Powered by Deep Web Technologies
Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

There are many types of biomass—organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes—that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007.

2

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Technologies Photo of a pair of hands...

3

Biomass Gasification Technology Commercialization  

Science Conference Proceedings (OSTI)

Reliable cost and performance data on biomass gasification technology is scarce because of limited experience with utility-scale gasification projects and the reluctance of vendors to share proprietary information. The lack of this information is a major obstacle to the implementation of biomass gasification-based power projects in the U.S. market. To address this problem, this report presents four case studies for bioenergy projects involving biomass gasification technologies: A utility-scale indirect c...

2010-12-10T23:59:59.000Z

4

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from...

5

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

6

Biomass Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technologies August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic...

7

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biomass and Biofuels Technology Marketing Summaries Here you’ll find marketing summaries of biomass and biofuels technologies available for licensing ...

8

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy...

9

Available Technologies: Enhanced Ionic Liquid Biomass ...  

APPLICATIONS OF TECHNOLOGY: Lignocellulosic biofuel production; Biomass pretreatment; Sugar production; Materials and processes using recovered lignin

10

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biomass and Biofuels Technology Marketing Summaries Here ... The methods of the invention use solar thermal energy as the energy source for the biomass pyrolysis or ...

11

Biomass for energy and materials Local technologies -  

E-Print Network (OSTI)

Biomass for energy and materials Local technologies - in a global perspective Erik Steen Jensen Bioenergy and biomass Biosystems Department Risø National Laboratory Denmark #12;Biomass - a local resource, slaughterhouse waste. #12;Biomass characteristics · Biomass is a storable energy carrier, unlike electricity

12

Biomass and Biofuels Technologies Available for Licensing ...  

Site Map; Printable Version; Share this resource. Send a link to Biomass and Biofuels Technologies Available for Licensing - Energy Innovation ...

13

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

14

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

15

Biomass Resources, Technologies, and Environmental Benefits  

Science Conference Proceedings (OSTI)

Biomass, a renewable energy source, is essentially solar energy captured and stored in plants via photosynthesis. For electric power generation organizations that have expertise and assets in combustion or gasification, biomass can be the most appropriate renewable energy source. This report addresses the size and cost of the biomass resource, while describing the technologies and environmental issues involved.

2004-06-03T23:59:59.000Z

16

Available Technologies: Microsystems for Biomass Treatment ...  

For biofuel technology to advance, tailored research tools are needed to quickly and accurately evaluate the efficacy of biomass pretreatment options. ...

17

Commercial Deployment Drivers for Biomass Gasification Technologies  

Science Conference Proceedings (OSTI)

Biomass gasification-based power and combined heat and power (CHP) technologies have still not met their full potential despite several decades of research, development, and deployment. This report examines the technical, economic, and policy problems that have hindered the development of these technologies and describes a detailed parametric study of key economic and environmental performance variables for various biomass technologies in order to identify which factors are most important in planning new...

2009-07-08T23:59:59.000Z

18

EPRI Biomass Interest Group European Technology Review  

Science Conference Proceedings (OSTI)

Members of EPRI's Biomass Interest Group and made a 14 day tour of key European Biomass-to-Power installations in the fall of 2005. The group visited a variety of technologies, including gasification, co-firing, direct combustion, and combined heat and power facilities.

2005-12-22T23:59:59.000Z

19

NREL: Energy Analysis - Biomass Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Technology Analysis Biomass Technology Analysis Conducting full life-cycle assessments for biomass products, including electricity, biodiesel, and ethanol, is important for determining environmental benefits. NREL analysts use a life-cycle inventory modeling package and supporting databases to conduct life-cycle assessments. These tools can be applied on a global, regional, local, or project basis. Integrated system analyses, technoeconomic analyses, life-cycle assessments (LCAs), and other analysis tools are essential to our research and development efforts. They provide an understanding of the economic, technical, and even global impacts of renewable technologies. These analyses also provide direction, focus, and support to the development and commercialization of various biomass conversion technologies. The economic

20

Bioenergy Technologies Office: Biomass Feedstocks  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the...

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Report on Biomass Drying Technology  

DOE Green Energy (OSTI)

Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

Amos, W. A.

1999-01-12T23:59:59.000Z

22

State Grid and Shenzhen Energy Group Biomass Engineering Technology...  

Open Energy Info (EERE)

State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name State Grid and Shenzhen Energy Group Biomass Engineering...

23

Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006  

DOE Green Energy (OSTI)

Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

Not Available

2006-10-01T23:59:59.000Z

24

Biomass and Biofuels: Technology and Economic Overview (Presentation)  

DOE Green Energy (OSTI)

Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

Aden, A

2007-05-23T23:59:59.000Z

25

State Grid and Shenzhen Energy Group Biomass Engineering Technology  

Open Energy Info (EERE)

and Shenzhen Energy Group Biomass Engineering Technology and Shenzhen Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre Place Beijing Municipality, China Sector Biomass Product The centre focuses on biomass technology research and provides integrated technologic and service support for biomass utilisation and industrialisation. References State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre is a company located in Beijing Municipality, China .

26

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biofuels produced from biomass provide a promising alternative to fossil fuels. Biomass is an inexpensive, readily available and renewable resource.

27

Changes related to "Coyote Canyon Steam Plant Biomass Facility...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Coyote Canyon Steam Plant Biomass Facility" Coyote Canyon Steam Plant Biomass Facility Jump to:...

28

Biomass Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies October 7, 2013 - 9:25am Addthis Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops. Biomass energy takes many forms and can have a wide variety of applications

29

Biomass Cofiring in Coal-Fired Boilers - Federal Technology Alert  

NLE Websites -- All DOE Office Websites (Extended Search)

when needed. Unlike other renewable energy technologies like those based on solar and wind resources, biomass-based systems are available whenever they are needed. This helps...

30

State Grid Biomass Fuel and Combustion Technology Laboratory...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon State Grid Biomass Fuel and Combustion Technology Laboratory Jump to: navigation, search Name State Grid...

31

Biomass power: An old resource for a new technology  

DOE Green Energy (OSTI)

As many as 50,000 MW of electricity could be generated by biomass power plants in the year 2010 with advanced technologies and improved feedstock supplies. This pamphlet describes the current status and capacity of biomass power plants in the US, advanced technologies under development, a way to guarantee a dedicated fuel supply, and sources for further information.

NONE

1995-05-01T23:59:59.000Z

32

Advanced Biomass: Technology Characteristics, Status and Lessons Learned  

Science Conference Proceedings (OSTI)

Biomass, primarily wood, is a significant source of heat and power in the U.S. Advances in fuel supplies and in conversion technology are needed to make renewable biomass a major source of grid-connected power. This report presents both the characteristics expected of advanced technology and some lessons learned from current wood-fired power generation.

1998-11-30T23:59:59.000Z

33

Quantifying the economic potential of a biomass to olefin technology  

E-Print Network (OSTI)

Oil is one of the most valuable natural resources in the world. Any technology that could possibly be used to conserve oil is worth studying. Biomass waste to olefin (WTO) technology replaces the use of oil as a feedstock. ...

Chiang, Nicholas (Nicholas Kuang Hua)

2005-01-01T23:59:59.000Z

34

Advanced Biomass Gasification Technologies Inc ABGT | Open Energy  

Open Energy Info (EERE)

Gasification Technologies Inc ABGT Gasification Technologies Inc ABGT Jump to: navigation, search Name Advanced Biomass Gasification Technologies Inc. (ABGT) Place New York, New York Zip 10036 Product Company set up by UTEK specifically for its sale to Xethanol, holding the exclusive license for microgasification technology developed at the Energy and Environmental Research Center (EERC) at the University of North Dakota. References Advanced Biomass Gasification Technologies Inc. (ABGT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Biomass Gasification Technologies Inc. (ABGT) is a company located in New York, New York . References ↑ "Advanced Biomass Gasification Technologies Inc. (ABGT)"

35

Inbicon Biomass Refinery Cellulosic Ethanol Technology Platforms  

U.S. Energy Information Administration (EIA)

for biogas production Inbicon Biomass Refinery Energy integrated solutions Wheat Straw 50 t/h (at 86 % dm) C5 molasses Power The Lignin and biogas are used in power

36

Program on Technology Innovation: Utility Scale of Use of Biomass  

Science Conference Proceedings (OSTI)

The report introduces the main aspects of co-firing biomass with coal, briefly focusing on the main problems and constraints related to utilizing biomass together with coal for power generation and the potential of the torrefaction + pelleting (ToP) preprocessing treatment in mitigating many of these constraints. Torrefaction combined with a pelletization process makes the logistics of transporting and storing bulky biomass more efficient due to its significantly higher energy. Torrefaction is a technol...

2009-03-31T23:59:59.000Z

37

Engineering analysis of biomass gasifier product gas cleaning technology  

DOE Green Energy (OSTI)

For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

1986-08-01T23:59:59.000Z

38

Environmental issues related to biomass: An overview  

DOE Green Energy (OSTI)

Now that public attention has grown increasingly focused on environmentalism and climate change, the commercial use of biomass could greatly accelerate. Renewable feedstocks like biomass can provide better environmentally balanced sources of energy and other nonfood products than fossil fuels. The future of biomass is uncertain, however, because public attention focuses on both its potential and its challenges. This paper is divided into five sections. Section 2 briefly addresses economic environmental issues. The extent to which externalities are accounted for in the market price of fuels plays a significant role in determining both the ultimate size of biofuel markets and the extent of the environmental benefits of feedstock cultivation and conversion processes. Sections 3 and 4 catalog the main hazards and benefits that are likely to arise in the large-scale commercialization of biomass fuel and note where the major uncertainties lay. Environmental issues arise with the cultivation of each feedstock and with each step in the process of its conversion to fuel. Feedstocks are discussed in Section 3 in terms of three main groups: wastes, energy crops, and traditional agricultural crops. In Section 4, conversion processes are also divided into three groups, on the basis of the end energy carrier: gas, liquid, and solid and electricity. Section 5 provides a conclusion and summary.

Hughes, M. [Department of Agriculture, Washington, DC (United States). Office of Energy; Ranney, J.W. [Oak Ridge National Lab., TN (United States)

1993-12-31T23:59:59.000Z

39

Available Technologies: Acid Hydrolysis of Biomass and ...  

Researchers at the DOE Joint BioEnergy Institute (JBEI) have developed a technology to preferentially produce and extract sugars produced by the ...

40

Biomass Gasification Technology Assessment: Consolidated Report  

SciTech Connect

Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

Worley, M.; Yale, J.

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Program on Technology Innovation: Biomass Leaching Pre-Treatment Technology Bench Testing  

Science Conference Proceedings (OSTI)

The leaching of biomass to remove or eliminate troublesome constituents such as alkali metals, chlorine, sulfur, and phosphorus presents an opportunity to solve many problems associated with firing and cofiring low-cost and low-grade agricultural biomass and waste materials to produce energy and biofuels. The Electric Power Research Institute (EPRI) has taken interest in fostering the development of this potentially game-changing technology. As part of this endeavor, EPRI, through the Technology Innovati...

2011-07-18T23:59:59.000Z

42

Bioenergy Technologies Office: Biomass 2013: How the Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multimedia Webinars Databases Analytical Tools Glossary Student & Educator Resources State & Regional Resources Conferences & Meetings Conferences Biomass 2013 Biomass 2012...

43

Harvesting technology and catch-to-biomass dependence: The case of small pelagic fish  

E-Print Network (OSTI)

Harvesting technology and catch-to-biomass dependence: The case of small pelagic fish Pedro Gajardo on the dependence of the stationary solutions upon the nonlinear catch-to-biomass parameter. Given the emphasis

Ramírez, Héctor

44

Survey of biomass gasification. Volume III. Current technology and research  

DOE Green Energy (OSTI)

This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

None

1980-04-01T23:59:59.000Z

45

A review of biomass integrated-gasifier/gas turbine combined cycle technology and its  

E-Print Network (OSTI)

A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application Copersucar, CP 162, Piracicaba, SP ­ Brazil ­ 13400-970 Biomass integrated-gasifier/gas turbine combined-from-sugarcane program. 1. Introduction The biomass integrated-gasifier/gas turbine combined cy- cle (BIG

46

Integrating and Piloting Lignocellulose Biomass Conversion Technology (Presentation)  

DOE Green Energy (OSTI)

Presentation on NREL's integrated biomass conversion capabilities. Presented at the 2009 Advanced Biofuels Workshop in Denver, CO, Cellulosic Ethanol session.

Schell, D. J.

2009-06-15T23:59:59.000Z

47

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

DOE Green Energy (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-06-01T23:59:59.000Z

48

Environmental and institutional considerations in the development and implementation of biomass energy technologies  

DOE Green Energy (OSTI)

The photosynthetic energy stored in plant and organic waste materials in the United States amounts to approximately 40% of the nation's total energy consumption. Conversion of this energy to usable power sources is a complex process, involving many possible materials, conversion technologies, and energy products. Near-term biomass technologies are predominantly based on traditional fuel use and have the advantage over other solar technologies of fitting into existing tax and business practices. However, no other solar technology has the potential for such large environmental impacts. Unlike the conversion of sun, wind, and ocean thermal energy, the conversion of the biomass energy source, in the form of biomass residues and wastes, can create problems. Environmental impacts may be significant, and legal responses to these impacts are a key determinant to the widespread adoption of biomass technologies. This paper focuses on the major legal areas which will impact on biomass energy conversion. These include (1) the effect of existing state and federal legislation, (2) the role of regulatory agencies in the development of biomass energy, (3) governmental incentives to biomass development, and (4) legal issues surrounding the functioning of the technologies themselves. Emphasis is placed on the near-term technologies whose environmental impacts and institutional limitations are more readily identified. If biomass energy is to begin to achieve its apparently great potential, these questions must receive immediate attention.

Schwab, C.

1979-09-01T23:59:59.000Z

49

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

DOE Green Energy (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-04-01T23:59:59.000Z

50

Bioenergy Technologies Office: Natural Gas-Biomass to Liquids...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop on AddThis.com... Publications Key Publications Newsletter Project Fact Sheets Biomass Basics Multimedia Webinars Databases Analytical Tools Glossary Student & Educator...

51

Program on Technology Innovation: Gasification Testing of Various Biomasses in Untreated and Pretreated (Leached) Forms  

Science Conference Proceedings (OSTI)

Leaching of biomass to remove/eliminate troublesome constituents, such as alkali metals, chlorine, sulfur, and phosphorus, presents the opportunity to solve many of the problems found when firing and/or cofiring low-cost and low-grade agricultural biomasses, grasses, and waste materials for energy or production of biofuels. The Electric Power Research Institute (EPRI) has fostered projects for the development and testing of this potential game-changing biomass pretreatment technology since 2010. As part ...

2012-04-11T23:59:59.000Z

52

Program on Technology Innovation: An Assessment of the Future Potential for Biomass Electricity Generation in a Carbon-Constrained World  

Science Conference Proceedings (OSTI)

This report was developed as part of EPRI's Program on Technology Innovation. It evaluates the potential role of biomass electric power generation technologies in a carbon-constrained world. Also, it provides detailed background on U.S. and international biomass use, supply issues, and technologies that can be used to convert biomass into electric power and transportation fuels. A Geographic Information Systems (GIS) compatible database of U.S. biomass fuel supplies was also developed as part of this pro...

2007-04-23T23:59:59.000Z

53

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

54

Genome-Enabled Advancement of Biomass to Biofuel Technology  

DOE Green Energy (OSTI)

Without these achievements, an industrially significant process for biomass fermentation to ethanol would not be economically possible. The development of a fermentation process with economic return on investment can be successfully developed with the technical learning achieved

Patrick O'Mullan, PhD

2010-11-11T23:59:59.000Z

55

Regional assessment of nonforestry related biomass resources: Arkansas  

DOE Green Energy (OSTI)

This document consists of spreadsheets detailing in a county by county manner agricultural crop, agricultural waste, municipal waste and industrial waste in Arkansas that are potential biomass energy sources.

Not Available

1988-11-01T23:59:59.000Z

56

DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology  

DOE Green Energy (OSTI)

The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

Not Available

2003-10-01T23:59:59.000Z

57

The potential impact of externalities considerations on the market for biomass power technologies  

Science Conference Proceedings (OSTI)

This study assesses the current status of externalities considerations--nonmarket costs and benefits--in state and utility electricity resource planning processes and determines how externalities considerations might help or hinder the development of biomass power plants. It provides an overview of biomass resources and technologies, including their market status and environmental impacts; reviews the current treatment of externalities in the states; and documents the perspectives of key utility, regulatory, and industry representatives concerning externalities considerations. The authors make the following recommendations to the biomass industry: (1) the wood and agricultural waste industries should work toward having states and utilities recognize that wood and agricultural waste are greenhouse gas neutral resources because of carbon sequestration during growth; (2) the biomass industry should emphasize nonenvironmental benefits such as economic development and job creation; and (3) the biomass industry should pursue and support efforts to establish renewable energy set-asides or ``green`` requests for proposals.

Swezey, B.G.; Porter, K.L.; Feher, J.S.

1994-02-01T23:59:59.000Z

58

Review of the potential for biomass resources and conversion technology. Final report, Jan-Jul 83  

SciTech Connect

Biomass resources include dedicated energy crops, forestry/agricultural residues, and certain organic fractions of wastes. The magnitude of the resource base, the extent to which it can be devoted to methane production, the quantity of methane that can be produced, and the cost of the methane are issues that are addressed in this study. Research needs include improvement of agricultural production methods, especially regarding problems caused by the seasonal nature of biomass production. Reduction of capital investment per unit of methane could be achieved by development of membrane gas clean up systems or combination biomass storage/fermentation systems, are examples of advanced technologies.

Lipinsky, E.S.; Jenkins, D.M.; Young, B.A.; Sheppard, W.J.

1983-07-01T23:59:59.000Z

59

Superheater Corrosion In Biomass Boilers: Today's Science and Technology  

DOE Green Energy (OSTI)

This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superh

Sharp, William (Sandy) [SharpConsultant

2011-12-01T23:59:59.000Z

60

Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark  

E-Print Network (OSTI)

Bioenergy and emerging biomass conversion technologies Hanne �stergård, Risø National Laboratory in the Agricultural Outlook from OECD-FAO, these predictions may be misleading and biomass may increase more rapidly Biomass and waste Hydro Nuclear Gas Oil Coal Fig 1 Total primary energy supply3 · The transport sector

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Investigation into ash related issues during co-combustion of coal and biomass: Development of a co-firing advisory tool.  

