National Library of Energy BETA

Sample records for reheat furnace recuperator

  1. Advanced steel reheat furnace

    SciTech Connect (OSTI)

    Moyeda, D.; Sheldon, M.; Koppang, R.; Lanyi, M.; Li, X.; Eleazer, B.

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  2. Thermochemical Recuperation for High Temperature Furnaces

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to substantiate the technical feasibility of the thermochemical recuperation concept as well as its business viability, including identification of technical, scale-up, and manufacturability concerns.

  3. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect (OSTI)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D.; Li, X.

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  4. research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

    Office of Environmental Management (EM)

    Project Objective b h b l h h l * Substantiate technical f l feasibility of f Thermochemical Recuperation (TCR) concept and economic viability including identification of technical scale up and including identification of technical scale up and manufacturability concerns * Increase furnace thermal efficiency to 61% Increase furnace thermal efficiency to 61% * Reduce Natural Gas usage ~ 21% * Reduce Carbon footprint ~ 21% * Reduce NO X > 21% (due to flue gas recirculation) 2 Technical

  5. Final Report, Materials for Industrial Heat Recovery Systems, Task 1 Improved Materials and Operation of Recuperators for Aluminum Melting Furnaces

    SciTech Connect (OSTI)

    Keiser, James R.; Sarma, Gorti B.; Thekdi, Arvind; Meisner Roberta A.; Phelps, Tony; Willoughby, Adam W.; Gorog, J. Peter; Zeh, John; Ningileri, Shridas; Liu, Yansheng; Xiao, Chenghe

    2007-09-30

    Production of aluminum is a very energy intensive process which is increasingly more important in the USA. This project concentrated on the materials issues associated with recovery of energy from the flue gas stream in the secondary industry where scrap and recycled metal are melted in large furnaces using gas fired burners. Recuperators are one method used to transfer heat from the flue gas to the air intended for use in the gas burners. By preheating this combustion air, less fuel has to be used to raise the gas temperature to the desired level. Recuperators have been successfully used to preheat the air, however, in many cases the metallic recuperator tubes have a relatively limited lifetime – 6 to 9 months. The intent of this project was to determine the cause of the rapid tube degradation and then to recommend alternative materials or operating conditions to prolong life of the recuperator tubes. The first step to understanding degradation of the tubes was to examine exposed tubes to identify the corrosion products. Analyses of the surface scales showed primarily iron oxides rather than chromium oxide suggesting the tubes were probably cycled to relatively high temperatures to the extent that cycling and subsequent oxide spalling reduced the surface concentration of chromium below a critical level. To characterize the temperatures reached by the tubes, thermocouples were mounted on selected tubes and the temperatures measured. During the several hour furnace cycle, tube temperatures well above 1000°C were regularly recorded and, on some occasions, temperatures of more than 1100°C were measured. Further temperature characterization was done with an infrared camera, and this camera clearly showed the variations in temperature across the first row of tubes in the four recuperator modules. Computational fluid dynamics was used to model the flow of combustion air in the tubes and the flue gas around the outside of the tubes. This modeling showed the

  6. Steel project fact sheet: Steel reheating for further processing

    SciTech Connect (OSTI)

    1998-04-01

    Steel reheating is an energy-intensive process requiring uniform temperature distribution within reheating furnaces. Historically, recuperators have ben used to preheat combustion air, thereby conserving energy. More recent innovations include oxygen enrichment and the use of regenerative burners, which provide higher preheat air temperatures than recuperators. These processes have limitations such as equipment deterioration, decreasing energy efficiency over time, high maintenance costs, and increased NO{sub x} emissions with increased air preheat temperature, unless special equipment is used. Praxair, Inc., supplier of oxygen and other industrial gases to the steel industry, proposes to introduce an innovative oxy-fuel burner technology (using 100% oxygen) to the steel reheating industry. Oxy-fuel combustion reduces or eliminates nitrogen in combustion air and substantially reduces waste heat carried out with flue gas. Based on technology currently used in the glass, hazardous waste, and aluminum industries, Praxair has developed and patented low temperature, oxy-fuel burners that can be used in high temperature industrial furnaces where temperature uniformity is critical and extremely low NO{sub x} emissions are desired. The technical goal of the project is to demonstrate the use of oxy-fuel burners in a slab reheat furnace while reducing energy consumption by 45% and NO{sub x} emissions by 90% within the converted furnace zones. Successful implementation of this technology also will eliminate the need to periodically replace recuperators and install NO{sub x} removal equipment.

  7. Feasibility study for reconstruction of the reheat furnaces for the 2000 Hot Strip Mill (Novolipetsk Steel Works, Lipetsk, Russia): Final report. Export trade information

    SciTech Connect (OSTI)

    1997-05-01

    The objective of this study was to develop a furnace design that would be instrumental in advancing the NLMK 2000 Hot Strip Mill to a level of world class strip mills capable of producing high quality strip with improved energy efficiency and minimal environmental impact. The contents include the following: (1) executive summary; (2) capital cost assessment; (3) project financial analysis; (4) study overview; (5) basic furnace design; (6) silicon design specification; (7) utilities; (8) NOx reduction technologies for reheat furnaces; (9) site investigation and construction schedule; (10) hot connect.

  8. Recuperator assembly and procedures

    DOE Patents [OSTI]

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2006-06-27

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  9. Recuperator assembly and procedures

    DOE Patents [OSTI]

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2008-08-26

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  10. Furnace

    SciTech Connect (OSTI)

    Cooke, J.C.; Tilley, F.H.

    1983-06-14

    Pieces of shredded tires are fed into the top of a vertical pyrolyzing furnace in a measured amount using a weighing hopper feed mechanism. Heated gas is introduced through inlet and pyrolyzing the tire pieces on a countercurrent flow principle to produce useful hydrocarbon volatiles and residues. The pyrolyzed residue including tire reinforcing wires are efficiently removed from the furnace by a plurality of downwardly inclined screw conveyors disposed in troughs. Each screw conveyor extends into an inclined conduit and discharges into a vertical branch conduit disposed at least partially within the cross-section of the furnace so that even discharge of the pyrolyzed residue is ensured by the combined action of gravity and the screw conveyors.

  11. Industrial operating experience of the GTE ceramic recuperator

    SciTech Connect (OSTI)

    Gonzalez, J.M.; Ferri, J.L. ); Rebello, W.J. )

    1990-06-01

    GTE Products Corporation, under a jointly funded program with the US Department of Energy (DOE), developed a compact ceramic high temperature recuperator that could recover heat from a relatively clean exhaust gases at temperatures up to of 2500{degree}F. The DOE program was very successful in that it allowed GTE to improve the technical and economic characteristics of the recuperator and stimulate industrial acceptance of the recuperator as an energy- saving technology. The success of the DOE Program was measured by the fact that from January 1981 to December 1984, 561 recuperators were installed by GTE on new or retrofitted furnaces. One objective of this contract was to conduct a telephone survey of the industrial plants that use the recuperator to determine their operating experience, present status, and common problems, and thus to complete the historical picture. Additionally, recuperators were returned to GTE after operating on industrial furnaces, and a post mortem'' analysis was undertaken with a goal of identifying the potential reason(s) for premature failure of the ceramic matrix. When contamination of the matrix was evident, historical data and spectrographic analysis were used to identify the type of contaminant, and its source. This effort has shown the type of degradation that occurs and has identified system design techniques that can be used to maximize the ceramic recuperator life cycle. 12 refs., 14 figs., 13 tabs.

  12. Annular recuperator design

    DOE Patents [OSTI]

    Kang, Yungmo

    2005-10-04

    An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.

  13. Thermochemical Recuperation for High-Temperature Furnaces

    SciTech Connect (OSTI)

    2009-04-01

    This factsheet describes a research project whose goal is to substantiate the technical feasibility of the TCR concept as well as the business viability, including identification of technical, scale-up, and manufacturability concerns.

  14. Single casing reheat turbine

    SciTech Connect (OSTI)

    Matsushima, Tatsuro; Nishimura, Shigeo

    1999-07-01

    For conventional power plants, regenerative reheat steam turbines have been accepted as the most practical method to meet the demand for efficient and economical power generation. Recently the application of reheat steam turbines for combined cycle power plant began according to the development of large-capacity high temperature gas turbine. The two casing double flow turbine has been applied for this size of reheat steam turbine. The single casing reheat turbine can offer economical and compact power plant. Through development of HP-LP combined rotor and long LP blading series, Mitsubishi Heavy Industries, Ltd. had developed a single casing reheat steam turbine series and began to use it in actual plants. Six units are already in operation and another seven units are under manufacturing. Multiple benefits of single casing reheat turbine are smaller space requirements, shorter construction and erection period, equally good performance, easier operation and maintenance, shorter overhaul period, smaller initial investment, lower transportation expense and so on. Furthermore, single exhaust steam turbine makes possible to apply axial exhaust type, which will lower the height of T/G foundation and T/G housing. The single casing reheat turbine has not only compact and economical configuration itself but also it can reduce the cost of civil construction. In this paper, major developments and design features of the single casing reheat turbine are briefly discussed and operating experience, line-up and technical consideration for performance improvement are presented.

  15. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect (OSTI)

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  16. Heat recuperator having ceramic core

    SciTech Connect (OSTI)

    Kohnken, K.H.

    1987-08-25

    This patent describes a recuperator comprising a ceramic heat-exchanger core within a housing, the core having six faces, two solid and four having openings for the flow of gas therethrough, the improvement comprising a layer of intumescent material disposed between a solid face and the housing.

  17. Direct fired absorption machine flue gas recuperator

    DOE Patents [OSTI]

    Reimann, Robert C.; Root, Richard A.

    1985-01-01

    A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

  18. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Energy Savers [EERE]

    Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell ...

  19. Low Temperature Combustion with Thermo-chemical Recuperation...

    Broader source: Energy.gov (indexed) [DOE]

    clark.pdf (104.11 KB) More Documents & Publications Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation Thermochemical Recuperation for High Temperature ...

  20. Assessment of Recuperator Materials for Microturbines

    SciTech Connect (OSTI)

    Omatete, O.O.

    2001-01-30

    Microturbines in production (or nearly in production) use metal recuperators with gas inlet temperatures of less than 700 C to raise their efficiency to about 30%. To increase their efficiencies to greater than 40% (which is the DOE Advanced Microturbine Program goal) will require operating at higher gas inlet temperatures, if the compression ratio remains less than 6. Even at higher compression ratios, the inlet temperature will increase as the efficiency increases, necessitating the use of new materials of construction. The materials requirement for recuperators used in microturbines may be categorized by their maximum operating temperatures: 700, 800, and {approximately}900 C. These limits are based on the materials properties that determine recuperator failure, such as corrosion, oxidation, creep, and strength. Metallic alloys are applicable in the 700 and 800 C limits; ceramics are applicable in the 900 C range. Most of the heat exchangers in the current microturbines are primary surface recuperators (PSR), compact recuperators fabricated in 347 stainless steel by rolling foil that is a few (>5) mil thick into air cells; the metal recuperators are operated at temperatures below 650 C. Preliminary research indicates that the use of 347 stainless steel can be extended to 700 C. However, additional directed research is required to improve the current properties of 347 stainless steel and to evaluate extended demonstrations on recuperators fabricated from it. Beyond 700 C and up to about 800 C, advanced austenitic stainless steels or other alloys or superalloys become applicable. Their properties must be measured in the expected operational environment, and recuperators fabricated from them must be evaluated for an extended period. Temperatures beyond 900 C exceed the limits of metals, and ceramic materials will be needed. The relevant properties of Si{sub 3} N{sub 4} and SiC, (creep, corrosion, and oxidation) have been studied extensively. Prototype ceramic

  1. Development of a zirconia-mullite based ceramic for recuperator applications

    SciTech Connect (OSTI)

    Gonzalez, J.M. )

    1992-12-01

    GTE Products Corporation developed a compact ceramic high temperature recuperator for recovering heat from relatively clean exhaust gases at temperatures up to 2500F. The DOE program allowed GTE to improve the technical and economic characteristics of the recuperator and stimulate industrial acceptance of the recuperator as an energy-saving technology. From January 1981 to December 1984, 561 recuperators were installed by GTE on new or retrofitted furnaces. With over 1200 units sold commercially between 1981 and 1990, GTE has documented the effect (long and short term) of corrosive attack from alkalies and lead. One objective of this contract was to develop Z-1000 a zirconia-mullite mixed oxide ceramic for use in ceramic recuperator applications susceptible to corrosion. To first and second pass of the ceramic recuperator would utilize the current cordierite-mixed-oxide ceramic. A Z-1000 matrix element would be used in the preheated air side's third pass (exhaust inlet). Thermal stresses on Z-1000 cross flow module could be minimized by selecting appropriate heat transfer surface areas for each pass. A large surface area for first and second pass (cordierite section) could provide for sufficient heat transfer for 50% effectiveness. A surface area that generates minimal heat transfer in the third pass (Z-1000) section is envisioned. Heat transferred in this section reduces the differential temperature across the matrix and the thermal stresses. Hence, thermal shock resistance of the material in the third pass becomes less critical; however, its corrosion resistance must be sufficient to withstand corrosive attack. This modular design could utilize a field repairable, disposable matrix. This report is concerned with process technology development for fabricating such a matrix, and a series of corrosion tests that established the potential corrosion resistance of the Z-1000 ceramic.

  2. Recuperator construction for a gas turbine engine

    DOE Patents [OSTI]

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2006-12-12

    A counter-flow recuperator formed from annular arrays of recuperator core segments. The recuperator core segments are formed from two opposing sheets of fin fold material coined to form a primary surface zone disposed between two flattened manifold zones. Each primary surface zone has undulating corrugations including a uniform, full height central portion and a transition zone disposed between the central portion and one of the manifold zones. Corrugations of the transition zone rise from zero adjacent to the manifold zone and increase along a transition length to full crest height at the central portion. The transition lengths increase in a direction away from an inner edge containing the air inlet so as to equalize air flow to the distal regions of the primary surface zone.

  3. Development of a zirconia-mullite based ceramic for recuperator applications. DOE/ORNL Ceramic Technology Project

    SciTech Connect (OSTI)

    Gonzalez, J.M.

    1992-12-01

    GTE Products Corporation developed a compact ceramic high temperature recuperator for recovering heat from relatively clean exhaust gases at temperatures up to 2500F. The DOE program allowed GTE to improve the technical and economic characteristics of the recuperator and stimulate industrial acceptance of the recuperator as an energy-saving technology. From January 1981 to December 1984, 561 recuperators were installed by GTE on new or retrofitted furnaces. With over 1200 units sold commercially between 1981 and 1990, GTE has documented the effect (long and short term) of corrosive attack from alkalies and lead. One objective of this contract was to develop Z-1000 a zirconia-mullite mixed oxide ceramic for use in ceramic recuperator applications susceptible to corrosion. To first and second pass of the ceramic recuperator would utilize the current cordierite-mixed-oxide ceramic. A Z-1000 matrix element would be used in the preheated air side`s third pass (exhaust inlet). Thermal stresses on Z-1000 cross flow module could be minimized by selecting appropriate heat transfer surface areas for each pass. A large surface area for first and second pass (cordierite section) could provide for sufficient heat transfer for 50% effectiveness. A surface area that generates minimal heat transfer in the third pass (Z-1000) section is envisioned. Heat transferred in this section reduces the differential temperature across the matrix and the thermal stresses. Hence, thermal shock resistance of the material in the third pass becomes less critical; however, its corrosion resistance must be sufficient to withstand corrosive attack. This modular design could utilize a field repairable, disposable matrix. This report is concerned with process technology development for fabricating such a matrix, and a series of corrosion tests that established the potential corrosion resistance of the Z-1000 ceramic.

  4. Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, 2014 | Department of Energy Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell Energy, Inc., in collaboration with Pacific Northwest National Laboratory, the Oregon State University Materials Institute, the Microproducts Breakthrough Institute, and the Oregon Nanoscience and Materials Institute, developed an efficient, microchannel-based waste heat recuperator

  5. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    SciTech Connect (OSTI)

    2010-02-01

    This factsheet describes a research project whose goal is to build an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system.

  6. Using Coke Oven Gas in a Blast Furnace Saves Over $6 Million Annually at a Steel Mill (U.S. Steel Edgar Thompson Plant)

    SciTech Connect (OSTI)

    2000-12-01

    Like most steel companies, U.S. Steel (USS) had been using coke oven gas (COG), a by-product of coke manufacturing, as a fuel in their coke ovens, boilers, and reheat furnaces.

  7. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    SciTech Connect (OSTI)

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  8. Rolling in the modulated reheating scenario

    SciTech Connect (OSTI)

    Kobayashi, Naoya; Kobayashi, Takeshi; Erickcek, Adrienne L. E-mail: takeshi@cita.utoronto.ca

    2014-01-01

    In the modulated reheating scenario, the field that drives inflation has a spatially varying decay rate, and the resulting inhomogeneous reheating process generates adiabatic perturbations. We examine the statistical properties of the density perturbations generated in this scenario. Unlike earlier analyses, we include the dynamics of the field that determines the inflaton decay rate. We show that the dynamics of this modulus field can significantly alter the amplitude of the power spectrum and the bispectrum, even if the modulus field has a simple potential and its effective mass is smaller than the Hubble rate. In some cases, the evolution of the modulus amplifies the non-Gaussianity of the perturbations to levels that are excluded by recent observations of the cosmic microwave background. Therefore, a proper treatment of the modulus dynamics is required to accurately calculate the statistical properties of the perturbations generated by modulated reheating.

  9. Superheated steam power plant with steam to steam reheater. [LMFBR

    SciTech Connect (OSTI)

    Silvestri, G.J.

    1981-06-23

    A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

  10. Curvaton reheating in a logamediate inflationary model

    SciTech Connect (OSTI)

    Campo, Sergio del; Herrera, Ramon; Saavedra, Joel; Campuzano, Cuauhtemoc; Rojas, Efrain

    2009-12-15

    In a logamediate inflationary universe model we introduce the curvaton field in order to bring this inflationary model to an end. In this approach we determine the reheating temperature. We also outline some interesting constraints on the parameters that describe our models. Thus, we give the parameter space in this scenario.

  11. Tube furnace

    DOE Patents [OSTI]

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  12. Furnace assembly

    DOE Patents [OSTI]

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  13. Furnace assembly

    DOE Patents [OSTI]

    Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  14. Primordial magnetic field amplification from turbulent reheating

    SciTech Connect (OSTI)

    Calzetta, Esteban; Kandus, Alejandra E-mail: kandus@uesc.br

    2010-08-01

    We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, t{sub d} and pair annihilation t{sub a}, finding t{sub a} << t{sub d}. We calculate the rms value of the kinetic helicity of the flow over a scale L and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing.

  15. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  16. Lessons learned from reheater replacements TVA Gallatin Fossil Plant units 1 and 2

    SciTech Connect (OSTI)

    Chang, P.S.; Stangarone, R.J.

    1996-07-01

    Gallatin Units 1 and 2 have experienced a long history of problems in the reheat front inlet platens and front outlet pendants. Cracks were discovered at lug welds on the reheat inlet platen assemblies after six years of operation. During the next ten years cracking at lugs continued to be a problem in both the inlet platen and front outlet assemblies. Solutions included changing tube material and spacing, and redesigning lugs. None of the solutions were successful. In 1980, a fuel switch to washed coal was made to reduce boiler slagging. Within two years of the fuel change, liquid phase corrosion began to attack the tubes. The corrosion became severe and elements were replaced at seven year intervals. During this time, EPRI sought utilities with boilers experiencing liquid phase corrosion to test new corrosion resistant materials. Gallatin Unit 2 was selected as one of the test units. Probes containing a number of different alloys were inserted into the furnace and subjected to the corrosion attacks. After a five year study, HR3C was selected as the alloy from which to build a complete set of elements for further testing. Reheat assemblies were manufactured from HR3C and installed in Unit 2 and Unit 1 Shortly after Unit 1 returned to service, swages between the front pendant and inlet platen elements failed by brittle fracture due to the cold swaging operation used in fabrication. Cracks were discovered after two years of operation at the tube to lug welds and the new elements were experiencing the same liquid phase corrosion as in the past. The attempt to resolve the liquid phase corrosion problem in Gallatin Units 1 and 2 pendant reheater revealed that past replacements did not address the root cause of the problems. HR3C is a relatively brittle material and manufacturers used traditional methods to design and fabricate the elements. Inadequate fabrication and erection procedures have led to several in-service problems not associated with liquid phase corrosion.

  17. Furnace Pressure Controllers

    Broader source: Energy.gov [DOE]

    This tip sheet highlights the benefits of precise furnace pressure control in process heating systems.

