National Library of Energy BETA

Sample records for reid miner ncasi

  1. Reid Industries | Open Energy Information

    Open Energy Info (EERE)

    Reid Industries Jump to: navigation, search Name: Reid Industries Address: PO Box 503 Place: San Francisco, CA Zip: 94104 Phone Number: 415-947-1050 Coordinates: 37.7923058,...

  2. Thomas C. Reid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. Reid Engineering Specialist Telephone (630) 252-5241 E-mail treid@anl.gov

  3. Secretary Chu, Senator Reid Announce Department of Energy Conditional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commitment for a Loan Guarantee for Nevada Geothermal Project | Department of Energy Chu, Senator Reid Announce Department of Energy Conditional Commitment for a Loan Guarantee for Nevada Geothermal Project Secretary Chu, Senator Reid Announce Department of Energy Conditional Commitment for a Loan Guarantee for Nevada Geothermal Project June 9, 2011 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu and Senate Majority Leader Harry Reid today announced the offer of a

  4. Secretary Chu, Senator Reid Announce Department of Energy Conditional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commitment for a Loan Guarantee for Nevada Geothermal Project | Department of Energy Reid Announce Department of Energy Conditional Commitment for a Loan Guarantee for Nevada Geothermal Project Secretary Chu, Senator Reid Announce Department of Energy Conditional Commitment for a Loan Guarantee for Nevada Geothermal Project June 9, 2011 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu and Senate Majority Leader Harry Reid today announced the offer of a conditional

  5. Secretary Chu, Senator Reid, Rep. Berkley Announce Conditional Commitment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Loan Guarantee to Fotowatio Solar Project Near Las Vegas, Nevada | Department of Energy Reid, Rep. Berkley Announce Conditional Commitment for Loan Guarantee to Fotowatio Solar Project Near Las Vegas, Nevada Secretary Chu, Senator Reid, Rep. Berkley Announce Conditional Commitment for Loan Guarantee to Fotowatio Solar Project Near Las Vegas, Nevada June 2, 2011 - 12:00am Addthis Washington D.C. -- U.S. Energy Secretary Steven Chu, Senate Majority Leader Harry Reid and Nevada

  6. Secretary Chu, Senator Reid Announce Department of Energy Conditional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Loan Guarantee for Nevada Geothermal Project Secretary Chu, Senator Reid Announce Department of Energy Conditional Commitment for a Loan Guarantee for Nevada Geothermal Project ...

  7. Secretary Chu and Senator Reid to Make Major Energy Announcement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. - U.S. Secretary Steven Chu and U.S. Senator Harry Reid will host a press ... BRIEFING CONFERENCE CALL: Secretary Chu to Host Solar Energy Conference Call Secretaries ...

  8. Secretaries Chu and Salazar will Join Senator Reid to Make Solar Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announcement | Department of Energy Salazar will Join Senator Reid to Make Solar Energy Announcement Secretaries Chu and Salazar will Join Senator Reid to Make Solar Energy Announcement July 7, 2010 - 12:00am Addthis WASHINGTON - Secretary of Energy Steven Chu, Secretary of the Interior Ken Salazar and Senate Majority Leader Harry Reid will make an announcement regarding job creation and solar energy development at the Nevada Test Site. Nevada stands to be the leading state for solar energy

  9. Forest Carbon and Biomass Energy - LCA Issues and Challenges | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Forest Carbon and Biomass Energy - LCA Issues and Challenges Forest Carbon and Biomass Energy - LCA Issues and Challenges Breakout Session 2D-Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels Forest Carbon and Biomass Energy - LCA Issues and Challenges Reid Miner, Vice President, NCASI miner_biomass_2014.pdf (302.74 KB) More Documents & Publications GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks 2016 Billion-Ton

  10. Secretary Chu, Senator Reid Announce Department of Energy Conditional Commitment for a Loan Guarantee for Nevada Geothermal Project

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu and Senate Majority Leader Harry Reid today announced the offer of a conditional commitment to provide a partial guarantee for a $350 million loan for a geothermal power generation project.

  11. Life cycle assessment and biomass carbon accounting

    U.S. Energy Information Administration (EIA) Indexed Site

    Biomass feedstocks and the climate implications of bioenergy Steven Hamburg Environmental Defense Fund Slides adapted from Reid Miner NCASI On the landscape, the single-plot looks like this 75 Harvested and burned for energy In year zero, the plot is harvested and the wood is burned for energy 1.1 Year 1 After regeneration begins, the growing biomass sequesters small amounts of CO2 annually 2.1 Year 2 2.8 Year 3 ??? Year X, until next harvest Σ = . Over time, if carbon stocks are returned to

  12. Clay Minerals

    SciTech Connect (OSTI)

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with speci?c sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  13. Minerals Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Minerals Technologies Place: Bethlehem, PA Website: www.mineralstechnologies.com References: Minerals Technologies1 Information...

  14. Bioleaching of Minerals

    SciTech Connect (OSTI)

    F. Roberto

    2002-02-01

    Bioleaching is the term used to describe the microbial dissolution of metals from minerals. The commercial bioleaching of metals, particularly those hosted in sulfide minerals, is supported by the technical disciplines of biohydrometallurgy, hydrometallurgy, pyrometallurgy, chemistry, electrochemistry, and chemical engineering. The study of the natural weathering of these same minerals, above and below ground, is also linked to the fields of geomicrobiology and biogeochemistry. Studies of abandoned and disused mines indicate that the alterations of the natural environment due to man's activities leave as remnants microbiological activity that continues the biologically mediated release of metals from the host rock (acid rock drainage; ARD). A significant fraction of the world's copper, gold and uranium is now recovered by exploiting native or introduced microbial communities. While some members of these unique communities have been extensively studied for the past 50 years, our knowledge of the composition of these communities, and the function of the individual species present remains relatively limited. Nevertheless, bioleaching represents a major strategy in mineral resource recovery whose importance will increase as ore reserves decline in quality, become more difficult to process (due to increased depth, increased need for comminution, for example), and as environmental considerations eliminate traditional physical processes such as smelting, which have served the mining industry for hundreds of years.

  15. Nevada Division of Minerals | Open Energy Information

    Open Energy Info (EERE)

    Logo: Nevada Division of Minerals Name: Nevada Division of Minerals Address: 400 W. King St. 106 Place: Carson City, Nevada Zip: 89703 Website: minerals.state.nv.us...

  16. Hearing protection for miners

    SciTech Connect (OSTI)

    Schulz, T.

    2008-10-15

    A NIOSH analysis showed that at age 50 approximately 90% of coal miners have a hearing impairment, yet noise included hearing loss is 100% preventable. The article discusses requirements of the MSHA regulations, 30 CFR Part 62 - occupational noise exposure (2000) and a 2008-MSHA document describing technologically achievable and promising controls for several types of mining machinery. Hearing protection is still required for exposure to greater than 90 dBA. These are now commercially available ways to determine how much attenuation an individual gets from a given hearing protector, known as 'fit testing'. 3 refs., 1 fig., 1 tab., 1 photo.

  17. Mineral industries of Australia, Canada, and Oceania (including a discussion of Antarctica's mineral resources). Mineral perspective

    SciTech Connect (OSTI)

    Kimbell, C.L.; Lyday, T.Q.; Newman, H.H.

    1985-12-01

    The Bureau of Mines report gives the mineral industry highlights of two of the world's major mineral producing countries, Australia and Canada, and seven Pacific island nations or territories--Fiji, New Caledonia, New Zealand, Papua New Guinea, Republic of Nauru, Solomon Islands, and Vanuatu. The mineral resources of Antarctica are also discussed. Because of the size of the Australian and Canadian mineral industries, summary reviews are presented for each of the States, Provinces, or Territories. The most current information available from all nations is given on major minerals or mineral-commodity production, share of world production, and reserves. Reported also are significant mining companies, locations and capacities of their main facilities, and their share of domestic production. Other information is provided on mineral-related trade with the United States, government mineral policy, energy production-consumption and trade, the mining industry labor force, and prospects for the mineral industry. Maps show the locations of selected mineral deposits, oilfields and gasfields, mines, and processing facilities including iron and steel plants, nonferrous smelters and refineries, and cement plants, as well as infrastructure pertinent to the mineral industry.

  18. Minerals Yearbook: Minerals in the world economy. 1988 International review

    SciTech Connect (OSTI)

    Kimbell, C.L.; Zajac, W.L.

    1988-01-01

    In overview, 1988 appeared to be the best year for the world's mineral industry since 1980, although the all-important petroleum component suffered severely from low prices. With this notable exception, the traditional statistical measures of mineral industry performance, namely production, trade, and consumption, reflected growth in most elements of the world mineral industry from crude material extraction through the gamut of downstream processing. Moreover, the growth was reasonably well distributed geographically, with many countries sharing in the substantial upturn in activity. The report discusses production, trade, consumption, investment, transportation, prices, and statistical summary of world production and trade of major mineral commodities.

  19. Universal ripper miner

    DOE Patents [OSTI]

    Morrell, Roger J.; Larson, David A.

    1991-01-01

    A universal ripper miner used to cut, collect and transfer material from an underground mine working face includes a cutter head that is vertically movable in an arcuate cutting cycle by means of drive members, such as hydraulically actuated pistons. The cutter head may support a circular cutter bit having a circular cutting edge that may be indexed to incrementally expose a fresh cutting edge. An automatic indexing system is disclosed wherein indexing occurs by means of a worm gear and indexing lever mechanism. The invention also contemplates a bi-directional bit holder enabling cutting to occur in both the upstroke and the downstroke cutting cycle. Another feature of the invention discloses multiple bits arranged in an in-line, radially staggered pattern, or a side-by-side pattern to increase the mining capacity in each cutting cycle. An on-board resharpening system is also disclosed for resharpening the cutting edge at the end of cutting stroke position. The aforementioned improvement features may be used either singly, or in any proposed combination with each other.

  20. Property:MineralManager | Open Energy Information

    Open Energy Info (EERE)

    MineralManager Jump to: navigation, search Property Name MineralManager Property Type Page Pages using the property "MineralManager" Showing 25 pages using this property. (previous...

  1. A highly conspicuous mineralized composite photonic architecture...

    Office of Scientific and Technical Information (OSTI)

    A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet Title: A highly conspicuous mineralized composite photonic ...

  2. China Gengsheng Minerals Inc | Open Energy Information

    Open Energy Info (EERE)

    Gengsheng Minerals Inc Jump to: navigation, search Name: China Gengsheng Minerals Inc Place: Henan Province, China Product: China-based material technology company. References:...

  3. Minerals in the world economy. Minerals yearbook Volume 3. 1991 international review

    SciTech Connect (OSTI)

    Kimbell, C.L.

    1991-12-31

    This edition of the Minerals Yearbook - International Review records the performance of the worldwide minerals industry during 1991 and provides background information to assist in interpreting that performance. Volume III, International Review, contains the latest available mineral data on more than 150 foreign countries and discusses the importance of minerals to the economies of these nations. The 1991 review is presented as five area reports and one world overview: Mineral Industries of Africa, Mineral Industries of Asia and the Pacific, Mineral Industries of Latin America and Canada, Mineral Industries of Europe and the U.S.S.R., Mineral Industries of the Middle East, and Minerals in the World Economy.

  4. CRYSTAL CHEMISTRY OF HYDROUS MINERALS

    SciTech Connect (OSTI)

    Y. ZHAO; ET AL

    2001-02-01

    Hydrogen has long been appreciated for its role in geological processes of the Earth's crust. However, its role in Earth's deep interior has been neglected in most geophysical thinking. Yet it is now believed that most of our planet's hydrogen may be locked up in high pressure phases of hydrous silicate minerals within the Earth's mantle. This rocky interior (approximately 7/8 of Earth's volume) is conjectured to contain 1-2 orders of magnitude more water than the more obvious oceans (the ''hydrosphere'') and atmosphere. This project is aimed at using the capability of neutron scattering from hydrogen to study the crystal chemistry and stability of hydrogen-bearing minerals at high pressures and temperatures. At the most basic level this is a study of the atomic position and hydrogen bond itself. We have conducted experimental runs on hydrous minerals under high pressure and high temperature conditions. The crystallographic structure of hydrous minerals at extreme conditions and its structural stability, and hydrogen bond at high P-T conditions are the fundamental questions to be addressed. The behavior of the hydrous minerals in the deep interior of the Earth has been discussed.

  5. Secretary Chu, Senator Reid, Rep. Berkley Announce Conditional...

    Energy Savers [EERE]

    of Energy to support a 20 megawatt AC photovoltaic (PV) solar generating facility. ... tracker technology that will capture more energy than fixed-tilt photovoltaic systems. ...

  6. Secretary Chu, Senator Reid Announce Department of Energy Conditional...

    Energy Savers [EERE]

    Unlike coal-fired and natural gas-fired power generation plants, geothermal plants produce ... largest wind farm and the nation's first new nuclear power plant in three decades. ...

  7. Secretary Chu, Senator Reid Announce Department of Energy Conditional...

    Office of Environmental Management (EM)

    provide a partial guarantee for a 350 million loan for a geothermal power generation project. ... The water's thermal energy is used to heat a secondary fluid that is vaporized and ...

  8. Ukrainian mineral wax from brown coal

    SciTech Connect (OSTI)

    Shabad, T.

    1986-07-01

    An unusual mineral enterprise is the mineral wax plant of Semenovskoye in the Aleksandriya brown coal basin of the Ukraine. The only plant of its kind in the Soviet Union, it has been in operation since 1959, extracting mineral wax from the local bitumen-rich brown coal. The plant yields about 7.5 tons of mineral wax a day (about 2700 tons a year), for use in a variety of applications.

  9. Review of 1989 international mineral industry activities

    SciTech Connect (OSTI)

    Kimbell, C.L. (US Bureau of Mines, Washington, DC (US))

    1990-07-01

    This article reviews global mineral industry activities for 1989. Production of coal, natural gas, and petroleum, as well as non-fuel minerals, is detailed regionally and for individual countries. The problems of changes in technology, economic and political systems are discussed where they have affected mineral production.

  10. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 mineral-webinar.pdf (3.45 MB) More Documents & ...

  11. Oregon Department of Geology and Mineral Industries | Open Energy...

    Open Energy Info (EERE)

    Geology and Mineral Industries Jump to: navigation, search Logo: Oregon Department of Geology and Mineral Industries Name: Oregon Department of Geology and Mineral Industries...

  12. New Mexico Energy, Minerals and Natural Resources Department...

    Open Energy Info (EERE)

    Minerals and Natural Resources Department Jump to: navigation, search Logo: New Mexico Energy, Minerals and Natural Resources Department Name: New Mexico Energy, Minerals...

  13. CMI Course Inventory: Mineral Economics and Business | Critical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Economics and Business Mineral Economics and Business Of the six CMI Team members that are educational institutions, two offer courses in Mineral Economics and Business. ...

  14. Mineralization of Carbon Dioxide: Literature Review

    SciTech Connect (OSTI)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O'Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  15. Strata control in mineral engineering

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1986-01-01

    This book covers the state-of-the-art of strata control practice both in the United States and abroad with respect to strata reinforcement by rock bolting, long wall mining technology and innovations in energy development, such as mining for oil and tunneling for storage of high-level nuclear waste in deep underground repositories. It features coverage of design concepts in rock engineering and rockbolt systems, stability of rock pillars, rockbursts, shaft design and construction and a detailed consideration of mineral and energy needs in the United States.

  16. Mineral Resource Information System for Field Lab in the Osage Mineral Reservation Estate

    SciTech Connect (OSTI)

    Carroll, H.B.; Johnson, William I.

    1999-04-27

    The Osage Mineral Reservation Estate is located in Osage County, Oklahoma. Minerals on the Estate are owned by members of the Osage Tribe who are shareholders in the Estate. The Estate is administered by the Osage Agency, Branch of Minerals, operated by the U.S. Bureau of Indian Affairs (BIA). Oil, natural gas, casinghead gas, and other minerals (sand, gravel, limestone, and dolomite) are exploited by lessors. Operators may obtain from the Branch of Minerals and the Osage Mineral Estate Tribal Council leases to explore and exploit oil, gas, oil and gas, and other minerals on the Estate. Operators pay a royalty on all minerals exploited and sold from the Estate. A mineral Resource Information system was developed for this project to evaluate the remaining hydrocarbon resources located on the Estate. Databases on Microsoft Excel spreadsheets of operators, leases, and production were designed for use in conjunction with an evaluation spreadsheet for estimating the remaining hydrocarbons on the Estate.

  17. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Teng, H. Henry PI, The George Washington University PI, The George...

  18. Geology and Minerals | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleGeologyandMinerals&oldid612244" Feedback Contact needs updating Image needs updating...

  19. Adsorption of polyacrylamides on mineral surfaces

    SciTech Connect (OSTI)

    Lecourtier, J.; Lee, L.T.; Chauveteau, G.

    1987-01-01

    The adsorption of neutral and hydrolyzed polyacrylamides, which are currently used in enhanced oil recovery, on minerals the surfaces of which carry silanol and aluminol groups such as siliceous minerals and akolinite is studied. All experiments are conducted in batch on powdered minerals. The conditions for the elimination of detrimental effects of both mechanical degradation of polymers and flocculation of mineral particles during the batch experiments have been determined, leading to a reliable methodology for the adsorption measurements. The surface sites responsible for adsorption are identified, and a change in surface charge by thermal pretreatment of minerals is found to alter the polymer adsorption accordingly. The two main results thus derived from this study are: a methodology providing reliable and reproducible data, and, the identification of the mechanisms of polymer adsorption and the major parameters governing the process.

  20. Minerals Yearbook, 1988 international review. The mineral industries of Bolivia, Ecuador, and Peru

    SciTech Connect (OSTI)

    Torres, I.E.; Gurmendi, A.C.; Velasco, P.

    1988-01-01

    All three countries in this Andean group have diversified mineral industries that play an important role in their respective domestic economies. Peru, as the largest country with a population of over 21 million, is the most diversified mineral producer with the highest value of total output. The values added by the mineral industries in 1988 were $2.78 billion for Peru, $1.98 billion for Ecuador, and $0.64 billion for Bolivia. Each value encompasses production of petroleum, natural gas, metals, and industrial minerals. During the period 1980-88, Ecuador's mineral output in terms of value expanded while that of Bolivia and Peru contracted.

  1. Minerals yearbook: Mineral industries of Europe and central Eurasia. Volume 3. 1992 international review

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Volume III, Minerals Yearbook -- International Review contains the latest available mineral data on more than 175 foreign countries and discusses the importance of minerals to the economies of these nations. Since the 1989 International Review, the volume has been presented as six reports. The report presents the Mineral Industries of Europe and Central Eurasia. The report incorporates location maps, industry structure tables, and an outlook section previously incorporated in the authors' Minerals Perspectives Series quinquennial regional books, which are being discontinued. This section of the Minerals Yearbook reviews the minerals industries of 45 countries: the 12 nations of the European Community (EC); 6 of the 7 nations of the European Free Trade Association (EFTA); Malta; the 11 Eastern European economies in transition (Albania, Bosnia and Hercegovina, Bulgaria, Croatia, Czechoslovakia, Hungary, Macedonia, Poland, Romania, Serbia and Montenegro, and Slovenia); and the countries of Central Eurasia (Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgystan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan).

  2. Mineral Selection for Multicomponent Equilibrium Geothermometry

    SciTech Connect (OSTI)

    Plamer, C. D.; Ohly, S. R.; Smith, R. W.; Neupane, G.; McLing, T.; Mattson, E.

    2015-04-01

    Multicomponent geothermometry requires knowledge of the mineral phases in the reservoir with which the geothermal fluids may be equilibrated. These minerals phases are most often alteration products rather than primary minerals. We have reviewed the literature on geothermal systems representing most major geologic environments typically associated with geothermal activity and identified potential alteration products in various environments. We have included this information in RTEst, a code we have developed to estimate reservoir conditions (temperature, CO2 fugacity) from the geochemistry of near-surface geothermal waters. The information has been included in RTEst through the addition of filters that decrease the potential number of minerals from all possibilities based on the basis species to those that are more relevant to the particular conditions in which the user is interested. The three groups of filters include host rock type (tholeiitic, calc-alkaline, silicic, siliciclastic, carbonate), water type (acidic, neutral), and the temperature range over which the alteration minerals were formed (low, medium, high). The user-chosen mineral assemblage is checked to make sure that it does not violate the Gibbs phase rule. The user can select one of three mineral saturation weighting schemes that decrease the chance the optimization from being skewed by reaction stoichiometry or analytical uncertainty.

  3. Mineral Selection for Multicomponent Equilibrium Geothermometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Plamer, C. D.; Ohly, S. R.; Smith, R. W.; Neupane, G.; McLing, T.; Mattson, E.

    2015-04-01

    Multicomponent geothermometry requires knowledge of the mineral phases in the reservoir with which the geothermal fluids may be equilibrated. These minerals phases are most often alteration products rather than primary minerals. We have reviewed the literature on geothermal systems representing most major geologic environments typically associated with geothermal activity and identified potential alteration products in various environments. We have included this information in RTEst, a code we have developed to estimate reservoir conditions (temperature, CO2 fugacity) from the geochemistry of near-surface geothermal waters. The information has been included in RTEst through the addition of filters that decrease the potential numbermore » of minerals from all possibilities based on the basis species to those that are more relevant to the particular conditions in which the user is interested. The three groups of filters include host rock type (tholeiitic, calc-alkaline, silicic, siliciclastic, carbonate), water type (acidic, neutral), and the temperature range over which the alteration minerals were formed (low, medium, high). The user-chosen mineral assemblage is checked to make sure that it does not violate the Gibbs phase rule. The user can select one of three mineral saturation weighting schemes that decrease the chance the optimization from being skewed by reaction stoichiometry or analytical uncertainty.« less

  4. World mineral exploration trends and economic issues

    SciTech Connect (OSTI)

    Tilton, J.E.; Eggert, R.G. . Dept. of Mineral Economics); Landsberg, H.H. )

    1988-01-01

    The subjects and methodologies presented in this book vary from the presentation of a heretofore unavailable collection of data on worldwide mineral exploration to case studies of mineral exploration in the developing countries of Botswana and Papua New Guinea to a study of the economic productivity of base metal exploration in Australia and Canada. Some authors concentrate on particular actors or participants in the exploration process, such as major mining companies, while other focus on a particular country such as the Soviet Union, France, or South Africa. Most chapters deal with exploration for nonfuel minerals, and particularly metals, although some take in uranium and coal exploration; oil and gas exploration is specifically excluded.

  5. Process for the physical segregation of minerals

    DOE Patents [OSTI]

    Yingling, Jon C.; Ganguli, Rajive

    2004-01-06

    With highly heterogeneous groups or streams of minerals, physical segregation using online quality measurements is an economically important first stage of the mineral beneficiation process. Segregation enables high quality fractions of the stream to bypass processing, such as cleaning operations, thereby reducing the associated costs and avoiding the yield losses inherent in any downstream separation process. The present invention includes various methods for reliably segregating a mineral stream into at least one fraction meeting desired quality specifications while at the same time maximizing yield of that fraction.

  6. Building America Case Study:Cladding Attachment Over Mineral...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cladding Attachment Over Mineral Fiber Insulation Board Ontario, Canada PROJECT INFORMATION Project Name: Climate-Exposed Long- Term Testing of Mineral Fiber Insulation Board Under ...

  7. Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility...

  8. Indian Mineral Leasing Act of 1938 | Open Energy Information

    Open Energy Info (EERE)

    Provides for leasing of minerals on tribal lands References IMLA1 United States v. Navajo Nation2 The Indian Mineral Leasing Act of 1938 (IMLA) provides that "unallotted...

  9. Vietnam National Coal Mineral Industries Group Vinacomin | Open...

    Open Energy Info (EERE)

    National Coal Mineral Industries Group Vinacomin Jump to: navigation, search Name: Vietnam National Coal-Mineral Industries Group (Vinacomin) Place: Vietnam Product: Vietnam-based...

  10. Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility...

  11. Relations Of Ammonium Minerals At Several Hydrothermal Systems...

    Open Energy Info (EERE)

    to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that...

  12. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence...

    Energy Savers [EERE]

    Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume ...

  13. Mineral Leasing Act for Acquired Lands of 1947 | Open Energy...

    Open Energy Info (EERE)

    of the Mineral Leasing Act and the authority of the Secretary of the Interior over oil and gas operations to federal "acquired lands." References Mineral Leasing Act for...

  14. Geology and Mineral Deposits of Churchill County, Nevada | Open...

    Open Energy Info (EERE)

    Mineral Deposits of Churchill County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and Mineral Deposits of Churchill County, Nevada...

  15. ITP Mining: Mining Industry of the Future Mineral Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future Mineral Processing Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap mptroadmap.pdf (293.48 KB) More Documents & ...

  16. H. R. S. 182 - Reservation and Disposition of Government Mineral...

    Open Energy Info (EERE)

    Mineral Rights (2012). Retrieved from "http:en.openei.orgwindex.php?titleH.R.S.182-ReservationandDispositionofGovernmentMineralRights&oldid801574" ...

  17. Recovery of minerals from US coals

    SciTech Connect (OSTI)

    Vanderborgh, N.E.

    1982-01-01

    Projections show that domestic coal will serve for the majority of energy supplies during the next decades. Thorough chemical cleaning of this coal can be accomplished in long residence time, slurry transport systems to produce high-quality fuel product. Concurrently, mineral recovery from coals will supplement existing ores. This paper describes this concept and given preliminary engineering considerations for mineral recovery during transport operations.

  18. Dissolving the mineral calcite | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calcite Share Topic Programs Chemical sciences & engineering Synchrotron radiation X-ray imaging & holography Argonne's X-ray Reflection Interfacial Microscope allows researchers to observe mineral surfaces. Powered by the Advanced Photon Source, the microscope allows researchers to "see" the surface structure in real time as "etch pits," or surface holes, developed on the mineral calcite

  19. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM mineral-webinar.pdf (3.45 MB) More Documents & Publications LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014 Geothermal Play Fairway Analysis Geothermal Play Fairway Analysis

  20. Low-Temperature Mineral Recovery Program FOA Selections

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Department's geothermal technologies office awarded nine projects in low-temperature and mineral recovery.

  1. MINER{nu}A Test Beam Commissioning

    SciTech Connect (OSTI)

    Higuera, A.; Castorena, J.; Urrutia, Z.; Felix, J.; Zavala, G.

    2009-12-17

    MINER{nu}A Main INjector ExpeRiment {nu}-A is a high-statistic neutrino scattering experiment that will ran in the NuMI Beam Hall at Fermilab. To calibrate the energy response of the MINER{nu}A detector, a beamline is being designed for the MINER{nu}A Test Beam Detector (TBD). The TBD is a replica of the full MINER{nu}A detector at small scale for calibration studies of the main detector. The beamline design consists of the following parts: a copper target, used to generate tertiaries from an incoming secondary beam; a steel collimator for tertiaries, which also serves as a dump for the incoming beam; a time of fight system (scintillator planes); four wire chambers, for angle measurements and tracking; and two dipole magnets, used as an spectrometer. During last October, the first commissioning run of the MINER{nu}A Test Beam took place in the Meson Test Beam Facility at Fermilab. We commissioned the target and collimator of the new tertiary beamline.

  2. Injury experience in metallic mineral mining, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  3. Injury experience in metallic mineral mining, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  4. Injury experience in metallic mineral mining, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1987. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 44 tabs.

  5. Injury experience in metallic mineral mining, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1990. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  6. Injury experience in metallic mineral mining, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States of 1988. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 refs.

  7. Injury experience in metallic mineral mining, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1990. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  8. Injury experience in metallic mineral mining, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1986. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, natured of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

  9. Injury experience in metallic mineral mining, 1989

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

  10. Injury experience in metallic mineral mining, 1985

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1985. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. Data used in compiling this report were reported by operators of metallic mineral mines and preparation plants on a mandatory basis as required under the Federal Mine Safety and Health Act of 1977, Public Law 91-173 as amended by Law 95-164. Since January 1, 1978, operators of mines or preparation plants or both which are subject to the Act have been required under 30 CFR, Part 50, to submit reports of injuries, occupational illnesses, and related data. 3 figs., 46 tabs.

  11. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    SciTech Connect (OSTI)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  12. Molecular Characterization of Bacterial Respiration on Minerals

    SciTech Connect (OSTI)

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  13. Mineral Recovery Creates Revenue Stream for Geothermal Energy Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out more about Notice to Issue Financial Opportunity Announcement on "Low-Temperature Mineral Recovery Program," a targeted GTO initiative focused on strategic mineral extraction as a path to optimize the value stream of low-to-moderate-tempe

  14. Title 36 CFR 228 Minerals | Open Energy Information

    Open Energy Info (EERE)

    Regulation: Title 36 CFR 228 MineralsLegal Abstract Part 228 Minerals under Title 36: Parks, Forests, and Public Property of the U.S. Code of Federal Regulations, current as of...

  15. Title 11 Alaska Administrative Code 82 Mineral Leasing Procedures...

    Open Energy Info (EERE)

    2 Mineral Leasing Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code 82 Mineral...

  16. File:03AKDStateNoncompetitiveMineralLeasingProcess.pdf | Open...

    Open Energy Info (EERE)

    3AKDStateNoncompetitiveMineralLeasingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:03AKDStateNoncompetitiveMineralLeasingProcess.pdf Size of...

  17. Indian Mineral Development Act of 1982 | Open Energy Information

    Open Energy Info (EERE)

    agreements with DOI approval References Indian Mineral Development Act of 19821 Bureau of Indian Affairs2 The Indian Mineral Development Act of 1982 (IMDA) 25 U.S.C. Secs....

  18. H. R. S. 182 - Reservation and Disposition of Government Mineral...

    Open Energy Info (EERE)

    (Redirected from Hawaii Revised Statute 182-1, Definitions for Reservation and Disposition of Government Mineral Rights)...

  19. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Literature Review and DOE-LM Site Surveys | Department of Energy Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review

  20. IEED Energy and Mineral Development Grants

    Broader source: Energy.gov [DOE]

    The Secretary of the Interior, through the Office of lndian Energy and Economic Development (IEED), is soliciting grant proposals from federally recognized Indian tribes and tribal energy resource development organizations for projects that assess, evaluate, or otherwise promote the processing, use, or development of energy and mineral resources on Indian lands. Grant awards are subject to the availability of funds as appropriated by Congress and allotted to IEED.

  1. Tribology of earthmoving, mining, and minerals processing

    SciTech Connect (OSTI)

    Hawk, Jeffrey A.; Wilson, Rick D.

    2001-01-01

    Earthmoving, mining, and minerals processing each involve frequent, and often severe, mechanical interactions between metals, and between metals and abrasive nonmetallic and metallic materials (i.e., mineral bearing ores). The abrasive nature of ores causes significant wear to extracting, handling, and processing equipment. Consequently, wear in earthmoving, mining, and minerals processing operations results in the removal of large amounts of material from the wear surfaces of scraping, digging, and ore processing equipment. From an energy point of view, material wear of this nature is classified as an indirect tribological loss (Imhoff et al., 1985). Additionally, a significant amount of energy is expended to overcome frictional forces in the operation of all earthmoving, mining, and minerals processing machinery (i.e., a direct tribological loss). However, in these particular processes, wear losses are more than five times those of frictional losses. In general, the amount of material lost from a particular component in these operations, before it becomes unserviceable, is far greater than that which can be tolerated in typical metal-to-metal wear situations (e.g., lubricated bearing-shaft wear couples in machinery). Consequently, much of the equipment used in earthmoving, mining, and ore processing makes use of easily replaceable or repairable, and preferably low-cost, wear components. The mechanisms by which metal-to-metal and abrasive wear occurs, and the relationships between material properties and wear behavior, are reasonably well-understood in general terms. However, the specific wear mechanisms/wear material interactions that occur during earthmoving, digging, and the processing of ore are more complex, and depend on the wear material, and on the nature of abrasive, the type of loading, and the environment. As a result of this general knowledge, reliable predictions can be made regarding the performance of particular materials under a range of in

  2. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  3. New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia

    SciTech Connect (OSTI)

    Stracher, G.B.; Prakash, A.; Schroeder, P.; McCormack, J.; Zhang, X.M.; Van Dijk, P.; Blake, D.

    2005-12-01

    Five unique mineral assemblages that include the sulfates millosevichite, alunogen, anhydrite, tschermigite, coquimbite, voltaite, and godovikovite, as well as the halide salammoniac and an unidentified phase, according to X-ray diffraction and EDS data, were found as encrustations on quartzofeldspathic sand and sandstone adjacent to coal-fire gas vents associated with underground coal fires in the Wuda coalfield of Inner Mongolia. The mineral assemblage of alunogen, coquimbite, voltaite, and the unidentified phase collected front the same gas vent, is documented for the first time. Observations suggest that the sulfates millosevichite, alunogen, coquimbite, voltaite, godovikovite, and the unidentified phase, crystallized in response to a complex sequence of processes that include condensation, hydrothermal alteration, crystallization from solution, fluctuating vent temperatures, boiling, and dehydration reactions, whereas the halide salammoniac crystallized during the sublimation of coal-fire gas. Tschermigite and anhydrite formed by the reaction of coal-fire gas with quartzofelds pathic rock or by hydrothermal alteration of this rock and crystallization from an acid-rich aqueous solution. These minerals have potentially important environmental significance and may be vectors for the transmission of toxins. Coal fires also provide insight for the recognition in the geologic record of preserved mineral assemblages that are diagnostic of ancient fires.