E-Print Network (OSTI)

??The co-firing technology of coal with biomass has been implemented to enhance the usage of biomass in power generation, thus reducing the release of greenhouse… (more)

Arun Kumar, Veena Doshi

2007-01-01T23:59:59.000Z

62

Genome-Enabled Advancement of Biomass to Biofuel Technology  

SciTech Connect

Unlike Saccharomyces and even E. coli, the fundamental microbiology and biochemistry of Clostridium phytofermentans was largely unknown. The genus Clostridia is quite diverse and general methods to manipulate and characterize them often need to be developed. As anaerobes, they often don�t behave the way more classically studied microbes will in fermentation processes. The results from these studies have allowed: 1) A fundamental understanding of the fermentation cycle in C. phytofermentans 2) Requirements to maximize ethanol yield in a fermentation process 3) An understanding of the critical growth and nutritional parameters required to ferment biomass to ethanol 4) Identification of key targets or genes to modify in order increase or improve any of the key traits of C. phytofermentans 5) The development of a genetic system to transform and manipulate the microbe Without these achievements, an industrially significant process for biomass fermentation to ethanol would not be economically possible. The development of a fermentation process with economic return on investment can be successfully developed with the technical learning achieved

Patrick O' Mullan, PhD

2010-11-11T23:59:59.000Z

63

Program on Technology Innovation: Biomass Leaching/Washing Laboratory-Scale Pilot Plant Equipment Selection and Testing  

Science Conference Proceedings (OSTI)

Leaching of biomass to remove troublesome constituents such as alkali metals, chlorine, sulfur, and phosphorus is an opportunity to solve the many problems facing the ability of firing and/or cofiring low-cost and low-grade agricultural biomass and waste materials for the production of energy and biofuels. The Electric Power Research Institute (EPRI) is interested in fostering the development of this potential game-changing biomass preteatment technology. As part of this endeavor, EPRI sponsored through ...

2011-12-23T23:59:59.000Z

64

Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

190 190 July 2009 Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications David Peterson and Scott Haase National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-46190 July 2009 Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications David Peterson and Scott Haase Prepared under Task No. IGST.9034 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

65

A summary of the status of biomass conversion technologies and opportunities for their use in developing countries  

DOE Green Energy (OSTI)

Biomass plays a significant role in energy use in developing countries: however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. This paper reviews the technological status of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries. Market opportunities, constraints, and technology developments are also discussed. 25 refs., 1 fig., 1 tab.

Waddle, D.B.; Perlack, R.D. (Oak Ridge National Lab., TN (USA)); Wimberly, J. (Winrock International, Arlington, VA (USA))

1990-01-01T23:59:59.000Z

66

Changes related to "Blue Spark Technologies formerly Thin Battery...  

Open Energy Info (EERE)

icon Twitter icon Changes related to "Blue Spark Technologies formerly Thin Battery Technologies Inc" Blue Spark Technologies formerly Thin Battery Technologies Inc...

67

Docking automation related technology, Phase 2 report  

SciTech Connect

This report generalizes the progress for Phase II of the Docking Automated Related Technologies task component within the Modular Artillery Ammunition Delivery System (MAADS) technology demonstrator of the Future Armored Resupply Vehicle (FARV) project. This report also covers development activity at Oak Ridge National Laboratory (ORNL) during the period from January to July 1994.

Jatko, W.B.; Goddard, J.S.; Gleason, S.S.; Ferrell, R.K.

1995-04-01T23:59:59.000Z

68

Biomass energy: State of the technology present obstacles and future potential  

DOE Green Energy (OSTI)

The prevailing image of wood and waste burning as dirty and environmentally harmful is no longer valid. The use of biomass combustion for energy can solve many of our nation`s problems. Wood and other biomass residues that are now causing expensive disposal problems can be burned as cleanly and efficiently as natural gas, and at a fraction of the cost. New breakthroughs in integrated waste-to-energy systems, from fuel handling, combustion technology and control systems to heat transfer and power generation, have dramatically improved system costs, efficiencies, cleanliness of emissions, maintenance-free operation, and end-use applications. Increasing costs for fossil fuels and for waste disposal strict environmental regulations and changing political priorities have changed the economics and rules of the energy game. This report will describe the new rules, new playing fields and key players, in the hope that those who make our nation`s energy policy and those who play in the energy field will take biomass seriously and promote its use.

Dobson, L.

1993-06-23T23:59:59.000Z

69

Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments  

DOE Green Energy (OSTI)

This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

Yeh, B.

2011-03-01T23:59:59.000Z

70

Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications  

DOE Green Energy (OSTI)

This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

Peterson, D.; Haase, S.

2009-07-01T23:59:59.000Z

71

Physics of Accelerators and Related Technology for International...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Physics of Accelerators and Related Technology for International Students (PARTI). Physics of Accelerators and Related Technology for International Students (PARTI). December 14,...

72

Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report  

DOE Green Energy (OSTI)

The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

NONE

1997-07-01T23:59:59.000Z

73

Sintering and Related Powder Processing Science & Technologies  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2013 ... including novel sintering technologies, such as Spark Plasma Sintering, nanosintering, in-situ ...

74

Space nuclear power, propulsion, and related technologies.  

SciTech Connect

Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

Berman, Marshall

1992-01-01T23:59:59.000Z

75

Space nuclear power, propulsion, and related technologies.  

SciTech Connect

Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

Berman, Marshall

1992-01-01T23:59:59.000Z

76

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

Not Available

2009-01-01T23:59:59.000Z

77

Changes related to "Beijing Sanyuan Green Lighting Technology...  

Open Energy Info (EERE)

page on Facebook icon Twitter icon Changes related to "Beijing Sanyuan Green Lighting Technology Development Co Ltd" Beijing Sanyuan Green Lighting Technology...

78

Changes related to "Guodian Technology Environment Co Ltd" |...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Changes related to "Guodian Technology Environment Co Ltd" Guodian Technology Environment Co Ltd Jump to: navigation, search This...

79

Changes related to "Kumasi Institute of Technology and Environment...  

Open Energy Info (EERE)

icon Twitter icon Changes related to "Kumasi Institute of Technology and Environment (KITE)" Kumasi Institute of Technology and Environment (KITE) Jump to:...

80

Changes related to "Clean Coal Technology (Indiana)" | Open Energy...  

Open Energy Info (EERE)

page Share this page on Facebook icon Twitter icon Changes related to "Clean Coal Technology (Indiana)" Clean Coal Technology (Indiana) Jump to: navigation, search...

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Changes related to "Category:Electricity Generating Technologies...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Category:Electricity Generating Technologies" Category:Electricity Generating Technologies Jump to:...

82

Changes related to "Wuxi Qiaolian Wind Electricity Technology...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Changes related to "Wuxi Qiaolian Wind Electricity Technology Co Ltd" Wuxi Qiaolian Wind Electricity Technology Co Ltd Jump to:...

83

Changes related to "Bioethanol Secience and Technology Centre...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Bioethanol Secience and Technology Centre" Bioethanol Secience and Technology Centre Jump...

84

Fuel Cell Technologies Office: Related Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

85

NREL: Biomass Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

and green algae and gas bubbles can be seen floating in the liquid. Through biomass research, NREL is developing technologies to convert biomass-plant matter such as...

86

Program on Technology Innovation: An Aspen Plus Model of Biomass Torrefaction  

Science Conference Proceedings (OSTI)

In 2009, the Electric Power Research Institute (EPRI) developed an Aspen Plus model of biomass torrefaction to use as a tool for evaluating different torrefaction process conditions. This report describes the model in detail, as well as the results from the model simulation of five biomass fuels.

2009-12-08T23:59:59.000Z

87

Ion Funnel and Related Technology for Improved Sensitivity ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Ion Funnel and Related Technology for Improved Sensitivity in Mass ...

88

Program on Technology Innovation: Small-Scale Testing of Woody and Herbaceous Biomass -Torrefaction and Pelleting  

Science Conference Proceedings (OSTI)

In fall 2009, the Electric Power Research Institute (EPRI) initiated a project to conduct small-scale testing of biomass torrefaction in order to investigate the feasibility of torrefying and pelleting different woody and herbaceous biomass feedstocks. Testing was done by Integro Earth Fuels, LLC, using a Wyssmont directly heated torrefaction reactor. The results of this research serve as a first step in determining the feasibility of using torrefaction and pelleting to improve the value of different bio...

2010-04-27T23:59:59.000Z

89

Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production  

SciTech Connect

Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d' Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

2010-01-01T23:59:59.000Z

90

Renewable Energy Technology Engineering and Economic Evaluation: Biomass Power Plants 2007  

Science Conference Proceedings (OSTI)

This study prepared an engineering and economic evaluation of 25-, 50-, and 100-MW biomass combustion power plants fired by 100% biomass fuel. The study estimated boiler efficiency, steam cycle heat rate, auxiliary power consumption, net plant heat rate, operation and maintenance (O&M) labor costs, maintenance materials, fuel needs, and raw material requirements. For both capital and annual O&M costs, the costs per kW or MWh are the lowest for 100-MW plants and the highest for 25-MW plants. Due to their ...

2008-03-31T23:59:59.000Z

91

Trends and outlook for biomass energy  

Science Conference Proceedings (OSTI)

Among renewable energy resources, biomass is one of the most promising, with the potential for providing electricity through combustion, gasification, and biochemical processes as well as supplying gaseous and liquid fuels that can compete with conventional energy sources in large-scale applications. The production of biomass for energy purposes can also offer environmental benefits. The most notable is the potential for providing energy with little or no net buildup of carbon dioxide in the atmosphere if the biomass is produced renewably. Biomass also has the potential to help revitalize the rural sector of the economy. A domestic natural resource, biomass can be grown and harvested, which requires labor. The biomass power industry can therefore create jobs in harvesting and transporting biomass and in the related industries of fertilizers, pesticides, and agricultural equipment. In the future, biomass facilities will be larger and more efficient and, as such, an important alternative for energy generators. This article summarizes the factors relating to the use of biomass as a fuel source, the technology options for power generation, and examines the trends and outlook for biomass energy generation in the United States.

Green, J.H. (Bechtel Group, Inc., San Francisco, CA (United States). Research and Development)

1994-01-01T23:59:59.000Z

92

Biomass Equipment & Materials Compensating Tax Deduction (New...  

Open Energy Info (EERE)

Sector Commercial, Industrial Eligible Technologies Anaerobic Digestion, Biodiesel, Biomass, CHPCogeneration, Ethanol, Hydrogen, Landfill Gas, Methanol, Microturbines,...

93

Program on Technology Innovation: Novel Method for Determining Biomass Co-firing Fraction  

Science Conference Proceedings (OSTI)

Co-firing biomass at coal-fired power plants is a possible option for power generators seeking to meet their obligations under regulatory mandates, but determining how much carbon reduction is actually achieved by co-firing is technically difficult. One method, based on using “ASTM-D6866: Standard Test Methods for Determining the Biobased Content of Natural Range Materials Using Radiocarbon and Isotope Ratio Mass Spectrometry Analysis,” could offer a cost-effective, easily implemented, and rigorous deter...

2009-07-13T23:59:59.000Z

94

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network (OSTI)

777- 93. Himmel ME. Biomass recalcitrance : deconstructingEthanol from Cellulosic Biomass. Science. 1991 Mar 15;251(from Lignocellulosic Biomass - Technology, Economics, and

Li, Hongjia

2012-01-01T23:59:59.000Z

95

Property:File/RelatedTechnology | Open Energy Information  

Open Energy Info (EERE)

RelatedTechnology RelatedTechnology Jump to: navigation, search Property Name File/RelatedTechnology Property Type String Description Name of a technology to which the file is related (e.g. "Solar"). Pages using the property "File/RelatedTechnology" Showing 25 pages using this property. (previous 25) (next 25) A Australia-Solar-Map.png + Solar + B BOEMRE OCS.oil.gas.2007-12.map.pdf + Oil +, Natural Gas + BOEMRE US.CSB.Map.pdf + Oil +, Natural Gas + BOEMRE US.CSB.bathy.map.pdf + Oil +, Natural Gas + BOEMRE atlantic.OCS.multiple.use.map.2003.pdf + Offshore wind + BOEMRE lease.platforms.santa.barb.map.5.2010.pdf + Oil +, Natural Gas + BOEMRE oil.gas.plant.platform.sta.brbra.map.4.2010.pdf + Oil +, Natural Gas + BOEMRE platforms.leases.longbeach.map.5.2010.pdf + Oil +, Natural Gas +

96

Solvent Extraction, Electrowinning and Related Technologies  

Science Conference Proceedings (OSTI)

... Xstrata Process Support; Gordon Cooper, SNC Lavalin; Nosrat Behnood, PTMC Inc ... Crud and Organic Recovery Economics in Mineral Processing: Derek Ettie1; ... large aqueous-to-oil phase ratio extraction and enrichment of rare-earth ions ... which relates optimal operational condition to enhance anode lifecycles.

97

Technology diffusion of energy-related products in residential markets  

Science Conference Proceedings (OSTI)

Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

Davis, L.J.; Bruneau, C.L.

1987-05-01T23:59:59.000Z

98

Biomass Gasification Syngas Cleanup  

Science Conference Proceedings (OSTI)

In December 2012, the Electric Power Research Institute (EPRI) published report 1023994, Engineering and Economic Evaluation of Biomass Gasification, prepared by CH2M HILL Engineers, Inc. (CH2M HILL). It provided a global overview of commercially available biomass gasification technologies that can be used for power production in the 25- to 50-MWe range. The report provided detailed descriptions of biomass gasification technologies, typical operational parameters, emissions information, and ...

2013-12-23T23:59:59.000Z

99

Advanced Biomass Gasification Projects  

DOE Green Energy (OSTI)

DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

Not Available

1997-08-01T23:59:59.000Z

100

Enzymatic Hydrolysis of Cellulosic Biomass  

Science Conference Proceedings (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Putney Basketville Site Biomass CHP Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

publications. 25 5 Bioenergy Overview Biopower, or biomass power, is the use of biomass to generate electricity. Biopower system technologies include direct-firing,...

102

Utility Promoters for Biomass Feedstock Biotechnology ...  

Technology Marketing Summary. Genetic optimization of biomass is necessary to improve the rates and final yields of sugar release from woody biomass.

103

Federal Energy Management Program: Biomass Energy Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Biomass Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Biomass Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Biomass Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Biomass Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Biomass Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Biomass Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Biomass Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

104

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

105

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

106

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

107

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

108

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology  

DOE Green Energy (OSTI)

This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

Nexant Inc.

2006-05-01T23:59:59.000Z

109

EERC Center for Biomass Utilization 2005  

DOE Green Energy (OSTI)

Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

2008-07-28T23:59:59.000Z

110

Case Studies of Energy Information Systems and Related Technology:  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Studies of Energy Information Systems and Related Technology: Case Studies of Energy Information Systems and Related Technology: Operational Practices, Costs, and Benefits Speaker(s): Naoya Motegi Date: October 2, 2003 - 12:00pm Location: Bldg. 90 Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. LBNL has conducted a series of case studies of existing EIS, exploring How is the EIS used in day-to-day operation? What are the costs and benefits of an EIS? Where do the energy savings come from?This study reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of

111

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

112

NREL: Biomass Research - Daniel Inman  

NLE Websites -- All DOE Office Websites (Extended Search)

us to examine the feasibility of alternative process configurations. Learn more about Biomass Technology Analysis at NREL. System Dynamics I am also interested in dynamic modeling...

113

Biomass energy: Sustainable solution for greenhouse gas emission  

Science Conference Proceedings (OSTI)

Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale

2012-01-01T23:59:59.000Z

114

Recovery of Sugars from Ionic Liquid Biomass Liquor by Solvent Extraction  

E-Print Network (OSTI)

from Ionic Liquid Biomass Liquor by Solvent ExtractionAbstract The dissolution of biomass into ionic liquids (ILs)be a promising alternative biomass pretreatment technology,

Brennan, Timothy C.; Datta, Supratim; Blanch, Harvey W.; Simmons, Blake A.; Holmes, Bradley M.

2010-01-01T23:59:59.000Z

115

Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes  

E-Print Network (OSTI)

145. Wyman C, Huber G: Biomass and America's energy futuredevelopment of leading biomass pretreatment technologies.U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and

Gao, Xiadi

2013-01-01T23:59:59.000Z

116

Environmental issues relating to fossil energy technology options  

DOE Green Energy (OSTI)

The Office of Fossil Energy has prepared a report on fossil technology options available to reduce oil imports. It identifies energy processes ready for immediate deployment (called first wave) and those that, after further development, would provide substantial benefits over the first wave. The latter (called second wave) technologies could be in commercial use in the late 1980s. The status of environmental readiness for each of these fossil technologies is addressed in this report. Primary environmental concerns and environmental research required concurrent with fossil technology development and commercial operation are described herein and presented in conformance to the organization of the fossil options paper. In instances where environmental issues for related technologies are identical or nearly so, we have attempted to avoid redundancy. Although many environmental concerns have been recognized and are being dealt with for each technology, some areas of concern must receive continued attention. These are briefly mentioned in this introduction. Further details, specific to each technology, are in the appropriate sections of the report. Research is continuing on both health and ecological effects of coal combustion and gasification. Having identified cancer-producing elements in airborne particulates, the Environmental protection Agency (EPA) is developing a standard for respirable range particulates. With regard to the synthetic fuels, one of the major concerns is the health and safety aspects of the coal liquid products. It is known, for example, that some coal-derived liquids that have undergone only minimal processing or upgrading do contain carcinogens. Environmental effects in other fossil energy areas such as oil shale processing, enhanced oil recovery, etc., are discussed.

Not Available

1979-10-01T23:59:59.000Z

117

Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies  

E-Print Network (OSTI)

We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory (QFT). QFT properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in QFT including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

Mehdi Ahmadi; David Edward Bruschi; Nicolai Friis; Carlos Sabín; Gerardo Adesso; Ivette Fuentes

2013-07-26T23:59:59.000Z

118

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Figure 1: West Biofuels Biomass Gasification to Power process will utilize  gasification technology provided by is  pioneering the gasification technology that has been 

Cattolica, Robert

2009-01-01T23:59:59.000Z

119

Biomass Processing Photolibrary  

DOE Data Explorer (OSTI)

Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

120

Review: Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Overview: The Increasing Importance and Capabilities of Biomass...  

