Powered by Deep Web Technologies
Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Negative kinetic energy term of general relativity and its removing  

E-Print Network [OSTI]

We first present a new Lagrangian of general relativity, which can be divided into kinetic energy term and potential energy term. Taking advantage of vierbein formalism, we reduce the kinetic energy term to a sum of five positive terms and one negative term. Some gauge conditions removing the negative kinetic energy term are discussed. Finally, we present a Lagrangian that only include positive kinetic energy terms. To remove the negative kinetic energy term leads to a new field equation of general relativity in which there are at least five equations of constraint and at most five dynamical equations, this characteristic is different from the normal Einstein field equation in which there are four equations of constraint and six dynamical equations.

T. Mei

2009-03-30T23:59:59.000Z

2

An action with positive kinetic energy term for general relativity  

E-Print Network [OSTI]

At first, we state some results in arXiv: 0707.2639, and then, using a positive kinetic energy coordinate condition given by arXiv: 0707.2639, we present an action with positive kinetic energy term for general relativity. Based on this action, the corresponding theory of canonical quantization is discussed.

T. Mei

2007-11-02T23:59:59.000Z

3

Glossary of Energy-Related Terms | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermal TechnologiesTransformationThe

4

Radiation Related Terms Basic Terms  

E-Print Network [OSTI]

Radiation Related Terms Basic Terms Radiation Radiation is energy in transit in the form of high not carry enough energy to separate molecules or remove electrons from atoms. Ionizing radiation Ionizing radiation is radiation with enough energy so that during an interaction with an atom, it can remove tightly

Vallino, Joseph J.

5

Cost of presumptive source term Remedial Actions Laboratory for energy-related health research, University of California, Davis  

SciTech Connect (OSTI)

A Remedial Investigation/Feasibility Study (RI/FS) is in progress at the Laboratory for Energy Related Health Research (LEHR) at the University of California, Davis. The purpose of the RI/FS is to gather sufficient information to support an informed risk management decision regarding the most appropriate remedial actions for impacted areas of the facility. In an effort to expedite remediation of the LEHR facility, the remedial project managers requested a more detailed evaluation of a selected set of remedial actions. In particular, they requested information on both characterization and remedial action costs. The US Department of Energy -- Oakland Office requested the assistance of the Pacific Northwest National Laboratory to prepare order-of-magnitude cost estimates for presumptive remedial actions being considered for the five source term operable units. The cost estimates presented in this report include characterization costs, capital costs, and annual operation and maintenance (O&M) costs. These cost estimates are intended to aid planning and direction of future environmental remediation efforts.

Last, G.V.; Bagaasen, L.M.; Josephson, G.B.; Lanigan, D.C.; Liikala, T.L.; Newcomer, D.R.; Pearson, A.W.; Teel, S.S.

1995-12-01T23:59:59.000Z

6

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

Chart Gallery for April 2015 Short-Term Energy Outlook U.S. Energy Information Administration Independent Statistics & Analysis 0 20 40 60 80 100 120 140 160 180 200 220 Jan 2014...

7

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

day Forecast -1.0 2012 2013 2014 OPEC countries North America Russia and Caspian Sea Latin America North Sea Other Non-OPEC Source: Short-Term Energy Outlook, November 2013 -1 0...

8

Short-Term Energy Outlook Supplement: 2013 Outlook for Gulf of Mexico Hurricane-Related Production Outages  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule ReleaseEconomicMarket Prices3

9

Short-term energy outlook quarterly projections. First quarter 1994  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short- term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets.

Not Available

1994-02-07T23:59:59.000Z

10

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1 Short-Term Energy33

11

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1 Short-Term

12

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1 Short-Term(STEO)

13

Renewable Energy Specifications, Testing and Certification Terms...  

Open Energy Info (EERE)

Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Specifications, Testing and Certification Terms of Reference Agency...

14

Climate-development-energy policy related seminars  

E-Print Network [OSTI]

Paula Kivimaa (Finnish Environment Institute) From energy to climate policy in Finland Energy & climate Energy & Climate Tue 3rd Dec 18.00- 19.30 Large Jubilee Jeremy Leggett (SolarCentury) The EnergyClimate-development-energy policy related seminars Autumn term 2013 Date Time Location Speaker

Sussex, University of

15

Short-term energy outlook. Quarterly projections, Third quarter 1994  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202). The feature article for this issue is Demand, Supply and Price Outlook for Reformulated Gasoline, 1995.

Not Available

1994-08-02T23:59:59.000Z

16

Uniform Methods Project Related Links | Department of Energy  

Energy Savers [EERE]

of energy efficiency programs. Glossaries of EM&V Terms Federal EM&V Resources International Resources Related Standards Glossaries of EM&V Terms The following glossaries...

17

Short-Term Energy Outlook September 2013  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 1 September 2013 Short-Term Energy Outlook (STEO) Highlights Monthly average crude oil prices increased for the fourth consecutive month in August 2013, as...

18

Loan Terms | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.1310 DOEFunds WebinarsTerms

19

Short-term energy outlook. Quarterly projections, Third quarter 1995  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. The forecast period for this issue of the Outlook extends from the third quarter of 1995 through the fourth quarter of 1996. Values for the second quarter of 1995, however, are preliminary EIA estimates.

NONE

1995-08-02T23:59:59.000Z

20

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1(STEO) Highlights

22

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1(STEO) Highlights 1

23

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1(STEO) Highlights

24

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1(STEO)

25

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1(STEO)(STEO)

26

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1(STEO)(STEO)June

27

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1(STEO)(STEO)June

28

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3

29

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1 October 2014

30

Term Appointments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlow Room AirNEPA ReviewDepartment

31

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328Administration (EIA)propanenatural

32

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328Administration (EIA)propanenatural

33

Glossary of Terms | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(6) implementing mass commuting and related facilities that reduce energy consumption and pollution; (7) designingrunning demonstration projects designed to promote the...

34

Nevada Department of Transportation - Terms and Conditions Relating...  

Open Energy Info (EERE)

Transportation - Terms and Conditions Relating to Highway Occupancy Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Department of...

35

Glossary of Terms | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary of Terms Glossary of Terms TERM DEFINITION

36

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

37

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

38

Short-term energy outlook: Quarterly projections. Second quarter 1995  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the second quarter of 1995 through the fourth quarter of 1996. Values for the first quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the second quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

NONE

1995-05-02T23:59:59.000Z

39

Mass Energy Relation of the Nonlinear Spinor  

E-Print Network [OSTI]

The nonlinear spinor fields coupled with the interactive potentials are important in the theory of elementary particles. In this paper, we establish the relationship between field theory and corresponding classical mechanics, and derive the local Lorentz transformations for the classical parameters. The classical mass of a particle is clearly defined, and the energy-speed relations for each potential term are strictly derived. The analysis in this paper shows that the different kind of potential results in different energy-speed relation, and the mass-energy relation $E=mc^2$ only exactly holds for the linear fields. The energy-speed relations can be used as fingerprints to identify the interactive potentials of a particle via elaborated experiments.

Ying-Qiu Gu

2007-01-04T23:59:59.000Z

40

Short-term energy outlook, January 1999  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares the Short-Term Energy Outlook (energy supply, demand, and price projections) monthly. The forecast period for this issue of the Outlook extends from January 1999 through December 2000. Data values for the fourth quarter 1998, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the January 1999 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 28 figs., 19 tabs.

NONE

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Short-term energy outlook quarterly projections. Third quarter 1997  

SciTech Connect (OSTI)

This document presents the 1997 third quarter short term energy projections. Information is presented for fossil fuels and renewable energy.

NONE

1997-07-01T23:59:59.000Z

42

On the mass formula and Wigner and curvature energy terms  

E-Print Network [OSTI]

The efficiency of different mass formulas derived from the liquid drop model including or not the curvature energy, the Wigner term and different powers of the relative neutron excess $I$ has been determined by a least square fitting procedure to the experimental atomic masses assuming a constant R$_{0,charge}$/A$^{1/3}$ ratio. The Wigner term and the curvature energy can be used independently to improve the accuracy of the mass formula. The different fits lead to a surface energy coefficient of around 17-18 MeV, a relative sharp charge radius r$_0$ of 1.22-1.23 fm and a proton form-factor correction to the Coulomb energy of around 0.9 MeV.

G. Royer

2007-10-12T23:59:59.000Z

43

Short-term energy outlook: Quarterly projections, Third quarter 1992  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The principal users of the Outlook are managers and energy analysts in private industry and government. The forecast period for this issue of the Outlook extends from the third quarter of 1992 through the fourth quarter of 1993. Values for the second quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

Not Available

1992-08-01T23:59:59.000Z

44

Short Term Energy Outlook, February 2003  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1 Short-Term Energy

45

Short Term Energy Outlook, January 2003  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1 Short-Term Energy3

46

Short Term Energy Outlook, March 2003  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San3 1 Short-Term Energy33

47

Short-term energy outlook, July 1998  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares The Short-Term Energy Outlook (energy supply, demand, and price projections) monthly for distribution on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. In addition, printed versions of the report are available to subscribers in January, April, July and October. The forecast period for this issue of the Outlook extends from July 1998 through December 1999. Values for second quarter of 1998 data, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the July 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. 28 figs., 19 tabs.

NONE

1998-07-01T23:59:59.000Z

48

Short-term energy outlook, Quarterly projections. Third quarter 1993  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the third quarter of 1993 through the fourth quarter of 1994. Values for the second quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

NONE

1993-08-04T23:59:59.000Z

49

Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

Not Available

1993-11-05T23:59:59.000Z

50

Short-term energy outlook quarterly projections: First quarter 1993  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.). The forecast period for this issue of the Outlook extends from the first quarter of 1993 through the fourth quarter of 1994. Values for the fourth quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

Not Available

1993-02-03T23:59:59.000Z

51

Energy-Related Carbon Emissions in Manufacturing  

Reports and Publications (EIA)

Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

2000-01-01T23:59:59.000Z

52

Short-Term Energy Outlook- May 2003  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34Summer3 1 Short-Term

53

Property:Incentive/Terms | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to: navigation,PVYears Jump to:TechDsc Jump to:Terms

54

Sample Residential Program Term Sheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sample Residential Program Term Sheet Sample Residential Program Term Sheet A sample for defining and elaborating on the specifics of a clean energy loan program. Sample...

55

Thermodynamic laws beyond free energy relations  

E-Print Network [OSTI]

Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state we arrive at an additional, independent set of thermodynamic laws, that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilard engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and entanglement theory.

Matteo Lostaglio; David Jennings; Terry Rudolph

2014-12-11T23:59:59.000Z

56

Short-term energy outlook, April 1999  

SciTech Connect (OSTI)

The forecast period for this issue of the Outlook extends from April 1999 through December 2000. Data values for the first quarter 1999, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the April 1999 version of the Short-Term Integrated forecasting system (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 25 figs., 19 tabs.

NONE

1999-04-01T23:59:59.000Z

57

Energy Exchange Terms and Conditions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y.EnergyDepartment ofSchedule EnergyTerms

58

Entanglement entropy from surface terms in general relativity  

E-Print Network [OSTI]

Entanglement entropy in local quantum field theories is typically ultraviolet divergent due to short distance effects in the neighbourhood of the entangling region. In the context of gauge/gravity duality, we show that surface terms in general relativity are able to capture this entanglement entropy. In particular, we demonstrate that for 1+1 dimensional CFTs at finite temperature whose gravity dual is the BTZ black hole, the Gibbons-Hawking-York term precisely reproduces the entanglement entropy which can be computed independently in the field theory.

Arpan Bhattacharyya; Aninda Sinha

2013-09-10T23:59:59.000Z

59

Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit  

SciTech Connect (OSTI)

Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ? 50% compared to pre-retrofit, and the short-term testing supports this estimate.

Lyons, J.

2013-01-01T23:59:59.000Z

60

Short-term energy outlook annual supplement, 1993  

SciTech Connect (OSTI)

The Short-Term Energy Outlook Annual Supplement (supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

NONE

1993-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Short-term energy outlook, annual supplement 1994  

SciTech Connect (OSTI)

The Short-Term Energy Outlook Annual Supplement (Supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

Not Available

1994-08-01T23:59:59.000Z

62

Glossary of CERCLA, RCRA and TSCA related terms and acronyms. Environmental Guidance  

SciTech Connect (OSTI)

This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federal rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993.

Not Available

1993-10-01T23:59:59.000Z

63

Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement  

SciTech Connect (OSTI)

This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

1996-12-01T23:59:59.000Z

64

Original article Energy balance storage terms and big-leaf  

E-Print Network [OSTI]

), biomass heat storage (Sv) and photosynthetic energy storage (Sp). Soil heat storage Sg can be furtherOriginal article Energy balance storage terms and big-leaf evapotranspiration in a mixed deciduous not be omitted. On a seasonal basis soil heat storage seems to be the most important term. The overall heat

Boyer, Edmond

65

Alternative Dispute Resolution Terms | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval InspectionDepartment

66

Lighting Principles and Terms | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDIPrinciples and Terms

67

Long Term Innovative Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.1310employeeLong Term

68

Complete radiative terms for the electron/electronic energy equation  

SciTech Connect (OSTI)

A derivation of the radiative terms in the electron/electronic energy equation is presented, properly accounting for the effects of absorption and emission of radiation on the individual energy modes of the gas. This electron/electronic energy equation with the complete radiative terms has successfully been used to model the radiation-dominated precursor ahead of the bow shock of a hypersonic vehicle entering the Earth`s atmosphere. 8 refs.

Stanley, S.A.; Carlson, L.A. [Univ of California, San Diego, CA (United States)

1994-10-01T23:59:59.000Z

69

Stakeholder Relations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAnShareAugust 15, 2012Site tours,

70

Management and Conservation Short-Term Impacts of Wind Energy  

E-Print Network [OSTI]

Management and Conservation Short-Term Impacts of Wind Energy Development on Greater Sage associated with wind energy development on greater sage-grouse populations. We hypothesized that greater sage-grouse nest, brood, and adult survival would decrease with increasing proximity to wind energy infrastructure

Beck, Jeffrey L.

71

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks  

E-Print Network [OSTI]

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

Cerpa, Alberto E.

72

August 2012 Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA (Barrels per

73

September 2012 Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San Juan Montana Thrust

74

Short Term Energy Outlook ,November 2002  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San JuanGasData

75

Short Term Energy Outlook ,October 2002  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San JuanGasDataOctober

76

Short Term Energy Outlook, December 2002  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San

77

Short-Term Energy Outlook April 2014  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1and Summer Fuels

78

Short-Term Energy Outlook February 2014  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1and Summer Fuels4 1

79

Short-Term Energy Outlook January 2014  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1and Summer Fuels4

80

Short-Term Energy Outlook July 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1and Summer Fuels41

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Short-Term Energy Outlook June 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1and Summer Fuels411

82

Short-Term Energy Outlook March 2014  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1and Summer

83

Short-Term Energy Outlook May 2014  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1and Summer(STEO)

84

Short-Term Energy Outlook September 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1and

85

Short-Term Energy Outlook September 2014  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1andOutlook

86

Energy conservation and equivalence principle in General Relativity  

E-Print Network [OSTI]

The generalized Stokes theorem (connecting integrals of dimensions 3 and 4) is formulated in a curved space-time in terms of paths in Minkowski space (forming Path Group). A covariant integral form of the conservation law for the energy-momentum of matter is then derived in General Relativity. It extends Einstein's equivalence principle on the energy conservation, since it formulates the conservation law for the energy-momentum of matter without explicit including the gravitational field in the formulation.

Michael B. Mensky

2004-09-30T23:59:59.000Z

87

Related Links | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |RebeccaRegional StandardsExecutiveWatchdogofto the

88

Related Links | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |RebeccaRegional StandardsExecutiveWatchdogofto

89

Related Opportunities | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |RebeccaRegional StandardsExecutiveWatchdogoftoFinancial

90

NREL: Energy Analysis - Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version

91

Related Links | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSiting GuidelinesFinancial Opportunities »

92

Related Links | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSiting GuidelinesFinancial Opportunities

93

Employee Relations | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPCElectricalofVoltageEmployee AssistanceEmployee

94

Short-term energy outlook. Quarterly projections, second quarter 1996  

SciTech Connect (OSTI)

The Energy Information Administration prepares quarterly, short-term energy supply, demand, and price projections. The forecasts in this issue cover the second quarter of 1996 through the fourth quarter of 1997. Changes to macroeconomic measures by the Bureau of Economic Analysis have been incorporated into the STIFS model used.

NONE

1996-04-01T23:59:59.000Z

95

Related Links | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and LaunchesRelated Financial Opportunities

96

Short-term energy outlook. Volume 2. Methodology  

SciTech Connect (OSTI)

This volume updates models and forecasting methodologies used and presents information on new developments since November 1981. Chapter discusses the changes in forecasting methodology for motor gasoline demand, electricity sales, coking coal, and other petroleum products. Coefficient estimates, summary statistics, and data sources for many of the short-term energy models are provided. Chapter 3 evaluates previous short-term forecasts for the macroeconomic variables, total energy, petroleum supply and demand, coal consumption, natural gas, and electricity fuel shares. Chapter 4 reviews the relationship of total US energy consumption to economic activity between 1960 and 1981.

Not Available

1982-05-01T23:59:59.000Z

97

Labor Relations | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer SomersKnown ChallengesLES'LIFELM5841Lab-CorpsLabor

98

Related Articles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |Regulation Services System: Georgia-Alabama-SouthThese24, 2015This page

99

Related Opportunities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |Regulation Services System: Georgia-Alabama-SouthThese24,TheseA variety of

100

Short-term energy outlook, quarterly projections, second quarter 1998  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

NONE

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nevada Department of Transportation - Terms and Conditions Relating to  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServicesNeuCo Inc JumpWaterHighway Occupancy

102

Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

103

Short-term energy outlook: Quarterly projections, fourth quarter 1997  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

NONE

1997-10-14T23:59:59.000Z

104

Energy Information Administration/Short-Term Energy Outlook - April 2005  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,

105

Energy Information Administration/Short-Term Energy Outlook - April 2006  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,6 1 April

106

Energy Information Administration/Short-Term Energy Outlook - August 2005  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,6 1 April5

107

Energy Information Administration/Short-Term Energy Outlook - February 2005  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,6 1

108

Energy Information Administration/Short-Term Energy Outlook - January 2005  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,6 1January

109

Energy Information Administration/Short-Term Energy Outlook - July 2005  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,6

110

Energy Information Administration/Short-Term Energy Outlook - June 2005  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,65 1

111

Energy Information Administration/Short-Term Energy Outlook - May 2005  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,65 15 1

112

Energy Information Administration/Short-Term Energy Outlook - October 2005  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,65 15 15 1

113

Energy Information Administration/Short-Term Energy Outlook - September 2005  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,65 15 15

114

Short-term energy outlook. Quarterly projections, first quarter 1995  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). The forecast period for this issue of the Outlook extends from the first quarter of 1995 through the fourth quarter of 1996. Values for the fourth quarter of 1994, however, are preliminary EIA estimates or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service.

Not Available

1995-02-01T23:59:59.000Z

115

We often think about energy in personal terms. People comment on the energy young children  

E-Print Network [OSTI]

Overview We often think about energy in personal terms. People comment on the energy young children seem to possess. Others mention that they don't feel they have enough energy to make it through the day. We've heard that the world is running out of certain types of energy. In spite of all of our everyday

Hardy, Darel

116

Short-term energy outlook, Annual supplement 1995  

SciTech Connect (OSTI)

This supplement is published once a year as a complement to the Short- Term Energy Outlook, Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts. Chap. 2 analyzes the response of the US petroleum industry to the recent four Federal environmental rules on motor gasoline. Chap. 3 compares the EIA base or mid case energy projections for 1995 and 1996 (as published in the first quarter 1995 Outlook) with recent projections made by four other major forecasting groups. Chap. 4 evaluates the overall accuracy. Chap. 5 presents the methology used in the Short- Term Integrated Forecasting Model for oxygenate supply/demand balances. Chap. 6 reports theoretical and empirical results from a study of non-transportation energy demand by sector. The empirical analysis involves the short-run energy demand in the residential, commercial, industrial, and electrical utility sectors in US.

