines project to improve the quality and consistency of commercial building workforce training and certification programs for five key energy-related jobs: Energy Auditor, Commissioning Professional, Building/Stationary Engineer, Facility Manager, and Energy Manager. These voluntary workforce guidelines will support the Better Buildings Initiative goal of making commercial buildings 20% more energy efficient over the next 10 years, while helping businesses and communities save money by saving energy and creating new clean energy jobs across the country.

244

Buildings without energy bills  

Science Journals Connector (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

245

Academic Buildings Student & Admin.  

E-Print Network (OSTI)

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

246

Asbestos in public and commercial buildings: A literature review and synthesis of current knowledge  

SciTech Connect

The Health Effects Institute-Asbestos Research assembled an expert Panel to review the literature on asbestos in public and commercial buildings, and make recommendations for future research. The Panel concluded that: (1) Asbestos-containing building material (ACBM) in good repair is unlikely to expose general building occupants to fiber concentrations above those found outside such buildings. The added life-time risk of cancer for such occupants in well-maintained buildings appears to be lower than the risks from other pollutants such as radon and environmental tobacco smoke. (2) Janitorial, custodial, maintenance, and renovation workers may disturb or damage ACBM and episodically produce relatively high fiber concentrations; therefore the added life-time cancer risk in such workers may be appreciably higher than the risk to general building occupants. (3) Asbestos removal workers are at the highest risk of potential exposure. Good work practice and respiratory protection are essential to avoid dangerous exposure of such workers. (4) Determining exposure risks and forms of prevention or remediation warranted in a building are site-specific tasks. Uncontrolled disturbance of ACBM should be avoided. In well-maintained buildings, improper removal or improper abatement action can cause persistent increases of fiber levels.

Not Available

1991-09-25T23:59:59.000Z

247

Current Activities in Support of Building Energy Codes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Program buildings.energy.gov Building Technologies Program buildings.energy.gov Current Activities in Support of Building Energy Codes Jeremy Williams Building Technologies Program Energy Efficiency and Renewable Energy U. S. Department of Energy March 2, 2012 2 | Building Technologies Program buildings.energy.gov 2 Purpose Purpose: To provide an update on DOE activities related to the development of proposed code changes and deployment of existing codes: - Goals and direction - Activity updates - Available resources 3 | Building Technologies Program buildings.energy.gov Goals and Direction 3 4 | Building Technologies Program buildings.energy.gov 30% Initiative for Increased Energy Savings * Commercial-Published in 2010 - ANSI/ASHRAE/IESNA Standard 90.1-2010 with savings of

248

Building Technologies Office: Standard Energy Efficiency Data Platform  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Energy Standard Energy Efficiency Data Platform to someone by E-mail Share Building Technologies Office: Standard Energy Efficiency Data Platform on Facebook Tweet about Building Technologies Office: Standard Energy Efficiency Data Platform on Twitter Bookmark Building Technologies Office: Standard Energy Efficiency Data Platform on Google Bookmark Building Technologies Office: Standard Energy Efficiency Data Platform on Delicious Rank Building Technologies Office: Standard Energy Efficiency Data Platform on Digg Find More places to share Building Technologies Office: Standard Energy Efficiency Data Platform on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

249

NREL's Building Component Library for Use with Energy Models  

DOE Data Explorer (OSTI)

The Building Component Library (BCL) is the U.S. Department of Energys comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

250

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network (OSTI)

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: Buildingof comparing three Building Energy Modeling Programs (BEMPs)

Zhu, Dandan

2014-01-01T23:59:59.000Z

251

Building Technologies Research and  

E-Print Network (OSTI)

Building Technologies Research and Integration Center Breaking new ground in energy efficiency #12;Building Technologies Research To enjoy a sustainable energy and environmental future, America must these enormous challenges. Today, through the Building Technologies and Research Integration Center (BTRIC

Oak Ridge National Laboratory

252

Building Performance Simulation  

E-Print Network (OSTI)

low energy buildings, with site EUI of 40 or lowerbuildings in the US (EUI of 90 kBtu/ft). Thisthe bubble represents the EUI. These buildings were

Hong, Tianzhen

2014-01-01T23:59:59.000Z

253

Building a Molecule Building Structures in Moe  

E-Print Network (OSTI)

14 Chapter 3 Building a Molecule #12;15 Building Structures in Moe Dorzolamide Exercise 1 #12;16 Open the Molecule Builder · Open the Molecule Builder panel using MOE | Edit | Build | Molecule, the chiral center will be either R or S, and one of the two will be highlighted in green. The green

Fischer, Wolfgang

254

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

255

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

256

Building Performance Simulation  

E-Print Network (OSTI)

LEEDNCCertifiedBuildings (courtesyNewBuildingInstitute) Figure3MeasuredEnergyUseIntensitiesofBig?BoxRetailsinUSandCanada(

Hong, Tianzhen

2014-01-01T23:59:59.000Z

257

GSA Building Energy Strategy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rapid Building Assessments Green Button 12 Remote Building Analytics Platform First Fuel Dashboard 13 Data Center Ronald Reagan Detail Summary First Fuel Analysis 14...

258

Advanced Technologies and Practices- Building America Top Innovations  

Energy.gov (U.S. Department of Energy (DOE))

Top Innovations in this category encompass research in specific technologies and construction practices that improve the building envelope, HVAC components, ventilation, and health and safety issues.

259

Building America Research Teams: Spotlight on Alliance for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

explore specific technology areas that can radically improve home performance. BARA communication projects include Building America outreach products and activities (see...

260

Building Technologies Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and controls specifications. Equipment and Building Standards: Distribution Transformer Standards will save over 17 billion in electricity bills over 30 years. ...

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar buildings. Overview: The Solar Buildings Program  

SciTech Connect

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

262

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

263

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

264

Step 4. Inspect the Building During and After Construction | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

4. Inspect the Building During and After Construction 4. Inspect the Building During and After Construction A number of website resources offer checklists to help officials organize the many energy-code-related areas to inspect on the construction site. Several examples of different checklists are listed below. When applicable and approved for use, REScheck and COMcheck inspection checklists should be provided as part of the energy code compliance documentation for the building. REScheck/COMcheck checklists. The REScheck and COMcheck software programs generate reports that list the energy-code-related items to be inspected. The lists include mandatory items such as air leakage control, duct insulation and sealing, temperature controls, and lighting requirements, and can be used by officials to assist during on-site

265

Building Green in Greensburg: City Hall Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

266

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

267

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

268

Building Green in Greensburg: Business Incubator Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

269

CBECS Building Types | Open Energy Information  

Open Energy Info (EERE)

CBECS Building Types CBECS Building Types Jump to: navigation, search The list below contains the Building Type classifications, also known as Principal Building Activity, established by the Commercial Buildings Energy Consumption Survey (CBECS) performed by the U.S. Energy Information Administration (EIA)[1]. Education Food Sales Food Service Health Care (Inpatient) Health Care (Outpatient) Lodging Mercantile (Enclosed and Strip Malls) Mercantile (Retail Other Than Mall) Office Other Public Assembly Public Order and Safety Religious Worship Service Vacant Warehouse and Storage References ↑ EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http://en.openei.org/w/index.php?title=CBECS_Building_Types&oldid=270205" What links here Related changes

270

Building Efficiency Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Efficiency Report Building Efficiency Report Building Efficiency Report Buildings use 40% of total energy in the United States - more than either the industrial or transportation sectors. Technical improvements and cost reductions (see Appendix 3) in building materials, components and energy management systems are enabling progress in reducing the nation's energy consumption and consequent greenhouse gas emissions with payback periods as low as 24 months. With responsibility and funding for the nation's largest set of building energy-related research, development and deployment programs, the Department of Energy (DOE) should lead efforts to ensure building energy efficiency is a national priority. One of the most important things DOE can do to reduce the country's energy use and dependence on fossil fuels is to actively lead the national

271

Building Efficiency Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Efficiency Report Building Efficiency Report Building Efficiency Report Buildings use 40% of total energy in the United States - more than either the industrial or transportation sectors. Technical improvements and cost reductions (see Appendix 3) in building materials, components and energy management systems are enabling progress in reducing the nation's energy consumption and consequent greenhouse gas emissions with payback periods as low as 24 months. With responsibility and funding for the nation's largest set of building energy-related research, development and deployment programs, the Department of Energy (DOE) should lead efforts to ensure building energy efficiency is a national priority. One of the most important things DOE can do to reduce the country's energy use and dependence on fossil fuels is to actively lead the national

272

Building Energy Software Tools Directory: Be06  

NLE Websites -- All DOE Office Websites (Extended Search)

Be06 Be06 Be06 logo Calculates the energy demand of buildings in relation to the new energy requirements in the 2006 additions to the Danish Building Regulations 1995 implementing the EU EPBD, Energy Performance of Building Directive. Be06 calculations are performed in accordance with the mandatory calculation procedure described in SBi-direction 213: Energy Demand of Buildings (In Danish: SBi-anvisning 213: Bygningers Energibehov). The software uses the mandatory calculation core also developed by the Danish Building Research Institute, SBi. Be06 calculates the expected energy demand to operate the heating and climate conditioning systems in all types of buildings e.g. houses, block of flats, offices, institutions, schools, shops and workshops. The Be06 software calculates the needed energy supply to a building for room

273

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

274

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

275

Evaluating Residential Buildings for Statewide Compliance | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings for Statewide Compliance Residential Buildings for Statewide Compliance The materials for this course may be used for in-person training courses, and are intended to provide the tools and specific training necessary to evaluate residential compliance with the 2009 International Energy Conservation Code (IECC). The course also provides useful training in general residential field inspection for energy code compliance. The recommended background for taking this course is significant experience and/or certification on the IECC in a plan review or inspection capacity. Presenters: Course materials originally published by the DOE Building Energy Codes Program, July 16, 2010. Course Type: Training Materials Video In-person Downloads: Presentation Slides Presentation Slides Presentation Slides and Windows Media Videos