  4. Selective flotation of phosphate minerals with hydroxamate collectors

    DOE Patents [OSTI]

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  5. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence.

    Office of Scientific and Technical Information (OSTI)

    Literature Review and DOE-LM Site Surveys (Technical Report) | SciTech Connect Technical Report: Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence. Literature Review and DOE-LM Site Surveys Citation Details In-Document Search Title: Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence. Literature Review and DOE-LM Site Surveys This report on evaporite mineralization was completed as an Ancillary Work Plan for the Applied Studies and Technology program

  6. National Mineral Development Corporation Ltd NMDC | Open Energy...

    Open Energy Info (EERE)

    Corporation Ltd NMDC Jump to: navigation, search Name: National Mineral Development Corporation Ltd. (NMDC) Place: Hyderabad, Andhra Pradesh, India Zip: 500028 Sector: Solar, Wind...

  7. Mineral County, West Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    West Virginia Keyser, West Virginia Piedmont, West Virginia Ridgeley, West Virginia Wiley Ford, West Virginia Retrieved from "http:en.openei.orgwindex.php?titleMineralCou...

  8. Mining and Minerals Policy Act of 1970 | Open Energy Information

    Open Energy Info (EERE)

    Act, this statute encompasses both hard rock mining and oil and gas and established modern federal policy regarding mineral resources in the United States. The Act articulates a...

  9. Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From...

    Open Energy Info (EERE)

    Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Oxygen...

  10. Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Astoria Mineral Hot Springs Sector Geothermal energy Type Pool and Spa Location Jackson, Wyoming Coordinates 43.4799291, -110.7624282 Show Map Loading map......

  11. Division of Energy and Mineral Development | Open Energy Information

    Open Energy Info (EERE)

    in Lakewood, Colorado. The Division assists Tribes with the exploration, development and management of their energy and mineral resources to create sustainable economies for...

  12. Mineral Association Changes the Secondary Structure and Dynamics...

    Office of Scientific and Technical Information (OSTI)

    materials.1 The structure of these proteins is often implicated in the control of the mineral properties, however very little structural data is available for the bulk of ...

  13. DOE - Office of Legacy Management -- International Minerals and...

    Office of Legacy Management (LM)

    (The Former International Minerals and Chemical Corporation) Bartow, Florida; November 26, 1985 FL.03-4 - Memorandum; McKereghan to Campbell; ERDA (AEC) Inspection; April 11, 1977

  14. Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide, Brine, and Clay ...

  15. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide ...

  16. Buckhorn Mineral Wells Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Buckhorn Mineral Wells Space Heating Low Temperature Geothermal Facility Facility Buckhorn...

  17. Stewart Mineral Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility Facility Stewart...

  18. Hyperspectral Mineral Mapping In Support Of Geothermal Exploration...

    Open Energy Info (EERE)

    CA and Dixie Valley, NV, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hyperspectral Mineral Mapping In Support Of Geothermal...

  19. Hawaii Revised Statute 523A-2, Definition of Mineral Resources...

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii Revised Statute 523A-2, Definition of Mineral Resources Citation...

  20. Thermally Speciated Mercury in Mineral Exploration | Open Energy...

    Open Energy Info (EERE)

    Speciated Mercury in Mineral Exploration Abstract Abstract unavailable. Author S.C. Smith Conference IGES; Dublin, CA; 20030901 Published IGES, 2003 DOI Not Provided Check...

  1. An active atmospheric methane sink in high Arctic mineral cryosols...

    Office of Scientific and Technical Information (OSTI)

    conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH-oxidizing bacteria; (2) the atmospheric CH uptake ...

  2. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence...

    Office of Scientific and Technical Information (OSTI)

    ... 2015 Close-up View of Seep 0248 During Water Sampling Event......mineral precipitate that occurs due to a loss of water through evaporative processes. ...

  3. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence...

    Office of Scientific and Technical Information (OSTI)

    In this study, "evaporite" refers to any secondary mineral precipitate that occurs due to a loss of water through evaporative processes. This includes efflorescent salt crusts, ...

  4. Discovery of bridgmanite, the most abundant mineral in Earth...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite Citation Details In-Document Search Title: ...

  5. Are mineral investments by energy companies on the ebb

    SciTech Connect (OSTI)

    Prast, W.G.

    1984-01-01

    Despite differences between the most recent round of acquisitions and previous minerals investments by the petroleum industry, the current trend of takeovers builds upon the history of oil's involvement in mining. In particular, takeovers continue to concentrate on uranium, coal, and copper. A number of petroleum firms also have obtained gold, silver, molybdenum, nickel, and other minerals assets. There is no discernible pattern to oil industry ownership of these incidental holdings, the markets for which are not much affected by the activities of petroleum companies. The vast bulk of the minerals investments of oil producers are in the mineral fuels and copper. 5 tables.

  6. Radioactive Mineral Occurences in Nevada | Open Energy Information

    Open Energy Info (EERE)

    Radioactive Mineral Occurences in Nevada Abstract Abstract unavailable. Author Larry J. Garside Organization Nevada Bureau of Mines and Geology Published Nevada Bureau of...

  7. Cooperative Reorganization of Mineral and Template during Directed...

    Office of Scientific and Technical Information (OSTI)

    prepared from organic thiol molecules on metal substrates are known to exert substantial influence over mineralization and, as such, provide model systems for investigating the...

  8. Clay Minerals Related To The Hydrothermal Activity Of The Bouillante...

    Open Energy Info (EERE)

    Minerals Related To The Hydrothermal Activity Of The Bouillante Geothermal Field (Guadeloupe) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  9. Mineral Leasing Act of 1920 | Open Energy Information

    Open Energy Info (EERE)

    Leasing Act established the authority of the Secretary of the Interior to oversee oil and gas operations on federal land. References Federal Oil and Gas Statutes1 Mineral...

  10. Diagenesis and clay mineral formation at Gale Crater, Mars (Journal...

    Office of Scientific and Technical Information (OSTI)

    On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to ...

  11. Australasian Code for Reporting of Exploration Results, Mineral...

    Open Energy Info (EERE)

    (JORC) Published The Joint Ore Reserves Committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists, and Minerals Council of...

  12. DOE - Office of Legacy Management -- International Minerals and...

    Office of Legacy Management (LM)

    and Chemical Corp - Pilot Plant - FL 02 FUSRAP Considered Sites Site: International Minerals and Chemical Corp - Pilot Plant (FL.02) Designated Name: Not Designated Alternate Name: ...

  13. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  14. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  15. Mineral resources and mineral resource potential of the Panamint Dunes Wilderness Study Area, Inyo County, California

    SciTech Connect (OSTI)

    Kennedy, G.L.; Kilburn, J.E.; Conrad, J.E.; Leszcykowski, A.M.

    1984-01-01

    This report presents the results of a mineral survey of the Panamint Dunes Wilderness Study Area (CDCA-127), California Desert Conservation Area, Inyo County, California. The Panamint Dunes Wilderness Study Area has an identified volcanic cinder resource and few areas with mineral resource potential. Hydrothermal deposits of lead-zinc-silver occur in veins and small replacement bodies along and near the Lemoigne thrust fault on the eastern side of the wilderness study area. Two workings, the Big Four mine with 35,000 tons of inferred subeconomic lead-zinc-silver resources and a moderate potential for additional resources, and the Apple 1 claim with low potential for lead-zinc-silver resources, are surrounded by the study area but are specifically excluded from it. A low resource potential for lead-zinc-silver is assigned to other exposures along the Lemoigne thrust, although metallic minerals were not detected at these places. The Green Quartz prospect, located near the northern tip of the study area, has low resource potential for copper in quartz pegmatities in quartz monzonite of the Hunter Mountain batholith. Nonmetallic mineral resources consist of volcanic cinders and quartz sand. An estimated 900,000 tons of inferred cinder reserves are present at Cal Trans borrow pit MS 242, on the southern margin of the study area. The Panamint Valley dune field, encompassing 480 acres in the north-central part of the study area, has only low resource potential for silica because of impurities. Other sources of silica and outside the study area are of both higher purity and closer to possible markets. 19 refs., 2 figs., 1 tab.

  16. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect (OSTI)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  17. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  18. The estimation of the number of underground coal miners and the annual dose to coal miners in China

    SciTech Connect (OSTI)

    Liu, F.D.; Pan, Z.Q.; Liu, S.L.; Chen, L.; Ma, J.Z.; Yang, M.L.; Wang, N.P.

    2007-08-15

    This paper introduces an estimation method for the number of underground coal miners and the annual dose to coal miners in China. It shows that there are about 6 million underground miners at present and the proportion is about 1, 1 and 4 million for national key coal mines, state-owned local coal mines, and township and private-ownership coal mines, respectively. The collective dose is about 1.65 X 10{sup 4} person-Sv y{sup -1}, of which township and private-ownership coal mines contribute about 91%. This paper also points out that the 2000 UNSCEAR report gives the number of miners of coal production and their collective dose, which are underestimated greatly because the report only includes the number of underground miners in national key coal mines, which only accounts for 1/6 of the workers all working under the best ventilation conditions in China.

  19. Chemically Accelerated Carbon Mineralization: Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.

  20. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B.; Lock, D.E.

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  1. Impact of antitrust enforcement on the Country's minerals posture

    SciTech Connect (OSTI)

    Not Available

    1981-10-07

    This review found that there have not been a significant number of nonfuel-minerals-industry-related antitrust cases litigated at FTC or Justice over the last several years. In addition, officials interviewed in the nonfuel minerals industries generally do not view antitrust enforcement as a serious obstacle to their activities. The Department of Justice and FTC's Bureau of Competition comments on this report are included in enclosure II. Enclosure I presents a background discussion on antitrust enforcement, followed by detailed findings and conclusions. Enclosure III summarizes several antitrust investigations and cases cited by minerals industry spokesmen as examples of antitrust problems. (PSB)

  2. A NOVEL APPROACH TO MINERAL CARBONATION: ENHANCING CARBONATION WHILE AVOIDING MINERAL PRETREATMENT PROCESS COST

    SciTech Connect (OSTI)

    Michael J. McKelvy; Andrew V.G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamadallah Bearat

    2005-10-01

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our first year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the

  3. Secretaries Chu and Salazar will Join Senator Reid to Make Solar...

    Energy Savers [EERE]

    Nevada stands to be the leading state for solar energy production and green energy jobs. This announcement will encourage increased development of solar energy technology in the ...

  4. Removal of mineral matter including pyrite from coal

    DOE Patents [OSTI]

    Reggel, Leslie; Raymond, Raphael; Blaustein, Bernard D.

    1976-11-23

    Mineral matter, including pyrite, is removed from coal by treatment of the coal with aqueous alkali at a temperature of about 175.degree. to 350.degree. C, followed by acidification with strong acid.

  5. Evolution of a Mineralized Geothermal System, Valles Caldera...

    Open Energy Info (EERE)

    Journal Article: Evolution of a Mineralized Geothermal System, Valles Caldera, New Mexico Abstract The 20-km-diam Valles caldera formed at 1.13 Ma and had continuous...

  6. Mercury Contents of Natural Thermal and Mineral Fluids, In- U...

    Open Energy Info (EERE)

    Paper 713 Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological...

  7. Hyperspectral Mineral Mapping In Support Of Geothermal Exploration...

    Open Energy Info (EERE)

    Ca And Dixie Valley, Nv, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples...

  8. Mineral Recovery Creates Revenue Stream for Geothermal Energy...

    Office of Environmental Management (EM)

    Mineral Recovery Creates Revenue Stream for Geothermal Energy Development December 1, 2015 - 8:00am Addthis Critical materials like rare-earth elements and lithium play a vital ...

  9. A Review Of Water Contents Of Nominally Anhydrous Natural Minerals...

    Open Energy Info (EERE)

    Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  10. ORS 516 - Department of Geology and Mineral Industries | Open...

    Open Energy Info (EERE)

    6 - Department of Geology and Mineral Industries Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS 516 - Department of Geology...

  11. Iron speciation in minerals and glasses probed by M [subscript...

    Office of Scientific and Technical Information (OSTI)

    Title: Iron speciation in minerals and glasses probed by M subscript 23 -edge X-ray Raman scattering spectroscopy Authors: Nyrow, A. ; Sternemann, C. ; Wilke, M. ; Gordon, R. A. ...

  12. H.R.S. 182-1 - Reservation and Disposition of Government Mineral...

    Open Energy Info (EERE)

    Government Mineral Rights, DefinitionsLegal Abstract Hawaii statute governing the administration of government mineral rights, including rights for geothermal resources. Published...

  13. Fundamental study of CO2-H2O-mineral interactions for carbon...

    Office of Scientific and Technical Information (OSTI)

    In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, ... Experimental and theoretical studies have shown that water films will form on mineral ...

  14. Fundamental study of CO2-H2O-mineral interactions for carbon...

    Office of Scientific and Technical Information (OSTI)

    sequestration, with emphasis on the nature of the supercritical fluid-mineral interface. ... sequestration, with emphasis on the nature of the supercritical fluid-mineral interface. ...

  15. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Mineral Deformation at Earth's Core-Mantle Boundary Print Wednesday, 31 August 2011 00:00 Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in

  16. DOE - Office of Legacy Management -- Foote Mineral Co - PA 27

    Office of Legacy Management (LM)

    Foote Mineral Co - PA 27 FUSRAP Considered Sites Site: Foote Mineral Co. (PA.27 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Exton , Pennsylvania PA.27-1 Evaluation Year: 1987 PA.27-1 Site Operations: Processed rare earth, principally zirconium and monazite sand was processed on a pilot-plant scale. PA.27-2 Site Disposition: Eliminated - Limited quantity of material handled - Potential for contamination considered remote

  17. Inducing Mineral Precipitation in Groundwater by Addition of Phosphate

    SciTech Connect (OSTI)

    Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

    2011-10-01

    Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments

  18. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    SciTech Connect (OSTI)

    Michael J. McKelvy; Andrew V. G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2006-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our second year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. As our second year progress is intimately related to our earlier work, the report is presented in that context to provide better overall understanding of the progress made. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly

  19. Microbial mineral colonization across a subsurface redox transition zone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Converse, Brandon J.; McKinley, James P.; Resch, Charles T.; Roden, Eric E.

    2015-08-28

    Here our study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II) in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013). Sterilized portions of sand+biotite or sand alone were incubated in situ formore » 5 months within a multilevel sampling (MLS) apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite vs. sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonadaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ) as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH4+, H2, Fe(II), and HS- oxidizing) taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the RTZ.« less

  20. Hydrothermal Phase Relations Among Uranyl Minerals at the Nopal I Analog Site

    SciTech Connect (OSTI)

    Murphy, William M.

    2007-07-01

    Uranyl mineral paragenesis at Nopal I is an analog of spent fuel alteration at Yucca Mountain. Petrographic studies suggest a variety of possible hydrothermal conditions for uranium mineralization at Nopal I. Calculated equilibrium phase relations among uranyl minerals show uranophane stability over a broad range of realistic conditions and indicate that uranyl mineral variety reflects persistent chemical potential heterogeneity. (author)

  1. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014 mineral-webinar.pdf (3.45 MB) More Documents & Publications LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM Geothermal Play Fairway Analysis Geothermal Play Fairway Analysis

  2. Diagenesis and clay mineral formation at Gale Crater, Mars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water)more » in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.« less

  3. An active atmospheric methane sink in high Arctic mineral cryosols

    SciTech Connect (OSTI)

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; Renholm, J.; Hettich, R. L.; Pollard, W. H.; Omelon, C. R.; Medvigy, David M.; Pffifner, Susan M.; Whyte, L. G.; Onstott, T. C.

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineral cryosols have previously unrecognized potential of negative CH₄ feedback.

  4. An active atmospheric methane sink in high Arctic mineral cryosols

    SciTech Connect (OSTI)

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; Renholm, J.; Hettich, R. L.; Pollard, W. H.; Omelon, C. R.; Medvigy, David M.; Pffifner, Susan M.; Whyte, L. G.; Onstott, T. C.

    2015-04-14

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineral cryosols have previously unrecognized potential of negative CH₄ feedback.

  5. "Terrywallaceite" now in official roster of known minerals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » June » "Terrywallaceite" Now In Official Roster Of Known Minerals "Terrywallaceite" now in official roster of known minerals The slender, needle-like metallic-black crystals of Terrywallaceite were found in the Julcani Mining District of Peru. June 8, 2011 The mineral "Terrywallaceite" The mineral "Terrywallaceite" I am honored and humbled that a group of geoscientists and peers would suggest naming a mineral after me and that the international

  6. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    SciTech Connect (OSTI)

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li+, Na+, K+, Rb+, Cl-, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus

  7. Iowa State Mining and Mineral Resources Research Institute

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    This final report describes the activities of the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) at Iowa State University for the period July 1, 1989, to June 30, 1990. Activities include research in mining- and mineral-related areas, education and training of scientists and engineers in these fields, administration of the Institute, and cooperative interactions with industry, government agencies, and other research centers. During this period, ISMMRRI has supported research efforts to: (1) Investigate methods of leaching zinc from sphalerite-containing ores. (2) Study the geochemistry and geology of an Archean gold deposit and of a gold-telluride deposit. (3) Enchance how-quality aggregates for use in construction. (4) Pre-clean coal by triboelectric charging in a fluidized-bed. (5) Characterize the crystal/grain alignment during processing of yttrium-barium-copper-perovskite (1-2-3) superconductors. (5) Study the fluid inclusion properties of a fluorite district. (6) Study the impacts of surface mining on community planning. (7) Assess the hydrophobicity of coal and pyrite for beneficiation. (8) Investigate the use of photoacoustic absorption spectroscopy for monitoring unburnt carbon in the exhaust gas from coal-fired boilers. The education and training program continued within the interdepartmental graduate minor in mineral resources includes courses in such areas as mining methods, mineral processing, industrial minerals, extractive metallurgy, coal science and technology, and reclamation of mined land. In addition, ISMMRRI hosted the 3rd International Conference on Processing and Utilization of High-Sulfur Coals in Ames, Iowa. The Institute continues to interact with industry in order to foster increased cooperation between academia and the mining and mineral community.

  8. Low Temperature Geothermal Mineral Recovery Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Geothermal Mineral Recovery Program Low Temperature Geothermal Mineral Recovery Program February 4, 2014 - 2:59pm Addthis Funding: Total Amount to be Awarded $3,000,000, EERE anticipates making awards that range from $200,000 to $500,000. Open Date: 02/04/2014 Close Date: 05/02/2014 Funding Organization: Department of Energy Geothermal Technologies Office Funding Number: DE-FOA-0001016 Summary: The intention of this FOA is to have awardees examine the feasibility of extracting

  9. DOE - Office of Legacy Management -- Heavy Minerals Inc - IL 14

    Office of Legacy Management (LM)

    Heavy Minerals Inc - IL 14 FUSRAP Considered Sites Site: Heavy Minerals, Inc. ( IL.14 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: W.R. Grace Company IL.14-1 Location: 836 South Michigan Avenue , Chicago , Illinois IL.14-2 Evaluation Year: 1990 IL.14-1 Site Operations: Submitted a proposal to supply thorium hydroxide to the AEC; no indication that the bid was accepted. IL.14-2 Site Disposition: Eliminated - No indication of work done with

  10. Mineral density volume gradients in normal and diseased human tissues

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore » fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  11. Mineral density volume gradients in normal and diseased human tissues

    SciTech Connect (OSTI)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  12. Rend Lake College celebrates the opening of a new coal miner training facility

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-09-15

    The Coal Miner Training Center at Rend Lake College recently hosted the Illinois Mining Institute's annual conference and a regional mine rescue competition. The article gives an outline of the coal miner training and refresher course offered. 3 photos.

  13. Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems

    DOE Patents [OSTI]

    Zhdanov; Michael S.

    2008-01-29

    Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

  14. Abiotic/Biotic Degradation and Mineralization of N-Nitrosodimethylamine in Aquifer Sediments

    SciTech Connect (OSTI)

    Szecsody, James E.; McKinley, James P.; Breshears, Andrew T.; Crocker, Fiona H.

    2008-10-14

    The N-nitrosodimethylamine (NDMA) degradation rate and mineralization rate were measured in two aquifer sediments that received treatments to create oxic, reducing, and sequential reducing/oxic environments. Chemically reduced sediments rapidly abiotically degraded NDMA to nontoxic dimethylamine (DMA) to parts per trillion levels, then degraded to further products. NDMA was partially mineralized in reduced sediments (6 to 28 percent) at a slow rate (half-life 3,460 h) by an unknown abiotic/biotic pathway. In contrast, NDMA was mineralized more rapidly (half-life 342 h) and to a greater extent (30 to 81 percent) in oxic sediments with propane addition, likely by a propane monooxygenase pathway. NDMA mineralization in sequential reduced sediment followed by oxic sediment treatment did result in slightly more rapid mineralization and a greater mineralization extent relative to reduced systems. These increases were minor, so aerobic NDMA mineralization with oxygen and propane addition was the most viable in situ NDMA mineralization strategy.

  15. File:03HIAReservedLandMineralLeasingProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    HIAReservedLandMineralLeasingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:03HIAReservedLandMineralLeasingProcess.pdf Size of this preview: 463...

  16. File:03HIBStateMineralLeasingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    3HIBStateMineralLeasingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:03HIBStateMineralLeasingProcess.pdf Size of this preview: 463 599...

  17. File:03AKAStateCompetitiveMineralLeasingProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    3AKAStateCompetitiveMineralLeasingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:03AKAStateCompetitiveMineralLeasingProcess.pdf Size of this...

  18. RCW 79.14 Mineral, Coal, Oil and Gas Leases | Open Energy Information

    Open Energy Info (EERE)

    79.14 Mineral, Coal, Oil and Gas Leases Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: RCW 79.14 Mineral, Coal, Oil and Gas...

  19. File:Land sale mineral release complete.pdf | Open Energy Information

    Open Energy Info (EERE)

    Land sale mineral release complete.pdf Jump to: navigation, search File File history File usage File:Land sale mineral release complete.pdf Size of this preview: 463 599 pixels....

  20. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect (OSTI)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  1. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; et al

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore » cryosols have previously unrecognized potential of negative CH₄ feedback.« less

  2. Calc-silicate mineralization in active geothermal systems

    SciTech Connect (OSTI)

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  3. Method of analysis of asbestiform minerals by thermoluminescence

    DOE Patents [OSTI]

    Fisher, Gerald L.; Bradley, Edward W.

    1980-01-01

    A method for the qualitative and quantitative analysis of asbestiform minerals, including the steps of subjecting a sample to be analyzed to the thermoluminescent analysis, annealing the sample, subjecting the sample to ionizing radiation, and subjecting the sample to a second thermoluminescent analysis. Glow curves are derived from the two thermoluminescent analyses and their shapes then compared to established glow curves of known asbestiform minerals to identify the type of asbestiform in the sample. Also, during at least one of the analyses, the thermoluminescent response for each sample is integrated during a linear heating period of the analysis in order to derive the total thermoluminescence per milligram of sample. This total is a measure of the quantity of asbestiform in the sample and may also be used to identify the source of the sample.

  4. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    SciTech Connect (OSTI)

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-12-26

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  5. Dissolving the mineral calcite: Reaction front instability | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory calcite: Reaction front instability Share Topic Programs Chemical sciences & engineering Synchrotron radiation X-ray imaging & holography Using the X-ray Reflection Interfacial Microscope powered by the Advanced Photon Source, researchers can both watch and drive the nanoscale changes of the surface of a calcite mineral as it dissolves in real-time. In this image, researchers observe distortions in the reaction front (the boundary between the blue and red regions)

  6. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  7. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  8. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  9. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  10. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  11. Hydrodesulfurization and hydrodenitrogenation catalysts obtained from coal mineral matter

    DOE Patents [OSTI]

    Liu, Kindtoken H. D.; Hamrin, Jr., Charles E.

    1982-01-01

    A hydrotreating catalyst is prepared from coal mineral matter obtained by low temperature ashing coals of relatively low bassanite content by the steps of: (a) depositing on the low temperature ash 0.25-3 grams of an iron or nickel salt in water per gram of ash and drying a resulting slurry; (b) crushing and sizing a resulting solid; and (c) heating the thus-sized solid powder in hydrogen.

  12. DOE - Office of Legacy Management -- International Minerals and Chemical

    Office of Legacy Management (LM)

    Corp - Pilot Plant - FL 02 and Chemical Corp - Pilot Plant - FL 02 FUSRAP Considered Sites Site: International Minerals and Chemical Corp - Pilot Plant (FL.02) Designated Name: Not Designated Alternate Name: None Location: Mulberry , Florida FL.02-1 Evaluation Year: 1985 FL.02-2 Site Operations: Erected and operated a pilot plant to process material from the leached zone of the Florida pebble phosphate field for the recovery of uranium and other saleable products and also conducted

  13. DOE - Office of Legacy Management -- International Minerals and Chemicals

    Office of Legacy Management (LM)

    Corp - Bonnie Mill Plant - FL 03 and Chemicals Corp - Bonnie Mill Plant - FL 03 FUSRAP Considered Sites Site: International Minerals and Chemicals Corp., Bonnie Mill Plant (FL.03) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: CF Industries Bonnie Uranium Plant FL.03-2 Location: Approximately 2 miles south of Highway 60 between Mulberry and Bartow , Bartow , Florida FL.03-2 Evaluation Year: 1985 FL.03-2 Site Operations: Recovered uranium

  14. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  15. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  16. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  17. NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY

    SciTech Connect (OSTI)

    Glenn O'Gorman; Hans von Michaelis; Gregory J. Olson

    2004-09-22

    This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

  18. Rare earth element patterns in biotite, muscovite and tourmaline minerals

    SciTech Connect (OSTI)

    Laul, J.C.; Lepel, E.A.

    1986-04-21

    Rare earth element concentrations in the minerals biotite and muscovite from the mica schist country rocks of the Etta pegmatite and tourmalines from the Bob Ingersoll pegmatite have been measured by INAA and CNAA. The concentrations range from 10/sup -4/ g/g to 10/sup -10g//sub g/. The REE patterns of biotite, muscovite and tourmaline reported herein are highly fractionated from light to heavy REE. The REE concentrations in biotite and muscovite are high and indigenous. The pegmatite tourmalines contain low concentrations of REE. Variations in tourmaline REE patterns reflect the geochemical evolution of pegmatite melt/fluid system during crystallization.

  19. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  20. Amyloid-like ribbons of amelogenins in enamel mineralization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carneiro, Karina M. M.; Zhai, Halei; Zhu, Li; Horst, Jeremy A.; Sitlin, Melody; Nguyen, Mychi; Wagner, Martin; Simpliciano, Cheryl; Milder, Melissa; Chen, Chun-Long; et al

    2016-03-24

    We report that enamel, the outermost layer of teeth, is an acellular mineralized tissue that cannot regenerate; the mature tissue is composed of high aspect ratio apatite nanocrystals organized into rods and inter-rod regions. Amelogenin constitutes 90% of the protein matrix in developing enamel and plays a central role in guiding the hierarchical organization of apatite crystals observed in mature enamel. To date, a convincing link between amelogenin supramolecular structures and mature enamel has yet to be described, in part because the protein matrix is degraded during tissue maturation. Here we show compelling evidence that amelogenin self-assembles into an amyloid-likemore » structure in vitro and in vivo. We show that enamel matrices stain positive for amyloids and we identify a specific region within amelogenin that self-assembles into β-sheets. Lastly, we propose that amelogenin nanoribbons template the growth of apatite mineral in human enamel. This is a paradigm shift from the current model of enamel development.« less

  1. Fly ash and coal mineral matter surface transformations during heating

    SciTech Connect (OSTI)

    Baer, D R; Smith, R D

    1982-05-01

    A study is reported of surface segregation phenomena for fly ash and aluminosilicates representative of coal mineral matter during heating. The materials studied included a 20-..mu..m average diameter fly ash powder, a glass prepared from the fly ash, and Ca- and K-rich aluminosilicate minerals. The samples were heated both in air and under vacuum for extended periods at temperatures up to 1100/sup 0/C. XPS, Auger and SIMS methods were used to obtain relative surface elemental concentrations for major and minor components and depth profiles for some of the samples. Major differences were noted between samples heated in air (oxidizing) and those heated in vacuum (reducing) environments. For the fly ash glass heated in air Fe, Ti and Mg become enriched on the surfaces while heating in vacuum leads to Si surface segregation. Different trends upon heating were also observed for the Ca- and K-rich aluminosilicates. The results indicate two levels of surface enrichment upon the fly ash glass; a thin (< 500 A) layer and a thicker (1- to 2-..mu..m) layer most evident for heating in air where an Fe-rich layer is formed. The present results indicate that the rates of surface segregation may not be sufficiently fast on the time scale of fly ash formation to result in equilibrium surface segregation. It is concluded that condensation processes during fly ash formation probably play a major role in the observed fly ash surface enrichments.

  2. Np and Pu Sorption to Manganese Oxide Minerals

    SciTech Connect (OSTI)

    Zhao, P; Johnson, M R; Roberts, S K; Zavarin, M

    2005-08-30

    Manganese oxide minerals are a significant component of the fracture lining mineralogy at Yucca Mountain (Carlos et al., 1993) and within the tuff-confining unit at Yucca Flat (Prothro, 1998), Pahute Mesa (Drellack et al., 1997), and other locations at the Nevada Test Site (NTS). Radionuclide sorption to manganese oxide minerals was not included in recent Lawrence Livermore National Laboratory (LLNL) hydrologic source term (HST) models which attempt to predict the migration behavior of radionuclides away from underground nuclear tests. However, experiments performed for the Yucca Mountain Program suggest that these minerals may control much of the retardation of certain radionuclides, particularly Np and Pu (Triay et al., 1991; Duff et al., 1999). As a result, recent HST model results may significantly overpredict radionuclide transport away from underground nuclear tests. The sorption model used in HST calculations performed at LLNL includes sorption to iron oxide, calcite, zeolite, smectite, and mica minerals (Zavarin and Bruton 2004a; 2004b). For the majority of radiologic source term (RST) radionuclides, we believe that this accounts for the dominant sorption processes controlling transport. However, for the case of Np, sorption is rather weak to all but the iron and manganese oxides (Figure 1). Thus, we can expect to significantly reduce predicted Np transport by accounting for Np sorption to manganese oxides. Similarly, Pu has been shown to be predominantly associated with manganese oxides in Yucca Mountain fractured tuffs (Duff et al., 1999). Recent results on colloid-facilitated Pu transport (Kersting and Reimus, 2003) also suggest that manganese oxide coatings on fracture surfaces may compete with colloids for Pu, thus reducing the effects of colloid-facilitated Pu transport (Figure 1b). The available data suggest that it is important to incorporate Np and Pu sorption to manganese oxides in reactive transport models. However, few data are available for

  3. Quantitative determination of mineral composition by powder X-ray diffraction

    DOE Patents [OSTI]

    Pawloski, Gayle A.

    1986-01-01

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  4. Quantitative determination of mineral composition by powder x-ray diffraction

    DOE Patents [OSTI]

    Pawloski, G.A.

    1984-08-10

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  5. Fundamental study of CO2-H2O-mineral interactions for carbon...

    Office of Scientific and Technical Information (OSTI)

    E.; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen P.; Tallant, David Robert In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration,...

  6. The role of mineral aerosol as a reactive surface in the global...

    Office of Scientific and Technical Information (OSTI)

    Dust storms have become a distinct feature in many regions around the globe, including east Asia, west Africa, and South America. The mineral aerosols, uplifted in these storms, ...

  7. Composition and method for self-assembly and mineralization of peptide-amphiphiles

    DOE Patents [OSTI]

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.

    2012-02-28

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  8. Composition and method for self-assembly and mineralization of peptide amphiphiles

    DOE Patents [OSTI]

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.

    2009-06-30

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  9. Method for the Production of Mineral Wool and Iron from Serpentine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fiber in collector Mineral wool fiber in collector Blowing fiber Blowing fiber Technology Marketing Summary This invention discloses a method to fabricate a product that has the...

  10. MINER{nu}A, a Neutrino--Nucleus Interaction Experiment

    SciTech Connect (OSTI)

    Solano Salinas, C. J.; Chamorro, A.; Romero, C.

    2007-10-26

    With the fantastic results of KamLAND and SNO for neutrino physics, a new generation of neutrino experiments are being designed and build, specially to study the neutrino oscillations to resolve most of the incognita still we have in the neutrino physics. At FERMILAB we have the experiments MINOS and, in a near future, NO{nu}A, to study this kind of oscillations. One big problem these experiments will have is the lack of a good knowledge of the Physics of neutrino interactions with matter, and this will generate big systematic errors. MINER{nu}A, also at FERMILAB, will cover this space studying with high statistics and great precision the neutrino--nucleus interactions.

  11. Catalytic effects of minerals on NOx emission from coal combustion

    SciTech Connect (OSTI)

    Yao, M.Y.; Che, D.F.