NONE

1995-07-25T23:59:59.000Z

117

The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric  

E-Print Network [OSTI]

The Impacts of Wind Speed Trends and Long- term Variability in Relation to Hydroelectric Reservoir and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific through diversification. In hydroelectric dominated systems, like the PNW, the benefits of wind power can

Kohfeld, Karen

118

Short-term energy outlook. Quarterly projections, first quarter 1996  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Outlook. The forecast period for this issue of the Outlook extends from the first quarter of 1996 through the fourth quarter of 1997. Values for the fourth quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1996 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook.

NONE

1996-02-01T23:59:59.000Z

119

Short-term energy outlook: Quarterly projections, second quarter 1997  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the second quarter of 1997 through the fourth quarter of 1998. Values for the first quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the second quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the Short-Term Integrated Forecasting System (STIFS). 34 figs., 19 tabs.

NONE

1997-04-01T23:59:59.000Z

120

Short-term energy outlook. Quarterly projections, third quarter 1996  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the third quarter of 1996 through the fourth quarter of 1997. Values for the second quarter of 1996, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled in the third quarter 1996 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

NONE

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Long vs. short-term energy storage:sensitivity analysis.  

SciTech Connect (OSTI)

This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

2007-07-01T23:59:59.000Z

122

Jointly Sponsored Research Program Energy Related Research  

SciTech Connect (OSTI)

Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. This report summarizes the accomplishments of the JSR Program.

Western Research Institute

2009-03-31T23:59:59.000Z

123

Question of the Week: Do Energy-Related Financial Incentives...  

Broader source: Energy.gov (indexed) [DOE]

Do Energy-Related Financial Incentives Prompt You to Be More Energy Efficient? Question of the Week: Do Energy-Related Financial Incentives Prompt You to Be More Energy Efficient?...

124

Energy-range relation and mean energy variation in therapeutic particle beams  

SciTech Connect (OSTI)

Analytical expressions for the mean energy and range of therapeutic light ion beams and low- and high-energy electrons have been derived, based on the energy dependence of their respective stopping powers. The new mean energy and range relations are power-law expressions relevant for light ion radiation therapy, and are based on measured practical ranges or known tabulated stopping powers and ranges for the relevant incident particle energies. A practical extrapolated range, R{sub p}, for light ions was defined, similar to that of electrons, which is very closely related to the extrapolated range of the primary ions. A universal energy-range relation for light ions and electrons that is valid for all material mixtures and compounds has been developed. The new relation can be expressed in terms of the range for protons and alpha particles, and is found to agree closely with experimental data in low atomic number media and when the difference in the mean ionization energy is low. The variation of the mean energy with depth and the new energy-range relation are useful for accurate stopping power and mass scattering power calculations, as well as for general particle transport and dosimetry applications.

Kempe, Johanna; Brahme, Anders [Division of Medical Radiation Physics, Department of Oncology-Pathology, Karolinska Institutet and Stockholm University, Box 260, SE-171 76 Stockholm (Sweden)

2008-01-15T23:59:59.000Z

125

Contact Term, its Holographic Description in QCD and Dark Energy  

E-Print Network [OSTI]

In this work we study the well known contact term, which is the key element in resolving the so-called $U(1)_A$ problem in QCD. We study this term using the dual Holographic Description. We argue that in the dual picture the contact term is saturated by the D2 branes which can be interpreted as the tunnelling events in Minkowski space-time. We quote a number of direct lattice results supporting this identification. We also argue that the contact term receives a Casimir -like correction $\\sim (\\Lqcd R)^{-1}$ rather than naively expected $\\exp(-\\Lqcd R)$ when the Minkowski space-time ${\\cal R}_{3,1}$ is replaced by a large but finite manifold with a size $R$. Such a behaviour is consistent with other QFT-based computations when power like corrections are due to nontrivial properties of topological sectors of the theory. In holographic description such a behaviour is due to massless Ramond-Ramond (RR) field living in the bulk of multidimensional space when power like corrections is a natural outcome of massless RR field. In many respects the phenomenon is similar to the Aharonov -Casher effect when the "modular electric field" can penetrate into a superconductor where the electric field is exponentially screened. The role of "modular operator" from Aharonov -Casher effect is played by large gauge transformation operator $\\cal{T}$ in 4d QCD, resulting the transparency of the system to topologically nontrivial pure gauge configurations. We discuss some profound consequences of our findings. In particular, we speculate that a slow variation of the contact term in expanding universe might be the main source of the observed Dark Energy.

Ariel R. Zhitnitsky

2012-08-01T23:59:59.000Z

126

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May 2003 Short-Term

127

Short-Term Energy and Winter Fuels Outlook October 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34Summer3 1 Short-Term3

128

Related Financial Opportunities | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSiting GuidelinesFinancial Opportunities » Related

129

A New Relation between Lamb Shift Energies  

E-Print Network [OSTI]

We derive a new relation between the observed Lamb shift energies of hydrogen and muonium atoms. The relation is based on the non-relativistic description of the Lamb shift, and the proper treatment of the reduced mass of electron and target particles (proton and muon) leads to the new formula which is expressed as $\\displaystyle{{\\Delta E^{(H)}_{2s_{1/2}}\\over \\Delta E^{(\\mu)}_{2s_{1/2}}} =({1+{m_e\\over m_\\mu}\\over 1+{m_e\\over M_p}})^3}$. This relation achieves an excellent agreement with experiment and presents an important QED test free from the cutoff momentum $\\Lambda$.

Hiroaki Kubo; Takehisa Fujita; Naohiro Kanda; Hiroshi Kato; Yasunori Munakata; Sachiko Oshima; Kazuhiro Tsuda

2010-03-26T23:59:59.000Z

130

Long-Term Stewardship Related Information | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORT TOJaredKansas1Increase Profits |Services »

131

Impacts of high energy prices on long-term energy-economic scenarios for Germany  

E-Print Network [OSTI]

Impacts of high energy prices on long-term energy-economic scenarios for Germany Volker Krey1 , Dag and Technology Evaluation (IEF-STE), 52425 Jülich, Germany 2) DIW Berlin, Königin-Luise-Str. 5, 14195 Berlin, Germany 3) ?ko-Institut, Novalisstr. 10, 10115 Berlin, Germany Abstract Prices of oil and other fossil

132

PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring  

SciTech Connect (OSTI)

This report presents a unified method of hourly simulation of a building and analysis of performance data. The method is called Primary and Secondary Terms Analysis and Renormalization (PSTAR). In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance equation is best satisfied in the least squares sense, hence, the name PSTAR. PSTAR allows extraction of building characteristics from short-term tests on a small number of data channels. These can be used for long-term performance prediction (''ratings''), diagnostics, and control of heating, ventilating, and air conditioning systems (HVAC), comparison of design versus actual performance, etc. By combining realistic building models, simple test procedures, and analysis involving linear equations, PSTAR provides a powerful tool for analyzing building energy as well as testing and monitoring. It forms the basis for the Short-Term Energy Monitoring (STEM) project at SERI.

Subbarao, K.

1988-09-01T23:59:59.000Z

133

Short-term energy outlook. Quarterly projections, 2nd quarter 1994  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. The forecast period for this issue of the Outlook extends from the second quarter of 1994 through the fourth quarter of 1995. Values for the first quarter of 1994, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available. The historical energy data, compiled into the second quarter 1994 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the STIFS. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service.

Not Available

1994-05-01T23:59:59.000Z

134

Short-term energy outlook, quarterly projections, first quarter 1998  

SciTech Connect (OSTI)

The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

NONE

1998-01-01T23:59:59.000Z

135

Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)  

SciTech Connect (OSTI)

The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

Ross, M.H. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics); Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. (Argonne National Lab., IL (United States))

1993-05-01T23:59:59.000Z

136

Natural Resources Wales Standard Terms and Conditions for Goods (and related Services)  

E-Print Network [OSTI]

Natural Resources Wales Standard Terms and Conditions for Goods (and related Services) Date: April 2013 Page 1 These Conditions may only be varied with the written agreement of Natural Resources Wales/Services are being performed; Contract - the contract between Natural Resources Wales and the Supplier

137

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER  

E-Print Network [OSTI]

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER Don Steiner, Jeffrey Freidberg Farrokh Najmabadi William Nevins , and John Perkins The Energy Issues Working Group on Long-Term Visions energy production in the next century? 2. What is fusion's potential for penetrating the energy market

Najmabadi, Farrokh

138

Feedstock Related Links | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergy FederalFLASHofDepartment of Energy Feds

139

The hydrogen energy economy: its long-term role in greenhouse gas reduction  

E-Print Network [OSTI]

The hydrogen energy economy: its long-term role in greenhouse gas reduction Geoff Dutton, Abigail for Climate Change Research Technical Report 18 #12;The Hydrogen Energy Economy: its long term role 2005 This is the final report from Tyndall research project IT1.26 (The Hydrogen energy economy: its

Watson, Andrew

140

Comparison of Static and Dynamic WDM Networks in Terms of Energy Consumption  

E-Print Network [OSTI]

Comparison of Static and Dynamic WDM Networks in Terms of Energy Consumption A. Leiva1 , J. M from static to dynamic WDM networks is evaluated, for the first time, in terms of energy consumption Currently, telecommunication networks have been reported to account for 1-10% of the world's energy

López, Víctor

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ultra-Thin, Energy Efficient Facades- A Contradiction in Terms?  

E-Print Network [OSTI]

Within the European Union about 40 percent of the energy is consumed in buildings. In Germany roughly a quarter of the primary energy demand is used for the heating of buildings. A detailed analysis reveals that more than 90 percent of this energy...

Ebert, H. P.

142

Base Program on Energy Related Research  

SciTech Connect (OSTI)

The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

Western Research Institute

2008-06-30T23:59:59.000Z

143

Fuel Cells Related Links | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013Fuel

144

Energy and Momentum in General Relativity  

E-Print Network [OSTI]

The energy and momentum for different cosmological models using various prescriptions are evaluated. In particular, we have focused our attention on the energy and momentum for gravitational waves and discuss the results. It is concluded that there are methods which can provide physically acceptable results.

M. Sharif

2004-03-31T23:59:59.000Z

145

Long-Term Stewardship Resource Center | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -of EnergyEqual Justice UnderWELCOME TO

146

Long-term energy consumptions of urban transportation: A prospective...  

Open Energy Info (EERE)

Bangalore can significantly curb the trajectories of energy consumption and the ensuing carbon dioxide emissions, if and only if they are implemented in the framework of...

147

Sustaining Long-Term Energy Savings for a Major Texas State Agency Performance Contracting Initiative  

E-Print Network [OSTI]

SUSTAINING LONG-TERM ENERGY SAVINGS FOR A MAJOR TEXAS STATE AGENCY PERFORMANCE CONTRACTING INITIATIVE Tarek Bou-Saada, Energy Manager Texas Health and Human Services Commission Charles Culp, Ph.D., P.E., FASHRAE, LEED-AP Dept. of Architecture... 1 SUSTAINING LONG-TERM ENERGY SAVINGS FOR A MAJOR TEXAS STATE AGENCY PERFORMANCE CONTRACTING INITIATIVE Tarek Bou-Saada Energy Manager Texas Health and Human Services Commission Austin, TX Charles Culp, Ph.D., P.E. Associate...

Culp, C.; Bou-Saada, T. E.

148

Long term experiences with HDD SCR Catalysts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.1310employeeLong TermLong term

149

How BEDES Relates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Specification for Parking Lots Lighten Energy Load The GE GeoSpring(tm) Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the...

150

Role of the breeder in long-term energy economics  

SciTech Connect (OSTI)

Private and public decisions affecting the use of nuclear and other energy technologies over a long-run time horizon were studied using the ETA-MACRO model which provides for economic- and energy-sector interactions. The impact on the use of competing energy technologies of a public decision to apply benefit-cost analysis to the production of carbon dioxide that enters the atmosphere is considered. Assuming the public choice is to impose an appropriate penalty tax on those technologies which generate CO/sub 2/ and to allow decentralized private decisions to choose the optimal mix of energy technologies that maximize a nonlinear objective function subject to constraints, the study showed that breeder technology provides a much-larger share of domestically consumed energy. Having the breeder technology available as a substitute permits control of CO/sub 2/ without significant reductions in consumption or gross national product growth paths.

Kosobud, R.F.; Daly, T.A.; Chang, Y.I.

1982-01-01T23:59:59.000Z

151

Related Financial Opportunities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and LaunchesRelated Financial Opportunities Related Financial

152

Related Financial Opportunities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and LaunchesRelated Financial Opportunities Related

153

Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications  

E-Print Network [OSTI]

1 Comparison of closed and open thermochemical processes, for long-term thermal energy storage-term thermal storage, second law analysis * Corresponding author: E-mail: mazet@univ-perp.fr Nomenclature c Energy Tecnosud, Rambla de la thermodynamique, 66100 Perpignan, France b Université de Perpignan Via

Paris-Sud XI, Université de

154

Short term thermal energy storage Institut fr Kernenergetik und Energiesysteme, University of Stuttgart, Stuttgart, FRG  

E-Print Network [OSTI]

477 Short term thermal energy storage A. Abhat Institut für Kernenergetik und Energiesysteme the problem of short term thermal energy storage for low temperature solar heating applications. The techniques of sensible and latent heat storage are discussed, with particular emphasis on the latter

Paris-Sud XI, Université de

155

Identifying and quantifying nonconservative energy production/destruction terms in hydrostatic Boussinesq primitive equation models  

E-Print Network [OSTI]

Identifying and quantifying nonconservative energy production/destruction terms in hydrostatic Boussinesq primitive equation models R´emi Tailleux Department of Meteorology, University of Reading, Earley/destruction terms in the local total energy balance equation in numerical ocean general circulation models (OGCMs

Tailleux, Remi

156

EIA- Energy Efficiency Related Links: EIA Reports and Analyses  

U.S. Energy Information Administration (EIA) Indexed Site

Reports Energy-Efficiency Related: EIA Reports and Analyses Released Release Date: October 1999 Last Updated: August 2010 End Users: Commercial Buildings Manufacturing ...

157

Quasi-local definitions of energy in general relativity  

E-Print Network [OSTI]

The problem of defining energy in general relativity is reviewed very briefly, and the properties of Brown-York-like expressions are discussed.

Bjoern S. Schmekel

2007-08-31T23:59:59.000Z

158

Newporter Apartments: Deep Energy Retrofit Short-Term Results  

SciTech Connect (OSTI)

This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960's vintage low-rise multi-family apartment community (120 units in three buildings).

Gordon, A.; Howard, L.; Kunkle, R.; Lubliner, M.; Auer, D.; Clegg, Z.

2012-12-01T23:59:59.000Z

159

Terms and Conditions for Site Transition | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice -Template for aofof Energy

160

Long-Term Engineered Cap Performance | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy InvitationLegaltoLiz Doris AboutLochinvarLong

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Long-Term Grout Performance | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy InvitationLegaltoLiz Doris AboutLochinvarLongGrout

162

Paducah Community Relations Plan | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky Mountain OTCAnnual SiteEnergy

163

Council on Foreign Relations | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarterinto PARS |Council onCouncil on Foreign

164

Cybersecurity Related Blogs | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent TestMayBlogs Cybersecurity

165

Cybersecurity Related News | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent TestMayBlogs

166

Related Articles: 2007 Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional NetworksRegulatory BurdenWhat7

167

Related Articles: 2008 Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional NetworksRegulatory BurdenWhat78

168

Related Articles: 2009 Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional NetworksRegulatory BurdenWhat789

169

Related Articles: 2010 Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional NetworksRegulatory

170

Related Articles: 2011 Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional NetworksRegulatory1 articles

171

Related Articles: 2012 Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional NetworksRegulatory1 articles2

172

Related Articles: 2013 Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional NetworksRegulatory1 articles23

173

Related Articles: 2014 Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovember 21,Regional NetworksRegulatory1

174

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328Administration (EIA)propanenaturalSpecialShort-Term

175

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule Release Date. The Short-Term

176

Department of Energy Labor Relations and Standards  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The change would be to remove Chapter I, Labor Relations, and Chapter II Labor Standards from DOE O 350.1 and develop DOE O DOE O 350.3, which will cancel and supersede Chapters I and II in DOE O 350.1. Content of the two chapters will be updated to reflect the Secretarial determination transferring functions for contractor labor relations and labor standards from the Office of Legacy Management to the Office of General Counsel. CRDs for those chapters will also be removed.

2014-02-06T23:59:59.000Z

177

In utero and early life arsenic exposure in relation to long-term health and disease  

SciTech Connect (OSTI)

Background: There is a growing body of evidence that prenatal and early childhood exposure to arsenic from drinking water can have serious long-term health implications. Objectives: Our goal was to understand the potential long-term health and disease risks associated with in utero and early life exposure to arsenic, as well as to examine parallels between findings from epidemiological studies with those from experimental animal models. Methods: We examined the current literature and identified relevant studies through PubMed by using combinations of the search terms arsenic, in utero, transplacental, prenatal and fetal. Discussion: Ecological studies have indicated associations between in utero and/or early life exposure to arsenic at high levels and increases in mortality from cancer, cardiovascular disease and respiratory disease. Additional data from epidemiologic studies suggest intermediate effects in early life that are related to risk of these and other outcomes in adulthood. Experimental animal studies largely support studies in humans, with strong evidence of transplacental carcinogenesis, atherosclerosis and respiratory disease, as well as insight into potential underlying mechanisms of arsenic's health effects. Conclusions: As millions worldwide are exposed to arsenic and evidence continues to support a role for in utero arsenic exposure in the development of a range of later life diseases, there is a need for more prospective studies examining arsenic's relation to early indicators of disease and at lower exposure levels. - Highlights: We review in utero and early-life As exposure impacts on lifelong disease risks. Evidence indicates that early-life As increases risks of lung disease, cancer and CVD. Animal work largely parallels human studies and may lead to new research directions. Prospective studies and individual exposure assessments with biomarkers are needed. Assessing intermediary endpoints may aid early intervention and establish causality.

Farzan, Shohreh F.; Karagas, Margaret R. [Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH 03755 (United States); Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Chen, Yu, E-mail: yu.chen@nyumc.org [Department of Population Health, New York University School of Medicine, New York, NY 10016 (United States)

2013-10-15T23:59:59.000Z

178

Employee Concerns Related Documents | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » AlternativeUpDrain-Water HeatElements of a Federal

179

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity200320030399Energy

180

April 2013 Short-Term Energy and Summer Fuels Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S. Energy8 Appendix7

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Designing Renewable Energy Financing Mechanism Terms of Reference | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergy Information Designing

182

Designing Renewable Energy Financing Mechanism Terms of Reference | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergy Information

183

Long-Term Stewardship Study | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives ThroughEnergyNewsLessons

184

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May5.57 perThe Energy

185

EIA Energy Efficiency-Energy Related Greenhouse Gas Emissions...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumers who use these technologies will benefit directly and immediately. Using solar energy produces immediate environmental benefits Illinois Waste Management and Research...

186

Hydrogen Delivery Related Links | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013Department ofThispurpose of this work

187

Hydrogen Production Related Links | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013Department ofThispurposeFact sheet

188

Glossary: Energy-Related Carbon Emissions  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1CubicVehicle Fuel2.47 441

189

BEDES Related Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21FAQs BEDES FAQs On this page you'llRelated

190

Long-term energy consumptions of urban transportation: A prospective  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown, Arizona:Lockland,LIPAsimulation of

191

Representing Energy Price Variability in Long-and Medium-term Hydropower Optimization  

E-Print Network [OSTI]

1 Representing Energy Price Variability in Long- and Medium- term Hydropower Optimization Marcelo A Resources Planning and Management, 2012, in press ABSTRACT Representing peak and off-peak energy prices and examines the reliability of an existing approximate method to incorporate hourly energy price information

Pasternack, Gregory B.