  18. Rankine cycle load limiting through use of a recuperator bypass

    DOE Patents [OSTI]

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  19. Healthcare Energy: Spotlight on Reheat and Heating | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Massachusetts General Hospital (MGH) Gray Building and 52.0 kBtuft2-yr at the State ... Estimated Breakdown of Reheat and Heating Energy Use At the MGH Gray Building, from ...

  20. Low reheating temperatures in monomial and binomial inflationary models

    SciTech Connect (OSTI)

    Rehagen, Thomas; Gelmini, Graciela B.

    2015-06-23

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied ϕ{sup 2} inflationary potential is no longer favored by current CMB data, as well as ϕ{sup p} with p>2, a ϕ{sup 1} potential and canonical reheating (w{sub re}=0) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, n{sub s}, implies an upper bound on the reheating temperature of T{sub re}≲6×10{sup 10} GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a ϕ{sup 1} potential. We find that as a subdominant ϕ{sup 2} term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of T{sub re}=4 MeV is excluded by the Planck 2015 68% confidence limit.

  1. Furnaces Data | Department of Energy

    Energy Savers [EERE]

    Furnaces Data Furnaces Data Furnaces Data Email (79.43 KB) Questions on 2014 LCC spreadsheet 2014-10-28 (378.96 KB) DOE Furnace Rule111414 Email (43.29 KB) 111414 Letter to DOE-c ...

  2. Paired Straight Hearth Furnace

    Broader source: Energy.gov [DOE]

    A coal based dri and molten metal process for long range replacement of blast furnaces and coke ovens

  3. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  4. Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Escola, George

    2007-01-17

    Recuperators have been identified as key components of advanced gas turbines systems that achieve a measure of improvement in operating efficiency and lead the field in achieving very low emissions. Every gas turbine manufacturer that is studying, developing, or commercializing advanced recuperated gas turbine cycles requests that recuperators operate at higher temperature without a reduction in design life and must cost less. The Solar Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems Program is directed towards meeting the future requirements of advanced gas turbine systems by the following: (1) The development of advanced alloys that will allow recuperator inlet exhaust gas temperatures to increase without significant cost increase. (2) Further characterization of the creep and oxidation (dry and humid air) properties of nickel alloy foils (less than 0.13 mm thick) to allow the economical use of these materials. (3) Increasing the use of advanced robotic systems and advanced in-process statistical measurement systems.

  5. Entropy mode loops and cosmological correlations during perturbative reheating

    SciTech Connect (OSTI)

    Kaya, Ali; Kutluk, Emine Seyma E-mail: seymakutluk@gmail.com

    2015-01-01

    Recently, it has been shown that during preheating the entropy modes circulating in the loops, which correspond to the inflaton decay products, meaningfully modify the cosmological correlation functions at superhorizon scales. In this paper, we determine the significance of the same effect when reheating occurs in the perturbative regime. In a typical two scalar field model, the magnitude of the loop corrections are shown to depend on several parameters like the background inflaton amplitude in the beginning of reheating, the inflaton decay rate and the inflaton mass. Although the loop contributions turn out to be small as compared to the preheating case, they still come out larger than the loop effects during inflation.

  6. Paired Straight Hearth Furnace

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paired Straight Hearth Furnace A Coal Based DRI and Molten Metal Process for Long Range Replacement of Blast Furnaces and Coke Ovens The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further signifcant gains in energy effciency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alterna- tive high productivity, direct reduced iron (DRI)

  7. Electromelt furnace evaluation

    SciTech Connect (OSTI)

    Reimann, G.A.; Welch, J.M.

    1981-09-01

    An electromelt furnace was designed, built, and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  8. Paired Straight Hearth Furnace

    SciTech Connect (OSTI)

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  9. Gas Turbine Reheat Using In-Situ Combustion

    SciTech Connect (OSTI)

    T.E. Lippert; D.M. Bachovchin

    2004-03-31

    Siemens Westinghouse Power Corporation (SWPC) is developing in-situ reheat (fuel injection via airfoil injection) as a means for increasing cycle efficiency and power output, with possibly reduced emissions. In addition to kinetic modeling and experimental task, CFD modeling (by Texas A&M) of airfoil injection and its effects on blade aerodynamics and turbine performance. This report discusses validation of the model against single-vane combustion test data from Siemens Westinghouse, and parametric studies of injection reheat in a modern turbine. The best location for injection is at the trailing edge of the inlet guide vane. Combustion is incomplete at trailing edges of subsequent vanes. Recommendations for further development are presented.

  10. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  11. Multiple reheat helium Brayton cycles for sodium fast reactors

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2008-07-01

    Sodium fast reactors (SFR) traditionally adopt the steam Rankine cycle for power conversion. The resulting potential for water-sodium reaction remains a continuing concern which at least partly delays the SFR technology commercialization and is a contributor to higher capital cost. Supercritical CO2 provides an alternative, but is also capable of sustaining energetic chemical reactions with sodium. Recent development on advanced inert-gas Brayton cycles could potentially solve this compatibility issue, increase thermal efficiency, and bring down the capital cost close to light water reactors. In this paper, helium Brayton cycles with multiple reheat and intercooling states are presented for SFRs with reactor outlet temperatures in the range of 510°C to 650°C. The resulting thermal efficiencies range from 39% and 47%, which is comparable with supercritical recompression CO2 cycles (SCO2 cycle). A systematic comparison between multiple reheat helium Brayton cycle and the SCO2 cycle is given, considering compatibility issues, plant site cooling temperature effect on plant efficiency, full plant cost optimization, and other important factors. The study indicates that the multiple reheat helium cycle is the preferred choice over SCO2 cycle for sodium fast reactors.

  12. Furnace veneering systems of special design help achieve energy reduction goals at Armco

    SciTech Connect (OSTI)

    Caspersen, L.J.

    1982-12-01

    A steel company conserves energy by veneering reheat furnaces with a ceramic fiber modular system. The furnace lining system incorporates several grades of veneering materials (modules, cements, coatings) whose application is matched to the exact conditions in the furnace. Zoned linings utilize a combination of grades of alumina-silica modules to achieve thermally efficient yet durable performance. High temperature cements exhibit good tackiness, easy module penetration and high strength retention after firing. A protective coating is sprayed in a thin layer over the modules and can be easily reapplied at a later date should it be necessary. Benefits include greater thermal control (temperature responsiveness and heating uniformity), less over-firing, less fuel use, and less heat loss. Fuel efficiency is increased by 20 to 50%.

  13. Furnace Pressure Controllers; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 * September 2005 Industrial Technologies Program Furnace Pressure Controllers Furnace draft, or negative pres- sure, is created in fuel-fired furnaces when high temperature gases ...

  14. Purchasing Energy-Efficient Residential Furnaces | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnaces Purchasing Energy-Efficient Residential Furnaces The Federal Energy Management Program (FEMP) provides acquisition guidance for residential furnaces, a product category ...

  15. Improved graphite furnace atomizer

    DOE Patents [OSTI]

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  16. Furnace Blower Performance Improvements - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnace Blower Performance Improvements - Building America Top Innovation Furnace Blower Performance Improvements - Building America Top Innovation This photo shows a ...

  17. Improving the efficiency and availability analysis of a modified reheat regenerative Rankine cycle

    SciTech Connect (OSTI)

    Bassily, A.M.

    1999-07-01

    Reheating in a reheat regenerative steam power cycle increases efficiency by increasing the average temperature of heat reception, but also increases the irreversibility of feed water heaters by raising the temperature of the superheated steam used for the regenerative process. This paper introduces some modifications to the regular reheat regenerative steam power cycle that reduce the irreversibility of the regenerative process. An availability analysis of the modified cycle and the regular reheat regenerative cycle as well as a comparison study between both cycles is done. The results indicate that a gain in energy efficiency of up to 2.5% as the steam generator pressure varies is obtained when applying such modifications at the same conditions of pressure, temperature's number of reheating stages, and feed water heaters. The availability analysis showed that such increase in efficiency is due to the reduction of the irreversibility of the regeneration process of the modified cycle.

  18. Blast Furnace Granulated Coal Injection

    SciTech Connect (OSTI)

    1998-09-30

    Production levels on each furnace exceeded 7000 NTHM/day during July. The combined production of 14,326 was a result of lower coke rates and below average delay rates on both furnaces, The combined production was at its highest level since September 1997. In August, the combined productivity declined to less than 13,500 NTHM/day. Although D furnace maintained a production rate in excess of 7000 NTHM/day, C furnace was lower because of a castfloor breakout and subsequent five day repair from August 26-30. Despite the lower productivity in August, injected coal and furnace coke rates were very good during the month. During September, the operation was difficult as a result of higher delays on both furnaces. The combined average monthly delay rate was considerably above the twenty-month average of 113 minutes per day and the combined average monthly production was less than 14,000 NTHM/day. Higher furnace coke rates at lower coal injection levels also contributed to the decrease. Additionally, the coke rate on both furnaces was increased substantially and the injected coal rate was decreased in preparation for the high volatile Colorado coal trial that started on September 28. The furnace process results for this quarter are shown in Tables 1A and 1B. In addition, the last twelve months of injected coal and coke rates for each furnace are shown in Figures 1 and 2.

  19. Partial oxidation power plant with reheating and method thereof

    DOE Patents [OSTI]

    Newby, Richard A.; Yang, Wen-Ching; Bannister, Ronald L.

    1999-01-01

    A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.

  20. Partial oxidation power plant with reheating and method thereof

    DOE Patents [OSTI]

    Newby, R.A.; Yang, W.C.; Bannister, R.L.

    1999-08-10

    A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

  1. Fluid-thermoacoustic vibration of a gas turbine recuperator tubular heat exchanger system

    SciTech Connect (OSTI)

    Eisinger, F.L. )

    1994-07-01

    Low-frequency acoustic vibration of a vertical gas turbine recuperator during cold start-up is described. The vibration was identified as fluid-thermoacoustic instability driven by a modified Sondhauss tube-like thermoacoustic phenomenon. The problem and its underlying theoretical basis are described. A design guideline for prevention of instability and alternative solutions for the elimination of the vibration are given.

  2. Non-carbon induction furnace

    DOE Patents [OSTI]

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  3. Carbon-free induction furnace

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  4. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOE Patents [OSTI]

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  5. WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries...

    Open Energy Info (EERE)

    WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name: WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries,...

  6. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect (OSTI)

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  7. Cupola Furnace Computer Process Model

    SciTech Connect (OSTI)

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  8. Two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  9. Two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  10. Reduce Air Infiltration in Furnaces; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    they rise, creating a differential pressure between the top and the bottom of the furnace. ... can be calculated by using the equations and graphs given in Industrial Furnaces ...

  11. Paired Straight Hearth Furnace | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Optimizing Blast Furnace Operation to Increase Efficiency ...

  12. Life assessment of superheater/reheater tubes in fossil boilers

    SciTech Connect (OSTI)

    Viswanathan, R.; Gehl, S.; Paterson, S.R.; Grunloh, H.

    1995-08-01

    Creep rupture failure of superheater(SH)/-reheater(RH) tubes is a major cause of forced outages of power boilers. A methodology developed recently by EPRI researchers has helped utilities make more informed run/replace decisions for tubes by judiciously combining calculational, nondestructive and destructive evaluations. In this methodology, the tubes/tube assemblies at risk are identified by ultrasonically measuring the thickest steamside oxide scale and thinnest wall thickness in the tubes. The remaining life of each tube/tube assemblies is predicted using a computer code known as TUBELIFE, thus achieving a further level of focus on the tubes/assemblies in the highest risk category. Sacrificial tube samples are then removed from the select locations and subjected to laboratory metallurgical evaluation and isostress rupture testing to refine the remaining life estimates. Research has further refined this methodology by validating the ultrasonic technique for scale measurement, identifying the appropriate stress formula and oxide growth laws and evaluating the limitations of creep damage summation rules and isostress rupture test procedures. This paper provides an overview of the research in the field, and establish a road map for assessing the remaining life of SH/RH tubes.

  13. Life assessment of superheater/reheater tubes in fossil boilers

    SciTech Connect (OSTI)

    Viswanathan, R.; Gehl, S. ); Paterson, S.R. ); Grunloh, H. )

    1994-02-01

    Creep rupture failure of superheater (SH)/reheater (RH) tubes is a major cause of forced outages of power boilers. A methodology developed recently by EPRI and its contractors has helped utilities make more informed run/replace decisions for tubes by judiciously combining calculational, nondestructive, and destructive evaluations. In this methodology, the tubes/tube assemblies at risk are identified by ultrasonically measuring the thickest steamside oxide scale and thinnest wall thickness in the tubes. The remaining life of each tube/tube assembly is predicted using a computer code known as TUBELIFE, thus achieving a further level of focus on the tubes/assemblies in the highest risk'' category. Sacrificial tube samples are then removed from the select locations and subjected to laboratory metallurgical evaluation and isostress rupture testing to refine the remaining life estimates. Research has further refined this methodology by validating the ultrasonic technique for scale measurement, identifying the appropriate stress formula and oxide growths laws and evaluating the limitations of creep damage summation rules and isostress rupture test procedures. This paper provides an overview of the research in the field, and establishes a road map for assessing the remaining life of SH/RH tubes.

  14. CX-006093: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Missouri Independent Energy Efficiency Program: Onesteel Grinding Systems - Steel Reheat Furnace Recuperator Energy Efficiency RetrofitCX(s) Applied: B3.6, B5.1Date: 06/17/2011Location(s): Kansas City, MissouriOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  15. High pressure furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  16. High pressure furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  17. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  18. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  19. Glass Furnace Model Version 2

    Energy Science and Technology Software Center (OSTI)

    2003-05-06

    GFM2.0 is a derivative of the GFM code with substantially altered and enhanced capabilities. Like its predecessor, it is a fully three-dimensional, furnace simulation model that provides a more accurate representation of the entire furnace, and specifically, the glass melting process, by coupling the combustion space directly to the glass batch and glass melt via rigorous radiation heat transport models for both the combustion space and the glass melt. No assumptions are made with regardmore » to interfacial parameters of heat, flux, temperature distribution, and batch coverage as must be done using other applicable codes available. These critical parameters are calculated. GFM2.0 contains a processor structured to facilitate use of the code, including the entry of teh furnace geometry and operating conditions, the execution of the program, and display of the computational results. Furnace simulations can therefore be created in a straightforward manner.« less

  20. Rebuilding of Rautaruukki blast furnaces

    SciTech Connect (OSTI)

    Kallo, S.; Pisilae, E.; Ojala, K.

    1997-12-31

    Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

  1. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  2. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  3. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  4. On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production

    SciTech Connect (OSTI)

    Drewes, Marco

    2014-11-01

    We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model.

  5. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect (OSTI)

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  6. Furnaces and Boilers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Heating Systems » Furnaces and Boilers Furnaces and Boilers Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via

  7. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    SciTech Connect (OSTI)

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  8. Field and laboratory evaluations of commercial and next–generation alumina-forming austenitic foil for advanced recuperators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pint, Bruce A.; Dryepondt, Sebastien N.; Brady, Michael P.; Yamamoto, Yukinori; Ruan, Bo; Robert D. McKeirnan, Jr.

    2016-07-19

    Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistant austenitic steels designed to enable higher temperature recuperators. Field trials are in progress for commercially rolled foil with widths over 39 cm. The first trial completed 3000 hrs in a microturbine recuperator with an elevated turbine inlet temperature and showed limited degradation. A longer microturbine trial is in progress. A third exposure in a larger turbine has passed 16,000 hrs. Furthermore, to reduce alloy cost and address foil fabrication issues with the initial AFA composition, several new AFA compositions are being evaluated in creep and laboratory oxidation testingmore » at 650–800 °C and the results compared to commercially fabricated AFA foil and conventional recuperator foil performance.« less

  9. Geneva Steel blast furnace improvements

    SciTech Connect (OSTI)

    Fowles, R.D.; Hills, L.S.

    1993-01-01

    Geneva Steel is located in Utah and is situated near the western edge of the Rocky Mountains adjacent to the Wasatch Front. Geneva's No. 1, 2 and 3 are the only remaining operating blast furnaces in the United States west of the Mississippi River. They were originally constructed in 1943 to support steelmaking during World War II. During the early 60's all three furnaces were enlarged to their current working volume. Very few major improvements were made until recently. This discussion includes a brief historical perspective of operating difficulties associated with practice, design and equipment deficiencies. Also included is an overview of blast furnace improvements at Geneva found necessary to meet the demands of modern steelmaking. Particular emphasis will be placed on casthouse improvements.

  10. Furnace and Boiler Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces...

  11. Furnace Litigation Settled | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnace Litigation Settled Furnace Litigation Settled May 2, 2014 - 11:07am Addthis On June 27, 2011, the U.S. Department of Energy (DOE) published in the Federal Register a direct ...

  12. A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation in Internal Combustion Engines

    SciTech Connect (OSTI)

    Daw, C Stuart; Pihl, Josh A; Chakravarthy, Veerathu K; Conklin, Jim

    2010-01-01

    A detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction is presented. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine second law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane, the estimated second law efficiency increases for constant volume reforming are 9 and 11%, respectively. The second law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with the gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

  13. A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation for Internal Combustion Engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K; Daw, C Stuart; Pihl, Josh A; Conklin, Jim

    2010-01-01

    We present a detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine Second Law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane the estimated Second Law efficiency increases for constant volume reforming are 9% and 11%, respectively. The Second Law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

  14. Furnace Standard Analysis Discussion Document

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard * Using field intelligence and thoughtful analysis - assess and quantify the effects a regional or national condensing standard for natural gas furnaces could have on energy efficiency and environmental objectives.  Provide insight on the potential impact limiting customer choices for heating systems could have on overall energy usage, cost, and carbon emissions outcomes.  Provide all data, models and sources of information to DOE and other stakeholders, to gain their confidence

  15. Ferrosilicon smelting in a direct current furnace

    DOE Patents [OSTI]

    Dosaj, Vishu D. (Midland, MI); May, James B. (Midland, MI)

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  16. Optical Furnace offers improved semiconductor device processing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities - Energy Innovation Portal Optical Furnace offers improved semiconductor device processing capabilities Award winning solar manufacturing process National Renewable Energy Laboratory Contact NREL About This Technology <p> <em>The highly versatile optical furnace provides semiconductor manufacturers with energy efficient methods to process devices in a high throughput capacity. &nbsp;</em></p> The highly versatile optical furnace provides semiconductor

  17. Ferrosilicon smelting in a direct current furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; May, J.B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  18. Crystal growth furnace with trap doors

    DOE Patents [OSTI]

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  19. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  20. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  1. Ex Parte Contact on Furnaces | Department of Energy

    Energy Savers [EERE]

    Contact on Furnaces Ex Parte Contact on Furnaces PDF icon Ex Parte Email3-28-2015 More Documents & Publications Furnaces Data RE: EERE-2014-BT-STD-0031 AGAAPGA Questions re...

  2. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    DOE Patents [OSTI]

    Abbasi, Hamid A.; Kurek, Harry; Chudnovsky, Yaroslav; Lisienko, Vladimir G.; Malikov, German K.

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  3. Thermal Imaging Control of Furnaces and Combustors

    SciTech Connect (OSTI)

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  4. Optical cavity furnace for semiconductor wafer processing

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  5. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines ...

  6. Improving the Field Performance of Natural Gas Furnaces, Chicago...

    Energy Savers [EERE]

    the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: ...

  7. Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek...

  8. DOE Increases Energy Efficiency Standards for Residential Furnaces...

    Energy Savers [EERE]

    Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm ...

  9. Toughened Graphite Electrode for High Heat Electric Arc Furnaces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL to melt steel, titanium, and other scrap metal in industrial electric arc furnaces. ... Applications and Industries Electric arc furnace steel manufacturing Steel refinement and ...

  10. Optimizing Blast Furnace Operation to Increase Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfdblastfurnace.pdf (552.85 KB) More ...

  11. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    SciTech Connect (OSTI)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  12. High productivity in Australian blast furnaces

    SciTech Connect (OSTI)

    Nightingale, R.J.; Mellor, D.G.; Jelenich, L.; Ward, R.F.

    1995-12-01

    Since the emergence of the Australian domestic economy from recession in 1992, the productivity of BHP`s blast furnace has increased significantly to meet the demands of both domestic and export markets. BHP Steel operates six blast furnaces at its three Australian integrated plants. These furnaces vary widely in their size, feed, technology and current campaign status. This paper reviews the principal issues associated with productivity improvements over recent years. These gains have been achieved through activities associated with a wide range of process, equipment and human resource based issues.