276

Evaluating Commercial Buildings for Statewide Compliance | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings for Statewide Compliance Commercial Buildings for Statewide Compliance The materials for this course may be used for in-person training courses, and are intended to provide the tools and specific training necessary to evaluate statewide commercial compliance with ASHRAE Standard 90.1. The course also provides useful training for the commercial provisions of the International Energy Conservation Code and general commercial field inspection for energy code compliance. The recommended background for taking this class is significant experience with plan review and/or inspection of commercial energy code provisions. Presenters: Course materials originally published by the DOE Building Energy Codes Program, July 16, 2010. Course Type: Training Materials Video In-person Downloads: Presentation Slides

277

Whole Building Energy Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Simulation Energy Simulation Whole Building Energy Simulation October 16, 2013 - 4:39pm Addthis Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations may be pursued. Whole building energy simulation software adequately assesses the interactions between complex building systems and equally complex schedules and utility rates structures for projects in specific locations throughout the world. Energy models incorporate actual building construction, internal load sources, and associated schedules using annual hourly weather data specific to the project location. These models can be used early in the design process when little information is known and updated, continually

278

Existing Commercial Reference Buildings Constructed In or After 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed In or After Existing Commercial Reference Buildings Constructed In or After 1980 Existing Commercial Reference Buildings Constructed In or After 1980 The files on this page contain commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

279

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

280

BECP News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

BECP News BECP News BECP News December 2012 Introduction The U.S. Department of Energy (DOE) Building Energy Codes Program newsletter (BECP News) encourages the exchange of information among stakeholders in the buildings arena. BECP News targets building professionals, state and local code officials, researchers, contractors, and utilities, as well as national associations and others involved in the design, construction, and commissioning of buildings. The goal of the newsletter is to facilitate the timely development and early adoption of, and compliance with, building energy codes and standards. Subscribe to updates Subscribe to BECP News to receive the latest on building energy code activities, software, and resources, or update your subscription to receive updates on specific topics of interest, including Compliance Tools,

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE Commercial Building Benchmark Models: Preprint  

SciTech Connect

To provide a consistent baseline of comparison and save time conducting such simulations, the U.S. Department of Energy (DOE) has developed a set of standard benchmark building models. This paper will provide an executive summary overview of these benchmark buildings, and how they can save building analysts valuable time. Fully documented and implemented to use with the EnergyPlus energy simulation program, the benchmark models are publicly available and new versions will be created to maintain compatibility with new releases of EnergyPlus. The benchmark buildings will form the basis for research on specific building technologies, energy code development, appliance standards, and measurement of progress toward DOE energy goals. Having a common starting point allows us to better share and compare research results and move forward to make more energy efficient buildings.

Torcelini, P.; Deru, M.; Griffith, B.; Benne, K.; Halverson, M.; Winiarski, D.; Crawley, D. B.

2008-07-01T23:59:59.000Z

282

Small Commercial Building Re-tuning: A Primer  

SciTech Connect

To help building owners and managers address issues related to energy-efficient operation of small buildings, DOE has developed a Small Building Re-tuning training curriculum. This "primer" provides additional background information to understand some of the concepts presented in the Small Building Re-tuning training. The intent is that those who are less familiar with the buidling energy concepts will review this material before taking the building re-tuning training class.

Cort, Katherine A.; Hostick, Donna J.; Underhill, Ronald M.; Fernandez, Nicholas; Katipamula, Srinivas

2013-09-30T23:59:59.000Z

283

Nebraska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Nebraska Last updated on 2013-11-04 Current News Nebraska Legislature adopted the 2009 IECC/ASHRAE 90.1-2007. The code became effective August 27, 2011. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Cities and counties may adopt codes that differ from the Nebraska Energy Code; however, state law requires the adopted code to be equivalent to the Nebraska Energy Code. For existing buildings, only those renovations that will cost more than 50 percent of the replacement cost of the building must comply with the code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Nebraska (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

284

Kentucky | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Kentucky Last updated on 2013-08-02 Current News Kentucky moves forward with the 2009 IECC by reference in their updated 2007 Kentucky Building Code. 2009 IECC is effective 3/6/2011 with mandatory compliance beginning 6/1/2011. Kentucky residential code was also updated to the 2009 IECC. The code is effective 7/1/2012 with an enforcement date of 10/1/2012. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Amendments are contained in the latest update to the 2007 Kentucky Building Code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kentucky (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

285

Wyoming | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The International Conference of Building Officials (ICBO) Uniform Building Code, which is based on the 1989 Model Energy Code (MEC), may be adopted and enforced by local jurisdictions. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Wyoming (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than 2003 IECC Effective Date 08/13/2008 Code Enforcement Voluntary DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Wyoming DOE Determination Letter, May 31, 2013 Current Code None Statewide

286

COMcheck | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance » Software & Web Tools Compliance » Software & Web Tools Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center COMcheck Subscribe to updates To receive updates about compliance tools subscribe to the BECP Mailing List. Commercial Compliance Using COMcheck(tm) The COMcheck product group makes it easy for architects, builders, designers, and contractors to determine whether new commercial or high-rise residential buildings, additions, and alterations meet the requirements of the IECC and ASHRAE Standard 90.1, as well as several state-specific codes. COMcheck also simplifies compliance for building officials, plan checkers, and inspectors by allowing them to quickly determine if a building project

287

Better Buildings Neighborhood Program  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

288

Building Technology MSc Programme  

E-Print Network (OSTI)

of this programme is on the design of innovative and sustainable building components and their integration

Langendoen, Koen

289

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

290

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

291

Green Buildings  

SciTech Connect

This award was split into five tasks, HVAC replacement, lighting retrofitting, daylight harvesting, data center virtualization, and traffic signal retrofitting. The first three tasks were combined into an Energy Performance Contract on seven City facilities. This allowed for the total cost of the project to be offset by guaranteed savings over a 14 year period. The other two projects where done by separate vendors and successfully completed. The combination of these five tasks will result in a significant reduction in our energy consumption city wide, and will also translate to savings for the taxpayer on utility costs. There were also additional financial savings to the taxpayer not related to energy reduction that added value to these projects which will be discussed below.

Ruppert, Benjamin; Elliot, Phillip

2012-08-15T23:59:59.000Z

292

A Model-Based Method For Building Reconstruction Konrad Schindler  

E-Print Network (OSTI)

A Model-Based Method For Building Reconstruction Konrad Schindler Graz University of Technology with predefined shape templates in or- der to automatically recover a CAD-like model of the build- ing surface specifically, the building model delivered by a dig- ital reconstruction system should be a structured surface

Schindler, Konrad

293

Building safeguards infrastructure  

SciTech Connect

Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

Stevens, Rebecca S [Los Alamos National Laboratory; Mcclelland - Kerr, John [NNSA/NA-242

2009-01-01T23:59:59.000Z

294

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

295

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

296

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

297

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

298

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

299

DOE - Better Building  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

300

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building Energy Software Tools Directory: SIP Scheming  

NLE Websites -- All DOE Office Websites (Extended Search)

SIP Scheming SIP Scheming Energy analysis and cost estimating software specifically designed for stressed skin insulating core (SSIC) panel producers; calculates results within a matter of minutes. SIP (Structural Insulated Panel) Scheming also analyzes conventional framing and frame panels, and can be used for residential or commercial building types. Keywords stressed skin insulating core panels Validation/Testing N/A Expertise Required Relatively little technical knowledge required; knowledge of ArchiCad, Excel and DOE-2 necessary to use export features. Users Beta test version available. Audience Manufacturers of stressed skin insulating core panels. Input Drawings input either by scanning or imported from a CAD program, or drawn directly using a basic set of drawing tools; construction of elements such

302

Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades to someone by E-mail Share Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Facebook Tweet about Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Twitter Bookmark Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Google Bookmark Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Delicious Rank Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Digg Find More places to share Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on AddThis.com... Our History Related Federal Programs Why Energy Efficiency Upgrades

303

RELATED LINKS Building the 2009 HGTV  

E-Print Network (OSTI)

to contribute to an energy efficient, cleaner and healthier living environment. "The Pinehills is the perfect wooded lots, walking and nature trails, a swimming pool, three championship-caliber golf courses community for our third annual HGTV Green Home because it allows us to showcase the latest cost efficient

304

Fact Sheet- Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact Sheet - Better Buildings Residential, from U.S. Department of Energy, Better Buildings Neighborhood Program.

305

John Anderson Campus UNIVERSITY BUILDINGS  

E-Print Network (OSTI)

John Anderson Campus UNIVERSITY BUILDINGS 1 McCance Building 2 Collins Building 3 Livingstone Tower 4 Accommodation Office 5 Graham Hills Building 6 Turnbull Building 7 Royal College Building 8 Students' Union 9 Centre for Sport & Recreation 10 St Paul's Building/Chaplaincy 11 Thomas Graham Building

Mottram, Nigel

306

Building America System Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

307

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

308

Impacts of Some Building Design Parameters on Heat Pump Applications  

E-Print Network (OSTI)

. In this study; in order to provide energy conservation and climatic comfort in buildings, an approach which aims to control the energy consumption of heat pumps by controlling decisions related to building design parameters have been developed. For this purpose...

Erdim, B.; Manioglu, G.