NLE Websites -- All DOE Office Websites (Extended Search)

IB IN DEPTH-Special Section on Advances in Biomass Characterization Technology brian h. davison, guest editor Overview: The Increasing Importance and Capabilities of Biomass...

122

Agricultural Biomass to Energy Program (California) | Open Energy...  

Open Energy Info (EERE)

Type Performance-Based Incentive Applicable Sector Biomass Facility Eligible Technologies Biomass Active Incentive No Implementing Sector StateTerritory Energy Category Renewable...

123

Biomass pretreatment  

SciTech Connect

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

124

Technology assessment of solar energy systems: availability and impacts of woody biomass utilization in the Pacific Northwest  

DOE Green Energy (OSTI)

The estimates of the biomass resource base in the Northwest are reviewed for comparison with scenarios used and a preliminary analysis of the issues involved in the collection and use of forest residues as an energy resource is presented. Four issues are reviewed that may serve to constrain the total amount of wood residues available for use as fuel. (MHR)

Hopp, W.J.; Chockie, A.D.; Allwine, K.J.

1981-09-01T23:59:59.000Z

125

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network (OSTI)

Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Katzer #12;CHARGE TO THE ALTF PANEL · Evaluate technologies for converting biomass and coal to liquid for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social

126

Biomass Interest Group Meetings - 2007  

Science Conference Proceedings (OSTI)

The Biomass Interest Group (BIG) provides technology updates and information exchange for funders of EPRI Program 84.005. The group sponsors research projects and technology summaries. This report assembles presentation materials from webcasts and other meetings conducted by the Biomass Interest Group in 2007. Presentations covered several technologies including the prospect of using cellulosic feedstock in the production of ethanol, as well as gasification, the synthesis of biodiesel, and the cofiring o...

2008-03-31T23:59:59.000Z

127

Fixed Bed Biomass Gasifier  

DOE Green Energy (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

128

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

129

State and Regional Biomass Partnerships  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

130

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

131

Homecare risk management: nursing issues related to technology  

Science Conference Proceedings (OSTI)

Traditional risk management may not address the needs of technology being introduced into homecare situations for nurses. We propose to augment traditional risk management with insights from Prevention through Design and The 8 Rights giving a more technology ...

Juliana J. Brixey, James P. Turley

2013-07-01T23:59:59.000Z

132

A survey of state clean energy fund support for biomass  

DOE Green Energy (OSTI)

This survey reviews efforts by CESA member clean energy funds to promote the use of biomass as a renewable energy source. For each fund, details are provided regarding biomass eligibility for support, specific programs offering support to biomass projects, and examples of supported biomass projects (if available). For the purposes of this survey, biomass is defined to include bio-product gasification, combustion, co-firing, biofuel production, and the combustion of landfill gas, though not all of the programs reviewed here take so wide a definition. Programs offered by non-CESA member funds fall outside the scope of this survey. To date, three funds--the California Energy Commission, Wisconsin Focus on Energy, and the New York State Energy Research and Development Authority--have offered programs targeted specifically at the use of biomass as a renewable energy source. We begin by reviewing efforts in these three funds, and then proceed to cover programs in other funds that have provided support to biomass projects when the opportunity has arisen, but otherwise do not differentially target biomass relative to other renewable technologies.

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-08-20T23:59:59.000Z

133

Biomass Resources  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks.

134

Energy Basics: Biomass Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Resources Biomass resources include any...

135

NETL: Coal/Biomass Feed and Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

136

Case Studies of Energy Information Systems and Related Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings...

137

Cocoa Butter and Related CompoundsChapter 17 Methods and Technologies Related to Shea Butter Chemophysical Properties and to the Delivery of Bioactives in Chocolate and Related Products  

Science Conference Proceedings (OSTI)

Cocoa Butter and Related Compounds Chapter 17 Methods and Technologies Related to Shea Butter Chemophysical Properties and to the Delivery of Bioactives in Chocolate and Related Products Food Science Health Nutrition eChapters Food Science

138

HYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION  

E-Print Network (OSTI)

-energy Pyrolysis is one of many technologies to produce energy from biomass (Bridgwater 2003). What distinguishes pyrolysis from alternative ways of converting biomass to energy is that pyrolysis produces a carbon-temperature pyrolysis"), using a variety of different reactor configurations. At these tem- peratures, biomass undergoes

139

November 2011 Competition for biomass among  

E-Print Network (OSTI)

November 2011 Competition for biomass among renewable energy policies: Liquid fuels to 20% by marketing year 2020/21. All renewable energies (biomass, hydropower, wind, solar, geothermal/192020/21: Based on assumed technology patterns, biomass supplies respond faster than competing renewable energy

Noble, James S.

140

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network (OSTI)

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pretreatment Methods for Biomass Conversion into Biofuels ...  

Technology Marketing Summary Hydrolysis of lignocellulosic biomass using an acid catalyst to produce sugars has been known for decades but can be ...

142

NREL: Biomass Research - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

is the key to moving advanced biofuel technologies into the market. Explore NREL's biomass projects for examples of stakeholder partnerships. We provide opportunities to...

143

Agricultural Biomass and Landfill Diversion Incentive (Texas...  

Open Energy Info (EERE)

Policy Category Financial Incentive Policy Type Grant Program Affected Technologies BiomassBiogas Active Policy Yes Inactive Date 83119 Implementing Sector StateProvince...

144

Biomass Energy Tax Credit (Personal)(South Carolina) | Open Energy...  

Open Energy Info (EERE)

Tax Credit Applicable Sector Industrial Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration, Landfill Gas Active Incentive Yes Implementing Sector State...

145

Biomass Energy Tax Credit (Corporate) (South Carolina) | Open...  

Open Energy Info (EERE)

Tax Credit Applicable Sector Industrial Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration, Landfill Gas Active Incentive Yes Implementing Sector State...

146

Biomass Energy Production Incentive (South Carolina) | Open Energy...  

Open Energy Info (EERE)

Sector Agricultural, Commercial, Industrial Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration, Landfill Gas Active Incentive Yes Implementing Sector State...

147

Biomass Gasification and Methane Digester Property Tax Exemption...  

Open Energy Info (EERE)

Tax Incentive Applicable Sector Agricultural Eligible Technologies Anaerobic Digestion, Biomass, Thermal polyerization Active Incentive Yes Implementing Sector StateTerritory...

148

Biomass Workshop and Event Grants (Michigan) | Open Energy Information  

Open Energy Info (EERE)

Type State Grant Program Applicable Sector Nonprofit, Schools, Local Government, State Government Eligible Technologies Biomass Active Incentive No Implementing Sector...

149

Geothermal technology publications and related reports: A bibliography, January 1986 through December 1987  

DOE Green Energy (OSTI)

Sandia publications resulting from DOE programs in Geothermal Technologies, Magma Energy and Continental Scientific Drilling are listed for reference. The RandD includes borehole-related technologies, in situ processes, and wellbore diagnostics.

Tolendino, C.D. (ed.)

1988-08-01T23:59:59.000Z

150

Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviews Reviews Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance Marcus Foston and Arthur J. Ragauskas BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA Abstract The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in bio- technology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fer- mentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace

151

Energy Policy 33 (2005) 705716 UK biomass energy since 1990: the mismatch between  

E-Print Network (OSTI)

-oil from fast pyrolysis, producing hydrogen from biomass for use in fuel cells). Consequently, biomass the scale of `medium' plant and the potential role of biomass pyrolysis or gasification technologies,11 technologies but references to biomass pyrolysis or biomass gasifica- tion are noticeably absent. The glossary

Heinke, Dietmar

152

Available Technologies - lbl.gov  

APPLICATIONS OF TECHNOLOGY: Biomass pretreatment; Paper recycling; Pulp processing for paper manufacturing; Biofuels research; ADVANTAGES: Higher ...

153

GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.  

Science Conference Proceedings (OSTI)

Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for stabilization, and the total size of the label is therefore significantly smaller. Since the clusters considered in this chapter are generally less than 3 nm in diameter, this allows the preparation of probes that are much smaller than conventional immunocolloids, and cluster labeling can take advantage of the higher resolution and penetration available with smaller conjugates. Most importantly, while colloidal gold is adsorbed to its conjugate probe, clusters are conjugated by chemically specific covalent cross-linking. Therefore, the range of possible conjugate targeting agents includes any probe containing an appropriate reactive group. Clusters conjugates have been prepared with a wide variety of molecules that do not form colloidal gold conjugates, including lipids, oligonucleotides, peptides, and other small molecules. In addition to the development of gold cluster labeling technology, this chapter will also review new developments in the related metallographic, or metal deposition, methods. This includes gold enhancement, in which gold rather than silver is selectively deposited onto gold particles. We will also describe some results obtained using another novel metallographic procedure, enzyme metallography, in which metal is directly deposited from solution by an enzymatic reaction. Because the original, and most widespread, use of metal cluster labels is in electron microscopy, many of the light microscopy methods described were developed as extensions of, or complements to electron microscopy methods, and demonstrate their greatest advantages when used with electron microscopy; therefore reference will also be made to the electron microscope methods used in the same studies, and the unique information that may be obtained from the correlation of both methods.

HAINFELD,J.F.; POWELL,R.D.

2004-02-04T23:59:59.000Z

154

Gridley Ethanol Demonstration Project Utilizing Biomass Gasification Technology: Pilot Plant Gasifier and Syngas Conversion Testing; August 2002 -- June 2004  

DOE Green Energy (OSTI)

This report is part of an overall evaluation of using a modified Pearson Pilot Plant for processing rice straw into syngas and ethanol and the application of the Pearson technology for building a Demonstration Plant at Gridley. This report also includes information on the feedstock preparation, feedstock handling, feedstock performance, catalyst performance, ethanol yields and potential problems identified from the pilot scale experiments.

Not Available

2005-02-01T23:59:59.000Z

155

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

156

Strategic Biomass Solutions (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Biomass Solutions (Mississippi) Strategic Biomass Solutions (Mississippi) Strategic Biomass Solutions (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer General Public/Consumer Industrial Installer/Contractor Retail Supplier Utility Program Info State Mississippi Program Type Industry Recruitment/Support Training/Technical Assistance Provider Mississippi Technology Alliance The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors and economic developers in the renewable energy sector. It offers companies strategic guidance for making their technology investor ready and connects companies to early stage private capital and available tax incentives. SBS assists

157

Engineering and Economic Evaluation of Biomass Gasification  

Science Conference Proceedings (OSTI)

The use of gasification technology to convert biomass to electric power has increased substantially over the last 10 years. Many new projects, using a wide range of gasification technologies, have been developed and become operational. Some of the key driving factors for biomass gasification-to-power facilities include:Abundant local supplies of biomass, at low or no cost, for use as a feedstock for gasification-to-power facilities.Federal and state tax credits ...

2012-12-20T23:59:59.000Z

158

Program on Technology Innovation: Programmatic Risk Assessment Future Fossil- and Biomass-Fueled Power Generation System Configurations  

Science Conference Proceedings (OSTI)

Recent and upcoming regulatory activities will have a major impact on power plant design over the next few decades. To address various environmental concerns, including climate change, emissions of specific air toxics and waste-to-energy goals, a number of different power plant configurations have been proposed involving differences in fuel type, boiler designs and emissions control technology. The Electric Power Research Institute (EPRI) commissioned Gradient to evaluate risks associated with ...

2012-12-20T23:59:59.000Z

159

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Russell Biomass Jump to: navigation, search Name Russell Biomass Place Massachusetts Sector Biomass Product Russell Biomass, LLC is developing a 50MW biomass to energy project at...

160

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Jump to: navigation, search Name Star Biomass Place India Sector Biomass Product Plans to set up biomass projects in Rajasthan. References Star Biomass1 LinkedIn...

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Biomass Research - Amie Sluiter  

NLE Websites -- All DOE Office Websites (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

162

Soap Manufacturing TechnologyChapter 14 Analysis of Soap and Related Materials  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 14 Analysis of Soap and Related Materials Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 14 Analysis of Soap and Related Mate

163

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2011 State of Technology and Projections to 2017  

SciTech Connect

Review of the the status of DOE funded research for converting biomass to liquid transportation fuels via fast pyrolysis and hydrotreating for fiscal year 2011.

Jones, Susanne B.; Male, Jonathan L.

2012-02-01T23:59:59.000Z

164

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

165

Science Activities in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

166

NETL: Coal & Coal Biomass to Liquids - Closely Aligned Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > C&CBTL > Closely Aligned Programs Coal and CoalBiomass to Liquids Closely Aligned Programs The Department of Energy's (DOE) Coal & CoalBiomass to Liquids...

167

Advanced clean combustion technology in Shanxi province  

Science Conference Proceedings (OSTI)

Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

Xie, K.-C. [Taiyuan University of Technology, Taiyuan (China)

2004-07-01T23:59:59.000Z

168

Program on Technology Innovation: Algae Biofuel, CO2 Reuse, and Related Technologies Vendor Description  

Science Conference Proceedings (OSTI)

Interest has been growing over the last several years in the use of microalgae for production of various forms of bioenergy. These include transportation fuels, solid fuels for cofiring, digestion to natural gas, and other forms of energy. Many of these applications involve electric utilities, either directly or indirectly. Due to rapid growth in this research field, it can be difficult to keep abreast of the latest technology developments and field of vendors. Thus, EPRI has compiled a database that con...

2009-12-21T23:59:59.000Z

169

Natural language processing-based COTS software and related technologies survey.  

Science Conference Proceedings (OSTI)

Natural language processing-based knowledge management software, traditionally developed for security organizations, is now becoming commercially available. An informal survey was conducted to discover and examine current NLP and related technologies and potential applications for information retrieval, information extraction, summarization, categorization, terminology management, link analysis, and visualization for possible implementation at Sandia National Laboratories. This report documents our current understanding of the technologies, lists software vendors and their products, and identifies potential applications of these technologies.

Stickland, Michael G.; Conrad, Gregory N.; Eaton, Shelley M.

2003-09-01T23:59:59.000Z

170

The impact of instrument choice on investment in abatement technologies: a case study of tax versus trade incentives for CCS and Biomass for electricity  

E-Print Network (OSTI)

varying load factor, this may imply the use of small amounts of fossil fuel input and thus reduce the abatement that is possible vis-à-vis the reference plant. 18 )6.9,6.6(~ )2.3,2.2(~ 3 2 UQ UQ NT NT where the upper bound of abatement... with relatively low uncertainty over the technology involved. There are still large questions, however, over the supply chain for the fuel inputs and the load factor at which such plants could operate.14 We assume that the firm operates the technology...

Laing, T; Grubb, Michael

171

Measuring the success possibility of implementing advanced manufacturing technology by utilizing the consistent fuzzy preference relations  

Science Conference Proceedings (OSTI)

Yusuff et al. [Yusuff, R. M., Yee, K. P., & Hashmi, M. S. J. (2001). A preliminary study on the potential use of the analytical hierarchical process (AHP) to predict advanced manufacturing technology (AMT) implementation. Robotics and Computer Integrated ... Keywords: Advanced manufacturing technology (AMT), Analytic hierarchy process (AHP), Consistent fuzzy preference relations (CFPR), Pairwise comparison

Tsung-Han Chang; Tien-Chin Wang

2009-04-01T23:59:59.000Z

172

AlternativeAlternative FeedstocksFeedstocks for the Petrochemical Industryfor the Petrochemical Industry from Biomassfrom Biomass LigninsLignins  

E-Print Network (OSTI)

-oil from fast pyrolysis, producing hydrogen from biomass for use in fuel cells). Consequently, biomass the scale of `medium' plant and the potential role of biomass pyrolysis or gasification technologies,11 technologies but references to biomass pyrolysis or biomass gasifica- tion are noticeably absent. The glossary

173

NREL: Biomass Research - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

174

New Bern Biomass to Energy Feasibility Study  

Science Conference Proceedings (OSTI)

The pulp and paper industry is the fourth largest consumer of energy in the United States. The industry recognizes that it can increase its energy production by increasing the utilization of available biomass resources, or by increasing the efficiency of available conversion technologies. Weyerhaeuser, Stone and Webster, Amoco, and Carolina Power & Light performed a detailed study of biomass gasification and enzymatic processing of biomass to ethanol. This evaluation assessed the potential of these techn...

1996-07-10T23:59:59.000Z

175

Schiller Biomass Con Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Schiller Biomass Con Biomass Facility Jump to: navigation, search Name Schiller Biomass Con Biomass...

176

Ware Biomass Cogen Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Ware Biomass Cogen Biomass Facility Jump to: navigation, search Name Ware Biomass Cogen Biomass...

177

DOE, USDA Announce Funding for Biomass Research and Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, USDA Announce Funding for Biomass Research and Development DOE, USDA Announce Funding for Biomass Research and Development Initiative DOE, USDA Announce Funding for Biomass Research and Development Initiative May 6, 2010 - 12:00am Addthis Washington, DC - The U.S. Departments of Energy (DOE) and Agriculture (USDA) today jointly announced up to $33 million in funding for research and development of technologies and processes to produce biofuels, bioenergy and high-value biobased products, subject to annual appropriations. These projects will support the Obama Administration's comprehensive energy strategy of increasing the nation's energy, economic and national security by reducing our reliance on foreign oil and reducing greenhouse gases. "These projects will help advance the production of biofuels and related

178

NREL: Power Technologies Energy Data Book - Technology Cross...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Energy Data Book Home Table of Contents Browse by Technology Biomass Geothermal Hydroelectric Solar Wind Calculators Archives Contact Us Technology Cross Reference...

179

EERC Center for Biomass Utilization | Open Energy Information  

Open Energy Info (EERE)

Center for Biomass Utilization Center for Biomass Utilization Jump to: navigation, search Name EERC Center for Biomass Utilization Place Grand Forks, North Dakota Sector Biofuels, Biomass Product The mission of CBU is to develop technologies for, and promote the use of, biomass for production of biopower, transportation biofuels, and bioproducts as well as mitigate the technical challenges associated with biomass utilisation. References EERC Center for Biomass Utilization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. EERC Center for Biomass Utilization is a company located in Grand Forks, North Dakota . References ↑ "EERC Center for Biomass Utilization" Retrieved from "http://en.openei.org/w/index.php?title=EERC_Center_for_Biomass_Utilization&oldid=344557

180

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Processes for pretreating lignocellulosic biomass: A review  

DOE Green Energy (OSTI)

This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

McMillan, J.D.

1992-11-01T23:59:59.000Z

182

ZeroPoint Clean Technology Inc | Open Energy Information  

Open Energy Info (EERE)

York Zip 13676 Sector Biomass Product Developing of biomass gasification technology and gas-to-liquids processes. References ZeroPoint Clean Technology Inc1 LinkedIn...