192

On Measuring the Terms of the Turbulent Kinetic Energy Budget from an AUV LOUIS GOODMAN  

E-Print Network [OSTI]

of production of turbulent kinetic energy (TKE). Heat flux is obtained by correlating the vertical velocityOn Measuring the Terms of the Turbulent Kinetic Energy Budget from an AUV LOUIS GOODMAN School of the steady-state, homogeneous turbulent kinetic energy budgets are obtained from mea- surements of turbulence

Goodman, Louis

193

Short-Term Throughput Maximization for Battery Limited Energy Harvesting Nodes  

E-Print Network [OSTI]

for energy recharge. Under the assumption of an increasing concave power-rate relationship, the short completion time of a given amount of data were found for an energy harvesting node under the assumptionShort-Term Throughput Maximization for Battery Limited Energy Harvesting Nodes Kaya Tutuncuoglu

Yener, Aylin

194

Assessing climate change impacts on the near-term stability of the wind energy  

E-Print Network [OSTI]

Assessing climate change impacts on the near-term stability of the wind energy resource over- ble emissions of carbon dioxide. The wind energy resource is natu- rally a function of the climate, leading some to question the continued viability of the wind energy industry. Here we briefly articulate

Pryor, Sara C.

195

A long-term investment planning model for mixed energy infrastructure integrated with renewable  

E-Print Network [OSTI]

A long-term investment planning model for mixed energy infrastructure integrated with renewable energy Jinxu Ding and Arun Somani Department of Electrical and Computer Engineering Iowa State University Ames, IA 50011 Email: {jxding,arun}@iastate.edu Abstract--The current energy infrastructure heavily

196

Generalized boundary conditions for general relativity for the asymptotically flat case in terms of Ashtekar's variables  

E-Print Network [OSTI]

There is a gap that has been left open since the formulation of general relativity in terms of Ashtekar's new variables namely the treatment of asymptotically flat field configurations that are general enough to be able to define the generators of the Lorentz subgroup of the asymptotical Poincar\\'e group. While such a formulation already exists for the old geometrodynamical variables, up to now only the generators of the translation subgroup could be defined because the function spaces of the fields considered earlier are taken too special. The transcription of the framework from the ADM variables to Ashtekar's variables turns out not to be straightforward due to the freedom to choose the internal SO(3) frame at spatial infinity and due to the fact that the non-trivial reality conditions of the Ashtekar framework reenter the game when imposing suitable boundary conditions on the fields and the Lagrange multipliers.

T. Thiemann

1993-10-29T23:59:59.000Z

197

Generalized boundary conditions for general relativity for the asymptotically flat case in terms of Ashtekar's variables  

E-Print Network [OSTI]

There is a gap that has been left open since the formulation of general relativity in terms of Ashtekar's new variables namely the treatment of asymptotically flat field configurations that are general enough to be able to define the generators of the Lorentz subgroup of the asymptotical Poincar\\'e group. While such a formulation already exists for the old geometrodynamical variables, up to now only the generators of the translation subgroup could be defined because the function spaces of the fields considered earlier are taken too special. The transcription of the framework from the ADM variables to Ashtekar's variables turns out not to be straightforward due to the a priori freedom to choose the internal SO(3) frame at spatial infinity and due to the fact that the non-trivial reality conditions of the Ashtekar framework reenter the stage when imposing suitable boundary conditions on the fields and the Lagrange multipliers.

T. Thiemann

1999-10-04T23:59:59.000Z

198

Challenges for Long-Term Energy Models: Modeling Energy Use and Energy Efficiency  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORT

199

Renewable Energy Cross Sectoral Assessments Terms of Reference | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to:Co JumpRETScreenJamLLC JumpEnergy

200

Renewable Energy Specifications, Testing and Certification Terms of  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to:Co Agency/CompanyReference | Open Energy

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

December 2012 Short-Term Energy Outlook (STEO)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCosts ofMarch2Q)4(82)6)k(STEO)  EIA

202

February 2013 Short-Term Energy Outlook (STEO)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. FOR

203

January 2013 Short-Term Energy Outlook (STEO)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy Consumption Series(STEO)

204

Long-Term U.S. Energy Outlook: Different Perspectives  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §

205

March 2013 Short-Term Energy Outlook (STEO)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,Information Administration (EIA)Administration(STEO)

206

Renewable Energy Terms of Reference: Laws, Policies and Regulations | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(California andEnergy Information Reference: Laws,

207

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural Gas Summary

208

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural Gas

209

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural Gascontinue

210

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural

211

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural71 and $2.75

212

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural71 and

213

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural71 andabout

214

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural71

215

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural714.20 per

216

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural714.20

217

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA NA60,290Natural714.20late

218

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NA

219

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May 2003

220

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May 2003through the

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May 2003through the

222

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May 2003through

223

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May 2003throughin

224

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May 2003throughin7

225

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May 2003throughin78

226

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May

227

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May5.57 per MMBtu in

228

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May5.57 per MMBtu

229

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May5.57 per MMBtulate

230

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May5.57 per

231

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May5.57 perThe

232

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the May5.57 perTheThe

233

Short-Term Energy Outlook April 1999-Summer Gasoline Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1 October‹Summer

234

Short-Term Energy Outlook April 2000--STEO Preface  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1

235

Assistance to States on Policies Related to Wind Energy Issues  

SciTech Connect (OSTI)

This final report summarizes work carried out under agreement with the US Department of Energy, related to wind energy policy issues. This project has involved a combination of outreach and publications on wind energy, with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of wind energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of meetings designed specifically for state legislators and legislative staff, responses to information requests on wind energy, and publications. The publications addressed: renewable energy portfolio standards, wind energy transmission, wind energy siting, case studies of wind energy policy, avian issues, economic development, and other related issues. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about wind information for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to wind energy in the states.

Brown, Matthew, H; Decesaro, Jennifer; DOE Project Officer - Keith Bennett

2005-07-15T23:59:59.000Z

236

Energy-Momentum and Angular Momentum Carried by Gravitational Waves in Extended New General Relativity  

E-Print Network [OSTI]

In an extended, new form of general relativity, which is a teleparallel theory of gravity, we examine the energy-momentum and angular momentum carried by gravitational wave radiated from Newtonian point masses in a weak-field approximation. The resulting wave form is identical to the corresponding wave form in general relativity, which is consistent with previous results in teleparallel theory. The expression for the dynamical energy-momentum density is identical to that for the canonical energy-momentum density in general relativity up to leading order terms on the boundary of a large sphere including the gravitational source, and the loss of dynamical energy-momentum, which is the generator of \\emph{internal} translations, is the same as that of the canonical energy-momentum in general relativity. Under certain asymptotic conditions for a non-dynamical Higgs-type field $\\psi^{k}$, the loss of ``spin'' angular momentum, which is the generator of \\emph{internal} $SL(2,C)$ transformations, is the same as that of angular momentum in general relativity, and the losses of canonical energy-momentum and orbital angular momentum, which constitute the generator of Poincar\\'{e} \\emph{coordinate} transformations, are vanishing. The results indicate that our definitions of the dynamical energy-momentum and angular momentum densities in this extended new general relativity work well for gravitational wave radiations, and the extended new general relativity accounts for the Hulse-Taylor measurement of the pulsar PSR1913+16.

Eisaku Sakane; Toshiharu Kawai

2002-09-30T23:59:59.000Z

237

Public Relations for Energy Sustainability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket37963 Vol. 79, No.and/or8-458-DEC. 17,U.S.1,

238

Current Opportunities Related to Water-Energy | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarterinto PARSCriteria2/00Services30,Current

239

A Sensitive Test of Mass-Energy Relation  

E-Print Network [OSTI]

The Einstein's mass-energy relation $E=mc^2$ is one of the most fundamental formulae in physics, but it has not been seriously tested by an elaborated experiment, and only some indirect evidences in nuclear reaction suggested that it holds to high precision. In this letter, we propose a sensitive experiment to test this relation. The experiment only involves low energy accelerator of particles and measurement of speed. The results can disclose the fine structure of the energy-speed relation, which can be used as the fingerprints of the interactive potentials of elementary particles. So the experiment may shed lights on the nature of the interaction and elementary particles.

Ying-Qiu Gu

2011-01-16T23:59:59.000Z

240

Short-Term Energy Outlook Model Documentation: Petroleum Product Prices Module  

Reports and Publications (EIA)

The petroleum products price module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. average wholesale and retail price forecasts for motor gasoline, diesel fuel, heating oil, and jet fuel.

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Development and Update of Models for Long-Term Energy and GHG...  

Office of Environmental Management (EM)

Update of Models for Long-Term Energy and GHG Impact Evaluation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

242

Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term  

E-Print Network [OSTI]

Distributed Energy: Modeling Penetration in Industrial Sector over the Long-Term Lorna Greening, Private Consultant, Los Alamos, NM Distributed energy (DE) sources provide a number of benefits when utilized. For industrial facilities... and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial...

Greening, L.

2006-01-01T23:59:59.000Z

243

Short-Term Energy Tests of a Credit Union Building in Idaho (Draft)  

SciTech Connect (OSTI)

This report describes tests and results of the energy performance of a credit union building in Idaho. The building is in the Energy Edge Program administered by the Bonneville Power Administration (BPA). BPA provided incentives to incorporate innovative features designed to conserve energy use by the building. It is of interest to determine the actual performance of these features. The objective of this project was to evaluate the applicability of the SERI short-term energy monitoring (STEM) method to nonresidential buildings.

Subbarao, K.; Balcomb, J. D.

1993-01-01T23:59:59.000Z

244

Figure 3. Energy-Related Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy-Related Carbon Dioxide Emissions" " (million metric tons)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,...

245

Covariant energy-momentum and an uncertainty principle for general relativity  

E-Print Network [OSTI]

We introduce a naturally-defined totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. The extension links seamlessly to the action integral for the gravitational field. The demand that the general expression for arbitrary systems reduces to the Tolman integral in the case of stationary bounded distributions, leads to the matter-localized Ricci integral for energy-momentum in support of the energy localization hypothesis. The role of the observer is addressed and as an extension of the special relativistic case, the field of observers comoving with the matter is seen to compute the intrinsic global energy of a system. The new localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. It is suggested that in the extreme of strong gravity, the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy-momentum.

F. I. Cooperstock; M. J. Dupre

2014-10-07T23:59:59.000Z

246

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

No.4 Japan's Long-term Energy Demand and Supply Scenario towe projected Japan's energy demand/supply and energy-relatedcrises (to cut primary energy demand per GDP ( T P E S / G D

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

247

Relating Surface Energy Budgets to the Biochemistry of Photosynthesis  

E-Print Network [OSTI]

Relating Surface Energy Budgets to the Biochemistry of Photosynthesis: A Review for Non the parameterization. Photosynthesis is the process by which plants store solar energy in chemical bonds, thereby. These products are used to drive the "dark phase" of photosynthesis by coupling strongly exergonic reactions

Collett Jr., Jeffrey L.

248

Geometry of quantum dynamics and a time-energy uncertainty relation for mixed states  

E-Print Network [OSTI]

In this paper we establish important relations between Hamiltonian dynamics and Riemannian structures on phase spaces for unitarily evolving finite level quantum systems in mixed states. We show that the energy dispersion (i.e. $1/\\hbar$ times the path integral of the energy uncertainty) of a unitary evolution is bounded from below by the length of the evolution curve. Also, we show that for each curve of mixed states there is a Hamiltonian for which the curve is a solution to the corresponding von Neumann equation, and the energy dispersion equals the curve's length. This allows us to express the distance between two mixed states in terms of a measurable quantity, and derive a time-energy uncertainty relation for mixed states. In a final section we compare our results with an energy dispersion estimate by Uhlmann.

Ole Andersson; Hoshang Heydari

2013-02-07T23:59:59.000Z

249

2014-09-24 Issuance: Energy Conservation Program for Manufactured Housing; Notice to Extend Term and Public Meetings  

Broader source: Energy.gov [DOE]

This document is the Energy Conservation Program for Manufactured Housing; Notice to Extend Term and Public Meetings.

250

U.S. Energy Infrastructure Investment: Long-Term Strategic Planning  

E-Print Network [OSTI]

be done by putting a ruler on logarithmic graph paper and extending a line from past usage to predict fu- ture usage. Contributors to this paper posit that existing energy planning tools, modelsU.S. Energy Infrastructure Investment: Long-Term Strategic Planning to Inform Policy Development

251

Energy savings can be communicated in terms of kilowatt hours (energy), carbon (climate change) or pounds (cost).  

E-Print Network [OSTI]

AIM Energy savings can be communicated in terms of kilowatt hours (energy), carbon (climate change) or pounds (cost). We want to know if these different communication units prime different motivations more broadly. This implies that considering carbon may result in wider changes in sustainable behaviour

McAuley, Derek

252

International Energy Conference, 19 -21 May 2003 Energy Technologies for post-Kyoto targets in the medium term  

E-Print Network [OSTI]

Aquifers and Hydrocarbon Structures Power & Heat Air Air O2 N2 & O2 CO2 CO2 CO2 Compression & DehydrationInternational Energy Conference, 19 - 21 May 2003 Energy Technologies for post-Kyoto targets in the medium term CO2 Capture & Geological Storage Niels Peter Christensen International Ventures Director

253

DOE/EIA-0202(85/1Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P1Q) Short-Term Energy

254

Quantum lattice gas model of Fermi systems with relativistic energy relations  

E-Print Network [OSTI]

Presented are several example quantum computing representations of quantum systems with a relativistic energy relation. Basic unitary representations of free Dirac particles and BCS superconductivity are given. Then, these are combined into a novel unitary representation of a Fermi condensate superfluid. The modeling approach employs an operator splitting method that is an analytically closed-form product decomposition of the unitary evolution operator, applied in the high-energy limit. This allows the relativistic wave equations to be cast as unitary finite-difference equations. The split evolution operators (comprising separate kinetic and interaction energy evolution terms) serve as quantum lattice gas models useful for efficient quantum simulation.

Jeffrey Yepez

2013-07-12T23:59:59.000Z

255

Technology diffusion of energy-related products in residential markets  

SciTech Connect (OSTI)

Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

Davis, L.J.; Bruneau, C.L.

1987-05-01T23:59:59.000Z

256

Undeformed (additive) energy conservation law in Doubly Special Relativity  

E-Print Network [OSTI]

All the Doubly Special Relativity (DSR) models studied in literature so far involve a deformation of the energy conservation rule that forces us to release the hypothesis of the additivity of the energy for composite systems. In view of the importance of the issue for a consistent formulation of a DSR statistical mechanics and a DSR thermodynamics, we show that DSR models preserving the usual (i.e. additive) energy conservation rule can be found. These models allow the construction of a DSR-covariant extensive energy. The implications of the analysis for the dynamics of DSR-covariant multiparticle systems are also briefly discussed.

Gianluca Mandanici

2008-11-11T23:59:59.000Z

257

POST-KYOTO POLICY IMPLICATIONS ON THE ENERGY SYSTEM: A TIAM-FR LONG-TERM PLANNING EXERCISE  

E-Print Network [OSTI]

marginal costs, the primary energy consumption and the energy mix. This paper compares global efforts of CO. Keywords CO2 mitigation targets, global energy system, long-term modelling Acknowledgement This researchPOST-KYOTO POLICY IMPLICATIONS ON THE ENERGY SYSTEM: A TIAM-FR LONG-TERM PLANNING EXERCISE Sandrine

Paris-Sud XI, Université de

258

A long-term, integrated impact assessment of alternative building energy code scenarios in China  

SciTech Connect (OSTI)

China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

2014-04-01T23:59:59.000Z

259

DOE/EIA-0202(85/2Q) Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P1Q) Short-Term

260

DOE/EIA-0202(85/3Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P1Q) Short-Term3Q)

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Kansas Energy 2000. [Inventory of Energy Related Assets. Research Area Summary  

SciTech Connect (OSTI)

The Inventory of Energy Related Assets: Research Area Summary is a compilation of resume-type information on energy researchers in the state of Kansas. Researchers are placed in one of four categories: Fossil Energy Research, Alternative Energy Sources, Electric Power Generation and Usage, and Other Energy Research. Each research biography includes a synopsis of recent research, sources of support, and areas of research emphasis.

Legg, J.; Nellis, D.; Simons, G.

1992-03-01T23:59:59.000Z

262

Methodology for Analyzing Energy and Demand Savings From Energy Services Performance Contract Using Short-Term Data  

E-Print Network [OSTI]

..iilJlf t '_:pUIltaD ? (e) (d) ? ? I I , , ., ? BJ ? AmmJl.thm:pIIILt1II:l ....iind?t.m'.m1R.Dl (,) (f) r ~ ~, ~I-----------'l,----------f .. AmmJl.thJII.:p1mt1ll:1 ., February 9, 2009 Energy Systems Laboratory 10 CONCLUSIONSCASE STUDIESMETHODOLOGY DEMAND SAVINGS...METHODOLOGY FOR ANALYZING ENERGY AND DEMAND SAVINGS FROM ENERGY SERVICES PERFORMANCE CONTRACT USING SHORT-TERM DATA Zi Liu, Jeff Haberl, Soolyeon Cho Energy Systems Laboratory Texas A&M University System College Station, TX 77843 Bobby...

Liu, Z.; Haberl, J. S.; Cho, S.; Lynn, B.; Cook, M.

2006-01-01T23:59:59.000Z

263

PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring: A summary  

SciTech Connect (OSTI)

This report summarizes a longer report entitled PSTAR - Primary and Secondary Terms Analysis and Renormalization. A Unified Approach to Building Energy Simulations and Short-Term Monitoring. These reports highlight short-term testing for predicting long-term performance of residential buildings. In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance equation is best satisfied in the least squares sense; hence, the name PSTAR. Testing and monitoring the energy performance of buildings has several important applications, among them: extrapolation to long-term performance, refinement of design tools through feedback from comparing design versus actual parameters, building-as-a-calorimeter for heating, ventilating, and air conditioning (HVAC) diagnostics, and predictive load control. By combining realistic building models, simple test procedures, and analysis involving linear equations, PSTAR provides a powerful tool for analyzing building energy as well as testing and monitoring. It forms the basis for the Short-Term Energy Monitoring (STEM) project at SERI. 3 figs., 1 tab.

Subbarao, K.

1988-09-01T23:59:59.000Z

264

DOE/EIA-0202(87/1Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P1Q)6/1Q)7/1Q) Energy

265

American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC, 2011 SHORT-TERM IRRADIANCE VARIABILITY  

E-Print Network [OSTI]

© American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, 2011 SHORT, as hypothesized in Hoff and Perez's optimum point. #12;© American Solar Energy Society ­ Proc. ASES Annual is the factor that determines whether the combined relative fluctuations of two solar systems add up when

Perez, Richard R.

266

Energy-related indoor environmental quality research: A priority agenda  

SciTech Connect (OSTI)

A multidisciplinary team of IEQ and energy researchers has defined a program of priority energy-related IEQ research. This paper describes the methods employed to develop the agenda, and 35 high priority research and development (R&D) project areas related to four broad goals: (1) identifying IEQ problems and opportunities; (2) developing and evaluating energy-efficient technologies for improving IEQ; (3) developing and evaluating energy-efficient practices for improving IEQ; and (4) encouraging or assisting the implementation of technologies or practices for improving IEQ. The identified R&D priorities reflect a strong need to benchmark IEQ conditions in small commercial buildings, schools, and residences. The R&D priorities also reflect the need to better understand how people are affected by IEQ conditions and by the related building characteristics and operation and maintenance practices. The associated research findings will provide a clearer definition of acceptable IEQ that is required to guide the development of technologies, practices, standards, and guidelines. Quantifying the effects of building characteristics and practices on IEQ conditions, in order to provide the basis for development of energy efficient and effective IEQ control measures, was also considered a priority. The development or advancement in a broad range of IEQ tools, technologies, and practices are also a major component of the priority research agenda. Consistent with the focus on ''energy-related'' research priorities, building ventilation and heating, ventilating and air conditioning (HVAC) systems and processes are very prominent in the agenda. Research related to moisture and microbiological problems, particularly within hot and humid climates, is also prominent within the agenda. The agenda tends to emphasize research on residences, small commercial buildings, and schools because these types of buildings have been underrepresented in prior research. Most of the research areas apply to both new construction and existing buildings. Nearly all of the recommended priority R&D project areas include tasks intended to facilitate the communication and implementation of the research results. In addition, the priority agenda includes several projects specifically designed to facilitate or stimulate the use of existing energy-efficient technologies and practices for improving IEQ. To assure that the research program continues to meet the needs of stakeholders and to facilitate the coordination of research among sponsors, the core team recommends an annual meeting attended by sponsors, a balanced group of stakeholders, and a selection of researchers implementing the agenda.