  13. More on loops in reheating: non-gaussianities and tensor power spectrum

    SciTech Connect (OSTI)

    Katirci, Nihan; Kaya, Ali; Tarman, Merve E-mail: ali.kaya@boun.edu.tr

    2014-06-01

    We consider the single field chaotic m{sup 2}?{sup 2} inflationary model with a period of preheating, where the inflaton decays to another scalar field ? in the parametric resonance regime. In a recent work, one of us has shown that the ? modes circulating in the loops during preheating notably modify the (??) correlation function. We first rederive this result using a different gauge condition hence reconfirm that superhorizon ? modes are affected by the loops in preheating. Further, we examine how ? loops give rise to non-gaussianity and affect the tensor perturbations. For that, all cubic and some higher order interactions involving two ? fields are determined and their contribution to the non-gaussianity parameter f{sub NL} and the tensor power spectrum are calculated at one loop. Our estimates for these corrections show that while a large amount of non-gaussianity can be produced during reheating, the tensor power spectrum receive moderate corrections. We observe that the loop quantum effects increase with more ? fields circulating in the loops indicating that the perturbation theory might be broken down. These findings demonstrate that the loop corrections during reheating are significant and they must be taken into account for precision inflationary cosmology.

  14. Liquid ash corrosion, remaining life estimation and superheater/reheater replacement strategy in coal fired boilers

    SciTech Connect (OSTI)

    Alice, J.A.; Janiszewski, J.A.

    1985-01-01

    The liquid ash corrosion of superheater and reheater tubing in coal fired boilers is commonly accepted to be caused by the action of liquid sodium and potassium iron trisulfates Na/sub 3/Fe(SO/sub 4/) and K/sub 3/Fe(SO/sub 4/)/sub 3/. These species melt at temperatures between 1030/sup 0/F and 1160/sup 0/F (555-625/sup 0/C) depending on the relative amounts of sodium and potassium. Rapid tube wastage begins when the tube metal temperature reaches the trisulfate melting point. The key to improved availability in fossil boilers is to identify and replace, during a planned outage, tubes which are likely to fail before the next planned outage. The authors have developed a computerized method for estimating the remaining life of superheater/reheater tubes based on accelerated liquid ash corrosion. The scheme of analysis employs the following logic: (1) measurement of tube wastage from several removed samples, (2) estimation of tube metal temperature from I.D. scale thickness and thermocouple data, (3) estimation of trisulfate melting point from chemical analysis of the ash deposit and (4) using the computer model to calculate remaining life as a function of tube wastage rate metal temperature. The practical application of this strategy is presented for a coal fired boiler in the GPU system.

  15. Calculations of inflaton decays and reheating: with applications to no-scale inflation models

    SciTech Connect (OSTI)

    Ellis, John; Garcia, Marcos A.G.; Nanopoulos, Dimitri V.; Olive, Keith A.

    2015-07-30

    We discuss inflaton decays and reheating in no-scale Starobinsky-like models of inflation, calculating the effective equation-of-state parameter, w, during the epoch of inflaton decay, the reheating temperature, T{sub reh}, and the number of inflationary e-folds, N{sub ∗}, comparing analytical approximations with numerical calculations. We then illustrate these results with applications to models based on no-scale supergravity and motivated by generic string compactifications, including scenarios where the inflaton is identified as an untwisted-sector matter field with direct Yukawa couplings to MSSM fields, and where the inflaton decays via gravitational-strength interactions. Finally, we use our results to discuss the constraints on these models imposed by present measurements of the scalar spectral index n{sub s} and the tensor-to-scalar perturbation ratio r, converting them into constraints on N{sub ∗}, the inflaton decay rate and other parameters of specific no-scale inflationary models.

  16. More on loops in reheating: non-gaussianities and tensor power spectrum

    SciTech Connect (OSTI)

    Katırcı, Nihan; Kaya, Ali; Tarman, Merve

    2014-06-11

    We consider the single field chaotic m{sup 2}ϕ{sup 2} inflationary model with a period of preheating, where the inflaton decays to another scalar field χ in the parametric resonance regime. In a recent work, one of us has shown that the χ modes circulating in the loops during preheating notably modify the <ζζ> correlation function. We first rederive this result using a different gauge condition hence reconfirm that superhorizon ζ modes are affected by the loops in preheating. Further, we examine how χ loops give rise to non-gaussianity and affect the tensor perturbations. For that, all cubic and some higher order interactions involving two χ fields are determined and their contribution to the non-gaussianity parameter f{sub NL} and the tensor power spectrum are calculated at one loop. Our estimates for these corrections show that while a large amount of non-gaussianity can be produced during reheating, the tensor power spectrum receive moderate corrections. We observe that the loop quantum effects increase with more χ fields circulating in the loops indicating that the perturbation theory might be broken down. These findings demonstrate that the loop corrections during reheating are significant and they must be taken into account for precision inflationary cosmology.

  17. Inhibition of coke formation in pyrolysis furnaces

    SciTech Connect (OSTI)

    Tong, Y.; Poindexter, M.K.; Rowe, C.T.

    1995-12-31

    Coke formation in pyrolysis furnaces, which thermally convert hydrocarbons to ethylene as well as other useful products, adversely affects product yields, causes furnace down time for coke removal, and shortens furnace coil life. A phosphorus-based chemical treatment program was developed to inhibit the coke formation. The anticoking performance of the phosphorus-based treatment program was studied using a bench scale coking rate measurement apparatus. The programs`s influence on coke morphology and reactor surface was addressed using SEM/EDX surface characterization techniques. For comparison, similar studies were carried out with sulfur-containing species which are conventionally used in industrial practice as furnace additives. The present work demonstrated that the phosphorus-based treatment program provided an efficient and durable surface passivation against coke formation.

  18. Blast furnace supervision and control system

    SciTech Connect (OSTI)

    Remorino, M.; Lingiardi, O.; Zecchi, M.

    1997-12-31

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

  19. Multiple hearth furnace for reducing iron oxide

    DOE Patents [OSTI]

    Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  20. Breakthrough Furnace Can Cut Solar Industry Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Furnace can Cut Solar Industry Costs A game-changing Optical Cavity Furnace (OCF)-developed by the National Renew- able Energy Laboratory (NREL) with funding from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy-uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency. As solar cells move through a manufacturer's production line, they must be oxidized, annealed, purified, diffused, etched, and layered. Heat is an

  1. Reduce Air Infiltration in Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Infiltration in Furnaces Reduce Air Infiltration in Furnaces This tip sheet describes how to save process heating energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation. PROCESS HEATING TIP SHEET #5 Reduce Air Infiltration in Furnaces (January 2006) (237.12 KB) More Documents & Publications Furnace Pressure Controllers Reduce Radiation Losses from Heating Equipment Load Preheating Using Flue Gases from a Fuel-Fired

  2. Furnace Blower Performance Improvements - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Furnace Blower Performance Improvements - Building America Top Innovation Furnace Blower Performance Improvements - Building America Top Innovation This photo shows a circular-shaped blower fan for furnaces and air conditioners. As homeowners switch on their forced-air furnaces in preparation for cold weather, they may be unaware of how furnace blowers can impact HVAC efficiency. In fact, studies show that the most common blowers have efficiencies of only 10%-15%.

  3. Segmented ceramic liner for induction furnaces

    DOE Patents [OSTI]

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  4. Segmented ceramic liner for induction furnaces

    DOE Patents [OSTI]

    Gorin, Andrew H.; Holcombe, Cressie E.

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  5. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  6. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  7. Waste combustion in boilers and industrial furnaces

    SciTech Connect (OSTI)

    1997-12-31

    This set of conference papers deals with the combustion of hazardous wastes in boilers and industrial furnaces. The majority of the papers pertain specifically to cement industry kiln incinerators and focus on environmental issues. In particular, stack emission requirements currently enforced or under consideration by the U.S. EPA are emphasized. The papers were drawn from seven areas: (1) proposed Maximum Achievable Control Technology rule, (2) trial burn planning and experience, (3) management and beneficial use of materials, (4) inorganic emissions and continuous emission monitoring, (5) organic emissions, (6) boiler and industrial furnace operations, and (7) risk assessment and communication.

  8. Blast furnace control after the year 2000

    SciTech Connect (OSTI)

    Gyllenram, R.; Wikstroem, J.O.; Hallin, M.

    1996-12-31

    Rapid technical development together with developments in work organization makes it important to investigate possible ways to achieve a cost efficient process control of different metallurgical processes. This paper describes a research project, and proposes a human oriented Information Technology Strategy, ITS, for control of the Blast Furnace process. The method used is that of deductive reasoning from a description of the prevailing technological level and experiences from various development activities. The paper is based on experiences from the No. 2 Blast Furnace at Luleaa Works but the conclusions do not at this stage necessarily reflect the opinion of the management and personnel or reflect their intentions for system development at SSAB.

  9. Oil-Fired Boilers and Furnaces | Department of Energy

    Office of Environmental Management (EM)

    Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the ...

  10. Oil-Fired Boilers and Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container...

  11. Simple Maintenance Saves Costly Furnace Repair/Replacement

    Broader source: Energy.gov [DOE]

    For the past few weeks, my forced-air gas furnace has been on the fritz. I blame this on the fact that I haven't been as diligent as I should have been with regular furnace maintenance.

  12. Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs State-of-the-Art Computational Fluid Dynamics Model Optimizes Fuel Rate in Blast Furnaces The blast furnace (BF) is the most widely used ironmaking process in the U.S. A major advance in BF ironmaking has been the use of pulverized coal which partially replaces metallurgi- cal coke. This results in substantial improvement in furnace effciency and thus the reductions of energy consumption and greenhouse gas emissions.

  13. Breakthrough Furnace Can Cut Solar Costs - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthrough Furnace Can Cut Solar Costs October 21, 2011 In this photo, the cavity inside the furnace is glowing white-hot during a simulated firing, while a drawer-like door is open to show the mouth of the furnace. Enlarge image The cavity inside the Solar Optical Furnace glows white hot during a simulated firing of a solar cell. Credit: Dennis Schroeder Solar cells, the heart of the photovoltaic industry, must be tested for mechanical strength, oxidized, annealed, purified, diffused, etched,

  14. Purchasing Energy-Efficient Residential Furnaces

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential furnaces, a product category covered by ENERGY STAR. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  15. Performance of a direct combustion biomass furnace

    SciTech Connect (OSTI)

    Kranzler, G.A.; Stone, M.L.

    1982-12-01

    A prototype concentric vortex biomass furnace and ram bale feeder were designed and tested. A clear stack was maintained over a turndown ratio of 2:1 and excess air range of 50 to 250%. Stack temperatures ranged up to 700/sup 0/C. Average conversion efficiency was 64%. Maximum heat release was 0.4 MJ/hr.

  16. Performance of a direct combustion biomass furnace

    SciTech Connect (OSTI)

    Kranzler, G.A.; Stone, M.L.

    1982-12-01

    A prototype concentric vortex biomass furnace and ram bale feeder were designed and tested. A clear stack was maintained over a turndown ratio of 2:1 and excess air range of 50 to 250%. Stack temperature ranged up to 700 degrees C. Average conversion efficiency was 64%. Maximum heat release was 0.4 MJ/hr.

  17. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  18. Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelhia Gas Works (PGW) Doe Furnace Rule Philadelhia Gas Works (PGW) Doe Furnace Rule DOE Furnace Rule (111.99 KB) More Documents & Publications Focus Series: Philadelphia Energyworks: In the City of Brotherly Love, Sharing Know-How Leads to Sustainability The Better Buildings Neighborhood View -- December 2013 Collaborating With Utilities on Residential Energy Efficiency

  19. American Gas Association (AGA) for DOE Furnace Product Class | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (AGA) for DOE Furnace Product Class American Gas Association (AGA) for DOE Furnace Product Class Thank you for the opportunity to brief your staff in recent weeks on an impact analysis of a national condensing furnace standard, which was conducted jointly by the American Gas Association (AGA), the American Public Gas Association (APGA), and the Gas Technology Institute (GTI). AGA e-mail for DOE Furnace Product Class (83.56 KB) AGA Cover Letter for Furnace Product Class White Paper

  20. Process control techniques for the Sidmar blast furnaces

    SciTech Connect (OSTI)

    Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van

    1995-12-01

    The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

  1. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  2. Temperatures in the blast furnace refractory lining

    SciTech Connect (OSTI)

    Hebel, R.; Streuber, C.; Steiger, R.; Jeschar, R.

    1995-12-01

    The campaign life duration of a blast furnace is mainly determined by the condition of the refractory lining in heavy-duty zones such as the hearth, bosh, belly and lower stack. To achieve a desired lifetime, the temperature of the lining in these areas thereby proved to be the decisive controllable parameter. Low operating temperatures result in prolonged service life and are attained through high cooling efficiency. Besides the refractory grade chosen, the wear profile is mainly determined by the type of cooling system applied and the cooling intensity. Therefore, an appropriate compromise between long service life and energy losses has to be found in each case. In order to predict the service life of a lining it is important to know the wear condition at all times during the campaign. The paper describes the approaches the authors have made so far on European blast furnaces, on a theoretical and practical basis, on how to analyze the lining wear.

  3. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature

  4. Sealed rotary hearth furnace with central bearing support

    DOE Patents [OSTI]

    Docherty, James P. (Carnegie, PA); Johnson, Beverly E. (Pittsburgh, PA); Beri, Joseph (Morgan, PA)

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  5. Sterile neutrino dark matter with gauged U(1){sub B-L} and a low reheating temperature

    SciTech Connect (OSTI)

    Khalil, Shaaban; Seto, Osamu

    2009-04-17

    Sterile right-handed neutrinos can be naturally embedded in a low scale gauged U(1){sub B-L} extension of the standard model. We show that, within a low reheating scenario, such a neutrino can be produced via a novel manner, namely scattering through Z' gauge boson, and becomes an interesting dark matter candidate. In addition, we show that if the neutrino mass is of the order of MeV, then it accounts for the measured dark matter relic density and also accommodates the observed flux of 511 keV photons from the galactic bulge.

  6. Babcock and Wilcox cyclone furnace vitrification. Technology demonstration summary

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock and Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock and Wilcox (B and W) Alliance Research Center (ARC) in Alliance, OH. The B and W cyclone furnace may be used for thermal treatment of soils contaminated with organics, metals, and radionuclides. The cyclone furnace is designed to destroy organic contaminants and to immobilize metals and radionuclides in a vitrified soil matrix (slag).

  7. Cavity based furnace for wafer screening - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Cavity based furnace for wafer screening National Renewable Energy Laboratory Contact NREL About This Technology NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. Technology Marketing Summary The U.S. Department of Energy (DOE)

  8. DOE Publishes Final Rule for Residential Furnace Fan Test Procedure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Publishes Final Rule for Residential Furnace Fan Test Procedure DOE Publishes Final Rule for Residential Furnace Fan Test Procedure January 3, 2014 - 12:00am Addthis The Department of Energy (DOE) has published a final rule regarding test procedures for residential furnace fans. 79 FR 500 (January 3, 2014). Find more information on the rulemaking, including milestones, statutory authority, rulemaking documents, and any other related rulemakings. All notices, public

  9. Assessment of selected furnace technologies for RWMC waste

    SciTech Connect (OSTI)

    Batdorf, J.; Gillins, R. ); Anderson, G.L. )

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

  10. Biomass Boiler and Furnace Emissions and Safety Regulations in...

    Open Energy Info (EERE)

    in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency...

  11. Gas-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    natural gas meter. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels....

  12. Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

  13. Control of carbon balance in a silicon smelting furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  14. Effect of furnace operating conditions on alkali vaporization...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ALKALI METALS; EVAPORATION; FURNACES; ...

  15. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and ...

  16. Next Generation Metallic Iron Nodule Technology in Electric Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Steel Success Story - Ironmaking: Quality and Supply Critical to Steel Industry Paired Straight Hearth Furnace Ironmaking Process Alternatives ...

  17. DOE Furnace Rule Ex Parte Communication | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Furnace Rule Ex Parte Communication Philadelphia Gas Works (POW), the largest ... have on POW, its customers, the City of Philadelphia and the air quality of this region. ...

  18. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When the energy transfer reaches its practical limit, the spent combustion gases are ... reduction in furnace heat losses will be multiplied by the overall available heat factor. ...

  19. Post combustion trials at Dofasco's KOBM furnace

    SciTech Connect (OSTI)

    Farrand, B.L.; Wood, J.E.; Goetz, F.J.

    1992-01-01

    Post combustion trials were conducted at Dofasco's 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

  20. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    DOE Patents [OSTI]

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-02-11

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  1. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  2. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  3. Modernizing furnaces with recuperative burners in the metal industry

    SciTech Connect (OSTI)

    Berdoulay, F.; Drewery, P.

    1982-01-01

    Industrial burners equipped with means of preheating the combustion air with the hot combustion products offer significant savings in heat-processing energy consumption. As evidence in some forging furnaces recently outfitted with recuperative burners, reductions in energy consumption range from 30 to 60%. Such burners are particularly well-suited for high-temperature, direct-heating furnaces.

  4. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  5. C AND M BOTTOM LOADING FURNACE TEST DATA

    SciTech Connect (OSTI)

    Lemonds, D

    2005-08-01

    The test was performed to determine the response of the HBL Phase III Glovebox during C&M Bottom Loading Furnace operations. In addition the data maybe used to benchmark a heat transfer model of the HBL Phase III Glovebox and Furnace.

  6. Pulverized coal injection operation on CSC No. 3 blast furnace

    SciTech Connect (OSTI)

    Chan, C.M.; Hsu, C.H.

    1996-12-31

    The pulverized coal injection system was introduced for the first time in No. 1 and No. 2 blast furnace at China Steel Corporation (CSC) in 1988. Currently the coal injection rate for both blast furnaces has steadily risen to 70--89 kg/thm (designed value). No 3 blast furnace (with an inner volume of 3400 m3) was also equipped with a PCI system of Armco type and started coal injection on November 17, 1993. During the early period, some problems such as injection lance blocking, lance-tip melting down, flexible hose wear, grind mill tripping occasionally interrupted the stable operation of blast furnace. After a series of efforts offered on equipment improvement and operation adjustment, the PC rate currently reaches to 90--110 kg/thm and furnace stable operation is still being maintained with productivity more than 2.20.

  7. Operating a blast furnace using dried top gas

    SciTech Connect (OSTI)

    Kundrat, D.M.

    1993-08-10

    A method is described of operating a blast furnace, comprising: introducing into the top of the furnace a charge containing metal oxide, coke and flux, collecting a top gas CO, H[sub 2], carbon dioxide and water from the furnace, increasing the reducing potential of said collected top gas by removing water but without removing carbon dioxide from at least a portion of said collected top gas thereby forming a dried top gas, heating said dried top gas to form a heated dried top gas, introducing said heated dried top gas into the lower half of the stack of the furnace at a position above which said coke is not reactive and introducing an oxygen-containing gas and a hydrogenaceous fuel into the bosh of the furnace whereby said metal oxide is reduced to a molten metal using said heated dried top gas.

  8. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  9. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  10. Recent improvements in casthouse practices at the Kwangyang blast furnaces

    SciTech Connect (OSTI)

    Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

    1997-12-31

    POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

  11. Use of sinter in Taranto blast furnaces

    SciTech Connect (OSTI)

    Palchetti, M.; Palomba, R.; Tolino, E.; Salvatore, E.; Calcagni, M.

    1995-12-01

    Lowering the production cost of the crude steel is the ultimate aim when planning operations in an integrated steelworks. Designing the Blast Furnace burden is a crucial point in this context, for which account must be taken not only of the raw materials cost but also of other important aims such as maximum plants productivity, minimum possible energy consumption, a proper product quality at the various production stages. This paper describes the criteria used in Ilva Laminati Piani (ILP) Taranto Works to design the BF burden, based on sinter, using the results of extensive research activity carried out by Centro Sviluppo Materiali (CSM), the Research Center with major involvement with the R and D of the Italian Steel Industry. Great attention is paid at ILP to the sinter quality in order to obtain the optimum performance of the BFs, which are operating at high productivity, high pulverized coal rate and low fuel consumption.

  12. An update on blast furnace granular coal injection

    SciTech Connect (OSTI)

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  13. No. 5 blast furnace 1995 reline and upgrade

    SciTech Connect (OSTI)

    Kakascik, T.F. Jr.

    1996-12-31

    The 1995 reline of No. 5 Blast Furnace is an undertaking which has never been approached in previous relines of any blast furnace in the history of Wheeling Pittsburgh Steel Corporation. The scope of the project is such that it represents a radical departure from W.P.S.C.`s traditional methods of ironmaking. The reline of No. 5 Blast Furnace is one of the largest capital improvements performed at W.P.S.C. Blast Furnaces. The improvements made at one single time are taking a furnace from 1960`s technology into the 21st century. With this in mind, employee training was one of the largest parts of the project. Training for the automated stockhouse, castfloor, new skip drive, new instrumentation, new castfloor equipment, hydraulics and overall furnace operation were an absolute necessity. The reline has laid the ground work to give the Corporation an efficient, higher productive, modern Blast Furnace which will place W.P.S.C. in the world class category in ironmaking well into the 21st century.