183

IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS  

Science Conference Proceedings (OSTI)

Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

2012-10-01T23:59:59.000Z

184

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

185

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

186

NO reduction in decoupling combustion of biomass and biomass-coal blend  

SciTech Connect

Biomass is a form of energy that is CO{sub 2}-neutral. However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. In this study, a technology called decoupling combustion was investigated to demonstrate how it reduces NO emissions in biomass and biomass-coal blend combustion. The decoupling combustion refers to a two-step combustion method, in which fuel pyrolysis and the burning of char and pyrolysis gas are separated and the gas burns out during its passage through the burning-char bed. Tests in a quartz dual-bed reactor demonstrated that, in decoupling combustion, NO emissions from biomass and biomass-coal blends were both less than those in traditional combustion and that NO emission from combustion of blends of biomass and coal decreased with increasing biomass percentage in the blend. Co-firing rice husk and coal in a 10 kW stove manufactured according to the decoupling combustion technology further confirmed that the decoupling combustion technology allows for truly low NO emission as well as high efficiency for burning biomass and biomass-coal blends, even in small-scale stoves and boilers. 22 refs., 6 figs., 1 tab.

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu [Chinese Academy of Sciences, Beijing (China). State Key Laboratory of Multi-Phase Complex Systems

2009-01-15T23:59:59.000Z

187

Woody Biomass Supply Issues  

Science Conference Proceedings (OSTI)

Woody biomass is the feedstock for the majority of biomass power producers. Woody biomass consists of bark and wood and is generally obtained as a byproduct or waste product. Approximately 40% of timber biomass is left behind in the form of slash, consisting of tree tops, branches, and stems after a timber harvest. Collecting and processing this residue provides the feedstock for many utility biomass projects. Additional sources of woody biomass include urban forestry, right-of-way clearance, and trees k...

2011-03-31T23:59:59.000Z

188

Biomass energy systems program summary  

DOE Green Energy (OSTI)

Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

None

1980-07-01T23:59:59.000Z

189

Geoscience-related research needs for geothermal energy technology. Final report  

DOE Green Energy (OSTI)

A project to identify and prioritize geoscience-related research needs that would be of significant benefit in the assessment, exploration, and development of US geothermal energy resources is described. The federal research needs as identified by the Panel are summarized. The research needs are organized into specific research needs for four technology areas and a group of generic research needs which relate to all of the technology areas. Arranged in order of overall need for research, these technology areas are: reservoir engineering; resource exploration and reservoir definition; well drilling, completion, and stimulation; and environmental monitoring and control. The generic research needs are: geoscience case studies, scientific drilling, information and technology transfer, and improved research coordination. (MHR)

Crane, C. H.; Markiewicz, J. J. Jr.

1983-09-30T23:59:59.000Z

190

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

191

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

193

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to… (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

194

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

195

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The forth reporting period (July 1 - September 30) included ongoing kinetic modeling of the reburning process while firing biomass. Modeling of biomass reburning concentrated on description of biomass performance at different reburning heat inputs. Reburning fuel was assumed to undergo rapid breakdown to produce various gaseous products. Modeling shows that the efficiency of biomass is affected by its composition. The kinetic model agrees with experimental data for a wide range of initial conditions and thus can be used for process optimization. Experimental data on biomass reburning are included in Appendix 2.

NONE

1998-10-20T23:59:59.000Z

196

Biomass reforming processes in hydrothermal media  

E-Print Network (OSTI)

While hydrothermal technologies offer distinct advantages in being able to process a wide variety of biomass feedstocks, the composition of the feedstock will have a large effect on the processing employed. This thesis ...

Peterson, Andrew A

2009-01-01T23:59:59.000Z

197

Biomass Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Place Dallas, Texas Product A start up fuel processing technology References Biomass Energy Resources1 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one...

198

Chemical Sub-models in biomass Jenny Jones, Alan Williams,  

E-Print Network (OSTI)

by liquid-phase processing.3 Thermal depolymerization of biomass can be ach- ieved by pyrolysis. Pyrolysis hydrolysis and pyrolysis can be combined to decompose the maximum amount of biomass to reactive intermediates to pyrolysis alone, suggesting that the choice of technology for biomass deconstruction will likely depend

199

Gasification of woody biomass Tessa Jansen (s0140600)  

E-Print Network (OSTI)

on biomass fast pyrolysis followed by #12;-3- hydroprocessing.11-14 A number of pre-conversion technologies;-9- Fast pyrolysis followed by hydroprocessing Fast pyrolysis is a process of heating biomass without include biomass pretreatment, fast pyrolysis, solids removal, oil recovery, char combustion

Luding, Stefan

200

Assessment of Feasibility of Biomass Fuel Conversion in  

E-Print Network (OSTI)

Assessment of Feasibility of Biomass Fuel Conversion in Interior Villages #12;Is it feasible to convert diesel electrical systems in Interior Alaska villages to wood biomass systems? How would this type;Biomass Investment and Technology Boilers, wood gasification, or pyrolysis Existing combined heat

Ruess, Roger W.

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Biomass Energy Data Book Center for Transportation Analysis  

E-Print Network (OSTI)

The Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, policymakers and analysts need to be well-informed about current biomass energy production activity and the potential contribution biomass resources and technologies can make toward meeting the nation's energy

202

NETL: Coal & Coal Biomass to Liquids - Alternate Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal and CoalBiomass to Liquids Alternate Hydrogen Production In the Alternate Production technology pathway, clean syngas from coal is converted to high-hydrogen-content liquid...

203

NETL: Coal & Coal Biomass to Liquids - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Coal and CoalBiomass to Liquids Reference Shelf Documents Papers Presentations DOCUMENTS 2012 Technology Readiness Assessment-Analysis of Active Research Portfolio...

204

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

facility decreases the production costs through economies ofet al. , 2003). The production cost of biomass hydrogencurrent’ technology production cost of hydrogen at $4.63/kg

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

205

NETL: Coal & Coal Biomass to Liquids - H2 Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Pressurizing CoalBiomass Mixtures Using Posimetric Solids Pump Technology PDF-626KB (Feb 2011) Nanoporous, Metal Carbide, Surface Diffusion Membranes for...

206

Woody Biomass Harvesting and Processing Tax Credit (Corporate...  

Open Energy Info (EERE)

Corporate Tax Credit Applicable Sector Agricultural, Commercial Eligible Technologies Biomass Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable...

207

Woody Biomass Harvesting and Processing Tax Credit (Personal...  

Open Energy Info (EERE)

Type Personal Tax Credit Applicable Sector Agricultural, Commercial Eligible Technologies Biomass Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable...

208

Biomass Guidelines (Prince Edward Island, Canada) | Open Energy...  

Open Energy Info (EERE)

Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies BiomassBiogas Active Policy Yes Implementing Sector StateProvince Program Administrator...

209

Agricultural Biomass Income Tax Credit (Corporate) (New Mexico...  

Open Energy Info (EERE)

Incentive Type Corporate Tax Credit Applicable Sector Agricultural Eligible Technologies Biomass Active Incentive Yes Incentive Inactive Date 12312019 Implementing Sector State...

210

Agricultural Biomass Income Tax Credit (Personal) (New Mexico...  

Open Energy Info (EERE)

Incentive Type Personal Tax Credit Applicable Sector Agricultural Eligible Technologies Biomass Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable...

211

Biomass Sales and Use Tax Exemption (Georgia) | Open Energy Informatio...  

Open Energy Info (EERE)

Applicable Sector Commercial, General PublicConsumer, Residential Eligible Technologies Biomass, CHPCogeneration Active Incentive Yes Implementing Sector StateTerritory Energy...

212

Conservation of Biomass Fuel, Firewood (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies BiomassBiogas Active Policy Yes Implementing Sector StateProvince Program Administrator...

213

On-farm use of biomass fuels: market penetration potential during normal and fuel-emergency conditions  

Science Conference Proceedings (OSTI)

The potential for biomass fuels produced in decentralized facilities to replace the centrally produced fuels currently used in agriculture is examined. Two issues are examined. Will biomass fuels become cost-competitive relative to central fuels. And, what is the potential for biomass fuels to replace central fuels during emergency conditions when central fuels are unavailable. To answer these questions, descriptions of a range of currently available biomass technologies have been prepared and estimates made of current and projected agricultural fuel needs and biomass-feedstock availabilities. A variety of assumptions about future conditions have been adopted, the most important of which is that central fuel prices escalate at 7.5% annually relative to the commodities and inputs used to produce biomass fuel products. Under these assumptions, a number of biomass fuels will become cost-competitive during the 1980s, but most will do so late in the decade. Moreover, once these fuels become cost-competitive, penetration will occur gradually. Market forces thus will not markedly reduce the vulnerability of agriculture to energy-supply interruptions during this period. Biomass fuels could, however, play an important role during a fuel emergency. Estimates indicate they could replace up to about 60% of annual agricultural-sector fuel consumption by 1990, during the course of a fuel emergency of one year's duration.

Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.; Mills, J.B.; CHester, C.V.; Klepper, O.H.; Borkowski, R.J.; Nichols, J.; Rainey, J.A.

1982-12-01T23:59:59.000Z

214

List of Biomass Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 757 Biomass Incentives. CSV (rows 1-500) CSV (rows 501-757) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Net Metering (Arizona) Net Metering Arizona Commercial Industrial Residential Nonprofit Schools Local Government State Government Fed. Government Agricultural Institutional Solar Thermal Electric Photovoltaics Wind energy Biomass No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

215

Biomass resource potential using energy crops  

DOE Green Energy (OSTI)

Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.

Wright, L.L.; Cushman, J.H.; Martin, S.A.

1993-09-01T23:59:59.000Z

216

Apparatus and method for pyrolyzing biomass material  

DOE Patents (OSTI)

A technique for pyrolyzing biomass materials is disclosed wherein a hot surface is provided having a predetermined temperature which is sufficient to pyrolyze only the surface strata of the biomass material without substantially heating the interior of the biomass material thereby providing a large temperature gradient from the surface strata inwardly of the relatively cool biomass materials. Relative motion and physical contact is produced between the surface strata and the hot surface for a sufficient period of time for ablative pyrolyzation by heat conduction to occur with minimum generation of char.

Diebold, J.P.; Reed, T.B.

1981-08-21T23:59:59.000Z

217

Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis  

DOE Green Energy (OSTI)

A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

Ringer, M.; Putsche, V.; Scahill, J.

2006-11-01T23:59:59.000Z

218

Biomass treatment method  

DOE Patents (OSTI)

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

219

Biomass Support for the China Renewable Energy Law: Final Report, December 2005  

DOE Green Energy (OSTI)

Final subcontractor report giving an overview of the biomass power generation technologies used in China. Report covers resources, technologies, foreign technologies and resources for comparison purposes, biomass potential in China, and finally government policies in China that support/hinder development of the using biomass in China for power generation.

Not Available

2006-10-01T23:59:59.000Z

220

Available Technologies: Mixed Bioenergy Feedstock ...  

APPLICATIONS OF TECHNOLOGY: Biomass pretreatment to extract 6C sugars from mixed feedstocks for . Lignocellulosic biofuel production; High value ...

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FEMP/NTDP Technology Focus Chiller Controls-related Energy Saving Opportunities  

E-Print Network (OSTI)

are designed and operated, and in the diversity of chiller products that are available to support innovativeFEMP/NTDP Technology Focus Chiller Controls-related Energy Saving Opportunities in Federal in recent years has been on optimization of set point and staging controls, improvements in chiller design

222

Biomass-based alcohol fuels: the near-term potential for use with gasoline  

DOE Green Energy (OSTI)

This report serves as an introduction to the requirements and prospects for a nationwide alcohol-gasoline fuel system based on alcohols derived from biomass resources. Technological and economic factors of the production and use of biomass-based methanol and ethanol fuels are evaluated relative to achieving 5 or 10 percent alcohol-gasoline blends by 1990. It is concluded the maximum attainable is a nationwide 5 percent methanol or ethanol-gasoline system replacing gasoline by 1990. Relative to existing gasoline systems, costs of alcohol-gasoline systems will be substantial.

Park, W.; Price, G.; Salo, D.

1978-08-01T23:59:59.000Z

223

3rd annual biomass energy systems conference  

DOE Green Energy (OSTI)

The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

Not Available

1979-10-01T23:59:59.000Z

224

Woodland Biomass Power Ltd Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Woodland Biomass Power Ltd Biomass Facility Jump to: navigation, search Name Woodland Biomass Power...

225

Fibrominn Biomass Power Plant Biomass Facility | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fibrominn Biomass Power Plant Biomass Facility Jump to: navigation, search Name Fibrominn Biomass Power...

226

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-10-01T23:59:59.000Z

227

IEA/H2/TR-02/001 Hydrogen from Biomass  

E-Print Network (OSTI)

advanced low cost technologies for producing hydrogen from biomass (gasification/pyrolysis, fermentation/NEAR ZERO EMISSIONSEMISSIONS Why Hydrogen? Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Sequestration Biomass Hydro Wind Solar Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Sequestration #12

228

A Survey of State Clean Energy Fund Support for Biomass August 2004  

E-Print Network (OSTI)

energy technologies, two of which involved biomass projects: · Tier 1 (biomass, waste tire and solar" and defines renewable energy as "solar energy, wind, ocean thermal energy, wave or tidal energy, fuel cells combustion. Support for Biomass Projects Projects involving biomass (as well as wind or solar energy

229

NREL: Biomass Research - Standard Biomass Analytical Procedures  

NLE Websites -- All DOE Office Websites (Extended Search)

in the pertinent LAPs. Workbooks are available for: Wood (hardwood or softwood) Corn stover (corn stover feedstock) Biomass hydrolyzate (liquid fraction produced from...

230

The Use of Biomass for Power Generation in the U.S  

Science Conference Proceedings (OSTI)

The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an evaluation of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; a review of the economic drivers of biomass-fueled generation project success; and, profiles of major biomass-fueled generation developers.

NONE

2007-10-15T23:59:59.000Z

231

Fiscalini Farms Biomass Energy Project  

SciTech Connect

In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

2011-09-30T23:59:59.000Z

232

Integration of alternative feedstreams for biomass treatment and utilization  

DOE Patents (OSTI)

The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

Hennessey, Susan Marie (Avondale, PA); Friend, Julie (Claymont, DE); Dunson, Jr., James B. (Newark, DE); Tucker, III, Melvin P. (Lakewood, CO); Elander, Richard T. (Evergreen, CO); Hames, Bonnie (Westminster, CO)

2011-03-22T23:59:59.000Z

233

NREL: Power Technologies Energy Data Book - Technology Cross...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis Center Energy Analysis Newsletter Power Technologies Energy Data Book Home Table of Contents Browse by Technology Biomass Geothermal Hydroelectric Solar Wind...

234

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

235

Assessment of Biomass Resources in Liberia  

DOE Green Energy (OSTI)

Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

Milbrandt, A.

2009-04-01T23:59:59.000Z

236

Biomass Power: Program overview fiscal years 1993--1994  

DOE Green Energy (OSTI)

The Biomass Power Program and industry are developing technologies to expand the use of biomass that include methods of feedstock production and the equipment to convert feedstocks into electric power or process heat. With the help of advanced biomass power technologies and new feedstock supply systems, as much as 50,000 megawatts (MW) of biomass power capacity will be in place by the year 2010. The Biomass Power Program supports the development of three technologies--gasification, pyrolysis, and direct combustion--from the laboratory bench scale to the prototype commercial scale. Gasification equipment produces biogas that is burned in high-efficiency turbine-generators developed for the electric power industry. Pyrolysis processes produce oils from renewable biomass that burn like petroleum to generate electricity. In direct combustion technology, power plants today burn bulk biomass directly to generate electricity. Improving the direct combustion technology of these plants increases efficiency and reduces emissions. In addition to developing these three technologies, the Biomass Power Program supports joint ventures to plan and construct facilities that demonstrate the benefits of biomass power. The Program is supporting joint ventures to conduct 10 case studies of dedicated feedstock supply systems.

NONE

1995-03-01T23:59:59.000Z

237

Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion  

DOE Green Energy (OSTI)

Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

2013-01-02T23:59:59.000Z

238

Sinewave Biomass Power Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Sinewave Biomass Power Pvt Ltd Sinewave Biomass Power Pvt Ltd Jump to: navigation, search Name Sinewave Biomass Power Pvt. Ltd. Place Kolhapur, Maharashtra, India Zip 416 012 Sector Biomass Product Kolhapur-based biomass project developer References Sinewave Biomass Power Pvt. Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sinewave Biomass Power Pvt. Ltd. is a company located in Kolhapur, Maharashtra, India . References ↑ "Sinewave Biomass Power Pvt. Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Sinewave_Biomass_Power_Pvt_Ltd&oldid=351109" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

239

Case studies of energy information systems and related technology: Operational practices, costs, and benefits  

SciTech Connect

Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs, and benefits of EIS, many of these descriptions are idealized and often insufficient for potential users to evaluate cost, benefit and operational usefulness. LBNL has conducted a series of case studies of existing EIS and related technology installations. This study explored the following questions: (1) How is the EIS used in day-to-day operation? (2) What are the costs and benefits of an EIS? (3) Where do the energy savings come from? This paper reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of energy data trended by EIS and utility bills was also conducted to measure the benefit. This paper explores common uses and findings to identify energy savings attributable to EIS, and discusses non-energy benefits as well. This paper also addresses technologies related to EIS that have been demonstrated and evaluated by LBNL.

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

2003-09-02T23:59:59.000Z

240

Biomass Cofiring in Coal-Fired Boilers  

DOE Green Energy (OSTI)

Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

Not Available

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biomass for Electricity Generation  

Reports and Publications (EIA)

This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

Zia Haq

2002-07-01T23:59:59.000Z

242

Biomass Energy Program  

Energy.gov (U.S. Department of Energy (DOE))

The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on...

243

Small Modular Biomass Systems  

DOE Green Energy (OSTI)

Fact sheet that provides an introduction to small modular biomass systems. These systems can help supply electricity to rural areas, businesses, and people without power. They use locally available biomass fuels such as wood, crop waste, and animal manures.

Not Available

2002-12-01T23:59:59.000Z

244

TORREFACTION OF BIOMASS.  