2011-01-01T23:59:59.000Z

309

Indoor Air Quality Forms 195 Building: _________________________________________________________ File Number: ________________________________  

E-Print Network (OSTI)

acceptable? Seal when closed? #12;Indoor Air Quality Forms 196 BuildingIndoor Air Quality Forms 195 Building in relation to indoor air quality. Page 1 of 14 Needs Attention Not ApplicableOKComponent Comments Outside Air

310

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

311

Building Green in Greensburg: City Hall Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

312

Building America Webinar: High Performance Building Enclosures...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

used to improve energy performance of building envelopes while dealing with issues like ice damming during exterior "overcoat" insulation retrofits? How can deep energy retrofits...

313

Idaho | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Idaho Last updated on 2013-06-03 Current News As of January 1, 2011, all jurisdictions are required to comply with the 2009 IECC. Commercial Residential Code Change Current Code 2009 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Idaho (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 01/01/2011 Adoption Date 06/08/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Idaho DOE Determination Letter, May 31, 2013 Current Code 2009 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of Idaho (BECP Report, Sept. 2009)

314

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

315

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

316

Building optimization : an integrated approach to the design of tall buildings  

E-Print Network (OSTI)

There has been much research done on building optimization that deal with the issues within specific individual fields, such as architecture, structural engineering, and construction engineering. However, in practical ...

Coleman, Keith LaMar

2007-01-01T23:59:59.000Z

317

Energy management systems for commercial buildings. Final report  

SciTech Connect

Increasing costs of energy and the development of lower cost microelectronics have created a growing market for energy management systems applied to commercial buildings. This report examines the spectrum of EMS available and how they are used in different types of commercial buildings. An informal survey of 197 commercial building owners provided additional information on EMS installed and the energy savings attributed to those systems. Evaluations were performed to identify types of EMS appropriate to specific types of commercial buildings.

Woody, A.W.

1986-02-01T23:59:59.000Z

318

Possible correlation between acoustic and thermal performances of building structures  

Science Journals Connector (OSTI)

Most European standards required high performance values for sound and thermal insulation in building structures according to Directive EEC 89/106. Sound transmission and heat transfer in structures have different physical and analytical approach and specific parameters of performance (i.e. sound transmission loss or thermal transmittance) are not directly correlated each others; many kind of structures have also different behaviour depending on mechanical properties of materials numbers of layers of materials etc. The aim of this work is to analyse possible correlation between sound transmission performances and thermal properties values in order to evaluated common trends related to physical properties of the various building components like for example density or surface mass.

Giovanni Semprini; Alessandro Cocchi; Cosimo Marinosci

2008-01-01T23:59:59.000Z

319

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

320

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

322

Design-Build Project Delivery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design-Build Project Delivery Design-Build Project Delivery Design-Build Project Delivery October 16, 2013 - 4:46pm Addthis Renewable energy must be integrated into each of the design phases. Noting that any agency may have specific processes during the development of a construction project, this section discusses key issues in the following phases of the design-build process: Planning and Programming Request for Qualifications Request for Proposal Construction Contract Design and Build Integrating renewable energy into design-bid-build strategy involves a few different approaches, which are covered in the main building design section of this guide. Planning and Programming The planning and programming phase should look the same regardless of whether the project is design-bid-build or design-build. An early team is

323

U.S. DOE Commercial Building Energy Asset Score  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Building Energy Asset Score Commercial Building Energy Asset Score Quick Start Guide To create a Commercial Building Energy Asset Score (Asset Score) for your building you need to complete the following six (6) steps using the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool). Although you are not required to carry out these steps in a specific order, the following sequence will most likely save you time. Input Basic Building Information * Click the New Building button to begin. * Enter building name, location, gross floor area, and year of construction. * Click the button to continue. Identify Building Use Type(s) * Select all applicable use types. * Choose from a variety of options including office, retail, multi-family, education, and

324

Whole Building Design Guide Courses | Open Energy Information  

Open Energy Info (EERE)

Whole Building Design Guide Courses Whole Building Design Guide Courses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Whole Building Design Guide Courses Agency/Company /Organization: National Institute of Building Sciences Focus Area: Buildings Resource Type: Training materials Website: www.wbdg.org/education/cont_education.php References: Whole Building Design Guide Courses[1] Background Continuing Education "Welcome to the WBDG continuing education system. The WBDG contains a wealth of information and is your gateway to up-to-date information on integrated 'Whole Building' Design Techniques and Technologies. The courses featured offer an introduction to whole building design concepts as well as more specific applications for design objectives, building types and operations and maintenance.

325

Benchmarking Buildings to Prioritize Sites for Emissions Analysis |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benchmarking Buildings to Prioritize Sites for Emissions Analysis Benchmarking Buildings to Prioritize Sites for Emissions Analysis Benchmarking Buildings to Prioritize Sites for Emissions Analysis October 7, 2013 - 10:54am Addthis YOU ARE HERE Step 2 When actual energy use by building type is known, benchmarking the performance of those buildings to industry averages can help establish those with greatest opportunities for GHG reduction. Energy intensity can be used as a basis for benchmarking by building type and can be calculated using actual energy use, representative buildings, or available average estimates from agency energy records. Energy intensity should be compared to industry averages, such as the Commercial Buildings Energy Consumption Survey (CBECS) or an agency specific metered sample by location. When a program has access to metered data or representative building data,

326

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:47am Addthis YOU ARE HERE Step 2 Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type. Ultimately, building efficiency measures need to be evaluated at the building level before implementing them, but facility energy managers can evaluate the relative impact of different GHG reduction approaches using assumptions about the building characteristics and estimates of efficiency

327

Related Links on New Orleans and Hot-Humid Climates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Orleans and Hot-Humid Climates New Orleans and Hot-Humid Climates Related Links on New Orleans and Hot-Humid Climates Below are related links to resources specifically for New Orleans, Louisiana, and other hot-humid climates on building with energy efficiency and renewable energy technologies. Learn more about deployment efforts in New Orleans. Building a Durable and Energy Efficient Home in Post-Katrina New Orleans This report from Building Science examines designing homes with key sustainability concepts, durability, and energy efficiency that can provide insurance to people in the event of a hurricane. Designing and Building Hurricane-Resistant Homes This article from the Consortium for Advanced Residential Buildings details a production builder's efforts to identify better wall systems to use in

328

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

329

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

330

DOE Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

331

FOREST CENTRE STORAGE BUILDING  

E-Print Network (OSTI)

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE BUILDING A&S BUILDING EXTENSIO N P7 P5.1 P5 P2 P3.1 P3.2 P6 P8 P4 P2 P2 P4 P8 P2.4 PARKING MAP GRENFELL

deYoung, Brad

332

Historic Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historic Building Renovations Historic Building Renovations Historic Building Renovations October 16, 2013 - 4:52pm Addthis Renewable Energy Options for Historical Building Renovations Photovoltaics (PV) Solar Water Heating Geothermal Heat Pumps Biomass Heating When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

333

2007 CBECS Large Hospital Building Methodology Report  

Gasoline and Diesel Fuel Update (EIA)

Methodology Report Main Report | Methodology Report Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Data Collection The data in the Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 report and accompanying tables were collected in the 2007 round of the Commercial Buildings Energy Consumption Survey (CBECS). CBECS is a quadrennial survey is conducted by the Energy Information Administration (EIA) to provide basic statistical information about energy consumption and expenditures in United States commercial buildings and information about energy-related characteristics of these buildings. The survey was conducted in two phases, the Building Characteristics Survey and the Energy Supplier Survey. The Building Characteristics Survey collects information about selected

334

Overview of Commercial Buildings, 2003 - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) consumed 36 percent of energy for space heating and 21 percent for lighting (Figure 2) The CBECS is a national-level sample survey conducted quadrennially of buildings greater than 1,000 square feet in size that devote more than 50

335

PNNL EERE Program: Building Technologies Program (Overview)  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory, Energy Efficiency and Renewable Energy Program Laboratory, Energy Efficiency and Renewable Energy Program Home Program Areas Contacts Related Sites Energy Directorate PNNL Home Security & Privacy PNNL Buildings Program Overview PNNL Buildings Portfolio Science Foundation EE & Demand Response High-Performance Sustainable Design Codes and Standards Overcoming Market Barriers Analysis and Planning Key Buildings Projects Contacts Publications & Presentations PNNL Buildings Program Buildings account for about 40 percent of our nation's energy use. That's 72 percent of U.S. electricity and 55 percent of natural gas, resulting in 39 percent of U.S. carbon dioxide emissions and a range of other negative environmental impacts. The buildings sciences team at Pacific Northwest National Laboratory (PNNL) is committed to dramatically improving the

336

Related Links | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Related Links Related Links Related Links Private, public, and nonprofit organizations around the country offer a wide range of courses and other services to help you either improve your current skills or learn new ones. The sites featured here can help you find courses of specific interest as well as other information about training requirements for certain energy jobs. DOE Related Advanced Manufacturing Office: Training Find training sessions in your area and learn how to save energy in your manufacturing plant or commercial building. American Museum of Science & Energy Learn more about the American Museum of Science & Energy (AMSE), a DOE-sponsored museum in Oak Ridge, TN, that provides cultural, educational, and scientific programs and exhibits, as well as summer camps for kids.

337

NREL: Buildings Research - Residential Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

338

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

339

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

340

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Functional Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Functional Specifications Functional Specifications Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) OSCARS Case Study Documentation User Manual FAQ Design Specifications Functional Specifications Notifications Publications Authorization Policy Default Attributes Message Security Clients For Developers Interfaces Links Hardware Requirements DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Functional Specifications OSCARS Reservation Manager - Functional Specifications Year 3 Update (DRAFT)

342

Viscosity, specific (for liquids)  

Science Journals Connector (OSTI)

n. The ratio between the viscosity of a liquid and the viscosity of water at the same temperature. Specific viscosity is sometimes used interchangeably with relative viscosity for liquids.