    2007-07-01

    The catalytic effects of inherent mineral matters on NOx emissions from coal combustion have been investigated by a thermo-gravimetric analyzer (TGA) equipped with a gas analyzer. The effect of demineralization and the individual effect of Na, K, Ca, Mg, and Fe on the formation of NOx are studied as well as the combined catalytic effects of Ca + Na and Ca + Ti. Demineralization causes more Fuel-N to retain in the char, and reduction of NOx mostly. But the mechanistic effect on NOx formation varies from coal to coal. Ca and Mg promote NOx emission. Na, K, Fe suppress NOx formation to different extents. The effect of transition element Fe is the most obvious. The combination of Ca + Na and Ca + Ti can realize the simultaneous control of sulfur dioxide and nitrogen oxides emissions.

  12. Effective flocculation of fine mineral suspensions using Moringa oleifera seeds

    SciTech Connect (OSTI)

    Pickett, T.M.

    1995-12-31

    The purpose of this research was to investigate the feasibility of using Moringa oleifera seeds, or the active components of the seeds, in the clarification of waters containing suspended mineral fines. In comparative testing using a hematite suspension, the flocculating activity of Moringa oleifera seeds was better than alum. Twenty milligrams of seed powder was sufficient to clarify the hematite to near zero turbidity, while the same amount of alum had a minimal effect on turbidity. Extracts were prepared from the seeds in an attempt to separate the proteins. A crude protein extract was enriched by lowering the pH to 6.0. Only 0.08 mg/L of the enriched extract was required to flocculate a minusil suspension. Environmentally friendly protein flocculants could theoretically be produced and enhanced with recombinant DNA techniques as an alternative to chemical flocculants currently used in water treatment.

  13. Osage oil: Mineral law, murder, mayhem, and manipulation

    SciTech Connect (OSTI)

    Strickland, R.

    1995-12-31

    The greatest of the 20th century Osage chiefs, Fred Lookout, feared what the rich oil bonanza under tribal lands would do to his people. He forsaw that oil wealth could turn into a curse as well as a blessing, and it was both. The story of Osage oil is a case history in the failure of law, the failure of Indian policy and the struggle for survival of the indomitable spirit of a great Native people force to deal with both the curse and the blessing of black gold. This article examines law and policy as seen in Osage oil regulation, outlining the legal controls of the land and mineral regulatory system and briefly exploring the breakdowns of the system.

  14. Plutonium Oxidation and Subsequent Reduction by Mn (IV) Minerals

    SciTech Connect (OSTI)

    KAPLAN, DANIEL

    2005-09-13

    Plutonium sorbed to rock tuff was preferentially associated with manganese oxides. On tuff and synthetic pyrolusite (Mn{sup IV}O{sub 2}), Pu(IV) or Pu(V) was initially oxidized, but over time Pu(IV) became the predominant oxidation state of sorbed Pu. Reduction of Pu(V/VI), even on non-oxidizing surfaces, is proposed to result from a lower Gibbs free energy of the hydrolyzed Pu(IV) surface species versus that of the Pu(V) or Pu(VI) surface species. This work suggests that despite initial oxidation of sorbed Pu by oxidizing surfaces to more soluble forms, the less mobile form of Pu, Pu(IV), will dominate Pu solid phase speciation during long term geologic storage. The safe design of a radioactive waste or spent nuclear fuel geologic repository requires a risk assessment of radionuclides that may potentially be released into the surrounding environment. Geochemical knowledge of the radionuclide and the surrounding environment is required for predicting subsurface fate and transport. Although difficult even in simple systems, this task grows increasingly complicated for constituents, like Pu, that exhibit complex environmental chemistries. The environmental behavior of Pu can be influenced by complexation, precipitation, adsorption, colloid formation, and oxidation/reduction (redox) reactions (1-3). To predict the environmental mobility of Pu, the most important of these factors is Pu oxidation state. This is because Pu(IV) is generally 2 to 3 orders of magnitude less mobile than Pu(V) in most environments (4). Further complicating matters, Pu commonly exists simultaneously in several oxidation states (5, 6). Choppin (7) reported Pu may exist as Pu(IV), Pu(V), or Pu(VI) oxic natural groundwaters. It is generally accepted that plutonium associated with suspended particulate matter is predominantly Pu(IV) (8-10), whereas Pu in the aqueous phase is predominantly Pu(V) (2, 11-13). The influence of the character of Mn-containing minerals expected to be found in subsurface

  15. Utilization of coal-associated minerals. Final report

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-01-01

    Under contract number DE-AS21-77ET10533 with the US-DOE several methods of utilizing coal associated by-products were examined for potential commercial use. Such use could transform a costly waste disposal situation into new materials for further use and could provide incentive for the adoption of new coal utilization processes. Several utilization processes appear to have merit and are recommended for further study. Each process is discussed separately in the text of this report. Common coal cleaning processes were also examined to determine the effect of such processes on the composition of by-products. Data obtained in this portion of the research effort are reported in the Appendix. Information of this type is required before utilization processes can be considered. A knowledge of the mineral composition of these materials is also required before even simple disposal methods can be considered.

  16. Uranium mineralization in fluorine-enriched volcanic rocks

    SciTech Connect (OSTI)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  17. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    SciTech Connect (OSTI)

    Chen Zhu

    2006-08-31

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory measured and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between laboratory and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the second year of the project, we completed CO{sub 2}-Navajo sandstone interaction batch and flow-through experiments and a Navajo sandstone dissolution experiment without the presence of CO{sub 2} at 200 C and 250-300 bars, and initiated dawsonite dissolution and solubility experiments. We also performed additional 5-day experiments at the

  18. An epidemiological study of salt miners in diesel and nondiesel mines

    SciTech Connect (OSTI)

    Gamble, J.; Jones, W.; Hudak, J.

    1983-01-01

    A cross-sectional study of 5 NaCl mines and 259 miners addressed the following questions: 1) Is there an association of increased respiratory symptoms, radiographic findings, and reduced pulmonary function with exposure to nitrogen dioxide (NO2) and/or respirable particulate (RP) among these miners. 2) Is there increased morbidity of these miners compared to other working populations. Personal samples of NO2 and respirable particulate for jobs in each mine were used to estimate cumulative exposure. NO2 is used as a surrogate measure of diesel exposure. Cough was associated with age and smoking, dyspnea with age; neither symptom was associated with exposure (years worked, estimated cumulative NO2 or RP exposure). Phlegm was associated with age, smoking, and exposure. Reduced pulmonary function (FVC, FEV1, peak, flow, FEF50, FEF75) showed no association with exposure. There was one case of small rounded and one case of small irregular opacities; pneumoconiosis was not analyzed further. Compared to underground coal miners, above ground coal miners, potash miners, and nonmining workers, the study population after adjustment for age and smoking generally showed no increased prevalence of cough, phlegm, dyspnea, or obstruction (FEV1/FVC less than 0.7). Obstruction in younger salt miners and phlegm in older salt miners was elevated compared to nonmining workers. Mean predicted pulmonary function was reduced 2-4% for FEV1 and FVC, 7-13% for FEF50, and 18-22% for FEF75 below all comparison populations.

  19. Applications of scanning electron microscopy to the study of mineral matter in peat

    SciTech Connect (OSTI)

    Raymond, R. Jr.; Andrejko, M.J.; Bardin, S.W.

    1983-01-01

    Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) have been used for in situ analysis of minerals in peats by combining methods for producing oriented microtome sections of peat with methods for critical point drying. The combined technique allows SEM analysis of the inorganic components and their associated botanical constituents, along with petrographic identification of the botanical constituents. In peat deposits with abundant fluvial- or marine-derived minerals, one may use the above technique and/or medium- or low-temperature ashing followed by x-ray diffraction to readily identify the various mineral components. However, in some freshwater environments the scarcity of non-silica minerals makes the above techniques impractical. By separating the inorganic residues from the peat, one can isolate the non-silica mineral matter in the SEM for analysis by EDS. Furthermore, such separation allows SEM analysis of features and textures of both silica and non-silica mineral particles that might otherwise be unidentifiable. Results indicate the occurrence of detritial minerals in both Okefenokee and Snuggedy Swamp peats, the presence of authigenic or diagenetic minerals growing within peats, and dissolution features on freshwater sponge spicules that may account for the absence of spicules in Tertiary lignites.

  20. Degradation of dome cutting minerals in Hanford waste

    SciTech Connect (OSTI)

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-11

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes

  1. Analysis of stream sediment reconnaissance data for mineral resources from the Montrose NTMS Quadrangle, Colorado

    SciTech Connect (OSTI)

    Beyth, M.; Broxton, D.; McInteer, C.; Averett, W.R.; Stablein, N.K.

    1980-06-01

    Multivariate statistical analysis to support the National Uranium Resource Evaluation and to evaluate strategic and other commercially important mineral resources was carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Montrose quadrangle, Colorado. The analysis suggests that: (1) the southern Colorado Mineral Belt is an area favorable for uranium mineral occurrences; (2) carnotite-type occurrences are likely in the nose of the Gunnison Uplift; (3) uranium mineral occurrences may be present along the western and northern margins of the West Elk crater; (4) a base-metal mineralized area is associated with the Uncompahgre Uplift; and (5) uranium and base metals are associated in some areas, and both are often controlled by faults trending west-northwest and north.

  2. Electrical properties of dispersions of graphene in mineral oil

    SciTech Connect (OSTI)

    Monteiro, O. R.

    2014-02-03

    Dispersions of graphene in mineral oil have been prepared and electrical conductivity and permittivity have been measured. The direct current (DC) conductivity of the dispersions depends on the surface characteristics of the graphene platelets and followed a percolation model with a percolation threshold ranging from 0.05 to 0.1?wt. %. The difference in DC conductivities can be attributed to different states of aggregation of the graphene platelets and to the inter-particle electron transfer, which is affected by the surface radicals. The frequency-dependent conductivity (?(?)) and permittivity (?(?)) were also measured. The conductivity of dispersions with particle contents much greater than the percolation threshold remains constant and equal to the DC conductivity at low frequencies ? with and followed a power-law ?(?)???{sup s} dependence at very high frequencies with s?0.9. For dispersions with graphene concentration near the percolation threshold, a third regime was displayed at intermediate frequencies indicative of interfacial polarization consistent with Maxwell-Wagner effect typically observed in mixtures of two (or more) phases with very distinct electrical and dielectric properties.

  3. Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard

    2012-11-01

    Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado By Richard “Rick” Zehner Geothermal Development Associates Reno Nevada USA 775.737.7806 rzehner@gdareno.com For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,189,000 South boundary: approximately 4,170,000 West boundary: approximately 330,000 East boundary: approximately 351,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs at Wagon Wheel Gap have geochemistry and geothermometry values indicative of high-temperature systems. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRI’s GIS servers. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 4. Power lines 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps

  4. Metals attenuation in minerally-enhanced slurry walls

    SciTech Connect (OSTI)

    Evans, J.C.; Prince, M.J.; Adams, T.L.

    1997-12-31

    In current practice, a soil-bentonite slurry trench cutoff wall is a mixture of water, soil, and bentonite that is designed to serve as a passive barrier to ground water and contaminant transport. This study evaluated the transformation of a passive slurry trench cutoff wall barrier to an active barrier system. Conventional soil-bentonite vertical barriers presently serve as passive barriers to contaminated ground water. An active barrier will not only fulfill the functions of the present passive barrier system, but also retard contaminant transport by adsorptive processes. Attapulgite, Na-chabazite, and Ca-chabazite were added to {open_quotes}activate{close_quotes} the conventional soil-bentonite backfill. Batch extraction tests were performed to determine the partitioning coefficients of cadmium and zinc between the liquid and solid phase when in contact with the backfill mixes. Batch extraction and mathematical modeling results demonstrate the ability of an active barrier to retard the transport of cadmium and zinc. The reactivity of the soil-bentonite vertical barrier depends heavily on the inorganic being adsorbed. The reactivity of the barrier also depends on the adsorptive capabilities of the clay minerals added to the conventional soil-bentonite vertical barrier. The results of laboratory studies suggest that passive barrier systems can be transformed to active systems. Further, the data suggests that although conventional soil-bentonite vertical barriers are presently designed as passive barriers, they already have adsorptive capacity associated with active barriers.

  5. Bone mineral density and blood metals in premenopausal women

    SciTech Connect (OSTI)

    Pollack, A.Z.; Mumford, S.L.; Wactawski-Wende, J.; Yeung, E.; Mendola, P.; Mattison, D.R.; Schisterman, E.F.

    2013-01-15

    Exposure to metals, specifically cadmium, lead, and mercury, is widespread and is associated with reduced bone mineral density (BMD) in older populations, but the associations among premenopausal women are unclear. Therefore, we evaluated the relationship between these metals in blood and BMD (whole body, total hip, lumbar spine, and non-dominant wrist) quantified by dual energy X-ray absorptiometry in 248 premenopausal women, aged 18-44. Participants were of normal body mass index (mean BMI 24.1), young (mean age 27.4), 60% were white, 20% non-Hispanic black, 15% Asian, and 6% other race group, and were from the Buffalo, New York region. The median (interquartile range) level of cadmium was 0.30 {mu}g/l (0.19-0.43), of lead was 0.86 {mu}g/dl (0.68-1.20), and of mercury was 1.10 {mu}g/l (0.58-2.00). BMD was treated both as a continuous variable in linear regression and dichotomized at the 10th percentile for logistic regression analyses. Mercury was associated with reduced odds of decreased lumbar spine BMD (0.66, 95% confidence interval: 0.44, 0.99), but overall, metals at environmentally relevant levels of exposure were not associated with reduced BMD in this population of healthy, reproductive-aged women. Further research is needed to determine if the blood levels of cadmium, lead, and mercury in this population are sufficiently low that there is no substantive impact on bone, or if effects on bone can be expected only at older ages.

  6. Micro-Analysis of Actinide Minerals for Nuclear Forensics and Treaty Verification

    SciTech Connect (OSTI)

    M. Morey, M. Manard, R. Russo, G. Havrilla

    2012-03-22

    Micro-Raman spectroscopy has been demonstrated to be a viable tool for nondestructive determination of the crystal phase of relevant minerals. Collecting spectra on particles down to 5 microns in size was completed. Some minerals studied were weak scatterers and were better studied with the other techniques. A decent graphical software package should easily be able to compare collected spectra to a spectral library as well as subtract out matrix vibration peaks. Due to the success and unequivocal determination of the most common mineral false positive (zircon), it is clear that Raman has a future for complementary, rapid determination of unknown particulate samples containing actinides.

  7. Utilization of coal associated minerals. Quarterly report No. 11, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-08-29

    The purpose of this research program is to examine the effects of coal mineral materials on coal waste by-product utilization and to investigate new and improved methods for the utilization of waste by-products from cleaning, combustion and conversion processing of coal. The intermediate objectives include: (1) the examination of the effects of cleaning, gasification and combustion on coal mineral materials; and (2) the changes which occur in the coal wastes as a result of both form and distribution of mineral materials in feed coals in conjunction with the coal treatment effects resulting from coal cleaning or either gasification or combustion.

  8. Revenue ruling 73-538: the service's assault on percentage depletion for ''D'' miners

    SciTech Connect (OSTI)

    Barnes, D.A.

    1983-01-01

    In this article, the author examines the Internal Revenue Service's ruling that storage and loading for shipment at the mine site are nonmining processes for ores and minerals described in section 613(c)(4)(D) of the Internal Revenue Code. He explains the tax consequences of the ruling and discusses the correctness of the position taken by the Internal Revenue Service in light of the relevant case law and the language and legislative history of the statute. The effect of the ruling is to reduce the percentage depletion deduction available to many miners of ores and minerals described in section 613(c)(4)(D), including miners of lead, zinc, copper, gold, silver, uranium, fluorspar, potash, soda ash, garnet and tungsten. (JMT)

  9. Multivariate statistical analysis of stream sediments for mineral resources from the Craig NTMS Quadrangle, Colorado

    SciTech Connect (OSTI)

    Beyth, M.; McInteer, C.; Broxton, D.E.; Bolivar, S.L.; Luke, M.E.

    1980-06-01

    Multivariate statistical analyses were carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Craig quadrangle, Colorado, to support the National Uranium Resource Evaluation and to evaluate strategic or other important commercial mineral resources. A few areas for favorable uranium mineralization are suggested for parts of the Wyoming Basin, Park Range, and Gore Range. Six potential source rocks for uranium are postulated based on factor score mapping. Vanadium in stream sediments is suggested as a pathfinder for carnotite-type mineralization. A probable northwest trend of lead-zinc-copper mineralization associated with Tertiary intrusions is suggested. A few locations are mapped where copper is associated with cobalt. Concentrations of placer sands containing rare earth elements, probably of commercial value, are indicated for parts of the Sand Wash Basin.

  10. H.R.S. 182-6 - Mineral Exploration | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: H.R.S. 182-6 - Mineral ExplorationLegal Published NA Year Signed or Took Effect 2012 Legal...

  11. Application Of Fluid Inclusion And Rock-Gas Analysis In Mineral...

    Open Energy Info (EERE)

    to analyze these gases in fluid inclusions in jasperoid around the Pueblo Viejo gold-silver deposit, in vein minerals from the Creede silver-lead-zinc deposit, and from...

  12. Cal. PRC Section 6910 - Oil and Gas and Mineral Leases | Open...

    Open Energy Info (EERE)

    PRC Section 6910 - Oil and Gas and Mineral Leases Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Cal. PRC Section 6910 - Oil and...

  13. Cal. PRC Section 6909 - Oil and Gas and Mineral Leases: Geothermal...

    Open Energy Info (EERE)

    09 - Oil and Gas and Mineral Leases: Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Cal. PRC Section 6909 -...

  14. Title 25 CFR 225 Oil and Gas, Geothermal, and Solid Minerals...

    Open Energy Info (EERE)

    5 Oil and Gas, Geothermal, and Solid Minerals Agreements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation:...

  15. Diffraction Studies from Minerals to Organics - Lessons Learned from Materials Analyses

    SciTech Connect (OSTI)

    Whitfield, Pamela S

    2014-01-01

    In many regards the study of materials and minerals by powder diffraction techniques are complimentary, with techniques honed in one field equally applicable to the other. As a long-time materials researcher many of the examples are of techniques developed for materials analysis applied to minerals. However in a couple of cases the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the AXAA many of the examples have an Australian connection, the materials ranging from organics to battery materials.

  16. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in

    Office of Scientific and Technical Information (OSTI)

    Geological Formation (Technical Report) | SciTech Connect Technical Report: Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation Citation Details In-Document Search Title: Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is

  17. Injury experience in nonmetallic mineral mining (except stone and coal), 1984

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1984. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report.

  18. DE-FOA-0001376: Mineral Recovery Phase II: Geothermal Concepts and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches to Validate Extraction Technologies | Department of Energy DE-FOA-0001376: Mineral Recovery Phase II: Geothermal Concepts and Approaches to Validate Extraction Technologies DE-FOA-0001376: Mineral Recovery Phase II: Geothermal Concepts and Approaches to Validate Extraction Technologies December 1, 2015 - 2:58pm Addthis Open Date: 12/01/2015 Close Date: 02/29/2016 Funding Organization: Office of Energy Efficiency and Renewable Energy Funding Number: DE-FOA-0001376 Summary: The

  19. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    SciTech Connect (OSTI)

    Campbell, Sam; Dam, Wiliam

    2014-12-01

    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  20. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2007-03-31

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  1. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2006-12-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  2. Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon

    SciTech Connect (OSTI)

    Whitman, Thea L.; Zhu, Zihua; Lehmann, Johannes C.

    2014-10-31

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month pre-incubations, and in PyOM made from maple wood at 350°C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil pre-incubated for 6 months. Over the longer term, both the 6-month and 1-day pre-incubated soils experienced net ~10% decreases in SOC mineralization with PyOM additions. This was possibly due to stabilization of SOC on PyOM surfaces, suggested by nanoscale secondary ion mass spectrometry. Additionally, the duration of pre-incubation affected priming interactions, indicating that there may be no optimal pre-incubation time for SOC mineralization studies. We show conclusively that relative mineralizability of SOC in relation to PyOM-24 C is an important determinant of the effect of PyOM additions on SOC mineralization.

  3. Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity

    SciTech Connect (OSTI)

    Wang, Guohui; Um, Wooyong

    2012-11-23

    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energys Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

  4. Chapter 9: Model Systems for Formation and Dissolution of Calcium Phosphate Minerals

    SciTech Connect (OSTI)

    Orme, C A; Giocondi, J L

    2006-07-29

    Calcium phosphates are the mineral component of bones and teeth. As such there is great interest in understanding the physical mechanisms that underlie their growth, dissolution, and phase stability. Control is often achieved at the cellular level by the manipulation of solution states and the use of crystal growth modulators such as peptides or other organic molecules. This chapter begins with a discussion of solution speciation in body fluids and relates this to important crystal growth parameters such as the supersaturation, pH, ionic strength and the ratio of calcium to phosphate activities. We then discuss the use of scanning probe microscopy as a tool to measure surface kinetics of mineral surfaces evolving in simplified solutions. The two primary themes that we will touch on are the use of microenvironments that temporally evolve the solution state to control growth and dissolution; and the use of various growth modifiers that interact with the solution species or with mineral surfaces to shift growth away from the lowest energy facetted forms. The study of synthetic minerals in simplified solution lays the foundation for understand mineralization process in more complex environments found in the body.

  5. Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado

    SciTech Connect (OSTI)

    Li, L.; Steefel, C.I.; Williams, K.H.; Wilkins, M.J.; Hubbard, S.S.

    2009-04-20

    Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates. The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can be an effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.

  6. Process for removal of mineral particulates from coal-derived liquids

    DOE Patents [OSTI]

    McDowell, William J.

    1980-01-01

    Suspended mineral solids are separated from a coal-derived liquid containing the solids by a process comprising the steps of: (a) contacting said coal-derived liquid containing solids with a molten additive having a melting point of 100.degree.-500.degree. C. in an amount of up to 50 wt. % with respect to said coal-derived liquid containing solids, said solids present in an amount effective to increase the particle size of said mineral solids and comprising material or mixtures of material selected from the group of alkali metal hydroxides and inorganic salts having antimony, tin, lithium, sodium, potassium, magnesium, calcium, beryllium, aluminum, zinc, molybdenum, cobalt, nickel, ruthenium, rhodium or iron cations and chloride, iodide, bromide, sulfate, phosphate, borate, carbonate, sulfite, or silicate anions; and (b) maintaining said coal-derived liquid in contact with said molten additive for sufficient time to permit said mineral matter to agglomerate, thereby increasing the mean particle size of said mineral solids; and (c) recovering a coal-derived liquid product having reduced mineral solids content. The process can be carried out with less than 5 wt. % additive and in the absence of hydrogen pressure.

  7. Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Dewers, Thomas A.; Heath, Jason E.; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen P.; Tallant, David Robert

    2013-09-01

    In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopy methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for

  8. Licensees and economic interest in minerals after Swank and revenue ruling 83-160

    SciTech Connect (OSTI)

    McMahon, M.J. Jr.

    1983-01-01

    In the three years since the Supreme Court decided in United States v. Swank that a coal operator mining a coal deposit under a written lease terminable without cause on 30 days notice held an economic interest in the mineral in place, tax literature began noting that this decision rejected a long-held position of the Internal Revenue Service (IRS). The author assesses the impact of Revenue Ruling 83-88, in which the IRS went beyond Swank in concluding that there is no minimum period during which a lessee must have a legal right to extract minerals as a prerequisite to an economic interest. He examines the proposition that, after Swank and Revenue Ruling 83-160, licensees who previously were considered not to have acquired an economic interest, should now be found to have an economic interest in the mineral deposit they are extracting.

  9. Injury experience in nonmetallic mineral mining (Except stone and coal), 1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1990. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  10. Injury experience in nonmetallic mineral mining (except stone and coal), 1991

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  11. Injury experience in nonmetallic mineral mining (except stone and coal), 1992

    SciTech Connect (OSTI)

    Reich, R.B; Hugler, E.C.

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  12. Injury experience in nonmetallic mineral mining (except stone and coal), 1989

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

  13. Dark as a dungeon - The rise and fall of coal miners' nystagmus

    SciTech Connect (OSTI)

    Fishman, R.S.

    2006-11-15

    Coal miners' nystagmus was one of the first occupational illnesses ever recognized as being due to a hazardous working environment. It aroused great concern and much controversy in Great Britain in the first half of the 20th century but was not seen in the United States. Miners' nystagmus became a significant financial problem for the British workmen's compensation program, and the British medical literature became a forum for speculation as to the nature of the condition. Although new cases of miners' nystagmus were rare after World War II, the condition continued to be discussed in textbooks through the 1970s, after which it abruptly disappeared without any authoritative summing-up, and thereby hangs a tale.

  14. Ground-based retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel Dave Turner Space Science and Engineering Center University of Wisconsin - Madison Aerosol Working Group Breakout Session 10 March 2008 ARM STM, Norfolk, VA Background and Objectives * Many airborne minerals have absorption features in the thermal infrared (8-13 µm) * These absorption features can be used to determine the "radiatively relevant" mineral composition of atmospheric

  15. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    SciTech Connect (OSTI)

    Huang, Xin; Song, Yu; Zhao, Chun; Li, Mengmeng; Zhu, Tong; Zhang, Qiang; Zhang, Xiaoye

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO₂) per year. SO₂ is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 μg m⁻³ in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 μg m⁻³ and 7.3 μg m⁻³, respectively. Mineral aerosols led to faster SO₂ oxidation through three pathways. First, more SO₂ was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO₂ reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.

  16. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    SciTech Connect (OSTI)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  17. Studies Concerning the Accumulation of Minerals and Heavy Metals in Fruiting Bodies of Wild Mushrooms

    SciTech Connect (OSTI)

    Stihi, Claudia; Radulescu, Cristiana; Gheboianu, Anca; Bancuta, Iulian; Popescu, Ion V.; Busuioc, Gabriela

    2011-10-03

    The minerals and heavy metals play an important role in the metabolic processes, during the growth and development of mushrooms, when they are available in appreciable concentration. In this work the concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Se, Cd and Pb were analyzed using the Flame Atomic Absorption spectrometry (FAAS) together with Energy Dispersive X-ray Fluorescence spectrometry (EDXRF) in 3 wild mushrooms species and their growing substrate, collected from various forestry fields in Dambovita County, Romania. The analyzed mushrooms were: Amanita phalloides, Amanita rubescens and Armillariella mellea. The accumulation coefficients were calculated to assess the mobility of minerals and heavy metals from substrate to mushrooms [1].

  18. Muon neutrino charged current inclusive charged pion (CC?{sup }) production in MINER?A

    SciTech Connect (OSTI)

    Eberly, B.

    2015-05-15

    The production of charged pions by neutrinos interacting on nuclei is of great interest in nuclear physics and neutrino oscillation experiments. The MINER?A experiment is working towards releasing the worlds first high statistics neutrino pion production measurements in a few-GeV neutrino beam. We describe MINER?As CC?{sup } analysis event selection in both the neutrino and antineutrino beams, noting reconstruction resolutions and kinematic limits. We also show area-normalized data-simulation comparisons of the reconstructed muon and charged pion kinetic energy distributions.

  19. Study of Interactions Between Microbes and Minerals by Scanning Transmission X-Ray Microscopy (STXM)

    SciTech Connect (OSTI)

    Benzerara, K.; Tyliszczak, T.; Brown, G.E., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

    2007-01-03

    Scanning Transmission X-ray Microscopy (STXM) and Transmission Electron Microscopy (TEM) were combined to characterize various samples of geomicrobiological interest down to the nanometer scale. An approach based on energy-filtered imaging was used to examine microbe-mineral interactions and the resulting biominerals, as well as biosignatures in simplified laboratory samples. This approach was then applied to natural samples, including natural biofilms entombed in calcium carbonate precipitates and bioweathered silicates and facilitated location of bacterial cells and provided unique insights about their biogeochemical interactions with minerals at the 30-40 nm scale.

  20. Mineral resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Gibbons, A.B.; Barbon, H.N.; Kulik, D.M. (Geological Survey, Reston, VA (USA)); McDonnell, J.R. Jr. (US Bureau of Mines (US))

    1990-01-01

    The authors present a study to assess the potential for undiscovered mineral resources and appraise the identified resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, southwestern Wyoming, There are no mines, prospects, or mineralized areas nor any producing oil or gas wells; however, there are occurrences of coal, claystone and shale, and sand. There is a moderate resource potential for oil shale and natural gas and a low resource potential for oil, for metals, including uranium, and for geothermal sources.

  1. Coke gasification: the influence and behavior of inherent catalytic mineral matter

    SciTech Connect (OSTI)

    Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla

    2009-04-15

    Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

  2. Mineral formation and redox-sensitive trace elements in a near-surface hydrothermal alteration system

    SciTech Connect (OSTI)

    Gehring, A.U.; Schosseler, P.M.; Weidler, P.G.

    1999-07-01

    A recent hydrothermal mudpool at the southwestern slope of the Rincon de la Vieja volcano in Northwest Costa Rica exhibits an argillic alteration system formed by intense interaction of sulfuric acidic fluids with wall rock materials. Detailed mineralogical analysis revealed an assemblage with kaolinite, alunite, and opal-C as the major mineral phases. Electron paramagnetic resonance spectroscopy (EPR) showed 3 different redox-sensitive cations associated with the mineral phases, Cu{sup +} is structure-bound in opal-C, whereas VO{sup 2+} and Fe{sup 3+} are located in the kaolinite structure. The location of the redox-sensitive cations in different minerals of the assemblage is indicative of different chemical conditions. The formation of the alteration products can be described schematically as a 2-step process. In a first step alunite and opal-C were precipitated in a fluid with slightly reducing conditions and a low chloride availability. The second step is characterized by a decrease in K{sup +} activity and subsequent formation of kaolinite under weakly oxidizing to oxidizing redox conditions as indicated by structure-bound VO{sup 2+} and Fe{sup 3+}. The detection of paramagnetic trace elements structure-bound in mineral phases by EPR provide direct information about the prevailing redox conditions during alteration and can, therefore, be used as additional insight into the genesis of the hydrothermal, near-surface system.

  3. Proceedings of the Eastern Mineral Law Foundation's 1983 fourth annual institute

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    This book presents the papers given at a symposium on mineral law. Topics considered include oil and gas leases, the environmental regulation of coal mining, breach of coal supply contracts, coal bankruptcies, natural gas pricing regulation, landowner's royalties, recent developments in oil and gas law, and recent cases affecting coal law practice.

  4. DOE Awards Cooperative Agreement to New Mexico Energy, Minerals and Natural Resources Department

    Broader source: Energy.gov [DOE]

    Carlsbad, NM --The Department of Energy’s Carlsbad Field Office today awarded a $6.8 million, five-year cooperative agreement to the New Mexico Energy, Minerals and Natural Resources Department (NMEMNRD) for the coordination of activities with participating state agencies that ensure the safe transportation of transuranic waste to the Waste Isolation Pilot Plant (WIPP).

  5. Mineralization of a Malaysian crude oil by Pseudomonas sp. and Achromabacter sp. isolated from coastal waters

    SciTech Connect (OSTI)

    Ahmad, J.; Ahmad, M.F.

    1995-12-31

    Regarded as being a potentially effective tool to combat oil pollution, bioremediation involves mineralization, i.e., the conversion of complex hydrocarbons into harmless CO{sub 2} and water by action of microorganisms. Therefore, in achieving optimum effectiveness from the application of these products on crude oil in local environments, the capability of the bacteria to mineralize hydrocarbons was evaluated. The microbial laboratory testing of mineralization on local oil degraders involved, first, isolation of bacteria found at a port located on the west coast of Peninsular Malaysia. Subsequently, these bacteria were identified by means of Biomereux`s API 20E and 20 NE systems and later screened by their growth on a Malaysian crude oil. Selected strains of Pseudomonas sp. and Achromabacter sp. were then exposed individually to a similar crude oil in a mineralization unit and monitored for 16 days for release of CO{sub 2}. Pseudomonas paucimobilis was found to produce more CO{sub 2} than Achromobacter sp. When tested under similar conditions, mixed populations of these two taxa produced more CO{sub 2} than that produced by any individual strain. Effective bioremediation of local crude in Malaysian waters can therefore be achieved from biochemically developed Pseudomonas sp. strains.

  6. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    SciTech Connect (OSTI)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  7. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    SciTech Connect (OSTI)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  8. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    SciTech Connect (OSTI)

    Neuhauser, K.

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board. The Measure Guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations. This Measure Guideline is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit.

  9. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    SciTech Connect (OSTI)

    Neuhauser, K.