E-Print Network (OSTI)

??Torrefaction is a thermo-chemical pre-treatment of biomass within a narrow temperature range from 200°C to 300°C, where mostly the hemicellulose components of a biomass depolymerise.… (more)

Dhungana, Alok

2011-01-01T23:59:59.000Z

245

Biomass thermochemical conversion program: 1987 annual report  

DOE Green Energy (OSTI)

The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1988-01-01T23:59:59.000Z

246

Biomass thermochemical conversion program. 1985 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1986-01-01T23:59:59.000Z

247

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Environmental implications of increased biomass energy use  

DOE Green Energy (OSTI)

This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

1992-03-01T23:59:59.000Z

249

Agriculture, land use, and commercial biomass energy  

SciTech Connect

In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

1996-06-01T23:59:59.000Z

250

Program on Technology Innovation: Environmental and Health Issues Related to Radiofrequency Emissions from Smart Grid Technologies, Summary of Two Workshops  

Science Conference Proceedings (OSTI)

The electrical grid with its associated technologies is experiencing a phase of rapid evolution and expansion. New technological innovations often evoke questions and concerns about health and safety. To address this contingency, EPRI held two workshops in 2011 to (1) identify the electromagnetic environments resulting from emerging technologies, and (2) obtain an understanding of the potential health effects associated with radio-frequency (RF) emissions these technologies produce.

2011-12-30T23:59:59.000Z

251

Federal Energy Management Program: Biomass Energy Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. Photo of two men standing in front of large sugar cane plants. Sugar cane is used in Hawaii and other locations to produce energy and ethanol for alternative fuels. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops.

252

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

2000-01-28T23:59:59.000Z

253

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st.

Unknown

2001-07-01T23:59:59.000Z

254

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

255

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1 During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier. The gasification tests were completed. The GTI U-GAS model was used to check some of the early test results against the model predictions. Additional modeling will be completed to further verify the model predictions and actual results.

Unknown

2003-07-01T23:59:59.000Z

256

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

Francis S. Lau

2003-09-01T23:59:59.000Z

257

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st.

Unknown

2001-07-01T23:59:59.000Z

258

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

259

Biomass Cofiring Update 2002  

Science Conference Proceedings (OSTI)

Biomass is a renewable energy source. When cofired with coal in a plant that would normally fire 100% coal as the fuel, biomass becomes a renewable source of electricity—for that fraction of electricity that is generated from the biomass fraction of the heat in the fuel mix to the power plant. For electric power generation organizations that have coal-fired generation, cofiring biomass with coal will often be the lowest-cost form of renewable power.

2003-07-11T23:59:59.000Z

260

Outlook for Biomass Ethanol Production and Demand  

Reports and Publications (EIA)

This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

Information Center

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Recanati, Catherine

262

Biomass reburning - Modeling/engineering studies  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the eleventh reporting period (April 1--June 30, 2000), EER and NETL R&D group continued to work on Tasks 2, 3, 4, and 5. This report includes results from Task 3 physical modeling of the introduction of biomass reburning in a working coal-fired utility boiler.

Sheldon, M.; Marquez, A.; Zamansky, V.

2000-07-27T23:59:59.000Z

263

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

SciTech Connect

This project is designed to develop engineering and modeling tools for a family of NO{sub x}control technologies utilizing biomass as a reburning fuel. During the eighth reporting period (July 1--September 26, 1999), Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. This report includes summary of the findings; complete information will be submitted in the next Quarterly Report.

Vladimir Zamansky; Chris Lindsey

1999-10-29T23:59:59.000Z

264

Catalysis in biomass gasification  

DOE Green Energy (OSTI)

The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

Baker, E.G.; Mudge, L.K.

1984-06-01T23:59:59.000Z

265

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

266

COFIRING BIOMASS WITH LIGNITE COAL  

DOE Green Energy (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

267

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

268

Hydrothermal Liquefaction of Biomass  

SciTech Connect

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10T23:59:59.000Z

269

NREL: Biomass Research - Alexandre Chapeaux  

NLE Websites -- All DOE Office Websites (Extended Search)

biofuels with industrial partners. Alex's research areas of interest are: Integrated biomass processing High solids biomass conversion Fermentation development Separation...

270

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

DOE Green Energy (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

271

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

272

Original article Allometric relationships for biomass and leaf area of  

E-Print Network (OSTI)

Original article Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L) HH were i) to establish allometric relationships among stem and crown dimensions, biomass, and leaf area, ii) to determine the relative aboveground biomass distribution, iii) to quantify the relationship

Recanati, Catherine

273

The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative  

DOE Green Energy (OSTI)

The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

2009-03-31T23:59:59.000Z

274

First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3  

DOE Green Energy (OSTI)

This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-10-01T23:59:59.000Z

275

Opportunities for Small Biomass Power Systems. Final Technical Report  

SciTech Connect

The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

Schmidt, D. D.; Pinapati, V. S.

2000-11-15T23:59:59.000Z

276

Opportunities for Small Biomass Power Systems. Final Technical Report  

DOE Green Energy (OSTI)

The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

Schmidt, D. D.; Pinapati, V. S.

2000-11-15T23:59:59.000Z

277

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

278

Understanding Biomass Feedstock Variability  

SciTech Connect

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

279

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

280

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Conference Proceedings (OSTI)

Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

Yusibani, Elin [Research Center for Hydrogen Industrial Use and Storage, AIST (Japan); Department of Physics, Universitas Syiah Kuala (Indonesia); Kamil, Insan; Suud, Zaki [Department of Physics, Institut Teknologi Bandung (Indonesia)

2010-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fundamentals of Biomass Pretreatment by Fractionation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamentals of Biomass Pretreatment by Fractionation Poulomi Sannigrahi 1,2 and Arthur J. Ragauskas 1,2,3 1 BioEnergy Science Center, Oak Ridge, USA 2 Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, USA 3 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, USA 10.1 Introduction With the rise in global energy demand and environmental concerns about the use of fossil fuels, the need for rapid development of alternative fuels from sustainable, non-food sources is now well acknowledged. The effective utilization of low-cost high-volume agricultural and forest biomass for the production of transporta- tion fuels and bio-based materials will play a vital role in addressing this concern [1]. The processing of lignocellulosic biomass, especially from mixed agricultural and forest sources with varying composition,

282

Biomass Thermochemical Conversion Program. 1984 annual report  

DOE Green Energy (OSTI)

The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1985-01-01T23:59:59.000Z

283

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-01-01T23:59:59.000Z

284

Biomass Investment Group Inc BIG | Open Energy Information  

Open Energy Info (EERE)

Investment Group Inc BIG Investment Group Inc BIG Jump to: navigation, search Name Biomass Investment Group Inc (BIG) Place Asheville, North Carolina Zip 28806 Sector Biomass Product Developing large-scale production of biomass resources using environmentally-friendly and sustainable production systems and conversion technologies. References Biomass Investment Group Inc (BIG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Biomass Investment Group Inc (BIG) is a company located in Asheville, North Carolina . References ↑ "Biomass Investment Group Inc (BIG)" Retrieved from "http://en.openei.org/w/index.php?title=Biomass_Investment_Group_Inc_BIG&oldid=342850" Categories:

285

Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems; Update and Summary of Recent Progress  

DOE Green Energy (OSTI)

As a result of environmental and policy considerations, there is increasing interest in using renewable biomass resources as feedstock for power, fuels, and chemicals and hydrogen. Biomass gasification is seen as an important technology component for expanding the use of biomass. Advanced biomass gasification systems provide clean products that can be used as fuel or synthesis gases in a variety of environmentally friendly processes. Advanced end-use technologies such as gas turbines or synthesis gas systems require high quality gases with narrowly defined specifications. Other systems such as boilers may also have fuel quality requirements, but they will be substantially less demanding. The gas product from biomass gasifiers contains quantities of particulates, tars, and other constituents that may exceed these specified limits. As a result, gas cleaning and conditioning will be required in most systems. Over the past decade, significant research and development activities have been conducted on the topic of gas cleanup and conditioning. This report provides an update of efforts related to large-scale biomass gasification systems and summarizes recent progress. Remaining research and development issues are also summarized.

Stevens, D. J.

2001-09-01T23:59:59.000Z

286

The Science, Technology and Mission Design for the Laser Astrometric Test of Relativity  

E-Print Network (OSTI)

The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system -- the close proximity to the Sun. By using independent time-series of highly accurate measurements of the Shapiro time-delay (laser ranging accurate to 1 cm) and interferometric astrometry (accurate to 0.1 picoradian), LATOR will measure gravitational deflection of light by the solar gravity with accuracy of 1 part in a billion, a factor ~30,000 better than currently available. LATOR will perform series of highly-accurate tests of gravitation and cosmology in its search for cosmological remnants of scalar field in the solar system. We present science, technology and mission design for the LATOR mission.

Slava G. Turyshev

2005-12-22T23:59:59.000Z

287

NREL: Biomass Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

288

Available Technologies: Sugar Extraction and Ionic Liquid ...  

APPLICATIONS OF TECHNOLOGY: Biomass pretreatment for biofuel production; Recovery of products using biphasic liquid-liquid extraction; Recovery and ...

289

Resin Wafer Electrodeionization Technology Reduces the ...  

Argonne National Laboratory has developed a resin wafer electrodeionization technology for processing biomass-based feedstocks into biofuels and ...

290

Biomass Gasifier Facility (BGF). Environmental Assessment  

DOE Green Energy (OSTI)

The Pacific International Center for High Technology Research (PICHTR) is planning, to design, construct and operate a Biomass Gasifier Facility (BGF). This facility will be located on a site easement near the Hawaiian Commercial & Sugar company (KC&S) Paia Sugar Factory on Maui, Hawaii. The proposed BGF Project is a scale-up facility, intended to demonstrate the technical and economic feasibility of emerging biomass gasification technology for commercialization. This Executive Summary summarizes the uses of this Environmental Assessment, the purpose and need for the project, project,description, and project alternatives.

Not Available

1992-09-01T23:59:59.000Z

291

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1 During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier. GTI determined that the mini-bench feed system could not handle ''raw'' biomass samples. These clogged the fuel feed screw. GTI determined that palletized samples would operate well in the mini-bench unit. Two sources of this material were identified that had similar properties to the raw fuel. Testing with these materials is proceeding.

Unknown

2003-03-31T23:59:59.000Z

292

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-03-31T23:59:59.000Z

293

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of 2002. GTI worked with DOE to develop the Statement of Work for the supplemental activities. DOE granted an interim extension of the project until the end of January 2002 to complete the contract paperwork. GTI worked with Calla Energy to develop request for continued funding to proceed with Phase II, submitted to DOE on November 1, 2001.

Unknown

2001-12-31T23:59:59.000Z

294

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-09-30T23:59:59.000Z

295

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-06-30T23:59:59.000Z

296

NREL: Biomass Research - Richard L. Bain  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard L. Bain Richard L. Bain Photo of Richard Bain Richard Bain is a Principal Engineer in the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, Colorado. He has worked at NREL since 1990 and has extensive experience in the thermal conversion of biomass, municipal wastes, coal, and petroleum. He is a lead researcher in the area of production of transportation fuels and hydrogen via thermochemical conversion of biomass; technical advisor to the U.S. Department of Energy (DOE) and U.S. Department of Agriculture (USDA) on biofuels demonstrations; and Task Leader for the International Energy Agency Bioenergy Annex Biomass Gasification Task. Dr. Bain manages biomass gasification research activities for the Fuel Cell Technologies Program at NREL and coordinates support to the USDA for

297

Biomass Thermochemical Conversion Program: 1986 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1987-01-01T23:59:59.000Z

298

Final Scientific and Technical Report State and Regional Biomass Partnerships  

SciTech Connect

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

299

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

300

Advanced system demonstration for utilization of biomass as an energy source  

DOE Green Energy (OSTI)

The results of the study investigations confirm the feasibility of collecting 1000 oven dry tons of biomass per day to fuel a 510,000 lb/hr boiler operating in a congeneration mode and producing steam and electricity. This study was based on the supply of a significant portion of the facility's biomass fuel by tree harvesting and collection operations within a 50 mile radius of the plant site. These operations, including transporting biomass to the conversion plant, would pose no threat to the environment if good forestry practice is carefully maintained. Other environmental factors relating to air and water discharges from the conversion plant pose no significant technological problems in complying with federal, state, and local regulations at a cost that is competitive with similar costs associated with fossil fueled facilities.

Not Available

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced system demonstration for utilization of biomass as an energy source  

SciTech Connect

The results of the study investigations confirm the feasibility of collecting 1000 oven dry tons of biomass per day to fuel a 510,000 lb/hr boiler operating in a congeneration mode and producing steam and electricity. This study was based on the supply of a significant portion of the facility's biomass fuel by tree harvesting and collection operations within a 50 mile radius of the plant site. These operations, including transporting biomass to the conversion plant, would pose no threat to the environment if good forestry practice is carefully maintained. Other environmental factors relating to air and water discharges from the conversion plant pose no significant technological problems in complying with federal, state, and local regulations at a cost that is competitive with similar costs associated with fossil fueled facilities.

1980-10-01T23:59:59.000Z

302

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

303

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

304

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

305

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

306

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

307

Biomass for Electricity Generation - Table 9  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 9. Biomass-Fired Electricity Generation ...

308

Biomass for Electricity Generation - Table 3  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 3. Biomass Resources by Price: Quantities ...

309

Biomass Cofiring Handbook  

Science Conference Proceedings (OSTI)

This handbook has been prepared as a 147how tomanual for those interested in biomass cofiring in cyclone- or pulverized-coal-fired boilers. It contains information regarding all aspects of biomass cofiring, including biomass materials and procurement, handling, storage, pulverizing, feeding, gaseous emissions, ash handling, and general economics. It relies on actual utility experience over the past many years from plants mainly in the United States, but some experience also in Europe and Australia. Many ...

2009-11-05T23:59:59.000Z

310

Engine fuels from biomass  

SciTech Connect

Methods discussed for the conversion of biomass to engine fuels include the production of producer gas, anaerobic fermentation to give biogas, fermentation of sugars and starches to give EtOH, and the production of synthesis gas for conversion to MeOH or hydrocarbons. Also discussed are the suitability of these fuels for particular engines, biomass availability, and the economics of biomass-derived engine fuels.

Parker, H.W.

1982-01-01T23:59:59.000Z

311

Biomass Cofiring Guidelines  

Science Conference Proceedings (OSTI)

Biomass, primarily wood waste such as sawdust, has been cofired in over twenty utility coal-fired boilers in the United States at cofiring levels where the biomass provides from 1% to 10% of the heat input to the boiler. These guidelines present insights and conclusions from five years of EPRI assessment and testing of biomass cofiring and will enable utility engineers and power plant managers to evaluate their own options and plan their own tests.

1997-10-09T23:59:59.000Z

312

Hydrogen production from biomass .  

E-Print Network (OSTI)

??Biomass energy encompasses a broad category of energy derived from plants and animals as well as the residual materials from each. Hydrogen gas is an… (more)

Hahn, John J.

2006-01-01T23:59:59.000Z

313

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

314

Co-firing biomass  

SciTech Connect

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

315

Biomass Reburning: Modeling/Engineering Studies  

SciTech Connect

Reburning is a mature fuel staging NO{sub x} control technology which has been successfully demonstrated at full scale by Energy and Environmental Research Corporation (EER) and others on numerous occasions. Based on chemical kinetic modeling and experimental combustion studies, EER is currently developing novel concepts to improve the efficiency of the basic gas reburning process and to utilize various renewable and waste fuels for NO{sub x} control. This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. Basic and advanced biomass reburning have the potential to achieve 60-90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The scope of work includes modeling studies (kinetic, CFD, and physical modeling), experimental evaluation of slagging and fouling associated with biomass reburning, and economic study of biomass handling requirements. Project participants include: EER, FETC R and D group, Niagara Mohawk Power Corporation and Antares, Inc. Most of the combustion experiments on development of biomass reburning technologies are being conducted in the scope of coordinated SBIR program funded by USDA. The first reporting period (October 1--December 31, 1997) included preparation of project management plan and organization of project kick-off meeting at DOE FETC. The quarterly report briefly describes the management plan and presents basic information about the kick-off meeting.

Vladimir M. Zamansky

1998-01-20T23:59:59.000Z

316

Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks  

SciTech Connect

Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

2009-06-01T23:59:59.000Z

317

Comparison of biomass and coal char reactivities  

SciTech Connect

Char combustion is typically the rate limiting step during the combustion of solid fuels. The magnitude and variation of char reactivity during combustion are, therefore, of primary concern when comparing solid fuels such as coal and biomass. In an effort to evaluate biomass` potential as a sustainable and renewable energy source, the reactivities of both biomass and coal chars were compared using Sandia`s Captive Particle Imaging (CPI) apparatus. This paper summarizes the experimental approach used to determine biomass and coal reactivities and presents results from CPT experiments. The reactivity of six types of char particles, two high-rank coal chars, two low-rank coal chars, and two biomass chars, were investigated using the CPT apparatus. Results indicate that both of the high-rank coal chars have relatively low reactivities when compared with the higher reactivities measured for the low-rank coal and the biomass chars. In addition, extinction behavior of the chars support related investigations that suggest carbonaceous structural ordering is an important consideration in understanding particle reactivity as a function of extent of burnout. High-rank coal chars were found to have highly ordered carbon structures, where as, both low-rank coal and biomass chars were found to have highly disordered carbon structures.

Huey, S.P. [Sandia National Labs., Livermore, CA (United States); Davis, K.A. [Reaction Engineering International, Salt Lake City, UT (United States); Hurt, R.H. [Brown Univ., Providence, RI (United States). Div. of Engineering

1995-08-01T23:59:59.000Z

318

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Florida Biomass Energy, LLC Place Florida Sector Biomass Product Florida-based biomass project developer. References Florida Biomass Energy, LLC1 LinkedIn Connections CrunchBase...

319

Technical-economic assessment of the production of methanol from biomass. Executive summary. Final research report  

DOE Green Energy (OSTI)

The results are presented of a comprehensive systems study which assessed the engineering and economic feasibilities of the production of methanol from biomass utilizing existing technology. The three major components of the biomass to methanol system assessed are the availability of biomass feedstocks, the thermochemical conversion of biomass to methanol fuels, and the distribution and markets for methanol fuels. The results of this study show that methanol fuel can be produced from biomass using commercially available technology in the near term, and could be produced economically in significant quantities in the mid-to-late 1980's when advanced technology is available.

Wan, E.I.; Simmons, J.A.; Price, J.D.; Nguyen, T.D.