2007-01-01T23:59:59.000Z

343

Lessons Learned from Continuous Commissioning of a LEED Gold Building in Texas  

E-Print Network (OSTI)

The subject building is a relatively new building with 120,000 square feet located in Texas and was the first LEED Gold building in the area. To earn the title of a green building, the designers of this high performance building included many...

Bynum, J.; Claridge, D. E.

2008-09-22T23:59:59.000Z

344

Building envelope thermal anomaly analysis  

SciTech Connect

A detailed study has been made of building energy thermal anomalies (BETA's) in a large modern office building using computer simulation, on-site inspections, and infrared thermography. The goal was to better understand the heat and moisture flow through these ''bridges,'' develop the beginnings of a classification scheme, and establish techniques for assessing the potential for retrofit or initial design modifications. In terms of presently available analytical techniques, a one-dimensional equivalent of the bridge and its affected area can be created from a steady-state computer simulation. This equivalent, combined with a degree day model, yields good estimates of the bridge behavior in buildings employing heating only. With heating and cooling, the equivalent must be used with an hour-by-hour simulation. A classification scheme based on the one-dimensional equivalent is proposed which should make it possible to create a catalog of basic bridge types that can be used to estimate their effects without requiring a complete hour-by-hour simulation of each building. The classification relates both energy loss and moisture condensation potential to the bridge configuration and the building envelope. The potential for moisture condensation on interior surfaces near a BETA was found to be as significant as the energy loss and this factor needds to be considered in assessing the complete detrimental effects of a bridge. With such a catalog, building designers and analysts would be able to determine and estimate the advantages or disadvantages of modifying the building envelope to reduce the impact of a thermal bridge. 18 refs., 31 figs., 17 tabs.

Melton, B.S.; Mulroney, P.; Scott, T.; Childs, K.W.

1987-12-01T23:59:59.000Z

345

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

346

Building Technologies Office: Subscribe to Building Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

347

Reference Buildings by Building Type: Strip mall | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strip mall Reference Buildings by Building Type: Strip mall In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes...

348

Reference Buildings by Building Type: Large Hotel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hotel Reference Buildings by Building Type: Large Hotel In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the...

349

DOE ZERH Webinar: Going Green and Building Strong: Building FORTIFIED...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Strong: Building FORTIFIED Homes Part II DOE ZERH Webinar: Going Green and Building Strong: Building FORTIFIED Homes Part II Watch the video or view the presentation slides below...

350

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

351

Building Green in Greensburg: Business Incubator Building | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Business Incubator Building Building Green in Greensburg: Business Incubator Building This poster highlights energy efficiency, renewable energy, and sustainable features of the...

352

Apply: Funding Opportunity- Buildings University Innovators and Leaders Development (BUILD)  

Energy.gov (U.S. Department of Energy (DOE))

The Building Technologies Office (BTO)s Emerging Technologies Program has announced the availability of up to $1 million for the Buildings University Innovators and Leaders Development (BUILD)...

353

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

354

Solid-State Lighting: LED Site Lighting in the Commercial Building Sector:  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Lighting in the Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification to someone by E-mail Share Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Facebook Tweet about Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Twitter Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Google Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Delicious

355

Commercial Building Energy Efficiency Education Project  

SciTech Connect

The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

None

2013-01-13T23:59:59.000Z

356

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

357

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

358

Macallen Building Condominiums  

Boston, MA The Macallen Building, a 140-unit condominium building in South Boston, was designed to incorporate green design as a way of marketing a green lifestyle while at the same time increasing revenue from the project.

359

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

360

Lockheed Building 157  

Sunnyvale, CA In 1983, Lockheed Missiles and Space Company, Inc. (now Lockheed Martin) moved 2,700 engineers and support staff from an older office building on the Lockheed campus into the new Building 157.

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Better Buildings Federal Award  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis.

362

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

363

Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

364

Grid-Responsive Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S.-India Joint Center for Building Energy Research and Development (CBERD) conducts energy efficiency research and development with a focus on integrating information technology with building controls and physical systems for commercial/high-rise residential units.

365

An Integrated Approach to Building Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Approach to Building Operation An Integrated Approach to Building Operation Speaker(s): David E. Claridge Date: April 16, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Buildings systems have historically been over-sized to minimize contractor/designer call-backs. It is widely recognized that this over-sizing leads to excessive chiller and boiler cycling with an attendant reduction in efficiency. The same design approach routinely leads to reduced efficiencies throughout the building systems. The same mentality pervades the operation of building systems. This customarily increases utility costs by at least 20%. This presentation will present specific examples of the deleterious effects of the "more is better" approach by examining the impact of too much differential pressure across a control

366

350 City County Building  

Office of Legacy Management (LM)

(. (. - ,- Department of Eilqgy Washington, DC20585 ,. i x \ .The Honorable Wellington E. Webb .' '. ' 350 City County Building / Denver, Colorado 80202 ., ; Dear Mayor Webb: ., ~, Secretary of Energy' Hazel O'Leary has announced's new approach to openness in the Department of Energy,(OOE) and its communications with the public. In support of this initiative, we,are pleased to forward the'enclosed'information related to the former Uhiversity of Denver Research Institute site in your, jurisdiction that performed work for DOE's predecessor,agencies. This' i~nformation'is provided for your.informatibn, use,,and retention.. ; DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP) is responsible for identification of sitesused by DOE's predecessor agencies, determining

367

NREL: Buildings Research - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Below are upcoming events related to buildings research. January 2014 Sustainable NREL Walking Campus Tour January 17, 2014, 9:00 - 10:30 Golden, CO Contact: Sarah Barba 303-275-3023 NREL exemplifies environmental sustainability throughout its operations. Visitors learn about renewable energy and energy efficiency research as well as see for themselves how the campus is demonstrating clean energy technologies, reducing waste, and eliminating atmospheric pollution. The Sustainable NREL Walking Campus Tour is a vigorous, outdoor walking tour, so visitors are urged to wear comfortable walking shoes and to dress for the weather. The tours start at the NREL Education Center and include the Research Support Facility, NREL Parking Garage, and Central Detention Pond.

368

Sustainable Building Contacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Buildings & Campuses Sustainable Building Contacts Sustainable Building Contacts For more information about sustainable buildings and campuses, contact: Sarah Jensen...

369

Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

370

Buildings Performance Database Overview  

Energy.gov (U.S. Department of Energy (DOE))

Buildings Performance Database Overview, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

371

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

372

Buildings Sector Working Group  

Annual Energy Outlook 2012 (EIA)

heating, cooking, lighting, and refrigeration * Hurdle rates - Update using latest Johnson Controls reports regarding commercial investment decisions * ENERGY STAR buildings -...

373

Design Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Design Specifications Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) OSCARS Case Study Documentation User Manual FAQ Design Specifications Functional Specifications Notifications Publications Authorization Policy Default Attributes Message Security Clients For Developers Interfaces Links Hardware Requirements DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Design Specifications OSCARS Reservation Manager - Design Specifications Year 3 Update (DRAFT) David Robertson, Chin Guok

374

300 Area Building Retention Evaluation Mitigation Plan  

SciTech Connect

Evaluate the long-term retention of several facilities associated with the PNNL Capability Replacement Laboratory and other Hanfor mission needs. WCH prepared a mitigation plan for three scenarios with different release dates for specific buildings. The evaluations present a proposed plan for providing utility services to retained facilities in support of a long-term (+20 year) lifespan in addition to temporary services to buildings with specified delayed release dates.

D. J. McBride

2007-07-03T23:59:59.000Z

375

HEEP CENTER Building # 1502  

E-Print Network (OSTI)

1 HEEP CENTER Building # 1502 EMERGENCY EVACUATION PLAN Prepared by: Harry Cralle and Mark Wright a building. Examples of such occasions include: smoke/fire, gas leak, bomb threat. Pre-planning and rehearsal are effective ways to ensure that building occupants recognize the evacuation alarm and know how to respond

Tomberlin, Jeff

376

Digital Planetaria: Building Bridges  

E-Print Network (OSTI)

Digital Planetaria: Building Bridges Building Bridges Between Institutions, Universities Group Goals & Objectives: The goal of the Building Bridges focus group was to create a framework applications and dreaming about their potential in the digital dome environment. #12;L to R, Back to front

Collar, Juan I.

377

Link Building Martin Olsen  

E-Print Network (OSTI)

Link Building Martin Olsen PhD Dissertation Department of Computer Science Aarhus University Denmark #12;#12;Link Building A Dissertation Presented to the Faculty of Science of Aarhus University The Computational Complexity of Link Building Proc. Computing and Combinatorics, 14th Annual International

378

BROOKHAVENNATIONAL LABORATORY Building 510  

E-Print Network (OSTI)

BROOKHAVENNATIONAL LABORATORY Building 510 P.O. Box 5000 Upton, NY 11973-5000 Phone 631 344 in C-AD buildings. Work Planning and Control for Experiments The intent of this agreement is to ensure or modification work on experiments performed by Physics personnel or guests in C-AD buildings. The Collider

Homes, Christopher C.