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  10. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    SciTech Connect (OSTI)

    P. Somasundaran

    2008-09-20

    Chemical EOR can be an effective method for increasing oil recovery and reducing the amount of produced water; however, reservoir fluids are chemically complex and may react adversely to the polymers and surfactants injected into the reservoir. While a major goal is to alter rock wettability and interfacial tension between oil and water, rock-fluid and fluid-fluid interactions must be understood and controlled to minimize reagent loss, maximize recovery and mitigate costly failures. The overall objective of this project was to elucidate the mechanisms of interactions between polymers/surfactants and the mineral surfaces responsible for determining the chemical loss due to adsorption and precipitation in EOR processes. The role of dissolved inorganic species that are dependent on the mineralogy is investigated with respect to their effects on adsorption. Adsorption, wettability and interfacial tension are studied with the aim to control chemical losses, the ultimate goal being to devise schemes to develop guidelines for surfactant and polymer selection in EOR. The adsorption behavior of mixed polymer/surfactant and surfactant/surfactant systems on typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) was correlated to their molecular structures, intermolecular interactions and the solution conditions such as pH and/or salinity. Predictive models as well as general guidelines for the use of polymer/surfactant surfactant/surfactant system in EOR have been developed The following tasks have been completed under the scope of the project: (1) Mineral characterization, in terms of SEM, BET, size, surface charge, and point zero charge. (2) Study of the interactions among typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) and surfactants and/or polymers in terms of adsorption properties that include both macroscopic (adsorption density, wettability) and microscopic (orientation

  11. Appraisal of selected epidemiologic issues from studies of lung cancer among uranium and hard rock miners

    SciTech Connect (OSTI)

    Petersen, G R; Sever, L E

    1982-04-01

    An extensive body of published information about lung cancer among uranium miners was reviewed and diverse information, useful in identifying important issues but not in resolving them was found. Measuring exposure and response; thresholds of exposure; latency or the period from first mining experience to death; effort to predict excess risk of death, using a model; effects of smoking and radon daughter exposure on the histology of lung tumors; and the interplay of factors on the overall risk of death were all examined. The general concept of thresholds; that is, an exposure level below which risk does not increase was considered. The conclusion is that it should be possible to detect and estimate an epidemiologic threshold when the cohorts have been followed to the death of all members. Issues concerning latency in the studies of uranium miners published to date were examined. It is believed that the induction-latent period for lung cancer among uranium miners may be: as little as 10 to more than 40 years; dependent on age at which exposure begins; exposure rate; and ethnicity or smoking habits. Although suggested as factual, their existence is uncertain. An effect due to the exposure rate may exist although it has not been factual, their existence is uncertain. An effect due to the exposure rate may exist although it has not been confirmed. The median induction-latent period appears to be in excess of the 15 years frequently cited for US uranium miner. A distinct pattern of shorter induction-latent periods with increasing age at first mining exposure is reported. The evidence for and against an unusual histologic pattern of lung cancers among uranium miners was examined. The ratio of epidermoid to small cell types was close to 1:2; the ratio in the general population is nearer 2:1. The histologic pattern warrants closer attention of pathologists and epidemiologists. (ERB) (ERB)

  12. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    SciTech Connect (OSTI)

    Maher, K.; Steefel, C. I.; White, A.F.; Stonestrom, D.A.

    2009-02-25

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total

  13. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C

    2008-12-26

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to

  14. Investigation of Mineral Transformations in Wet Supercritical CO2 by Electron Microscopy

    SciTech Connect (OSTI)

    Arey, Bruce W.; Kovarik, Libor; Wang, Zheming; Felmy, Andrew R.

    2011-10-10

    The capture and storage of carbon dioxide and other greenhouse gases in deep geologic formations represents one of the most promising options for mitigating the impacts of greenhouse gases on global warming. In this regard, mineral-fluid interactions are of prime importance since such reactions can result in the long term sequestration of CO2 by trapping in mineral phases. Recently it has been recognized that interactions with neat to water-saturated non-aqueous fluids are of prime importance in understanding mineralization reactions since the introduced CO2 is likely to contain water initially or soon after injection and the supercritical CO2 (scCO2) is less dense than the aqueous phase which can result in a buoyant scCO2 plume contacting the isolating caprock. As a result, unraveling the molecular/microscopic mechanisms of mineral transformation in neat to water saturated scCO2 has taken on an added important. In this study, we are examining the interfacial reactions of the olivine mineral forsterite (Mg2SiO4) over a range of water contents up to and including complete water saturation in scCO2. The surface precipitates that form on the reacted forsterite grains are extremely fragile and difficult to experimentally characterize. In order to address this issue we have developed experimental protocols for preparing and imaging electron-transparent samples from fragile structures. These electron-transparent samples are then examined using a combination of STEM/EDX, FIB-TEM, and helium ion microscope (HIM) imaging (Figures 1-3). This combination of capabilities has provided unique insight into the geochemical processes that occur on scCO2 reacted mineral surfaces. The experimental procedures and protocols that have been developed also have useful applications for examining fragile structures on a wide variety of materials. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and

  15. Overview of mineral waste form development for the electrometallurgical treatment of spent nuclear fuel

    SciTech Connect (OSTI)

    Pereira, C.; Lewis, M.A.; Ackerman, J.P.

    1996-05-01

    Argonne is developing a method to treat spent nuclear fuel in a molten salt electrorefiner. Wastes from this treatment will be converted into metal and mineral forms for geologic disposal. A glass-bonded zeolite is being developed to serve as the mineral waste form that will contain the fission products that accumulate in the electrorefiner salt. Fission products are ion exchanged from the salt into the zeolite A structure. The crystal structure of the zeolite after ion exchange is filled with salt ions. The salt-loaded zeolite A is mixed with glass frit and hot pressed. During hot pressing, the zeolite A may be converted to sodalite which also retains the waste salt. The glass-bonded zeolite is leach resistant. MCC-1 testing has shown that it has a release rate below 1 g/(m{sup 2}day) for all elements.

  16. Measurement of natural radionuclides in Malaysian bottled mineral water and consequent health risk estimation

    SciTech Connect (OSTI)

    Priharti, W.; Samat, S. B.; Yasir, M. S.

    2015-09-25

    The radionuclides of {sup 226}Ra, {sup 232}Th and {sup 40}K were measured in ten mineral water samples, of which from the radioactivity obtained, the ingestion doses for infants, children and adults were calculated and the cancer risk for the adult was estimated. Results showed that the calculated ingestion doses for the three age categories are much lower than the average worldwide ingestion exposure of 0.29 mSv/y and the estimated cancer risk is much lower than the cancer risk of 8.40 × 10{sup −3} (estimated from the total natural radiation dose of 2.40 mSv/y). The present study concludes that the bottled mineral water produced in Malaysia is safe for daily human consumption.

  17. Method for the production of mineral wool and iron from serpentine ore

    DOE Patents [OSTI]

    O'Connor, William K. (Albany, OR); Rush, Gilbert E. (Scio, OR); Soltau, Glen F. (Lebanon, OR)

    2011-10-11

    Magnesium silicate mineral wools having a relatively high liquidus temperature of at least about 1400.degree. C. and to methods for the production thereof are provided. The methods of the present invention comprise melting a magnesium silicate feedstock (e.g., comprising a serpentine or olivine ore) having a liquidus temperature of at least about 1400.degree. C. to form a molten magnesium silicate, and subsequently fiberizing the molten magnesium silicate to produce a magnesium silicate mineral wool. In one embodiment, the magnesium silicate feedstock contains iron oxide (e.g., up to about 12% by weight). Preferably, the melting is performed in the presence of a reducing agent to produce an iron alloy, which can be separated from the molten ore. Useful magnesium silicate feedstocks include, without limitation, serpentine and olivine ores. Optionally, silicon dioxide can be added to the feedstock to lower the liquidus temperature thereof.

  18. Mineral resources of the Cross Mountain Wilderness Study Area, Moffat County, Colorado

    SciTech Connect (OSTI)

    Evans, K.V.; Frisken, J.G.; Kulik, D.M.; Thompson, J.R.

    1989-01-01

    The Cross Mountain Wilderness Study Area, in northwestern Colorado, contains high-purity limestone suitable for industrial and agricultural use; dolomitic limestone suitable for agricultural use; and limestone, dolomite, sandstone, and sand and gravel suitable for use as construction materials. There has been no mining within this study area. This entire study area has a low mineral resource potential for sediment-hosted copper in the Uinta Mountain Group, and parts of this study area have a low resource potential for sandstone-type uranium-vanadium in sedimentary rocks. The entire study area has a low resource potential for all other metals and geothermal resources. It has a high energy resource potential for oil and gas in the eastern part of the area and moderate potential elsewhere. This study area has no mineral resource potential for coal.

  19. Iron (II) and Silicate Effects on Mineralization and Immobilzation of Actinides

    SciTech Connect (OSTI)

    Tyler A. Sullens; Cynthia-May S. Gong; Kenneth R. Szerwinski

    2006-01-01

    Abstract - The unique composition of the Yucca Mountain repository site, which contains large concentrations of silicate in an oxidative environment, has required extensive research into compound formation involving uranium and iron(II) under such conditions. The possibility of uranium leakage from within the containment vessels into the near-field ground water, as well as iron leaching from the vessel itself, necessitates study of the individual contributions of these elements for compound formation. By mimicking the known silicate concentration found in surrounding ground water and varying concentrations of both uranyl and iron(II), subsequent precipitation of uranyl silicate phases has shown evidence of iron(II) sorption to the available sites on the mineral surface. The mineralization seems to be driven by the formation of uranyl silicate, in contrast to iron(III)-control of precipitation in the oxidated system. Characterization of this system presented includes ICP-AES analysis as well as preliminary EDAX, XRD, and FT-IR

  20. Comparison of Caprock Mineral Characteristics at Field Demonstration Sites for Saline Aquifer Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Griffith, C.A.; Lowry, G. (Carnegie Mellon University); Dzombak, D. (Carnegie Mellon University); Soong, Yee; Hedges, S.W.

    2008-10-01

    In 2003 the U.S Department of Energy initiated regional partnership programs to address the concern for rising atmospheric CO2. These partnerships were formed to explore regional and economical means for geologically sequestering CO2 across the United States and to set the stage for future commercial applications. Several options exist for geological sequestration and among these sequestering CO2 into deep saline aquifers is one of the most promising. This is due, in part, to the possibility of stabilized permanent storage through mineral precipitation from chemical interactions of the injected carbon dioxide with the brine and reservoir rock. There are nine field demonstration sites for saline sequestration among the regional partnerships in Phase II development to validate the overall commercial feasibility for CO2 geological sequestration. Of the nine sites considered for Phase II saline sequestration demonstration, seven are profiled in this study for their caprock lithologic and mineral characteristics.

  1. The effect of SO2 on mineral carbonation in batch tests

    SciTech Connect (OSTI)

    Summers, Cathy A.; Dahlin, David C.; Ochs, Thomas L.

    2004-01-01

    CO2 sequestration is a key element of future emission-free fossil-fueled power plants. Other constituents of flue gas must also be captured and rendered innocuous. Contemporary power plants remove SOx from exit gases, but next-generation plants may simultaneously treat CO2, SOx, and other pollutants. Pioneering tests at the U.S. Department of Energy's Albany Research Center investigated the combined treatment of CO2 and SO2 in a mineral-carbonation process. SO2 was removed from the gas stream, and as a small fraction of the total volume of mineralizing gas, it did not inhibit the carbonation reaction. The results indicate that this approach to CO2 sequestration could be used to treat multiple pollutants.

  2. Method and apparatus for recovery of oil, gas and mineral deposits by panel opening

    SciTech Connect (OSTI)

    Wang, F. D.

    1984-10-30

    A method for oil, gas and mineral recovery by panel opening drilling including providing spaced injection and recovery drill holes which respectively straddle a deposit bearing underground region, each drill hole including a panel shaped opening substantially facing the deposit bearing region and injecting the injection hole with a fluid under sufficient pressure to uniformly sweep the deposits in the underground region to the recovery hole for recovery of the deposits therefrom. An apparatus for creating such panel shaped is also provided.

  3. Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions

    SciTech Connect (OSTI)

    Kemner, Kenneth M.; O'Loughlin, Edward J.; Kelly, Shelly D.; Boyanov, Maxim I.

    2008-06-06

    Interactions between microbes and minerals can play an important role in metal transformations (i.e. changes to an element's valence state, coordination chemistry, or both), which can ultimately affect that element's mobility. Mineralogy affects microbial metabolism and ecology in a system; microbes, in turn, can affect the system's mineralogy. Increasingly, synchrotron-based X-ray experiments are in routine use for determining an element's valence state and coordination chemistry, as well as for examining the role of microbes in metal transformations.

  4. Method to enhance the concentration of valuable minerals in froth flotation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    process used in mining - Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Method to enhance the concentration of valuable minerals in froth flotation process used in mining Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication Method for Enhancing Selectivity and Recovery in the

  5. Dewatering: Coal and mineral processing. (Latest citations from the COMPENDEX database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning the technology of dewatering. Included is coverage of techniques, processes, and evaluations applied to coal processing, coal slurry preparation, ash treatments, and processing of other mineral ores. Mechanical devices, heating devices, filtering techniques, air drying, the use of surfactants and flocculants, and design techniques in dewatering systems are discussed. Dewatering of peats, sewage sludges, and industrial sludges are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  6. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    SciTech Connect (OSTI)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  7. Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini Volcanic District, Latium, Italy

    SciTech Connect (OSTI)

    Cavarretta, G.; Tecce, F.

    1987-01-01

    Metasomatic and hydrothermal minerals were logged throughout the SH2 geothermal well, which reached a depth of 2498 m in the Sabatini volcanic district. Below 460 m of volcanics, where the newly formed minerals were mainly chlorite, calcite and zeolites (mostly phillipsite), drilling entered the Allochthonous Flysch Complex. Evidence of the ''Cicerchina facies'' was found down to 1600 m depth. Starting from 1070 m, down to hole bottom, a contact metasomatic complex was defined by the appearance of garnet. Garnet together with K-fledspar, vesuvianite, wilkeite, cuspidine, harkerite, wollastonite and apatite prevail in the top part of the contact metasomatic complex. Vesuvianite and phlogopite characterize the middle part. Phlogopite, pyroxene, spinel and cancrinite predominate in the bottom part. The 1500 m thick metasomatic complex indicates the presence at depth of the intrusion of a trachytic magma which released hot fluids involved in metasomatic mineral-forming reactions. Minerals such as harkerite, wilkeite, cuspidine, cancrinite, vesuvianite and phlogopite indicate the intrusive melt had a high volatile content which is in agreement with the very high explosivity index of this volcanic district. The system is at present sealed by abundant calcite and anhydrite. It is proposed that most, if not all, of the sulphates formed after reaction of SO/sub 2/ with aqueous calcium species rather than from sulphates being remobilized from evaporitic (Triassic) rocks as previously inferred. The hypothesis of a CO/sub 2/-rich deep-derived fluid ascending through major fracture systems and contrasting cooling in the hottest areas of Latium is presented.

  8. I HEAVY MINERALS CO. 836 South Michigan Avenue Chic&o-5, Illinois

    Office of Legacy Management (LM)

    .,., f.IE.' ,4-L ,.4 ., " - * _ .c - ,: ~, , .' " I HEAVY MINERALS CO. / 836 South Michigan Avenue Chic&o-5, Illinois December 1, 1954 , etomic Energy Commiesion Raw Materials Division Washington, D. C. - - Attention: Mr. Radford Faulkner Gentlemen: CRUDE THORIUM HYDROXIDE We propose to sell crude thorium hydroxide to the Atomic Energy Commission over a four year period, starting during the fourth quarter of 1955. The crude thorium hydroxide we propose to supply will be produced by

  9. Mineral Magnetism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 8, 2016 Small piles of rare earth elements In the United States, rare-earth elements used in strong magnets, such as neodymium and samarium, are scarce due to limits on ...

  10. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    SciTech Connect (OSTI)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-03-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

  11. Wilderness study area, mineral resources of the Sleeping Giant, Lewis and Clark County, Montana

    SciTech Connect (OSTI)

    Tysdal, G.; Reynold, M.W.; Carlson, R.R.; Kleinkopf, M.D.; Rowan, L.C. ); Peters, T.J. )

    1991-01-01

    A Mineral resource survey was conducted in 1987 by the U.S. Geological Survey and the U.S. Bureau of Mines to evaluate mineral resources (known) and mineral resource potential (undiscovered) of the Sleeping Giant Wilderness Study Area (MT-075-111) in Lewis and Clark County, Montana. The only economic resource in the study area is an inferred 1.35-million-ton reserve of decorative stone (slate); a small gold placer resource is subeconomic. A high resource potential for decorative slate exists directly adjacent to the area of identified slate resource and in the northeastern part of the study area. The rest of the study area has a low potential for decorative slate. The westernmost part of the study area has a moderate resource potential for copper and associated silver in state-bound deposits in green beds and limestone; potential is low in the rest of the study are. The study area has a low resource potential for sapphires in placer deposits, gold in placer deposits (exclusive of subeconomic resource mentioned above), phosphate in the Spokane Formation, diatomite in lake deposits, uranium, oil, gas, geothermal energy, and no resource potential for phosphate in the Phosphoria Formation.

  12. Spirometry variability criteria--association with respiratory morbidity and mortality in a cohort of coal miners

    SciTech Connect (OSTI)

    Kellie, S.E.; Attfield, M.D.; Hankinson, J.L.; Castellan, R.M.

    1987-03-01

    To clarify the association between spirometry variability and respiratory morbidity and mortality, the authors analyzed data for miners examined in the first round of the National Coal Study, 1969-1971, and they compared groups of miners who failed with those who met each of two spirometry variability criteria: a 5% criterion recommended by the American Thoracic Society, and a 200 ml criterion used in prior research studies. Compared with miners who met the 5% criterion (the best two forced vital capacities must be within 5% or 100 ml of one another), the group that failed had a lower mean for forced expiratory volume in one second (FEV1), and odds ratios for cough, phlegm, wheeze, shortness of breath, and death of 1.75, 1.67, 1.76, 2.71, and 1.30, respectively. The findings for the 200 ml criterion (the best two FEV1s must be within 200 ml of one another) were somewhat different. The group that failed versus the group that met this criterion had a higher mean for FEV1, and odds ratios for cough, phlegm, wheeze, shortness of breath, and death of 1.13, 1.07, 1.15, 1.43, and 0.94, respectively. Although the findings differ for the two criteria, the findings demonstrate that increased spirometry variability is associated with poorer health.

  13. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  14. Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment

    SciTech Connect (OSTI)

    Oji, L.N.

    2003-08-07

    Photochemical and ultrasonic treatment of polyvinyl alcohol (PVA), derived from PVA fabric material, with hydrogen peroxide was evaluated as a primary method for PVA mineralization into simpler organic molecules. PVA-based waste streams have been found to be compatible with nuclear process wastewater treatment facilities only when solubilized PVA is more than 90 percent mineralized with hydrogen peroxide. No undesirable solid particles are formed with other nuclear process liquid waste when they are mixed, pH adjusted, evaporated and blended with this type of oxidized PVA waste streams. The presence of oxidized PVA in a typical nuclear process wastewater has been found to have no detrimental effect on the efficiency of ion exchange resins, inorganic, and precipitation agents used for the removal of radionuclides from nuclear waste streams. The disappearance of PVA solution in hydrogen peroxide with ultrasonic/ ultraviolet irradiation treatment was characterized by pseudo-first-order reaction kinetics. Radioactive waste contaminated PVA fabric can be solubilized and mineralized to produce processible liquid waste, hence, no bulky solid waste disposal cost can be incurred and the radionuclides can be effectively recovered. Therefore, PVA fabric materials can be considered as an effective substitute for cellulose fabrics that are currently used in radioactive waste decontamination processes.

  15. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation

    SciTech Connect (OSTI)

    Matter, J.; Chandran, K.

    2013-05-31

    Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologic formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at

  16. Smoking cessation among coal miners as predicted by baseline respiratory function and symptoms: a 5-year prospective study

    SciTech Connect (OSTI)

    Ames, R.G.; Hall, D.S.

    1985-03-01

    A prospective analysis was used to test whether respiratory impairment or the presence of respiratory symptoms predicts 5-year cigarette smoking cessation in a sample of 1,118 U.S. white, male, underground coal miners. Miners were examined in 1977 and re-examined in 1982 by NIOSH, and all miners with test abnormalities were so informed by letter. Respiratory impairment was measured by an index of airways obstruction combining the spirometric measures of Forced Vital Capacity (FVC) and Forced Expiratory Volume in 1 sec (FEV1). Bronchitis symptoms were measured by an index that combined chronic cough (3+ months/year) and chronic phlegm (3 + months/year). Among these coal miners, the presence of chronic respiratory symptoms initially was inversely associated with cigarette smoking cessation. Respiratory impairment, however, was positively associated with cigarette smoking cessation but did not reach statistical significance.

  17. The use of the scanning electron microscope in the determination of the mineral composition of Ballachulish slate

    SciTech Connect (OSTI)

    Walsh, Joan A.

    2007-11-15

    Slate is a fine-grained, low-grade metamorphic rock derived from argillaceous sediments or occasionally volcanic ash. Although most slates contain mainly quartz, chlorite and white mica, they vary considerably in their durability, some lasting centuries while others fail after a few years of service. A detailed characterisation of their mineralogy is required for the assessment of performance, and to establish the provenance of a used slate. A combination of methods was used to examine Ballachulish slates; XRD analysis to determine the principal minerals present, XRF analysis to determine the total chemical composition, and scanning electron microscopy to determine the chemical composition of individual minerals. It was found that the white mica in Ballachulish slate is phengite and the chlorite is ripidolite. Feldspar is present as albite and carbonate as ferroan dolomite. Several accessory minerals were also identified, including chloritoid, monzonite and zircon. There was considerable variation in the ratio of the principal minerals, making it impossible to identify used slates by this criterion. Instead, chemical composition of the individual minerals, and possibly key accessory minerals, should be used to determine the provenance of slates.

  18. Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet

    SciTech Connect (OSTI)

    Arlin Olson

    2012-02-28

    The US Department of Energy is responsible for managing the disposal of radioactive liquid waste in underground storage tanks at the Hanford site in Washington State. The Hanford waste treatment and immobilization plant (WPT) will separate the waste into a small volume of high level waste (HLW), containing most of the radioactive constituents, and a larger volume of low activity waste (LAW), containing most of the non-radioactive chemical and hazardous constituents. The HLW and LAW will be converted into immobilized waste forms for disposal. Currently there is inadequate LAW vitrification capacity planned at the WTP to complete the mission within the required timeframe. Therefore additional LAW capacity is required. One candidate supplemental treatment technology is the fluidized bed steam reformer process (FBSR). This report describes the demonstration testing of the FBSR process using a mineralizing flowsheet for treating simulated Hanford LAW and secondary waste from the WTP (WTP SW). The FBSR testing project produced leach-resistant solid products and environmentally compliant gaseous effluents. The solid products incorporated normally soluble ions into an alkali alumino-silicate (NaS) mineral matrix. Gaseous emissions were found to be within regulatory limits. Cesium and rhenium were captured in the mineralized products with system removal efficiencies of 99.999% and 99.998 respectively. The durability and leach performance of the FBSR granular solid were superior to the low activity reference material (LMR) glass standards. Normalized product consistency test (PCT) release rates for constituents of concern were approximately 2 orders of magnitude less than that of sodium in the Hanford glass [standard].

  19. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.« less

  20. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    SciTech Connect (OSTI)

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.

  1. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mahowald, N.; Scanza, R.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J.; Zhuang, G.; Chen, Y.; Cohen, D. D.; et al

    2014-12-17

    Trace element deposition from desert dust has important impacts on ocean primary productivity. In this study, emission inventories for 8 elements, which are primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si were determined based on a global mineral dataset and a soils dataset. Datasets of elemental fractions were used to drive the desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions was evident on a global scale, particularly for Ca. Simulations of global variations in the Camore » / Al ratio, which typically ranged from around 0.1 to 5.0 in soil sources, were consistent with observations, suggesting this ratio to be a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different that estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observational elemental aerosol concentration data from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions ranged from 0.7 to 1.6 except for 3.4 and 3.5 for Mg and Mn, respectivly. Using the soil data base improved the correspondence of the spatial hetereogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust associated element fluxes into different ocean basins and ice sheets regions have been estimated, based on the model results. Annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using mineral dataset were 0.28 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less

  2. Final Technical Report: Mercury Release from Organic Matter (OM) and OM-Coated Mineral Surfaces

    SciTech Connect (OSTI)

    Nagy, Kathryn L.

    2015-08-18

    Chemical reactions between mercury, a neurotoxin, and sulfur, an essential nutrient, in the environment control to a large extent the distribution and amount of mercury available for uptake by living organisms. The largest reservoir of sulfur in soils is in living, decaying, and dissolved natural organic matter. The decaying and dissolved organic matter can also coat the surfaces of minerals in the soil. Mercury (as a divalent cation) can bind to the sulfur species in the organic matter as well as to the bare mineral surfaces, but the extent of binding and release of this mercury is not well understood. The goals of the research were to investigate fundamental relationships among mercury, natural organic matter, and selected minerals to better understand specifically the fate and transport of mercury in contaminated soils downstream from the Y-12 plant along East Fork Poplar Creek, Tennessee, and more generally in any contaminated soil. The research focused on (1) experiments to quantify the uptake and release of mercury from two clay minerals in the soil, kaolinite and vermiculite, in the presence and absence of dissolved organic matter; (2) release of mercury from cinnabar under oxic and anoxic conditions; (3) characterization of the forms of mercury in the soil using synchrotron X-ray absorption spectroscopic techniques; and, (4) determination of molecular forms of mercury in the presence of natural organic matter. We also leveraged funding from the National Science Foundation to (5) evaluate published approaches for determining sulfur speciation in natural organic matter by fitting X-ray Absorption Near Edge Structure (XANES) spectra obtained at the sulfur K-edge and apply optimized fitting schemes to new measurements of sulfur speciation in a suite of dissolved organic matter samples from the International Humic Substances Society. Lastly, in collaboration with researchers at the University of Colorado and the U.S. Geological Survey in Boulder, Colorado, (6

  3. Massive sulfide deposits and hydrothermal solutions: incremental reaction modeling of mineral precipitation and sulfur isotopic evolution

    SciTech Connect (OSTI)

    Janecky, D.R.

    1986-01-01

    Incremental reaction path modeling of chemical and sulfur isotopic reactions occurring in active hydrothermal vents on the seafloor, in combination with chemical and petrographic data from sulfide samples from the seafloor and massive sulfide ore deposits, allows a detailed examination of the processes involved. This paper presents theoretical models of reactions of two types: (1) adiabatic mixing between hydrothermal solution and seawater, and (2) reaction of hydrothermal solution with sulfide deposit materials. In addition, reaction of hydrothermal solution with sulfide deposit minerals and basalt in feeder zones is discussed.

  4. In Situ Remediation of {sup 137}Cs Contaminated Wetlands Using Naturally Occurring Minerals

    SciTech Connect (OSTI)

    Kaplan, D.I.

    1999-08-11

    Cesium-137 has contaminated a large area of the wetlands on the Savannah River Site. Remediation of the contaminated wetlands is problematic because current techniques destroy the sensitive ecosystem and generate a higher dose to workers. To address this problem, we proposed a non-trusive, in situ technology to sequester 137Cs in sediments. One intention of this study was to provide information regarding a go/no go decision for future work. Since the proof-of-concept was successful and several minerals were identified as potential candidates for this technology, a go decision was made.

  5. Pseudophasic extraction method for the separation of ultra-fine minerals

    DOE Patents [OSTI]

    Chaiko, David J.

    2002-01-01

    An improved aqueous-based extraction method for the separation and recovery of ultra-fine mineral particles. The process operates within the pseudophase region of the conventional aqueous biphasic extraction system where a low-molecular-weight, water soluble polymer alone is used in combination with a salt and operates within the pseudo-biphase regime of the conventional aqueous biphasic extraction system. A combination of low molecular weight, mutually immiscible polymers are used with or without a salt. This method is especially suited for the purification of clays that are useful as rheological control agents and for the preparation of nanocomposites.

  6. Calibrating the ChemCam LIBS for carbonate minerals on Mars

    SciTech Connect (OSTI)

    Wiens, Roger C; Clegg, Samuel M; Ollila, Ann M; Barefield, James E; Lanza, Nina; Newsom, Horton E

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  7. Mineral resources of the North Algodones Dunes Wilderness Study Area (CDCA-360), Imperial County, California

    SciTech Connect (OSTI)

    Smith, R.S.U.; Yeend, W.; Dohrenwend, J.C.; Gese, D.D.

    1984-01-01

    This report presents the results of a mineral survey of the North Algodones Dunes Wilderness Study Area (CDCA-360), California Desert Conservation Area, Imperial County, California. The potential for undiscovered base and precious metals, and sand and gravel within the North Algodones Dunes Wilderness Study Area is low. The study area has a moderate potential for geothermal energy. One small sand-free area between the Coachella Canal and the west edge of the dune field would probably be the only feasible exploration site for geothermal energy. The study area has a moderate to high potential for the occurrence of undiscovered gas/condensate within the underlying rocks. 21 refs.

  8. Chemical analyses of rocks, minerals, and detritus, Yucca Mountain--Preliminary report, special report No. 11

    SciTech Connect (OSTI)

    Hill, C.A.; Livingston, D.E.

    1993-09-01

    This chemical analysis study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. This report is preliminary in the sense that more chemical analyses may be needed in the future and also in the sense that these chemical analyses should be considered as a small part of a much larger geological data base. The interpretations discussed herein may be modified as that larger data base is examined and established. All of the chemical analyses performed to date are shown in Table 1. There are three parts to this table: (1) trace element analyses on rocks (limestone and tuff) and minerals (calcite/opal), (2) rare earth analyses on rocks (tuff) and minerals (calcite/opal), and (3) major element analyses + CO{sub 2} on rocks (tuff) and detritus sand. In this report, for each of the three parts of the table, the data and its possible significance will be discussed first, then some overall conclusions will be made, and finally some recommendations for future work will be offered.

  9. Standard for metal/nonmetal mining and metal mineral processing facilities. 2004 ed.

    SciTech Connect (OSTI)

    2004-07-01

    This standard addresses the protection of diesel-powered equipment and the storage and handling of flammable and combustible liquids at these specialized sites. The 2004 edition consolidates requirements from NFPA 122 and 121 : Standard on Fire Protection for Self-Propelled and Mobile Surface Mining Equipment. Major changes include a new chapter on fire protection of surface metal mineral processing plants. The Standard is also revised to emphasize the use of a fire risk assessment when determining fire protection criteria. Chapter headings are: Administration; Referenced publications; Definitions; General; Fire risk assessment and risk reduction; Fire detection and suppression equipment; Fire protection for diesel-powered equipment in underground mines; Transfer of flammable or combustible liquids in underground mines; Flammable liquid storage in underground mines; Combustible liquid storage in underground mines; Fire suppression for flammable or combustible liquid storage areas in underground mines; Fire protection of surface mobile and self-propelled equipment; and Fire protection of surface metal mineral processing plants. 3 annexes.

  10. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-22

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruentmore » dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). In conclusion, our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.« less

  11. Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy

    SciTech Connect (OSTI)

    Gregerova, Miroslava; Vsiansky, Dalibor

    2009-07-15

    The deterioration of concrete represents one of the most serious problems of civil engineering worldwide. Besides other processes, deterioration of concrete consists of sulfate attack and carbonation. Sulfate attack results in the formation of gypsum, ettringite and thaumasite in hardened concrete. Products of sulfate attack may cause a loss of material strength and a risk of collapse of the concrete constructions. The authors focused especially on the microscopical research of sulfate attack. Concrete samples were taken from the Charles Bridge in Prague, Czech Republic. A succession of degrading mineral formation was suggested. Microscope methods represent a new approach to solving the deterioration problems. They enable evaluation of the state of concrete constructions and in cooperation with hydro-geochemistry, mathematics and statistics permit prediction of the durability of a structure. Considering the number of concrete constructions and their age, research of concrete deterioration has an increasing importance. The results obtained can also be useful for future construction, because they identify the risk factors associated with formation of minerals known to degrade structures.

  12. Defending mining claims and mineral leases in environmental suits against federal land managers

    SciTech Connect (OSTI)

    Twelker, E. )

    1989-01-01

    Suits in the last 4-5 years jeopardize the title of thousands of mining claims and mineral leases. The cases presenting the most striking examples are National Wildlife Federation v. Burford, Connor v. Burford, Sierra Club V. Watt, and Bob Marshall Alliance v. Watt. From the claimants' and lessees' point of view, these decisions granted environmental groups sweeping, though somewhat ill-defined, relief. The challenges by environmental groups are based on statutes designed to bring environmental considerations before federal decision makers. The claimants and lessees are caught in the middle of the exchange between environmentalists and federal agencies. Lawsuits that indirectly challenge leases and claims are unlike environmental challenges to fixed projects such as highways or dams. Those affected often times do not know exactly what is at stake. When the challenge is indirect, unexplored, or partially explored, proper ties have only speculative value and the claimants and lessees are often unwilling or unable to engage in a fight with well-heeled environmental public interest law firms. While the federal government has defended the suits, their interests and those of the claimants and lessees may diverge. In the context of the four cases mentioned above, this paper addresses the rights and remedies of claimants and lessees before, during, and after environmental procedural suits that indirectly challenge federal mining claims and mineral leases.

  13. Evidence for an unsaturated-zone origin of secondary minerals in Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Whelan, Joseph F.; Roedder, Edwin; Paces, James B.