1979-07-12T23:59:59.000Z

320

U.S. Department of Energy Biomass Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biofuels Technology Algae Biofuels Technology Office Of Biomass Program Energy Efficiency and Renewable Energy Jonathan L. Male May 27, 2010 Biomass Program * Make cellulosic ethanol cost competitive, at a modeled cost for mature technology of $1.76/gallon by 2017 * Help create an environment conducive to maximizing production and use of biofuels- 21 billion gallons of advanced biofuels per year by 2022 (EISA) Feedstocks Biofuels Infrastructure Integrated Biorefineries Conversion Develop and transform our renewable and abundant, non-food, biomass resources into sustainable, cost-competitive, high-performance biofuels, bioproducts and biopower. Focus on targeted research, development, and demonstration * Through public and private partnerships * Deploy in integrated biorefineries

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Change in biomass of benthic and planktonic algae along a disturbance gradient for 24 Great  

E-Print Network (OSTI)

Change in biomass of benthic and planktonic algae along a disturbance gradient for 24 Great Lakes. The PC1 site score was significantly related to both periphyton and phytoplankton biomass, respectively accounted for 18% of the variation in epiphyton biomass. Periphytic and epiphytic biomass were negatively

McMaster University

322

Energy Optimization of Biomass Pyrolysis and Liquefaction System in CFB  

Science Conference Proceedings (OSTI)

Biomass pyrolysis and liquefaction technology needs inert carrier gas and high energy consumption. On the basis of analyzing its energy consumption and the using way of char and off-gas, energy in the pyrolysis and liquefaction system in CFB is optimized ... Keywords: FB biomass pyrolysis energy consumption optimize

Zhang Jun; Teng Wenrui; Wei Xinli

2011-02-01T23:59:59.000Z

323

Coal/Biomass Gasification at the Colorado School of Mines  

SciTech Connect

This program was a 2.5 year effort focused on technologies that support coal and biomass gasification. Two primary tasks were included in the effort: 1) Coal/Biomass gasification and system optimization and 2) development of high temperature microchannel ceramic heat exchangers.

Terry Parker; Robert Braun; Chris Dreyer; Anthony Dean; Mark Eberhart; Robert Kee; Jason Porter; Ivar Reimanis; Nigel Sammes

2011-02-28T23:59:59.000Z

324

Biomass Cofiring: A Renewable Alternative for Utilities (Fact sheet)  

DOE Green Energy (OSTI)

Cofiring refers to the practice of introducing biomass as a partial substitute fuel in high-efficiency coal boilers. This is the nearest term low-cost option for the efficient conversion of biomass to electricity. Cofiring has been practiced, tested, and evaluated for a variety of boiler technologies.

Craig, K.

1999-08-30T23:59:59.000Z

325

Application of advanced technologies to ash-related problems in boilers  

DOE Green Energy (OSTI)

Prediction of ash behavior in boilers has, for many years, been based on relatively simple relationships involving the composition of inorganic material in fuels. In recent years, advanced analyses for both fuels and deposits have seen increasing use in the solid fuel combustion community. The combination of the standard and advanced analyses, together with a knowledge of boiler design and operating conditions, allow better interpretation of ash behavior in boilers than has previously been possible. This paper discusses several case histories where advanced technologies have been applied to interpret ash behavior in boilers where standard techniques were insufficient. Included in the discussion are: (1) the behavior of blends of fuels; (2) explanations for markedly different behavior between fuels with similar ASTM characteristics; and (3) effects of boiler operating conditions on ash deposit formation.

Baxter, L.L. (Sandia National Labs., Livermore, CA (United States). Combustion Research Facility); Richards, G.; Harb, J. (Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.)

1994-01-01T23:59:59.000Z

326

Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual  

Science Conference Proceedings (OSTI)

The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute) L. Szymanski; R. Glickert (ESA Environmental Solutions)

2007-12-31T23:59:59.000Z

327

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY) .......................................................................... 91 Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass) ......................................................................................................................... 111 Appendix 12: Biomass to Energy Project Team, Committee Members, and Project Advisors

328

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

329

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

330

Status of Biomass Power Generation in California, July 31, 2003  

DOE Green Energy (OSTI)

This report describes the development of the biomass power industry in California over the past quarter century, and examines its future outlook. The development of a state biomass policy, which has been under discussion in California for the better part of the past decade, has never gotten off the ground, but a number of smaller initiatives have helped to keep the biomass power industry afloat and have promoted the use of some targeted types of residues. In this report we analyze the prospects for policy development and the application of new biomass technologies in California.

Morris, G.

2003-12-01T23:59:59.000Z

331

Macroalgae as a Biomass Feedstock: A Preliminary Analysis  

DOE Green Energy (OSTI)

A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

2010-09-26T23:59:59.000Z

332

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

333

Nepal: Applications of Renewable Energy Technologies  

Open Energy Info (EERE)

Renewable Energy Technologies (Abstract):  Wind, biomass, bio-gas, photovoltaic and small hydro renewable energy technologies in Nepal

(Purpose):<...

334

Waste to Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Technologies Jump to: navigation, search Name Waste to Energy Technologies Place Madrid, Spain Zip 28023 Sector Biomass Product Turn key WtEbiomass plant supplier...

335

The regional environmental impact of biomass production  

DOE Green Energy (OSTI)

The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics.

Graham, R.L.

1994-09-01T23:59:59.000Z

336

Geothermal technology publications and related reports: a bibliography, January-December 1983  

DOE Green Energy (OSTI)

This annotated bibliography covers the work of Sandia National Laboratories in the following areas: rock penetration mechanics, fluid technology, borehole mechanics, diagnostic technology, and systems analysis/program summaries. (MHR)

Cooper, D.L. (ed.)

1984-09-01T23:59:59.000Z

337

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

338

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

339

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

340

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Multi-functional biomass systems.  

E-Print Network (OSTI)

??Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share… (more)

Dornburg, Veronika

2004-01-01T23:59:59.000Z

342

McNeil Biomass Power | Open Energy Information  

Open Energy Info (EERE)

McNeil Biomass Power McNeil Biomass Power Jump to: navigation, search Name McNeil Biomass Power Place Burlington, VT Website http://www.mcneilbiomasspower. References McNeil Biomass Power[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! McNeil Biomass Power is a company located in Burlington, VT. References ↑ "McNeil Biomass Power" Retrieved from "http://en.openei.org/w/index.php?title=McNeil_Biomass_Power&oldid=379514" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

343

USA Biomass Power Producers Alliance | Open Energy Information  

Open Energy Info (EERE)

Producers Alliance Producers Alliance Jump to: navigation, search Name USA Biomass Power Producers Alliance Place Sacramento, California Sector Biomass Product National trade association of biomass power producers in US. References USA Biomass Power Producers Alliance[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. USA Biomass Power Producers Alliance is a company located in Sacramento, California . References ↑ "USA Biomass Power Producers Alliance" Retrieved from "http://en.openei.org/w/index.php?title=USA_Biomass_Power_Producers_Alliance&oldid=352626" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

344

Review and analysis of the 1980-1989 biomass thermochemical conversion program  

DOE Green Energy (OSTI)

In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

Stevens, D.J.

1994-09-01T23:59:59.000Z

345

Development of New Methods in Scanning Probe Microscopy for Lignocellulosic Biomass Characterization  

E-Print Network (OSTI)

Methods Development of New Methods in Scanning Probe Microscopy for Lignocellulosic Biomass implicated in recalcitrance is important for utili- zation of lignocellulosic biomass in the world new technologies to explore the ultrastructure of biomass at nanoscale.4 Mode-synthesizing atomic

346

Hydrogen from Biomass for Urban Transportation Y. D. Yeboah (PI), K. B. Bota and Z. Wang  

E-Print Network (OSTI)

thermochemical processes, which can convert wet biomass efficiently and economically. One of the novel. 1999) the biomass conversion technologies are mostly physical/chemical processing, thermo-chemical their support. Aalborg, September, 2010 Saqib Sohail Toor I #12;ABSTRACT Application of biomass and waste

347

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

the energy supply. The sustainable use of biomass can reduceBiomass as Feedstock for a Bioenergy and Bioprod- ucts Industry: The Technical Feasibility of a Billion-Ton Annual Supply.supply, renewabil- ity of this resource, sustainability of production and utilization practices, feasibility of advanced technologies for converting biomass

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

348

Technical analysis of US Army Weapons Systems and related advanced technologies of military interest. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.

NONE

1991-06-14T23:59:59.000Z

349

Hydropyrolysis of biomass  

DOE Green Energy (OSTI)

The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

350

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

351

Secretary Chu Checks In on Biomass Pilot-Scale Facility | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

project leverages two commercially proven core technologies into an integrated platform: pyrolysis of biomass from Ensyn Corporation and hydroconversion from UOP. The pyrolysis...

352

Catalytic Steam Gasification of Biomass Surrogates: A Thermodynamic and Kinetic Approach.  

E-Print Network (OSTI)

??Gasification of biomass is an environmentally important technology that offers an alternative to the direct use of fossil fuel energy. Steam gasification is getting increased… (more)

Salaices, Enrique

2010-01-01T23:59:59.000Z

353

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass.  

E-Print Network (OSTI)

??The gasification of biomass is potentially an efficient and economically viable technology to assist in reducing the global dependence on fossil fuels and carbon dioxide… (more)

FAN, XIN

2012-01-01T23:59:59.000Z

354

Comparison of three remote sensing techniques to measure biomass on CRP pastureland.  

E-Print Network (OSTI)

??Biomass from land enrolled into CRP is being considered as a biofuel feedstock source. For sustainable production, harvesting, and soil protection, technology is needed that… (more)

Porter, Tucker Fredrick.

2013-01-01T23:59:59.000Z

355

Biomass electricity plant allocation through non-linear modeling and mixed integer optimization.  

E-Print Network (OSTI)

?? Electricity generation from the combustion of biomass feedstocks provides low-carbon energy that is not as geographically constricted as other renewable technologies. This dissertation uses… (more)

Smith, Robert Kennedy

2012-01-01T23:59:59.000Z

356

The economic potential of producing energy from agricultural biomass  

E-Print Network (OSTI)

Agricultural biomass is a substitute for fossil fuels, which could provide a sustained energy feedstock and possibly reduce further accumulations of greenhouse gases. However, these feedstocks currently face a market dominated by low cost fossil fuels; hence, are largely unable to be supplied at a competitive price. This study examined how forcing increased biomass energy generation, along with improvements in biomass production technology, will impact agricultural feedstock prices and economically impact the well-being of the agricultural sector. An U.S. agricultural sector model, a dynamic, nonlinear, mathematical program, determined the economic effects of using increased supplies of agricultural biomass for energy. The model incorporated production and use of potential biomass energy feedstocks, such as switchgrass and short rotation poplar. Also, the model introduced future biomass technologies, based on current research involving more productive biomass crops and more efficient conversion activities which produce ethanol and biomass electricity. The forced supply of new biomass crops, along with corn, involves several levels of energy production. This forced supply was based on projected ethanol demands and land capability for biomass production. The model determined the optimal mix of corn and energy crops to meet the biomass feedstock goals for energies. The resultant model appraises the effects of increasing biomass feedstocks for the years 1990, 2000, 2010, and 2020. The results show that initially, fuel prices using biomass feedstocks may be as much as 50 % greater than equivalent fossil fuel supplied energy. But due to technology the price of biomass feedstocks decreases over time. The analysis predicts that the agricultural feedstock price and the price of fossil fuels may equalize between the years 201 0 and 2020. The forced production of agricultural energy crops changes cropping patterns and prices for conventional crops as well. The agricultural energy crops and corn receive a greater allocation of farm land to meet the forced biomass energy supplies. Most conventional crop prices rise and all biomass feedstock prices rise with increasing feedstock production. As a consequence, farmers receive increased profits. Consumers, however, experience a loss in well-being due to the higher cost of energy feedstock and food products. National well-being experiences a net loss.

Jerko, Christine

1996-01-01T23:59:59.000Z

357

Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion  

SciTech Connect

Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

2011-05-28T23:59:59.000Z

358

Bioprospecting metagenomes: Glycosyl hydrolases for converting biomass  

DOE Green Energy (OSTI)

Throughout immeasurable time, microorganisms evolved and accumulated remarkable physiological and functional heterogeneity, and now constitute the major reserve for genetic diversity on earth. Using metagenomics, namely genetic material recovered directly from environmental samples, this biogenetic diversification can be accessed without the need to cultivate cells. Accordingly, microbial communities and their metagenomes, isolated from biotopes with high turnover rates of recalcitrant biomass, such as lignocellulosic plant cell walls, have become a major resource for bioprospecting; furthermore, this material is a major asset in the search for new biocatalytics (enzymes) for various industrial processes, including the production of biofuels from plant feedstocks. However, despite the contributions from metagenomics technologies consequent upon the discovery of novel enzymes, this relatively new enterprise requires major improvements. In this review, we compare function-based metagenome screening and sequence-based metagenome data mining, discussing the advantages and limitations of both methods. We also describe the unusual enzymes discovered via metagenomics approaches, and discuss the future prospects for metagenome technologies.

Li, L.; van der Lelie, D.; McCorkle, S. R.; Monchy, S.; Taghavi, S.

2009-05-18T23:59:59.000Z

359

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

360

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

362

Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers  

DOE Green Energy (OSTI)

The objective of the Biomass to Methanol Systems Analysis Project is the determination of the most economically optimum combination of unit operations which will make the production of methanol from biomass competitive with or more economic than traditional processes with conventional fossil fuel feedstocks. This report summarizes the development of simulation models for methanol production based upon the Institute of Gas Technology (IGT) ''Renugas'' gasifier and the Battelle Columbus Laboratory (BCL) gasifier. This report discusses methanol production technology, the IGT and BCL gasifiers, analysis of gasifier data for gasification of wood, methanol production material and energy balance simulations, and one case study based upon each of the gasifiers.

Bain, R. L.

1992-01-01T23:59:59.000Z

363

Economic Assessment of a Conceptual Biomass to Liquids Bio-Syntrolysis Plant  

SciTech Connect

A series of assessments evaluated the economic efficiency of integrating a nuclear electric power plant with a biomass to SynFuel plant under three market scenarios. Results strongly suggest that a nuclear assisted-BioSyntrolysis Process would be as cost competitive as other carbon feedstock to liquid fuels concepts while having significant advantages regarding CO2 greenhouse gas production. This concept may also be competitive for those energy markets where energy dense, fossil fuels are scarce while wind, hydroelectric, or other renewable energy sources can be produced at a relatively low cost. At this time, a realistic vision of this technology’s deployment of a biomass to synfuel plants powered by a nuclear 1100 MWe reactor. Accompanying an area of 25 miles by 25 miles, this integrated Enterprise could produce 24,000 BBLs of SynFuel daily; or 0.2% of the U.S.’s imported oil.

M. M. Plum; G. L. Hawkes

2010-06-01T23:59:59.000Z

364

Beyond Kargil: The technology of peace in India-Pakistan border relations  

Science Conference Proceedings (OSTI)

The potential for cooperation between India and Pakistan is substantial. Topics as widely varying as national security, the environment and trade hold the potential for improved bilateral relations. This paper looks at a few areas in which monitoring technology could contribute to enhancing cooperative border agreements between the two nations. The goal of the paper is not to provide prescriptive solutions to regional problems, but to expand the number of options being considered for improving Indian-Pakistan relations. Many of the impediments to bilateral progress are a result of a history of conflict and mistrust. By utilizing technical monitoring and inspections, each side can begin to replace suspicion and doubt with knowledge and information useful in making informed political, economic and military decisions. At the same time, technical monitoring and inspections can build confidence through common interactions. India and Pakistan have pledged to resolve their disputes, including Kashmir, through dialogue. Implementation of that pledge is influenced by a number of factors, including changes in the political systems and the fortunes of the leadership. Events of the past year and a half have severely tested these two governments' ability to move forward along a constructive and positive path. Testing of new missile systems both preceded and followed testing of nuclear weapons in May 1998. Both countries disregarded subsequent international displeasure as they proceeded to openly declare their respective nuclear capability. Their brief engagement with each other in February 1999 and movement toward a rapprochement diluted international condemnation of their nuclear activity. Within a recent period of nine months however, progress in the dialogue has been stalled first by the Pakistani move in Kashmir in May 1999, then by the Indian election in the summer of 1999 and most recently by the military coup in Pakistan.

Tahir-Kheli, S.; Biringer, K.L.

2000-01-12T23:59:59.000Z

365

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the tenth reporting period (January 1-March 31, 2000), EER and NETL R and D group continued to work on Tasks 2, 3, 4, and 5. Information regarding these tasks will be included in the next Quarterly Report. This report includes (Appendix 1) a conceptual design study for the introduction of biomass reburning in a working coal-fired utility boiler. This study was conducted under the coordinated SBIR program funded by the U. S. Department of Agriculture.

Vladimir Zamansky; David Moyeda; Mark Sheldon

2000-04-28T23:59:59.000Z

366

A big leap forward for biomass gasification  

Science Conference Proceedings (OSTI)

This article describes the McNeil Generating Station in Vermont, the first industrial scale-up of Battelle Columbus Laboratory`s biomass gasification process. The plant is part of a major US DOE initiative to demonstrate gasification of renewable biomass for electricity production. The project will integrate the Battelle high-through-put gasifier with a high-effiency gas turbine. The history of the project is described, along with an overview of the technology and the interest and resources available in Vermont that will help insure a successful project.

Moon, S.

1995-12-31T23:59:59.000Z

367

Science, Technology and Mission Design for the Laser Astrometric Test Of Relativity  

E-Print Network (OSTI)

The Laser Astrometric Test Of Relativity (LATOR) is a Michelson-Morley-type experiment designed to achieve a major improvement in the accuracy of the tests of relativistic gravity in the solar system. By using a combination of independent time-series of gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the relativistic time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will measure the key post-Newtonian Eddington parameter \\gamma with accuracy of one part in a billion - a factor of 30,000 improvement compared to the present best result, Cassini's 2003 test. LATOR's primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor modifications of gravity by looking for a remnant scalar field in today's solar system. We present a comprehensive discussion of the science objectives, proposed technology, mission and optical designs, as well as the expected performance of this fundamental physics experiment in space.