Fisk, W.J.; Brager, G.; Burge, H.; Cummings, J.; Levin, H.; Loftness, V.; Mendell, M.J.; Persily, A.; Taylor, S.; Zhang, J.S.

2002-08-01T23:59:59.000Z

267

Global economics/energy/environmental (E{sup 3}) modeling of long-term nuclear energy futures  

SciTech Connect (OSTI)

A global energy, economics, environment (E{sup 3}) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors.

Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

1997-09-01T23:59:59.000Z

268

Gravitational lens optical scalars in terms of energy-momentum distributions  

E-Print Network [OSTI]

This is a general work on gravitational lensing. We present new expressions for the optical scalars and the deflection angle in terms of the energy-momentum tensor components of matter distributions. Our work generalizes standard references in the literature where normally stringent assumptions are made on the sources. The new expressions are manifestly gauge invariant, since they are presented in terms of curvature components. We also present a method of approximation for solving the lens equations, that can be applied to any order.

Emanuel Gallo; Osvaldo M. Moreschi

2011-05-09T23:59:59.000Z

269

DSM savings verification through short-term pre-and-post energy monitoring at 90 facilities  

SciTech Connect (OSTI)

This paper summarizes the DSM impact results obtained from short-term energy measurements performed at sites monitored as part of the Commercial, Industrial and Agricultural (CIA) Retrofit Incentives Evaluation Program sponsored by the Pacific Gas & Electric Company. The DSM measures include those typically found in these sectors; i.e., lighting, motors, irrigation pumps and HVAC modifications. The most important findings from the site measurements are the estimated annual energy and demand savings. Although there may be large differences of projected energy savings for individual sites, when viewed in the aggregate the total energy savings for the program were found to be fairly comparable to engineering estimates. This paper describes the lessons learned from attempting in-situ impact evaluations of DSM savings under both direct and custom rebate approaches. Impact parameters of interest include savings under both direct and custom rebate approaches. Impact parameters of interest include gross first-year savings and load shape impacts. The major method discussed in this paper is short-term before/after field monitoring of affected end-uses; however, the complete impact evaluation method also includes a billing analysis component and a hybrid statistical/engineering model component which relies, in part, on the short-term end-use data.

Misuriello, H.

1994-12-31T23:59:59.000Z

270

The isospin quartic term in the kinetic energy of neutron-rich nucleonic matter  

E-Print Network [OSTI]

The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a negligibly small quartic term of only $0.45$ MeV at the saturation density of nuclear matter $\\rho_0=0.16/\\rm{fm}^3$. Using an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant quartic term of $7.18\\pm2.52\\,\\rm{MeV}$. Such a large quartic term has significant ramifications in determining the equation of state of neutron-rich nucleonic matter using both terrestrial and astrophysical observables.

Cai, Bao-Jun

2015-01-01T23:59:59.000Z

271

Jointly Sponsored Research Program on Energy Related Research  

SciTech Connect (OSTI)

Cooperative Agreements, DE-FC26-08NT43293, DOE-WRI Cooperative Research and Development Program for Fossil Energy-Related Resources began in June 2009. The goal of the Program was to develop, commercialize, and deploy technologies of value to the nations fossil and renewable energy industries. To ensure relevancy and early commercialization, the involvement of an industrial partner was encouraged. In that regard, the Program stipulated that a minimum of 20% cost share be achieved in a fiscal year. This allowed WRI to carry a diverse portfolio of technologies and projects at various development technology readiness levels. Depending upon the maturity of the research concept and technology, cost share for a given task ranged from none to as high as 67% (two-thirds). Over the course of the Program, a total of twenty six tasks were proposed for DOE approval. Over the period of performance of the Cooperative agreement, WRI has put in place projects utilizing a total of $7,089,581 in USDOE funds. Against this funding, cosponsors have committed $7,398,476 in private funds to produce a program valued at $14,488,057. Tables 1 and 2 presented at the end of this section is a compilation of the funding for all the tasks conducted under the program. The goal of the Cooperative Research and Development Program for Fossil Energy-Related Resources was to through collaborative research with the industry, develop or assist in the development of innovative technology solutions that will: Increase the production of United States energy resources coal, natural gas, oil, and renewable energy resources; Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and Minimize environmental impacts of energy production and utilization. Success of the Program can be measured by several criteria. Using the deployment of the federal funding with industrial participation as a performance criterion, over the course of the program, the copsonsors contributed more dollars than the federal funds. As stated earlier, a little more than half of the funding for the Program was derived from industrial partners. The industrial partners also enthusiastically supported the research and development activities with cash contribution of $4,710,372.67, nearly 65% of the required cost share. Work on all of the tasks proposed under the Cooperative Agreement has been completed. This report summarizes and highlights the results from the Program. Under the Cooperative Agreement Program, energy-related tasks emphasized petroleum processing, upgrading and characterization, coal and biomass beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils using microbial fuel cells, development of processes and sorbents for emissions reduction and recovery of water from power plant flue gas, and biological carbon capture and reuse. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. Technologies being brought to commercialization as a result of the funds provided by the Cooperative Agreement contribute to the overall goals of the USDOE and the nation. Each has broad applicability both within the United States and abroad, thereby helping to enhance the competitiveness of U.S. energy technologies in international markets and assisting in technology t

No, author

2013-12-31T23:59:59.000Z

272

Preliminary/Sample Residential EE Loan Term Sheet and Underwriting Criteria (Appendix A of the Clean Energy Finance Guide, 3rd Edition)  

Broader source: Energy.gov [DOE]

Provides a sample or preliminary term sheet for single family residential energy efficiency loans. Author: Energy Efficiency Finance Corp.

273

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

274

DOBEIA-0202(83/4Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy Outlook Quarterly

275

DOE/EIA-0202(84/1Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P PRELIMINARY1Q)

276

DOE/EIA-0202(84/2QH Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P PRELIMINARY1Q)2QH

277

DOE/EIA-0202(84/3Q) Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P PRELIMINARY1Q)2QH3Q)

278

DOE/EIA-0202(84/4Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P

279

DOE/EIA-0202(85/4Q) Short-Term Energy Outlook OBIS Quarterly  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P1Q)

280

DOE/EIA-0202(87/2Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P1Q)6/1Q)7/1Q)

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE/EIA-0202(87/3Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P1Q)6/1Q)7/1Q)3Q)

282

DOE/EIA-0202(87/4Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy3/P1Q)6/1Q)7/1Q)3Q)4Q)

283

DOE/EIA-0202(88/2Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term2Q) Energy Information

284

DOE/EIA-0202(88/3Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term2Q) Energy Information3Q)

285

DOE/EIA-0202|83/2Q)-1 Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term2Q) Energy1Q) 1992 1

286

Short-term energy outlook, October 1998. Quarterly projections, 1998 4. quarter  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares The Short-Term Energy Outlook (energy supply, demand, and price projections) monthly for distribution on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. In addition, printed versions of the report are available to subscribers in January, April, July and October. The forecast period for this issue of the Outlook extends from October 1998 through December 1999. Values for third quarter of 1998 data, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the October 1998 version of the Short-term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

NONE

1998-10-01T23:59:59.000Z

287

Bibliography of publications related to Classical and Quantum Gravity in terms of Connection and Loop Variables  

E-Print Network [OSTI]

This bibliography attempts to give a comprehensive overview of all the literature related to the Ashtekar connection and the Rovelli-Smolin loop variables. The original version was compiled by Peter H\\"ubner in 1989, and it has been subsequently updated by Gabriela Gonzalez, Bernd Br\\"ugmann, Monica Pierri, Troy Schilling, Alejandro Corichi and Christopher Beetle. Information about additional literature, new preprints, and especially corrections are always welcome.

Christopher Beetle; Alejandro Corichi

1997-03-18T23:59:59.000Z

288

China's Building Energy Demand: Long-Term Implications from a Detailed Assessment  

SciTech Connect (OSTI)

We present here a detailed, service-based model of Chinas building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of Chinas building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how Chinas building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that Chinas building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

2012-10-01T23:59:59.000Z

289

China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment  

SciTech Connect (OSTI)

We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

2012-01-13T23:59:59.000Z

290

China-Medium and Long Term Energy Conservation Plan | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake South Range Geothermal

291

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System OutagesNewsMaterialsX-rayOur‹ Analysis &

292

QUARTER SHORT-TERM ENERGY OUTLOOK QUARTERLY PROJECTIONS ENERGY INFORMATION ADMINISTRATION  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet) Year Weekly7 (Released July1Q)

293

QUARTER SHORT-TERM ENERGY OUTLOOK QUARTERLY PROJECTIONS ENERGY INFORMATION ADMINISTRATION  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet) Year Weekly7 (Released

294

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1 October

295

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1 October‹

296

Short-Term Energy Outlook Supplement: Energy-weighted industrial production indices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34 1andOutlook4

297

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328Administration (EIA)propanenaturalSpecial Analysis +

298

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328Administration (EIA)propanenaturalSpecial Analysis

299

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328Administration (EIA)propanenaturalSpecial AnalysisAll

300

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328Administration (EIA)propanenaturalSpecial

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328Administration

302

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule Release Date. The

303

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule Release Date. TheSummer

304

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule Release Date. TheSummerCoal

305

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule Release Date.

306

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule Release Date.Global Petroleum

307

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule Release Date.Global

308

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule Release Date.GlobalPrices

309

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule Release

310

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule ReleaseEconomic Assumptions

311

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule ReleaseEconomic

312

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease Schedule ReleaseEconomicMarket Prices

313

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015 Residentialdrivers to pullEconomic AssumptionsMarket

314

Short Term Energy Monitoring: What Does This Information Mean to the Facility Energy Manager?  

E-Print Network [OSTI]

off. Major results for this test were: Lighting: The total demand level of all lighting was found to be about 277 kW. The lighting energy used during a typical academic workweek in the Engineering Physics Building-Office side was determined... 3). EPB teaching side has a higher demand, 2 10 kW than the EPB office side at 67 kW. After the lights, AHUs and pumps were shut off in the building, a baseload of 100 kW and 25 kW were found for the teaching and office sides respectively...

Bryant, J. A.; Carlson, K. A.

2000-01-01T23:59:59.000Z

315

Water-related planning and design at energy firms  

SciTech Connect (OSTI)

Water related planning and design at energy firms are examined. By identifying production alternatives and specifying the cost of these alternatives under a variety of conditions, one gains insight into the future pattern of water use in the energy industry and the response of industry to water-related regulation. In Part II, the three principal decisions of industry that affect water allocation are reviewed: where to build plants, where to get water, and how much water to use. The cost of water use alternatives is reviewed. Part III presents empirical data to substantiate the inferences derived from engineering/economic analysis. The source of water, type of cooling system, and pattern of discharge for electric plants constructed during the 1970s or projected to come on line in this decade are reported. In the 1970s in the US, there was a trend away from once-through cooling toward use of evaporative cooling. Freshwater, as a source of supply, and discharge of effluent were standard practice. In the 1980s, almost all new capacity in the states and basins surveyed will use evaporative cooling. It is pointed out that a thorough understanding of industrial water use economics and water markets is a precursor to successful regulation.

Abbey, D; Lucero, F

1980-11-01T23:59:59.000Z

316

Renewable Energy Across the 50 United States and Related Factors.  

E-Print Network [OSTI]

??Renewable energy production replaces diminishing non-renewable energy sources including fossil fuels. Major sources of renewable energy include biofuels, geothermal, hydroelectric, solar thermal and photovoltaic, wind, (more)

Christenson, Cynthia Brit

2013-01-01T23:59:59.000Z

317

DOE/EIA-0202(88/1Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term

318

The economic, energy, and environmental impacts of the Energy-Related Inventions Program  

SciTech Connect (OSTI)

This report provides information on the economic, energy, and environmental impacts of inventions supported by the Energy-Related Inventions Program (ERIP) -- a program jointly operated by the US Department of Energy and the National Institute of Standards and Technology (NIST). It describes the results of the latest in a series of ERIP evaluation projects that have been completed since 1980. The period of interest is 1980 through 1992. The evaluation is based on data collected in 1993 through mail and telephone surveys of 253 program participants, and historical data collected during previous evaluations for an additional 189 participants.

Brown, M.A.; Wilson, C.R.; Franchuk, C.A.; Cohn, S.M.; Jones, D.

1994-07-01T23:59:59.000Z

319

Energy Consumption in Wireless Sensor Networks is a fundamental issue in terms of functionality and network lifetime. Minimization  

E-Print Network [OSTI]

ABSTRACT Energy Consumption in Wireless Sensor Networks is a fundamental issue in terms of functionality and network lifetime. Minimization of energy consumption by applying optimization techniques setup. Application driven profiling of energy consumption at the node level is a useful tool for optimal

Vouyioukas, Demosthenes

320

Development and characterization of a new MgSO4-zeolite composite for long-term thermal energy storage  

E-Print Network [OSTI]

the material. For that specific purpose, a new thermal energy storage composite material has been developed expanded structure for MgSO4, with energy densities of 150-400 kWh.m-3 at a storage temperature compatible. Keywords: thermal energy storage; thermochemical process; long-term storage; zeolites; magnesium sulphate

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

eShare: A Capacitor-Driven Energy Storage and Sharing Network for Long-Term Operation  

E-Print Network [OSTI]

eShare: A Capacitor-Driven Energy Storage and Sharing Network for Long-Term Operation Ting Zhu, Yu, Twin Cities {tzhu, yugu, tianhe, zhzhang}@cs.umn.edu Abstract The ability to move energy around makes it feasible to build distributed energy storage systems that can robustly ex- tend the lifetime of networked

Zhang, Zhi-Li

322

Investigation of nuclide importance to functional requirements related to transport and long-term storage of LWR spent fuel  

SciTech Connect (OSTI)

This study investigates the relative importances of the various actinide, fission-product, and light-element isotopes associated with LWR spent fuel with respect to five analysis areas: criticality safety (absorption fractions), shielding (dose rate fractions), curies (fractional curies levels), decay heat (fraction of total watts), and radiological toxicity (fraction of potential committed effective dose equivalent). These rankings are presented for up to six different burnup/enrichment scenarios and at decay times from 2 to 100,000 years. Ranking plots for each of these analysis areas are given in an Appendix for completeness, as well as summary tables in the main body of the report. Summary rankings are presented in terms of high (greater than 10% contribution to the total), medium (between 1% and 10% contribution), and low (less than 1% contribution) for both short- and long-term cooling. When compared with the expected measurement accuracies, these rankings show that most of the important isotopes can be characterized sufficiently for the purpose of radionuclide generation/depletion code validation in each of the analysis areas. Because the main focus of this work is on the relative importances of isotopes associated with L@ spent fuel, some conclusions may not be applicable to similar areas such as high-level waste (HLW) and nonfuel-bearing components (NFBC).

Broadhead, B.L.; DeHart, M.D.; Ryman, J.C.; Tang, J.S.; Parks, C.V.

1995-06-01T23:59:59.000Z

323

Definition of Total Energy budget equation in terms of moist-air Enthalpy surface flux  

E-Print Network [OSTI]

Uncertainty exists concerning the proper formulation of surface heat fluxes, namely the sum of "sensible" and "latent" heat fluxes, and in fact concerning these two fluxes if they are considered as separate fluxes. In fact, eddy flux of moist-air energy must be defined as the eddy transfer of moist-air specific enthalpy ($\\overline{w' h'}$), where the specific enthalpy ($h$) is equal to the internal energy of moist air plus the pressure divided by the density (namely $h = e_{\\rm int} + p/\\rho$). The fundamental issue is to compute this local (specific) moist-air enthalpy ($h$), and in particular to determine absolute reference value of enthalpies for dry air and water vapour $(h_d)_{\\rm ref}$ and $(h_v)_{\\rm ref}$. New results shown in Marquet (QJRMS 2015, arXiv:1401.3125) are based on the Third-law of Thermodynamics and can allow these computations. In this note, this approach is taken to show that Third-law based values of moist-air enthalpy fluxes is the sum of two terms. These two terms are similar to wha...

Marquet, Pascal

2015-01-01T23:59:59.000Z

324

Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Amchitka, Alaska, Site  

SciTech Connect (OSTI)

This Long-Term Surveillance and Maintenance Plan describes how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at the Amchitka, Alaska, Site1. Three underground nuclear tests were conducted on Amchitka Island. The U.S. Department of Defense, in conjunction with the U.S. Atomic Energy Commission (AEC), conducted the first nuclear test (Long Shot) to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC as a means to study the feasibility of detonating a much larger device. The final nuclear test (Cannikin), the largest United States underground test, was a weapons-related test. Surface disturbances associated with these tests have been remediated. However, radioactivity remains deep below the surface, contained in and around the test cavities, for which no feasible remediation technology has been identified. In 2006, the groundwater model (Hassan et al. 2002) was updated using 2005 data collected by the Consortium for Risk Evaluation with Stakeholder Participation. Model simulation results indicate there is no breakthrough or seepage of radionuclides into the marine environment within 2,000 years. The Amchitka conceptual model is reasonable; the flow and transport simulation is based on the best available information and data. The simulation results are a quantitative prediction supported by the best available science and technology. This Long-Term Surveillance and Maintenance Plan is an additional step intended for the protection of human health and the environment. This plan may be modified from time to time in the future consistent with the mission to protect human health

None

2008-09-01T23:59:59.000Z

325

Atomic Energy Act and Related Legislation. Environmental Guidance Program Reference Book: Revision 6  

SciTech Connect (OSTI)

This report presents information related to the Atomic Energy Act and related legislation. Sections are presented pertaining to legislative history and statutes, implementing regulations, and updates.

Not Available

1992-09-01T23:59:59.000Z

326

Wave Functions and Energy Terms of the SCHRdinger Equation with Two-Center Coulomb Plus Harmonic Oscillator Potential  

E-Print Network [OSTI]

Schr\\"odinger equation for two center Coulomb plus harmonic oscillator potential is solved by the method of ethalon equation at large intercenter separations. Asymptotical expansions for energy term and wave function are obtained in the analytical form.

D. Matrasulov

1998-04-17T23:59:59.000Z

327

Short-Term Energy Outlook Supplement: Uncertainties in the Short-Term Global Petroleum and Other Liquids Supply Forecast  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34Summer 2013

328

Energy-momentum relation for solitary waves of relativistic wave equations  

E-Print Network [OSTI]

Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova; A. I. Komech; H. Spohn

2005-08-23T23:59:59.000Z

329

Energy-momentum relation for solitary waves of nonlinear Dirac equations  

E-Print Network [OSTI]

Solitary waves of nonlinear Dirac, Maxwell-Dirac and Klein-Gordon-Dirac equations are considered. We prove that the energy-momentum relation for solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova

2014-04-28T23:59:59.000Z

330

Long-Term US Industrial Energy Use and CO2 Emissions  

SciTech Connect (OSTI)

We present a description and scenario results from our recently-developed long-term model of United States industrial sector energy consumption, which we have incorporated as a module within the ObjECTS-MiniCAM integrated assessment model. This new industrial model focuses on energy technology and fuel choices over a 100 year period and allows examination of the industrial sector response to climate policies within a global modeling framework. A key challenge was to define a level of aggregation that would be able to represent the dynamics of industrial energy demand responses to prices and policies, but at a level that remains tractable over a long time frame. In our initial results, we find that electrification is an important response to a climate policy, although there are services where there are practical and economic limits to electrification, and the ability to switch to a low-carbon fuel becomes key. Cogeneration of heat and power using biomass may also play a role in reducing carbon emissions under a policy constraint.

Wise, Marshall A.; Sinha, Paramita; Smith, Steven J.; Lurz, Joshua P.