379

Bioengineering/ Engineering Building,  

E-Print Network (OSTI)

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction Roble Hall 'CO NNO R LN Skilling HEPL South Green Earth Sciences Mitchell Earth Sciences Moore Materials Rsrch. Durand David Packard Elect. Eng. Paul G. Allen Building Godzilla Thornton Center Bambi Roble Gym e

Bogyo, Matthew

380

Bioengineering/ Engineering Building,  

E-Print Network (OSTI)

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction HFD HFD HFD GALVEZST CAPISTRANOW BOWDOIN LN L VIAORTEGA VIAPALOU O 'CO NNO R LN Skilling HEPL South Green Earth Building Godzilla Thornton Center Bambi Roble Gym e Cypress Hall Cedar Hall Cogen Facility Tresidder Union

Bogyo, Matthew

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Economics of Green Building  

E-Print Network (OSTI)

Environment Quality in Green Buildings: A Review," Nationalof Popular Attention to Green Building Notes: Sources:2007 - 2009 panel of green buildings and nearby control

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

382

Federal Buildings Supplemental Survey 1993  

U.S. Energy Information Administration (EIA) Indexed Site

mobile homes and trailers, even if they housed commercial activity; and oil storage tanks. (See Commercial Building and Nonresidential Building.) Building Envelope or Shell...

383

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

made in the energy efficiency of buildings. Better cost dataimproving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are briefly

Wall, L.W.

2009-01-01T23:59:59.000Z

384

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network (OSTI)

of Energy Use Intensity (EUI) predicted with building energyEnergyPlus 2.1 program. The EUI is the annual energy use per2008) provide the predicted EUI values while Benne et al (

Mendell, Mark

2014-01-01T23:59:59.000Z

385

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network (OSTI)

5 III. Current ASHRAE 62.1 Indoor Air Quality Procedure (satisfied with indoor air quality in office buildings inthe U.S. in taking indoor air quality seriously, in the same

Mendell, Mark

2014-01-01T23:59:59.000Z

386

Green Buildings, Environmental Awareness, and Organizational  

E-Print Network (OSTI)

review of the related literature see (Rashid and Zimring, 2008). Although outcomes related to cost, efficiency, and individual benefits and values are important, studies focusing on the potential connections between green buildings and organizational benefits and values are still missing. This is likely to... and materials to the exclusion of social and psychological mechanisms at work in the organization. Further, it is possible to have green buildings occupied by gray organizations that pass up significant benefits offered by these buildings in terms of resource and operational efficiency, and human and organizational...

Rashid, Mahbub; Spreckelmeyer, Kent; Angrisano, Neal J.

2012-01-01T23:59:59.000Z

387

Building Technologies Office: About Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

388

Autotune E+ Building Energy Models  

SciTech Connect

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

389

Archive Reference Buildings by Building Type: Stand-alone retail  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

390

Archive Reference Buildings by Building Type: Strip mall  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

391

Archive Reference Buildings by Building Type: Secondary school  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

392

Archive Reference Buildings by Building Type: Small office  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

393

Archive Reference Buildings by Building Type: Fast food  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

394

Archive Reference Buildings by Building Type: Primary school  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

395

A building life-cycle information system for tracking building performance metrics  

SciTech Connect

Buildings often do not perform as well in practice as expected during pre-design planning, nor as intended at the design stage. While this statement is generally considered to be true, it is difficult to quantify the impacts and long-term economic implications of a building in which performance does not meet expectations. This leads to a building process that is devoid of quantitative feedback that could be used to detect and correct problems both in an individual building and in the building process itself. One key element in this situation is the lack of a standardized method for documenting and communicating information about the intended performance of a building. This paper describes the Building Life-cycle Information System (BLISS); designed to manage a wide range of building related information across the life cycle of a building project. BLISS is based on the Industry Foundation Classes (IFC) developed by the International Alliance for Interoperability. A BLISS extension to th e IFC that adds classes for building performance metrics is described. Metracker, a prototype tool for tracking performance metrics across the building life cycle, is presented.

Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

1999-04-01T23:59:59.000Z

396

Building Technologies Office: Sensor Suitcase for Small Commercial Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Suitcase for Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project to someone by E-mail Share Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Facebook Tweet about Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Twitter Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Google Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Delicious Rank Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Digg

397

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

398

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

399

Residential Building Industry Consulting Services | Open Energy Information  

Open Energy Info (EERE)

Residential Building Industry Consulting Services Residential Building Industry Consulting Services Jump to: navigation, search Name Residential Building Industry Consulting Services Place New York, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Residential Building Industry Consulting Services is a company located in New York, NY. References Retrieved from "http://en.openei.org/w/index.php?title=Residential_Building_Industry_Consulting_Services&oldid=381757" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages

400

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

National Laboratories Supporting Building America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratories Laboratories Supporting Building America National Laboratories Supporting Building America The U.S. Department of Energy's (DOE) national laboratories work very closely with the Building America research teams to achieve program goals. The laboratories offer extensive scientific and technical R&D expertise for building technologies and improved building practices. Following is a brief description of the laboratories involved with Building America. Logo for the Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory's Environmental Energy Technologies Division (EETD) performs analysis, research, and development leading to improved energy technologies and reduction of adverse energy-related environmental impacts. EETD conducts research in advanced energy

402

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

403

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge Photo of the Atlanta skyline on a sunny day, including the gold dome of the state capitol. The City of Atlanta has committed 16 million square feet of public and private space to substantive upgrades as part of the Better Buildings Challenge. Credit: iStockphoto The Better Buildings Challenge is part of the U.S. Department of Energy's (DOE's) Better Buildings Initiative, which aims to make U.S. commercial and industrial buildings at least 20% more efficient during the next decade. To achieve this aggressive target, DOE is working with public and private sector partners that commit to being leaders in energy efficiency. These partners will implement energy savings practices that improve energy efficiency and save money, and will showcase effective strategies and the results of their efforts.

404

Building America FY14 Projects by Building Type  

Energy.gov (U.S. Department of Energy (DOE))

This table lists U.S. Department of Energy Building America FY14 research projects by building type.

405

BEopt(TM) Software for Building Energy Optimization: Features and Capabilities  

SciTech Connect

BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options in a linked options library spreadsheet. BEopt calls the DOE2 and TRNSYS simulation engines and uses a sequential search technique to automate the process of identifying optimal building designs along the path to ZNE. BEopt finds these optimal and near-optimal designs based on discrete building options reflecting realistic construction options. BEopt handles special situations with positive or negative interactions between options in different categories. The BEopt software includes a results browser that allows the user to navigate among different design points and retrieve detailed results regarding energy end-use and option costs in different categories. Multiple cases, based on a selected parameter such as climate, can be included in a BEopt project file for comparative purposes.

Christensen, C.; Anderson, R.; Horowitz, S.; Courtney, A.; Spencer, J.

2006-08-01T23:59:59.000Z

406

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

SciTech Connect

While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

Zhou, Nan; Lin, Jiang

2007-08-01T23:59:59.000Z

407

Lighting in Residential and Commercial Buildings (1993 and 1995 data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Light Type Used > Related Goverment Sites Light Type Used > Related Goverment Sites Links to Related Government Sites Publications list from U.S. Department of Energy's Office of Federal Energy Management Programs (FEMP) U.S. Environmental Protection Agency Green Lights Program Updated FLEX 3.0 Lighting software solution available from U.S. Department of Energy's Office of Federal Energy Management Programs Section 3.4 on Lighting and Section 7.2 on Lighting Control can be obtained at this site U.S. Department of Energy's Office of Federal Energy Management Programs lights basic training will be completed in FY '98 Lighting mailing list for exchange of information on lighting issues Lights in commercial buildings in the 21st Century List of major areas of expertise at Lawrence Berkeley National Laboratory, illustrated with specific projects

408

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

409

Building Data Visualization  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Building Data Visualization contour plot Figure 1: Contour plot showing the various operating stages of occupancy sensors described in the case study. Data visualization for buildings is the display of a rich set of variables and parameters that managers can use to verify the energy savings of energy- efficient technology and identify malfunctions in building equipment or problems with operating strategies. Effective data visualization depends on having graphic presentation formats that reveal the phenomena relevant to the building's performance. A research project at the Center for Building Science is aimed at developing data visualization techniques for improved building management. Buildings with energy management control systems as well as dedicated monitoring equipment in the

410

Health Care Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Health Care Health Care Characteristics by Activity... Health Care Health care buildings are those used as diagnostic and treatment facilities for both inpatient and outpatient care. Doctor's and dentist's offices are considered health care if they use any type of diagnostic medical equipment and office if they do not. Skilled nursing or other residential care buildings are categorized as lodging. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Health Care Buildings... Health care buildings in the South tended to be smaller and were more numerous than those in other regions of the country. Buildings on health care complexes tended to be newer than those not on multibuilding facilities. The median age for buildings on health care complexes was 9.5 years, compared to 29.5 years for health care buildings not on a multibuilding facility.