Slava G. Turyshev; Michael Shao; Kenneth L. Nordtvedt Jr

2006-01-10T23:59:59.000Z

368

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

369

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

370

Geothermal technology publications and related reports: a bibliography, January 1984-December 1985  

DOE Green Energy (OSTI)

Technological limitations restrict the commercial availability of US geothermal resources and prevent effective evaluation of large resources, as magma, to meet future US needs. The US Department of Energy has asked Sandia to serve as the lead laboratory for research in Geothermal Technologies and Magma Energy Extraction. In addition, technology development and field support has been provided to the US Continental Scientific Drilling Program. Published results for this work from January 1984 through December 1985 are listed in this bibliography.

Cooper, D.L. (ed.)

1986-09-01T23:59:59.000Z

371

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

372

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions...

373

Review of technical literature and trends related to automobile mass-reduction technology  

E-Print Network (OSTI)

advanced vehicle technologies, such as plug-in-capable hybrid electric-hybrid vehicles give some indication of how important vehicle weight and advanced electric-drive vehicle

Lutsey, Nicholas P.

2010-01-01T23:59:59.000Z

374

Geothermal technology publications and related reports: a bibliography, January-December 1981  

DOE Green Energy (OSTI)

Titles, authors and abstracts of papers are assembled into areas of Geothermal Technology, Magma and General Geoscience Studies with cross references listed by author.

Hudson, S.R. (ed.)

1982-05-01T23:59:59.000Z

375

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network (OSTI)

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

376

Flash hydrogenation of biomass  

DOE Green Energy (OSTI)

It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

Steinberg, M

1980-01-01T23:59:59.000Z

377

Method for producing ethanol and co-products from cellulosic biomass  

DOE Patents (OSTI)

The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

Nguyen, Quang A

2013-10-01T23:59:59.000Z

378

Biomass cogeneration. A business assessment  

DOE Green Energy (OSTI)

This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

Skelton, J.C.

1981-11-01T23:59:59.000Z

379

Dual Fluidized Bed Biomass Gasification  

DOE Green Energy (OSTI)

The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

None

2005-09-30T23:59:59.000Z

380

NREL: Biomass Research - National Bioenergy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

National Bioenergy Center National Bioenergy Center The National Bioenergy Center (NBC) was established in October 2000 to support the science and technology goals of the U.S. Department of Energy (DOE) Bioenergy Technologies Office. Headquartered at NREL, this virtual center unifies DOE's efforts to advance technology for producing renewable transportation fuels from biomass. A primary goal is to demonstrate the production of cost-competitive cellulosic ethanol by 2012. Collaborating with industrial, academic, and other governmental research, development, and commercialization efforts is central to achieving this goal. Mission The National Bioenergy Center's mission is to foster capability to catalyze the replacement of petroleum with transportation fuels from biomass by delivering innovative, cost-effective biofuels solutions.

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NOx control technologies utilizing biomass as a reburning fuel. The fifth reporting period (October 1 ? December 31) included modeling of the Advanced Reburning (AR) process while firing biomass. Modeling of Advanced Biomass Reburning included AR-Lean, AR-Rich, and reburning + SNCR. Fuels under investigation were furniture pellets and willow wood. Modeling shows that reburning efficiency increases when N-agent is injected into reburning or OFA zones, or co-injected with OFA. The kinetic model trends qualitatively agree with experimental data for a wide range of initial conditions and thus can be used for process optimization. No patentable subject matter is disclosed in the report.

NONE

1999-01-28T23:59:59.000Z

382

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

Vitali V. Lissianski; Vladimir M. Zamansky

1999-04-29T23:59:59.000Z

383

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

SciTech Connect

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

Vitali V. Lissianski; Vladimir M. Zamansky

1999-04-29T23:59:59.000Z

384

Geothermal technology publications and related reports: a bibliography, January 1977-December 1980  

DOE Green Energy (OSTI)

This bibliograhy lists titles, authors, abstracts, and reference information for publications which have been published in the areas of drilling technology, logging instrumentation, and magma energy during the period 1977-1980. These publications are the results of work carried on at Sandia National Laboratories and their subcontractors. Some work was also done in conjunction with the Morgantown, Bartlesville, and Pittsburgh Energy Technology Centers.

Hudson, S.R. (ed.)

1981-04-01T23:59:59.000Z

385

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

386

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

DOE Green Energy (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-05-01T23:59:59.000Z

387

1982 annual report: Biomass Thermochemical Conversion Program  

DOE Green Energy (OSTI)

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

388

Biomass Reburning - Modeling/Engineering Studies  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The second reporting period (January 1- March 31) included kinetic modeling of the reburning process while firing natural gas and biomass. Modeling was done with a kinetic mechanism that combined reactions relevant to reburning from GRI-Mech 2.11 with SNCR reactions. Experimental data obtained in a 1 MMBtu/h Boiler Simulator Facility (BSF) for reburning with natural gas and biomass were modeled using the ODF kinetic code. System was treated as a series of four one-dimensional reactors. Modeling of natural gas reburning qualitatively agrees with experimental data for a wide range of initial conditions. Modeling of furniture waste reburning does not qualitatively match experimental data due to a number of model simplifications. Future work will concentrate on improving the basic reburning model to give quantitative agreement with experiments and on search for better representation of biomass composition in kinetic modeling. Experimental data on biomass reburning are included in Appendix 3. These data were obtained during the reporting period in the scope of a coordinated program funded by the U.S. Department of Agriculture.

Peter M. Maly; Vitali V. Lissianski; Vladimir M. Zamansky

1998-04-30T23:59:59.000Z

389

1982 annual report: Biomass Thermochemical Conversion Program  

SciTech Connect

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

390

Long-range assessment of R and D policy for gas-related conversion technologies and unconventional natural gas resources  

Science Conference Proceedings (OSTI)

This study analyzes the energy impacts on the US energy-economy system on a set of successful R and D programs. These programs are presumed to have led to the commercialization of innovative technologies that increase the US gaseous fuels resource base and promote the development of advanced natural gas conversion technologies for residential/commercial uses. The GRI and its principal subcontractor, TRW Incorporated, provided the detailed specifications of the energy conditions for both a Base Case and an R and D Policy Case. These conditions can be broadly categorized in terms of key energy resource price assumptions, energy resource availabilities, technology characterizations and market penetration guidelines for all energy technologies. Dale W. Jorgenson Associates (DJA) developed a set of demographic and economic projections including population, employment, and real GNP growth rates. The GRI and TRW staff provided the technology characterizations for most of the gas-related technologies and a number of other technologies. The data for the remaining technology characterizations were taken, for the most part, from Bhagat et al. This report presents the energy results from the BNL/DJA energy-economy system as executed under GRI specifications. It is intended to serve as a complement to the DJA report on the macro-economic consequences of these specifications. Certain assumption incorporated in the R and D and Base scenarios relating to market penetration were identified as particularly sensitive. In light of the uncertainty inherent in them, an additional set of sensitivity runs were requested by GRI and are presented in Appendix B.

Kydes, A.S.; Rabinowitz, J.

1980-04-25T23:59:59.000Z

391

Can biomass time series be reliably assessed from CPUE time series data Francis Lalo1  

E-Print Network (OSTI)

1 Can biomass time series be reliably assessed from CPUE time series data only? Francis Laloë1 to abundance. This means (i) that catchability is constant and (ii) that all the biomass is catchable. If so, relative variations in CPUE indicate the same relative variations in biomass. Myers and Worm consider

Hawai'i at Manoa, University of

392

Geothermal technology publications and related reports: a bibliography, January-December 1982  

DOE Green Energy (OSTI)

This bibliography extends the past listings to work reported in the 1982 calendar year. Titles, authors and abstracts of papers are assembled into areas of Geothermal Technology and Magma with cross references listed by author.

Hudson, S.R. (ed.)

1983-03-01T23:59:59.000Z

393

Renewable Energy Technology Guide  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the Electric Power Research Institute's (EPRI's) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion technologies.

2011-12-22T23:59:59.000Z

394

EA-1475: Chariton Valley Biomass Project, Chillicothe, Iowa | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

75: Chariton Valley Biomass Project, Chillicothe, Iowa 75: Chariton Valley Biomass Project, Chillicothe, Iowa EA-1475: Chariton Valley Biomass Project, Chillicothe, Iowa SUMMARY This EA evaluates the environmental impacts for the proposal to provide partial funding for (1) the design and construction of a biomass storage, handling, and conveying system into the boiler at the Ottumwa Generating Station near Chillicothe, Iowa; (2) operational testing of switchgrass as a biomass co-fire feedstock at OGS; and (3) ancillary activities related to growing, harvesting, storing, and transporting switchgrass in areas of the Rathbun Lake watershed. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2003 EA-1475: Final Environmental Assessment Chariton Valley Biomass Project

395

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

396

Successful biomass (wood pellets ) implementation in  

E-Print Network (OSTI)

Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local in Estonia in 1995 - 2002 Regional Energy Centres in Estonia http://www.managenergy.net/conference/biomass

397

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name Florida Biomass Energy Consortium Place Florida Sector Biomass Product Association of biomass energy companies. References Florida...

398

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name Haryana Biomass Power Ltd. Place Mumbai, Haryana, India Zip 400025 Sector Biomass Product This is a JV consortium between...

399

Algae Biomass Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biomass Summit Algae Biomass Summit September 30, 2013 12:00PM EDT to October 3, 2013 12:00PM EDT Algae Biomass Summit...

400

PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION  

E-Print Network (OSTI)

UC-61 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.10093 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.hydrolytic pretreatment to biomass feedstocks, higher acid

Schaleger, Larry L.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass category. Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCatego...

402

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable...

403

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

404

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name Hebei Jiantou Biomass Power Place Jinzhou, Hebei Province, China Zip 50000 Sector Biomass Product A company engages in...

405

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

406

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid...

407

Crow Nation Students Participate in Algae Biomass Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project October 22, 2012 - 3:44pm Addthis Crow Nation Students Participate in Algae Biomass Research Project Thanks in part to DOE funding and technical support, student interns from the Crow Tribe in Montana had the opportunity to participate in an algae biomass research project that could help prepare them for cleantech jobs and pave the way for their Tribe to produce clean, renewable energy. The Cultivation and Characterization of Oil Producing Algae Internship placed students in a laboratory alongside established researchers to study local algae samples and evaluate their possible use in energy applications. The project focused on an integrated coal-to-liquid (ICTL) technology

408

Crow Nation Students Participate in Algae Biomass Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project October 22, 2012 - 3:44pm Addthis Crow Nation Students Participate in Algae Biomass Research Project Thanks in part to DOE funding and technical support, student interns from the Crow Tribe in Montana had the opportunity to participate in an algae biomass research project that could help prepare them for cleantech jobs and pave the way for their Tribe to produce clean, renewable energy. The Cultivation and Characterization of Oil Producing Algae Internship placed students in a laboratory alongside established researchers to study local algae samples and evaluate their possible use in energy applications. The project focused on an integrated coal-to-liquid (ICTL) technology

409

Sustainable Biomass Supply Systems  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

2009-04-01T23:59:59.000Z

410

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Research on Common Biomass Pyrolysis Production of Biomass ...  

Science Conference Proceedings (OSTI)

Textural parameters analysis revealed the caloric value of biomass carbons between 32 MJ/kg and 34 MJ/kg. It also indicated that the surface of biomass carbon ...

412

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

413

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

414

World Biofuels Assessment; Worldwide Biomass Potential: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

numbers) and in use in existing fuel blends and distribution systems. Pyrolytic fuel oil has attractive costs, 0.26 - 0.60gal, but is not a transportation fuel; it's...

415

Biomass and Biofuels Technologies - Energy Innovation Portal  

Production of Oil in Vegetative Tissues Production of alternative fuels such as biodiesel is on the rise around the world and in the U.S. due to a ...

416

Coordinated development of leading biomass pretreatment technologies  

E-Print Network (OSTI)

and xylose yields increased with increasing xyla- nase supplementation. Glucan conversion was almost doubled conversion (y)/% increase in xylan conversion (x). nd, not determined. 310 Biotechnol. Prog., 2009, Vol. 25 concentrations in a simultane- ous-saccharification-and-fermentation-based bioethanol process: technical

California at Riverside, University of

417

Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments  

Science Conference Proceedings (OSTI)

The PETRA Conference brings together different types of technology to address an important social and healthcare issue: as the world's population ages, there is a growing interest in solutions for the in-home care of the elderly as well as for the care ...

Fillia Makedon, Margrit Betke, Magy Self El-Nasr, Ilias Maglogiannis

2013-05-01T23:59:59.000Z

418

Presentations and Roundtable Discussions Related to Mid-Atlantic CEAC and EEB Hub Technologies  

E-Print Network (OSTI)

should take to develop a robust energy supply and efficient use of primary energy, particularly aimed to encourage industry to continuously improve building energy efficiency. Dr. Freihaut has also, to two groups in Washington, DC, focused on the energy efficient technologies and tools

Maroncelli, Mark

419

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and dead vegetative material that have been removed from the landscape (either sent as biomass to the power

420

Environmental implications of increased biomass energy use. Final report  

DOE Green Energy (OSTI)

This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

Miles, T.R. Sr.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States)

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Considerations in implementing integrated biomass energy systems in developing countries  

DOE Green Energy (OSTI)

In this paper, we discuss the issues and barriers associated with implementing integrated biomass energy systems in developing countries. An integrated biomass energy system in dependent on sustainably grown and managed energy crops, is supportive of rural development, is environmentally beneficial (locally and globally), is adapted to local conditions, takes advantage of by- and co-products, and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in rural Yunnan Province in Southwest China provided some financial/economic results, general conclusions, and an initial framework for conducting such assessments. Our assessment indicates that social and environmental benefits are substantial and that investment in the facility is well-justified. However, there are so many considerations to take into account when assessing biomass energy systems that their evaluation is exceedingly complex. These considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementing such systems requires another grouping of considerations into energy and economics, institutional and social issues, and environmental issues. These are further defined in an effort to establish a framework of evaluation and assessment for other such projects. The conclusions that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal.

Perlack, R.D.; Ranney, J.W.

1993-08-01T23:59:59.000Z

422

ENERGY FROM BIOMASS AND  

E-Print Network (OSTI)

integrated- gasifier steam-injected gasturbine (BIGISTIG) cogenerationsystemsis carried out here. A detailed!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE). Biomassintegrated-gasifier/steam-injectedgas-turbine (BIG/STIG) cogenerationtechnologyand prospectsfor its use

423

Electricity from biomass: An environmental review and strategy  

DOE Green Energy (OSTI)

This report presents an environmental assessment and strategy for the US Department of Energy Biomass Power Program. The regulatory context and the environmental impact of biomass power technologies are described, and an environmental plan for the program is suggested. The plan suggest a proactive, synergistic approach, involving multiple parties with a stake in the successful commercialization of a biomass power industry. These parties include feedstock growers, state regulators. Forest Service and agricultural agents, utilities and independent power producers, rural electric cooperatives, and environmental activists.

Not Available

1993-06-01T23:59:59.000Z

424

EA-1957: Cabin Creek Biomass Facility, Place County, CA  

Energy.gov (U.S. Department of Energy (DOE))

DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood?to?energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities.

425

EMERY BIOMASS GASIFICATION POWER SYSTEM  

DOE Green Energy (OSTI)

Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

Benjamin Phillips; Scott Hassett; Harry Gatley

2002-11-27T23:59:59.000Z

426

Atmospheric Fluidized Bed Combustion for Power Production from Biomass  

Science Conference Proceedings (OSTI)

Atmospheric fluidized bed combustion (AFBC) technologyincluding smaller bubbling fluidized bed (BFB) as well as circulating fluidized bed (CFB) combustor unitsprovides robust combustion with high thermal inertia. This means that AFBC units can successfully respond to variations in ash content, calorific value, and moisture content commonly encountered in burning biomass fuels. This report describes AFBC technology and its deployment for generating steam for power plants using a wide variety of biomass fu...

2010-01-28T23:59:59.000Z

427

High-Throughput Pretreatment and Hydrolysis Systems for Screening Biomass Species in Aqueous Pretreatment of Plant Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

High-throughput High-throughput Pretreatment and Hydrolysis Systems for Screening Biomass Species in Aqueous Pretreatment of Plant Biomass Jaclyn D. DeMartini 1,2,3,Ã and Charles E. Wyman 1,2,3 1 Department of Chemical and Environmental Engineering, University of California, Riverside, USA 2 Center for Environmental Research and Technology, University of California, Riverside, USA 3 BioEnergy Science Center, Oak Ridge, USA 22.1 Introduction: The Need for High-throughput Technologies The primary barrier to low-cost biological conversion of lignocellulosic biomass to renewable fuels and chemicals is plant recalcitrance, that is to say, resistance of cell walls to deconstruction by enzymes or microbes [1,2]. However, the discovery and use of biomass species with reduced recalcitrance, when com- bined with optimized pretreatment processes and enzyme mixtures, could potentially

428

3, 503539, 2006 Biomass OSSEs  

E-Print Network (OSTI)

OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al. Title Page Abstract Introduction Conclusions for biomass assimilation G. Crispi, M. Pacciaroni, and D. Viezzoli Istituto Nazionale di Oceanografia e di Correspondence to: G. Crispi (gcrispi@ogs.trieste.it) 503 #12;OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al

Paris-Sud XI, Université de

429

5, 21032130, 2008 Biomass Pantanal  

E-Print Network (OSTI)

BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title Page Abstract Introduction dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil J. Sch of the European Geosciences Union. 2103 #12;BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title

Paris-Sud XI, Université de

430

5, 27912831, 2005 Biomass burning  

E-Print Network (OSTI)

ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract Introduction measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia P. Guyon1 , G. Frank1. 2791 #12;ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract

Paris-Sud XI, Université de

431

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY not substantively affect the findings or recommendations of the study. 2. Introduction The Biomass to Energy (B2E) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze

432

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

433

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

434

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

435

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

436

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

437

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

438

Biomass Energy and Agricultural Sustainability  

E-Print Network (OSTI)

Biomass Energy and Agricultural Sustainability Stephen Kaffka Department of Plant Sciences University of California, Davis & California Biomass Collaborative February 2008 #12;E x p e c t e d d u r 9 ) ---------Biomass era----------- --?????????? #12;By 2025, every source of energy

California at Davis, University of

439

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

440

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

6, 60816124, 2006 Modeling biomass  

E-Print Network (OSTI)

ACPD 6, 6081­6124, 2006 Modeling biomass smoke injection into the LS (part II) G. Luderer et al Chemistry and Physics Discussions Modeling of biomass smoke injection into the lower stratosphere by a large Correspondence to: G. Luderer (gunnar@mpch-mainz.mpg.de) 6081 #12;ACPD 6, 6081­6124, 2006 Modeling biomass smoke

Paris-Sud XI, Université de

442

Abundance,Biomass, and Production  

E-Print Network (OSTI)

Abundance,Biomass, and Production Daniel B.Hayes,James R.Bence,Thomas J.Kwak, and Bradley E, the proportion of fish present that are #12;Abundance,Biomass,and Production 329 detected (i.e., sightability; available at http://www.ruwpa.st-and.ac.uk/distance/). #12;Abundance,Biomass,and Production 331 Box 8

Kwak, Thomas J.