    2001-04-29

    The unsaturated zone (UZ) in Miocene-age welded tuffs at Yucca Mountain, Nevada, is under consideration as a potential site for the construction of a high-level radioactive waste repository. Secondary calcite and silica minerals deposited on fractures and in cavities in the UZ tuffs are texturally, isotopically, and geochemically consistent with UZ deposition from meteoric water infiltrating at the surface and percolating through the UZ along fractures. Nonetheless, two-phase fluid inclusions with small and consistent vapor to liquid (V:L) ratios that yield consistent temperatures within samples and which range from about 35 to about 80 C between samples have led some to attribute these deposits to formation from upwelling hydrothermal waters. Geochronologic studies have shown that calcite and silica minerals began forming at least 10 Ma and continued to form into the Holocene. If their deposition were really from upwelling water flooding the UZ, it would draw into question the suitability of the site as a waste repository.

  14. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    SciTech Connect (OSTI)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ({sup 18}O/{sup 16}O) and carbon ({sup 13}C/{sup 12}C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs.

  15. Development of Tc(IV)-Incorporated Fe Minerals to Enhance 99Tc Retention in Glass Waste Form

    SciTech Connect (OSTI)

    Um, Wooyong; Luksic, Steven A.; Wang, Guohui; Kim, Dong-Sang; Schweiger, Michael J.; Hrma, Pavel R.; Kruger, Albert A.

    2015-03-17

    Iron minerals have been considered to be good hosts for Tc immobilization because the Tc(IV) ion substitutes for Fe(III) in the crystal structure of the Fe oxide due to similarities in (1) cation size [Tc(IV) = 78.5 pm ; Fe(III) = 69 or 78.5 pm], (2) metal-oxygen interatomic distance (Tc—O = 0.199 nm, Fe—O = 0.203 nm), (3) number of coordinating oxygen atoms (both 6-fold coordinated), and (4) the redox potential (Eh=ca. +20 mV at pH = 7) for a redox couple between Tc(VII)/Tc(IV) and Fe(III)/Fe(II). Magnetite, maghemite, and trevorite are iron oxide minerals and all belong to spinel mineral group. Laboratory testing shows that Tc can be removed from aqueous waste solutions by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation with iron oxide minerals during recrystallization of Fe(OH)2(s) used as an initial solid precursor. X-ray absorption near edge structure (XANES) spectroscopy confirmed that Tc was in the +4 oxidation state in final Tc-Fe minerals. The Tc-incorporated Fe minerals were also tested for Tc retention in glass melts at different temperatures between 600 – 1,000 oC in a furnace. After being cooled in air, the solid glass specimens collected at different temperatures were analyzed for Tc oxidation state using XANES and Tc retention using liquid scintillation counting (LSC). Even though Tc(IV) started to reoxidize at 600 oC, Tc retention in the final glass specimen prepared with Tc-incorporated Fe mineral even at high temperatures was at least two times higher than glass prepared with KTcO4 salt. Higher Tc retention in glass is considered to result from limited and delayed Tc volatilization process due to Fe mineral encapsulation for Tc. Therefore, the results showing the presence of Tc(IV) in the Fe mineral structure indicate strong possibility to enhance Tc retention in borosilicate glass as well as to reduce the remediation costs at the Hanford Site.

  16. Associations of symptoms related to isocyanate, ureaformol, and formophenolic exposures with respiratory symptoms and lung function in coal miners

    SciTech Connect (OSTI)

    Bertrand, J.P.; Simon, V.; Chau, N.

    2007-04-15

    The respiratory effects of diphenylmethane diisocyanate (MDI)-based resins and ureaformol- and formophenolic-based resins, used in coal mining, are unknown. This cross-sectional study of 354 miners evaluated respiratory health in miners with MDI-related symptoms (IS) and ureaformol/formophenolic-related symptoms (UFS). The protocol included clinical examination, chest radiograph, questionnaire on respiratory symptoms, smoking habit, job history, resin handling, and spirometry. Resin handling concerned 27.7% of the miners. IS affected 5.6%, and 1.4% also after work. UFS affected 22.6%, and 2.3% also after work. Wheezing affected 35.6%; chronic cough, expectoration, or bronchitis about 10%; dyspnea 5.4%; and asthma 2.8%. The miners with UFS had significantly more frequent chronic cough, expectoration, chronic bronchitis, dyspnea, and wheezing, whereas those with IS at and after work had markedly lower FVC, FEV1, MMEF, FEF50% and FEF25%. These findings raise the possibility of deleterious effects of exposures to MDI and ureaformol/ ormophenolic resins on respiratory health and lung function in coal miners during their working life.

  17. The Origin of Refractory Minerals in Comet 81P/Wild 2

    SciTech Connect (OSTI)

    Chi, M; Ishii, H A; Simon, S B; Bradley, J P; Dai, Z R; Joswiak, D J; Browning, N D; Matrajt, G

    2008-11-20

    Refractory Ti-bearing minerals in the calcium-, aluminium-rich inclusion (CAI) Inti, recovered from the comet 81P/Wild 2 sample, were examined using analytical (scanning) transmission electron microscopy (STEM) methods including imaging, nanodiffraction, energy dispersive spectroscopy (EDX) and electron energy loss spectroscopy (EELS). Inti fassaite (Ca(Mg,Ti,Al)(Si,Al){sub 2}O{sub 6}) was found to have a Ti{sup 3+}/Ti{sup 4+} ratio of 2.0 {+-} 0.2, consistent with fassaite in other solar system CAIs. The oxygen fugacity (log f{sub O{sub 2}}) of formation estimated from this ratio, assuming equilibration among phases at 1509K, is -19.4 {+-} 1.3. This value is near the canonical solar nebula value (-18.1 {+-} 0.3) and in close agreement with that reported for fassaite-bearing Allende CAIs (-19.8 {+-} 0.9) by other researchers using the same assumptions. Nanocrystals of osbornite (Ti(V)N), 2-40 nm in diameter, are embedded as inclusions within anorthite, spinel and diopside in Inti. Vanadium is heterogeneously distributed within some osbornite crystals. Compositions range from pure TiN to Ti{sub 0.36}V{sub 0.64}N. The possible presence of oxide and carbide in solid solution with the osbornite was evaluated. The osbornite may contain O but does not contain C. The presence of osbornite, likely a refractory early condensate, together with the other refractory minerals in Inti, indicates that the parent comet contains solids that condensed closer to the proto-sun than the distance at which the parent comet itself accreted. The estimated oxygen fugacity and the reported isotopic and chemical compositions are consistent with Inti originating in the inner solar system as opposed to it being a surviving CAI from an extrasolar source. These results provide insight for evaluating the validity of models of radial mass transport dynamics in the early solar system. The oxidation environments inferred for the Inti mineral assemblage are inconsistent with an X-wind formation

  18. Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology

    SciTech Connect (OSTI)

    Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-12-01

    Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Offices (NE-ID) and State of Idahos top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62%. The

  19. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    SciTech Connect (OSTI)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-11-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 25, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process

  20. Strain-guided mineralization in the bone–PDL–cementum complex of a rat periodontium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grandfield, Kathryn; Herber, Ralf -Peter; Chen, Ling; Djomehri, Sabra; Tam, Caleb; Lee, Ji -Hyun; Brown, Evan; Woolwine III, Wood R.; Curtis, Don; Ryder, Mark; et al

    2015-04-18

    Objective: The objective of this study was to investigate the effect of mechanical strain by mapping physicochemical properties at periodontal ligament (PDL)–bone and PDL–cementum attachment sites and within the tissues per se. Design: Accentuated mechanical strain was induced by applying a unidirectional force of 0.06 N for 14 days on molars in a rat model. The associated changes in functional space between the tooth and bone, mineral forming and resorbing events at the PDL–bone and PDL–cementum attachment sites were identified by using micro-X-ray computed tomography (micro-XCT), atomic force microscopy (AFM), dynamic histomorphometry, Raman microspectroscopy, and AFM-based nanoindentation technique. Results frommore » these analytical techniques were correlated with histochemical strains specific to low and high molecular weight GAGs, including biglycan, and osteoclast distribution through tartrate resistant acid phosphatase (TRAP) staining. Results: Unique chemical and mechanical qualities including heterogeneous bony fingers with hygroscopic Sharpey's fibers contributing to a higher organic (amide III — 1240 cm⁻¹) to inorganic (phosphate — 960 cm⁻¹) ratio, with lower average elastic modulus of 8 GPa versus 12 GPa in unadapted regions were identified. Furthermore, an increased presence of elemental Zn in cement lines and mineralizing fronts of PDL–bone was observed. Adapted regions containing bony fingers exhibited woven bone-like architecture and these regions rich in biglycan (BGN) and bone sialoprotein (BSP) also contained high-molecular weight polysaccharides predominantly at the site of polarized bone growth. Conclusions: From a fundamental science perspective the shift in local properties due to strain amplification at the soft–hard tissue attachment sites is governed by semiautonomous cellular events at the PDL–bone and PDL–cementum sites. Over time, these strain-mediated events can alter the physicochemical properties of

  1. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mahowald, N.; Scanza, R. A.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J. F.; Zhuang, G.; Chen, Y.; Cohen, D. D.; et al

    2015-10-12

    Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are

  2. Strain-guided mineralization in the bone–PDL–cementum complex of a rat periodontium

    SciTech Connect (OSTI)

    Grandfield, Kathryn; Herber, Ralf -Peter; Chen, Ling; Djomehri, Sabra; Tam, Caleb; Lee, Ji -Hyun; Brown, Evan; Woolwine III, Wood R.; Curtis, Don; Ryder, Mark; Schuck, Jim; Webb, Samuel; Landis, William; Ho, Sunita P.

    2015-04-18

    Objective: The objective of this study was to investigate the effect of mechanical strain by mapping physicochemical properties at periodontal ligament (PDL)–bone and PDL–cementum attachment sites and within the tissues per se. Design: Accentuated mechanical strain was induced by applying a unidirectional force of 0.06 N for 14 days on molars in a rat model. The associated changes in functional space between the tooth and bone, mineral forming and resorbing events at the PDL–bone and PDL–cementum attachment sites were identified by using micro-X-ray computed tomography (micro-XCT), atomic force microscopy (AFM), dynamic histomorphometry, Raman microspectroscopy, and AFM-based nanoindentation technique. Results from these analytical techniques were correlated with histochemical strains specific to low and high molecular weight GAGs, including biglycan, and osteoclast distribution through tartrate resistant acid phosphatase (TRAP) staining. Results: Unique chemical and mechanical qualities including heterogeneous bony fingers with hygroscopic Sharpey's fibers contributing to a higher organic (amide III — 1240 cm⁻¹) to inorganic (phosphate — 960 cm⁻¹) ratio, with lower average elastic modulus of 8 GPa versus 12 GPa in unadapted regions were identified. Furthermore, an increased presence of elemental Zn in cement lines and mineralizing fronts of PDL–bone was observed. Adapted regions containing bony fingers exhibited woven bone-like architecture and these regions rich in biglycan (BGN) and bone sialoprotein (BSP) also contained high-molecular weight polysaccharides predominantly at the site of polarized bone growth. Conclusions: From a fundamental science perspective the shift in local properties due to strain amplification at the soft–hard tissue attachment sites is governed by semiautonomous cellular events at the PDL–bone and PDL–cementum sites. Over time, these strain-mediated events can alter the

  3. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    SciTech Connect (OSTI)

    Sisman, S. Lara

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  4. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect (OSTI)

    Daniel Tao; Craig A. Blue

    2004-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

  5. GaMin’11 – an international inter-laboratory comparison for geochemical CO₂ - saline fluid - mineral interaction experiments

    SciTech Connect (OSTI)

    Ostertag-Henning, C.; Risse, A.; Thomas, B.; Rosenbauer, R.; Rochelle, C.; Purser, G.; Kilpatrick, A.; Rosenqvist, J.; Yardley, B.; Karamalidis, A.; Griffith, C.; Hedges, S.; Dilmore, R.; Goodman, A.; Black, J.; Haese, R.; Deusner, C.; Bigalke, N.; Haeckel, M.; Fischer, S.; Liebscher, A.; Icenhower, J. P.; Daval, D.; Saldi, G. D.; Knauss, K. G.; Schmidt, M.; Mito, S.; Sorai, M.; Truche, L.

    2014-12-31

    Due to the strong interest in geochemical CO₂-fluid-rock interaction in the context of geological storage of CO₂ a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in composition of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.

  6. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; Zender, C. S.; Kok, J. F.; Liu, Xiaohong; Zhang, Y.; Albani, Samuel

    2015-01-01

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmorein place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm? for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm?) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm?, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.less

  7. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    SciTech Connect (OSTI)

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; Zender, C. S.; Kok, J. F.; Liu, Xiaohong; Zhang, Y.; Albani, Samuel

    2015-01-01

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral components in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm? for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm?) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm?, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.

  8. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.; Albani, S.

    2015-01-15

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm−2 for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 Wm−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  9. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.

    2014-07-02

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05 W m−2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 W m−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 W m−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  10. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthitemore » component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.« less

  11. Experimental study of the Self-Advancing Miner for coal (SAM). Final technical report

    SciTech Connect (OSTI)

    Douglas, S.B.

    1981-08-01

    The design, fabrication, and field testing of the Rapidex Self-Advancing Miner (SAM) are discussed in detail. The SAM concept utilizes a unique conical screw geometry to excavate coal by first slotting the face and then breaking free the weakened material between slots. Field tests proved that the technique works well in coal and that the SAM does self advance along the face. Using the experimental data obtained, full scale estimates are made for four mining applications. Longwall mining with SAM cutterheads appears the most feasible and offers many operational advantages, including improved dust control. Other key SAM features are increased cutting efficiency, improved face control to minimize slabbing, and low methane emission and risk of face ignitions.

  12. Evaluation of replacement thread lubricants for red lead and graphite in mineral oil

    SciTech Connect (OSTI)

    Jungling, T.L.; Rauth, D.R.; Goldberg, D.

    1998-04-30

    Eight commercially available thread lubricants were evaluated to determine the best replacement for Red Lead and Graphite in Mineral Oil (RLGMO). The evaluation included coefficient of friction testing, high temperature anti-seizing testing, room temperature anti-galling testing, chemical analysis for detrimental impurities, corrosion testing, off-gas testing, and a review of health and environmental factors. The coefficient of friction testing covered a wide variety of factors including stud, nut, and washer materials, sizes, manufacturing methods, surface coatings, surface finishes, applied loads, run-in cycles, and relubrication. Only one lubricant, Dow Corning Molykote P37, met all the criteria established for a replacement lubricant. It has a coefficient of friction range similar to RLGMO. Therefore, it can be substituted directly for RLGMO without changing the currently specified fastener torque values for the sizes, materials and conditions evaluated. Other lubricants did not perform as well as Molykote P37 in one or more test or evaluation categories.

  13. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    SciTech Connect (OSTI)

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  14. Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration

    SciTech Connect (OSTI)

    Teng, H. Henry; Xu, Huifang

    2013-07-17

    We have approached the long-standing geochemical question why anhydrous high-Mg carbonate minerals (i.e., magnesite and dolomite) cannot be formed at ambient conditions from a new perspective by exploring the formation of MgCO{sub 3} and Mg{sub x}Ca{sub (1-x)}CO{sub 3} in non-aqueous solutions. Data collected from our experiments in this funding period suggest that a fundamental barrier, other than cation hydration, exists that prevents Mg{sup 2+} and CO{sub 3}{sup 2-} ions from forming long-range ordered structures. We propose that this barrier mainly stems from the lattice limitation on the spatial configuration of CO{sub 3} groups in magnesite crystals. On the other hand, the measured higher distribution coefficients of Mg between magnesian calcites formed in the absence and presence of water give us a first direct proof to support and quantify the cation hydration effect.

  15. X-ray Driven Reaction Front Dynamics at Mineral-Aqueous Interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laanait, Nouamane; Callagon, Erika Blanca R; Zhang, Zhan; Sturchio, N. C.; Lee, Sang Soo; Fenter, Paul

    2015-01-01

    The interface of minerals with aqueous solutions is central to geochemical reactivity, hosting processes that span multiple spatiotemporal scales. Understanding such processes requires spatially and temporally resolved observations, and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron X-ray beam, we drove dissolution at the calcite-aqueous interface and simultaneously probed the dynamics of the propagating reaction fronts using surface X-ray microscopy. Evolving surface structures are controlled by the time-dependent solution composition as characterized by a kinetic reaction model. At extreme disequilibria, the onset of reaction front instabilities was observed with velocitiesmore » of >30 nanometers per second. These instabilities are identified as a signature of transport-limited dissolution of calcite under extreme disequilibrium.« less

  16. Preliminary assessment report for Fort Jacob F. Wolters, Installation 48555, Mineral Wells, Texas. Installation Restoration Program

    SciTech Connect (OSTI)

    Dennis, C.B.

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Texas Army National Guard (TXARNG) property near Mineral Wells, Texas. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Fort Wolters property, the requirement of the Department of Defense Installation Restoration Program.

  17. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    SciTech Connect (OSTI)

    Cowan, Catherine M.; Zhang, Xinli; James, Aaron W.; Mari Kim, T.; Sun, Nichole; Wu, Benjamin; Ting, Kang; Soo, Chia

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. Black-Right-Pointing-Pointer NELL-1 significantly increases intracellular inorganic phosphate levels. Black-Right-Pointing-Pointer NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.

  18. Mineral evaluation of part of the Gold Butte district, Clark County, Nevada. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Dexter, J.J.; Goodknight, C.S.; Dayvault, R.D.; Dickson, R.E.

    1983-03-01

    The mineral potential of part of the Gold Butte district, Clark County, Nevada, was investigated to supplement the evaluation of granitic rocks in the area as a probable geologic environment for uranium mineralization. This project is a part of the National Uranium Resource Evaluation (NURE) program conducted by Bendix Field Engineering Corporation for the US Department of Energy. A total of 41 stream-sediment samples and 149 rock samples were collected; the stream-sediment samples were analyzed chemically, and most f the rock samples were analyzed chemically and petrographically. The project area was restricted to Precambrian rocks, which comprise a metamorphic complex of early Proterozoic age, charnockitic rocks of early or middle Proterozoic age and ultramafic rocks and the Gold Butte Granite of middle Proterozoic age. Although the project area is not favorable for uranium deposits according to NURE criteria, an area of low resource potential for uranium, thorium, rare-earth elements and yttrium, and niobium-tantalum was assigned to the contact zone of the Gold Butte Granite. Pegmatites and aplites in the zone contain high concentrations of these elements. Two areas of moderate potential for gold and silver in quartz veins are within the project area; small-scale operations may recover these elements profitably. Titanium has a low-to-moderate resource potential, although the deposits are currently subeconomic. The titanium concentrations occur as titaniferous magnetite- and ilmenite-bearing placer sands. One small area has been assigned a low-to-moderate resource potential for vermiculite in altered ultramafic rocks. Tungsten has been assigned a low resource potential in two places within the project area; scheelite-bearing ultramafic bodies are small and scattered. Platinum-group metals and copper have no resource potential in the project area.

  19. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    SciTech Connect (OSTI)

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; O'Donnell, D.; Schurgers, G.; Sein, Dmitry; Zhang, Kai

    2015-01-01

    Mineral dust cycle responds to insolation-induced climate change and plays an important role in the climate system by affecting the radiative balance of the atmosphere. Polar ice cores provide unique information about deposition of aeolian dust particles in the past which indicates climate variability. In the current study the dust cycle in different climate conditions simulated by ECHAM5-HAM is analyzed. The study is focused on the Southern Hemisphere with emphasis on the Antarctic region. The investigated periods include four interglacial time-slices: the pre-industrial control (CTRL), mid-Holocene (6,000 years BP), Eemian (126,000 years BP), last glacial inception (115,000 years BP) and one glacial time interval: Last Glacial Maximum (LGM) (21,000 years BP). This study is a first attempt to simulate past interglacial dust cycles and to understand the quantitative contribution of different processes, such as emission, atmospheric transport and precipitation to the total dust deposition in Antarctica. Results suggest increased deposition of mineral dust globally and in Antarctica in the past interglacial periods relative to the preindustrial CTRL simulation. Maximum dust deposition in Antarctica was simulated for the glacial period. One of the major factors responsible for the increase of dust deposition in the mid-Holocene and Eemian is enhanced Southern Hemisphere dust emissions. The moderate change of dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. In the LGM simulation, dust deposition over Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climate

  20. Evaluation of coal-mineral association and coal cleanability by using SEM-based automated image analysis

    SciTech Connect (OSTI)

    Straszheim, W.E.; Younkin, K.A.; Markuszewski, R. ); Smith, F.J. )

    1988-06-01

    A technique employing SEM-based automated image analysis (AIA) has been developed for assessing the association of mineral particles with coal, and thus the cleanability of that coal, when the characteristics of the separation process are known. Data resulting from AIA include the mineral distribution by particle size, mineral phase, and extent of association with coal. This AIA technique was applied to samples of -325 mesh (-44 ..mu..m) coal from the Indiana No. 3, Upper Freeport, and Sunnyside (UT) seams. The coals were subjected to cleaning by float-sink separations at 1.3, 1.4, 1.6, and 1.9 specific gravity and by froth flotation. For the three coals, the float-sink procedure at a given specific gravity produced different amounts of clean coal, but with similar ash content. Froth flotation removed much less ash, yielding a product ash content of --8% for the Upper Freeport coal, regardless of recovery, while reducing the ash content to less than 5% for the other two coals. The AIA results documented significantly more association of minerals with the Upper Freeport coal, which thus led to the poor ash reduction.

  1. The Effect of Bicarbonate on the Microbial Dissolution of Autunite Mineral in the Presence of Gram-Positive Bacteria

    SciTech Connect (OSTI)

    Sepulveda-Medina, Paola; Katsenovich, Yelena; Wellman, Dawn M.; Lagos, Leonel

    2015-06-01

    Bacteria are key players in the processes that govern fate and transport of contaminants. The uranium release from Na and Ca-autunite by Arthrobacter oxydans strain G968 was evaluated in the presence of bicarbonate ions. This bacterium was previously isolated from Hanford Site soil and in earlier prescreening tests demonstrated low tolerance to U(VI) toxicity compared to other A.oxydans isolates. Experiments were conducted using glass serum bottles as mixed bioreactors and sterile 6-well cell culture plates with inserts separating bacteria cells from mineral solids. Reactors containing phosphorus-limiting media were amended with bicarbonate ranging between 0-10 mM and metaautunite solids to provide a U(VI) concentration of 4.4 mmol/L. Results showed that in the presence of bicarbonate, A.oxydans G968 was able to enhance the release of U(VI) from Na and Ca autunite at the same capacity as other A.oxydans isolates with relatively high tolerance to U(VI). The effect of bacterial strains on autunite dissolution decreases as the concentration of bicarbonate increases. The results illustrate that direct interaction between the bacteria and the mineral is not necessary to result in U (VI) biorelease from autunite. The formation of secondary calcium-phosphate mineral phases on the surface of the mineral during the dissolution can ultimately reduce the natural autunite mineral contact area, which bacterial cells can access. This thereby reduces the concentration of uranium released into the solution. This study provides a better understanding of the interactions between meta-autunite and microbes in conditions mimicking arid and semiarid subsurface environments of western U.S.

  2. Metal-sulfide mineral ores, Fenton chemistry and disease. Particle induced inflammatory stress response in lung cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; Schoonen, Martin A. A.

    2014-07-10

    The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleteriousmore » nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m2/mL stock) and exposure periods (beginning at 30 min and measured systematically for up to 24 h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. Furthermore, this study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.« less

  3. Metal-sulfide mineral ores, Fenton chemistry and disease. Particle induced inflammatory stress response in lung cells

    SciTech Connect (OSTI)

    Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; Schoonen, Martin A. A.

    2014-07-10

    The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleterious nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m2/mL stock) and exposure periods (beginning at 30 min and measured systematically for up to 24 h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. Furthermore, this study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.

  4. Fluidized Bed Steam Reforming (FBSR) Mineralization for High Organic and Nitrate Waste Streams for the Global Nuclear Energy Partnership (GNEP)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Williams, M.R. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NOx in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 deg. C) compared to vitrification (1150-1300 deg. C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {>=}1000 deg. C. Pollucite mineralization creates secondary aqueous waste streams and NOx. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O. (authors)

  5. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  6. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    SciTech Connect (OSTI)

    Wang, Zhengrong; Qiu, Lin; Zhang, Shuang; Bolton, Edward; Bercovici, David; Ague, Jay; Karato, Shun-Ichiro; Oristaglio, Michael; Zhu, Wen-Iu; Lisabeth, Harry; Johnson, Kevin

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount

  7. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    SciTech Connect (OSTI)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  8. Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\

    SciTech Connect (OSTI)

    Chvojka, Jesse John

    2012-01-01

    The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q2, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles

  9. 3D Reconstruction of Biological Organization and Mineralization in Sediment Attached Biofilms During Uranium Bioremediation

    SciTech Connect (OSTI)

    Banfield, Jillian; Comolli, Luis R.; Singer, Steve

    2014-11-17

    development of a platform for routine correlative cryogenic microscopy and spectroscopy with samples prepared on-site. 2) The determination of which organisms dominate planktonic and biofilm communities in the subsurface. 3) Identification of microorganism-mineral associations and discovery of a novel mechanism that sustains activity of iron-reducing bacteria. 4) The detection of bacteria from the OP11-OD1-WWE3 (etc.) radiation and elucidation of their remarkable structural organization by cryog-TEM cryo-electron tomograhpy (cryo-ET). 5) Extensive analysis of biofilms and documentation of the association of cells and Se minerals. 6) The comparison of expressed c-type cytochromes between pure cultures of G. bemidjiensis and related field populations, provided insight into possible molecular mechanisms for U(VI) reduction in the aquifer. At least sixteen publications will result from this project (partial support), which provide both graduate student and post doctoral training.

  10. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; O'Donnell, D.; Schurgers, G.; Sein, Dmitry; Zhang, Kai

    2015-05-19

    The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission,more » atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times

  11. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    SciTech Connect (OSTI)

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; O'Donnell, D.; Schurgers, G.; Sein, Dmitry; Zhang, Kai

    2015-05-19

    The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission, atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher

  12. Stable-isotope probe of nano-scale mineral-fluid redox interactions

    SciTech Connect (OSTI)

    Kavner, Abby

    2014-11-26

    The project examined how stable isotopes fractionate at an aqueous/solid interface during electrochemical reduction reactions. Measurements in a wide variety of metal deposition systems including Fe, Zn, Li, Mo, and Cu, have led to observations of large isotope fractionations which strongly vary as a function of rate and temperature. For the Fe, Zn, and Li systems, our electrochemical deposition methods provide the largest single-pass fractionation factors that are observed for these systems. Based on these and other experiments and theory showing and predicting significant and rate-dependent fractionations of isotopes at reacting interfaces, we have developed a simple statistical mechanics framework that predicts the kinetic isotope effect accompanying phase transformations in condensed systems. In addition, we have begun to extend our studies of mineral-fluid redox interactions to high pressures and temperatures in the diamond anvil cell. We performed a series of experiments to determine solubilities of Cu and Ni at elevated pressure and temperature conditions relevant to ore-formation.

  13. 9 M.y. record of southern Nevada climate from Yucca Mountain secondary minerals

    SciTech Connect (OSTI)

    Whelan, J.F.; Moscati, R.J.

    1998-12-01

    Yucca Mountain, Nevada, is presently the object of intense study as a potential permanent repository for the Nation`s high-level radioactive wastes. The mountain consists of a thick sequence of volcanic tuffs within which the depth to water table ranges from 500 to 700 meters below the land surface. This thick unsaturated zone (UZ), which would host the projected repository, coupled with the present day arid to semi-arid climate, is considered a favorable attribute of the site. Evaluation of the site includes defining the relation between climate variability, as the input function or driver of site- and regional-scale ground-water flow, and the possible future transport and release of radionuclides to the accessible environment. Secondary calcite and opal have been deposited in the UZ by meteoric waters that infiltrated through overlying soils and percolated through the tuffs. The oxygen isotopic composition ({delta}{sup 18}O values) of these minerals reflect contemporaneous meteoric waters and the {delta}{sup 13}C values reflect soil organic matter, and hence the resident plant community, at the time of infiltration. Recent U/Pb age determinations of opal in these occurrences, coupled with the {delta}{sup 13}C values of associated calcite, allow broadbrush reconstructions of climate patterns during the past 9 M.y.

  14. Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Edwards, Marcus J.; White, Gaye F.; Norman, Michael; Tome-Fernandez, Alice; Ainsworth, Emma; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; et al

    2015-07-01

    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX₈C disulfide that, when substituted for AX₈A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation ofmore » a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen.« less

  15. A study of competitive adsorption of organic molecules onto mineral oxides using DRIFTS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Joan E. Thomas; Kelley, Michael J.

    2009-10-20

    In this study, analysis of DRIFTS spectra was used for a quantitative study of competitive adsorption of myristic and salicylic acids onto kaolinite or γ-alumina. Peaks unique to the ring or the chain were selected and single molecule studies used as calibration. Samples were exposed to hexane solution containing equal molecular quantities of each acid. The surface loading of salicylic acid was not influenced by the presence of myristic acid on either mineral but the maximum loading of myristic acid was decreased (46-50%) by salicylic acid. Displacement of myristic acid from {gamma}-alumina, but not kaolinite, was observed when excess salicylicmore » acid remained in solution. A 25% increase in the maximum loading was observed for kaolinite, but not for{gamma}-alumina. On {gamma}-alumina, after a loading of 1 molecule per nm2, increased exposure resulted in salicylic acid adsorption only, this value is approximately the same for salicylic acid adsorption from aqueous solution or for water washed hexane treated samples. Thus a set of sites for adsorption of either acid is indicated together with other energetically less favorable sites, which can be occupied by salicylic, but not by myristic, acid.« less

  16. Separation of metals from waste incineration residue by application of mineral processing

    SciTech Connect (OSTI)

    Schmelzer, G.

    1995-12-31

    The incineration of municipal waste produced approx. 2.7--2.8 million tons of solid residues in 1993 in the Federal Republic of Germany, which in part included still considerable amounts of organic and inorganic pollutants that could potentially be released into the environment. The most significant of these in terms of volume is incinerator ash at approx. 2.4 million tons. Through the use of innovative processing techniques, attempts are being made to convert the residues into a form that remains environmentally neutral over the longest period of time possible. One such group of techniques includes smelting technologies. After it has undergone specialized treatment, mineral incinerator ash is converted into environmentally neutral and reusable glass (vitrification) since, besides a reduction in the volume of the residues by approx. 90%, the main goal is a complete immobilization and destruction of inorganic and organic pollutants respectively. These glasses, after they have been reshaped, are resold as commercial products such as damming or form glass.

  17. Application of Radial Basis Functional Link Networks to Exploration for Proterozoic Mineral Deposits in Central Iran

    SciTech Connect (OSTI)

    Behnia, Pouran [Geological Survey of Iran, Geomatics Department (Iran, Islamic Republic of)], E-mail: pouranb@yahoo.com

    2007-06-15

    The metallogeny of Central Iran is characterized mainly by the presence of several iron, apatite, and uranium deposits of Proterozoic age. Radial Basis Function Link Networks (RBFLN) were used as a data-driven method for GIS-based predictive mapping of Proterozoic mineralization in this area. To generate the input data for RBFLN, the evidential maps comprising stratigraphic, structural, geophysical, and geochemical data were used. Fifty-eight deposits and 58 'nondeposits' were used to train the network. The operations for the application of neural networks employed in this study involve both multiclass and binary representation of evidential maps. Running RBFLN on different input data showed that an increase in the number of evidential maps and classes leads to a larger classification sum of squared error (SSE). As a whole, an increase in the number of iterations resulted in the improvement of training SSE. The results of applying RBFLN showed that a successful classification depends on the existence of spatially well distributed deposits and nondeposits throughout the study area.

  18. A study of competitive adsorption of organic molecules onto mineral oxides using DRIFTS

    SciTech Connect (OSTI)

    Joan E. Thomas, Michael J. Kelley

    2010-02-01

    Analysis of DRIFTS spectra was used for a quantitative study of competitive adsorption of myristic and salicylic acids onto kaolinite or {gamma}-alumina. Peaks unique to the ring or the chain were selected and single molecule studies used as calibration. Samples were exposed to hexane solution containing equal molecular quantities of each acid. The surface loading of salicylic acid was not influenced by the presence of myristic acid on either mineral but the maximum loading of myristic acid was decreased (46-50%) by salicylic acid. Displacement of myristic acid from {gamma}-alumina, but not kaolinite, was observed when excess salicylic acid remained in solution. A 25% increase in the maximum loading was observed for kaolinite, but not for{gamma}-alumina. On {gamma}-alumina, after a loading of 1 molecule per nm{sup 2}, increased exposure resulted in salicylic acid adsorption only, this value is approximately the same for salicylic acid adsorption from aqueous solution or for water washed hexane treated samples. Thus a set of sites for adsorption of either acid is indicated together with other energetically less favorable sites, which can be occupied by salicylic, but not by myristic, acid.

  19. Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer.

    SciTech Connect (OSTI)

    Edwards, Marcus J.; White, Gaye F.; Norman, Michael; Tome-Fernandez, Alice; Ainsworth, Emma; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2015-07-01

    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX₈C disulfide that, when substituted for AX₈A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen.