  14. Fundamental studies of the metallurgical causes and mitigation of reheat cracking in 1{1/4}Cr-{1/2}Mo and 2{1/4}Cr-1Mo steels

    SciTech Connect (OSTI)

    Lundin, C.D.; Khan, K.K.

    1996-02-01

    Cr-Mo steels are considered to be susceptible to weld related reheat cracking. This study was instituted to determine the mechanisms for reheat cracking in these steels as well as to determine methods to successfully avoid reheat cracking. Two heats of 1{1/4}-{1/2}Mo were used, one being calcium treated. Also used were three heats of 2{1/4}Cr-1Mo, one being a conventional grade of 2{1/4}Cr-1Mo calcium treated; and the other two being modified (with {1/4}V) grades, one of which was calcium treated. The reheat cracking susceptibility of the materials was first determined by the Gleeble technique. Subsequently, a new simple and versatile test was developed--the spiral notch test. The materials were evaluated by this new test and a good correlation was found between the two tests. The results show a distinct difference in carbide evolution and segregation pattern for reheat crack susceptible and nonsusceptible heats. The M{sub 3}C type carbides persisted longer in reheat crack sensitive heats than in resistant heats. The M{sub 3}C type carbides transformed to M{sub 23}C{sub 6} type carbides earlier during PWHT. The prior austenite grain boundaries were enriched in P (susceptible) and in S (resistant) materials. Although the relation between the carbide evolution kinetics and the trace element segregation in affecting the reheat cracking susceptibility was not fully defined, it was obvious that the two were interlinked. The activation energy calculations revealed that diffusion of P was the rate controlling step for reheat cracking. Thus, all the results point to P as the principle element responsible for reheat cracking. 145 refs.

  15. Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

  16. 2015-12-29 Consumer Furnaces and Boilers Test Procedures Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Consumer Furnaces and Boilers

  17. Operating experience with 100% pellet burden on Amanda blast furnace

    SciTech Connect (OSTI)

    Keaton, D.E.; Minakawa, T. . Ironmaking Dept.)

    1993-01-01

    A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated that the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.

  18. Plasma furnace treatment of metallurgical by-product streams

    SciTech Connect (OSTI)

    Whellock, J.G.; Heanley, C.P.; Chapman, C.S.

    1997-12-31

    It is a common misconception that plasma furnace technology only has application for exotic and very high temperature processes. With the increasing importance placed on waste minimization and the environmental constraints imposed on heavy metals present in byproducts from mainstream operations, plasma technology is finding widespread application. Tetronics is a premier supplier of plasma tundish heating systems for the steel industry. More recently the company has found growing interest in electric arc furnace dust treatment, lead blast furnace slag treatment and metal recovery, copper, nickel and cobalt scavenging from primary smelter slags, dross treatment, platinum group metals (PGM) recovery from catalysts and vitrification and detoxification of heavy metal contaminated waste byproducts. The principal advantages of the plasma arc technology are the close metallurgical control of the furnace environment, minimal off-gas handling requirements and overall high energy efficiency of the processes. A number of applications in the ferrous and non-ferrous metals industry are described.

  19. Gas-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the...

  20. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces;...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical ...

  1. Advanced Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect (OSTI)

    2007-06-01

    This factsheet describes a research project whose objective is to develop and implement technologies that address advanced combustion diagnostics and rapid Btu measurements of fuels. These are the fundamental weaknesses associated with the combustion processes of a furnace.

  2. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...

    Energy Savers [EERE]

    more than a year's carbon pollution from the entire U.S. electricity system. Furnace fans are used to circulate air through ductwork in residential heating and cooling equipment. ...

  3. AGA/APGA Questions re Pre-publication Furnace NOPR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre-publication Furnace NOPR AGA/APGA Questions re Pre-publication Furnace NOPR AGA/APGA Questions re Pre-publication Furnace NOPR_Email (50.37 KB) Questions for DOE Furnace NOPR - 030615-c (2) (94.63 KB) DOE Reponse to AGA/APGA Questions re Pre-publication Furnace NOPR_Email.pdf (52.31 KB) Follow-Up Email from APGA (57.65 KB) More Documents & Publications AGA/APGA Questions re Furnace NOPR, EERE-2014-BT-STD-0031 Furnaces Data RE: EERE-2014-BT-STD-0031

  4. Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfd_blastfurnace.pdf (552.85 KB) More Documents & Publications Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry EA-1745: Finding of No Significant Impact

  5. Alloys for Ethylene Production Furnaces - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Alloys for Ethylene Production Furnaces Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryEthylene production is one of the most energy intensive processes in the chemical industry, due to the decoking necessary to maintain ethylene furnace tubes. DescriptionOak Ridge National Laboratory and its industrial partners are developing

  6. Waste Heat Reduction and Recovery for Improving Furnace Efficiency,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief | Department of Energy Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief This technical brief is a guide to help plant operators reduce waste heat

  7. Automatic thermocouple positioner for use in vacuum furnaces

    DOE Patents [OSTI]

    Mee, D.K.; Stephens, A.E.

    1980-06-06

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  8. Automatic thermocouple positioner for use in vacuum furnaces

    DOE Patents [OSTI]

    Mee, David K.; Stephens, Albert E.

    1981-01-01

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  9. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect (OSTI)

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.

    2009-01-15

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  10. The 1994 intermediate reline of H-3 furnace

    SciTech Connect (OSTI)

    James, J.D.; Nanavati, K.S.; Spirko, E.J.; Wakelin, D.H.

    1995-12-01

    LTV Steel`s Indiana Harbor Works H-3 Blast Furnace was rebuilt in 1988 to provide reliable operations at high production rates without damage to the shell for an overall campaign. This Rebuild included: (1) complete bosh and partial stack shell replacement; (2) a spray cooled carbon bosh; (3) a row of staves at the mantle and six rows of stack staves, all stack staves had noses (ledges at the top of the stave) with the exception of row 5; (4) silicon carbide filled semi graphite brick for the bosh, silicon carbide brick from the mantle area and to the top of stave row No. 1, super duty brick in front of the remaining staves and phosphate bonded high alumina brick in the upper stack; (5) movable throat armor; (6) upgraded instrumentation to follow furnace operation and lining wear occurring in the furnace. No work was done to the hearth walls and bottom, since these had been replaced in 1982 with a first generation graphite cooled design and has experienced 7.7 million NTHM. The furnace was blown in November 18, 1988 and operated through September 3, 1994, at which time it was blown down for its first intermediate repair after 7.85 million NTHM. This paper summarizes the operation of the furnace and then discusses the major aspects of the 1994 intermediate repair.

  11. Recent developments in blast furnace process control within British Steel

    SciTech Connect (OSTI)

    Warren, P.W.

    1995-12-01

    British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider and evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.

  12. Hot metal Si control at Kwangyang blast furnaces

    SciTech Connect (OSTI)

    Hur, N.S.; Cho, B.R.; Kim, G.Y.; Choi, J.S.; Kim, B.H.

    1995-12-01

    Studies of Si transfer in blast furnaces have shown that the Si level in pig iron is influenced more by the reaction of silicon oxide gas generation in the raceway than the chemical reaction between hot metal and slag at the drop zone. Specifications require a Si content of pig iron below 0.15% at the Kwangyang Works, but the use of soft coking coal in the blend for coke ovens, high pulverized coal injection rate into the blast furnace, and the application of lower grade iron ore has resulted in the need to develop methods to control Si in hot metal. In this paper, the results of in furnace Si control and the desiliconization skills at the casthouse floor are described.

  13. Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.

    SciTech Connect (OSTI)

    Golchert, B.; Shell, J.; Jones, S.; Energy Systems; Shell Glass Consulting; Anheuser-Busch Packaging Group

    2006-09-06

    The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation into the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.

  14. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect (OSTI)

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less

  15. Optical processing furnace with quartz muffle and diffuser plate

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1995-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

  16. Improvement of tap holes at Wakayama No. 5 blast furnace

    SciTech Connect (OSTI)

    Yamashita, M.; Kashiwada, M.; Shibuta, H.

    1995-12-01

    The service life of blast furnaces, as the result of various improvement measures, has been extended from the conventional 5 to 7 years to 15 to 20 years. Wakayama No. 5 blast furnace adopted SiC bricks. Though SiC brick excelled in strength and durability, it has raised problems such as tap hole inside temperature lowering attributable to its high thermal conductivity, insufficient mud burning and gas blow-out. Nevertheless, various countermeasures described within have been taken against such problems, and as the result it has now become possible to maintain tap holes in stable conditions.

  17. NREL's Optical Cavity Furnace Brings Together a Myriad of Advances for Processing Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    Fact sheet on 2011 R&D 100 Award winner, the Optical Cavity Furnace. The innovative furnace uses light and unique light-induced effects to make higher-efficiency solar cells at lower cost.

  18. Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents

    Broader source: Energy.gov [DOE]

    This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

  19. Development and Validation of a Coupled Combustion Space/Glass Bath Furnace Simulation

    SciTech Connect (OSTI)

    2000-12-01

    Glass Furnace Simulation Model will Improve Energy Use and Efficiency While Reducing Emissions. Competitive and regulatory pressures are motivating glass manufacturers to seek new ways to improve productivity while reducing furnace enery use and emission.

  20. DOE Publishes Notice of Proposed Rulemaking for Residential Furnace Fans Energy Conservation Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy has published a notice of proposed rulemaking regarding energy conservation standards for residential furnace fans.

  1. Evaluation of heat flux through blast furnace shell with attached sensors

    SciTech Connect (OSTI)

    Han, J.W.; Lee, J.H.; Suh, Y.K.

    1996-12-31

    Plant trials to evaluate heat fluxes through a lining/cooling system of a blast furnace were conducted in order to realize the cooling efficiency of the blast furnace under operation. For this purpose, several experiments to measure the in-furnace gas temperatures were cautiously made, and numerical simulations for the temperature distributions over the blast furnace shell and cooling/lining systems were also carried out.

  2. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Heat Recovery Systems for Fuel-Fired Furnaces Install Waste Heat Recovery Systems for Fuel-Fired Furnaces This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems. PROCESS HEATING TIP SHEET #8 Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (September 2005) (280.81 KB) More Documents & Publications Load Preheating Using Flue Gases from a Fuel-Fired Heating System Using

  3. Computational fluid dynamics simulations of a glass melting furnace

    SciTech Connect (OSTI)

    Egelja, A.; Lottes, S. A.

    2000-05-09

    The glass production industry is one of the major users of natural gas in the US, and approximately 75% of the energy produced from natural gas is used in the melting process. Industrial scale glass melting furnaces are large devices, typically 5 or more meters wide, and twice as long. To achieve efficient heat transfer to the glass melt below, the natural gas flame must extend over a large portion of the glass melt. Therefore modern high efficiency burners are not used in these furnaces. The natural gas is injected as a jet, and a jet flame forms in the flow of air entering the furnace. In most current glass furnaces the energy required to melt the batch feed stock is about twice the theoretical requirement. An improved understanding of the heat transfer and two phase flow processes in the glass melt and solid batch mix offers a substantial opportunity for energy savings and consequent emission reductions. The batch coverage form and the heat flux distribution have a strong influence on the glass flow pattern. This flow pattern determines to a significant extent the melting rate and the quality of glass.

  4. Combustion in a multiburner furnace with selective flow of oxygen

    DOE Patents [OSTI]

    Bool, III, Lawrence E.; Kobayashi, Hisashi

    2004-03-02

    Improved operational characteristics such as improved fuel efficiency, reduction of NOx formation, reduction of the amount of unburned carbon in the ash, and lessened tendency to corrosion at the tube wall, in a multi-burner furnace are obtained by reducing the flow rate of combustion air to the burners and selectively individually feeding oxidant to only some of the burners.

  5. Electrode immersion depth determination and control in electroslag remelting furnace

    DOE Patents [OSTI]

    Melgaard, David K.; Beaman, Joseph J.; Shelmidine, Gregory J.

    2007-02-20

    An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

  6. Optical processing furnace with quartz muffle and diffuser plate

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1996-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

  7. Single taphole blast furnace casthouse performance optimizing cost and availability

    SciTech Connect (OSTI)

    Fowles, R.D.; Searls, J.B.; Peay, W.R.; Brenneman, R.G.

    1995-12-01

    The No. 2 blast furnace is a single taphole furnace with a convection air-cooled iron trough. The iron runner system is designed to fill four 90 ton open-top ladles per cast, which are transported by locomotive to the steel shop. The slag runner system is capable of filling three 800 ft{sup 3} slag pots per cast. The No. 2 blast furnace was blown in from mini-reline with this new casthouse configuration in early December 1991. It was operated for nearly three years until it was banked for planned stove repairs and a trough rebuild in late September 1994. During this period, the furnace produced just over 2.5 million tons of hot metal across the original trough refractory lining system, with 13 intermediate hot patch castable repairs. The entire casthouse refractory usage (main trough, runner systems, and covers) during this campaign was 1.06 pounds per net ton of hot metal. Investigation of the lining during demolition indicated that the trough lining campaign could have been extended to at least 3.0 million tons. This paper will discuss how operating practices, mechanical design, refractory design, maintenance philosophy, and attention to detail synergistically contributed to the long campaign life and low refractory consumption rate.

  8. Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.

    DOE Patents [OSTI]

    Aune, Jan Arthur; Brinch, Jon Christian; Johansen, Kai

    2005-12-27

    The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.

  9. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    SciTech Connect (OSTI)

    Makarov, A. N.

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  10. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-01

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  11. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Furnaces

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Furnaces, Extension of Comment Period

  12. ISSUANCE 2016-09-02: Energy Conservation Program: Energy Conservation Standards for Residential Furnaces, Supplemental Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Residential Furnaces, Supplemental Notice of Proposed Rulemaking

  13. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

  14. Low NOx nozzle tip for a pulverized solid fuel furnace

    DOE Patents [OSTI]

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  15. Optical processing furnace with quartz muffle and diffuser plate

    DOE Patents [OSTI]

    Sopori, B.L.

    1996-11-19

    An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

  16. Measure Guideline: High-Efficiency Natural Gas Furnaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Efficiency Natural Gas Furnaces L. Brand and W. Rose Partnership for Advanced Residential Retrofit October 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors or affiliates makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  17. Evaluation of steel furnace slags as cement additives

    SciTech Connect (OSTI)

    Tuefekci, M.; Demirbas, A.; Genc, H.

    1997-11-01

    Chemical and physical properties and strength development have been studied for six granulated steel furnace slags from the normal steelmaking process. This paper reports results of research performed to develop cement mixture proportions using these slags. The influence of slag proportions, specific surface, and water demand on compressive strength and bulk density of cement blends are presented in this paper. The different test results, which were compared with the Turkish Standards, in general, were found to be within the limits.

  18. Detailed model for practical pulverized coal furnaces and gasifiers

    SciTech Connect (OSTI)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  19. Plasma-supported coal combustion in boiler furnace

    SciTech Connect (OSTI)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  20. Catalyst added to Claus furnace reduces sulfur losses

    SciTech Connect (OSTI)

    Luinstra, E.A.; d'Haene, P.E. (Shell Canada Ltd., Toronto, ON (Canada). Oakville Research Centre)

    1989-07-01

    Several substances effectively catalyze the reduction of carbon disulfide in Claus gas streams at Claus reaction furnace conditions (about 1,000{sup 0}C). Some conversion of carbonyl sulfide also occurs. Carbon disulfide and carbonyl sulfide as well-known problem compounds that reduce sulfur recovery efficiency in many sulfur recovery plants. Installation of a suitable catalytic material in the reaction furnace promises significant improvement of Claus plant efficiency, and prolonged life of the catalytic converters. Almost every Claus sulfur recovery plant makes some carbon disulfide (CS/sub 2/) and carbonyl sulfide (COS) in the reaction furnace, and in many of these plants, these compounds constitute a significant problem. CS/sub 2/ and COS often comprise more than 50% of sulfur losses in the tail gas. This article reexamines the issue of CS/sub 2/ and COS in the Claus plant. The relative importance of these two troublesome components is explored with data accumulated from Shell Canada Claus plants. The authors discuss which factors tend to produce these components. Then a method for reducing CS/sub 2/ and COS virtually at the source will be introduced.

  1. Raceway behaviors in blast furnace with pulverized coal injection

    SciTech Connect (OSTI)

    Chung, J.K.; Han, J.W.; Cho, B.R.

    1995-12-01

    The blast furnace raceway shows different characteristics with PCR (pulverized coal injection rate). It was found in this study that with the increase of PCR the raceway depth decreases, and the size of birds nest and sometimes with liquid holdup, increases. Oxygen enrichment with co-axial lances was known to be very effective on the extension of raceway depth and size reduction of birds nest. It was also found that there are various factors which affect the coke properties at tuyere level of the blast furnace. Coke traveling time was calculated to be extended with PCR and it had a close relationship with the coke size in bosh. Coke mean size decreased with the increase of coke traveling time, that is, with the increase of PCR. Both DI (the strength of coke in cold) and CSR (the strength of coke after reaction) were also decreased with PCR. RAFT (Raceway Adiabatic Flame Temperature) had a tendency to be decreased with the increase of PCR, which is obtained by the estimation of coke temperature via XRD analysis. From the analysis of alkali contents in coke sampled along the radius of the blast furnace, it was understood that no difference in alkali contents between fine and lump coke represents that coke fines generated from upper burden might appear at tuyere level.

  2. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the

  4. Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications

    SciTech Connect (OSTI)

    1997-03-01

    The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

  5. 2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fans; Final Rule | Department of Energy 25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule 2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule This document is a pre-publication Federal Register final rule regarding energy conservation standards for furnace fans, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on June 25, 2014. Though it is not intended or expected, should any discrepancy

  6. 2015-02-10 Issuance Energy Conservation Standard for Residential Furnaces;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Proposed Rulemaking and Public Meeting | Department of Energy 0 Issuance Energy Conservation Standard for Residential Furnaces; Notice of Proposed Rulemaking and Public Meeting 2015-02-10 Issuance Energy Conservation Standard for Residential Furnaces; Notice of Proposed Rulemaking and Public Meeting This document is a pre-publication Federal Register notice of proposed rulemaking and public meeting regarding energy conservation standards for residential furnaces, as issued by the

  7. 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Rulemaking | Department of Energy 3 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for furnaces and boilers, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 13, 2015. Though it is not intended or expected, should any

  8. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOE Patents [OSTI]

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  9. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOE Patents [OSTI]

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  10. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  11. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi

  12. AGA/APGA Questions re Furnace NOPR, EERE-2014-BT-STD-0031 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Furnace NOPR, EERE-2014-BT-STD-0031 AGA/APGA Questions re Furnace NOPR, EERE-2014-BT-STD-0031 AGA-APGA Questions_Ex Parte_Email (68.75 KB) AGA_APGA_Shipments_Questions_2015-04-23 (26.5 KB) More Documents & Publications AGA/APGA Questions re Pre-publication Furnace NOPR August 20, 2014 meeting with DOE representatives regarding the remand of the DOE Direct Final Rule as it relates to efficiency standards for non-weatherized gas furnaces 2015-12-30 Energy Conservation Program:

  13. 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications 2015-12-29 Consumer Furnaces and Boilers Test Procedures Final Rule ISSUANCE 2014-12-23: Energy Conservation Program for Consumer Products: Test ...

  14. Minimization of Blast Furnace Fuel Rate by Optimizing Burden and Gas Distributions

    SciTech Connect (OSTI)

    2007-08-01

    This factsheet describes a research project whose proposed CFD model will focus on the complex physics and chemistry found within the upper part of the blast furnace.

  15. Cost efficiency of flame-guniting the lining of open-hearth and electric steelmaking furnaces

    SciTech Connect (OSTI)

    Voronov, M.V.; Kozenko, N.I.; Moiseenko, V.D.; Bondarenko, A.G.

    1988-05-01

    The use of flame-guniting for lining repair to the open-hearth and electric steelmaking furnaces of a number of Soviet plants is reviewed. Equipment and technology for flame-guniting the lining of furnaces, which provide for both local and general repairs to the walls, roofs, and bottoms of furnaces, are discussed. Methods are given for calculating expenditures for repair work and determining the cost efficiency of flame guniting relative to the increased number of heats per lining life. Results are given from calculations of the projected cost-efficiency of using flame-guniting for furnace lining repair at the metallurgical plants of the Ukranian Ministry of Ferrous Metallurgy.

  16. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  17. Graphite electrode DC arc furnace. Innovative technology summary report

    SciTech Connect (OSTI)

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of

  18. New additive retards coke formation in ethylene furnace tubes

    SciTech Connect (OSTI)

    Not Available

    1994-05-09

    Adding relatively small amounts of a new additive to the feed stream of a steam cracker can inhibit coke formation on the metal surfaces of processing equipment and increase furnace run time. The additive comprises a variable mixture of four to six inorganic salts in aqueous solution. The components of the additive mixture can be varied, as needed, for processing heavy feed materials such as heavy naphtha and gas oil. The process was first tested at a Korean petrochemical plant and is now operating successfully at a commercial facility in Russia. The results of the Korean trial are presented here.