443

Guofu Bioenergy Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name Guofu Bioenergy Science & Technology Co Ltd Place Beijing Municipality, China Zip 100101 Sector Biomass...

444

Beijing Shenzhou Daxu Bio Energy Technology Co Ltd | Open Energy...  

Open Energy Info (EERE)

Shenzhou Daxu Bio Energy Technology Co Ltd Jump to: navigation, search Name Beijing Shenzhou Daxu Bio-Energy Technology Co Ltd Place Beijing Municipality, China Sector Biomass...

445

Biomass Equipment & Materials Compensating Tax Deduction | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Equipment & Materials Compensating Tax Deduction Biomass Equipment & Materials Compensating Tax Deduction Eligibility Commercial Industrial Savings For Bioenergy Biofuels...

446

Biomass Guidelines (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) Eligibility Agricultural Construction Developer Industrial Investor-Owned...

447

Investigator Title Technology  

E-Print Network (OSTI)

Principal Investigator Title Technology Sector State Funds Expended Cost Share Expended Jobs,000 1 Schanbacher, Floyd Development and Commercialization of an integrated Biomass to Electricity Funds Expended Cost Share Expended Jobs Created Average Salary Leverage: Federal $ Leverage: State

448

Biomass Energy R&D in the San Francisco Bay Area  

DOE Green Energy (OSTI)

Biomass is plant matter such as trees, grasses, agricultural crops or other biological material. It can be used as a solid fuel, or converted into liquid or gaseous forms, for the production of electric power, heat, chemicals, or fuels. There are a number of ways of getting energy from biomass, and a number of factors influence the efficiency of the conversion process. All biomass can be easily combusted. The heat of combustion can be used as heat, or can be used to run gas/steam turbines to produce electricity. However, most biomass combustion processes are inefficient and environmentally non-benign. The main pollutants from direct biomass combustion are tars, particulates, and VOCs. Biodiesels can be made from oils obtained from plants/crops such as soybean, peanuts and cotton. The oils from these sources are mainly triglycerides of fatty acids and not directly suitable as diesel substitutes. Transesterification processes convert the triglycerides into simple esters of the corresponding fatty acids (for example, Fatty Acid Methyl Ester or FAME), which can be directly substitutes for diesel fuels. Starches, sugars and cellulose can be fermented to produce ethanol, which can be added to gasoline, or used directly as an engine fuel. Fermentation of starches and sugars is established technology, practiced for thousands of years. Fermentation of cellulose to make ethanol is relatively harder, requiring additional intermediate steps to hydrolyze the cellulose first by adding acids or by raising temperature. Forestry wastes predominantly comprise cellulose and lignin. Lignin cannot be fermented using the current bio-organisms, and, as mentioned above, even cellulose is difficult to ferment directly. In such cases, a suite of alternative technologies can be employed to convert the biomass into liquid fuels. For example, the biomass can be gasified with the use of air/oxygen and steam, the resultant syngas (mixture of hydrogen and carbon monoxide) can be cleaned to remove tars and particulates, the gas can be shifted to obtain the proper balance between hydrogen and carbon monoxide, and the balanced gas can be converted into either methanol or other hydrocarbons with the use of Fischer-Tropsch catalysts. The liquid fuels thus produced can be transported to the point of use. In addition, they can be reformed to produce hydrogen to drive fuel cells. In addition to agriculture and forestry, a third, and significant, source for biomass is municipal waste. The biomass component of municipal wastes consists mainly of cellulose (paper products and yard wastes) and lignin (yard wastes). This waste can be combusted or gasified, as described above. All the technologies mentioned above are relatively mature, and are being practiced in some form or another. However, there are other technologies that may be promising, yet present significant challenges and may require more work. An example of this is the use of bacteria to use light to decompose water to yield hydrogen.

Upadhye, R

2005-12-07T23:59:59.000Z

449

Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass  

E-Print Network (OSTI)

biomass by Michael J. Behrenfeld1,2 and Emmanual Boss3 ABSTRACT Chlorophyll has long functioned as the prominent field metric for phytoplankton biomass, but its variability can be strongly influenced by (even an alternative optical measure of phytoplankton biomass that is readily assessed in situ and relatively

Boss, Emmanuel S.

450

Development of Detailed Kinetic Models for the Thermal Conversion of Biomass via First  

E-Print Network (OSTI)

Chapter 10 Development of Detailed Kinetic Models for the Thermal Conversion of Biomass via First. In this contribution we discuss four selected example systems related to the thermal conversion of biomass reaction steps, for the biomass gasification process would be of tremendous value to engineers who try

Dean, Anthony M.

451

Biomass Supply and Carbon Accounting for  

E-Print Network (OSTI)

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

452

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

DOE Green Energy (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system; and Pilot-scale testing in the grate-fired system. The resulting data will be collected, analyzed, and reported to elucidate ash-related problems during biomass-coal cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2001-10-01T23:59:59.000Z

453

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

DOE Green Energy (OSTI)

The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system. (4) Pilot-scale testing in the grate-fired system. The resulting data were used to elucidate ash-related problems during coal-biomass cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-09-01T23:59:59.000Z

454

FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, April 1-June 30, 1997  

DOE Green Energy (OSTI)

The FETC/EPRI Biomass Cofiring Program has accelerated the pace of cofiring development by increasing the testing activities plus the support activities for interpreting test results. Past tests conducted and analyzed include the Allen Fossil Plant and Seward Generating Station programs. On-going tests include the Colbert Fossil Plant precommercial test program, the Greenidge Station commercialization program, and the Blount St. Station switchgrass program. Tests in the formative stages included the NIPSCO cofiring test at Michigan City Generating Station. Analytical activities included modeling and related support functions required to analyze the cofiring test results, and to place those results into context. Among these activities is the fuel availability study in the Pittsburgh, PA area. This study, conducted for Duquesne Light, supports their initial investigation into reburn technology using wood waste as a fuel. This Quarterly Report, covering the third quarter of the FETC/EPRI Biomass Cofiring Program, highlights the progress made on the 16 projects funded under this cooperative agreement.

Hughes, E.; Tillman, D.

1997-12-01T23:59:59.000Z

455

Direct Conversion of Biomass into Transportation Fuels ...  

Los Alamos National Laboratory is developing a portfolio of technologies related to catalytic processes for converting oligosaccharides into ...

456

Highlights of the 2013 International Consumer Electronics Show: Technologies Related to Residential Ecosystems  

Science Conference Proceedings (OSTI)

Every year, more than 150,000 people descend on Las Vegas for one week in January to attend the International Consumer Electronics Show (CES), the industry’s largest educational and promotional forum that showcases the latest and greatest in the world of consumer electronics technology. The most recent CES was held the week of January 7th, 2013, and featured more than 3,100 exhibitors displaying and demon­strating their products on more than 1.85 million square feet of exhibit ...

2013-03-06T23:59:59.000Z

457

Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies  

Science Conference Proceedings (OSTI)

This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

Reedy, Wayne R. [Sentech, Inc.

2010-07-01T23:59:59.000Z

458

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

459

First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2  

DOE Green Energy (OSTI)

This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-10-01T23:59:59.000Z

460

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Clean fractionation of biomass  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

Not Available

1995-01-01T23:59:59.000Z

462

Catalyzed gasification of biomass  

DOE Green Energy (OSTI)

Catalyzed biomass gasification studies are being conducted by Battelle's Pacific Northwest Laboratories. Investigations are being carried out concurrently at the bench and process development unit scales. These studies are designed to test the technical and economic feasibility of producing specific gaseous products from biomass by enhancing its reactivity and product specificity through the use of specific catalysts. The program is directed at controlling the gasification reaction through the use of specific catalytic agents to produce desired products including synthetic natural gas, ammonia synthesis gas (H/sub 2//N/sub 2/), hydrogen, or syn gas (H/sub 2//CO). Such gaseous products are currently produced in tonnage quantities from non-renewable carbonaceous resources, e.g., natural gas and petroleum. The production of high yields of these specified gases from biomass is accomplished through optimization of gasification conditions and proper choice of catalytic agents. For instance, high yields of synthetic natural gas can be attained through gasification with steam in the presence of gasification catalyst such as trona (Na/sub 2/CO/sub 3/ . NaHCO/sub 3/ . 2H/sub 2/O) and a nickel methanation catalyst. The gasification catalyst enhances the steam-biomass reaction while the methanation catalyst converts gaseous intermediates from this reaction to methane, the most thermodynamically stable hydrocarbon product. This direct conversion to synthetic natural gas represents a significant advancement in the classical approach of producing synthetic natural gas from carbonaceous substrates through several unit operations. A status report, which includes experimental data and results of the program is presented.

Sealock, L.J. Jr.; Robertus, R.J.; Mudge, L.K.; Mitchell, D.H.; Cox, J.L.

1978-06-16T23:59:59.000Z

463

The Use of Biomass for Power Generation in the U.S.  

Science Conference Proceedings (OSTI)

Historically, biomass has been man's principal source of energy, mainly used in the form of wood for cooking and heating. With the industrial revolution and the introduction of motorized transportation and electricity, fossil fuels became the dominant source of energy. Today, biomass is the largest domestic source of renewable energy providing over 3% of total U.S. energy consumption, and surpassing hydropower. Yet, recent increases in the price and volatility of fossil fuel supplies and the financial impacts from a number of financially distressed investments in natural gas combined cycle power plants have led to a renewed interest in electricity generation from biomass. The biomass-fueled generation market is a dynamic one that is forecast to show significant growth over the next two decades as environmental drivers are increasingly supported by commercial ones. The most significant change is likely to come from increases in energy prices, as decreasing supply and growing demand increase the costs of fossil fuel-generated electricity and improve the competitive position of biomass as a power source. The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and gives a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered in the report include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an analysis of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; and, a review of the economic drivers of biomass-fueled generation project success.

none

2006-07-15T23:59:59.000Z

464

Biofuels technology blooms in Iowa | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa May 7, 2010 - 4:45pm Addthis Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from corn harvests into renewable biofuels could help America produce billions of gallons of cellulosic biofuels in the upcoming decade. Addthis Related Articles NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. On the Path to Low Cost Renewable Fuels, an Important Breakthrough

465

Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

1999-10-01T23:59:59.000Z

466

GASIFICATION BASED BIOMASS CO-FIRING  

DOE Green Energy (OSTI)

Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

2003-01-01T23:59:59.000Z

467

Fuel Cell Technologies Office: Hydrogen Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

nuclear; biomass; and other renewable energy technologies, such as wind, solar, geothermal, and hydro-electric power. The overall challenge to hydrogen production is cost...

468

NREL: Energy Analysis - Technology Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Zhang Access more information on all of our Staff Analysts Printable Version Energy Analysis Home Capabilities & Expertise Technology Analysis Biomass Buildings Electric...

469

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

DOE Green Energy (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

470

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

471

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

EIA - AEO2010 - Accounting for carbon dioxide emissions from biomass energy  

Gasoline and Diesel Fuel Update (EIA)

Accounting for carbon diioxide emissions from biomass energy combustion Accounting for carbon diioxide emissions from biomass energy combustion Annual Energy Outlook 2010 with Projections to 2035 Accounting for carbon dioxide emissions from biomass energy combustion CO2 emissions from the combustion of biomass [75] to produce energy are excluded from the energy-related CO2 emissions reported in AEO2010. According to current international convention [76], carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time [77]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

474

White Pine Co. Public School System Biomass Conversion Heating Project  

DOE Green Energy (OSTI)

The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

Paul Johnson

2005-11-01T23:59:59.000Z

475

Northeast regional biomass program. Retrospective, 1983--1993  

DOE Green Energy (OSTI)

Ten years ago, when Congress initiated the Regional Biomass Energy Program, biomass fuel use in the Northeast was limited primarily to the forest products industry and residential wood stoves. An enduring form of energy as old as settlement in the region, residential wood-burning now takes its place beside modern biomass combustion systems in schools and other institutions, industrial cogeneration facilities, and utility-scale power plants. Biomass today represents more than 95 percent of all renewable energy consumed in the Northeast: a little more than one-half quadrillion BTUs yearly, or five percent of the region`s total energy demand. Yet given the region`s abundance of overstocked forests, municipal solid waste and processed wood residues, this represents just a fraction of the energy potential the biomass resource has to offer.This report provides an account of the work of the Northeast Regional Biomass Program (NRBP) over it`s first ten years. The NRBP has undertaken projects to promote the use of biomass energy and technologies.

Savitt, S.; Morgan, S. [eds.] [Citizens Conservation Corp., Boston, MA (United States)

1995-01-01T23:59:59.000Z

476

White Pine Co. Public School System Biomass Conversion Heating Project  

SciTech Connect

The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

Paul Johnson

2005-11-01T23:59:59.000Z

477

EVALUATION OF NATURAL AND IN-SITU REMEDIATION TECHNOLOGIES FOR A COAL-RELATED METALS PLUME  

SciTech Connect

Metals contamination exceeding drinking water standards (MCLs) is associated with acidic leachate generated from a coal pile runoff basin at the Savannah River Site (SRS) in Aiken, South Carolina. The metals plume extends over 100 acres with its' distal boundary about onehalf mile from the Savannah River. Based on the large plume extent and high dissolved iron and aluminum concentrations, conventional treatment technologies are likely to be ineffective and cost prohibitive. In-situ bioremediation using existing groundwater microbes is being evaluated as a promising alternative technology for effective treatment, along with consideration of natural attenuation of the lower concentration portions of the plume to meet remedial goals. Treatment of the high concentration portion of the groundwater plume by sulfate-reducing bacteria (SRB) is being evaluated through laboratory microcosm testing and a field-scale demonstration. Organic substrates are added to promote SRB growth. These bacteria use dissolved sulfate as an electron acceptor and ultimately precipitate dissolved metals as metal sulfides. Laboratory microcosm testing indicate SRB are present in groundwater despite low pH conditions, and that their growth can be stimulated by soybean oil and sodium lactate. The field demonstration consists of substrate injection into a 30-foot deep by 240-foot long permeable trench. Microbial activity is demonstrated by an increase in pH from 3 to 6 within the trench. Downgradient monitoring will be used to evaluate the effectiveness of SRB in reducing metal concentrations. Natural attenuation (NA) is being evaluated for the low concentration portion of the plume. A decrease in metal mobility can occur through a variety of abiotically and/or biotically mediated mechanisms. Quantification of these mechanisms is necessary to more accurately predict contaminant attenuation using groundwater transport models that have historically relied on simplified conservative assumptions. Result s from matched soil/porewater samples indicate higher soil/water partition coefficients (Kds) with increasing distance from the source. In addition, site-specific metals availability is being assessed using sequential extraction techniques, which more accurately represent environmental conditions as compared to default EPA extraction methods. Due to elevated sulfate levels in the plume, SRB are most likely to be the dominant biotic contributor to NA processes.

Ross, Jeffrey A.; Bayer, Cassandra L.; Socha, Ronald P.; Sochor,Cynthia S.; Fliermans, Carl B.; McKinsey, Pamela C.; Millings, Margaret R.; Phifer, Mark A.; Powell, Kimberly R.; Serkiz, Steven M.; Sappington, Frank C.; Turick, Charles E.

2003-02-27T23:59:59.000Z

478

Biomass energy systems information user study  

DOE Green Energy (OSTI)

The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-02-01T23:59:59.000Z

479

Indirect liquefaction of biomass: A fresh approach  

DOE Green Energy (OSTI)

Indirect liquefaction of biomass is accomplished by first gasifying it to produce a synthesis gas consisting of hydrogen and oxides of carbon, which in turn are converted to any one of a number of liquid fuels and/or chemicals by suitable choice of catalyst, synthesis gas composition and reaction conditions. This approach to producing synthetic fuels and chemicals has been extensively investigated where coal is the carbonaceous feed material, but less so for biomass or other feedstocks. It is generally recognized that the gasification to produce the synthesis gas posses one of the major technical and economic challenges to improving this technology. Herein, is reported a different slant on the indirect liquefaction that could lead to improvements in the efficiency and economics of the process.

Cox, J.L.; Tonkovich, A.Y.; Elliott, D.C. [and others

1995-08-01T23:59:59.000Z

480

Waste and biomass as energy resources  

DOE Green Energy (OSTI)

Organic fuels can be manufactured by converting major sources of continuously renewable nonfossil carbon to synfuels that are interchangeable with, or can be substituted for, natural gas and petroleum-derived fuels. Promising sources of this carbon are waste materials, such as urban refuse, and biomass produced from solar energy by photosynthesis. The development of this concept is presented in this paper. The broad scope of the technology and its potential impact on energy supplies are reviewed. The renewable feature of both wastes and biomass makes them valuable natural resources that inevitably will be fully developed and commercialized as sources of energy-intensive products and synfuels. The perpetual availability of organic fuels will permit the conservation of valuable fossil fuel reserves, and, as time passes, offer a long-term solution to independence from foreign energy supplies and fossil fuel depletion.

Klass, Donald L.

1978-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "related technologies biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

BIOMASS REBURNING - MEDELING/ENGINEERING STUDIES  

SciTech Connect

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the seventh reporting period (April 1--June 30, 1999), no information was received at EER on scheduled FETC R&D group's project activities. EER activities were on hold due to the pending purchase of the Niagara Mohawk's Dunkirk Station, a target demonstration site in this program, and then by the actual purchase of the Station by NRG. This report includes information about the current project status, recently submitted to NRG for soliciting their interest to proceed with biomass reburn demonstration, and notes on alternative demonstrative partners.

Vladimir Zamansky; Michael Booth

1999-07-30T23:59:59.000Z

482

Supercritical Water Gasification of Biomass & Biomass Model Compounds.  

E-Print Network (OSTI)

??Supercritical water gasification (SCWG) is an innovative, modern, and effective destruction process for the treatment of organic compounds. Hydrogen production using SCWG of biomass or… (more)

Youssef, Emhemmed A.E.A