411

LEDS Capacity Building and Training Inventory | Open Energy Information  

Open Energy Info (EERE)

LEDS Capacity Building and Training Inventory LEDS Capacity Building and Training Inventory Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve LEDS Capacity Building and Training Activities and Resources Upcoming Capacity Building Events CLEAN shares capacity building activity information to encourage technical institutions to better coordinate efforts and avoid duplication of effort. If you are aware of an upcoming LEDS-related training or capacity building event please add it to the calendar below. Add Capacity Building or Training Event Webinars Title Developer Biopower Tool Webinar National Renewable Energy Laboratory United States Department of Energy Centro de Energías Renovables (CER) CESC-Webinar: Building an Innovation and Entrepreneurship Driven Economy: How Policies Can Foster Risk Capital Investment in Renewable Energy Clean Energy Solutions Center

412

1992 Commercial Buildings Characteristics -- Overview/Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Overview Overview Overview Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace By Census Region divider line Executive Summary Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

413

Energy Information Administration (EIA)- About the Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

About the Commercial Buildings Energy Consumption Survey About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, their energy-related building characteristics, and their energy consumption and expenditures. Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential, industrial, or agricultural, so they include building types that might not traditionally be considered "commercial," such as schools, correctional institutions, and buildings used for religious worship. The CBECS was first conducted in 1979; the tenth, and most recent survey, will be fielded starting in April 2013 to provide data for calendar year

414

2008 Building Energy2008 Building Energyg gy Efficiency Standards  

E-Print Network (OSTI)

Buildings p , p g , Luminaire Power, etc. for Nonresidential Buildings 4 #12;What is New for 2008? R d l B ld What is New for 2008? R d l B ldResidential BuildingsResidential Buildings Mandatory Measures2008 Building Energy2008 Building Energyg gy Efficiency Standards g gy Efficiency Standardsfficie

415

Building Technologies Office: Market-Driven Research Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Driven Research Market-Driven Research Solutions to someone by E-mail Share Building Technologies Office: Market-Driven Research Solutions on Facebook Tweet about Building Technologies Office: Market-Driven Research Solutions on Twitter Bookmark Building Technologies Office: Market-Driven Research Solutions on Google Bookmark Building Technologies Office: Market-Driven Research Solutions on Delicious Rank Building Technologies Office: Market-Driven Research Solutions on Digg Find More places to share Building Technologies Office: Market-Driven Research Solutions on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships

416

Building Technologies Office: Field Test Best Practices Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Best Field Test Best Practices Website to someone by E-mail Share Building Technologies Office: Field Test Best Practices Website on Facebook Tweet about Building Technologies Office: Field Test Best Practices Website on Twitter Bookmark Building Technologies Office: Field Test Best Practices Website on Google Bookmark Building Technologies Office: Field Test Best Practices Website on Delicious Rank Building Technologies Office: Field Test Best Practices Website on Digg Find More places to share Building Technologies Office: Field Test Best Practices Website on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

417

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Building Type Definitions Building Type Definitions In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 and 2003 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined

418

Building Technologies Office: Researching Energy Use in Hospitals  

NLE Websites -- All DOE Office Websites (Extended Search)

Researching Energy Use Researching Energy Use in Hospitals to someone by E-mail Share Building Technologies Office: Researching Energy Use in Hospitals on Facebook Tweet about Building Technologies Office: Researching Energy Use in Hospitals on Twitter Bookmark Building Technologies Office: Researching Energy Use in Hospitals on Google Bookmark Building Technologies Office: Researching Energy Use in Hospitals on Delicious Rank Building Technologies Office: Researching Energy Use in Hospitals on Digg Find More places to share Building Technologies Office: Researching Energy Use in Hospitals on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database

419

Property:Building/Boundaries | Open Energy Information  

Open Energy Info (EERE)

Boundaries Boundaries Jump to: navigation, search This is a property of type String. Boundaries Pages using the property "Building/Boundaries" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Several buildings + Sweden Building 05K0002 + Part of a building + Sweden Building 05K0003 + One building + Sweden Building 05K0004 + One building + Sweden Building 05K0005 + One building + Sweden Building 05K0006 + Several buildings + Sweden Building 05K0007 + One building + Sweden Building 05K0008 + One building + Sweden Building 05K0009 + One building + Sweden Building 05K0010 + One building + Sweden Building 05K0011 + One building + Sweden Building 05K0012 + One building + Sweden Building 05K0013 + One building + Sweden Building 05K0014 + One building +

420

Wisconsin | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Wisconsin Wisconsin Last updated on 2013-07-18 Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information SPS Chapter 363 specifically addresses amendments to the 2009 IECC. For example, if there is reference to SPS 363.0503, then the SPS 363 references only those amendments associated with the 2009 IECC (as based on language adopted in SPS 361.05), and 0503 indicates that section 503 of the 2009 IECC is being amended. WI Amendments as addressed by SPS 361.05 Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Wisconsin (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 09/01/2011 Adoption Date 07/01/2011

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Information Handbook: Applications for Energy-Efficient Building Operations  

E-Print Network (OSTI)

relating to the scheduling and control of major buildingImproved scheduling and occupant controls should beLighting controls include scheduling and some photocontrols.

Granderson, Jessica

2013-01-01T23:59:59.000Z

422

Arkansas | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Arkansas Arkansas Last updated on 2013-12-10 Current News ASHRAE 90.1-2007 became the effective commercial code in Arkansas on January 1, 2013. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information Arkansas Supplements and Amendments Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Arkansas Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 01/01/2013 Adoption Date 01/13/2012 Code Enforcement Mandatory DOE Determination ASHRAE Standard 90.1-2007: Yes ASHRAE Standard 90.1-2010: No Energy cost savings for Arkansas resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $100 million annually by 2030.

423

Alabama | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption » Status of State Energy Code Adoption Adoption » Status of State Energy Code Adoption Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Alabama Last updated on 2013-05-31 Current News The Alabama Energy and Residential Codes Board adopted the 2009 International Energy Conservation Code (IECC) for Commercial Buildings and the 2009 International Residential Code (IRC) for Residential Construction. The new codes will become effective on October 1, 2012. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in Alabama (BECP Report, Sept. 2009)

424

Minnesota | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Minnesota Minnesota Last updated on 2013-06-03 Current News The 2009 editions of the International Residential Code (IRC), International Building Code (IBC), and International Fire Code (IFC) will be published soon and the Construction Codes and Licensing Division and the State Fire Marshal Division have been discussing this adoption. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2004 with Amendments Amendments / Additional State Code Information Commercial Energy Code Approved Compliance Tools Compliance forms can be downloaded from ASHRAE State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Minnesota (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than ASHRAE 90.1-2004 Effective Date 06/01/2009

425

Alaska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Alaska Last updated on 2013-12-10 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Alaska (BECP Report, Sept. 2009) Approximate Energy Efficiency Effective Date Code Enforcement DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Energy cost savings for Alaska resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $50 million annually by 2030. Alaska DOE Determination Letter, May 31, 2013

426

Delaware | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Delaware Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Agriculture structures are excluded. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Delaware (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 07/29/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Delaware DOE Determination Letter, May 31, 2013 Delaware State Certification of Commercial and Residential Building Energy Codes

427

Kansas | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas Kansas Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The State has adopted the 2006 IECC as the applicable EE standard for commercial and industrial buildings in Kansas (KSA 66-1227). The same law also states that "the state corporation commission has no authority to adopt or enforce energy efficiency standards for residential, commercial, or industrial structures." Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kansas (BECP Report, Sept. 2009) Effective Date 04/10/2007 Code Enforcement Voluntary DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Kansas DOE Determination Letter, May 31, 2013

428

Washington | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington Washington Last updated on 2013-11-05 Current News The Washington State Building Code Council recently completed deliberations on adoption and amendment of the 2012 codes. This includes adoption of the 2012 IECC with state amendments. The new codes became effective July 1, 2013. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information WA 2012 Nonresidential Codes Approved Compliance Tools Nonresidential Energy Code Compliance Tools Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2010 Effective Date 07/01/2013 Adoption Date 02/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Washington DOE Determination Letter, May 31, 2013 Washington State Certification of Commercial and Residential Building Energy Codes

429

Georgia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Georgia Last updated on 2013-07-18 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use COMcheck Must choose ASHRAE 90.1-2007 as code option. State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Georgia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 01/01/2011 Adoption Date 11/03/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Georgia State Certification of Commercial and Residential Building Codes Extension Request Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use REScheck

430

Commercial Building Asset Rating Program  

Energy.gov (U.S. Department of Energy (DOE))

Slides from a Commercial Building Initiative webinar outlining the Commercial Building Asset Rating Program on August 23, 2011.

431

Saving Energy in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is for the Building Technologies program webinar titled Saving Energy in Multifamily Buildings delivered on July 25, 2011.

432

Measure Guideline: Air Sealing Attics in Multifamily Buildings  

SciTech Connect

This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

Otis, C.; Maxwell, S.

2012-06-01T23:59:59.000Z

433

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

2.1 Residential Sector Energy Consumption 2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 2 focuses on energy use in the U.S. residential buildings sector. Section 2.1 provides data on energy consumption by fuel type and end use, as well as energy consumption intensities for different housing categories. Section 2.2 presents characteristics of average households and changes in the U.S. housing stock over time. Sections 2.3 and 2.4 address energy-related expenditures and residential sector emissions, respectively. Section 2.5 contains statistics on housing construction, existing home sales, and mortgages. Section 2.6 presents data on home improvement spending and trends. Section 2.7 describes the industrialized housing industry, including the top manufacturers of various manufactured home products. Section 2.8 presents information on low-income housing and Federal weatherization programs. The main points from this chapter are summarized below:

434

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

1.1 Buildings Sector Energy Consumption 1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 1 provides an overview of energy use in the U.S. buildings sector, which includes single- and multi-family residences and commercial buildings. Commercial buildings include offices, stores, restaurants, warehouses, other buildings used for commercial purposes, and government buildings. Section 1.1 presents data on primary energy consumption, as well as energy consumption by end use. Section 1.2 focuses on energy and fuel expenditures in U.S. buildings. Section 1.3 provides estimates of construction spending, R&D, and construction industry employment. Section 1.4 covers emissions from energy use in buildings, construction waste, and other environmental impacts. Section 1.5 discusses key measures used throughout the Data Book, such as a quad, primary versus delivered energy, and carbon emissions. Section 1.6 provides estimates of embodied energy for various commercial building assemblies. The main points from this chapter are summarized below:

435

Trends in Commercial Buildings--Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Commercial Home > Trends in Commercial Buildings > Commercial Buildings Energy Consumption Survey Survey Methodology Sampling Error, Standard Errors, and Relative Standard Errors The Commercial Buildings Energy Consumption Survey The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of buildings that would not be considered “commercial” in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Excluded from the sector are the goods-producing industries: manufacturing, agriculture, mining, forestry and fisheries, and construction.