  19. A system for interpretation of blast furnace stockrod measurements

    SciTech Connect (OSTI)

    Hinnelae, J.; Saxen, H.

    1997-12-31

    A system for intelligent monitoring and interpretation of signals from blast furnace stockrods is presented. The system visualizes the measurements and estimates the local burden layer thickness (under the rods) after every dump. Furthermore, it analyzes the burden descent rate to distinguish between slips, hangings, normal descent and peaks, etc., and also combines the stockrod information with findings of temperature measurements from an above-burden probe. The preprocessing of the signals and some features of the system, which is under development, are treated in this paper.

  20. The limitation of hearth sidewall wear at Redcar blast furnace

    SciTech Connect (OSTI)

    Parratt, J.E.

    1996-12-31

    The Redcar blast furnace with 14m hearth diameter was blown-in for its second campaign in August 1996. It is currently in its 10th year of operation and to date has produced just over 30 million tonnes. Current plans are to continue the second campaign to the year 2000 and beyond, producing over 40 million tonnes. In order to achieve this objective, any further wear on the lining, and in particular the hearth sidewall, needs to be minimized. This paper describes the present hearth design, the monitoring of hearth wear, the predicted wear profile, and the protection measures that have been taken or are being considered.

  1. Post combustion trials at Dofasco`s KOBM furnace

    SciTech Connect (OSTI)

    Farrand, B.L.; Wood, J.E.; Goetz, F.J.

    1992-12-31

    Post combustion trials were conducted at Dofasco`s 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

  2. Examination of the effect of system pressure ratio and heat recuperation on the efficiency of a coal based gas turbine fuel cell hybrid power generation system with CO2 capture

    SciTech Connect (OSTI)

    VanOsdol, J.G.; Gemmen, R.S.; Liese, E.A

    2008-06-01

    This paper examines two coal-based hybrid configurations that employ separated anode and cathode streams for the capture and compression of CO2. One configuration uses a standard Brayton cycle, and the other adds heat recuperation ahead of the fuel cell. Results show that peak efficiencies near 55% are possible, regardless of cycle configuration, including the cost in terms of energy production of CO2 capture and compression. The power that is required to capture and compress the CO2 is shown to be approximately 15% of the total plant power.

  3. Operational results of shaft repair by installing stave type cooler at Kimitsu Nos. 3 and 4 blast furnaces

    SciTech Connect (OSTI)

    Oda, Hiroshi; Amano, Shigeru; Sakamoto, Aiichiro; Anzai, Osamu; Nakagome, Michiru; Kuze, Toshisuke; Imuta, Akira

    1997-12-31

    Nos. 3 and 4 blast furnaces in Nippon Steel Corporation Kimitsu Works were both initially fitted with cooling plate systems. With the aging of each furnace, the damage to their respective inner-shaft profiles had become serious. Thus, in order to prevent operational change and prolong the furnace life, the inner-shaft profile of each furnace was repaired by replacing the former cooling plate system with the stave type cooler during the two-week-shutdowns. With this repair, stability of burden descent and gas flow near the wall part of the furnace have been achieved. Thus the prolongation of the furnace life is naturally expected.

  4. Self-calibrated active pyrometer for furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1998-01-01

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  5. Blast furnace coke quality in relation to petroleum coke addition

    SciTech Connect (OSTI)

    Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J.; Sirgado, M.

    1995-12-01

    The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

  6. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi

  7. Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    Rothgeb, S.; Brand, L.

    2013-11-01

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  8. Process control techniques at the blast furnaces of Thyssen Stahl AG

    SciTech Connect (OSTI)

    Kowalski, W.; Bachhofen, H.J.; Beppler, E.; Kreibich, K.; Muelheims, K.; Peters, M.; Wieters, C.U.

    1995-12-01

    Process improvements, capacity increases and the use of modern measuring and process control techniques have helped to ensure that the blast furnace will remain an indispensable means of supplying steelworks with hot metal until well into the next century. The survival of a future-oriented company such as Thyssen Stahl AG depends on long-term improvements in economic viability. Today, Thyssen Stahl AG operates two blast furnace plants comprising a total of five blast furnaces with hearth diameters ranging from 9.3 to 14.9m. This choice of furnaces permits flexible adjustment to changing workload situations and enables about ten million tons of hot metal to be produced each year. The wide range of measuring devices specially fitted on Schwelgern blast furnace No. 1 made a vital contribution to the development of blast furnace models. The purpose of these models was to make a general assessment of the state of the furnace and so create an objective basis for furnace operation. The paper describes the development of these measuring techniques and process model and the application of the model.

  9. Long life hearth in blast furnace -- Kokura No. 2 B.F. of Sumitomo Metals

    SciTech Connect (OSTI)

    Yamamoto, Takaiku; Sunahara, Kouhei; Inada, Takanobu; Takatani, Kouji; Miyahara, Mitsuo; Sato, Yasusi; Hatano, Yasuhiko; Takata, Kouzo

    1997-12-31

    The factors elongating hearth life of Sumitomo Kokura No. 2 B.F. were investigated by use of an estimation system of the furnace hearth condition, which consisted of four mathematical simulation models. Lowered heat load operation together with integrated design of both refractories and cooling enabled the furnace life to be extended for over 16 years without severe damage in the hearth.

  10. Technology Solutions Case Study: Improving the Field Performance of Natural Gas Furnaces

    SciTech Connect (OSTI)

    2013-11-01

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  11. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  12. Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel

    SciTech Connect (OSTI)

    Bergstrand, R.

    1996-12-31

    The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

  13. BPM Motors in Residential Gas Furnaces: What are theSavings?

    SciTech Connect (OSTI)

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-05-12

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

  14. Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

  15. Effect of chlorine on furnace wall corrosion in utility boilers

    SciTech Connect (OSTI)

    Kung, S.C.; Daniel, P.L.; Seeley, R.R.

    1996-08-01

    The corrosion resistance of several commercial alloys was investigated in laboratory retort tests under a reducing/sulfidizing mixed gas at 700 and 900 F (371 and 482 C) for 1,000 hours. The test conditions were designed to simulate the corrosion of furnace walls in the combustion zone of utility boilers burning sulfur/chlorine-bearing coal substoichiometrically. Corrosion rates of these alloys were determined and compared to those obtained from a previous study in which the same alloys were evaluated under chlorine-free substoichiometric combustion environments. Results of the two studies reveal that the presence of chlorine in the reducing/sulfidizing mixed gas has a negligible effect on the corrosion behavior of these alloys in this gas at 700 F (371 C), whereas a beneficial effect was observed at 900 F (482 C). The beneficial effect implies that the presence of HCl may impede the sulfidation attack by H{sub 2}S under certain substoichiometric combustion environments.

  16. High-bandwidth continuous-flow arc furnace

    DOE Patents [OSTI]

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  17. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  18. High-bandwidth continuous-flow arc furnace

    DOE Patents [OSTI]

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  19. When did movement begin on the Furnace Creek fault zone

    SciTech Connect (OSTI)

    Reheis, M. )

    1993-04-01

    About 50 km of post-Jurassic right-lateral slip has occurred on the northern part of the Furnace Creek fault zone (FCFZ). The sedimentology, stratigraphy, and structure of Tertiary rocks suggest that movement on the fault began no earlier than 12--8 Ma and possibly as late as 5--4 Ma. Large remnants of erosion surfaces occur on both sides of the FCFZ in the southern White Mountains and Fish Lake Valley and are buried by rhyolite and basalt, mostly 12--10 Ma; the ash flows and welded tuffs were likely erupted from sources at least 40 km to the east. Thus, the area probably had gentle topography, suggesting a lengthy period of pre-late Miocene tectonic stability. On the west side of the FCFZ, Cambrian sedimentary rocks are buried by a fanglomerate with an [sup [minus

  20. Operational considerations for high level blast furnace fuel injection

    SciTech Connect (OSTI)

    Poveromo, J.J.

    1996-12-31

    Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

  1. MELT RATE FURNACE TESTING FOR SLUDGE BATCH 5 FRIT OPTIMIZATION

    SciTech Connect (OSTI)

    Miller, D; Fox, K; Pickenheim, B; Stone, M

    2008-10-03

    Savannah River National Laboratory (SRNL) was requested to provide the Defense Waste Processing Facility (DWPF) with a frit composition for Sludge Batch 5 (SB5) to optimize processing. A series of experiments were designed for testing in the Melt Rate Furnace (MRF). This dry fed tool can be used to quickly determine relative melt rates for a large number of candidate frit compositions and lead to a selection for further testing. Simulated Sludge Receipt and Adjustment Tank (SRAT) product was made according to the most recent SB5 sludge projections and a series of tests were conducted with frits that covered a range of boron and alkali ratios. Several frits with relatively large projected operating windows indicated melt rates that would not severely impact production. As seen with previous MRF testing, increasing the boron concentration had positive impacts on melt rate on the SB5 system. However, there appears to be maximum values for both boron and sodium above which the there is a negative effect on melt rate. Based on these data and compositional trends, Frit 418 and a specially designed frit (Frit 550) have been selected for additional melt rate testing. Frit 418 and Frit 550 will be run in the Slurry Fed Melt Rate Furnace (SMRF), which is capable of distinguishing rheological properties not detected by the MRF. Frit 418 will be used initially for SB5 processing in DWPF (given its robustness to compositional uncertainty). The Frit 418-SB5 system will provide a baseline from which potential melt rate advantages of Frit 550 can be gauged. The data from SMRF testing will be used to determine whether Frit 550 should be recommended for implementation in DWPF.

  2. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect (OSTI)

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  3. [A variable frequency microwave furnace]. CRADA final report for CRADA Number ORNL91-0055

    SciTech Connect (OSTI)

    Lauf, R.J.

    1994-12-08

    The goals of this CRADA were to: (1) development and demonstrate a highly frequency-agile microwave furnace; (2) explore applications of the furnace for materials processing; and (3) develop control systems and packaging that are robust, user-friendly, and suitable for sale as a turnkey system. Microwave Laboratories, Inc. (MLI) designed, built, and successfully brought to market a benchtop Variable Frequency Microwave Furnace (VFMF). The concept has demonstrated advantages in polymer curing, waste remediation, and diamond (CVD). Through experimentation and modeling, the VFMF approach has gained credibility within the technical community.

  4. Model of the radial distribution of gas in the blast furnace

    SciTech Connect (OSTI)

    Nikus, M.; Saxen, H.

    1996-12-31

    This paper describes an on-line model for estimating the radial gas distribution in blast furnaces. The model is based on molar and energy flow balances for the blast furnace throat region, and utilizes the top gas temperature and gas temperature measurements from a fixed above-burden probe. The distribution of the gas flux is estimated by a Kalman filter. The method is illustrated to capture short-term dynamics and to detect sudden major changes in the gas distribution in Finnish blast furnace.

  5. Monitoring lining and hearth conditions at Inland`s No. 7 blast furnace

    SciTech Connect (OSTI)

    Quisenberry, P.; Grant, M.; Carter, W.

    1997-12-31

    The paper describes: furnace statistics; mini-reline undertaken in November, 1993; the stack condition; throat gunning; stabilizing the graphite bricks; the hearth condition; reactions to temperature excursions; future instrumentation; and hot blast system areas of concern. The present data from monitoring systems and inspections indicate that the furnace should be able to operate well beyond the expectation for the 1993 mini-reline (3--5 years) with: (1) consistent, high quality raw materials; (2) instrumentation, diagnostic, remedial, and preventative techniques developed; and (3) stopping quickly any water leaks into the furnace. The longevity of this campaign has undoubtedly been a result of this monitoring program.

  6. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum...

  7. COMPUTATIONAL FLUID DYNAMICS BASED INVESTIGATION OF SENSITIVITY OF FURNACE OPERATIONAL CONDITIONS TO BURNER FLOW CONTROLS

    SciTech Connect (OSTI)

    Marc Cremer; Zumao Chen; Dave Wang; Paul Wolff

    2004-06-01

    This is the extended second Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts.

  8. Titanium addition practice, and maintenance for the hearths in AHMSA`s blast furnaces

    SciTech Connect (OSTI)

    Boone, A.G.; Jimenez, G.; Castillo, J.

    1997-12-31

    Altos Hornos de Mexico (AHMSA) is a steel company located in Northern Mexico, in the state of Coahuila. Currently there are three blast furnaces in operation and one more about to finish its general repair. This last one is to remain as a back-up unit. Because of blast furnace hearth wear outs AHMSA has developed some maintenance procedures. These procedures are based on titanium ore additions and hearth thermic control monitoring. There are also some other maintenance practices adopted to the working operations to assure that such operations detect and avoid in time hearth wear outs that place personnel and/or the unit in danger (due to hearth leaks). This paper describes titanium ore addition to No. 2 blast furnace during the final campaign and it also illustrates maintenance practices and continuous monitoring of temperature trends both of which were implemented at AHMSA`s No. 5 blast furnace.

  9. Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace

    SciTech Connect (OSTI)

    Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

    1995-12-01

    In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

  10. (Acceptance testing of the 150-kW electron-beam furnace)

    SciTech Connect (OSTI)

    Ohriner, E.K.; Howell, C.R.

    1990-09-18

    The travelers observed the acceptance testing of the 150-kW electron-beam (EB) furnace constructed by Leybold (Hanau) Technologies prior to disassembly and shipping. The testing included: (1) operation of the mold withdrawal system (2) vacuum pumping and vacuum chamber leak-up rates, (3) power stability at full power, (4) x-radiation monitoring at full power, and (5) demonstration of system interlocks for loss of water cooling, loss of vacuum, loss of power, and emergency shutdown. Preliminary training was obtained in furnace operation, EB gun maintenance, and use of the programmable logic controller for beam manipulation. Additional information was obtained on water-cooling requirements and furnace platform construction necessary for the installation. The information gained and training received will greatly assist in minimizing the installation and startup operation costs of the furnace.

  11. Building America Expert Meeting: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  12. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect (OSTI)

    Brand, Larry

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit (PARR) team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  13. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  14. The use of muffle furnaces with microwave heating in the analysis of natural and technological objects

    SciTech Connect (OSTI)

    Koshcheeva, I.Y.; Belenkaya, S.N.; Kubrakova, I.V.

    2008-12-15

    The analytical possibilities are considered of using a new type of equipment - microwave muffle furnaces - when performing the operations of incineration and roasting. A two- to threefold decrease in a warm-up time for a furnace with the use of microwave heating, a 3- to 16-fold decrease in the total duration of the analysis, and a twofold improvement in reproducibility of s{sub r} results are shown as exemplified by the processing of coal samples and technological products.

  15. Hearth monitoring experiences at Dofasco`s No. 4 blast furnace

    SciTech Connect (OSTI)

    Stothart, D.W.; Chaykowski, R.D.; Donaldson, R.J.; Pomeroy, D.H.

    1997-12-31

    As a result of a 1994 taphole breakout at Dofasco`s No. 4 Blast Furnace, extensive effort has gone into monitoring, understanding and controlling hearth wear. This paper reviews the hearth monitoring system developed and the various hearth operating and maintenance techniques used to ensure No. 4 Blast Furnace safely reaches its 1998 reline date. The impact of changes in coke quality, productivity, casting practice and leaking cooling members on hearth refractory temperature fluctuations will also be examined.

  16. Blast furnace injection of massive quantities of coal with enriched air or pure oxygen

    SciTech Connect (OSTI)

    Ponghis, N.; Dufresne, P.; Vidal, R.; Poos, A. )

    1993-01-01

    An extensive study of the phenomena associated with the blast furnace injection of massive quantities of coal is described. Trials with conventional lances or oxy-coal injectors and hot blast at different oxygen contents - up to 40% - or with cold pure oxygen were realized at coal to oxygen ratios corresponding to a range of 150 to 440 kg. Pilot scale rigs, empty or filled with coke, as well as industrial blast furnaces were utilized.

  17. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect (OSTI)

    O'Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  18. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  19. Detailed model for practical pulverized coal furnaces and gasifiers

    SciTech Connect (OSTI)

    Philips, S.D.; Smoot, L.D.

    1989-08-01

    The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

  20. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect (OSTI)

    Aldrich, R.; Williamson, J.

    2014-01-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3™ replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost effectiveness. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Results indicate that BPM replacement motors will be most cost effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  1. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  2. Final report on process modeling of cupola furnaces

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    This report describes the first phase of the AFS/DOE program on mathematical modeling of cupola behavior, covering the period May 19, 1989 to July 19, 1990. The objective of the program is to develop a comprehensive mathematical model of the cupola furnace for on-line and off-line process control and optimization. The work is being carried out by five organizations: Massachusetts Institute of Technology with responsibility for heat transfer and fluid flow modeling, and incorporation of the chemical models being developed by the University of Michigan team. Modern Equipment Company has the responsibility of compiling information on needed sensors for monitoring operation and providing materials data to be used for cupola input. General Motors, Central Foundry Division, is investigating the potential to augment the mathematical models with artificial intelligence programs. Lastly, General Motors Research laboratories are charged with providing accurate cupola operational data to test the models being developed. To date, a one-dimensional steady state model has been developed which considers heat transfer, fluid flow and important chemical processes: combustion, iron composition development, limestone calcination and iron oxidation. The model is based on established physico-chemical principles and data available in the literature. Model predictions compare favorably with data obtained in a production sale cupola, operating under carefully controlled, but realistic, conditions. At the present time, the chemical sub-models are being incorporated into the master program, and a complete working cupola model is expected by September 1990. 43 refs.

  3. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    SciTech Connect (OSTI)

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the life of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.

  4. Pulverized coal injection (PCI) at Inland`s No. 7 blast furnace

    SciTech Connect (OSTI)

    Carter, W.L.; Greenawald, P.B.; Ranade, M.G.; Ricketts, J.A.; Zuke, D.A.

    1995-12-01

    Fuel injection at the tuyeres has always been part of normal operating practice on this blast furnace. It has been used as much because of the beneficial effects on furnace operation as for the replacement of some of the coke that would otherwise be consumed. Fuel oil was used at first, but since the early 1980s it was more economical to inject natural gas. Studies in 1990 indicated that natural gas could be increased to 75 kg/tHM on No. 7 Furnace, and this would result in a coke rate of approximately 360 kg/tHM. It was apparent that coal injection offered significantly more opportunity for coke savings. Coke rate could be lowered to 300 kg/tHM with coal injected at 175 kg/tHM. Some combustion limitations were expected at that level. A coke rate of 270 kg/tHM with coal at 200 kg/tHM may be possible once these limitations are overcome. Furnace permeability was expected to limit the ability to reduce coke rate any further. In addition, the relative cost of coal would be significantly lower than the cost of coke it replaced. This lead to the decision late in 1991 to install pulverized coal injection (PCI) equipment for all of Inland`s blast furnaces. This paper will deal with PCI experience at No. 7 Blast Furnace.

  5. Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect (OSTI)

    Crelling, J.C.; Case, E.R.

    1993-12-31

    A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

  6. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP):  Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models  Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a

  7. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    SciTech Connect (OSTI)

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  8. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect (OSTI)

    Aldrich, R.; Williamson, J.

    2014-01-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  9. Integrated emissions control system for residential CWS furnace

    SciTech Connect (OSTI)

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  10. Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect (OSTI)

    Crelling, J.C.

    1993-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

  11. Optical emission from a small scale model electric arc furnace in 250-600 nm region

    SciTech Connect (OSTI)

    Maekinen, A.; Tikkala, H.; Aksela, H.; Niskanen, J.

    2013-04-15

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr{sub 2}O{sub 3}, Ni, SiO{sub 2}, Al{sub 2}O{sub 3}, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  12. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  13. Effect of coal and coke qualities on blast furnace injection and productivity at Taranto

    SciTech Connect (OSTI)

    Salvatore, E.; Calcagni, M.; Eichinger, F.; Rafi, M.

    1995-12-01

    Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

  14. Development and application of new techniques for blast furnace process control at SSAB Tunnplaat, Luleaa Works

    SciTech Connect (OSTI)

    Braemming, M.; Hallin, M.; Zuo, G.

    1995-12-01

    SSAB Tunnplaat AB operates two blast furnaces (M1 and M2) in Luleaa. In recent years research efforts have to a great extent been aimed at the development of new techniques for blast furnace process control. An example is the installation of a burden profile measurement system, which was useful in the development of a new burden distribution praxis on the big furnace (M2), equipped with a bell-less-top. Hearth level detection and continuous measurement of the hot metal temperature in the runner are under evaluation. The purpose of these techniques is to give earlier information concerning the state of the blast furnace process. Parallel to this work, models for prediction of silicon in hot metal, the position and shape of the cohesive zone and slip-warning are being developed and tested off-line. These new models and information from new measuring techniques will be integrated into a new Operating Guidance System, hopefully resulting in a powerful tool in the efforts to stabilize blast furnace operations.