  20. Use of earth field spin echo NMR to search for liquid minerals

    DOE Patents [OSTI]

    Stoeffl, Wolfgang

    2001-01-01

    An instrument for measuring the spatial, qualitative and quantitative parameters of an underground nuclear magnetic resonance (NMR) active liquid mineral deposit, including oil and water. A phased array of excitation and receiver antennas on the surface and/or in a borehole excites the NMR active nuclei in the deposit, and using known techniques from magnetic resonance imaging (MRI), the spatial and quantitative distribution of the deposit can be measured. A surface array may utilize, for example, four large (50-500 diameter) diameter wire loops laid on the ground surface, and a weak (1.5-2.5 kHz) alternating current (AC) field applied, matching the NMR frequency of hydrogen in the rather flat and uniform earth magnetic field. For a short duration (a few seconds) an additional gradient field can be generated, superimposed to the earth field, by applying direct current (DC) to the grid (wire loops), enhancing the position sensitivity of the spin-echo and also suppressing large surface water signals by shifting them to a different frequency. The surface coil excitation can be combined with downhole receivers, which are much more radio-quiet compared to surface receivers, and this combination also enhances the position resolution of the MRI significantly. A downhole receiver module, for example, may have a 5.5 inch diameter and fit in a standard six inch borehole having a one-quarter inch thick stainless steel casing. The receiver module may include more than one receiver units for improved penetration and better position resolution.

  1. Surface damage behavior during scratch deformation of mineral reinforced polymer composites

    SciTech Connect (OSTI)

    Misra, R.D.K.; Hadal, R.; Duncan, S.J

    2004-08-16

    The surface damage behavior during scratch deformation of neat and wollastonite reinforced ethylene-propylene and polypropylene polymeric materials with significant differences in ductility was studied using electron microscopy in association with scratch deformation parameters and local crystallinity characteristics obtained from atomic force microscopy. Under identical conditions of scratch tests, the decrease in resistance to scratch damage and stress whitening of polymeric materials followed the sequence: wollastonite-reinforced polypropylene (PP-W) congruent with wollastonite-reinforced ethylene-propylene (EP-W) > neat polypropylene (PP) > neat ethylene-propylene copolymer (EP). The improved resistance to scratch damage of mineral reinforced polymeric materials is attributed to the effective reinforcement by micrometer-sized wollastonite particles that increase the tensile modulus of the polymeric materials and restrict plastic deformation of the polymer matrix. Scratching of neat and wollastonite-containing EP copolymers involved periodic parabolic scratch tracks containing voids, which transformed to distinct zig-zag scratch tracks on reinforcement with micrometric wollastonite particles. The enhanced plastic flow in neat EP is facilitated by high ductility of the material and ability to nucleate voids, while in EP-W the plastic flow is suppressed because of reinforcement effect of wollastonite. On the other hand, zig-zag periodic scratch tracks were observed in both neat PP and PP-W, but the scratch tracks were not clearly discernible on reinforcement of PP with wollastonite. The resistance to scratch deformation is discussed in terms of tensile modulus, elastic recovery, scratch hardness, and reinforcement-matrix interaction.

  2. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2013-08-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

  3. Study of the Earth's interior using measurements of sound velocities in minerals by ultrasonic interferometry

    SciTech Connect (OSTI)

    Li, Baosheng; Liebermann, Robert C.

    2014-07-29

    This paper reviews the progress of the technology of ultrasonic interferometry from the early 1950s to the present day. During this period of more than 60 years, sound wave velocity measurements have been increased from at pressures less than 1 GPa and temperatures less than 800 K to conditions above 25 GPa and temperatures of 1800 K. This is complimentary to other direct methods to measure sound velocities (such as Brillouin and impulsive stimulated scattering) as well as indirect methods (e.g., resonance ultrasound spectroscopy, static or shock compression, inelastic X-ray scattering). Newly-developed pressure calibration methods and data analysis procedures using a finite strain approach are described and applied to data for the major mantle minerals. The implications for the composition of the Earth’s mantle are discussed. The state-of-the-art ultrasonic experiments performed in conjunction with synchrotron X-radiation can provide simultaneous measurements of the elastic bulk and shear moduli and their pressure and temperature derivatives with direct determination of pressure. The current status and outlook/challenges for future experiments are summarized.

  4. Reactivity of iron-bearing minerals and CO2 sequestration: A multi-disciplinary experimental approach

    SciTech Connect (OSTI)

    Schoonen, Martin A.

    2014-12-22

    The reactivity of sandstones was studied under conditions relevant to the injection of supercritical carbon dioxide in the context of carbon geosequestration. The emphasis of the study was on the reactivity of iron-bearing minerals when exposed to supercritical CO2 (scCO2) and scCO2 with commingled aqueous solutions containing H2S and/or SO2. Flow through and batch experiments were conducted. Results indicate that sandstones, irrespective of their mineralogy, are not reactive when exposed to pure scCO2 or scCO2 with commingled aqueous solutions containing H2S and/or SO2 under conditions simulating the environment near the injection point (flow through experiments). However, sandstones are reactive under conditions simulating the edge of the injected CO2 plume or ahead of the plume (batch experiments). Sandstones containing hematite (red sandstone) are particularly reactive. The composition of the reaction products is strongly dependent on the composition of the aqueous phase. The presence of dissolved sulfide leads to the conversion of hematite into pyrite and siderite. The relative amount of the pyrite and siderite is influenced by the ionic strength of the solution. Little reactivity is observed when sulfite is present in the aqueous phase. Sandstones without hematite (grey sandstones) show little reactivity regardless of the solution composition.

  5. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect (OSTI)

    Daniel Tao; R. Honaker; B. K. Parekh

    2007-09-20

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, novel surface treatment technologies, High Density Infrared (HDI) and Laser Surface Engineering (LSE) surface coating processes were developed for the surface enhancement of selected mineral and coal processing equipment. Microstructural and mechanical properties of the coated specimens were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and can be significantly increased by applying HDI and LSE coating processes. Field testing has been performed using a LSE-treated screen panel and it showed a significant improvement of the service life.

  6. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, B.; Mishra, B.; Miller, C.; Wang, W.; Lai, B.; Brooks, S. C.; Kemner, K. M.; Liang, L.

    2014-05-23

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied X-ray fluorescence (XRF) microprobes to directly visualize and quantify the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg contaminated freshwater system. Up to 175 μg g–1 Hg is found on suspended particles. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM), possibly as Hg-NOM-iron oxide ternary complexes. The diatom-bound Hg is mostly found on outer surfaces of themore » cells, suggesting passive sorption of inorganic Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, is an important sink for Hg in natural aquatic environments.« less

  7. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    SciTech Connect (OSTI)

    Katsenovich, Yelena P.; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel E.

    2012-05-01

    The bacterial effect on U(VI) release from the autunite mineral (Ca[(UO2)(PO4)]2•3H2O) was investigated to provide a more comprehensive understanding of the important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of the Arthrobacter oxydans G975 strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorous-limiting sterile media were amended with bicarbonate (ranging between 1 and 10 mM) in glass reactor bottles and inoculated with the G975 strain after the dissolution of autunite was at steady state. SEM observations indicated that G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile culture-ware with inserts was used in non-contact dissolution experiments where autunite and bacteria cells were kept separately. The data suggest that G975 bacteria is able to enhance the release of U(VI) from autunite without direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the release of U(VI) from autunite in bicarbonate-amended media.

  8. Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hellas

    SciTech Connect (OSTI)

    Rokos, D. Argialas, D. Mavrantza, R. St Seymour, K.; Vamvoukakis, C.; Kouli, M.; Lamera, S.; Paraskevas, H.; Karfakis, I.; Denes, G

    2000-12-15

    Exploration for epithermal Au has been active lately in the Aegean Sea of the eastern Mediterranean Basin, both in the islands of the Quaternary arc and in those of the back-arc region. The purpose of this study was the structural mapping and analysis for a preliminary investigation of possible epithermal gold mineralization, using remotely sensed data and techniques, structural and field data, and geochemical information, for a specific area on the Island of Lesvos. Therefore, Landsat-TM and SPOT-Pan satellite images and the Digital Elevation Model (DEM) of the study area were processed digitally using spatial filtering techniques for the enhancement and recognition of the geologically significant lineaments, as well as algebraic operations with band ratios and Principal Component Analysis (PCA), for the identification of alteration zones. Statistical rose diagrams and a SCHMIDT projection Stereo Net were generated from the lineament maps and the collected field data (dip and strike measurements of faults, joints, and veins), respectively. The derived lineament map and the band ratio images were manipulated in a GIS environment, in order to study the relation of the tectonic pattern to both the alteration zoning and the geomorphology of the volcanic field of the study area. Target areas of high interest for possible mineralization also were specified using geochemical techniques, such as X-Ray Diffraction (XRD) analysis, trace-element, and fluid-inclusion analysis. Finally, preliminary conclusions were derived about possible mineralization, the type (high or low sulfidation), and the extent of mineralization, by combining the structural information with geochemical information.

  9. Fracture-coating minerals in the Topopah Spring Member and upper tuff of Calico Hills from drill hole J-13

    SciTech Connect (OSTI)

    Carlos, B.

    1989-02-01

    Fracture-lining minerals from drill core in the Topopah Spring Member of the Paintbrush Tuff and the tuff of Calico Hills from water well J-13 were studied to identify the differences between these minerals and those seen in drill core USW G-4. In USW G-4 the static water level (SWL) occurs below the tuff of Calico Hills, but in J-13 the water table is fairly high in the Topopah Spring Member. There are some significant differences in fracture minerals between these two holes. In USW G-4 mordenite is a common fracture-lining mineral in the Topopah Spring Member, increasing in abundance with depth. Euhedral heulandite >0.1 mm in length occurs in fractures for about 20 m above the lower vitrophyre. In J-13, where the same stratigraphic intervals are below the water table, mordenite is uncommon and euhedral heulandite is not seen. The most abundant fracture coating in the Topopah Spring Member in J-13 is drusy quartz, which is totally absent in this interval in USW G-4. Though similar in appearance, the coatings in the vitrophyre have different mineralogy in the two holes. In USW G-4 the coatings are extremely fine grained heulandite and smectite. In J-13 the coatings are fine-grained heulandite, chabazite, and alkali feldspar. Chabazite has not been identified from any other hole in the Yucca Mountain area. Fractures in the tuff of Calico Hills have similar coatings in core from both holes. In J-13, as in USW G-4, the tuff matrix of the Topopah Spring Member is welded and devitrified and that of the tuff of Calico Hills is zeolitic. 11 refs., 10 figs., 5 tabs.

  10. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Brent Constantz; Randy Seeker; Martin Devenney

    2010-06-30

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

  11. Neurotoxicological effects of cinnabar (a Chinese mineral medicine, HgS) in mice

    SciTech Connect (OSTI)

    Huang, C.-F.; Liu, S.-H.; Lin-Shiau, S.-Y.

    2007-10-15

    Cinnabar, a naturally occurring mercuric sulfide (HgS), has long been used in combination with traditional Chinese medicine as a sedative for more than 2000 years. Up to date, its pharmacological and toxicological effects are still unclear, especially in clinical low-dose and long-term use. In this study, we attempted to elucidate the effects of cinnabar on the time course of changes in locomotor activities, pentobarbital-induced sleeping time, motor equilibrium performance and neurobiochemical activities in mice during 3- to 11-week administration at a clinical dose of 10 mg/kg/day. The results showed that cinnabar was significantly absorbed by gastrointestinal (G-I) tract and transported to brain tissues. The spontaneous locomotor activities of male mice but not female mice were preferentially suppressed. Moreover, frequencies of jump and stereotype-1 episodes were progressively decreased after 3-week oral administration in male and female mice. Pentobarbital-induced sleeping time was prolonged and the retention time on a rotating rod (60 rpm) was reduced after treatment with cinnabar for 6 weeks and then progressively to a greater extent until the 11-week experiment. In addition, the biochemical changes in blood and brain tissues were studied; the inhibition of Na{sup +}/K{sup +}-ATPase activities, increased production of lipid peroxidation (LPO) and nitric oxide (NO) were found with a greater extent in male mice than those in female mice, which were apparently correlated with their differences in the neurological responses observed. In conclusion, these findings, for the first time, provide evidence of the pharmacological and toxicological basis for understanding the sedative and neurotoxic effects of cinnabar used as a Chinese mineral medicine for more than 2000 years.

  12. Identification of Fragile Microscopic Structures during Mineral Transformations in Wet Supercritical CO2

    SciTech Connect (OSTI)

    Arey, Bruce W.; Kovarik, Libor; Qafoku, Odeta; Wang, Zheming; Hess, Nancy J.; Felmy, Andrew R.

    2013-04-01

    In this study we examine the nature of highly fragile reaction products that form in low water content super critical carbon dioxide (scCO2) using a combination of scanning electron microscopy/focus ion beam (SEM/FIB), confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates to be fragile rosettes that can readily decompose even under slight heating from an electron beam. Using the TEM revealed details on the interfacial structure between the newly formed surface precipitates and the underlying initial solid phases. The detailed microscopic analysis revealed that the growth of the precipitates either followed a tip growth mechanism with precipitates forming directly on the forsterite surface if the initial solid was non-porous (natural forsterite) or growth from the surface of the precipitates where fluid was conducted through the porous (nanoforsterite) agglomerates to the growth center. The mechanism of formation of the hydrated/hydroxylated magnesium carbonate compound (HHMC) phases offers insight into the possible mechanisms of carbonate mineral formation from scCO2 solutions which has recently received a great deal of attention as the result of the potential for CO2 to act as an atmospheric greenhouse gas and impact overall global warming. The techniques used here to examine these fragile structures an also be used to examine a wide range of fragile material surfaces. SEM and FIB technologies have now been brought together in a single instrument, which represents a powerful combination for the studies in biological, geological and materials science.

  13. Quantifying microbe‐mineral interactions leading to remotely detectable induced polarization signals

    SciTech Connect (OSTI)

    Ntarlagiannis, Dimitrios; Moysey, Stephen; Dean, Delphine

    2013-11-14

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  14. Quantifying Microbe-Mineral Interactions Leading to Remotely Detectable Induced Polarization Signals (Final Project Report)

    SciTech Connect (OSTI)

    Moysey, Stephen; Dean, Delphine; Dimitrios, Ntarlagiannis

    2013-11-13

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column‐scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain‐scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high‐quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process‐based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed

  15. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    SciTech Connect (OSTI)

    Crawford, C.; Jantzen, C.

    2012-02-02

    /sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product, which is one of the objectives of this current study, is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. FBSR testing of a Hanford LAW simulant and a WTP-SW simulant at the pilot scale was performed by THOR Treatment Technologies, LLC at Hazen Research Inc. in April/May 2008. The Hanford LAW simulant was the Rassat 68 tank blend and the target concentrations for the LAW was increased by a factor of 10 for Sb, As, Ag, Cd, and Tl; 100 for Ba and Re (Tc surrogate); 1,000 for I; and 254,902 for Cs based on discussions with the DOE field office and the environmental regulators and an evaluation of the Hanford Tank Waste Envelopes A, B, and C. It was determined through the evaluation of the actual tank waste metals concentrations that some metal levels were not sufficient to achieve reliable detection in the off-gas sampling. Therefore, the identified metals concentrations were increased in the Rassat simulant processed by TTT at HRI to ensure detection and enable calculation of system removal efficiencies, product retention efficiencies, and mass balance closure without regard to potential results of those determinations or impacts on product durability response such as Toxicity Characteristic Leach Procedure (TCLP). A WTP-SW simulant based on melter off-gas analyses from Vitreous State Laboratory (VSL) was also tested at HRI in the 15-inch diameter Engineering Scale Test Demonstration (ESTD) dual reformer at HRI in 2008. The target concentrations for the Resource Conservation and Recovery Act (RCRA) metals were increased by 16X for Se, 29X for Tl, 42X for Ba, 48X

  16. Direct experimental evidence for differing reactivity alterations of minerals following irradiation. The case of calcite and quartz

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pignatelli, Isabella; Kumar, Aditya; Field, Kevin G.; Wang, Bu; Yu, Yingtian; Le Pape, Yann; Bauchy, Mathieu; Sant, Gaurav

    2016-01-29

    Concrete, used in the construction of nuclear power plants (NPPs), may be exposed to radiation emanating from the reactor core. Until recently, concrete has been assumed immune to radiation exposure. Direct evidence acquired on Ar+ -ion irradiated calcite and quartz indicates, on the contrary, that, such minerals, which constitute aggregates in concrete, may be significantly altered by irradiation. More specifically, while quartz undergoes disordering of its atomic structure resulting in a near complete lack of periodicity, calcite only experiences random rotations, and distortions of its carbonate groups. As a result, irradiated quartz shows a reduction in density of around 15%,more » and an increase in chemical reactivity, described by its dissolution rate, similar to a glassy silica. However, calcite shows little change in dissolution rate - although its density noted to reduce by 9%. These differences are correlated with the nature of bonds in these minerals, i.e., being dominantly ionic or covalent, and the rigidity of the mineral's atomic network that is characterized by the number of topological constraints (nc) that are imposed on the atoms in the network. Our outcomes have major implications on the durability of concrete structural elements formed with calcitic or quartzitic aggregates in nuclear power plants.« less

  17. GaMin’11 – an international inter-laboratory comparison for geochemical CO₂ - saline fluid - mineral interaction experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ostertag-Henning, C.; Risse, A.; Thomas, B.; Rosenbauer, R.; Rochelle, C.; Purser, G.; Kilpatrick, A.; Rosenqvist, J.; Yardley, B.; Karamalidis, A.; et al

    2014-12-31

    Due to the strong interest in geochemical CO₂-fluid-rock interaction in the context of geological storage of CO₂ a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in compositionmore » of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.« less

  18. Plan for Management of Mineral Assess on Native Tribal Lands and for Formation of a Fully Integrated Natural Gas and Oil Exploration and Production Company

    SciTech Connect (OSTI)

    Blechner, Michael H.; Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    This report describes a plan for Native American tribes to assume responsibility for and operation of tribal mineral resources using the Osage Tribe as an example. Under this plan, the tribal council select and employ a qualified Director to assume responsibility for management of their mineral reservations. The procurement process should begin with an application for contracting to the Bureau of Indian Affairs. Under this plan, the Director will develop strategies to increase income by money management and increasing exploitation of natural gas, oil, and other minerals.

  19. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; et al

    2014-06-27

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developedmore » follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion

  20. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; et al

    2015-01-13

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterizationmore » developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration

  1. AN ELECTROMAGNETIC PNEUMO CAPSULE SYSTEM FOR CONVEYING MINERALS AND MINE WASTES

    SciTech Connect (OSTI)

    Henry Liu; Charles W. Lenau

    2005-03-01

    The purpose of this project is to investigate the technical and economic feasibility of using a new and advanced pneumatic capsule pipeline (PCP) system for transporting minerals and mine wastes. The new system is different from conventional PCPs in two main respects: (1) it uses linear induction motors (LIMs) instead of blowers (fans) at the inlet of the pipeline to drive (pump) the capsules and the air through the pipeline; and (2) the capsules in the PCP have steel wheels running on steel rails as opposed to capsules in conventional systems, which use wheels with rubber tires running inside a pipe without rail. The advantage of using LIM pump instead of blower is that the former is non-intrusive and hence does not block the passage of capsules, enabling the system to run continuously without having to make the capsules bypass the pump. This not only simplifies the system but also enables the system to achieve much larger cargo throughput than that of PCPs using blowers, and use of LIMs as booster pumps which enables the system to have any length or to be used for transporting cargoes over practically any distance, say even one thousand kilometers or miles. An advantage of using steel wheels rolling on steel rails instead of using rubber tires rolling inside a pipeline is that the rolling friction coefficient and hence the use of energy is greatly reduced from that of conventional PCP systems. Moreover, rails enable easy control of capsule motion, such as switching capsules to a branch line by using railroad switching equipment. The advanced PCP system studied under this project uses rectangular conduits instead of circular pipe, having cross-sectional areas of 1 m by 1 m approximately. The system can be used for various transportation distances, and it can transport up to 50 million tonnes (metric tons) of cargo annually--the throughput of the largest mines in the world. Both an aboveground and an underground system were investigated and compared. The technical

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Sensing of Mineral Dust Using AERI Download a printable PDF Submitter: Hansell, R. A., University of California, Los Angeles Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Hansell R, KN Liou, SC Ou, SC Tsay, Q Ji, and JS Reid. 2008. "Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study." Journal of Geophysical Research - Atmospheres, 113, D18202, doi:10.1029/2008JD010246. BT sensitivity to dust

  3. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    SciTech Connect (OSTI)

    Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.; Percuros BV, Leiden ; Beusekom, Mara M. van; Mol, Isabel M.; Percuros BV, Leiden ; Kaijzel, Eric L.; Löwik, Clemens W.G.M.; Rooij, Karien E. de; Percuros BV, Leiden

    2014-01-03

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and is therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.

  4. Evaluation of a continuous miner half-curtain dust control system in a South African underground coal mine

    SciTech Connect (OSTI)

    Belle, B.K.; Plessis, J.J.L. du

    1999-07-01

    The issues of public health and safety in the mining industry have been dealt with around the world through the intervention of governments. In 1997 the South African Department of Minerals and Energy (DME) sent out a directive to reduce the dust concentration level to <5 mg/m{sup 3} at the operator's position for the sampling period. The reasons for the difficulty with compliance are: long headings up to 35 m, inherently high dust generation rates of coal, and the increased use of highly mechanized equipment. A project was formulated under SIMRAC auspices with the title of Underground Mechanical Miner Environmental Control to address the dust problem. The project was planned in two phases. The first phase involved laboratory tests on a continuous miner model for different ventilation and spray systems at the newly built ventilation simulation tunnel at the Kloppersbos research center. In the second phase of the project, tests were carried out underground, based on the findings and recommendations from the simulated tests. This paper focuses on the results and findings for the half-curtain system which has been encouraging. The average dust concentration for the sampling period at the operator's position for the half-curtain system was 3.20 mg/m{sup 3}. On the other hand, the equivalent average dust concentration (TWA-CONC) for the half-curtain system for an 8-h period was 2.04 mg/m{sup 3}. The outcome of this project has shown that the regulatory dust level of <5 mg/m{sup 3} can be achieved through close collaboration with all the interested parties.

  5. The miners of Windber: Class, ethnicity, and the labor movements in a Pennsylvania coal town, 1890s-1930s

    SciTech Connect (OSTI)

    Beik, M.A.

    1989-01-01

    Immigrant miners, the subject of this community study lived, worked, and struggled in an important bituminous coal town located in central Pennsylvania. Windber, a transposition of Berwind, was founded as a company town in 1897 by the Berwind White Coal Mining Company, a leading coal corporation. Most of the labor force, 4,000 to 5,000 miners, were recent arrivals from southern and eastern Europe. At least 25 different nationalities were represented in the town's population of 10,000. The company established an autocratic type of control in the workplace and the community. It was opposed to unionization by the United Mine Workers and operated an open-shop until the New Deal. The broad struggle of the miners and their families to end this autocratic control and by that get greater control over their lives and work in the nonunion period is the raison d'etre of this study. Sources used include oral histories, census, union files, church records, Slovak fraternal society papers, borough council records, organizers' papers, company employment records, printed documents, and rare newspaper collections. Part One is devoted to a social history of work and community. Topics covered include the company's labor, ethnic, and governing policies; the nature and composition of the social structure; the organization of work; the importance of the family economy; the functioning of immigrant communities within the larger American setting; and the competition for ethnic community leadership. The most important theme concerns the relationship of ethnic city to class formation and working class struggles. Windber's historic example shows that ethnic communities were not homogeneous entities but arenas of class conflict. Part Two is narrative presentation of the major struggle in which Windber mine participated.

  6. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2015-06-30

    The objective of this project was to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updated Techno-Economic Analysis and CO2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.

  7. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    SciTech Connect (OSTI)

    C. Doc Richardson; Nancy W. Hinman; Jill R. Scott

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  8. Functional glass slides for in vitro evaluation of interactions between osteosarcoma TE85 cells and mineral-binding ligands

    SciTech Connect (OSTI)

    Song, Jie; Chen, Julia; Klapperich, Catherine M.; Eng, Vincent; Bertozzi, Carolyn R.

    2004-07-20

    Primary amine-functionalized glass slides obtained through a multi-step plasma treatment were conjugated with anionic amino acids that are frequently found as mineral binding elements in acidic extracellular matrix components of natural bone. The modified glass surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Human osteosarcoma TE85 cells were cultured on these functionalized slides and analyses on both protein and gene expression levels were performed to probe the ''biocompatibility'' of the surface ligands. Cell attachment and proliferation on anionic surfaces were either better than or comparable to those of cells cultured on tissue culture polystyrene (TCPS). The modified glass surfaces promoted the expression of osteocalcin, alkaline phosphatase activity and ECM proteins such as fibronectin and vitronectin under differentiation culture conditions. Transcript analysis using gene chip microarrays confirmed that culturing TE85 cells on anionic surfaces did not activate apoptotic pathways. Collectively, these results suggest that the potential mineral-binding anionic ligands examined here do not exert significant adverse effects on the expression of important osteogenic markers of TE85 cells. This work paves the way for the incorporation of these ligands into 3-dimensional artificial bone-like scaffolds.

  9. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; Cygan, Randall Timothy

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  10. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    SciTech Connect (OSTI)

    Li, Ling; Kolle, Stefan; Weaver, James C.; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-26

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.

  11. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Ling; Kolle, Stefan; Weaver, James C.; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-26

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuummore » of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.« less

  12. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    SciTech Connect (OSTI)

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; Cygan, Randall Timothy

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for a montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.

  13. PHASE ANALYSES OF URANIUM-BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

    SciTech Connect (OSTI)

    M. Ren; P. Goodell; A. Kelts; E.Y. Anthony; M. Fayek; C. Fan; C. Beshears

    2005-07-11

    The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions.

  14. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, B.; Mishra, B.; Miller, C.; Wang, W.; Lai, B.; Brooks, S. C.; Kemner, K. M.; Liang, L.

    2014-09-30

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied a synchrotron-based X-ray fluorescence (XRF) microprobe to visualize and quantify directly the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg-contaminated freshwater system. Up to 175 μg g−1 Hg is found on suspended particles, but less than 0.01% is in the form of methylmercury. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM). The diatom-bound Hg is mostly foundmore » on outer surfaces of the cells, suggesting passive sorption of Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, may play an important role in affecting the partitioning, reactivity, and biogeochemical cycling of Hg in natural aquatic environments.« less

  15. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. The fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.

  16. Experimental and numerical analysis of parallel reactant flow and transverse mixing with mineral precipitation in homogeneous and heterogeneous porous media

    SciTech Connect (OSTI)

    Fox, Don T.; Guo, Luanjing; Fujita, Yoshiko; Huang, Hai; Redden, George

    2015-12-17

    Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous and high permeability inclusion experiments, BaSO4 precipitate (barite) formed in a narrow deposit along the length and in the center of the solution–solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO4 precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Lastly, migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction.

  17. Dissolution Kinetics of Synthetic and Natural Meta-Autunite Minerals, X??n????[(UO?)(PO?)]? ? xH?O, Under Acidic Conditions

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Gunderson, Katie M.; Icenhower, Jonathan P.; Forrester, Steven W.

    2007-11-01

    Mass transport within the uranium geochemical cycle is impacted by the availability of phosphorous. In oxidizing environments, in which the uranyl ionic species is typically mobile, formation of sparingly soluble uranyl phosphate minerals exert a strong influence on uranium transport. Autunite group minerals have been identified as the long-term uranium controlling phases in many systems of geochemical interest. Anthropogenic operations related to uranium mining operations have created acidic environments, exposing uranyl phosphate minerals to low pH groundwaters. Investigations regarding the dissolution behavior of autunite group minerals under acidic conditions have not been reported; consequently, knowledge of the longevity of uranium controlling solids is incomplete. The purpose of this investigation was to: 1) quantify the dissolution kinetics of natural calcium and synthetic sodium meta-autunite, under acidic conditions, 2) measure the effect of temperature and pH on meta-autunite mineral dissolution, and 3) investigate the formation of secondary uranyl phosphate phases as long-term controls on uranium migration. Single-pass flow-through (SPFT) dissolution tests were conducted over the pH range of 2 to 5 and from 5 to 70C. Results presented here illustrate meta-autunite dissolution kinetics are strongly dependent on pH, but are relatively insensitive to temperature variations. In addition, the formation of secondary uranyl-phosphate phases such as, uranyl phosphate, (UO2)3(PO4)2 ? 4 H2O, may serve as a secondary phase limiting the migration of uranium in the environment.

  18. Heavy mineral delineation of the Cretaceous, Paleocene, and Eocene stratigraphic sections at the Savannah River Site, Upper Coastal Plain of South Carolina

    SciTech Connect (OSTI)

    Cathcart, E.M. . Dept. of Geology); Sargent, K.A. . Dept. of Geology)

    1994-03-01

    The Upper Atlantic Coastal Plain of South Carolina consists of a fluvial-deltaic and shallow marine complex of unconsolidated sediments overlying the crystalline basement rocks of the North American continent. Because of the lateral and vertical variability of these sediments, stratigraphic boundaries have been difficult to distinguish. Portions of the Cretaceous, Paleocene, and eocene stratigraphic sections from cores recovered during the construction of two monitoring wells at the Savannah River Site were studied to determine if heavy mineral suites could be utilized to distinguish boundaries. The stratigraphic sections include: the Late Cretaceous Middendorf, Black Creek, and Steel Creek Formations, the Paleocene Snapp Formation, the late Paleocene-Early Eocene Fourmile Branch Formation, and the Early Eocene Congaree formation. In previous studies composite samples were taken over 2.5 ft. intervals along the cores and processed using a heavy liquid for heavy mineral recovery. During this study, heavy mineral distributions were determined by binocular microscope and the mineral identifications confirmed by x-ray diffraction analysis of hand-picked samples. The heavy mineral concentration data and grain size data were then compared to the stratigraphic boundary positions determined by other workers using more classical methods. These comparisons were used to establish the utility of this method for delineating the stratigraphic boundaries in the area of study.

  19. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2015-03-05

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3?, and POx (representing the sum of PO43?, HPO42?, and H2PO4?)) and five potential competitors (plantmoreroots, decomposing microbes, nitrifiers, denitrifiers, and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus, and free NH4+ at a tropical forest site (Tapajos). The overall model posterior uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results imply that the competitiveness (from most to least competitive) followed this order: (1) for NH4+, nitrifiers ~ decomposing microbes > plant roots, (2) for NO3?, denitrifiers ~ decomposing microbes > plant roots, (3) for POx, mineral surfaces > decomposing microbes ~ plant roots. Although smaller, plant relative competitiveness is of the same order of magnitude as microbes. We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in

  20. Quantitative assessment of alkali-reactive aggregate mineral content through XRD using polished sections as a supplementary tool to RILEM AAR-1 (petrographic method)

    SciTech Connect (OSTI)

    Castro, Nelia; Sorensen, Bjorn E.; Broekmans, Maarten A.T.M.

    2012-11-15

    The mineral content of 5 aggregate samples from 4 different countries, including reactive and non-reactive aggregate types, was assessed quantitatively by X-ray diffraction (XRD) using polished sections. Additionally, electron probe microanalyzer (EPMA) mapping and cathodoluminescence (CL) were used to characterize the opal-CT identified in one of the aggregate samples. Critical review of results from polished sections against traditionally powdered specimen has demonstrated that for fine-grained rocks without preferred orientation the assessment of mineral content by XRD using polished sections may represent an advantage over traditional powder specimens. Comparison of data on mineral content and silica speciation with expansion data from PARTNER project confirmed that the presence of opal-CT plays an important role in the reactivity of one of the studied aggregates. Used as a complementary tool to RILEM AAR-1, the methodology suggested in this paper has the potential to improve the strength of the petrographic method.

  1. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    SciTech Connect (OSTI)

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthite component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.

  2. Development of value-added products from alumina industry mineral wastes using low-temperature-setting phosphate ceramics

    SciTech Connect (OSTI)

    Wagh, A.S.; Jeong, Seung-Young; Singh, D.

    1996-01-01

    A room-temperature process for stabilizing mineral waste streams has been developed, based on acid-base reaction between MgO and H3PO4 or acid phosphate solution. The resulting waste form sets into a hard ceramic in a few hours. In this way, various alumina industry wastes, such as red mud and treated potliner waste, can be solidified into ceramics which can be used as structural materials in waste management and construction industry. Red mud ceramics made by this process were low-porosity materials ({approx}2 vol%) with a compression strength equal to portland cement concrete (4944 psi). Bonding mechanism appears to be result of reactions of boehmite, goethite, and bayerite with the acid solution, and also encapsulation of red mud particles in Mg phosphate matrix. Possible applications include liners for ponds and thickned tailings disposal, dikes for waste ponds, and grouts. Compatability problems arising at the interface of the liner and the waste are avoided.

  3. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    SciTech Connect (OSTI)

    Erba, A. Mahmoud, A.; Dovesi, R.; Belmonte, D.