436

New York City - Green Building Requirements for Municipal Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

437

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

438

An overview of building morphological characteristics derived from 3D building databases.  

SciTech Connect

Varying levels of urban canopy parameterizations are frequently employed in atmospheric transport and dispersion codes in order to better account for the urban effect on the meteorology and diffusion. Many of these urban parameterizations need building-related parameters as input. Derivation of these building parameters has often relied on in situ 'measurements', a time-consuming and expensive process. Recently, 3D building databases have become more common for major cities worldwide and provide the hope of a more efficient route to obtaining building statistics. In this paper, we give an overview of computations we have performed for obtaining building morphological characteristics from 3D building databases for several southwestern US cities, including Los Angeles, Salt Lake City, and Phoenix.

Brown, M. J. (Michael J.); Burian, S. J. (Steven J.); Linger, S. P. (Steve P.); Velugubantla, S. P. (Srinivas, P.); Ratti, Carlo

2002-01-01T23:59:59.000Z

439

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More. News DOE Publishes Petition of CSA Group for Classification as a Nationally

440

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Keep Up To Date Read the Better Buildings Network View newsletter. The Network View is an e-newsletter that provides information on the newly launched Better Buildings Residential Network. The Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to build upon the many successes of the Better Buildings Neighborhood Program. Read the latest issue. Through the Better Buildings Neighborhood Program, communities across the country are improving neighborhoods, creating jobs, and increasing access to energy savings in homes and businesses. Following are some of the news-making innovations and results that Better Buildings Neighborhood Program partners are achieving. Latest DOE News and Blog Posts

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

The Energy Index for Commercial Buildings The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results yield national totals for commercial buildings. For more information on CBECS, visit EIA's website. Location Census Division View Map New England West North Central West South Central Middle Atlantic South Atlantic Mountain East North Central East South Central Pacific

442

Building Science - Ventilation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

443

1999 Commercial Buildings Characteristics--Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Principal Building Activities Principal Building Activities Principal Building Activities Three of the four activities that dominated commercial floorspace-office, warehouse and storage, and mercantile-dominated the distribution of buildings (Figure 1). Each of these three activity categories included more than 600,000 buildings, while no other building activity had more than a half-million buildings and only service buildings exceeded 350,000 buildings. Detailed tables Figure 1. Distribution of Buildings by Principal Building Activity, 1999 Figure 1. Distribution of Buildings by Principal Building Activity, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey

444

Building Technologies Office: Building-Level Energy Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

445

Commercial Building Partnership  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

446

Commercial Building Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

447

Midwest Building Energy Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

448

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South- and west-facing windows allow more South- and west-facing windows allow more natural light into the building and reduce electricity use * Extensive awnings and overhangs control the light and heat entering the building during the day to reduce cooling loads * Rooftop light monitors in the garden area provide controllable natural light from above to save on electricity consumption * Insulating concrete form block construction with an R-22 insulation value helps control the temperature of the building and maximize

449

The Lovejoy Building  

Portland, OR Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

450

Building South Weyburn Avenue  

E-Print Network (OSTI)

36 P32 PCHS P9 P1 P8 P6 P2 P3 P5 17 P4 P7 PRO 11 15 10 Kinross Building Kinross Building South Road Charles E. Young Drive North R oyce D rive CharlesE.YoungDriveNorth Manning Avenue Manning Avenue/Engineering and Mathematical Sciences 8270 Boelter Hall SEL/Geology-Geophysics 4697 Geology Building Music Library 1102

Williams, Gary A.

451

Midwest Building Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

452

NREL: Buildings Research - Commercial Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings Research Staff Commercial Buildings Research Staff Members of the Commercial Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as computer science, physics, and chemistry. Brian Ball Kyle Benne Eric Bonnema Larry Brackney Alberta Carpenter Michael Deru Ian Doebber Kristin Field Katherine Fleming David Goldwasser Luigi Gentile Polese Brent Griffith Rob Guglielmetti Elaine Hale Bob Hendron Lesley Herrmann Adam Hirsch Eric Kozubal Feitau Kung Rois Langner Matt Leach Nicholas Long Daniel Macumber James Page Andrew Parker Shanti Pless Jennifer Scheib Marjorie Schott Michael Sheppy Greg Stark Justin Stein Daniel Studer Alex Swindler Paul Torcellini Evan Weaver Photo of Brian Ball Brian Ball, Ph.D., Senior Engineer brian.ball@nrel.gov

453

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

454

Quintessence Model Building  

E-Print Network (OSTI)

A short review of some of the aspects of quintessence model building is presented. We emphasize the role of tracking models and their possible supersymmetric origin.

Ph. Brax; J. Martin; A. Riazuelo

2001-09-27T23:59:59.000Z

455

What is Building America?  

SciTech Connect

DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

None

2013-06-20T23:59:59.000Z

456

Whole Building Energy Simulation  

Energy.gov (U.S. Department of Energy (DOE))

Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

457

Buildings Success Stories  

Energy Savers (EERE)

1 Buildings Success Stories en Zero Energy Ready Home Program: Race to Zero Student Design Competition http:energy.goveeresuccess-storiesarticleszero-energy-ready-home-progra...

458

Building bridges for fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-bridges-for-fish Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

459

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Partnerships Market Partnerships This photo shows two men silhouetted against a sky shaking hands, with the frame of a building under construction in the background. The U.S. Department of Energy (DOE) offers partnership opportunities, educational curricula, meetings, and webinars that help industry professionals bring research results to the market. DOE Challenge Home Through the DOE Challenge Home, the Building Technologies Office offers recognition to leading edge builders meeting extraordinary levels of excellence. Builders taking the challenge gain competitive advantage in the marketplace by providing their customers with unparalleled energy savings, quality, comfort, health, durability, and much more. Learn more about the DOE Challenge Home. ENERGY STAR for Homes Version 3

460

Better Indoor Climate With Less Energy: European Energy Performance of Building Directive (EPBD)  

E-Print Network (OSTI)

The European Commission's Action Plan on Energy Efficiency (2000) indicated the need for specific measures in the building sector. In response, the European Commission (EC) published the proposed Directive on the Energy Performance of Buildings...

Magyar, Z.; Leitner, A.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Cooling Strategies Based on Indicators of Thermal Storage in Commercial Building Mass  

E-Print Network (OSTI)

specific instance of this phenomenon, in which thermal storage by building mass over weekends exacerbates Monday cooling energy requirements. The study relies on computer simulations of energy use for a large, office building prototype in El Paso, TX using...

Eto, J. H.

1985-01-01T23:59:59.000Z

462

Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings  

SciTech Connect

2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the individual building values into single metrics is not statistically valid given the small number of buildings, but it has been done to provide a cursory view of this portfolio of sustainably designed buildings. For all metrics except recycling cost per rentable square foot and CBE survey response rate, the averaged building performance was better than the baseline for the GSA buildings in this study.

Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

2010-06-01T23:59:59.000Z

463

Toolkit Definitions | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Toolkit Definitions The following are definitions for common terms used within the adoption, compliance, and enforcement toolkits. Building code refers to a law or regulation used by state or local governments that establishes specifications for the design and construction of residential or commercial buildings. Building codes help ensure that new and existing residential and commercial structures meet minimum health, safety, and performance standards. In addition, building codes offer a baseline to which structures can be compared. Code adoption refers to the vehicle that establishes code requirements and their administration. Adoption can be mandatory, voluntary, or a combination of the two. The means of adoption vary with respect to the

464

Building Energy Software Tools Directory: Analysis Platform  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Platform Analysis Platform Technical and economic performance estimation for building heating, cooling, and water heating equipment, including power generating options such as photovoltaics, fuel cells, and cogeneration. Based on representative loads in residential and commercial sectors. Focus on HVAC, aggregated electric, and integrated systems. Keywords heating, cooling, and SWH equipment, commercial buildings Validation/Testing N/A Expertise Required Moderate. Users N/A Audience Building end-use analysts, engineers, policy analysts. Input Building loads (selected from library, electric and fossil fuel rates, weather parameters, type of equipment, equipment operating parameters, and operating schedules. Allows detailed specification of equipment behavior, or use of default data. Data options correspond to selectable skills

465

1999 CBECS Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey, or CBECS, covers a wide variety of building types—office buildings, shopping malls, hospitals, churches, and fire stations, to name just a few. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial. For an overview of definitions and examples of the CBECS building types, see Description of Building Types. Compare Activities by... Number of Buildings Building size Employees Building Age Energy Conservation Number of Computers Electricity Generation Capability

466

Building Technologies Office: Building America Research for the American  

NLE Websites -- All DOE Office Websites (Extended Search)

for the American Home to someone by E-mail for the American Home to someone by E-mail Share Building Technologies Office: Building America Research for the American Home on Facebook Tweet about Building Technologies Office: Building America Research for the American Home on Twitter Bookmark Building Technologies Office: Building America Research for the American Home on Google Bookmark Building Technologies Office: Building America Research for the American Home on Delicious Rank Building Technologies Office: Building America Research for the American Home on Digg Find More places to share Building Technologies Office: Building America Research for the American Home on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools

467

A Look at Principal Building Activities in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial Buildings Home> Special Topics > 1995 Principal Home > Commercial Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public Assembly Public Order and Safety Warehouse and Storage Vacant Other Summary Comparison Table (All Activities) More information on the: Commercial Buildings Energy Consumption Survey A Look at ... Principal Building Activities in the Commercial Buildings Energy Consumption Survey (CBECS) When you look at a city skyline, most of the buildings you see are commercial buildings. In the CBECS, commercial buildings include office buildings, shopping malls, hospitals, churches, and many other types of buildings. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial.