2007-12-03T23:59:59.000Z

331

Computing Relative Free Energies of Solvation Using Single Reference Thermodynamic Integration Augmented  

E-Print Network [OSTI]

Computing Relative Free Energies of Solvation Using Single Reference Thermodynamic Integration relative transformation free energies in a series of molecules with respect to a single reference state of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series

332

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

window related primary energy consumption of the US building= 1.056 EJ. Primary energy consumption includes a site-to-the amount of primary energy consumption required by space

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

333

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

Fleet energy production and demand scenario (red) . . . . .Fleet energy production and demand scenario (red) . . . . .mass . . . . . . . . . . Fleet energy production and demand

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

334

Study of luminosity and spin-up relation in X-ray binary pulsars with long-term monitoring by MAXI/GSC and Fermi/GBM  

E-Print Network [OSTI]

We study the relation between luminosity and spin-period change in X-ray binary pulsars using long-term light curve obtained by the MAXI/GSC all-sky survey and pulse period data from the Fermi/GBM pulsar project. X-ray binaries, consisting of a highly magnetized neutron star and a stellar companion, originate X-ray emission according to the energy of the accretion matter onto the neutron star. The accretion matter also transfers the angular momentum at the Alfven radius, and then spin up the neutron star. Therefore, the X-ray luminosity and the spin-up rate are supposed to be well correlated. We analyzed the luminosity and period-change relation using the data taken by continuous monitoring of MAXI/GSC and Fermi/GBM for Be/X-ray binaries, GX 304$-$1, A 0535$+$26, GRO J1008$-$57, KS 1947$+$300, and 2S 1417$-$624, which occurred large outbursts in the last four years. We discuss the results comparing the obtained observed relation with that of the theoretical model by Ghosh \\& Lamb (1979).

Sugizaki, Mutsumi; Nakajima, Motoki; Yamaoka, Kazutaka

2015-01-01T23:59:59.000Z

335

Composite dark energy: cosmon models with running cosmological term and gravitational coupling  

E-Print Network [OSTI]

In the recent literature on dark energy (DE) model building we have learnt that cosmologies with variable cosmological parameters can mimic more traditional DE pictures exclusively based on scalar fields (e.g. quintessence and phantom). In a previous work we have illustrated this situation within the context of a renormalization group running cosmological term, Lambda. Here we analyze the possibility that both the cosmological term and the gravitational coupling, G, are running parameters within a more general framework (a variant of the so-called ``LXCDM models'') in which the DE fluid can be a mixture of a running Lambda and another dynamical entity X (the ``cosmon'') which may behave quintessence-like or phantom-like. We compute the effective EOS parameter, w, of this composite fluid and show that the LXCDM can mimic to a large extent the standard LCDM model while retaining features hinting at its potential composite nature (such as the smooth crossing of the cosmological constant boundary w=-1). We further argue that the LXCDM models can cure the cosmological coincidence problem. All in all we suggest that future experimental studies on precision cosmology should take seriously the possibility that the DE fluid can be a composite medium whose dynamical features are partially caused and renormalized by the quantum running of the cosmological parameters.

Javier Grande; Joan Sola; Hrvoje Stefancic

2006-12-16T23:59:59.000Z

336

Using Social Media for Long-Term Branding | Department of Energy  

Office of Environmental Management (EM)

for Long-Term Branding Using Social Media for Long-Term Branding Better Buildings Residential Network Marketing and Outreach Peer Exchange Call Series: Using Social Media for...

337

Renewable Energy Finance Tracking Initiative (REFTI): Snapshot of Recent Geothermal Financing Terms, Fourth Quarter 2009 - Second Half 2011  

SciTech Connect (OSTI)

This report is a review of geothermal project financial terms as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The data were collected over seven analysis periods from the fourth quarter (Q4) of 2009 to the second half (2H) of 2011.

Lowder, T.; Hubbell, R.; Mendelsohn, M.; Cory, K.

2012-09-01T23:59:59.000Z

338

Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies  

SciTech Connect (OSTI)

This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

Zhang, Yabei; Smith, Steven J.

2007-08-16T23:59:59.000Z

339

Petroleum Refining Energy Use in Relation to Fuel Products Made  

E-Print Network [OSTI]

In recent years crude oils available to refiners have required more energy to refine and refiners have adjusted their processes to obtain better energy efficiency. In addition, the shift to lead-free gasoline has led to refining adjustments...

White, J. R.; Marshall, J. F.; Shoemaker, G. L.; Smith, R. B.

1983-01-01T23:59:59.000Z

340

Relative efficiency of land surface energy balance components  

E-Print Network [OSTI]

[1] The partitioning of available energy into dissipative fluxes over land surfaces is dependent on the state variable of the surface energy balance (land surface temperature) and the state variable of the surface water ...

Bateni, S. M.

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Department of Energy Data Access and Privacy Issues Related To...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to advance consumer welfare, civic participation, public safety and homeland security, health care delivery, energy independence and efficiency, education, entrepreneurial...

342

Software-related Energy Footprint of a Wireless Broadband Module  

E-Print Network [OSTI]

on the power consumption. This opens up for potential energy savings by creating better ap- plications Keywords 3G, Energy footprint, Power consumption, Wireless broad- band 1. INTRODUCTION The battery lifetime the energy consumption is an essential part of de- veloping new hardware components, it has been a neglected

343

Daylighting Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Articles Lighting and Daylighting Basics Glossary of Energy-Related Terms Passive Solar Building Design Basics Energy Basics Home Renewable Energy Homes & Buildings Lighting...

344

Mitigation Action Plans (MAP) and Related Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared TemansonEnergySAR.docEnergyThrough

345

Climate-development-energy policy related seminars Spring term 2013 (TB2)  

E-Print Network [OSTI]

change Climate Change & Development Tue 19th Feb. 13.00- 14.30 Jubilee G31 John Kessels (IEA Clean Coal

Jensen, Max

346

Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research  

SciTech Connect (OSTI)

For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oak Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.

Hemrick, James Gordon [ORNL

2013-01-01T23:59:59.000Z

347

Short-Term Energy Monitoring (STEM): Application of the PSTAR method to a residence in Fredericksburg, Virginia  

SciTech Connect (OSTI)

This report describes a project to assess the thermal quality of a residential building based on short-term tests during which a small number of data channels are measured. The project is called Short- Term Energy Monitoring (STEM). Analysis of the data provides extrapolation to long-term performance. The test protocol and analysis are based on a unified method for building simulations and short-term testing called Primary and Secondary Terms Analysis and Renormalization (PSTAR). In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance is best satisfied in the least squares sense; hence, the name PSTAR. The mathematical formulation of PSTAR is detailed in earlier reports. This report describes the short-term tests and data analysis performed using the PSTAR method on a residential building in Fredricksburg, Virginia. The results demonstrate the ability of the PSTAR method to provide a realistically complex thermal model of a building, and determine from short-term tests the statics as well as the dynamics of a building, including solar dynamics. 10 refs., 12 figs., 2 tabs.

Subbarao, K.; Burch, J.D.; Hancock, C.E.; Lekov, A.; Balcomb, J.D.

1988-09-01T23:59:59.000Z

348

Relative Dating and Classification of Minerals and Rocks Based on Statistical Calculations Related to Their Potential Energy Index  

E-Print Network [OSTI]

Index of proportionality of atomic weights of chemical elements is proposed for determining the relative age of minerals and rocks. Their chemical analysis results serve to be initial data for calculations. For rocks of different composition the index is considered to be classification value as well. Crystal lattice energy change in minerals and their associations can be measured by the index value change, thus contributing to the solution of important practical problems. There was determined the effect of more rapid increase of potential energy of limestone with relatively low lattice energy as compared with the others.

Labushev, Mikhail M

2012-01-01T23:59:59.000Z

349

INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS  

SciTech Connect (OSTI)

In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that the AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre.

Tziotziou, Kostas; Georgoulis, Manolis K. [Research Center for Astronomy and Applied Mathematics (RCAAM) Academy of Athens, 4 Soranou Efesiou Street, Athens, GR-11527 (Greece); Liu Yang [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

2013-08-01T23:59:59.000Z

350

Energy-Efficiency-Related Conference Papers and Workshop Summarys  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Energy Efficiency > Conference Papers Conference Papers Page Last Modified: September 2007 The Growth in Electricity Demand in U.S....

351

Executive Order 13212 - Actions To Expedite Energy-Related Projects:  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memoCity of Los Angeles

352

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

A Brief History of Nuclear Energy . . . . . . . . NuclearBrief History of Nuclear Energy The history of nuclear powerRisk The history of nuclear energy to date reflects

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

353

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencewithin the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

354

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

355

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencethe Seasonal Thermal Energy Storage program managed by

Tsang, C.F.

2013-01-01T23:59:59.000Z

356

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.Proceedings of Aquifer Thermal Energy Storage Workshop,within the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

357

Application of Inverse Models for Long-Term-Energy-Monitoring in the German Enbau: Monitor Project  

E-Print Network [OSTI]

in order to pave the way for energy savings and utilizing solar energy in non residential buildings, the german federal ministry of economics and technology (bmwi) has established an energy research program called "energy optimized building...

Neumann, C.; Herkel, S.; Lohnert, G.; Voss, K.; Wagner, A.

2006-01-01T23:59:59.000Z

358

Isoperimetric Inequalities Related to Mass and Energy in General ...  

E-Print Network [OSTI]

THE 3RD SYMPOSIUM ON ANALYSIS AND PDES. PURDUE UNIVERSITY, MAY 2730, 2007. ISOPERIMETRIC INEQUALITIES RELATED TO MASS AND.

2007-05-17T23:59:59.000Z

359

Voluntary Protection Program - Related Links | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReportVictor Kane Aboutfor NanoscaleCongress-

360

Energy-Related Carbon Emissions, by Industry, 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy for39 Table A3.9995Energy

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Relation between the Fundamental Scale Controlling High-Energy  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of theResourcecomments/rss enExpansionTHE DEPARTMENT OF ENERGY'S

362

Mass-Energy-Momentum in General Relativity. Only there because of Spacetime?  

E-Print Network [OSTI]

Mass-Energy-Momentum in General Relativity. Only there because of Spacetime? DRAFT VERSION. Dennis to possess mass to the requirement of them having a mass-energy-momentum density tensor Tµ (energy tensor property of matter, looking at how the energy tensor for a relativistic material system can be derived

Wüthrich, Christian

363

Case Studies of Energy Information Systems and Related Technology: Operational Practices, Costs, and Benefits  

E-Print Network [OSTI]

Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs...

Motegi, N.; Piette, M. A.; Kinney, S.; Dewey, J.

2003-01-01T23:59:59.000Z

364

Energy and Water Development and Related Agencies Appropriations Act of 2010  

Broader source: Energy.gov [DOE]

Section 312 of the Energy and Water Development and Related Agencies Appropriations Act of 2010 amends Section 136 of the Energy Independence and Security Act to include ultra-efficient vehicles within the definition of advanced technology vehicles.

365

Sustainable energy in Australia: an analysis of performance and drivers relative to other OECD countries .  

E-Print Network [OSTI]

??How sustainable is Australia???s pattern of energy supply and use? What are the major factors explaining Australia???s sustainable energy performance relative to other countries? This (more)

Kinrade, P. A.

2009-01-01T23:59:59.000Z

366

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

of unadjusted energy-related CO2 emissions is attributed toEMISSIONS- T C EMISSIONS -T CO2 TOTAL Energy EmissionsEMISSIONS- T C EMISSIONS -T CO2 Coal Coke and Other

Fridley, David

2011-01-01T23:59:59.000Z

367

On the incorporation of cubic and hexagonal interfacial energy anisotropy in phase field models using higher order tensor terms  

E-Print Network [OSTI]

In this paper, we show how to incorporate cubic and hexagonal anisotropies in interfacial energies in phase field models; this incorporation is achieved by including upto sixth rank tensor terms in the free energy expansion, assuming that the free energy is only a function of coarse grained composition, its gradient, curvature and aberration. We derive the number of non-zero and independent components of these tensors. Further, by demanding that the resultant interfacial energy is positive definite for inclusion of each of the tensor terms individually, we identify the constraints imposed on the independent components of these tensors. The existing results in the invariant group theory literature can be used to simplify the process of construction of some (but not all) of the higher order tensors. Finally, we derive the relevant phase field evolution equations.

E. S. Nani; M. P. Gururajan

2014-04-13T23:59:59.000Z

368

(Energy related business development grant project): Final technical progress report  

SciTech Connect (OSTI)

CONSERVE, Inc., a private, not-for-profit organization, was launched in 1986 to provide energy conservation and weatherization services to low-income neighborhoods throughout New York City. Founded by three non-profit community development groups - Northern Manhattan Improvement Corporation, Operation Open City and the Coalition Management Training Company - CONSERVE, Inc., couples NYS Weatherization Assistance Program funds with privately leveraged dollars to achieve more thorough workscopes and higher energy savings in multi-family buildings housing low-income tenants. CONSERVE's services include: energy audit and workscope preparation, financial analysis and packaging and construction management. During its first year of operation, CONSERVE's primary goal was to test the feasibility of coordinating the services described above by making them available to owners of multi-family buildings and potential lenders. First-year findings proved conclusively CONSERVE's viability as an energy conservation resource for owners and tenants of low-income, multi-family buildings in New York City. Based on its accomplishments as well as its potential, the organization has received full funding for the 1987-88 fiscal year from the NYS Energy Office and the NYS Weatherization Assistance Program. This report documents the organization's activities over the last year.

Not Available

1987-10-26T23:59:59.000Z

369

Evaluation of energy savings related to building envelope retrofit techniques and ventilation strategies for low energy cooling in  

E-Print Network [OSTI]

Evaluation of energy savings related to building envelope retrofit techniques and ventilation strategies for low energy cooling in offices and commercial sector Laurent Grignon-Mass, Dominique Marchio-use Efficiency Research Group Abstract The energy savings achievable in the end-use space cooling depend

Paris-Sud XI, Universit de

370

House Subcommittee on Energy and Water Development, and Related Agencies |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History On7, 2008 -

371

Before the Subcommittee on Energy and Water Development, and Related  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy and Natural Resources By: JamesonCommerceCommittee

372

Energy Department Issues Report to Congress on Long-Term Stewardship...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases Energy Department Issues Report to Congress on ... Energy Department Issues Report to...

373

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

report, National Nuclear Security Administration, Departmentproliferation and security risks of nuclear energy systemsthe proliferation and security risk posed by nuclear energy

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

374

Inventory of Safety-related Codes and Standards for Energy Storage Systems with some Experiences related to Approval and Acceptance  

SciTech Connect (OSTI)

The purpose of this document is to identify laws, rules, model codes, codes, standards, regulations, specifications (CSR) related to safety that could apply to stationary energy storage systems (ESS) and experiences to date securing approval of ESS in relation to CSR. This information is intended to assist in securing approval of ESS under current CSR and to identification of new CRS or revisions to existing CRS and necessary supporting research and documentation that can foster the deployment of safe ESS.

Conover, David R.

2014-09-11T23:59:59.000Z

375

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

79 Minimum NU case: depleted uranium inventory and naturalTerm Management and Use of Depleted Uranium Hexflouride.Converter Fast Reactor Depleted Uranium Early fast reactor

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

376

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 1, MARCH 2009 125 Short-Term Prediction of Wind Farm Power  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 1, MARCH 2009 125 Short-Term Prediction of Wind Farm Power: A Data Mining Approach Andrew Kusiak, Member, IEEE, Haiyang Zheng, and Zhe Song, Student Member, IEEE Abstract--This paper examines time series models for predicting the power of a wind

Kusiak, Andrew

377

The Role of Energy and a New Approach to Gravitational Waves in General Relativity  

E-Print Network [OSTI]

The energy localization hypothesis of the author that energy is localized in non-vanishing regions of the energy-momentum tensor implies that gravitational waves do not carry energy in vacuum. If substantiated, this has significant implications for current research. Support for the hypothesis is provided by a re-examination of Eddington's classic calculation of energy loss by a spinning rod. It is emphasized that Eddington did not monitor the entire Tolman energy integral, concentrating solely upon the change of the 'kinetic' part of the energy . The 'quadrupole formula' is thus seen to measure the kinetic energy change. When the derivative of the missing stress-trace integral is computed, it is seen to cancel the Eddington term and hence the energy of the rod is conserved, in support of the localization hypothesis. The issue of initial and final states is addressed.

F. I. Cooperstock

1999-04-19T23:59:59.000Z

378

Long-term population, productivity, and energy use trends in the sequence of leading capitalist nations.  

SciTech Connect (OSTI)

There are many theories on why sustainable science, technology, and commerce emerged first in Western Europe rather than elsewhere. A general theory is that the geography of Europe facilitated the development of diverse and independent states and resultant competition among them. Over the past 500 years, the sequence of leading states began with Portugal and the Netherlands on the edge of continental Western Europe, then moved to the British Isles, and finally moved across the Atlantic Ocean to the United States. The transitions of leadership from one state to another occurred about every 100 years. This sequence suggests that leadership moves from smaller states to larger states (although not to the largest existing state at the time), perhaps because larger states have the flexibility to develop more complex organizational processes and adapt new technology. To explore this theory further, this paper analyzes state population data at the beginning and end of each leadership period. The data reveal an accelerating initial population sequence. Further understanding is gained from comparing the populations of the preceding and succeeding states at the time of each transition: the succeeding state's population is usually about two times larger than that of the preceding state. It is also seen that over time, the new organizational processes and technologies developed by the leading state are diffused and adapted by other states. Evidence of the effects of this diffusion should be seen in the dynamics of relative productivity and energy use (since the relative advantage of new ideas and technology can be maintained for a short period of about 100 years). This paper investigates these trends in population, trade, and resources to provide insight on possible future transitions.

LePoire, D. J. (Environmental Science Division)

2010-10-01T23:59:59.000Z

379

Uniform Methods Project Related Links | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23,Diversity of

380

Energy-Momentum Tensors and Motion in Special Relativity  

E-Print Network [OSTI]

The notions of "motion" and "conserved quantities", if applied to extended objects, are already quite non-trivial in Special Relativity. This contribution is meant to remind us on all the relevant mathematical structures and constructions that underlie these concepts, which we will review in some detail. Next to the prerequisites from Special Relativity, like Minkowski space and its automorphism group, this will include the notion of a body in Minkowski space, the momentum map, a characterisation of the habitat of globally conserved quantities associated with Poincar\\'e symmetry -- so called Poincar\\'e charges --, the frame-dependent decomposition of global angular momentum into Spin and an orbital part, and, last not least, the likewise frame-dependent notion of centre of mass together with a geometric description of the Moeller Radius, of which we also list some typical values. Two Appendices present some mathematical background material on Hodge duality and group actions on manifolds. This is a contributio...

Giulini, Domenico

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Property:OpenEI/Tool/RelatedTo | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to: navigation, searchRelatedTo Jump to:

382

Solicitation-Related Schedule Here | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliabilityDepartmentSolicitation-Related

383

Electromagnetic radiation, motion of a particle and energy-mass relation  

E-Print Network [OSTI]

Equation of motion of an uncharged arbitrarily shaped dust particle under the effects of (stellar) electromagnetic radiation and thermal emission is derived. The resulting relativistically covariant equation of motion is expressed in terms of standard optical parameters. Relations between energy and mass of the incoming and outgoing radiation are obtained, together with relations between radiation energy and mass of the particle. The role of the diffraction nicely fits the relativistic formulation of the momentum of the outgoing radiation. The inequality 0 < $\\bar{Q}'_{pr, 1} / \\bar{Q}'_{ext}$ < 2 is a simple relativistic consequence for the Poynting-Robertson (P-R) effect ($\\bar{Q}'_{ext}$ and $\\bar{Q}'_{pr, 1}$ are dimensionless efficiency factors for the extinction and radial direction of the radiation pressure, integrated over stellar spectrum). The condition for the P-R effect is $\\vec{p}'_{o}$ = (1 - $\\bar{Q}'_{pr, 1} / \\bar{Q}'_{ext}$) $\\vec{p}'_{i}$, where $\\vec{p}'_{i}$ and $\\vec{p}'_{o}$ are incoming and outgoing radiation momenta (per unit time) measured in the proper frame of reference of the particle. The case of "perfectly absorbing spherical dust particle", within geometrical optics approximation, corresponds to the condition $\\vec{p}'_{o}$ = 0.5 $\\vec{p}'_{i}$. As for arbitrarily shaped dust particle, the condition 0 < $\\bar{C}'_{pr, 1}$ / $\\bar{C}'_{ext}$ < 2 / ($1 ~+~ \\sum_{j=2}^{3} \\bar{C}'_{pr, j} / \\bar{C}'_{pr, 1}$) holds for cross sections of extinction and radiation pressure components. The condition can add a new information to the results obtained from observations, measurements and numerical calculations of the optical properties of the particle.