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  4. Empirical kinetics and their role in elucidating the utility of transition-state theory to mineral-water reactions

    SciTech Connect (OSTI)

    Icenhower, Jonathan P.

    2015-06-23

    Transition-state theory (TST) is a successful theory for understanding many different types of reactions, but its application to mineralwater systems has not been successful, especially as the system approaches saturation with respect to a rate-limiting phase. A number of investigators have proposed alternate frameworks for using the kinetic rate data to construct models of dissolution, including Truesdale (Aquat Geochem, 2015; this issue). This alternate approach has been resisted, in spite of self-evident discrepancies between TST expectations and the data. The failure of TST under certain circumstances is a result of the presence of metastable intermediaries or reaction layers that form on the surface of reacting solids, and these phenomena are not anticipated by the current theory. Furthermore, alternate approaches, such as the shrinking object model advocated by Truesdale, represent a potentially important avenue for advancing the science of dissolution kinetics.

  5. Empirical kinetics and their role in elucidating the utility of transition-state theory to mineral-water reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Icenhower, Jonathan P.

    2015-06-23

    Transition-state theory (TST) is a successful theory for understanding many different types of reactions, but its application to mineralwater systems has not been successful, especially as the system approaches saturation with respect to a rate-limiting phase. A number of investigators have proposed alternate frameworks for using the kinetic rate data to construct models of dissolution, including Truesdale (Aquat Geochem, 2015; this issue). This alternate approach has been resisted, in spite of self-evident discrepancies between TST expectations and the data. The failure of TST under certain circumstances is a result of the presence of metastable intermediaries or reaction layers that formmoreon the surface of reacting solids, and these phenomena are not anticipated by the current theory. Furthermore, alternate approaches, such as the shrinking object model advocated by Truesdale, represent a potentially important avenue for advancing the science of dissolution kinetics.less

  6. Experimental and numerical analysis of parallel reactant flow and transverse mixing with mineral precipitation in homogeneous and heterogeneous porous media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fox, Don T.; Guo, Luanjing; Fujita, Yoshiko; Huang, Hai; Redden, George

    2015-12-17

    Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous andmore » high permeability inclusion experiments, BaSO4 precipitate (barite) formed in a narrow deposit along the length and in the center of the solution–solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO4 precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Lastly, migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction.« less

  7. Analysis of Potential Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO2

    SciTech Connect (OSTI)

    Evans, James

    2013-05-01

    normal faults in the Permian Cedar Mesa Sandstone, southeastern Utah. These faults are characterized by a single slip surfaces and damage zones containing deformation bands, veins, and joints. Field observations include crosscutting relationships, permeability increase, rock strength decrease, and ultraviolet light induced mineral fluorescence within the damage zone. These field observations combined with the interpreted paragenetic sequence from petrographic analysis, suggests a deformation history of reactivation and several mineralization events in an otherwise low-permeability fault. All deformation bands and veins fluoresce under ultraviolet light, suggesting connectivity and a shared mineralization history. Pre-­existing deformation features act as loci for younger deformation and mineralization events, this fault and its damage zone illustrate the importance of the fault damage zone to subsurface fluid flow. We model a simplified stress history in order to understand the importance of rock properties and magnitude of tectonic stress on the deformation features within the damage zone. The moderate confining pressures, possible variations in pore pressure, and the porous, fine-­grained nature of the Cedar Mesa Sandstone results in a fault damage zone characterized by enhanced permeability, subsurface fluid flow, and mineralization. Structural setting greatly influences fracture spacing and orientation. Three structural settings were examined and include fault proximity, a fold limb of constant dip, and a setting proximal to the syncline hinge. Fracture spacing and dominant fracture orientation vary at each setting and distinctions between regional and local paleo-stress directions can be made. Joints on the fold limb strike normal to the fold axis/bedding and are interpreted to be sub-parallel to the maximum regional paleo-stress direction as there is no fold related strain. Joints proximal to faults and the syncline hinge may have formed under local stress

  8. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.

    2015-04-29

    It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore » large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (66 ± 2%) was rapid (11 to 26 years; mean and SE: 18 ± 3 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial–millennial turnover was typically much less abundant (34 ± 3%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral-associated C over decadal scales. Steady-state inputs of mineral-associated C were statistically similar among the three topographic positions, and could represent 10–25% of annual litter production. Observed trends in mineral-associated Δ14C over time could not be fit using the single-pool model used in many other studies, which generated contradictory relationships between turnover and Δ14C as compared with a more realistic two-pool model. The large C fluxes in surface and near-surface soils documented here are supported by findings from paired 14C studies in other types of ecosystems, and

  9. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.

    2015-01-16

    It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore » large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (74 ± 4%) was rapid (9 to 29 years, mean and SE 20 ± 2 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial – millennial turnover was much less abundant (26%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral associated C over decadal scales. Steady-state inputs of mineral-associated C were similar among the three topographic positions, and could represent 10–30% of annual litterfall production (estimated by doubling aboveground litterfall). Observed trends in mineral-associated Δ14C over time could not be fit using the single pool model used in many other studies, which generated contradictory relationships between turnover and Δ14C as compared with a more realistic constrained two-pool model. The large C fluxes in surface and near-surface soils implied by our data suggest that other studies using single-pool Δ14C

  10. Experimental study of thermal resistance values (R-values) of low-density mineral-fiber building insulation batts commercially available in 1977

    SciTech Connect (OSTI)

    Tye, R.P.; Desjarlais, A.O.; Yarbrough, D.W.; McElroy, D.L.

    1980-04-01

    This study was initiated in June 1977 to obtain and evaluate full-thickness thermal performance data on mineral fiber, i.e., fiberglass and rock wool, batt-type insulations. The study aimed to obtain full-thickness thermal performance data and to assess other properties of mineral fiber building insulations. The physical property measurements discussed in this report provide a measure of the range of values for density, thickness, and R-value based on a sampling of low-density mineral-fiber building insulation batts purchased in the marketplace in 1977. The experimental data were used to establish mean R-values at nominal (label) thickness of R-11 and R-19 fiberglass batts and R-11 rock wool batts. The full-thickness and sliced testing techniques provided a set of R-values on the purchased samples that were converted to R-values at label thickness by using a particular correlation of apparent thermal conductivity and density. The full thickness results indicate surprisingly large percentages below labeled R-value for these four types of mineral fiber insulation. A statistical analysis of these data based on the assumption of normally distributed properties is included. This yielded estimates of similar magnitude for the population from which the samples were purchased. An urgency for continued sampling and further testing of mineral fiber insulations by many laboratories was identified. The differences between results obtained with the sliced technique and results obtained with full-thickness testing must be thoroughly understood and documented so that adjustment factors for the thickness effect can be accurately established. (LCL)

  11. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2016-01-18

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3− and POx; representing the sum of PO43−, HPO42− and H2PO4−) and five potential competitors (plantmore » roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed

  12. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    SciTech Connect (OSTI)

    Lee, Mal Soon; McGrail, B. Peter; Rousseau, Roger J.; Glezakou, Vassiliki Alexandra

    2015-10-12

    The interface between a solid and a complex multi-component liquid forms a unique reaction environment whose structure and composition can significantly deviate from either bulk or liquid phase and is poorly understood due the innate difficulty to obtain molecular level information. Feldspar minerals, as typified by the Ca-end member Anorthite, serve as prototypical model systems to assess the reactivity and ion mobility at solid/water-bearing supercritical fluid (WBSF) interfaces due to recent X-ray based measurements that provide information on water-film formation, and cation vacancies at these surfaces. Using density functional theory based molecular dynamics, which allows the evaluation of reactivity and condensed phase dynamics on equal footing, we report on the structure and dynamics of water nucleation and surface aggregation, carbonation and Ca mobilization under geologic carbon sequestration scenarios (T=323 K and P=90 bar). We find that water has a strong enthalpic preference for aggregation on a Ca-rich, O-terminated anorthite (001) surface, but entropy strongly hinders the film formation at very low water concentrations. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies, when in contact with supercritical CO2. Cation vacancies of this type can form readily in the presence of a water layer that allows for facile and enthalpicly favorable Ca2+ extraction and solvation. Apart from providing unprecedented molecular level detail of a complex three component (mineral, water and scCO2) system), this work highlights the ability of modern capabilities of AIMD methods to begin to qualitatively and quantitatively address structure and reactivity at solid-liquid interfaces of high chemical complexity. This work was supported by the US Department of Energy, Office of Fossil Energy (M.-S. L., B. P. M. and V.-A. G.) and the Office of Basic Energy Science, Division of Chemical Sciences, Geosciences and Biosciences

  13. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    SciTech Connect (OSTI)

    Smietana, Michael J.; Arruda, Ellen M.; Mechanical Engineering, University of Michigan, 2250 GG Brown, 2350 Hayward, Ann Arbor, MI 48109; Program in Macromolecular Science and Engineering, University of Michigan, 2250 GG Brown, 2350 Hayward, Ann Arbor, MI 48109 ; Faulkner, John A.; Brooks, Susan V.; Molecular and Integrative Physiology, University of Michigan, 2025 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 ; Larkin, Lisa M.

    2010-12-03

    Research highlights: {yields} Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. {yields} Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. {yields} Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Mice deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1{sup -/-} mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1{sup -/-} mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm{sup 2}) and strength (MPa) is diminished in Sod1{sup -/-} compared to WT mice. Femurs were obtained from male and female WT and Sod1{sup -/-} mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1{sup -/-} mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1{sup -/-} mice compared to WT as well as between genders. These

  14. Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

    SciTech Connect (OSTI)

    Martini, B; Silver, E; Pickles, W; Cocks, P

    2004-03-25

    Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

  15. Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

    SciTech Connect (OSTI)

    Pickles, W L; Martini, B A; Silver, E A; Cocks, P A

    2004-03-03

    Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

  16. A way of work and a way of life: Coal mining and coal miners in Thurber, Texas, 1888-1926

    SciTech Connect (OSTI)

    Rhinehart, M.D.

    1988-01-01

    Founded in the late 1800s on the western edge of North Central Texas, Thurber Village thrived for almost 35 years as a coal-mining company town dependent on the railroads' need for fuel. By the turn of the century a largely immigrant population dominated by Italians and Poles lived and toiled in the camp, but despite ethnic and racial differences, a sense of community based on occupational ties shaped life there. Shared traditions, grievances, fears, and expectations of autonomy at the work place facilitated protest and influenced social activities in the miners' after-work lives. A way of work thus expanded into a way of life. Poor employer/employee relations plagued Hunter from the first days of Thurber's existence. Workers resented perennial company interference in their lives and used traditional forms of protest to resist it. By the end of the 1910s Thurber's fortunes waned as the railroad turned to petroleum for fuel and labor demands taxed the coal operators' patience. The Texas Pacific Coal Company added oil to its name and focused attention on its petroleum prospects. After a series of labor difficulties in the 1920s, coal production halted in 1926.

  17. Understanding the chemical properties of macerals and minerals in coal and its potential application for occupational lung disease prevention

    SciTech Connect (OSTI)

    Huang, X.; Finkelman, R.B.

    2008-07-01

    The objective of this review was to assess whether some chemical parameters in coal play a role in producing environmental health problems. Basic properties of coal - such as chemical forms of the organic materials, structure, compositions of minerals - vary from one coal mine region to another as well as from coals of different ranks. Most importantly, changes in chemical properties of coals due to exposure to air and humidity after mining - a dynamic process - significantly affect toxicity attributed to coal and environmental fate. Although coal is an extremely complex and heterogeneous material, the fundamental properties of coal responsible for environmental and adverse health problems are probably related to the same inducing components of coal. For instance, oxidation of pyrite (FeS{sub 2}) in the coal forms iron sulfate and sulfuric acid, which produces occupational lung diseases (e.g., pneumoconiosis) and other environmental problems (e.g., acid mine drainage and acid rain). Calcite (CaCO{sub 3}) contained in certain coals alters the end products of pyrite oxidation, which may make these coals less toxic to human inhalation and less hazardous to environmental pollution. Finally, knowledge gained on understanding of the chemical properties of coals is illustrated to apply for prediction of toxicity due to coal possibly before large-scale mining and prevention of occupational lung disease during mining.

  18. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    SciTech Connect (OSTI)

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M. ); McDonnell, J.R. )

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.

  19. North Carolina/Minerals Management Service technical workshop on Manteo Unit exploration held on February 4--5, 1998

    SciTech Connect (OSTI)

    Vigil, D.L.

    1998-05-01

    The US Department of Interior`s Minerals Management Service (MMS) has the responsibility of regulating exploration and development by the oil and gas industry on the US Outer Continental Shelf (OCS). There is an area of active leases approximately 45 miles east-northeast of Cape Hatteras, North Carolina, referred to as the Manteo Unit. Chevron U.S.A. may propose to drill a single exploratory well in either Block 467 or 510 of the Manteo Unit with a specially outfitted drilling rig. To review environmental and socioeconomic information known, and needed, on the Manteo Unit, a workshop was conducted of February 4--5, 1998, with the North Carolina Department of Environment and Natural Resources (DENR). The objectives of the workshop were to review the state of knowledge for drilling a single exploratory well in either Block 467 or 510; share scientific information obtained since 1990; distinguish between exploration and development activities; share information on drilling technology and industry experience operating in similar physical environments; address scientific concerns regarding the potential impacts of OCS drilling on biological resources; and address concerns regarding onshore (social and economic) impacts from OCS drilling.

  20. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    SciTech Connect (OSTI)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Crawford, C. L.; Daniel, W. E.; Fox, K. M.; Herman, C. C.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.; Brown, C. F.; Qafoku, N. P.; Neeway, J. J.; Valenta, M. M.; Gill, G. A.; Swanberg, D. J.; Robbins, R. A.; Thompson, L. E.

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  1. Reducing volatilization of heavy metals in phosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-like minerals

    SciTech Connect (OSTI)

    Sun Ying; Zheng Jianchang; Zou Luquan; Liu Qiang; Zhu Ping; Qian Guangren

    2011-02-15

    This research investigated the feasibility of reducing volatilization of heavy metals (lead, zinc and cadmium) in municipal solid waste incineration (MSWI) fly ash by forming pyromorphite-like minerals via phosphate pre-treatment. To evaluate the evaporation characteristics of three heavy metals from phosphate-pretreated MSWI fly ash, volatilization tests have been performed by means of a dedicated apparatus in the 100-1000 deg. C range. The toxicity characteristic leaching procedure (TCLP) test and BCR sequential extraction procedure were applied to assess phosphate stabilization process. The results showed that the volatilization behavior in phosphate-pretreated MSWI fly ash could be reduced effectively. Pyromorphite-like minerals formed in phosphate-pretreated MSWI fly ash were mainly responsible for the volatilization reduction of heavy metals in MSWI fly ash at higher temperature, due to their chemical fixation and thermal stabilization for heavy metals. The stabilization effects were encouraging for the potential reuse of MSWI fly ash.

  2. Review of mineral estate of the United States at Naval Petroleum Reserve No. 2, Buena Vista Hills Field, Kern County, California

    SciTech Connect (OSTI)

    1996-08-09

    The purpose of this report is to present this Consultant`s findings regarding the nature and extent of the mineral estate of the United States at National Petroleum Reserve No. 2 (NPR-2), Buena Vista Hills Field, Kern County, California. Determination of the mineral estate is a necessary prerequisite to this Consultant`s calculation of estimated future cash flows attributable to said estate, which calculations are presented in the accompanying report entitled ``Phase II Final Report, Study of Alternatives for Future Operations of the Naval Petroleum and Oil Shale Reserves, NPR-2, California.`` This Report contains a discussion of the leases in effect at NPR-2 and subsequent contracts affecting such leases. This Report also summarizes discrepancies found between the current royalty calculation procedures utilized at NPR-2 and those procedures required under applicable agreements and regulations. Recommendations for maximizing the government`s income stream at NPR-2 are discussed in the concluding section of this Report.

  3. Geology and mineral resources of the Caliente, Ely, Klamath Falls, VYA, and wells 1/sup 0/ x 2/sup 0/ NTMS quadrangles. National Uranium Resource Evaluation Program

    SciTech Connect (OSTI)

    Karfunkel, B.S.

    1983-03-01

    This document provides geologic and mineral resources data for the Caliente, Ely, Klamath Falls, Vya, and Wells 1/sup 0/ x 2/sup 0/ National Topographic Map Series (NTMS) Quadrangles, located in the western United States. Hydrogeochemical and stream sediment reports for the Klamath Falls, Vya, and Wells Quadrangles have been previously issued by Savannah River Laboratory (SRL) as part of the National Uranium Resource Evaluation (NURE) program.

  4. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 1/sup 0/ x 2/sup 0/ NTMS quadrangles. National Uranium Resource Evaluation program

    SciTech Connect (OSTI)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1/sup 0/ x 2/sup 0/ National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program.

  5. An investigation of groundwater organics, soil minerals, and activated carbon on the complexation, adsorption, and separation of technetium-99

    SciTech Connect (OSTI)

    Gu, B.; Dowlen, K.E.

    1996-01-01

    This report summarizes studies on the interactions of technetium-99 (Tc) with different organic compounds and soil minerals under both oxidizing and reducing conditions. The report is divided into four parts and includes (1) effect of natural organic matter (NOM) on the complexation and solubility of Tc, (2) complexation between Tc and trichloroethylene (TCE) in aqueous solutions, (3) adsorption of Tc on soil samples from Paducah Gaseous Diffusion Plant (PGDP), and (4) adsorption and separation of Tc on activated carbon. Various experimental techniques were applied to characterize and identify Tc complexation with organic compounds and TCE, including liquid-liquid extraction, membrane filtration, size exclusion, and gel chromatography. Results indicate, within the experimental error, Tc (as pertechnetate, TcO{sub 4}) did not appear to form complexes with groundwater or natural organic matter under both atmospheric and reducing conditions. However, Tc can form complexes with certain organic compounds or specific functional groups such as salicylate. Tc did not appear to form complexes with TCE in aqueous solution.Both liquid-liquid extraction and high performance liquid chromatography (HPLC) gave no indication Tc was complexed with TCE. The correlations between Tc and TCE concentrations in monitoring wells at PGDP may be a coincidence because TCE was commonly used as a decontamination reagent. Once TCE and Tc entered the groundwater, they behaved similarly because both TcO{sub 4}{sup {minus}} and TCE are poorly adsorbed by soils. An effective remediation technique to remove TcO{sub 4}{sup {minus}} from PGDP contaminated groundwater is needed. One possibility is the use of an activated carbon adsorption technique developed in this study.

  6. 100th anniversary special paper: Sedimentary mineral deposits and the evolution of earth's near-surface environments

    SciTech Connect (OSTI)

    Holland, H.D. [Harvard University, Cambridge, MA (United States). Dept. of Earth & Planetary Science

    2005-12-15

    The nature of sedimentary mineral deposits has evolved during Earth's history in concert with changes in the oxidation (redo) state of the ocean-atmosphere system, biological evolution, and the growing importance of geologically young accumulations of ore-grade material. There is now strong evidence that the atmosphere and the oceans were anoxic, or essentially anoxic, before 2.4 Ga. Banded iron formations (BIF) and the detrital uranium ores formed prior to 2.4 Ga are consistent with such a state. The period between 2.4 and 2.0 Ga is called the Great Oxidation Event by some. Its ores bear unmistakable marks of the presence of atmospheric O{sub 2}. Between 1.8 and 0.8 Ga the Earth system seems to have been remarkably stable. Sedimentary ore deposits of this period were influenced by the presence of O{sub 2}. BIF, sedimentary manganese, and phosphorites disappeared ca. 1.8 Ga, but sedimentary exhalative (SEDEX) deposits and unconformity-type uranium deposits flourished, and nonsulfide zinc deposits put in an appearance. The period between 0.8 Ga and the end of the Proterozoic at 0.54 Ga was as turbulent or more so than the Paleoproterozoic. BIF returned, as did sedimentary manganese deposits and phosphorites. A further rise in the O{sub 2} content of the atmosphere and an increase in the sulfate concentration of seawater during this period brought the composition of the atmosphere and of seawater close to their present redox state. The last 540 m.y. of Earth's history have seen the system pass through two supercycles of roughly equal length. Climate, the redox stratification of the oceans ocean mixing, and the nature of sedimentary ores were influenced by tectonically and volcanically driven changes during these supercycles. The evolution of the higher land plants gave rise to coal deposits and sandstone-type uranium ores and was important for the formation of bauxites.

  7. ATOMISTIC MODELING OF OIL SHALE KEROGENS AND ASPHALTENES ALONG WITH THEIR INTERACTIONS WITH THE INORGANIC MINERAL MATRIX

    SciTech Connect (OSTI)

    Facelli, Julio; Pugmire, Ronald; Pimienta, Ian

    2011-03-31

    The goal of this project is to obtain and validate three dimensional atomistic models for the organic matter in both oil shales and oil sands. In the case of oil shales the modeling was completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in this report were developed starting from existing literature two dimensional models. The models developed included one kerogen, based on experimental data on a kerogen isolated from a Green River oil shale, and a set of six representative asphaltenes. Subsequently, the interactions between these organic models and an inorganic matrix was explored in order to gain insight into the chemical nature of this interaction, which could provide vital information in developing efficient methods to remove the organic material from inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an aluminum silicate oxide clay. In order to obtain the feedback necessary to validate the models, it is necessary to be able to calculate different observable quantities and to show that these observables both reproduce the results of experimental measurements on actual samples as well as that the observables are sensitive to structural differences between models. The observables that were calculated using the models include 13C NMR spectra, the IR vibrational spectra, and the atomic pair wise distribution function; these were chosen as they are among the methods for which both experimental and calculated values can be readily obtained. Where available, comparison was made to experiment results. Finally, molecular dynamic simulations of pyrolysis were completed on the models to gain an understanding into the nature of the decomposition of these materials when heated.

  8. Exposure to cadmium and persistent organochlorine pollutants and its association with bone mineral density and markers of bone metabolism on postmenopausal women

    SciTech Connect (OSTI)

    Rignell-Hydbom, A.; Skerfving, S.; Lundh, T.; Lindh, C.H.; Elmstahl, S.; Bjellerup, P.; Juensson, B.A.G.; Struemberg, U.; Akesson, A.

    2009-11-15

    Environmental contaminants such as cadmium and persistent organochlorine pollutants have been proposed as risk factors of osteoporosis, and women may be at an increased risk. To assess associations between exposure to cadmium and two different POPs (2,2',4,4',5,5'-hexachlorobiphenyl CB-153, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene p,p'-DDE), on one hand, and bone effects, on the other, in a population-based study among postmenopausal (60-70 years) Swedish women with biobanked blood samples. The study included 908 women and was designed to have a large contrast of bone mineral densities, measured with a single photon absorptiometry technique in the non-dominant forearm. Biochemical markers related to bone metabolism were analyzed in serum. Exposure assessment was based on cadmium concentrations in erythrocytes and serum concentrations of CB-153 and p,p'-DDE. Cadmium was negatively associated with bone mineral density and parathyroid hormone, positively with the marker of bone resorption. However, this association disappeared after adjustment for smoking. The major DDT metabolite (p,p'-DDE) was positively associated with bone mineral density, an association which remained after adjustment for confounders, but the effect was weak. There was no evidence that the estrogenic congener (CB-153) was associated with any of the bone markers. In conclusion, no convincing associations were observed between cadmium and POPs, on one hand, and bone metabolism markers and BMD, on the other.

  9. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    SciTech Connect (OSTI)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  10. The relationship between the bone mineral density and urinary cadmium concentration of residents in an industrial complex

    SciTech Connect (OSTI)

    Shin, Minah; Paek, Domyung; Yoon, Chungsik

    2011-01-15

    Background: An association between cadmium exposure and bone mineral density (BMD) has been demonstrated in elderly women, but has not been well studied in youths and men. Some studies report either no or a weak association between cadmium exposure and bone damage. Objectives: This study was designed to investigate the relationship between the urinary cadmium (U-Cd) levels and BMD of females and males of all ages. Methods: A total of 804 residents near an industrial complex were surveyed in 2007. U-Cd and BMD on the heel (non-dominant calcaneus) were analyzed with AAS-GTA and Dual-Energy X-ray absorptiometry, respectively. Demographic characteristics were collected by structured questionnaires. Osteoporosis and osteopenia were defined by BMD cut-off values and T-scores set by the WHO; T score>-1, normal; -2.5=}1.0 {mu}g/g creatinine) in females (OR=2.92; 95% CI, 1.51-5.64) and in males (OR=3.37; 95% CI, 1.09-10.38). With the multiple linear regression model, the BMD of the adult group was negatively associated with U-Cd (<0.05), gender (female, p<0.001) and age (p<0.001). The BMD of participants who were {<=}19 years of age was negatively associated with gender (female, p<0.01), whereas it was positively associated with age and BMI (p<0.001). BMD was not associated with exercise, smoking habits, alcohol consumption, job or parental education. Conclusion: Results suggested that U-Cd might be associated with osteopenia as well as osteoporosis in both male and female adults. Age and female gender were negatively associated with BMD in the adult group, whereas age was positively

  11. Isotopes of uranium and thorium, lead-210, and polonium-210 in the lungs of coal miners of Appalachia and the lungs and livers of residents of central Ohio

    SciTech Connect (OSTI)

    Gilbert, G.E.; Casella, V.R.; Bishop, C.T.; Aguirre, A.G.

    1985-10-21

    The lungs of twelve and the livers of three residents of central Ohio and the lungs of four coal miners of Appalachia were analyzed for uranium-238, uranium-234, thorium-230, lead-210, polonium-210, and thorium-232. Mean and median lung concentrations of uranium-238 and of uranium-234 in the lungs of central Ohioans were essentially the same and were equal to 4 fCi/g dry. Mean concentrations of these isotopes in the lungs of Appalachian coal miners were also essentially the same and were equal to 9 fCi/g. Little uranium was found in the liver. The median concentration of thorium-230 in the lungs of central Ohioans was also 4 fCi/g dry; however, the mean concentration was 8 fCi/g due to the relatively high concentration values in a few persons. The mean concentrations of this isotope in the lungs of central Ohioans and Appalachian coal miners were essentially the same; i.e. 8 fCi/g. The mean and median concentrations of thorium-232 in the lungs of central Ohioans were assentially the same and equal to 4 fCi/g. The mean concentration of this isotope in the lungs of Appalachian coal miners was 9 fCi/g. Little thorium was found in the liver. The mean concentrations of lead-210 in the lungs of the two populations were nearly equal and about 23 fCi/g dry. The mean liver/lung ratio of this isotope was essentially two, and the concentrations appeared to be positively correlated with smoking. Polonium-210 concentrations in the lungs were distributed into three sets of values which are described here as low (2-4 fCi/g), medium (20-30 fCi/g), and high (>100 fCi/g), and also appeared to be correlated with smoking. Mean liver concentrations of this irotope were nearly equal to the mean liver concentrations of lead-210 (50 as opposed to 47 fCi/g). 18 refs., 6 tabs.

  12. Iron transformation pathways and redox micro-environments in seafloor sulfide-mineral deposits: Spatially resolved Fe XAS and δ57/54Fe observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; Bach, Wolfgang; Edwards, Katrina J.

    2016-05-10

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The

  13. Mineral planning in Great Britain and its relevance to the American mining industry. Final report, 1 December 1980-31 May 1981

    SciTech Connect (OSTI)

    Saperstein, L.W.

    1989-01-01

    In the United States, approval of surface coal mine permits became more complex with the imposition of certain additional and relatively untested requirements by the Surface Mining Control and Reclamation Act of 1977. Sections of the Act contain substantial pre-mining land-use planning requirements. The British system has been chosen for comparative study. All mining permits are granted in Great Britain within an overall land-use planning system. The British planning system is summarized with emphasis placed on minerals. Although planning systems are a well-described subject, little documentation addresses the special problems of mining companies. The first study helps to fill this gap.

  14. Technetium Reduction and Permanent Sequestration by Abiotic and Biotic Formation of Low-Solubility Sulfide Mineral Phases

    SciTech Connect (OSTI)

    Tratnyek, Paul G.; Tebo, Bradley M.; Fan, Dimin; Anitori, Roberto; Szecsody, Jim; Jansik, Danielle

    2015-11-14

    One way to minimize the mobility of the TcVII oxyanion pertechnetate (TcO4-) is to effect reduction under sulfidogenic conditions (generated abiotically by Fe0 or biotically) to form TcSx, which is significantly slower to oxidize than TcIVO2. In sediment systems, TcSx and other precipitates may oxidize more slowly due to oxygen diffusion limitations to these low permeability precipitate zones. In addition, the TcO4- reduction rate may be more rapid in the presence of sediment because of additional reductive surface phases. This project aims to provide a fundamental understanding of the feasibility of immobilization of TcO4- as TcSx in the vadose zone or groundwater by application nano zero-valent iron (nZVI), and sulfide or sulfate. Biotic batch experiments have used the sulfate-reducing bacterium (SRB) Desulfotomaculum reducens. The iron sulfide mineral mackinawite was generated under these conditions, while vivianite was formed in nZVI only controls. The sulfide/bacteria-containing system consistently reduced aqueous pertechnetate rapidly (> 95% in the first hour), a rate similar to that for the sulfide-free, nZVI only system. Reduced Tc (aged for 3 months) generated in both SRB/nZVI systems was highly resistant to reoxidation. In reduced samples, Tc was found associated with solid phases containing Fe and S (D. reducens/nZVI) or Fe (nZVI only). Experiments using D. reducens without nZVI provided some additional insights. Firstly, stationary phase cultures were able to slowly reduce pertechnetate. Secondly, addition of pertechnetate at the beginning of cell growth (lag phase) resulted in a faster rate of Tc reduction, possibly indicating a direct (e.g. enzymatic) role for D. reducens in Tc reduction. Abiotic batch experiments were conducted with Na2S as the sulfide source. Pertechnetate reduction was

  15. Origin and diagenesis of clay minerals in relation to sandstone paragenesis: An example in eolian dune reservoirs and associated rocks, Permian upper part of the Minnelusa Formation, Powder River basin, Wyoming

    SciTech Connect (OSTI)

    Pollastro, R.M.; Schenk, C.J. )

    1991-06-01

    Eolian dune sandstones are the principal reservoir rocks in the Permian upper part of the Minnelusa Formation, Powder River basin, Wyoming. These sandstones formed as shorelines retreated and dunes migrated across siliciclastic sabkhas. Sandstones are mainly quartzarenites; on average, clay minerals constitute about 5 wt.% the whole rock. Although present in minor amounts, clay minerals play an important role in the diagenetic evolution of these sandstones. Allogenic clay minerals are present in shaly rock fragments and laminae. Early infiltration of clays into porous sabkha sands commonly form characteristic menisei or bridges between framework grains or, when more extensive, form coatings or rims on grain surfaces. Authigenic clays include nearly pure smectite, mixed-layer illite/smectite (I/S), and late diagenetic illite and corrensite; these clay minerals are present as pore-lining cements. In addition to the deposition and neoformation of clay minerals throughout sandstone paragenesis, the conversion of smectite to illite occurred as temperatures increased with progressive burial. A temperature of 103C is calculated at a present depth of 3,200 m using a geothermal gradient of 30C/km and a mean annual surface temperature of 7C. After correction for uplift and erosion (250 m), the maximum calculated temperature for the conversion of all random I/S to ordered I/S is 100C. This calculated temperature is in excellent agreement with temperatures of 100-110C implied from I/S geothermometry.

  16. Electricity Advisory Committee Meeting Presentations June 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Richard Cowart, RAP, moderator Reid Harvey, EPA Sue Tierney, Analysis Group Ken ... SDB&E (1.19 MB) Panel Presentation - Reid Harvey, EPA (761.46 KB) Panel Presentation - Sue ...

  17. Proceedings of the sixteenth international symposium on mine planning and equipment selection (MPES 2007) and the tenth international symposium on environmental issues and waste management in energy and mineral production (SWEMP 2007)

    SciTech Connect (OSTI)

    Singhal, R.K.; Fytas, K.; Jongsiri, S.; Ge, Hao

    2007-07-01

    Papers presented at MPES 2007 covered: coal mining and clean coal processing technologies; control, design and planning of surface and underground mines; drilling, blasting and excavation engineering; mining equipment selection; automation and information technology; maintenance and production management for mines and mining systems; health, safety and environment; cost effective methods of mine reclamation; mine closure and waste disposal; and rock mechanics and geotechnical issues. Papers from SWEMP 2007 discussed methods and technologies for assessing, minimizing and preventing environmental problems associated with mineral and energy production. Topics included environmental impacts of coal-fired power projects; emission control in thermal power plants; greenhouse gas abatement technologies; remediation of contaminated soil and groundwater; environmental issues in surface and underground mining of coal, minerals and ores; managing mine waste and mine water; and control of effluents from mineral processing, metallurgical and chemical plants.