468

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Sustainability A B E G K L S U Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. BEES environmental performance, green buildings, life cycle assessment, life cycle costing, sustainable development Free software. Software has been updated. Building Greenhouse Rating operational energy, greenhouse performance, national benchmark Free software. Building Performance Compass Commercial Buildings, Multi-family Residence, Benchmarking, Energy Tracking, Improvement Tracking, Weather Normalization BuildingAdvice Whole building analysis, energy simulation, renewable energy, retrofit analysis, sustainability/green buildings Software has been updated. ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated.

469

West Virginia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia West Virginia Last updated on 2013-08-02 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of West Virginia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 09/01/2013 Adoption Date 07/18/2012 Code Enforcement Mandatory DOE Determination Standard 90.1-2007: Yes Standard 90.1-2010: No West Virginia DOE Determination Letter, May 31, 2013 West Virginia State Certification of Commercial and Residential Building Energy Codes Current Code 2009 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of West Virginia (BECP Report, Sept. 2009)

470

Building Design Advisor: An Integrated Decision-Making Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Design Advisor: An Integrated Decision-Making Environment Building Design Advisor: An Integrated Decision-Making Environment Speaker(s): Vineeta Pal Date: July 26, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney To make informed decisions about the design, construction and operation of a building, it is necessary to predict and evaluate the impact of these decisions on the performance of the building. Each of these decisions impacts the performance of the building in a number of different and inter-related ways. Therefore, a computational environment that seeks to support this decision-making process needs to enable the prediction and evaluation of different aspects of building performance. Several stand-alone computer tools are currently available, each of which addresses a particular aspect of the building performance. The Building Design

471

Development of an Object-Oriented Building Physics Library and  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of an Object-Oriented Building Physics Library and Development of an Object-Oriented Building Physics Library and Investigation and Optimization of Hygrothermal and Hygienic Comfort in Rooms Speaker(s): Thierry Nouidui Date: October 14, 2010 - 12:00pm Location: 90-3122 The development of ventilation strategies for moisture problems, the reduction of the heating and cooling demands, the guarantee of hygrothermal and hygienic comfort in building constructions as well as the performance and the durability of building components are questions which are related to the strong interactions between the climate conditions, the building use and the building envelope. These questions can be answered with the help of efficient building simulation tools before building construction or retrofit. Until now, models which used the generic concepts of

472

MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS  

E-Print Network (OSTI)

) Common Use Areas All floored areas in the building for circulation and standard facilities provided and the like. These are extracts of NWPC standard method of measurement of building areas with an addition fromSection S ANNEXURE 4 MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS 1. GROSS BUILDING

Wang, Yan

473

Trottier BuildingTrottier Building Fire SafetyFire Safety  

E-Print Network (OSTI)

building 1.1. Fire SafetyFire Safety 2.2. Fire Protection equipmentFire Protection equipment 3 OfficersFire Prevention Officers #12;Trottier BuildingTrottier Building Fire ProtectionFire Protection#12;Trottier BuildingTrottier Building Fire SafetyFire Safety in Trottier buildingin Trottier

Pientka, Brigitte

474

Reference Buildings by Building Type: Supermarket  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

475

Reference Buildings by Building Type: Warehouse  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

476

Reference Buildings by Building Type: Midrise Apartment  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

477

Reference Buildings by Building Type: Primary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

478

Reference Buildings by Building Type: Small office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

479

Reference Buildings by Building Type: Large office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

480

Reference Buildings by Building Type: Small Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

Note: This page contains sample records for the topic "relating specific building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Reference Buildings by Building Type: Secondary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

482

Reference Buildings by Building Type: Large Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

483

Reference Buildings by Building Type: Strip mall  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

484

Reference Buildings by Building Type: Hospital  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

485

Reference Buildings by Building Type: Medium office  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

486

Technology Enablers for Next-Generation Economic Building Monitoring Systems  

E-Print Network (OSTI)

specific context for analysis. Primary duties include aggregating building data, managing measurement devices (loggers), and analyzing data for quality, diagnostics, and savings. Modern EMCS may encompass all of the subsystems. Simple monitoring systems... Control data to the logger Master Building Server Aggregate building data, manage measurement devices (loggers), analyze data for quality, savings, and unknowns Control network of local servers and loggers Large computer system with RDBMS and online...

Sweeney, J., Jr.; Culp, C.

2001-01-01T23:59:59.000Z

487

RESEARCH BUILDING AT NORTHWESTERN  

E-Print Network (OSTI)

-intensive medical schools. Perkins+Will has designed a building that will be superbly functional and have great selected the Chicago architectural firm of Perkins+Will to design the new Biomedical Research Building and advances sustainable practices with green technology and design features that support environmental

Engman, David M.

488

Tell: Building a consistent,  

E-Print Network (OSTI)

, Joseph M. Hellerstein, William R. Marczak UC Berkeley November 19, 2010 #12;Show and Tell: BuildingShow and Tell: Building a consistent, replicated shopping cart in Bloom Peter Alvaro, Neil Conway, Joseph M. Hellerstein, William R. Marczak Background The CALM Conjecture Introducing Bloom Writing

California at Irvine, University of

489

The Research Building Blocks  

E-Print Network (OSTI)

The Research Building Blocks For Teaching Children to Read Third Edition Put Reading First Kindergarten Through Grade 3 Third Edition #12;#12;The Research Building Blocks for Teaching Children to Read Centers Program, PR/Award Number R305R70004, as administered by the Office of Educational Research

Rau, Don C.

490

CONTACT INFO BUILDING SHELTER  

E-Print Network (OSTI)

CONTACT INFO SIGNALS BUILDING SHELTER THE DISABLED B.E.R.T. TEAM B.E.R.T.* EMERGENCY RESPONSE GUIDE, SIUC*Building Emergency Response Team Siren* Long Blast: Tornado High/Low: Any Other Emergency Radio needed. 2. Find two or three B.E.R.T. "buddies" who are willing to help you in the event of an emergency

King, David G.

491

Electric Services in Buildings  

Science Journals Connector (OSTI)

... Institution of Electrical Engineers on October 22. In the early days, electrical installations in buildings were for lighting and bells. Wood casing was used, and, so far as ... equipment were placed anywhere where they would be out of sight. Now new and larger buildings are being erected all over the country, and electrical contractors are having difficulty in ...

1936-10-31T23:59:59.000Z

492

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled Recommendations for the Computation of Heat Requirements for Buildings (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

493

Technical College Buildings  

Science Journals Connector (OSTI)

... should have such a paucity of literature dealing with material needs in the matter of buildings and equipment necessary for its field of activity. Books dealing with laboratories can be ... is therefore to be specially welcomed, particularly at the present time when the demands for buildings for technical education are so marked (London: Association of Technical Institutions and the Association ...

1935-08-10T23:59:59.000Z

494

New Buildings at Rothamsted  

Science Journals Connector (OSTI)

... June 21 was made the occasion of the official opening of a new block of buildings at the farm and the inauguration of an extensive electrical installation in the farm ... at the farm and the inauguration of an extensive electrical installation in the farm buildings. The Right Hon. Sir John Gilmour, Minister of Agriculture, declared the ...

1932-07-02T23:59:59.000Z

495

Farm Buildings in Britain  

Science Journals Connector (OSTI)

... the Government does not think that a case has been established for a Government farm buildings research centre, but the Agricultural Research Council is undertaking a survey of farm ... research centre, but the Agricultural Research Council is undertaking a survey of farm buildings in Great Britain and is issuing a bibliography of research publications on the subject. ...

1961-07-29T23:59:59.000Z

496

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... describes three vibrators at present in use, together with the methods of testing. In buildings, the vibrator is securely braced between two columns. A 4 in. x 4 ... . Resulting vibrations in structures or in the ground are measured by portable seismographs. For buildings a magnification of about 200 may be used, but for dams or on the ...

1966-06-11T23:59:59.000Z

497

Earthquake-proof Buildings  

Science Journals Connector (OSTI)

... more, the recent Quetta earthquake has emphasised the importance of erecting none but earthquake-proof buildings in a district subject to destructive shocks. The few houses in Quetta that could ... flanks of hills composed of hard rocks. Areas in which brickwork was seriously cracked and buildings occasionally fell, lay on the flanks of the hills facing the Pacific and in ...

Charles Davison

1936-01-11T23:59:59.000Z

498

University of London Buildings  

Science Journals Connector (OSTI)

... to the provision of an open space on part of the site of the new buildings of the University of London at Bloomsbury. He informs us that since his election ... by Mr. Humberstone that this undertaking was not carried out by the layout of the buildings. Representations were therefore made, with the result that a new design and layout have ...

1935-05-11T23:59:59.000Z

499

Electrical Equipment of Buildings  

Science Journals Connector (OSTI)

... eleventh) edition of the regulations of the Institution of Electrical Engineers for the wiring of buildings was published in June (London: Spon. Cloth 1s. 6d. net; paper cover ... of electrical energy in and about all types of dwelling houses, business premises, public buildings and factories, whether tho electric supply is derived from an external source or from ...

1939-10-14T23:59:59.000Z

500

Concrete Steel Buildings  

Science Journals Connector (OSTI)

... and engineers who consult this book will have little trouble in finding full descriptions of buildings similar to any they may be called upon to design. Examples of transit sheds ... to design. Examples of transit sheds for docks, railway goods stations, warehouses, factory buildings, business premises, villas, flour mills, hotels, theatres, &c., are all ...

T. H. B.

1907-09-19T23:59:59.000Z