J. Klacka

2008-07-18T23:59:59.000Z

384

Inventory of Federal energy-related environment and safety research for FY 1979. Volume II. Project listings and indexes  

SciTech Connect (OSTI)

This volume contains summaries of FY 1979 government-sponsored environment and safety research related to energy arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each contributing agency. Information elements included in the summary listings are project title, principal investigators, research organization, project number, contract number, supporting organization, funding level, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in the back of this volume.

None

1980-12-01T23:59:59.000Z

385

Relative grain boundary area and energy distributions in nickel Jia Li, Shen J. Dillon 1  

E-Print Network [OSTI]

Relative grain boundary area and energy distributions in nickel Jia Li, Shen J. Dillon 1 , Gregory boundary energies and areas are inversely correlated. 2009 Acta Materialia Inc. Published by Elsevier Ltd and focused ion beam serial sectioning. These data have been used to determine the relative areas of different

Rohrer, Gregory S.

386

Ground-state energy and frustration of the Sherrington-Kirkpatrick model and related models  

E-Print Network [OSTI]

Ground-state energy and frustration of the Sherrington-Kirkpatrick model and related models S. Kobe-glass containing up to N = 90 spins. A ground-state energy per spin e 0 = -0.7636 ± 0.0004 is found from the N with those of two related models, which can be introduced by replacing all interactions of the SK model

Kobe, Sigismund

387

Diversity and Inclusion Related Documents | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » AlternativeUp HomeHorseDOECybersecurity andDisabilityServices »

388

Clark Atlanta Universities (CAU) Energy Related Research Capabilities |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment of Energy Clark Atlanta

389

Employment at EERE Related Links | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011 EMAB MeetingInformation Center» Employment at

390

FAQs Related to the Recovery Act | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department of9ofDepartment ofat SavannahEofAct

391

U.S. Energy-Related Carbon Dioxide Emissions, 2013  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 Propane UpdatesOrigin

392

EO 13212: Actions To Expedite Energy-Related Projects  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement ||MoreThis documentWHITE HOUSE1833853 Federal57

393

Formulating Energy Policies Related to Fossil Fuel Use:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" Give Forms (All forms are inForms

394

Relative Proton Affinities from Kinetic Energy Release Distributions for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051 Modification MO 12Dissociation of

395

Estimates of State Energy-Related Carbon Dioxide Emissions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade2003 DetailedUse inRevenueMay

396

Mitigation Action Plans (MAP) and Related Documents | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May1.docEx5.docofPotomac

397

Mitigation Action Plans (MAP) and Related Documents | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May1.docEx5.docofPotomacJuly 1, 2009 EIS-0323:

398

Chiller Controls-related Energy Saving Opportunities in FederalFacilities  

SciTech Connect (OSTI)

Chillers are a significant component of large facility energy use. The focus of much of the development of chilled water systems in recent years has been on optimization of set point and staging controls, improvements in chiller design to increase efficiency and accommodate chlorofluorocarbon (CFC) refrigerant replacements. Other improvements have been made by upgrading controls to the latest digital technologies, improving access and monitoring via communications and sophisticated liquid crystal displays (LCD), more robust fault diagnostics and operating and maintenance information logging. Advances have also been made in how chiller plant systems are designed and operated, and in the diversity of chiller products that are available to support innovative approaches. As in many industries, these improvements have been facilitated by advances in, and lower costs for, enabling technologies, such as refrigerants, compressor design, electronics for controls and variable frequency drives (VFD). Along with the improvements in electronics one would expect that advances have also been made in the functionality of unit controls included with chillers. Originally, the primary purpose of this project was to investigate the state of practice of chiller unit controllers in terms of their energy saving capabilities. However, early in the study it was discovered that advances in this area did not include incorporation of significantly different capabilities than had existed 10-15 years ago. Thus the scope has been modified to provide an overview of some of the basic controls-related energy saving strategies that are currently available along with guideline estimates of their potential and applicability. We have minimized consideration of strategies that could be primarily implemented via design practices such as chiller selection and plant design, and those that can only be implemented by a building management system (BMS). Also, since most of the floor space of federal buildings occurs in large buildings, we have focused on water-cooled screw and centrifugal chillers of 100 ton capacity and greater. However, the role of reciprocating and gas chillers (absorption and engine driven) is discussed briefly. Understanding the demographics of chiller deployment in the federal sector, state of practice of energy savings strategies and control features availability will help federal energy managers and program implementers to make informed decisions in support of energy saving performance contracting (ESPC) and other programs.

Webster, Tom

2003-01-01T23:59:59.000Z

399

A review of selected energy-related data sets  

SciTech Connect (OSTI)

DOE`s Office of Planning and Assessment (OPA) performs crosscutting technical, policy, and environmental assessments of energy technologies and markets. To support these efforts, OPA is in the process of creating a data base management system (DBMS) that will include relevant data compiled from other sources. One of the first steps is a review of selected data sets that may be considered for inclusion in the DBMS. The review covered data sets in five categories: buildings-specific data, industry-specific data, transportation-specific data, utilities-specific data, and crosscutting/general data. Reviewed data sets covered a broad array of energy efficiency, renewable, and/or benchmark technologies. Most data sets reviewed in this report are sponsored by Federal government entities and major industry organizations. Additional data sets reviewed are sponsored by the states of California and New York and regional entities in the Pacific Northwest. Prior to full review, candidate data sets were screened for their utility to OPA. Screening criteria included requirements that a data set be particularly applicable to OPA`s data needs, documented, current, and obtainable. To fully implement its DBMS, OPA will need to expand the review to other data sources, and must carefully consider the implications of differing assumptions and methodologies when comparing data.

Nicholls, A.K.; Elliott, D.B.; Jones, M.L. [Pacific Northwest Lab., Richland, WA (United States); Hannifan, J.M.; Degroat, K.J.; Eichner, M.J.; King, J.E. [Meridian Corp., Alexandria, VA (United States)

1992-09-01T23:59:59.000Z

400

A review of selected energy-related data sets  

SciTech Connect (OSTI)

DOE's Office of Planning and Assessment (OPA) performs crosscutting technical, policy, and environmental assessments of energy technologies and markets. To support these efforts, OPA is in the process of creating a data base management system (DBMS) that will include relevant data compiled from other sources. One of the first steps is a review of selected data sets that may be considered for inclusion in the DBMS. The review covered data sets in five categories: buildings-specific data, industry-specific data, transportation-specific data, utilities-specific data, and crosscutting/general data. Reviewed data sets covered a broad array of energy efficiency, renewable, and/or benchmark technologies. Most data sets reviewed in this report are sponsored by Federal government entities and major industry organizations. Additional data sets reviewed are sponsored by the states of California and New York and regional entities in the Pacific Northwest. Prior to full review, candidate data sets were screened for their utility to OPA. Screening criteria included requirements that a data set be particularly applicable to OPA's data needs, documented, current, and obtainable. To fully implement its DBMS, OPA will need to expand the review to other data sources, and must carefully consider the implications of differing assumptions and methodologies when comparing data.

Nicholls, A.K.; Elliott, D.B.; Jones, M.L. (Pacific Northwest Lab., Richland, WA (United States)); Hannifan, J.M.; Degroat, K.J.; Eichner, M.J.; King, J.E. (Meridian Corp., Alexandria, VA (United States))

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Continuous fiber ceramic composites for energy related applications. Final report  

SciTech Connect (OSTI)

The US Department of Energy has established the Continuous Fiber Ceramic Composites (CFCC) program to develop technology for the manufacture of CFCC`s for use in industrial applications where a reduction in energy usage or emissions could be realized. As part of this program, the Dow Chemical Company explored the manufacture of a fiber reinforced/self reinforced silicon nitride for use in industrial chemical processing. In Dow`s program, CFCC manufacturing technology was developed around traditional, cost effective, tape casting routes. Formulations were developed and coupled with unique processing procedures which enabled the manufacture of tubular green laminates of the dimension needed for the application. An evaluation of the effect of various fibers and fiber coatings on the properties of a fiber reinforced composites was also conducted. Results indicated that fiber coatings could provide composites exhibiting non-catastrophic failure and substantially improved toughness. However, an evaluation of these materials in industrial process environments showed that the material system chosen by Dow did not provide the required performance improvements to make replacement of current metallic components with CFCC components economically viable.

NONE

1998-04-07T23:59:59.000Z

402

NEPA-Related Public Involvement | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMovingJanuary 7,Lessons Learned|NEPA-Related

403

Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics  

E-Print Network [OSTI]

Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics the equilibrium free energy and the nonequilibrium work is useful for computer simulations. In this paper, we exploit the fact that the free energy is a state function, independent of the pathway taken to change

Sun, Sean

404

Postdoctoral Researcher Energy Efficient Networking Up to 2 year fixed term contract  

E-Print Network [OSTI]

is recruiting a postdoctoral researcher to work on the energy- efficient design of wired IP networks, as part

Humphrys, Mark

405

Efficient, sustainable production of molecular hydrogen -a promising alternative to batteries in terms of energy storage -is still an unsolved problem. Implementation of direct water splitting  

E-Print Network [OSTI]

in terms of energy storage - is still an unsolved problem. Implementation of direct water splitting usingEfficient, sustainable production of molecular hydrogen - a promising alternative to batteries

Ku?el, Petr

406

Academic Training: J-1 Exchange Students Academic training is a term used by the US Department of State to describe work, training, or experience related to a student's  

E-Print Network [OSTI]

Academic Training: J-1 Exchange Students Academic training is a term used by the US Department of State to describe work, training, or experience related to a student's major field of study. It may involve sequential or simultaneous activities, either paid or unpaid. There can be one or more training

Latiolais, M. Paul

407

Relation between quark-antiquark potential and quark-antiquark free energy in hadronic matter  

E-Print Network [OSTI]

We study the relation between the quark-antiquark potential and the quark-antiquark free energy in hadronic matter. While a temperature is over the critical temperature, the potential of a heavy quark and a heavy antiquark almost equals the free energy, otherwise the quark-antiquark potential is substantially larger than the quark-antiquark free energy. While a temperature is below the critical temperature, the quark-antiquark free energy can be taken as the quark-antiquark potential.

Zhen-Yu Shen; Xiao-Ming Xu

2014-06-19T23:59:59.000Z

408

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

Material . . . . . Generation IV International ForumDepartment of Energy and Generation IV Interational Forum,are based on the eight Generation IV International Forum (

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

409

Development and Update of Models for Long-Term Energy and GHG...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(VISION) model's over 300 users: DOE - Vehicle Technologies Program, Hydrogen and Fuel Cells Program, Biofuels Program, Policy Office, Energy Information Administration ...

410

A Local Description of Dark Energy in Terms of Classical Two-Component Massive Spin-One Uncharged Fields on Spacetimes with Torsionful Affinities  

E-Print Network [OSTI]

It is assumed that the two-component spinor formalisms for curved spacetimes that are endowed with torsionful affine connexions can supply a local description of dark energy in terms of classical massive spin-one uncharged fields. The relevant wave functions are related to torsional affine potentials which bear invariance under the action of the generalized Weyl gauge group. Such potentials are thus taken to carry an observable character and emerge from contracted spin affinities whose patterns are chosen in a suitable way. New covariant calculational techniques are then developed towards deriving explicitly the wave equations that supposedly control the propagation in spacetime of the dark energy background. What immediately comes out of this derivation is a presumably natural display of interactions between the fields and both spin torsion and curvatures. The physical properties that may arise directly from the solutions to the wave equations are not brought out.

J. G. Cardoso

2015-01-04T23:59:59.000Z

411

The Long-Term Economic Impacts of Implementing the Energy Security Leadership Council's  

E-Print Network [OSTI]

. First, higher real GDP and income levels mean that the consumption of energy and oil will be higher, all flows in the economy, such as energy use, with macroeconomic aggregates, such as GDP, consumption, the LIFT model was used to simulate the impact of its policies compared to a LIFT baseline projection

Hill, Wendell T.

412

Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity  

E-Print Network [OSTI]

carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

413

Recoilless Resonance Absorption of Tritium Antineutrinos and Time-Energy Uncertainty Relation  

E-Print Network [OSTI]

We discuss neutrino oscillations in an experiment with M\\"ossbauer recoilless resonance absorbtion of tritium antineutrinos, proposed recently by Raghavan. We demonstrate that small energy uncertainty of antineutrinos which ensures a large resonance absorption cross section is in a conflict with the energy uncertainty which, according to the time-energy uncertainty relation, is necessary for neutrino oscillations to happen. The search for neutrino oscillations in the M\\"ossbauer neutrino experiment would be an important test of the applicability of the time-energy uncertainty relation to a newly discovered interference phenomenon.

S. M. Bilenky

2007-08-02T23:59:59.000Z

414

Postdoctoral Researcher Energy Efficient Networking Up to 2 year fixed term contract  

E-Print Network [OSTI]

Institute in Dublin City University is recruiting a postdoctoral researcher to work on the energy-efficient design of wired IP networks, as part of the EU-funded ECONET Integrated Project (http

Humphrys, Mark

415

Achieving A Long Term Business Impact by Improving the Energy Effectiveness and Reliability of Electric Motors  

E-Print Network [OSTI]

Over 100,000 electric motors drive the production equipment throughout a large chemical company. The energy-efficiency and reliability of these motors during their entire life have a decided impact on the company's manufacturing costs and production...

Whelan, C. D.

416

Renewables Intermittency: Operational Limits and Implications for Long-Term Energy System Models  

E-Print Network [OSTI]

In several regions of the world, the share of intermittent renewables (such as wind and solar PV) in electricity generation is rapidly increasing. The current share of these renewable energy sources (RES) can still more ...

Delarue, E.

417

Money versus Time: Evaluation of Flow Control in Terms of Energy Consumption and Convenience  

E-Print Network [OSTI]

Flow control with the goal of reducing the skin friction drag on the fluid-solid interface is an active fundamental research area, motivated by its potential for significant energy savings and reduced emissions in the transport sector. Customarily, the performance of drag reduction techniques in internal flows is evaluated under two alternative flow conditions, i.e. at constant mass flow rate or constant pressure gradient. Successful control leads to reduction of drag and pumping power within the former approach, whereas the latter leads to an increase of the mass flow rate and pumping power. In practical applications, however, money and time define the flow control challenge: a compromise between the energy expenditure (money) and the corresponding convenience (flow rate) achieved with that amount of energy has to be reached so as to accomplish a goal which in general depends on the specific application. Based on this idea, we derive two dimensionless parameters which quantify the total energy consumption an...

Frohnapfel, Bettina; Quadrio, Maurizio

2012-01-01T23:59:59.000Z

418

Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene  

E-Print Network [OSTI]

In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated ...

Araujo, Paulo Antonio Trinidade

419

EIA - AEO2013 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

CO2 Emissions Total U.S. energy-related CO2 emissions do not return to their 2005 level (5,997 million metric tons) by the end of the AEO2013 projection period.6 Growth in...

420

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

National Greenhouse Gas Inventories Reference Manual (VolumeNational Greenhouse Gas Inventories: the Workbook (VolumeN ATIONAL L ABORATORY Inventory of Chinas Energy-Related CO

Fridley, David

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dark-energy dependent test of general relativity at cosmological scales  

E-Print Network [OSTI]

The $\\Lambda$CDM framework offers a remarkably good description of our universe with a very small number of free parameters, which can be determined with high accuracy from currently available data. However, this does not mean that the associated physical quantities, such as the curvature of the universe, have been directly measured. Similarly, general relativity is assumed, but not tested. Testing the relevance of general relativity for cosmology at the background level includes a verification of the relation between its energy contents and the curvature of space. Using an extended Newtonian formulation, we propose an approach where this relation can be tested. Using the recent measurements on cosmic microwave background, baryonic acoustic oscillations and the supernova Hubble diagram, we show that the prediction of general relativity is well verified in the framework of standard $\\Lambda$CDM assumptions, i.e. an energy content only composed of matter and dark energy, in the form of a cosmological constant o...

Zolnierowski, Yves

2015-01-01T23:59:59.000Z

422

Energy Flux We discuss various ways of describing energy flux and related quantities.  

E-Print Network [OSTI]

.0.4 Radiance Radiance is the energy flux density per solid angle.[W/(m2 ? steradian)] 6.0.5 Radiant Intensity Radiant intensity is the energy flux per solid angle [W/steradian] (radiometry) 6.0.6 Intensity Intensity)· ^Ndt (6.4) Intensity is again measured in [W/m2 ] 6.0.7 Fluence Fluence is radiant energy per area

Palffy-Muhoray, Peter

423

FEMP/NTDP Technology Focus Chiller Controls-related Energy Saving Opportunities  

E-Print Network [OSTI]

FEMP/NTDP Technology Focus Chiller Controls-related Energy Saving Opportunities in Federal.S. Department of Energy under Contract No. DE-AC03-76SF00098. 1 INTRODUCTION Chillers are a significant in recent years has been on optimization of set point and staging controls, improvements in chiller design

424

A priority agenda for energy-related indoor environmental quality research  

SciTech Connect (OSTI)

A multidisciplinary team of IEQ and energy researchers is working together to define a program of priority energy-related IEQ research. This paper describes the methods employed, ten high priority broad research and development (R&D) goals, and 34 high priority R&D project areas linked to these goals.

Fisk, W.J.; Brager, G.; Brook, M.; Burge, H.; Cole, J.; Cummings, J.; Levin, H.; Loftness, V.; Logee, T.; Mendell, M.J.; Persily, A.; Taylor, S.; Zhang, J.

2002-05-01T23:59:59.000Z

425

Relation between thermal expansion and interstitial formation energy in pure Fe and Cr  

E-Print Network [OSTI]

Relation between thermal expansion and interstitial formation energy in pure Fe and Cr Janne potentials give lower interstitial formation energy, but predict too small thermal expansion. We also show University, Uppsala, Sweden Abstract By fitting a potential of modified Finnis­Sinclair type to the thermal

426

Gravitational radiation fields in teleparallel equivalent of general relativity and their energies  

E-Print Network [OSTI]

We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we used the regularized expression of the gravitational energy-momentum tensor, which is a coordinate dependent. A detailed analysis of the loss of the mass of Bondi space-time is carried out using the flux of the gravitational energy-momentum.

G. G. L. Nashed

2011-01-05T23:59:59.000Z

427

Local government involvement in long term resource planning for community energy systems. Demand side management  

SciTech Connect (OSTI)

A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

Not Available

1992-03-01T23:59:59.000Z

428

Local government involvement in long term resource planning for community energy systems  

SciTech Connect (OSTI)

A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

Not Available

1992-03-01T23:59:59.000Z

429

Using Social Media for Long-Term Branding | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUserUsingelectronEnergy

430

BLM Manual 2805: Terms and Conditions for FLPMA Grants | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website: Applying for

431

OSTIblog Terms of Use | OSTI, US Dept of Energy, Office of Scientific and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of theResourcecomments/rss en Great StepTechnical Information

432

A Solar Energy System for Long-Term Deployment of AUVs David A. Patch  

E-Print Network [OSTI]

feasible, is politically, an unsatisfactory solution. Both aluminum- air and zinc-air semi-fuel cells have). The AUVs developed, therefore, were not as constrained to meet the low cost requirements necessary internal systems vs. energy available for mission specific subsystems. If mission endurance exceeds

433

Converging approximations for the calculation of the energy in terms of Planck's constant (*)  

E-Print Network [OSTI]

V is positive semi-definite it can be shown [1] that the values EnM make an increasing sequence, combined with Padé approximants, can provide the calculation of eigen- energies of a quantum system sequence of upper bounds when V is negative semi- definite. In both cases the main part of the proof

Paris-Sud XI, Université de

434

On the solution of the initial value constraints for general relativity coupled to matter in terms of Ashtekar's variables  

E-Print Network [OSTI]

The method of solution of the initial value constraints for pure canonical gravity in terms of Ashtekar's new canonical variables due to CDJ is further developed in the present paper. There are 2 new main results : 1) We extend the method of CDJ to arbitrary matter-coupling again for non-degenerate metrics : the new feature is that the 'CDJ-matrix' adopts a nontrivial antisymmetric part when solving the vector constraint and that the Klein-Gordon-field is used, instead of the symmetric part of the CDJ-matrix, in order to satisfy the scalar constraint. 2) The 2nd result is that one can solve the general initial value constraints for arbitrary matter coupling by a method which is completely independent of that of CDJ. It is shown how the Yang-Mills and gravitational Gauss constraints can be solved explicitely for the corresponding electric fields. The rest of the constraints can then be satisfied by using either scalar or spinor field momenta. This new trick might be of interest also for Yang-Mills theories on curved backgrounds.