  18. SIMULTANEOUS MECHANICAL AND HEAT ACTIVATION: A NEW ROUTE TO ENHANCE SERPENTINE CARBONATION REACTIVITY AND LOWER CO2 MINERAL SEQUESTRATION PROCESS COST

    SciTech Connect (OSTI)

    M.J. McKelvy; J. Diefenbacher; R. Nunez; R.W. Carpenter; A.V.G. Chizmeshya

    2005-01-01

    Coal can support a large fraction of global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other candidate technologies, which propose long-term storage (e.g., ocean and geological sequestration), mineral sequestration permanently disposes of CO{sub 2} as geologically stable mineral carbonates. Only benign, naturally occurring materials are formed, eliminating long-term storage and liability issues. Serpentine carbonation is a leading mineral sequestration process candidate, which offers large scale, permanent sequestration. Deposits exceed those needed to carbonate all the CO{sub 2} that could be generated from global coal reserves, and mining and milling costs are reasonable ({approx}$4 to $5/ton). Carbonation is exothermic, providing exciting low-cost process potential. The remaining goal is to develop an economically viable process. An essential step in this development is increasing the carbonation reaction rate and degree of completion, without substantially impacting other process costs. Recently, the Albany Research Center (ARC) has accelerated serpentine carbonation, which occurs naturally over geological time, to near completion in less than an hour. While reaction rates for natural serpentine have been found to be too slow for practical application, both heat and mechanical (attrition grinding) pretreatment were found to substantially enhance carbonation reactivity. Unfortunately, these processes are too energy intensive to be cost-effective in their present form. In this project we explored the potential that utilizing power plant waste heat (e.g., available up to {approx}200-250 C) during mechanical activation (i.e., thermomechanical activation) offers to enhance serpentine mineral carbonation, while reducing pretreatment energy consumption and process cost. This project was carried out in collaboration with the Albany Research Center (ARC) to maximize the insight into the

  19. Employment-generating projects for the energy and minerals sectors of Honduras. Proyectos generadores de empleos para los sectores energetico y minero de Honduras

    SciTech Connect (OSTI)

    Frank, J.A.

    1988-12-01

    A mission to Honduras invited by the Government of Honduras and sponsored by the Organization of American States addressed the generation of employment in various areas of interest to the country. The mission was made up of experts from numerous countries and international agencies. In the energy sector, the mission recommended consolidating the sector under a coordinating body; carrying out projects to promote reforestation, tree farms, and rational forest utilization; encouraging industrial energy conservation; developing alternative energy sources; and promoting rural electrification and expansion of the electrical grid. In the mining sector, the mission supported promotion and technical assistance for small gold-leaching and placer operations, the national mineral inventory, detailed exploration of promising sites, and the development of a mining school. 13 refs., 7 tabs.

  20. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  1. Effect of calcination temperature on structural and photocatalyst properties of nanofibers prepared from low-cost natural ilmenite mineral by simple hydrothermal method

    SciTech Connect (OSTI)

    Simpraditpan, Athapon; Wirunmongkol, Thanakorn; Pavasupree, Sorapong; Pecharapa, Wisanu

    2013-09-01

    Graphical abstract: - Highlights: Nanofibers were prepared from low-cost ilmenite mineral via simple hydrothermal. High photocatalyst nanofibers were prepared via post heat treatment method. The nanofibers calcined at 100700 C for 2 h maintained nanofiber structure. The calcined nanofibers at 400 C showed the highest photocatalytic activity. - Abstract: Titanate nanofibers were synthesized via the hydrothermal method (120 C for 72 h) using natural ilmenite mineral (FeTiO{sub 3}) as the starting material. The samples were characterized by X-ray diffraction (XRD), X-ray fluorescent (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BrunauerEmmettTeller (BET) for specific surface area. The nanofibers were 2090 nm in diameter and 27 ?m in length. The as-synthesized nanofibers calcined at 300400 C showed TiO{sub 2} (B) whereas the nanofibers calcined at 500 C revealed a mixture of two phases of TiO{sub 2} (B) and anatase. The nanofibers calcined at high temperature of 6001000 C showed a mixture of tri-crystalline of anatase, rutile, and Fe{sub 2}O{sub 3}. The rutile phase increased with increasing calcination temperature. The nanofibers calcined at 300700 C maintained their structure while the morphology of the nanofibers calcined at 8001000 C transformed into submicron rod-like structure. This increase of calcination temperature led to the phase transformation from thermodynamically metastable anatase to the most stable form of rutile phase. The crystallite size of prepared samples increased with increasing calcination temperature. Interestingly, with increasing calcination temperature, the absorption edge of the prepared samples shows an obvious shift to visible light region due to the change of crystallite phase and increased crystallite size. Therefore, the band gap energy of the prepared samples became narrower with increasing calcination temperature. Furthermore, the photocatalytic activity of the

  2. Mineral mining machine cutter driving mechanism having a load sensing device to regulate the haulage speed of the machine when the cutter driving mechanism is overloaded

    SciTech Connect (OSTI)

    Wilson, S.L.

    1981-05-26

    A mineral mining machine is disclosed that has a haulage drive mechanism and at least one cutter drive unit for cutting elements which may be at each end of the mining machine. The cutting elements are driven by an electric motor through a variable speed gear-train and the haulage mechanism is driven by a hydraulic motor through a geartrain. The invention provides for a torque sensing device associated with a part of each cutter drive mechanism to sense the power transmitted by the cutter gear-train and a power sensing device associated with the electric motor. The torque sensing devices are in the form of a mechanical or electrical transducer which provides a signal when the power transmitted by the cutter gear-trains exceed or tends to exceed the rated value of the cutter gears. The signal is transmitted to a hydraulic pump to control the output to the hydraulic motor and thereby effect reduction of the haulage speed. A signal from the power sensing device also controls the hydraulic pump to effect reduction of the haulage speed.

  3. Measurement of the numu Charged Current pi+ to Quasi-Elastic Cross Section Ratio on Mineral Oil in a 0.8 GeV Neutrino Beam

    SciTech Connect (OSTI)

    Linden, Steven K.; /Yale U.

    2011-01-01

    Charged current single pion production (CC{pi}{sup +}) and charged current quasi-elastic scattering (CCQE) are the most abundant interaction types for neutrinos at energies around 1 GeV, a region of great interest to oscillation experiments. The cross-sections for these processes, however, are not well understood in this energy range. This dissertation presents a measurement of the ratio of CC{pi}{sup +} to CCQE cross-sections for muon neutrinos on mineral oil (CH{sub 2}) in the MiniBooNE experiment. The measurement is presented here both with and without corrections for hadronic re-interactions in the target nucleus and is given as a function of neutrino energy in the range 0.4 GeV < E{sub {nu}} < 2.4 GeV. With more than 46,000 CC{pi}{sup +} events collected in MiniBooNE, and with a fractional uncertainty of roughly 11% in the region of highest statistics, this measurement represents a dramatic improvement in statistics and precision over previous CC{pi}{sup +} and CCQE measurements.

  4. Energy and Mineral Development Program

    Broader source: Energy.gov (indexed) [DOE]

    ... the DEMD web site, such as: * Sample EMDP proposals * EMDP FAQ * Specific Resource Contact Info - Have questions about the EMDP program or submission process? Amanda John, Tel: ...

  5. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  6. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105, Tank AN-103, And AZ-101/102) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-09-18

    Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoid structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.

  7. Geochronology of the Porgera gold deposit, Papua New Guinea: Resolving the effects of excess argon on K-Ar and sup 40 Ar/ sup 39 Ar age estimates for magmatism and mineralization

    SciTech Connect (OSTI)

    Richards, J.P.; McDougall, I. )

    1990-05-01

    Mesothermal/epithermal gold mineralization at Porgera in the highlands of Papua New Guinea (PNG), occurs in structurally controlled veins and disseminations, which overprint and cross-cut a suite of shallow-level, comagmatic, mafic alkaline stocks and dykes and their sedimentary host rocks. Conventional K-Ar apparent ages of twelve hornblende separates from eight different intrusions scatter between 7 and 14 Ma, but four biotite separates are concordant at 6.02 {plus minus} 0.29 Ma (2{sigma}). {sup 40}Ar/{sup 39}Ar step-heating experiments on six of the hornblende separates reveal saddle-shaped age spectra, which indicate the presence of excess {sup 40}Ar. One of these samples yields a well-defined plateau with an apparent age of 5.96 {plus minus} 0.25 Ma (2{sigma}). Conventional K-Ar analyses of six separates of hydrothermal illite and roscoelite associated with gold mineralization yield apparent ages of between 5.1 and 6.1 Ma and indicate that ore deposition occurred within 1 Ma of magmatism at Porgera. Evidence for the evolution of a magmatic volatile phase, and the presence of excess {sup 40}Ar both in the intrusives and in hydrothermal fluids associated with the orebody, suggest that magmatic fluids may have had some involvement in metallogenesis, but the exact nature of this involvement is not yet clear. Late Miocene magmatism and mineralization at Porgera are thought to have occurred shortly prior to or during the initiation of continent/arc collision and to pre-date associated Pliocene uplift and foreland deformation in the highlands.

  8. Measurement of νμ-induced charged-current neutral pion production cross sections on mineral oil at Evϵ0.5–2.0 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; et al

    2011-03-23

    Using a custom 3-Cerenkov ring fitter, we report cross sections for νμ-induced charged-current single π⁰ production on mineral oil (CH₂) from a sample of 5810 candidate events with 57% signal purity over an energy range of 0.5–2.0 GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of Q², μ⁻ kinematics, and π⁰ kinematics. The sample yields a flux-averaged total cross section of (9.2±0.3stat±1.5syst)×10⁻³⁹ cm²/CH² at mean neutrino energy of 0.965 GeV.

  9. Legislation affecting oil-merger proposals. Hearing before the Subcommittee on Energy and Mineral Resources of the Committee on Energy and Natural Resources, United States Senate, Ninety-Eighth Congress, Second Session on S. 2362, April 10, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Statements by 34 witnesses on S. 2362 examine the need for and possible impact of legislation calling for a study of mergers among oil companies. The focus of the study would be on the implications for US energy policy and energy independence, national security, and the economy. The witnesses represented investors, various sectors of the petroleum industry, economists, and various departments and agencies of the federal government. Their testimony follows the text of S. 2362, which amends the Mineral Lands Leasing Act of 1920 by limiting the authority to lease land when a merger is involved. Discussion on the relative merits of the legislation included antitrust and securities law issues and the exploration record following merger.

  10. Measurement of νμ-induced charged-current neutral pion production cross sections on mineral oil at Evϵ0.5–2.0 GeV

    SciTech Connect (OSTI)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2011-03-23

    Using a custom 3-Cerenkov ring fitter, we report cross sections for νμ-induced charged-current single π⁰ production on mineral oil (CH₂) from a sample of 5810 candidate events with 57% signal purity over an energy range of 0.5–2.0 GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of Q², μ⁻ kinematics, and π⁰ kinematics. The sample yields a flux-averaged total cross section of (9.2±0.3stat±1.5syst)×10⁻³⁹ cm²/CH² at mean neutrino energy of 0.965 GeV.

  11. Geologic investigation of roof and floor strata: longwall demonstration, Old Ben Mine No. 24. Prediction of coal balls in the Herrin Coal. Final technical report: Part 2. [Mineralized peat balls

    SciTech Connect (OSTI)

    DeMaris, P.J.; Bauer, R.A.; Cahill, R.A.; Damberger, H.H.

    1983-04-01

    Coal-ball areas, large deposits of mineralized peat in the coal seam, obstructed longwall mining in the Herrin Coal at Old Ben Mine No. 24. In-mine mapping located coal balls under transitional roof - areas where the roof lithology alternates between the Energy Shale and the Anna Shale/Brereton Limestone. Specifically, coal balls occur under eroded exposures or windows of the marine Anna Shale/Brereton Limestone in the Energy Shale. Two types of coal-ball areas have been identified, based on stratigraphic position in the coal seam: type I is restricted to the top of the seam, and type II occurs at midseam and below. To predict the distribution of coal balls, as well as explain their formation, a depositional model was developed: First, freshwater sediments buried the Herrin peat. Decomposition of the sealed peat continued, producing high CO/sub 2/ partial pressures; then selective erosion took place as a river removed the cover along sinuous paths, cutting through to the peat in some places. With the seal broken, CO/sub 2/ was released, and freshwaters that contained Ca and Mg ions flushed out organic acids. Later, marine mud buried both the freshwater sediments and the exposed peat, which accounts for the transitional roof over the Herrin Coal and the coal balls under the marine shale windows in the Energy Shale. The depositional model was supported by the first comprehensive set of geochemical data for coal balls. Coal balls generally contained less than 4 percent organic carbon and very low levels of detrital minerals. Although individual sites of concentrated coal balls cannot be predicted, the specific linear roof exposures associated with these coal-ball areas can be identified by mapping. Based on previously mapped areas, the trends of these linear exposures can be projected.

  12. Corporate Board Meeting Minutes

    Office of Environmental Management (EM)

    ... for federal personnel supporting nuclear facilities. ... Presentation by Kathy Reid (EMCBC) - NQA-1 Records ... terminology between NARA and NQA-1. Bud Danielson ...

  13. IS&T Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reid B. Porter Information-Driven Materials Discovery and Design POC: Turab Lookman Next Generation Quantum Molecular Dynamics POC: Anders M. Niklasson Extreme Materials at ...

  14. Dynamic Structural Response and Deformations of Monolayer MoS...

    Office of Scientific and Technical Information (OSTI)

    Authors: Mannebach, Ehren M. ; Li, Renkai ; Duerloo, Karel-Alexander ; Nyby, Clara ; Zalden, Peter ; Vecchione, Theodore ; Ernst, Friederike ; Reid, Alexander Hume ; Chase, Tyler ; ...

  15. Contract NO. DE-FG22-93BC14862 Department of Petroleum Engineering

    Office of Scientific and Technical Information (OSTI)

    Manager (DOE): F. John Fayers Khalid Aziz Thomas A. Hewett Sepehr Arbabi Marilyn Smith Thomas B. Reid - ; . ? --.i 4 . - - - - 9 r c . 1 > -- r n * : - * c-2 : , ...

  16. Measurement and Modeling of Vertically Resolved Aerosol Optical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and J. Reid Naval Research Laboratory Monterey, California P. Colarco Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland D. Covert...

  17. Assumptions to the Annual Energy Outlook 2015

    Gasoline and Diesel Fuel Update (EIA)

    ... for imported coal-fired generation from the Four Corners, Navajo, Reid Gardner, San Juan, and Boardman plants and the retirement of the Intermountain plant in 2025. September ...

  18. Proposed coal product valuation rules. Hearing before the Subcommittee on Mineral Resources Development and Production of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, First Session, November 16, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The hearing was called to discuss the proposed rules issued by the Department of the Interior relating to the valuation of coal production from Federal and Indian leases for royalty purposes. The rules would base the value of coal on the gross proceeds obtained under a contract. The rules would exclude Federal black lung excise tax payments and abandoned mine payments from value, but would include state severance taxes. Considerable controversy arose such that Congress imposed a moratorium on implementation to allow further public comment. An alternative proposal from a joint industry group would base value on the depletable income provisions of the Internal Revenue Code. However, several western governors have voiced concerns over this alternative which analysis shows would result in significantly lower revenues to the Federal government, the states, and to the Tribes. Testimony was heard from eight witnesses, representing the DOI Land and Minerals Management, electric power associations, Western Organization of Resource Councils, the Navajo nation, National Coal Association, and Montana. Additional materials were submitted by the Energy Information Administration, the Western Coal Traffic League, the Western Fuels Association, and the States of Wyoming, North Dakota, Colorado, and New Mexico.

  19. Structure, chemistry, and properties of mineral nanoparticles

    SciTech Connect (OSTI)

    Waychunas, G.A.; Zhang, H.; Gilbert, B.

    2008-12-02

    Nanoparticle properties can depart markedly from their bulk analog materials, including large differences in chemical reactivity, molecular and electronic structure, and mechanical behavior. The greatest changes are expected at the smallest sizes, e.g. 10 nm and below, where surface effects are expected to dominate bonding, shape and energy considerations. The precise chemistry at nanoparticle interfaces can have a profound effect on structure, phase transformations, strain, and reactivity. Certain phases may exist only as nanoparticles, requiring transformations in chemistry, stoichiometry and structure with evolution to larger sizes. In general, mineralogical nanoparticles have been little studied.

  20. Hydrothermal alteration mineral mapping using hyperspectral imagery...

    Open Energy Info (EERE)

    abundanthigh temperature alteration. Structural analysis of the alteredregion using a Digital Elevation Model (DEM) suggests that thisoutcrop is bounded on all sides by a set of...

  1. Interface Induced Carbonate Mineralization: A Fundamental Geochemical...

    Office of Scientific and Technical Information (OSTI)

    fundamental barrier, other than cation hydration, exists that prevents Mgsup 2+ and ... of water give us a first direct proof to support and quantify the cation hydration effect. ...

  2. Highwall miners extract coal cost effectively

    SciTech Connect (OSTI)

    2009-08-15

    Contour Mining Corp's Powellton site in West Virginia has produced over 60,000 tons of coal per month using the Terex Highwall Mining System (HWM). The HWM can use a lower or high-seam cutter module. MTS Systems' Sensors Division provides mobile hydraulic magnetostrictive sensors for the HWM system, to increase the accuracy and reliability of linear positioning. 1 photo.

  3. A highly conspicuous mineralized composite photonic architecture...

    Office of Scientific and Technical Information (OSTI)

    ... have been limited to metallic fish scales20-22, the reflecting setae of ... Interface 6, S165-S184 (2009). 6. Fujii, R. in Fish Physiology (eds Hoar, W. S. & Randall, ...

  4. US Minerals Databrowser | Open Energy Information

    Open Energy Info (EERE)

    Databrowser is a web-based tool which provides visualizations of the United States' consumption, production, exports, and imports of various minterals. It uses data from the U.S....

  5. Thermal denitration and mineralization of waste constituents

    SciTech Connect (OSTI)

    Nenni, J.A.; Boardman, R.D.

    1997-08-01

    In order to produce a quality grout from LLW using hydraulic cements, proper conditioning of the waste is essential for complete cement curing. Several technologies were investigated as options for conditions. Since the LLW is dilute, removal of all, or most, of the water will significantly reduce the final waste volume. Neutralization of the LLW is also desirable since acidic liquids to not allow cement to cure properly. The nitrate compounds are very soluble and easily leached from solid waste forms; therefore, denitration is desirable. Thermal and chemical denitration technologies have the advantages of water removal, neutralization, and denitration. The inclusion of additives during thermal treatment were investigated as a method of forming insoluable waste conditions.

  6. Superhydrophobic Coating for Evaporative Purification and Minerals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potable water is becoming an increasingly scarce resource. Evaporative desalination is one ... Because of this, evaporative desalination has all but been abandoned commercially in the ...

  7. Iron oxyhydroxide mineralization on microbial extracellular polysaccha...

    Office of Scientific and Technical Information (OSTI)

    a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the...

  8. Interface Induced Carbonate Mineralization: A Fundamental Geochemical...

    Office of Scientific and Technical Information (OSTI)

    Authors: Teng, H. Henry 1 ; Xu, Huifang 2 + Show Author Affiliations PI, The George Washington University PI, The George Washington University Co-PI, University of ...

  9. Interface Induced Carbonate Mineralization: A Fundamental Geochemical...

    Office of Scientific and Technical Information (OSTI)

    On the other hand, the measured higher distribution coefficients of Mg between magnesian calcites formed in the absence and presence of water give us a first direct proof to ...

  10. Water or Mineral FINAL.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    understanding of the various definitions of geothermal resources and water resources. ... and Corrie E Clark. 2014. Geothermal Water Use: Life Cycle Water Consumption, Water ...

  11. Minerals yearbook, 1992: Vanadium. Annual report

    SciTech Connect (OSTI)

    Hilliard, H.E.

    1993-09-01

    In 1992, steelmaking continued to account for more than 80% of domestic vanadium demand. Consumption showed a modest increase, from 3,300 tons in 1991 to 4,032 tons in 1992. Although overall imports of vanadium raw materials decreased when compared with 1991, imports of ash, residues, and spent catalysts increased. Total U.S. exports of vanadium materials increased from 1,560 tons in 1991 to about 1,700 tons in 1992. The oversupply of vanadium that began in late 1989 persisted throughout 1992 despite reduced production by the world's largest producer, Highveld Steel Vanadium Corp. of the Republic of South Africa. A result of the oversupply was continuously lower prices in 1992.

  12. Mineral Springs of Alaska | Open Energy Information

    Open Energy Info (EERE)

    these springs during the field season of 1915, and the present report is an account of field work done in that year between June 15 and September 4. Authors Gerald Ashley...

  13. Division of Energy and Mineral Development

    Broader source: Energy.gov (indexed) [DOE]

    boundary - Wind resource - Existing transmission lines - Digital elevation model - ... - Energy Recovery Facility * 5 MW power plant, - 150 tonsday MSW * Pyrolysis...

  14. Lubrication Systems Market : Mining & Mineral Processing Industry...

    Open Energy Info (EERE)

    Groeneveld Groep B.V., SKF AB, Bijur Delimon, Castrol-Lubecon, Changzhou Huali Hydraulic Lubrication Equipment Co., Ltd., Changhua Chen Ying Oil Machine Co., Ltd., Equipment...

  15. Oil Shale Mining Claims Conversion Act. Hearing before the Subcommittee on Mineral Resources Development and Production of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session on S. 2089, H. R. 1039, April 22, 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The hearing was called to examine two bills which address the processing of oil shale mining claims and patents by the Department of the Interior under the General Mining Law of 1872. S.2089 would provide for certain requirements relating to the conversion of oil shale mining claims located under the Mining Law of 1872 to leases and H.R.1039 would amend section 37 of the Mineral Lands Leasing Act of 1920 relating to oil shale claims. Under the new bills the owners of oil shale mining claims must make an election within 180 days after enactment as to whether to convert their claims to leases or to maintain their claims by performing 1000 dollars of annual assessment work on the claim, filing annually an affidavit of assessment work performed, and producing oil shale in significant marketable amounts within 10 years from the date of enactment of the legislation.

  16. Energy Department Offers Conditional Commitment to Support Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    achieve energy independence," U.S. Senator Harry Reid said. "Northern Nevada is the Saudi Arabia of geothermal energy and I thank Secretary Chu for recognizing the Silver State's ...

  17. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 The team in front of the Trident Target Chamber. Back, from left: Tom Shimada, Sha-Marie Reid, Adam Sefkow, Miguel Santiago, and Chris Hamilton. Front, from left: Russ...

  18. Casimir Forces On A Silicon Micromechanical Chip (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Authors: Zou, J. 1 ; Marset, zsolt 2 ; Rodriguez, A.W. 3 ; Reid, M. T.H. 4 ; McCauley, A. P. 4 ; Kravchenko, Ivan I 5 ; Bao, Y. 2 ; Johnson, S. G. 4 ; Chan, Ho Bun ...

  19. Changes to Geothermal Reporting Code and Guidelines on Company...

    Open Energy Info (EERE)

    Code. Authors G. Beardsmore, A. Budd, B. Goldstein, F. Holgate, G. Jeffress, A. Larking, J. Lawless, J. Libby, M. Middleton, P. Reid, C. Stafford, M. Ward and A. Williams...

  20. http://thisisreno.com/2009/10/low-levels-of-tritium-detected...

    National Nuclear Security Administration (NNSA)

    John Bonham on Reno Chamber Orchestra anounces 2011-2012 season * JUDY KEMPF on Reid announces more than 800,000 headed to Sparks for green job creation, energy efficiency * ...

  1. June 16 & 17, 2014 Meeting of the Electricity Advisory Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Willem Fadrhonc, STEM Tom Weaver, AEP Melicia Charles, CPUC Tom Bialek, SDG&E Panel - EPA Clean Air Act Section 111(d) Rules - Richard Cowart, RAP, moderator Reid Harvey, EPA Sue ...

  2. Request for Information explores mineral recovery from geothermal fluids

    Broader source: Energy.gov [DOE]

    The DOE Geothermal Technologies Office (GTO) is seeking input on ideas that encourage geothermal development by exploring innovations in extracting critical materials found in geothermal brines....

  3. Hyperspectral Mineral Mapping For Geothermal Exploration On The...

    Open Energy Info (EERE)

    is being used for in situ validation, along with laboratory measurements and X-ray diffraction analyses of samples collected in the field. We are in the process of producing and...

  4. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ultrahigh pressures of the deep Earth at ALS Beamline 12.2.2 while conducting in situ x-ray diffraction experiments to probe changes in crystal orientations. Rocks Flow in the...

  5. Geothermal Power Plants — Minimizing Solid Waste and Recovering Minerals

    Broader source: Energy.gov [DOE]

    Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

  6. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consists mostly of oxygen, silicon, and magnesium, often in the form of magnesium silicate (MgSiO3). In the lower mantle, this magnesium silicate has a crystal structure known...

  7. Thermodynamic stability of actinide pyrochlore minerals in deep...

    Office of Scientific and Technical Information (OSTI)

    Crystalline phases of pyrochlore (e.g., CaPuTisub 2Osub ... free energies of formation of pyrochlore phases (CaMTisub 2Osub 7). The Pu-pyrochlore phase is predicted to be ...

  8. IR keeps coal miners safe and reduces downtime

    SciTech Connect (OSTI)

    Massey, L.G.

    2009-01-15

    Infrared (IR) cameras can inspect the direct current trolley system that powers mantrips and locomotives that transport men and supplies to an underground mine. If trolley insulators become shorted or electrically leaky they can heat the roof and cause a fire or cave-in. The article explains how IR inspection works and describes typical problems that can be identified by thermograms. 8 figs.

  9. Division of Energy and Mineral Development - Project Overviews

    Broader source: Energy.gov (indexed) [DOE]

    Tribe Project Type Colville Biomass harvest and cogen (brief results) Mescalero Apache Biomass power, pellets, liquid fuels Hualapai Tribe Tribal utility and wind assessment St. ...

  10. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization...

    Office of Scientific and Technical Information (OSTI)

    well as a number of graduate students and undergraduate students who participated part-time. ... Subject: 54 ENVIRONMENTAL SCIENCES Word Cloud More Like This Full Text preview image ...

  11. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffraction images were collected to document the evolution of pressure, differential stress, and texture. Inverse pole figures (IPFs) show the probability of finding the pole...

  12. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this...

  13. Mineral Wells, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wells, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8084605, -98.1128223 Show Map Loading map... "minzoom":false,"mappingservice":...

  14. Division of Energy and Mineral Resources Management - Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Agua Agua Caliente Caliente Renewable Resource Renewable Resource Assesment Assesment FY 2004 FY 2004 Focus on wind and Focus on wind and biodiesel biodiesel Business Opportunity ...

  15. Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano...

    Open Energy Info (EERE)

    20 hour flow test are -10.2 and -109, respectively. The D value of the hydrothermal water indicates recharge from outside the caldera. Authors William W. Carothers, Robert H....

  16. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to...

  17. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parallel to the boundary, which is just what seismologists observe. These results open new possibilities for modeling anisotropy evolution at extreme conditions, linking...

  18. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have...

  19. Respiratory effects of diesel exhaust in salt miners

    SciTech Connect (OSTI)

    Gamble, J.F.; Jones, W.G.

    1983-09-01

    The respiratory health of 259 white males working at 5 salt (NaCl) mines was assessed by questionnaire, chest radiographs, and air and He-O/sup 2/ spirometry. Response variables were symptoms, pneumoconiosis, and spirometry. Predictor variables included age, height, smoking, mine, and tenure in diesel-exposed jobs. The purpose was to assess the association of response measures of respiratory health with exposure to diesel exhaust. There were only 2 cases of Grade 1 pneumoconiosis, so no further analysis was done. Comparisons within the study population showed a statistically significant dose-related association of phlegm and diesel exposure. There was a nonsignificant trend for cough and dyspnea, and no association with spirometry. Age- and smoking-adjusted rates of cough, phlegm, and dyspnea were 145, 159, and 93% of an external comparison population. Percent predicted flow rates showed statistically significant reductions, but the reductions were small and there were no dose-response relations. Percent predicted FEV1 and FVC were about 96% of predicted.

  20. Survey of toxicity and carcinogenity of mineral deposits

    SciTech Connect (OSTI)

    Furst, A.; Harding-Barlow, I.

    1981-11-03

    The toxicities and biogeochemical cycles of arsenic, cadmium, chromium, lead and nickel are reviewed in some detail, and other trace elements briefly mentioned. These heavy metals are used as a framework within which the problem of low-level radioactive waste disposal can be compared. (ACR)

  1. Underground radio technology saves miners and emergency response personnel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Natural Gas Storage by Storage Type (Million Cubic Feet) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History All Operators Natural Gas in Storage 7,310,528 6,906,936 6,847,908 7,009,991 7,333,265 7,556,566 1973-2016 Base Gas 4,361,223 4,361,330 4,352,215 4,355,578 4,357,774 4,360,125 1973-2016 Working Gas 2,949,306 2,545,606 2,495,693

  2. Hyperspectral mineral mapping in support of geothermal exploration...

    Open Energy Info (EERE)

    of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  3. Underground radio technology saves miners and emergency response...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alert) has launched a wireless, two-way real-time voice communication system that is ... wireless, light-weight, two-way real-time voice communication system that is ...

  4. Oregon State Department of Geology and Mineral Industries | Open...

    Open Energy Info (EERE)

    while mining and return the land to beneficial use after mines are closed. The Oil and Gas Program has essentially the same responsibilities in regulating natural gas...

  5. Yemen Ministry of Oil and Minerals | Open Energy Information

    Open Energy Info (EERE)

    Website contains some content in English. Associated Organizations Yemeni Company for Oil-Product Distribution Petroleum Exploration and Production Authority Safr Company for...

  6. When I was a coal miner: a pastor's memoir

    SciTech Connect (OSTI)

    Dan L. Martineau

    2005-07-01

    This is a true story about a young man from Michigan who became the pastor of a small church in Coalwood, West Virginia. In order to support his family, he worked underground in a deep coal mine. This book tells the story of life in a coal-mining community and presents an insider's view of a coal mine.

  7. Diagenesis and clay mineral formation at Gale Crater, Mars

    Office of Scientific and Technical Information (OSTI)

    dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10-50C and waterrock ratio (mass of rock reacted with ...

  8. Mineral County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1497031, -114.9626904 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  9. Request for Information explores mineral recovery from geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Request for Information (RFI) to bridge the gap between innovative research in this sector and commercial adoption of geothermal 'mining' technologies in three specific arenas. ...

  10. Effectiveness of mineral soil to adsorb the natural occurring...

    Office of Scientific and Technical Information (OSTI)

    From the study, it suggested that the soil from Bukit Changgang ... Journal Volume: 1659; Journal Issue: 1; Conference: NuSTEC2014: Nuclear Science, Technology, and Engineering ...

  11. Detection and Retrieval of Mineral Dust Aerosol Using AERI during...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Campaign: Potential Application to ARM Measurements Hansell, Richard UCLA Liou, Kuo-Nan UCLA Ou, Szu-cheng University of California, Los Angeles Tsay, Si-Chee NASA Goddard...

  12. Cross flow cyclonic flotation column for coal and minerals beneficiation

    DOE Patents [OSTI]

    Lai, Ralph W.; Patton, Robert A.

    2000-01-01

    An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

  13. Mineral Recovery from Geothermal Fluids | Open Energy Information

    Open Energy Info (EERE)

    Metals and Compounds from Geothermal Fluids California Simbol Mining Corp. Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Albuquerque, NM,...

  14. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence...

    Office of Scientific and Technical Information (OSTI)

    program under the U.S. Department of Energy (DOE) Office of Legacy Management (LM). ... Resource Type: Technical Report Research Org: USDOE Office of Legacy Management, ...

  15. Peptoids useful for catalyzing the mineralization of calcium carbonate

    DOE Patents [OSTI]

    Chen, Chun-Long; Zuckermann, Ronald N; De Yoreo, James J

    2015-02-10

    The present invention provides for a bio-mimetic polymer capable of catalyzing CO.sub.2 into a carbonate.

  16. Understanding Mineral Transport in Switchgrass | U.S. DOE Office...

    Office of Science (SC) Website

    A viable bioenergy industry will depend on the development of sustainably grown feedstocks (i.e., bioenergy crops that yield high amounts of biomass with minimal inputs of water, ...

  17. Interaction Between Toxic Metals and Complex Biofilm/Mineral/Solution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interfaces highlights title by Alexis S. Templeton, Thomas P. Trainor, and Gordon E. Brown, Jr., Stanford University Sorption reactions on particle surfaces can dramatically affect the speciation, cycling and bioavailability of essential micronutrients (i.e. PO43-, Cu, Zn etc.) and toxic metals and metalloids (i.e. Pb, Hg, Se, As) in soils and aquatic environments. Considerable attention has been focused on understanding metal sorption reactions at a molecular/mechanistic level and the

  18. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence...

    Office of Scientific and Technical Information (OSTI)

    Site Surveys May 2016 U.S. DEPARTMENT OF ENERGY Legacy Management This page intentionally ......... 35 10.0 Green River, Utah, Disposal ...

  19. DEVELOPMENT OF DEWATERING AIDS FOR MINERALS AND COAL FINES (Technical...

    Office of Scientific and Technical Information (OSTI)

    cause a decrease in the capillary pressures of the water trapped in a filter cake by (1) decreasing the surface tension of water, (2) increasing the contact angles of the particles ...

  20. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    many randomly oriented crystals), individual crystals deform preferentially along slip planes. This results in crystal rotations that lead to crystallographic preferred orientation...