  15. Simplified simulation of the transient behavior of temperatures in the upper shaft of the blast furnace

    SciTech Connect (OSTI)

    Saxen, H.

    1998-06-01

    The blast furnace is the principal process in the world for production of iron for primary steelmaking. The furnace acts as a huge countercurrent heat exchange and chemical reactor with complicated heat and mass transfer phenomena and chemical reactions. The flows of burden and gas in the blast furnace shaft strongly affect the fuel economy of the process. An optimal gas flow distribution, which is obtained by controlling the burden distribution, leads to a high utilization degree of the reducing gas, smooth burden descent, and little wear of the furnace lining. Here, a one-dimensional dynamic model of the upper part of the blast furnace shaft is applied to study the evolution of gas and burden temperatures, mainly in order to shed light on the transient phenomena after charging dumps of burden. The effects of irregularities in the burden descent and charging are also studied briefly. The simulations demonstrate that the temperatures of the burden layers in the lower part of the simulated region assume a quasi-steady state, indicating that the changes in the top gas temperature experienced immediately after a dump of burden arise primarily because of heat transfer between the gas and the dump. These results support the idea that such temporary changes can be interpreted in terms of distribution of the dumps on the burden surface.

  16. Three-dimensional nonsteady heat-transfer analysis of an indirect heating furnace

    SciTech Connect (OSTI)

    Ito, H.; Umeda, Y.; Nakamura, Y.; Wantanabe, T.; Mitutani, T. ); Arai, N.; Hasatani, M. )

    1991-01-01

    This paper reports on an accurate design method for industrial furnaces from the viewpoint of heat transfer. The authors carried out a three-dimensional nonsteady heat-transfer analysis for a practical-size heat- treatment furnace equipped with radiant heaters. The authors applied three software package programs, STREAM, MORSE, and TRUMP, for the analysis of the combined heat-transfer problems of radiation, conduction, and convection. The authors also carried out experiments of the heating of a charge consisting of packed bolts. The authors found that the air swirled inside the furnace. As for the temperature in each part in the furnace, analytical results were generally in close agreement with the experimental ones. This suggests that our analytical method is useful for a fundamental heat- transfer-based design of a practical-size industrial furnace with an actual charge such as packed bolts. As for the temperature distribution inside the bolt charge (work), the analytical results were also in close agreement with the experimental ones. Consequently, it was found that the heat transfer in the bolt charge could be described with an effective thermal conductivity.

  17. A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace

    SciTech Connect (OSTI)

    Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

    2002-01-21

    This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

  18. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Stone, M.; Miller, D.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP):  Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models;  Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36

  19. Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace

    DOE Patents [OSTI]

    Mathur, Mahendra P.; Ekmann, James M.

    1989-01-01

    The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

  20. Hoogovens blast furnace No. 6 -- The first eleven years of a continuing campaign

    SciTech Connect (OSTI)

    Tijhuis, G.; Toxopeus, H.; Berg, H. van den; Vliet, C. van der

    1997-12-31

    Blast furnace No. 6 of Hoogovens Steel has just completed its eleventh year of the fourth (running) campaign, with a total production of approx. 23 million metric tonnes of hot metal. During the last reline in 1985 the furnace was equipped with a third taphole and a bell-less top. The lining consists of graphite and semi-graphite and the cooling consists of a dense pattern of copper plate coolers. The current campaign is marked by several important operational events, in particular the high productivity and PCI rates, but also by the remarkable performance of the lining which has shown limited wear in the first four years of the campaign, and hardly any reduction of the lining thickness in the last seven years. This paper discusses the design of the furnace, and the history of the current campaign with respect to its productivity, PCI rates and lining wear.

  1. The formation of an ore free blast furnace center by bell charging

    SciTech Connect (OSTI)

    Exter, P. den; Steeghs, A.G.S.; Godijn, R.; Chaigneau, R.; Timmer, R.M.C.; Toxopeus, H.L.; Vliet, C. van der

    1997-12-31

    A research program has been started to clarify and support the central gas flow control philosophy of Hoogovens` bell-charged No. 7 blast furnace. Small scale burdening experiments and sampling of the stock surface during shut-downs suggest that a sufficiently high central gas flow is an important condition for maintenance of an ore free, highly permeable furnace center and that fluidization of coke plays a part in its formation. On the basis of these experiments a hypothesis was formulated regarding the formation of an ore free blast furnace center, but could not be confirmed satisfactorily. Forthcoming full-scale burdening experiments will provide a better insight in the burden distribution and its control.

  2. Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect (OSTI)

    Crelling, J.C.

    1994-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

  3. Up-grade of process control system, U.S. Steel Fairfield No. 8 blast furnace

    SciTech Connect (OSTI)

    Camlic, R.L. [U.S. Steel, Fairfield, AL (United States). Fairfield Works; Goodman, N.J. [Kvaerner Davy, Pittsburgh, PA (United States)

    1997-12-31

    The No. 8 blast furnace at US Steel`s Fairfield, AL facility is the only blast furnace remaining in operating at the plant. The blast furnace has a production capacity of 5,500 tons per day of hot metal and provides 100% of the iron requirements for the steel plant that has an annual production capacity of 2,200,000 tons of steel. Therefore, any outage on No. 8 blast furnace has a major impact on the operation of the total Fairfield facility. During the planning stages of the latest reline outage of No. 8 blast furnace, significant measures were taken to insure that maximum production of iron was maintained before and immediately after the outage. A significant portion of the reline activity was centered on the total replacement of the existing process control system. The scope of replacement was so extensive that it was determined that if all areas of the process control system were replaced during the reline outage, then the installation and commissioning of the new system would have been the critical path on the project. In addition, the requirements for training and start-up of the new process control system would have imposed risks to obtaining maximum production after the reline outage, as operators experienced the learning curve of the new system. It was therefore decided that the critical areas of the new process control system would be installed before the reline outage. In addition, all training and start-up activities would take place on the new working system while it was operating in a `shadow` mode in parallel with the existing system. This would provide a proven process control system for blast furnace operations before the reline outage, and eliminate the learning curve after the outage. The reline outage is described.

  4. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    SciTech Connect (OSTI)

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. Natural gas furnace performance can be measured in many ways. The annual fuel utilization efficiency (AFUE) rating provides a fixed value under specified conditions, akin to the EPA miles per gallon rating for new vehicles. The AFUE rating is provided by the manufacturer to the consumer and is a way to choose between models tested on the same basis. This value is commonly used in energy modeling calculations. ASHRAE 103 is a consensus furnace testing standard developed by the engineering community. The procedure provided in the standard covers heat-up, cool down, condensate heat loss, and steady-state conditions and an imposed oversize factor. The procedure can be used to evaluate furnace performance with specified conditions or with some variation chosen by the tester. In this report the ASHRAE 103 test result will be referred to as Annualized Efficiency (AE) to avoid confusion, and any non-standard test conditions will be noted. Aside from these two laboratory tests, steady state or flue loss efficiency can be measured in the field under many conditions; typically as found or tuned to the manufacturers recommended settings. In this report, AE and steady-state efficiency will be used as measures of furnace performance.

  5. Continuous measurement of blast furnace burden profile at SSAB Tunnplat AB

    SciTech Connect (OSTI)

    Virtala, J.; Edberg, N.; Hallin, M. . Ironmaking Division)

    1993-01-01

    A unique profile meter system is installed on Blast Furnace No. 2 in SSAB - Swedish Steel AB, Lulea, Sweden. This system measures the charge material burden profile across the furnace top diameter before and after each charge. The system generates real-time data, which is graphically presented by the system on a monitor and includes burden descent speed, layer thickness of the coke and ore (corrected for descent), ore to coke ratio, and burden skewing. The system is described along with operational results.

  6. Bosh repairs No. 3 blast furnace, Edgar Thomson Plant Mon Valley Works

    SciTech Connect (OSTI)

    Stoupis, M.G.

    1993-01-01

    The paper describes in detail the steps taken from quenching to dry out of the furnace to repair the bosh area of the No.3 blast furnace. Inspection of the area revealed that there was no brick anywhere in the bosh. Brick in the tuyere breast area had been peeled back to reveal the steel plate, and descaling revealed 14 pipes fully exposed. None were leaking, but one seemed badly deteriorated. Conventional repairs could not take place before the scheduled blow-in. Installation of coolers were instead tried.

  7. Altos Hornos de Mexico blast furnace No. 5 certification in ISO-9002 standard

    SciTech Connect (OSTI)

    Gamez, O.; Liceaga, F.; Arredondo, J.

    1997-12-31

    Altos Hornos de Mexico`s Blast Furnace No. 5, as a means to improve its product quality, sought and obtained the certification of its quality system based on the international standard ISO-9002. The certification was obtained under this quality standard in Dec. 1995 and has successfully been maintained after two continuance audits. For blast furnace No. 5 (BF5) the benefits are reflected by a reduction in the hot metal silicon content variability, a decrease in fuel consumption and a higher productivity. Benefits were also obtained in the working environment where the personnel became more highly motivated, procedures were carried out to completion and the quality records were filled correctly.

  8. A new frequency domain arc furnace model for iterative harmonic analysis

    SciTech Connect (OSTI)

    Mayordomo, J.G.; Beites, L.F.; Asensi, R.; Izzeddine, M.; Zabala, L.; Amantegui, J.

    1997-10-01

    This paper presents a new frequency domain Arc Furnace model for Iterative Harmonic Analysis (IHA) by means of a Newton method. Powerful analytical expressions for harmonic currents and their derivatives are obtained under the balanced conditions of the system. The model offers a three phase configuration where there is no path for homopolar currents. Moreover, it contemplates continuous and discontinuous evolution of the arc current. The solution obtained is validated by means of time domain simulations. Finally, the model was integrated in a harmonic power flow where studies have been performed in a network with more than 700 busbars and 7 actual Arc Furnace Loads.

  9. Blast-furnace ironmaking -- Existing capital and continued improvements are a winning formula for a bright future

    SciTech Connect (OSTI)

    Oshnock, T.W.; Colinear, J.A.

    1995-12-01

    Throughout the years the blast-furnace process has been improved upon significantly. Increases to the hot-blast temperature, improvements to the physical, chemical, and metallurgical properties of coke and burden materials, the use of more fuel injectants, and improvements to the design of the furnace facilities have led to significant decreases in furnace coke rate, increases in productivity, and increases in furnace campaign life. As a result, many of the alternative cokeless reduction processes have not replaced blast-furnace hot-metal production in North America. In the future, these continued blast-furnace improvements will potentially result in coke rates decreasing to 400 pounds per net ton of hot metal (lb/NTHM) as more pulverized coal is injected. These improvements, coupled with the fact that existing blast furnaces and coke plants can be refurbished for approximately $110 per annual ton of hot metal [$100 per annual net ton of hot metal (NTHM)], will result in extending the life of the North American blast furnaces well into the twenty-first century.

  10. Blast furnace gas fired boiler for Eregli Iron and Steel Works (Erdemir), Turkey

    SciTech Connect (OSTI)

    Green, J.; Strickland, A.; Kimsesiz, E.; Temucin, I.

    1996-11-01

    Eregli Demir ve Celik Fabriklari T.A.S. (Eregli Iron and Steel Works Inc.), known as Erdemir, is a modern integrated iron and steel works on the Black Sea coast of Turkey, producing flat steel plate. Facilities include two blast furnaces, coke ovens, and hot and cold rolling mills, with a full supporting infrastructure. Four oil- and gas-fired steam boilers provide steam for electric power generation, and to drive steam turbine driven fans for Blast Furnace process air. Two of these boilers (Babcock and Wilcox Type FH) were first put into operation in 1965, and still reliably produce 100 tons/hour of steam at a pressure of 44 bar and a temperature of 410 C. In 1989 Erdemir initiated a Capacity Increase and Modernization Project to increase the steel production capability from two million to three million tons annually. This project also incorporates technology to improve the product quality. Its goals include a reduction in energy expenses to improve Erdemir`s competitiveness. The project`s scheduled completion is in late 1995. The by-product gases of the blast furnaces, coke ovens, and basic oxygen furnaces represent a considerable share of the consumed energy in an integrated iron and steel works. Efficient use of these fuels is an important factor in improving the overall efficiency of the operation.

  11. Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces Fans; Correction

    Office of Energy Efficiency and Renewable Energy (EERE)

    On January 3, 2014 the U.S. Department of Energy (DOE) published a final rule in the Federal Register that established the test procedure for residential furnace fans. Due to drafting errors, that document inadvertently removed necessary incorporation by reference material in the Code of Federal Regulations (CFR). This final rule rectifies this error by once again adding the removed material.

  12. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOE Patents [OSTI]

    Gerdemann, Stephen J.; White, Jack C.

    1998-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  13. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOE Patents [OSTI]

    Gerdemann, S.J.; White, J.C.

    1998-08-04

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

  14. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOE Patents [OSTI]

    Gerdemann, Stephen J.; White, Jack C.

    1999-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  15. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  16. Savings from new oil furnaces: A study conducted as part of Washington State's Oil Help Program

    SciTech Connect (OSTI)

    Davis, R.

    1989-12-01

    The Washington State Energy Office (WSEO) has been running the Oil Help program for three years. Originally operated as a loan program, Oil Help switched to rebates during the 1987 and 1988. Rebates for oil furnace replacements made up over 70 percent of rebate funds, which totaled about $1.3 million. WSEO Evaluation started research in summer of 1988, with the goal of including 100 new furnace households (with a control group of similar size) in the study. Our intention was to look at long-term oil consumption comparing each household with itself over the two periods. The final study group consists of 43 households and a control group of 87 households. The report begins with a review of related research. A discussion of research methodology, weather normalization procedure, data attrition, and important descriptive details follows. Changes in consumption for the new furnace and control groups are reported and are tested for significance. Finally, we discuss the implications of the results for the cost effectiveness of an oil furnace replacement.

  17. Directly induced swing for closed loop control of electroslag remelting furnace

    DOE Patents [OSTI]

    Damkroger, B.

    1998-04-07

    An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

  18. Directly induced swing for closed loop control of electroslag remelting furnace

    DOE Patents [OSTI]

    Damkroger, Brian

    1998-01-01

    An apparatus and method for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal.

  19. Pellet property requirements for future blast-furnace operations and other new ironmaking processes

    SciTech Connect (OSTI)

    Agrawal, A.K.; Oshnock, T.W.

    1995-12-01

    The requirements for the physical, chemical and metallurgical properties of pellets have continued to become more stringent as blast-furnace productivity and coke rate have been rapidly improved during the last decade. In addition, the age and deterioration of the North American coke batteries, the lack of capital to sufficiently rebuild them, and the threat of increasingly more stringent environmental controls for the coke batteries has forced North American ironmakers to begin implementing pulverized coal injection to minimize the coke requirements for the blast furnace and to seriously investigate developing other ironmaking processes that use coal instead of coke. Therefore, the next major step in North American ironmaking has included injecting pulverized coal (PC) at 200 kilograms per ton of hot metal (kg/ton) [400 pounds per net ton of hot metal (lb/NTHM)] or greater which will result in the coke rate decreasing to less than 300 kg/ton (600 lb/NTHM) or less. As a result, the pellets will spend more time in the furnace and will be required to support more total weight. Pellets can also be a major iron unit source for other cokeless ironmaking processes such as the COREX process or the AISI direct ironmaking process. This paper will explore the pellet property requirements for future blast-furnace operations and cokeless ironmaking processes.

  20. Dofasco`s No. 4 blast furnace hearth breakout, repair and rescue

    SciTech Connect (OSTI)

    Donaldson, R.J.; Fischer, A.J.; Sharp, R.M.; Stothart, D.W.

    1995-12-01

    On May 5, 1994, after producing 9.5 million metric tons of iron, Dofasco`s No. 4 Blast Furnace experienced a hearth breakout 250 millimeters below the west taphole. The hot metal spill caused a fire resulting in severe damage and 33 days of lost production. During a 26-day period, electrical wiring, water drainage systems and both tapholes were repaired. Recovery from an unprepared furnace stop of this length, with the deadman depleted is difficult. To aid with the rescue Hoogovens-designed oxygen/fuel lances were commissioned. The furnace recovery began with a lance in each taphole and all tuyeres plugged. Six days after startup the furnace was casting into torpedo cars, and after nine days operation had returned to normal. This incident prompted Dofasco to expand the hearth monitoring system to detect and prevent similar occurrences. During the repair, 203 new thermocouples were installed in the hearth, concentrating on the tapholes and elephant foot areas. These thermocouples were installed at various depths and locations to allow heat flux calculations. This hearth monitoring system has already identified other problem areas and provided valuable information about hearth drainage patterns. This information has allowed them to develop control strategies to manage localized problem areas.

  1. Studies of charging stream trajectories and burden distribution in the blast furnace

    SciTech Connect (OSTI)

    McCarthy, M.J.; Mayfield, P.L.; Zulli, P.; Rex, A.J.; Tanzil, W.B.U.

    1993-01-01

    This work discusses the sensitivity of key blast furnace performance parameters to different gas flow distributions achieved by altering the burden distribution. The changes in burden distribution are brought about by different charging stream trajectories, and methods developed and evaluated for measuring the trajectories both on and off line are described.

  2. Development of quick repairing technique for ceramic burner in hot stove of blast furnace

    SciTech Connect (OSTI)

    Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi

    1997-12-31

    Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

  3. An Optical Sensor for Post-Combustion Control in Electric Arc Furnace Steelmaking

    SciTech Connect (OSTI)

    2005-09-01

    Real-time measurement of off-gas composition could enable dynamic control of electric arc furnaces (EAFs), optimizing steelmaking electrical energy input and reducing carbon monoxide (CO) emissions. However, offgas measurement is very difficult due to the extremely dusty, hot, and gas-laden steelmaking environment.

  4. Building America Top Innovations 2013 Profile – High-Performance Furnace Blowers

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This Top Innovations profile describes Lawrence Berkeley National Laboratory's work with furnace blower design that led to the creation of a standard for rating blowers, credits for the use of good blowers in Federal tax credit programs and energy codes, and consideration in current federal rulemaking procedures.

  5. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    SciTech Connect (OSTI)

    Gerdemann, S.J.; White, J.C.

    1999-10-19

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  6. Glass Furnace Model (GFM) development and technology transfer program final report.

    SciTech Connect (OSTI)

    Lottes, S. A.; Petrick, M.; Energy Systems

    2007-12-04

    A Glass Furnace Model (GFM) was developed under a cost-shared R&D program by the U.S. Department of Energy's Argonne National Laboratory in close collaboration with a consortium of five glass industry members: Techneglas, Inc., Owens-Corning, Libbey, Inc., Osram Sylvania, Inc., and Visteon, Inc. Purdue University and Mississippi State University's DIAL Laboratory were also collaborators in the consortium. The GFM glass furnace simulation model that was developed is a tool industry can use to help define and evaluate furnace design changes and operating strategies to: (1) reduce energy use per unit of production; (2) solve problems related to production and glass quality by defining optimal operating windows to reduce cullet generation due to rejects and maximize throughput; and (3) make changes in furnace design and/or operation to reduce critical emissions, such as NO{sub x} and particulates. A two-part program was pursued to develop and validate the furnace model. The focus of the Part I program was to develop a fully coupled furnace model which had the requisite basic capabilities for furnace simulation. The principal outcome from the Phase I program was a furnace simulation model, GFM 2.0, which was copyrighted. The basic capabilities of GFM 2.0 were: (1) built-in burner models that can be included in the combustion space simulation; (2) a participating media spectral radiation model that maintains local and global energy balances throughout the furnace volume; and (3) a multiphase (liquid, solid) melt model that calculates (does not impose) the batch-melting rate and the batch length. The key objectives of the Part II program, which overlapped the Part I program were: (1) to incorporate a full multiphase flow analytical capability with reduced glass chemistry models in the glass melt model and thus be able to compute and track key solid, gas, and liquid species through the melt and the combustion space above; and (2) to incorporate glass quality indices into

  7. Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system

    SciTech Connect (OSTI)

    Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun

    2011-02-15

    This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

  8. Integrated use of burden profile probe and in-burden probe for gas flow control in the blast furnace

    SciTech Connect (OSTI)

    Bordemann, F.; Hartig, W.H.; Grisse, H.J.; Speranza, B.E.