T. Thiemann

1993-10-07T23:59:59.000Z

435

Case studies of energy information systems and related technology: Operational practices, costs, and benefits  

SciTech Connect (OSTI)

Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs, and benefits of EIS, many of these descriptions are idealized and often insufficient for potential users to evaluate cost, benefit and operational usefulness. LBNL has conducted a series of case studies of existing EIS and related technology installations. This study explored the following questions: (1) How is the EIS used in day-to-day operation? (2) What are the costs and benefits of an EIS? (3) Where do the energy savings come from? This paper reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of energy data trended by EIS and utility bills was also conducted to measure the benefit. This paper explores common uses and findings to identify energy savings attributable to EIS, and discusses non-energy benefits as well. This paper also addresses technologies related to EIS that have been demonstrated and evaluated by LBNL.

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

2003-09-02T23:59:59.000Z

436

U.S.-India Coal Working Group Terms of Reference | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track |Weatherized|Energy-Water Nexus | Department

437

Dynamics of the UK Natural Gas Industry: System Dynamics Modelling and Long-Term Energy Policy Analysis  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R N O N -T E C H N IC A L S U M M A R Y DYNAMICS OF THE UK NATURAL GAS INDUSTRY: SYSTEM DYNAMICS MODELLING AND LONG-TERM ENERGY POLICY ANALYSIS EPRG Working Paper 0913... Cambridge Working Paper in Economics 0922 Kong Chyong Chi , David M. Reiner and William J. Nuttall The UK offshore natural gas and oil industry has a long and successful history and has been said to represent the pride of UK...

Chi, K C; Reiner, David; Nuttall, William J

438

Short-Term Test Results: Transitional Housing Energy Efficiency Retrofit in the Hot-Humid Climate  

SciTech Connect (OSTI)

This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

Sutherland, K.; Martin, E.

2013-02-01T23:59:59.000Z

439

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

SciTech Connect (OSTI)

In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

2009-09-01T23:59:59.000Z

440

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. State-of-the-Art on Methods and Software Tools for Short-Term  

E-Print Network [OSTI]

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. State-of-the-Art on Methods and Software Tools for Short-Term Prediction of Wind Energy Production G. Giebel*, L. Landberg, Risoe National Roskilde, Denmark Abstract: The installed wind energy capacity in Europe today is 20 GW, while

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The relative grain boundary area and energy distributions in a ferritic steel determined from three-dimensional electron  

E-Print Network [OSTI]

The relative grain boundary area and energy distributions in a ferritic steel determined from three The relative grain boundary area and energy distributions of a ferritic steel were characterized as a function planes with the (111) orientation had the minimum energy and the largest relative areas. The most

Rohrer, Gregory S.

442

CO sub 2 emissions from developing countries: Better understanding the role of energy in the long term  

SciTech Connect (OSTI)

This study examines energy use and carbon emissions in the developing world. Based on analyses of present energy-use patterns in 17 developing nations, this study presents high emissions and low emissions scenarios for these nations in the year 2025. These nations combined account for two thirds of the energy-related carbon emissions presently generated in the developing world. The analysis reveals that energy demand expands dramatically by 2025 and grows increasingly carbon intensive. In the high emissions scenario, carbon emissions from these countries increase four-fold. The greatest share of carbon stems from the industrial sector in 2025, followed by the transport and residential sectors. With the implementation of policies aimed at reducing CO{sub 2} emissions, the low emissions scenario reduces the level of carbon in 2025 by 20 percent relative to the high emissions scenario figure. These nations achieve 80 percent of the carbon reductions by improving the efficiency of energy production and use and the remaining 20 percent by implementing fuel-switching measures. Of all the sectors examined, the industrial sector offers the greatest opportunity for absolute carbon savings (39 percent of the total). This summary is volume one of five volumes.

Sathaye, J.; Ketoff, A.

1991-02-01T23:59:59.000Z

443

Relationalism  

E-Print Network [OSTI]

This article contributes to the debate of the meaning of relationalism and background independence, which has remained of interest in theoretical physics from Newton versus Leibniz through to foundational issues for today's leading candidate theories of quantum gravity. I contrast and compose the substantially different Leibniz--Mach--Barbour (LMB) and Rovelli--Crane (RC) uses of the word `relational'. Leibniz advocated primary timelessness and Mach that `time is to be abstracted from change'. I consider 3 distinct viewpoints on Machian time: Barbour's, Rovelli's and my own. I provide four expansions on Barbour's taking configuration space to be primary: to (perhaps a weakened notion of) phase space, categorizing, perspecting and propositioning. Categorizing means considering not only object spaces but also the corresponding morphisms and then functors between such pairs. Perspecting means considering the set of subsystem perspectives; this is an arena in which the LMB and Rovelli approaches make contact. By propositioning, I mean considering the set of propositions about a physical (sub)system. I argue against categorization being more than a formal pre-requisite for quantization in general; however, perspecting is a categorical operation, and propositioning leads one to considering topoi, with Isham and Doering's work represents one possibility for a mathematically sharp implementation of propositioning. Further applications of this article are arguing for Ashtekar variables as being relational in LMB as well as just the usually-ascribed RC sense, relationalism versus supersymmetry, string theory and M-theory. The question of whether scale is relational is also considered, with quantum cosmology in mind.

Edward Anderson

2014-07-15T23:59:59.000Z

444

ITP Distributed Energy: The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4InFindingIR-2003-Transmission &50 1955 1960 1965

445

Long-Term Natural Gas Infrastructure Needs U.S. Department of Energy Quadrennial  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindsey GeislerEnergyLochinvarLong

446

Microsoft PowerPoint - Arseneau_EIA_ShortTermDriversofEnergyPrices.ppt [Compatibility Mode]  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,Information Administration390 2.387NASEO 2006/07Summer8

447

Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary oAlgal Biofuels Algal

448

Energy Department Issues Report to Congress on Long-Term Stewardship of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37 East andCommission Licensed

449

Jefferson Lab Upgrade named near-term priority in Department of Energy's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson Lab Click onLaserLabLab To Receive $7520-year

450

Survey of literature relating to energy development in Utah's Colorado Plateau  

SciTech Connect (OSTI)

This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

Larsen, A.

1980-06-01T23:59:59.000Z

451

LONG-TERM GOAL The long-term goal of this research project is to determine if energy reflectance measurements can  

E-Print Network [OSTI]

presented here is to characterize the energy reflectance of normal- hearing, healthy newborn babies. Keefe month past the age of two years. Other work focuses on energy reflectance in NICU babies (e.g. Shahnaz al. 2008). Here, we present measurements of energy reflectance on normal-hearing, healthy newborn

Voss, Susan E.

452

Recently Funded Projects Related to Water-Energy | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca Matulka About Us Rebecca

453

The Energy-Momentum Tensor in General Relativity and in Alternative Theories of Gravitation, and the Gravitational vs. Inertial Mass  

E-Print Network [OSTI]

We establish a general relation between the canonical energy-momentum tensor of Lagrangian dynamics and the tensor that acts as the source of the gravitational field in Einstein's equations, and we show that there is a discrepancy between these tensors when there are direct nonminimal couplings between matter and the Riemann tensor. Despite this discrepancy, we give a general proof of the exact equality of the gravitational and inertial masses for any arbitrary system of matter and gravitational fields, even in the presence of nonminimal second-derivative couplings and-or linear or nonlinear second-derivative terms of any kind in the Lagrangian. The gravitational mass is defined by the asymptotic Newtonian potential at large distance from the system, and the inertial mass is defined by the volume integral of the energy density determined from the canonical energy-momentum tensor. In the Brans-Dicke scalar field theory, we establish that the nonminimal coupling and long range of the scalar field leads to an inequality between the gravitational and inertial masses, and we derive an exact formula for this inequality and confirm that it is approximately proportional to the gravitational self-energy (the Nordvedt effect), but with a constant of proportionality different from what is claimed in the published literature in calculations based on the PPN scheme. Similar inequalities of gravitational and inertial masses are expected to occur in other scalar and vector theories.

Hans C. Ohanian

2013-02-28T23:59:59.000Z

454

Relative Importance of Hip and Sacral Pain Among Long-Term Gynecological Cancer Survivors Treated With Pelvic Radiotherapy and Their Relationships to Mean Absorbed Doses  

SciTech Connect (OSTI)

Purpose: To investigate the relative importance of patient-reported hip and sacral pain after pelvic radiotherapy (RT) for gynecological cancer and its relationship to the absorbed doses in these organs. Methods and Materials: We used data from a population-based study that included 650 long-term gynecological cancer survivors treated with pelvic RT in the Gothenburg and Stockholm areas in Sweden with a median follow-up of 6 years (range, 2-15) and 344 population controls. Symptoms were assessed through a study-specific postal questionnaire. We also analyzed the hip and sacral dose-volume histogram data for 358 of the survivors. Results: Of the survivors, one in three reported having or having had hip pain after completing RT. Daily pain when walking was four times as common among the survivors compared to controls. Symptoms increased in frequency with a mean absorbed dose >37.5 Gy. Also, two in five survivors reported pain in the sacrum. Sacral pain also affected their walking ability and tended to increase with a mean absorbed dose >42.5 Gy. Conclusions: Long-term survivors of gynecological cancer treated with pelvic RT experience hip and sacral pain when walking. The mean absorbed dose was significantly related to hip pain and was borderline significantly related to sacral pain. Keeping the total mean absorbed hip dose below 37.5 Gy during treatment might lower the occurrence of long-lasting pain. In relation to the controls, the survivors had a lower occurrence of pain and pain-related symptoms from the hips and sacrum compared with what has previously been reported for the pubic bone.

Waldenstroem, Ann-Charlotte, E-mail: ann-charlotte.waldenstrom@oncology.gu.se [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden) [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Department of Oncology, Sahlgrenska University Hospital, Gothenburg (Sweden); Olsson, Caroline [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden) [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Wilderaeng, Ulrica [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden)] [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Dunberger, Gail; Lind, Helena; Alevronta, Eleftheria [Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden)] [Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden); Al-Abany, Massoud [Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden) [Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, Stockholm (Sweden); Tucker, Susan [Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)] [Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Avall-Lundqvist, Elisabeth [Department of Gynecologic Oncology, Karolinska University Hospital, Stockholm (Sweden)] [Department of Gynecologic Oncology, Karolinska University Hospital, Stockholm (Sweden); Johansson, Karl-Axel [Department of Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden)] [Department of Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Steineck, Gunnar [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden) [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden)

2012-10-01T23:59:59.000Z

455

A New Multi-Energy Neutrino Radiation-Hydrodynamics Code in Full General Relativity and Its Application to Gravitational Collapse of Massive Stars  

E-Print Network [OSTI]

We present a new multi-dimensional radiation-hydrodynamics code for massive stellar core-collapse in full general relativity (GR). Employing an M1 analytical closure scheme, we solve spectral neutrino transport of the radiation energy and momentum based on a truncated moment formalism. Regarding neutrino opacities, we take into account the so-called standard set in state-of-the-art simulations, in which inelastic neutrino-electron scattering, thermal neutrino production via pair annihilation and nucleon-nucleon bremsstrahlung are included. In addition to gravitational redshift and Doppler effects, these energy-coupling reactions are incorporated in the moment equations in a covariant form. While the Einstein field equations and the spatial advection terms in the radiation-hydrodynamics equations are evolved explicitly, the source terms due to neutrino-matter interactions and energy shift in the radiation moment equations are integrated implicitly by an iteration method. To verify our code, we conduct several ...

Kuroda, Takami; Kotake, Kei

2015-01-01T23:59:59.000Z

456

Free energy of cluster formation and a new scaling relation for the nucleation rate  

SciTech Connect (OSTI)

Recent very large molecular dynamics simulations of homogeneous nucleation with (1 ? 8) ?10{sup 9} Lennard-Jones atoms [J. Diemand, R. Anglil, K. K. Tanaka, and H. Tanaka, J. Chem. Phys. 139, 074309 (2013)] allow us to accurately determine the formation free energy of clusters over a wide range of cluster sizes. This is now possible because such large simulations allow for very precise measurements of the cluster size distribution in the steady state nucleation regime. The peaks of the free energy curves give critical cluster sizes, which agree well with independent estimates based on the nucleation theorem. Using these results, we derive an analytical formula and a new scaling relation for nucleation rates: ln?J{sup ?}/? is scaled by ln?S/?, where the supersaturation ratio is S, ? is the dimensionless surface energy, and J{sup ?} is a dimensionless nucleation rate. This relation can be derived using the free energy of cluster formation at equilibrium which corresponds to the surface energy required to form the vapor-liquid interface. At low temperatures (below the triple point), we find that the surface energy divided by that of the classical nucleation theory does not depend on temperature, which leads to the scaling relation and implies a constant, positive Tolman length equal to half of the mean inter-particle separation in the liquid phase.

Tanaka, Kyoko K.; Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)] [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Diemand, Jrg; Anglil, Raymond [Institute for Computational Science, University of Zrich, 8057 Zrich (Switzerland)] [Institute for Computational Science, University of Zrich, 8057 Zrich (Switzerland)

2014-05-21T23:59:59.000Z

457

Federally Funded Programs Related to Building Energy Use: Overlaps, Challenges, and Opportunities for Collaboration  

SciTech Connect (OSTI)

As energy efficiency in buildings continues to move from discreet technology development to an integrated systems approach, the need to understand and integrate complementary goals and targets becomes more pronounced. Whether within Department of Energys (DOE) Building Technologies Program (BTP), across the Office of Energy Efficiency and Renewable Energy (EERE), or throughout DOE and the Federal government, mutual gains and collaboration synergies exist that are not easily achieved because of organizational and time constraints. There also cases where federal agencies may be addressing similar issues, but with different (and sometimes conflicting) outcomes in mind. This report conducts a comprehensive inventory across all EERE and other relevant Federal agencies of potential activities with synergistic benefits. A taxonomy of activities with potential interdependencies is presented. The report identifies a number of federal program objectives, products, and plans related to building energy efficiency and characterizes the current structure and interactions related to these plans and programs. Areas where overlap occurs are identified as are the challenges of addressing issues related to overlapping goals and programs. Based on the input gathered from various sources, including 20 separate interviews with federal agency staff and contractor staff supporting buildings programs, this study identifies a number of synergistic opportunities and makes recommends a number of areas where further collaboration could be beneficial.

Cort, Katherine A.; Butner, Ryan S.; Hostick, Donna J.

2010-10-01T23:59:59.000Z

458

Probabilistic wind power forecasting -European Wind Energy Conference -Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting  

E-Print Network [OSTI]

Probabilistic wind power forecasting - European Wind Energy Conference - Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting based on kernel density estimators J´er´emie Juban jeremie.juban@ensmp.fr; georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting tools

Paris-Sud XI, Université de

459

Energy-time and frequency-time uncertainty relations: exact inequalities  

E-Print Network [OSTI]

We give a short review of known exact inequalities that can be interpreted as "energy-time" and "frequency-time" uncertainty relations. In particular we discuss a precise form of signals minimizing the physical frequency-time uncertainty product. Also, we calculate the "stationarity time" for mixed Gaussian states of a quantum harmonic oscillator, showing explicitly that pure quantum states are "more fragile" than mixed ones with the same value of the energy dispersion. The problems of quantum evolution speed limits, time operators and measurements of energy and time are briefly discussed, too.

V. V. Dodonov; A. V. Dodonov

2015-04-03T23:59:59.000Z

460

Fact sheets relating to use of geothermal energy in the United States  

SciTech Connect (OSTI)

A compilation of data relating to geothermal energy in each of the 50 states is presented. The data are summarized on one page for each state. All summary data sheets use a common format. Following the summary data sheet there are additional data on the geology of each state pertaining to possible hydrothermal/geothermal resources. Also there is a list of some of the reports available pertaining to the state and state energy contacts. The intent of these documents is to present in a concise form reference data for planning by the Department of Energy.

None

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Activities Related to Storage of Spent Nuclear Fuel | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout Us » FAQsUCNIOFActive ShooterRelated to

462

Table 2. 2011 State energy-related carbon dioxide emisssions by fuel  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oilthe Energy1,1812011 State energy-related

463

Window-Related Energy Consumption in the US Residential andCommercial Building Stock  

SciTech Connect (OSTI)

We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

Apte, Joshua; Arasteh, Dariush

2006-06-16T23:59:59.000Z

464

Figure ES1. Schema for Estimating Energy and Energy-Related Statistics,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec. 31 705PC'sFigure ES1.

465

Oh, the (Energy-Related) Stories I Have Heard... | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy from Elizabeth C. Chimento |LessonsOffice ofOffshore Wind ProjectsOh,

466

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2011 - Energy  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oil and10:Information Administration

467

Summary of HI Standards Relating to Energy Efficency | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at Young - RaineyApril 22,ofEnergyof Gaps andHI

468

Trends in U.S. Venture Capital Investments Related to Energy: 1980 through the Third Quarter of 2010  

SciTech Connect (OSTI)

This report documents trends in U.S. venture capital investments over the period 1980 through the third quarter of calendar year 2010 (2010 Q1+Q2+Q3). Particular attention is given to U.S. venture capital investments in the energy/industrial sector over the period 1980-2010 Q1+Q2+Q3 as well as in the more recently created cross-cutting category of CleanTech over the period 1995-2010 Q1+Q2+Q3. During the early 1980s, U.S. venture capital investments in the energy/industrial sector accounted for more than 20% of all venture capital investments. However subsequent periods of low energy prices, the deregulation of large aspects of the energy industry, and the emergence of fast growing new industries like computers (both hardware and software), biotechnology and the Internet quickly reduced the priority accorded to energy/industrial investments. To wit, venture capital investments related to the energy/industrial sector accounted for only 1% of the $132 billion (in real 2010 US$) invested in 2000 by the U.S. venture capital community. The significant increase in the real price of oil that began in 2003-2004 correlates with renewed interest and increased investment by the venture capital community in energy/industrial investment opportunities. Venture capital investments for 2009 for the energy/industrial sector accounted for $2.4 billion or slightly more than 13% of all venture capital invested that year. The total venture capital invested in energy/industrial during the first three quarters of 2010 is close to $2.4 billion accounting for slightly less than 15% of all venture capital investments during the first three quarters of 2010. In 2009, the aggregate amount invested in CleanTech was $2.1 billion (11% of the total US venture capital invested in that lean year) and for the first three quarters of 2010 US venture capital investments in CleanTech have already exceeded $2.8 billion (18% of all US venture capital investments made during the first three quarters of 2010). Between 2004 and 2009, U.S. venture capital investments in energy/industrial as well as CleanTech have more than quadrupled in real terms.

Dooley, James J.

2010-11-08T23:59:59.000Z

469

Technical Barriers, Gaps, and Opportunities Related to Home Energy Upgrade Market Delivery  

SciTech Connect (OSTI)

This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program. The objective of this report is to outline the technical1 barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's (DOE) Building America program. This information will be used to provide guidance for new research necessary to enable the success of the approaches. Investigation for this report was conducted via publications related to home energy upgrade market delivery approaches, and a series of interviews with subject matter experts (contractors, consultants, program managers, manufacturers, trade organization representatives, and real estate agents). These experts specified technical barriers and gaps, and offered suggestions for how the technical community might address them. The potential benefits of home energy upgrades are many and varied: reduced energy use and costs; improved comfort, durability, and safety; increased property value; and job creation. Nevertheless, home energy upgrades do not comprise a large part of the overall home improvement market. Residential energy efficiency is the most complex climate intervention option to deliver because the market failures are many and transaction costs are high (Climate Change Capital 2009). The key reasons that energy efficiency investment is not being delivered are: (1) The opportunity is highly fragmented; and (2) The energy efficiency assets are nonstatus, low-visibility investments that are not properly valued. There are significant barriers to mobilizing the investment in home energy upgrades, including the 'hassle factor' (the time and effort required to identify and secure improvement works), access to financing, and the opportunity cost of capital and split incentives.

Bianchi, M. V. A.

2011-11-01T23:59:59.000Z

470

Theoretical study of the potential-energy surface related to reaction: vs. eliminationH  

E-Print Network [OSTI]

are present in chemical phenomena associated with the acid rain, air pol- lution and global climate change.1.nguyen=chem.kuleuven.ac.be b Faculty of Chemical Engineering, HoChiMinh City University of T echnology, V ietnam c Faculty-energy surface related to the reaction, which involves 13 intermediates and fragmentH 2 N ] NS products, as well

Nguyen, Minh Tho

471

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

net zero energy buildings Increased efficiency and more efficient operation of energy-consuming equipments Expanding

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

472

University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle  

SciTech Connect (OSTI)

The technical feasibility of high-temperature [>100{degrees}C (>212{degrees}F)] aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota`s St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. [Minnesota Geological Survey, St. Paul, MN (United States)

1991-12-01T23:59:59.000Z

473

University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle  

SciTech Connect (OSTI)

The technical feasibility of high-temperature (>100{degrees}C (>212{degrees}F)) aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. (Minnesota Geological Survey, St. Paul, MN (United States))

1991-12-01T23:59:59.000Z

474

Water-related environmental control requirements at municipal solid waste-to-energy conversion facilities  

SciTech Connect (OSTI)

Water use and waste water production, water pollution control technology requirements, and water-related limitations to their design and commercialization are identified at municipal solid waste-to-energy conversion systems. In Part I, a summary of conclusions and recommendations provides concise statements of findings relative to water management and waste water treatment of each of four municipal solid waste-to-energy conversion categories investigated. These include: mass burning, with direct production of steam for use as a supplemental energy source; mechanical processing to produce a refuse-derived fuel (RDF) for co-firing in gas, coal or oil-fired power plants; pyrolysis for production of a burnable oil or gas; and biological conversion of organic wastes to methane. Part II contains a brief description of each waste-to-energy facility visited during the subject survey showing points of water use and wastewater production. One or more facilities of each type were selected for sampling of waste waters and follow-up tests to determine requirements for water-related environmental controls. A comprehensive summary of the results are presented. (MCW)

Young, J C; Johnson, L D

1980-09-01T23:59:59.000Z

475

Complementary Relativity  

E-Print Network [OSTI]

Special theory of relativity has been formulated in a vacuum momentum-energy representation which is equivalent to Einstein special relativity and predicts just the same results as it. Although in this sense such a formulation would be at least classically useless, its consistent extension to noninertial frames produces a momentum-energy metric which behaves as a new dynamical quantity that is here interpreted in terms of a cosmological field. This new field would be complementary to gravity in that its strength varies inversely to as that of gravity does. Using a strong-field approximation, we suggest that the existence of this cosmological field would induce a shift of luminous energy which could justify the existence of all the assumed invisible matter in the universe, so as the high luminousities found in active galactic nuclei and quasars.

P. F. Gonzalez-Diaz

1994-04-07T23:59:59.000Z

476

Inventory of China's Energy-Related CO2 Emissions in 2008  

SciTech Connect (OSTI)

Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel type and the 'sectoral' calculation of summing emissions across end-use sectors. Adjustments for the China-specific conventions of reporting foreign bunkers and domestic bunkers fueling abroad are made following IPCC definitions of international bunkers and EIA reporting conventions, while the sequestration of carbon in carbon steel is included as an additional adjustment. Under the sectoral approach, fuel consumption of bunkers and other transformation losses as well as gasoline consumption are reallocated to conform to EIA sectoral reporting conventions. To the extent possible, this study relies on official energy data from primary sources. A limited number of secondary sources were consulted to provide insight into the nature of consumption of some products and to guide the analysis of carbon sequestered in steel. Beyond these, however, the study avoided trying to estimate figures where directly unavailable, such as natural gas flaring. As a result, the basic calculations should be repeatable for other years with the core set of data from National Bureau of Statistics and Sinopec (or a similarly authoritative source of oil product data). This study estimates China's total energy-related CO{sub 2} emissions in 2008 to be 6666 Mt CO{sub 2}, including 234.6 Mt of non-fuel CO{sub 2} emissions and 154 Mt of sequestered CO{sub 2}. Bunker fuel emissions in 2008 totaled 15.9 Mt CO{sub 2}, but this figure is underestimated because fuel use by Chinese ship and planes for international transportation and military bunkers are not included. Of emissions related to energy consumption, 82% is from coal consumption, 15% from petroleum and 3% from natural gas. From the sectoral approach, industry had the largest share of China's energy-related CO{sub 2} emissions with 72%, followed by residential at 11%, transport and telecommunications at 8%, and the other four (commerce, agriculture, construction and other public) sectors having a combined share of 9%. Thermal electricity and (purchased) heat (to a lesser degree) are major sources of fuel consumption behind sectoral emissions, responsible for 2533 Mt CO2 and 321 Mt CO{sub 2}, respec

Fridley, David; Zheng, Nina; Qin, Yining

2011-03-31T23:59:59.000Z

477

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

Cool Earth - Innovative Energy Technology Plan," (14) Agencyof excellent energy technologies. Taking into account energyare based on the energy technology roadmap (References No.

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

478

Spectral properties of quarks above Tc -- thermal mass, dispersion relation, and self-energy --  

E-Print Network [OSTI]

Spectral properties of quarks above the critical temperature for deconfinement are analyzed in quenched lattice QCD on lattices of size 128^3x16. We study quark spectral function in energy and momentum space, focusing on the values of the thermal mass and the dispersion relations of normal and plasmino modes at nonzero momentum, as well as their spatial volume dependence. Our numerical result suggests that the dispersion relation of the plasmino mode has a minimum at nonzero momentum even near the critical temperature. The quark self-energy is also analyzed by using the analyticy of the inverse propagator, which is found to be consistent with the spectral function estimated by the two-pole ansatz.

Masakiyo Kitazawa

2010-11-12T23:59:59.000Z

479

Summary of Information and Resources Related to Energy Use in Healthcare Facilities - Version 1  

E-Print Network [OSTI]

Figure 3. Estimated site energy intensity and floor space of4. Estimated source energy intensity of selected Californiasite energy and energy intensity (energy use per square foot

Singer, Brett C.

2010-01-01T23:59:59.000Z

480

Recursion relations for two-loop self-energy diagrams on-shell  

E-Print Network [OSTI]

A set of recurrence relations for on-shell two-loop self-energy diagrams with one mass is presented, which allows to reduce the diagrams with arbitrary indices (powers of scalar propagators) to a set of the master integrals. The SHELL2 package is used for the calculation of special types of diagrams. A method of calculation of higher order \\epsilon-expansion of master integrals is demonstrated.

J. Fleischer; M. Yu. Kalmykov; A. V. Kotikov

1999-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "related terms energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999  

SciTech Connect (OSTI)

This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2000-02-01T23:59:59.000Z

482

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

ventilation) Introducing net zero energy buildings IncreasedPotential for Achieving Net Zero-Energy Buildings in the

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

483

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

primary energy supply growth has gradually slowed down as energy conservation efforts have been enhanced with interest growing in global

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

484

Kansas Energy 2000. Inventory of energy related assets, Research area summary -- Kansas State University, University of Kansas, Wichita State University: Volume 2  

SciTech Connect (OSTI)

The Inventory of Energy Related Assets: Research Area Summary is a compilation of resume-type information on energy researchers in the state of Kansas. Researchers are placed in one of four categories: Fossil Energy Research, Alternative Energy Sources, Electric Power Generation and Usage, and Other Energy Research. Each research biography includes a synopsis of recent research, sources of support, and areas of research emphasis.

Legg, J.; Nellis, D.; Simons, G.

1992-03-01T23:59:59.000Z

485

A study of pumps for the Hot Dry Rock Geothermal Energy extraction experiment (LTFT (Long Term Flow Test))  

SciTech Connect (OSTI)

A set of specifications for the hot dry rock (HDR) Phase II circulation pumping system is developed from a review of basic fluid pumping mechanics, a technical history of the HDR Phase I and Phase II pumping systems, a presentation of the results from experiment 2067 (the Initial Closed-Loop Flow Test or ICFT), and consideration of available on-site electrical power limitations at the experiment site. For the Phase II energy extraction experiment (the Long Term Flow Test or LTFT) it is necessary to provide a continuous, low maintenance, and highly efficient pumping capability for a period of twelve months at variable flowrates up to 420 gpm and at surface injection pressures up to 5000 psi. The pumping system must successfully withstand attacks by corrosive and embrittling gases, erosive chemicals and suspended solids, and fluid pressure and temperature fluctuations. In light of presently available pumping hardware and electric power supply limitations, it is recommended that positive displacement multiplex plunger pumps, driven by variable speed control electric motors, be used to provide the necessary continuous surface injection pressures and flowrates for LTFT. The decision of whether to purchase the required circulation pumping hardware or to obtain contractor provided pumping services has not been made.

Tatro, C.A.

1986-10-01T23:59:59.000Z

486

Inventory of Safety-Related Codes and Standards for Energy Storage Systems and Related Experiences with System Approval and Acceptance  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7 U.S.Department of05The idea

487

Short-Term Energy Outlook Supplement: 2014 Outlook for Gulf of Mexico Hurricane-Related Production Outages  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S. Regional Weather Data EitherMay 2014 14

488

On the vierbein formalism of general relativity  

E-Print Network [OSTI]

Both the Einstein-Hilbert action and the Einstein equations are discussed under the absolute vierbein formalism. Taking advantage of this form, we prove that the "kinetic energy" term, i.e., the quadratic term of time derivative term, in the Lagrangian of the Einstein-Hilbert action is non-positive definitive. And then, we present two groups of coordinate conditions that lead to positive definitive kinetic energy term in the Lagrangian, as well as the corresponding actions with positive definitive kinetic energy term, respectively. Based on the ADM decomposition, the Hamiltonian representation and canonical quantization of general relativity taking advantage of the actions with positive definitive kinetic energy term are discussed; especially, the Hamiltonian constraints with positive definitive kinetic energy term are given, respectively. Finally, we present a group of gauge conditions such that there is not any second time derivative term in the ten Einstein equations.

T. Mei

2007-12-06T23:59:59.000Z

489

Long-term contracts and asset specificity revisited : an empirical analysis of producer-importer relations in the natural gas industry  

E-Print Network [OSTI]

In this paper, we analyze structural changes in long-term contracts in the international trade of natural gas. Using a unique data set of 262 long-term contracts between natural gas producers and importers, we estimate the ...

Neumann, Anne

2006-01-01T23:59:59.000Z

490

Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications  

E-Print Network [OSTI]

Executive Summary Geothermal energy, carbon sequestration,2008), International Energy Agency-Geothermal Implementingand Background Geothermal energy, carbon sequestration and

Majer, E.L.

2011-01-01T23:59:59.000Z

491

Using regression equations to determine the relative importance of inputs to energy simulation tools  

SciTech Connect (OSTI)

A set of statistical regression equations was developed to predict relative heating and cooling loads of external zones of commercial buildings. The equations were derived from the coil loads predicted by several thousand DOE-2 simulations. These equations formed the basis for the building envelope criteria in ASHRAE/IES Standard 90.1-1989, Energy Efficient Design of New Commercial Buildings Except Low-Rise Residential Buildings.'' Because these equations predict relative loads, they can be used to determine the relative importance of a broad range of envelope parameters across a variety of climate types. This paper presents the procedure used to develop the equations. The relative importance of all the major loads input variables are discussed for a sample office building, for a broad range of climates. A load sensitivity analysis is then performed, which permits direct comparison of key envelope parameters. The analysis results provide general guidance to DOE-2 users as to the relative importance of specific loads input variables. 6 refs., 8 figs.

O'Neill, P.J.; Crawley, D.B.; Schliesing, J.S.

1991-08-01T23:59:59.000Z

492

United States Department of Energy projects related to reactor pressure vessel annealing optimization  

SciTech Connect (OSTI)

Light water reactor pressure vessel (RPV) material properties reduced by long-term exposure to neutron irradiation can be recovered through a thermal annealing treatment. This technique to extend RPV life, discussed in this report, provides a complementary approach to analytical methodologies to evaluate RPV integrity. RPV annealing has been successfully demonstrated in the former Soviet Union and on a limited basis by the US (military applications only). The process of demonstrating the technical feasibility of annealing commercial US RPVs is being pursued through a cooperative effort between the nuclear industry and the US Department of Energy (USDOE) Plant Lifetime Improvement (PLIM) Program. Presently, two projects are under way through the USDOE PLIM Program to demonstrate the technical feasibility of annealing commercial US RPVS, (1) annealing re-embrittlement data base development and (2) heat transfer boundary condition experiments.

Rosinski, S.T.; Nakos, J.T.

1993-09-01T23:59:59.000Z

493

Relative risk-relative ranking in Defense and Energy Department cleanup programs: Comparison of methods, results, and role in priority setting  

SciTech Connect (OSTI)

This paper demonstrates how the Department of Energy (DOE) enhanced their Environmental Restoration Program by modifying the Department of Defense (DoD) Cleanup Program`s Relative Risk Site Evaluation Primer in order to create their own framework, the Relative Ranking Evaluation Framework for EM-40 Release Sites, Facilities and Buildings. In addition, this paper discusses and compares the two frameworks and presents the results of relative risk/relative ranking site evaluations for both agencies through July 1996. The status of agency efforts to implement their respective frameworks also is discussed along with plans for strengthening these initiatives in the coming year.

Turkeltaub, R. [Office of the Deputy Under Secretary of Defense, Washington, DC (United States); Treichel, L.C. [Dept. of Energy, Germantown, MD (United States). Office of Environmental Restoration; Rowe, W.D. Jr.; Strohl, A.R. [Booz Allen and Hamilton, McLean, VA (United States)

1996-12-31T23:59:59.000Z

494

Optical Sum Rules that Relate to the Potential Energy of Strongly Correlated Systems J. K. Freericks,1  

E-Print Network [OSTI]

Optical Sum Rules that Relate to the Potential Energy of Strongly Correlated Systems J. K at low energy due to the presence of the superconducting gap [1]. Because there is an optical sum rule system, the optical sum rule is usually pro- jected onto the lowest energy band. In this case, the inte

Freericks, Jim

495

Free energy inference from partial work measurements Fluctuation Relations (FRs) are among the few general exact results  

E-Print Network [OSTI]

Free energy inference from partial work measurements Fluctuation Relations (FRs) are among the few application is free energy recovery from non-equilibrium pulling experiments in the single molecule field. We is a "partial" work measurement): it leads to a violation of FRs and to wrong free energy estimates

Potsdam, Universität

496

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

As a result, primary energy consumption per GDP in 2050 willC 0 emissions per primary energy consumption in 2050 will bebehind energy consumption, we have paid attention to primary

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

497

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

to cut primary energy demand per GDP ( T P E S / G D P ) inhowever, primary energy supply per GDP decelerated a declineattention to primary energy supply per GDP, per capita GDP

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

498

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

of new energy sources including solar power will expandfor 60%, solar and other renewable energy sources for 20%,The share for solar and other new energy sources will expand

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

499

Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications  

SciTech Connect (OSTI)

Geothermal energy, carbon sequestration, and enhanced oil and gas recovery have a clear role in U.S. energy policy, both in securing cost-effective energy and reducing atmospheric CO{sub 2} accumulations. Recent publicity surrounding induced seismicity at several geothermal and oil and gas sites points out the need to develop improved standards and practices to avoid issues that may unduly inhibit or stop the above technologies from fulfilling their full potential. It is critical that policy makers and the general community be assured that EGS, CO{sub 2} sequestration, enhanced oil/gas recovery, and other technologies relying on fluid injections, will be designed to reduce induced seismicity to an acceptable level, and be developed in a safe and cost-effective manner. Induced seismicity is not new - it has occurred as part of many different energy and industrial applications (reservoir impoundment, mining, oil recovery, construction, waste disposal, conventional geothermal). With proper study/research and engineering controls, induced seismicity should eventually allow safe and cost-effective implementation of any of these technologies. In addition, microseismicity is now being used as a remote sensing tool for understanding and measuring the success of injecting fluid into the subsurface in a variety of applications, including the enhancement of formation permeability through fracture creation/reactivation, tracking fluid migration and storage, and physics associated with stress redistribution. This potential problem was envisaged in 2004 following observed seismicity at several EGS sites, a study was implemented by DOE to produce a white paper and a protocol (Majer et al 2008) to help potential investors. Recently, however, there have been a significant number of adverse comments by the press regarding induced seismicity which could adversely affect the development of the energy sector in the USA. Therefore, in order to identify critical technology and research that was necessary not only to make fluid injections safe, but an economic asset, DOE organized a series of workshops. The first workshop was held on February 4, 2010, at Stanford University. A second workshop will be held in mid-2010 to address the critical elements of a 'best practices/protocol' that industry could use as a guide to move forward with safe implementation of fluid injections/production for energy-related applications, i.e., a risk mitigation plan, and specific recommendations for industry to follow. The objectives of the first workshop were to identify critical technology and research needs/approaches to advance the understanding of induced seismicity associated with energy related fluid injection/production, such that: (1) The risk associated with induced seismicity can be reduced to a level that is acceptable to the public, policy makers, and regulators; and (2) Seismicity can be utilized/controlled to monitor, manage, and optimize the desired fluid behavior in a cost effective fashion. There were two primary goals during the workshop: (1) Identify the critical roadblocks preventing the necessary understanding of human-induced seismicity. These roadblocks could be technology related (better imaging of faults and fractures, more accurate fluid tracking, improved stress measurements, etc.), research related (fundamental understanding of rock physical properties and geochemical fluid/rock interactions, development of improved constitutive relations, improved understanding of rock failure, improved data processing and modeling, etc.), or a combination of both. (2) After laying out the roadblocks the second goal was to identify technology development and research needs that could be implemented in the near future to address the above objectives.

Majer, E.L.; Asanuma, Hiroshi; Rueter, Horst; Stump, Brian; Segall, Paul; Zoback, Mark; Nelson, Jim; Frohlich, Cliff; Rutledge, Jim; Gritto, Roland; Baria, Roy; Hickman, Steve; McGarr, Art; Ellsworth, Bill; Lockner, Dave; Oppenheimer, David; Henning, Peter; Rosca, Anca; Hornby, Brian; Wang, Herb; Beeler, Nick; Ghassemi, Ahmad; Walters, Mark; Robertson-Tait, Ann; Dracos, Peter; Fehler, Mike; Abou-Sayed, Ahmed; Ake, Jon; Vorobiev, Oleg; Julian, Bruce

2011-04-01T23:59:59.000Z

500

Hamiltonian, Energy and Entropy in General Relativity with Non-Orthogonal Boundaries  

E-Print Network [OSTI]

A general recipe to define, via Noether theorem, the Hamiltonian in any natural field theory is suggested. It is based on a Regge-Teitelboim-like approach applied to the variation of Noether conserved quantities. The Hamiltonian for General Relativity in presence of non-orthogonal boundaries is analysed and the energy is defined as the on-shell value of the Hamiltonian. The role played by boundary conditions in the formalism is outlined and the quasilocal internal energy is defined by imposing metric Dirichlet boundary conditions. A (conditioned) agreement with previous definitions is proved. A correspondence with Brown-York original formulation of the first principle of black hole thermodynamics is finally established.

M. Francaviglia; M. Raiteri

2001-07-23T23:59:59.000Z