    1995-12-01

    Gas flow in the blast furnace is one of the most important factors in controlling a furnace. It not only determines the production but also the fuel consumption and the campaign life. At Nos. 4 and 5 blast furnaces of ROGESA, probes are installed for detection of the burden profiles and of the gas flow distribution. For an optimum use of these probes a program system has been developed by ROGESA and Dango and Dienenthal. With this program system it is possible to analyze the operating condition of a blast furnace by means of a fuzzy logic analysis. In case of deviations from the defined desired condition, recommendations for corrective measures for the material distribution are made. Both furnaces are equipped with a bell-less top, a coal injection system, high-temperature hot blast stoves with heat recovery and a top gas pressure recovery turbine. Most of the time it is impossible to control all the required parameters. For this reason it is meaningful to measure the actual material distribution at the furnace top by means of a burden profile probe which permits quick and repeated measurements without any retroactive effects. The paper describes the instrumentation of the furnace, correlation of measuring methods, and a program system for analysis of measuring data.

  9. Recovery of iron and copper from copper smelting furnace slags by carbon injection. Report of investigations/1982

    SciTech Connect (OSTI)

    Paige, J.I.; Paulson, D.L.; Hunter, W.

    1982-09-01

    The Bureau of Mines, U.S. Department of the Interior, conducts research on methods to minimize the requirements for mineral raw materials through conservation, substitution, and increased minerals and metals recovery from primary and secondary domestic resources. To further this goal, prior Bureau research had devised a pyrometallurgical technique (RI 8211) to recover metallic iron and copper from molten copper smelting furnace slags by carbothermic reduction. As a continuation of this Bureau research on the carbon injection technique, reverberatory and electric furnace slags were treated in an 800-kva electric arc furnace by simultaneously top feeding the slag and injecting coke breeze into the bottom of the molten bath.

  10. Record production on Gary No. 13 blast furnace with 450 lb./THM co-injection rates

    SciTech Connect (OSTI)

    Schuett, K.J.; White, D.G.

    1996-12-31

    Coal injection was initiated on No. 13 Blast Furnace in 1993 with 400 lb/THM achieved in 9 months. In early 1994, cold weather and coal preparation upsets led to the use of a second injectant, oil atomized by natural gas, to supplement the coal. Various combinations of coal and oil were investigated as total injection was increased to 450 lb/THM. Beginning in the last half of 1994, a continuing effort has been made to increase furnace production while maintaining this high co-injection level. Typical furnace production is now in excess of 10,000 THM/day compared with about 8500 THM/day in late 1993.

  11. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    SciTech Connect (OSTI)

    Michael F. Riley

    2002-10-21

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and

  12. Method for processing aluminum spent potliner in a graphite electrode arc furnace

    DOE Patents [OSTI]

    O'Connor, William K.; Turner, Paul C.; Addison, G.W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

  13. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  14. Method for processing aluminum spent potliner in a graphite electrode ARC furnace

    DOE Patents [OSTI]

    O'Connor, William K.; Turner, Paul C.; Addison, Gerald W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

  15. Lance for fuel and oxygen injection into smelting or refining furnace

    DOE Patents [OSTI]

    Schlichting, M.R.

    1994-12-20

    A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figures.

  16. Lance for fuel and oxygen injection into smelting or refining furnace

    DOE Patents [OSTI]

    Schlichting, Mark R.

    1994-01-01

    A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.

  17. Gary No. 13 blast furnace achieves 400 lbs/THM coal injection in 9 months

    SciTech Connect (OSTI)

    Sherman, G.J.; Schuett, K.J.; White, D.G.; O`Donnell, E.M.

    1995-12-01

    Number 13 Blast Furnace at Gary began injecting Pulverized Coal in March 1993. The injection level was increased over the next nine months until a level off 409 lbs/THM was achieved for the month of December 1993. Several major areas were critical in achieving this high level of Pulverized coal injection (PCI) including furnace conditions, lance position, tuyere blockage, operating philosophy, and outages. The paper discusses the modifications made to achieve this level of injection. This injection level decreased charged dry coke rate from 750 lbs/THM to about 625 lbs/THM, while eliminating 150 lbs/THM of oil and 20 lbs/THM of natural gas. Assuming a 1.3 replacement ratio for an oil/natural gas mixture, overall coke replacement for the coal is about 0.87 lbs coke/lbs coal. Gary Works anticipates levels of 500 lbs/THM are conceivable.

  18. Determination of the fundamental softening and melting characteristics of blast furnace burden materials

    SciTech Connect (OSTI)

    Bakker, T.; Heerema, R.H.

    1996-12-31

    An experimental technique to investigate the fundamental mechanisms taking place on a microscale in the softening and melting zone in the blast furnace, is presented. In the present paper, attention is focused on determination of the softening viscosity of porous wustite. The technique may be potentially useful to investigate more complex samples of ironbearing material, as occurring in the blast furnace. In comparison with the results obtained by other researchers the viscosity of porous wustite found in the present work is substantially higher than reported elsewhere for sinter and pellets. This may be an indication that softening is not merely a reflection of the solid state deformation under load of wustite. An important factor may be local melting of some of the phases present within the sinter and pellet structures.

  19. The operation results with the modified charging equipment and ignition furnace at Kwangyang No. 2 sinter plant

    SciTech Connect (OSTI)

    Lee, K.J.; Pi, Y.J.; Kim, J.R.; Lee, J.N.

    1996-12-31

    There will be another blast furnace, the production capacity of which is 3.0 million tonnes per year in 1999 and mini mill plant, the production capacity of which is 1.8 million tonnes per year in 1996 at Kwangyang Works. Therefore, the coke oven gas and burnt lime will be deficient and more sinter will be needed. To meet with these situations, the authors modified the charging equipment and ignition furnace at Kwangyang No. 2 sinter plant in April 1995. After the modification of the charging equipment and ignition furnace, the consumption of burnt lime and coke oven gas could be decreased and the sinter productivity increased in spite of the reduction of burnt lime consumption. This report describes the operation results with the modification of the charging equipment and ignition furnace in No. 2 sinter plant Kwangyang works.

  20. D-C electric arc furnace -- A trend-setting technology in steelmaking

    SciTech Connect (OSTI)

    Muller, H.G.; Patuzzi, A.A. ); Nix, E.H. )

    1994-05-01

    Advantages of the d-c furnace in comparison with the a-c system include: a major reduction in electrode consumption; lower power consumption; less flicker; and improved temperature and composition control. Of the four basic types of bottom electrode (anode) design, the fin-type system provides closer control of arc behavior. With a current maximum tapping weight of 150 tons, full potential is limited by the maximum diameter of available electrodes.

  1. Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge

    SciTech Connect (OSTI)

    Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P.

    2009-03-15

    Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

  2. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  3. Development of the household sample for furnace and boilerlife-cycle cost analysis

    SciTech Connect (OSTI)

    Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

    2005-05-31

    Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

  4. Electric-resistance furnace for melting ash from municipal solid waste incinerator

    SciTech Connect (OSTI)

    Nakao, Tsuyoshi; Nakahara, Keisuke; Akashi, Tetsuo

    1997-12-31

    Existing landfill capacity is dwindling in Japan and it is difficult to find new landfill sites because of strong opposition from residents. Under the Waste Disposal and Public Cleaning Law in 1991 in Japan, fly ashes from municipal solid waste (MSW) incinerator have to be treated by one of the four methods: (1) vitrification, (2) solidification by cement, (3) stabilization using chemical agents, or (4) extraction with acid or other solvent. In these four technologies, the vitrification technology has some advantages: decreasing ash volume which can solve the landfill problem, de-taxiing ash, and utilization of its products from residues. NKK has developed an electric resistance furnace for melting MSW incineration residues and built a demonstration plant (24t/d). The performance test results showed as follows; (1) Si, Al, and Ca tended to become the molten slag. Cu, P, and Fe tended to become the molten metal. Pb, Zn, and Cd tended to become the molten fly ash. (2) HCl from the slag resistance electric furnace was 60 ppm and very low compared with other melting systems. (3) Decomposition rate of dioxins was 99 % in the melting furnace. (4) Concentration of heavy metals in the molten slag was low and leaching of heavy metals was below Japanese regulation.

  5. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect (OSTI)

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  6. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect (OSTI)

    A.A. Akberdin; A.S. Kim

    2008-08-15

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  7. Gary Works No. 13 blast furnace: A new removable trough design

    SciTech Connect (OSTI)

    Schuett, K.J.; Pawlak, J.P.; Traina, L.; Brenneman, R.G.

    1995-12-01

    No. 13 Blast Furnace at US Steel`s Gary Works is a 35 tuyere furnace with a 36.5 ft. hearth capable of producing over 9,000 tons of hot metal per day. The current casthouse design was placed in service following the second reline in the fall of 1979. This design anticipated daily production rates averaging 7,500 tons of hot metal per day and provided for removable troughs at two of the three tapholes. At the time, the troughs were rammed with a high alumina/silicon carbide granular ramming material that provided the operators with trough campaign lives between 60,000--70,000 tons of hot metal produced. As refractory technology progressed, low cement/low moisture castables were introduced to the trough systems on No. 13 Blast Furnace. The immediate success of the castables was tempered by emergence of a new unexpected problem. That problem was the thermal expansion of the castable. The paper describes the problems that resulted in the need to modify the trough design, the new design of the trough, and its improvement in iron trough campaign life and reliability.

  8. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  9. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  10. Coal combustion under conditions of blast furnace injection. Technical report, 1 December 1992--28 February 1993

    SciTech Connect (OSTI)

    Crelling, J.C.; Case, E.R.

    1993-05-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposed study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. The Amanda furnace of Armco is the only one in North America currently using coal injection and is, therefore, the only full scale testing facility available. During this quarter complete petrographic analyses of all of the samples so far collected were completed.

  11. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    SciTech Connect (OSTI)

    Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

    2005-07-01

    This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow rate. The parametric matrices of cases that were completed were

  12. Pilot plant testing of Illinois coal for blast furnace injection. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1993--94 period. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900{degrees}C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter there were two major accomplishments.

  13. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    SciTech Connect (OSTI)

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  14. Comprehensive report to Congress: Clean Coal Technology Program: Blast furnace granulated coal injection system demonstration project: A project proposed by: Bethlehem Steel Corporation

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Bethlehem Steel Corporation (BSC), of Bethlehem, Pennsylvania, has requested financial assistance from DOE for the design, construction, and operation of a 2800-ton-per-day blast furnace granulated coal injection (BFGCI) system for each of two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. BFGCI technology involves injecting coal directly into an iron-making blast furnace and subsequently reduces the need for coke on approximately a pound of coke for pound of coal basis. BFGCI also increases blast furnace production. Coke will be replaced with direct coal injection at a rate of up to 400 pounds per NTHM. The reducing environment of the blast furnace enables all of the sulfur in the coal to be captured by the slag and hot metal. The gases exiting the blast furnace are cleaned by cyclones and then wet scrubbing to remove particulates. The cleaned blast furnace gas is then used as a fuel in plant processes. There is no measurable sulfur in the off gas. The primary environmental benefits derived from blast furnace coal injection result from the reduction of coke requirements for iron making. Reduced coke production will result in reduced releases of environmental contaminants from coking operations. 5 figs.

  15. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993

    SciTech Connect (OSTI)

    Crelling, J.C.; Case, E.R.

    1993-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

  16. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect (OSTI)

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the

  17. A method for burden distribution estimation from probe data in the blast furnace

    SciTech Connect (OSTI)

    Nikus, M.; Saxen, H.; Bulsari, A.

    1996-12-31

    A novel approach for estimation of burden distribution in the blast furnace is presented. The proposed model makes use of only temperature measurements from an above-burden probe, and interprets the changes in temperature at charging in terms of burden distribution. In this study it is demonstrated that the temperature changes can be predicted quite accurately for all dumps in a charging sequence using neural networks., The basic structures of both an on-line and an off-line model are presented.

  18. The rule of the stock distribution with large bell in blast furnace

    SciTech Connect (OSTI)

    Liu Yuncai

    1996-12-31

    This paper describes in detail, starting from the basic equation of materials falling from a two bell furnace top system, how a number of mathematical expressions which govern the stock distribution of the throat were derived. An analysis was then made by applying these equations on topics, such as stockline levels, charging sequences, stock grain size, large bell angle and batch weight. This demonstrates that a reasonable two bells top charging system and practice could be established theoretically. Furthermore, character numbers for stock distribution, such as E{sub B} and D{sub K}, were developed for a possible computer application.

  19. CASTING FURNACES

    DOE Patents [OSTI]

    Ruppel, R.H.; Winters, C.E.

    1961-01-01

    A device is described for casting uranium which comprises a crucible, a rotatable table holding a plurality of molds, and a shell around both the crucible and the table. The bottom of the crucible has an eccentrically arranged pouring hole aligned with one of the molds at a time. The shell can be connected with a vacuum.

  20. Direct injection of natural gas in blast furnaces at high rates: Preliminary statistical analysis of blast furnace carbon balance at Armco-Middletown. Topical report, January 1990-September 1992

    SciTech Connect (OSTI)

    Neels, J.K.; Brown, F.C.

    1992-09-01

    The economic benefits of supplemental fuel injections depend, in part, on the coke replacement ratio. An assessment of the accuracy with which blast furnace coke rate may be measured and a determination of the key drivers of coke rate uncertainty are offered, to provide guidance for experiments in high-rate gas injection. Using statistical analysis tools, an expression for the measurement error associated with the various terms of blast furnace carbon balance is developed. Coke rate calculations based on the material balance are most sensitive to coke carbon content and to proper tracking of hot metal tapping schedule.

  1. Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works

    SciTech Connect (OSTI)

    Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M.

    1995-12-01

    The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

  2. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    SciTech Connect (OSTI)

    Pollack, B.R.

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 {mu}m in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  3. Computational fluid dynamics study of pulverized coal combustion in blast furnace raceway

    SciTech Connect (OSTI)

    Shen, Y.S.; Maldonado, D.; Guo, B.Y.; Yu, A.B.; Austin, P.; Zulli, P.

    2009-12-15

    In this work, a numerical model is used to study the flow and coal combustion along the coal plume in a large-scale setting simulating the lance-blowpipe-tuyere-raceway region of a blast furnace. The model formulation is validated against the measurements in terms of burnout for both low and high volatile coals. The typical phenomena related to coal combustion along the coal plume are simulated and analyzed. The effects of some operational parameters on combustion behavior are also investigated. The results indicate that oxygen as a cooling gas gives a higher coal burnout than methane and air. The underlying mechanism of coal combustion is explored. It is shown that under the conditions examined, coal burnout strongly depends on the availability of oxygen and residence time. Moreover, the influences of two related issues, i.e. the treatment of volatile matter (VM) and geometric setting in modeling, are investigated. The results show that the predictions of final burnouts using three different VM treatments are just slightly different, but all comparable to the measurements. However, the influence of the geometric setting is not negligible when numerically examining the combustion of pulverized coal under blast furnace conditions.

  4. Chromium stabilization chemistry of paint removal wastes in Portland cement and blast furnace slag

    SciTech Connect (OSTI)

    Boy, J.H.; Race, T.D.; Reinbold, K.A.

    1995-12-31

    The use of cement based systems for solidification and stabilization of hazardous wastes has been proposed. The stabilization of Cr contaminated paint removal wastes in ordinary Portland cement and in a Portland cement and blast furnace slag matrix was investigated. A loading by volume of 75% waste and 25% cement (or cement + slag) was used. The expression of pore solution was utilized to determine the chemical environment encountered by the waste species in the cement matrix. The highly alkaline conditions of ordinary Portland cement determined the stability of the metal species, with Cr being highly soluble. The replacement of 25% of the Portland cement by blast furnace slag was found to decrease the [OH-] of the pore solution resulting in a decrease of the Cr concentration. For cement wastes forms hydrated for 28 days, the Cr concentration decreased in the expressed pore solution. During the TCLP tests the cement waste form and extraction solution were found to react, changing the chemistry of the extraction solution. The expression of pore solution was found to give a direct measure of the chemistry of the waste species in the cement matrix. This avoids the reaction of the TCLP extraction solution with the cement matrix which changes the solubility of the hazardous metals. 15 refs., 4 figs., 6 tabs.

  5. Burden distribution tests of Siderar`s No. 2 blast furnace

    SciTech Connect (OSTI)

    Lingiardi, O.; Partemio, C.; Burrai, O.; Etchevarne, P.

    1997-12-31

    Siderar is a company which was created through the merger of Propulsora Siderurgica and the privatized Aceros Parana (the former Somisa, a state-owned steel company). This plant manufacturers flat steel products: hot and cold rolled coils, as well as tin plate coils. After the privatization of the former Somisa in 1992, the new owners decided to modernize the Blast Furnace 2. The relining involved the following: complete furnace with bell less top; cast house with dust collection; INBA granulation system; gas cleaning system; cooling system; modern control system; and revamping of the stock house and the stoves. Burden distribution tests allowed the staff to familiarize themselves with the operation of the top under the three operation modes (manual, semiautomatic and automatic), and also to make adjustments to the top control system. In addition, the tests allowed them to see how materials behave during discharge and building up of ore and coke layers. All this information, together with the available instrumentation, such as fixed probes and heat flux monitoring system, proved to be of use for the gas flow control.

  6. A review of the use of anthracite in electric arc furnace steelmaking

    SciTech Connect (OSTI)

    Rozelle, P.L.

    1994-12-31

    The applications of anthracite in Electric Arc Furnace (EAF) steelmaking, include the adjustment of hot metal carbon content, the generation of foamy slags, and its use as a support fuel in the EAF to reduce power consumption per tonne of product. Incentives to use support fuel in EAF steelmaking include the reduction of electric power consumption without reducing plant output. As such, the concept can reduce steelmaking costs and can serve as a basis for maximizing an EAF operation`s demand side management program. The use of carbon and oxygen additions to the EAF can cause significant release of energy within the furnace. This energy can offset a portion of the electrical energy required by the system for production of steel. Reduced consumption of electricity per tonne of hot metal is the result Electrode consumption and tap to tap times can also be reduced. significant interest in the use of anthracite as EAF support fuel, as well as the other applications of anthracite in EAF steelmaking, have combined to establish the EAF steelmaking trade as a significant market sector for anthracite. This discussion is a review of key anthracite properties and production considerations, and their interplay with the requirements of the EAF process.

  7. Integrated emissions control system for residential CWS furnace. Final report, September 20, 1989--March 20, 1993

    SciTech Connect (OSTI)

    Breault, R.W.; McLarnon, C.

    1993-03-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen is developing a novel, integrated control system to control NO{sub x}SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. Final cleanup of any fine particulates exiting the reactor including respirable-sized particulates, is completed with the use of high efficiency bag filters. Under a previous contract with PETC (Contract No. DE-AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor to control NO{sub x}emission. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emission.

  8. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Crelling, J.C.

    1994-12-31

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  9. A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)

    SciTech Connect (OSTI)

    Nabi, G.

    1996-12-31

    Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

  10. Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project

    SciTech Connect (OSTI)

    Duncan, A.

    2007-12-31

    The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale

  11. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 December 1993--28 February 1994

    SciTech Connect (OSTI)

    Crelling, J.C.

    1994-06-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter a sample of the feed coal that is being used for injection into the No. 7 Blast Furnace of Inland Steel has been analyzed petrographically and compared to both the Herrin No. 6 coal and Armco feed coal. Additional characterization is underway and an advanced program of pyrolysis and reactivity testing has been initiated.

  12. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, March 1--May 31, 1995

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-31

    A new use for Illinois coal is as fuel injected into a blast furnace to produce molten iron as first step in steel production. Because of cost and decreasing availability, metallurgical coke is being replaced by coal injected at the tuyere area of the furnace where the blast air enters. Purpose of this study is to evaluate combustion of Illinois coal in the blast furnace injection process in a pilot plant test facility. (Limited research to date suggests that coals of low fluidity and moderate to high S and Cl contents are suitable for blast furnace injection.) This proposal is intended to complete the study under way with Armco and Inland and to demonstrate quantitatively the suitability of Herrin No. 6 and Springfield No. 5 coals for injection. Main feature of current work is testing of Illinois coals at CANMET`s pilot plant coal combustion facility. During this quarter, two additional 300-pound samples of coal (IBCSP-110 Springfield No. 5 and an Appalachian coal) were delivered. Six Illinois Basin coals were analyzed with the CANMET model and compared with other bituminous coals from the Appalachians, France, Poland, South Africa, and Colombia. Based on computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in injection with a variety of other bituminous coals.

  13. Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report No. 1, May 1--August 1, 1998

    SciTech Connect (OSTI)

    1998-08-15

    The overall aim of the project is to demonstrate the performance and practical use of a laser ultrasonic probe for measuring the thickness of coke deposits located within the high temperature tubes of a thermal cracking furnace. This aim will be met by constructing an optical probe that will be tested using simulated coke deposits that are positioned inside of a bench-scale furnace. Successful development of the optical coke detector will provide industry with the only available method for on-line measurement of coke deposits. The optical coke detector will have numerous uses in the refining and petrochemical sectors including monitoring of visbreakers, hydrotreaters, delayed coking units, vacuum tower heaters, and various other heavy oil heating applications where coke formation is a problem. The coke detector will particularly benefit the olefins industry where high temperature thermal crackers are used to produce ethylene, propylene, butylene and other important olefin intermediates. The ethylene industry requires development of an on-line method for gauging the thickness of coke deposits in cracking furnaces because the current lack of detailed knowledge of coke deposition profiles introduces the single greatest uncertainty in the simulation and control of modern cracking furnaces. The laser ultrasonic coke detector will provide operators with valuable new information allowing them to better optimize the decoking turnaround schedule and therefore maximize production capacity.

  14. Savings from new oil furnaces: A study conducted as part of Washington State`s Oil Help Program

    SciTech Connect (OSTI)

    Davis, R.

    1989-12-01

    The Washington State Energy Office (WSEO) has been running the Oil Help program for three years. Originally operated as a loan program, Oil Help switched to rebates during the 1987 and 1988. Rebates for oil furnace replacements made up over 70 percent of rebate funds, which totaled about $1.3 million. WSEO Evaluation started research in summer of 1988, with the goal of including 100 new furnace households (with a control group of similar size) in the study. Our intention was to look at long-term oil consumption comparing each household with itself over the two periods. The final study group consists of 43 households and a control group of 87 households. The report begins with a review of related research. A discussion of research methodology, weather normalization procedure, data attrition, and important descriptive details follows. Changes in consumption for the new furnace and control groups are reported and are tested for significance. Finally, we discuss the implications of the results for the cost effectiveness of an oil furnace replacement.

  15. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  16. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon Pollution, Help Americans Save on Energy Bills

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON – As part of President Obama’s Climate Action Plan, the Energy Department today announced a new energy efficiency standard for furnace fans, the latest of eight finalized standards and nine proposed standards issued since the Climate Action Plan was announced last year.

  17. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    SciTech Connect (OSTI)

    Kovtun, Maxim Kearsley, Elsabe P. Shekhovtsova, Julia

    2015-06-15

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator.

  18. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces

    SciTech Connect (OSTI)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

    2003-02-12

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

  19. New Whole-House Solutions Case Study: Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware

    SciTech Connect (OSTI)

    2014-01-01

    In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).

  20. A study on the flow of molten iron in the hearth of blast furnace

    SciTech Connect (OSTI)

    Suh, Y.K.; Lee, Y.J.; Baik, C.Y.

    1996-12-31

    The flow of molten iron in the hearth of blast furnace was investigated by using a water model test and a numerical simulation. The water model apparatus was set up in order to evaluate the effects of coke size, coke bed structure, drain rate, and coke free space on the fluidity of molten iron through measurement of residence time and visualization of flow pattern. In addition, the flow was calculated by solving momentum equation in porous media using finite element method. The residence time increased with the coke size decrease, but decreased with the drain rate increase. If small coke was placed in the center of deadman, peripheral flow was enhanced. The flow path was changed due to the coke free space.

  1. Production of high quality steels using the scrap/electric arc furnace route

    SciTech Connect (OSTI)

    Houpert, C.; Lanteri, V.; Jolivet, J.M.; Guttmann, M.; Birat, J.P.; Jallon, M.; Confente, M.

    1996-12-31

    Europe, after North America, is increasing the share of electric arc furnace steelmaking at the expense of integrated steel production and the trend appears to be long term. The driving forces for this change are strong: availability of scrap, social pressure to recycle materials and economic benefits to be reaped from the small structure associated with this short and slim production route. The increasing use of scrap does raise some problems however, in terms of the tramp element build up within the scrap deposit over time. Scrap pretreatment, which aims at separating steel from non-ferrous material during preparation, is thus attracting a lot of attention. The purpose of the present work was to investigate quantitatively the potential problems related to increased levels in tramp elements, with two objectives: identify, on a case by case basis, the currently existing practical limits and devise countermeasures to further extend these limits by better controlling process parameters for instance.

  2. THERMAL TESTING OF PROTOTYPE GENERAL PURPOSE FISSILE PACKAGES USING A FURNACE

    SciTech Connect (OSTI)

    Smith, A; Lawrence Gelder, L; Paul Blanton, P

    2007-02-16

    The 9977/9978 General Purpose Fissile Package (GPFP) was designed by SRNL to replace the DOT 6M Specification Package and ship Plutonium and Uranium metals and oxides. Urethane foam was used for the overpack to ensure the package would withstand the 10CFR71.73(c)(2) crush test, which is a severe test for drum-type packages. In addition, it was necessary to confirm that the urethane foam configuration provided adequate thermal protection for the containment vessel during the subsequent 10CFR71.73(c)(4) thermal test. Development tests were performed on early prototype test specimens of different diameter overpacks and a range of urethane foam densities. The thermal test was performed using an industrial furnace. Test results were used to optimize the selection of package diameter and foam density, and provided the basis for design enhancements incorporated into the final package design.

  3. Device for use in a furnace exhaust stream for thermoelectric generation

    DOE Patents [OSTI]

    Polcyn, Adam D.

    2013-06-11

    A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.

  4. SYSTEM FOR DETECTION AND CONTROL OF DEPOSITION IN KRAFT CHEMICAL RECOVERY BOILERS AND MONITORING GLASS FURNACES

    SciTech Connect (OSTI)

    Dr. Peter Ariessohn

    2003-04-15

    Combustion Specialists, Inc. has just completed a project designed to develop the capability to monitor and control the formation of deposits on the outside of boiler tubes inside an operating kraft recovery furnace. This project, which was carried out in the period from April 1, 2001 to January 31, 2003, was funded by the Department of Energy's Inventions and Innovations program. The primary objectives of the project included the development and demonstration of the ability to produce clear images of deposits throughout the convective sections of operating recovery boilers using newly developed infrared imaging technology, to demonstrate the automated detection and quantification of these deposits using custom designed image processing software developed as part of the project, and to demonstrate the feasibility of all technical elements required for a commercial ''smart'' sootblowing control system based on direct feedback from automated imaging of deposits in real-time. All of the individual tasks have been completed and all objectives have been substantially achieved. Imaging of deposits throughout the convective sections of several recovery boilers has been demonstrated, a design for a combined sootblower/deposit inspection probe has been developed and a detailed heat transfer analysis carried out to demonstrate the feasibility of this design, an improved infrared imager which can be sufficiently miniaturized for this application has been identified, automated deposit detection software has been developed and demonstrated, a detailed design for all the necessary communications and control interfaces has been developed, and a test has been carried out in a glass furnace to demonstrate the applicability of the infrared imaging sensor in that environment. The project was completed on time and within the initial budget. A commercial partner has been identified and further federal funding will be sought to support a project to develop a commercial prototype

  5. Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace

    SciTech Connect (OSTI)

    Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

    1997-12-31

    During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

  6. Building America Technlogy Solutions for New and Existing Homes: Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, the PARR research team examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE.

  7. Phase Development of NaOH Activated Blast Furnace Slag Geopolymers Cured at 90 deg. C

    SciTech Connect (OSTI)

    Zhang Bo; Bigley, C.; Ryan, M. J.; MacKenzie, K. J. D.; Brown, I. W. M.

    2009-07-23

    Geopolymers were synthesized from blast furnace slag activated with different levels of NaOH and cured at 90 deg. C. The crystalline and amorphous phases of the resulting geopolymers were characterized by XRD quantitative analysis, and {sup 29}Si and {sup 27}Al MAS NMR. Amorphous species are predominant in materials at all NaOH levels. In the amorphous phase, aluminium substituted silicate species (Q{sup 2}(1Al)) dominated among the species of Q{sup 0}, Q{sup 1}, Q{sup 2}(1Al) and Q{sup 2}(where Q{sup n}(mAl) denotes a silicate tetrahedron [SiO{sub 4}] with n bridging oxygen atoms and m adjacent tetrahedra substituted with an aluminate tetrahedron [AlO{sub 4}]). In addition, it was also found that 4-fold coordination aluminium [AlO{sub 4}] species ({sup 27}Al chemical shift 66.1 ppm) in low NaOH containing materials differs from the species ({sup 27}Al chemical shift 74.3 ppm) in high NaOH containing materials.

  8. Technical and economic aspects of coal injection at blast furnace tuyeres

    SciTech Connect (OSTI)

    Fletcher, L.N.

    1981-01-01

    The basic factors in selection of an auxiliary fuel have been mentioned. These include availability and cost of the auxiliary fuel, cost of injection facilities, and coke availability. Operating factors such as coal particle size, hot blast temperature, lance location, and flame temperature were discussed as they relate to the efficiency of coal combustion, therefore the economics of a system. Safety is a must when preparing and storing pulverized coal. An unsafe system will never be economical. Based on years of experience at Bellefonte a safe system has been installed at Amanda with no problems in seven years of operation. Coal quality must be considered primarily as regards ash content. A significant penalty is paid for injected ash. Both coking and non-coking coals with the same ash content have been injected with equally successful results. A simplified economic analysis gives an indication of the possible justification of a coal injection system. Replacing 130 lbs oil per net ton of hot metal with an equivalent amount of coal will result in an annual savings of 12.3 million dollars for a 5000 TPD furnace, and a cost payback of three (3) years after start-up. 3 figures, 1 table.

  9. Biomass gasification at the focus of the Odeillo (France 1-MW (thermal) solar furnace

    SciTech Connect (OSTI)

    Antal, M.J. Jr.; Royere, C.; Vialaron, A.

    1980-01-01

    Experiments described in this paper were undertaken to explore the use of concentrated solar radiation for the flash pyrolysis of biomass. Biomass materials (powdered, microcrystalline cellulose and ground corn cob material) have been successfully gasified in a windowed chemical reactor operating at the focus of the Odeillo 1 MW/sub th/ solar furnace. The quartz window survived radiant flux levels in excess of 1000 W/cm/sup 2/; however impurities carried by the steam flow into the reactor ultimately clouded the window. Pyrolytic char yields of the Odeillo experimetns were quite low: ranging between one and four percent. Gas yields were also relatively low, but condensible yields were high. These results reflect the important role played by the gas phase chemistry (largely unaffected by the high solar flux) in the production of permanent gases from biomass. A consideration of the characteristic times for chemical kinetic and heat transfer phenomenon within a rapidly pyrolyzing particle indicate that heat transfer (not chemical kinetics) is the rate limiting step. However, the thermochemical and optical properties of biomass materials are poorly understood and much more experimental work must be completed before definitive conclusions in this important area can be made. Because the use of concentrated solar radiation for direct gasification of biomass materials results in the formation of little or no char without reliance on the water gas or Boudourad reactions, solar flash pyrolysis of biomass holds unusual promise for the economical production of liquid and gaseous fuels from renewable resources.

  10. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    SciTech Connect (OSTI)

    Huang, Haoliang; Ye, Guang; Damidot, Denis

    2014-06-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

  11. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    SciTech Connect (OSTI)

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C.

    2015-08-15

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.

  12. Technology Solutions Case Study: Replacement of Variable-Speed Motors for Furnaces

    SciTech Connect (OSTI)

    2013-02-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) evaluated the Concept 3 replacement motors for residential furnaces in eight homes in Syracuse, NY. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh, with average cost savings of $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load.

  13. Trials with a 100% pellet burden in blast furnace No. 6 at Hoogovens IJmuiden

    SciTech Connect (OSTI)

    Schoone, E.; Toxopeus, H.; Vos, D.

    1995-12-01

    The burden consists of 50% high basicity sinter and 50% home made olivine pellets. Two coke oven plants produce the required coke, about 340 kg/t (680 lb/NT). The average pulverized coal injection rate is 150 kg/t (300 lb/NT). To anticipate the aging coke oven plant No. 2 the coal injection capacity will e increased by 50% in 1996, by the installation of a third coal grinding line. In the Netherlands environmental issues have a high impact on further developments. In particular the environmental regulations require a significant decrease of dust, SO{sub 2} and dioxins emitted by the sinter plant. The appropriate measures must be concluded in the second part of this decade. To avoid costly conventional solutions Hoogovens has been testing since April, 1994 the Emission Optimized Sintering (EOS). In case of failure of EOS, the situation of a (partially) closed sinter plant was tested. Purchased pellets replaced sinter, leading to a 100% pellet and an 80% pellet/20% sinter trial. The trials were executed in the first half of 1994 at blast furnace No. 6, equipped with a PW-bell less top. Results are described.

  14. Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications

    SciTech Connect (OSTI)

    Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B.

    2009-03-15

    A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

  15. Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)

    SciTech Connect (OSTI)

    Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

    2003-12-31

    Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

  16. Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)

    SciTech Connect (OSTI)

    Dr. Gordon A. Irons

    2004-03-31

    Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

  17. AISI/DOE Technology Roadmap Program: Behavior of Phosphorus in DRI/HBI During Electric Furnace Steelmaking

    SciTech Connect (OSTI)

    Richard J. Frueham; Christopher P. Manning cmanning@bu.edu

    2001-10-05

    Many common scrap substitutes such as direct reduced iron pellets (DRI), hot briquetted iron (HBI), iron carbide, etc., contain significantly higher levels of phosphorus steelmaking for the production of higher quality steels, control of phosphorus levels in the metal will become a concern. This study has developed a more complete understanding of the behavior of phosphorus in DRI during EAF steelmaking, through a thorough investigation of the kinetics and thermodynamics of phosphorus transfer in the EAF based upon laboratory and plant experiments and trials. Laboratory experiments have shown that phosphorus mass transfer between oxide and metallic phases within commercial direct reduced iron pellets occurs rapidly upon melting according to the local equilibrium for these phases. Laboratory kinetic experiments indicate that under certain conditions, phosphorus mass transfer between slag and metal is influenced by dynamic phenomena, which affect the mass transfer coefficient for the reaction and/or the slag metal interfacial area. Plant trials were conducted to directly evaluate the conditions of mass transfer in the electric furnace and to determine the effects of different scrap substitute materials upon the slag chemistry, the behavior of phosphorus in the steel, and upon furnace yield. The data from these trials were also used to develop empirical models for the slag chemistry and furnace temperature as functions of time during a single heat. The laboratory and plant data were used to develop a numerical process model to describe phosphorus transfer in the EAF

  18. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect (OSTI)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  19. Development of models and online diagnostic monitors of the high-temperature corrosion of refractories in oxy/fuel glass furnaces : final project report.

    SciTech Connect (OSTI)

    Griffiths, Stewart K.; Gupta, Amul; Walsh, Peter M.; Rice, Steven F.; Velez, Mariano; Allendorf, Mark D.; Pecoraro, George A.; Nilson, Robert H.; Wolfe, H. Edward; Yang, Nancy Y. C.; Bugeat, Benjamin American Air Liquide, Countryside, IL); Spear, Karl E.; Marin, Ovidiu American Air Liquide, Countryside, IL); Ghani, M. Usman

    2005-02-01

    This report summarizes the results of a five-year effort to understand the mechanisms and develop models that predict the corrosion of refractories in oxygen-fuel glass-melting furnaces. Thermodynamic data for the Si-O-(Na or K) and Al-O-(Na or K) systems are reported, allowing equilibrium calculations to be performed to evaluate corrosion of silica- and alumina-based refractories under typical furnace operating conditions. A detailed analysis of processes contributing to corrosion is also presented. Using this analysis, a model of the corrosion process was developed and used to predict corrosion rates in an actual industrial glass furnace. The rate-limiting process is most likely the transport of NaOH(gas) through the mass-transport boundary layer from the furnace atmosphere to the crown surface. Corrosion rates predicted on this basis are in better agreement with observation than those produced by any other mechanism, although the absolute values are highly sensitive to the crown temperature and the NaOH(gas) concentration at equilibrium and at the edge of the boundary layer. Finally, the project explored the development of excimer laser induced fragmentation (ELIF) fluorescence spectroscopy for the detection of gas-phase alkali hydroxides (e.g., NaOH) that are predicted to be the key species causing accelerated corrosion in these furnaces. The development of ELIF and the construction of field-portable instrumentation for glass furnace applications are reported and the method is shown to be effective in industrial settings.

  20. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R; Storey, John Morse

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in which hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.

  1. Applications of risk management to waste combustion in boilers and industrial furnaces

    SciTech Connect (OSTI)

    Chrostowski, P.C.; Foster, S.A.; Kimball, H.J.

    1996-12-31

    Human health and ecological risk assessments have become routine for waste combustion in boilers and industrial furnaces (BIFs) as a result of USEPA`s Combustion Strategy, questions raised by citizens about the health effects of incineration, and the desire for the regulated community to have a level playing field regarding emissions regulations. The USEPA, National Academy of Sciences, various trade organizations, and individual researchers have published widely regarding methods for facility-specific risk assessments. Often these risk assessments are highly complex, site-specific documents that use advanced techniques such as Monte Carlo simulation. However, the risks that are calculated in these risk assessments are usually only used to compare to criteria for health effects and, thereby, develop permit conditions that are protective of health and the environment. Thus, the risk assessment is only used to derive a simple set of numbers and most of the information derived in the complex risk computations is lost. The object of this paper is to demonstrate how to derive more information from risk assessments that can be used in making management decisions. This paper will discuss the theory of risk management and present applications to combustion of waste in BIFs. For example, a permit applicant needed to make a decision among alternative air pollution control (APC) equipment sequences including scrubbers, fabric filters, and electrostatic precipitators. Limited life cycle analysis was used to determine the amount of direct and total waste produced by each of the alternatives. Monte Carlo risk assessment was used to determine the health risks associated with each of the alternatives and reliability analysis was employed to minimize both waste production and health risk.

  2. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

  3. Large-scale Evaluation of Nickel Aluminide Rolls in a Heat-Treat Furnace at Bethelehem Steel's (Now ISG) Burns Harbor Plate Mill

    SciTech Connect (OSTI)

    Mengel, J.

    2003-12-16

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry. Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system. Many challenges were involved in this project, including developing welding procedures for joining nickel aluminide intermetallic alloys with H-series austenitic alloys, developing commercial cast roll manufacturing specifications, working with several commercial suppliers to produce a quantity of high quality, reproducible nickel aluminide rolls for a large steel industrial annealing furnace, installing and demonstrating the capability of the rolls in this furnace, performing processing trials to evaluate the benefits of new equipment and processes, and documenting the findings. Updated furnace equipment including twenty-five new automated furnace control dampers have been installed replacing older design, less effective units. These dampers, along with upgraded flame-safety control equipment and new AC motors and roll-speed control equipment, are providing improved furnace control and additional energy efficiency. Energy data shows up to a 34% energy reduction from baseline after the installation of upgraded furnace damper controls along with up to a 34% reduction in greenhouse gases, potential for an additional 3 to 6% energy reduction per campaign of light-up and shutdown, and a 46% energy reduction from baseline for limited trials of a combination of improved damper control and straight-through plate processing. The straight-through processing

  4. Condensing heat-exchanger systems for oil-fired residential/commercial furnaces and boilers Phase I and II

    SciTech Connect (OSTI)

    Ball, D.A.; White, E.L.; Lux, J.J. Jr.; Locklin, D.W.

    1982-10-01

    The objective of the program reported was to provide supporting research to aid in the development and demonstration of oil-fired residential and commercial heating equipment that will operate in a condensing mode. Materials for heat exchangers are screened through coupon testing in a furnace simulator test rig and in an alternate immersion test rig. Condensate from oil-fired systems is characterized. Some general issues related to field application are treated, including heat exchanger fouling, venting of combustion gases, disposal of flue gas condensate, other means of condensate disposal, and evaluation of codes and standards. A heat transfer analysis is presented for general heat exchangers. (LEW)

  5. A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace

    SciTech Connect (OSTI)

    Murray, J.P.

    1989-01-01

    A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

  6. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    SciTech Connect (OSTI)

    Hamid Sarv

    2009-02-28

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level

  7. Comparison of glassy slag waste forms produced in laboratory crucibles and in a bench-scale plasma furnace

    SciTech Connect (OSTI)

    Feng, X.; Wronkiewicz, D.J.; Brown, N.R.; Gong, M.; Whitworth, C.; Filius, K.; Battleson, D.

    1994-10-01

    Vitrification is currently the best demonstrated available technology for the disposal of high-level radioactive wastes. An innovative vitrification approach known as minimum additive waste stabilization (MAWS) is being developed. Both homogeneous glass and glassy slags have been used in implementing MAWS. Glassy slags (vitro-ceramics) are glass-crystal composites, and they are composed of various metal oxide crystalline phases embedded in an aluminosilicate glass matrix. Glassy slags with compositions developed in crucible melts at Argonne National Laboratory (ANL) were successfully produced in a bench-scale Retech plasma centrifugal furnace (PCF) by MSE, Inc. Detailed examinations of these materials showed that the crucible melts and the PCF produced similar glass and crystalline phases. The two sets of glassy slags exhibited similar chemical durability in terms of normalized releases of their major components. The slags produced in the PCF furnace using metals were usually less oxidized, although this had no effect on the corrosion behavior of the major components of the slags. However, the normalized release rate of cerium was initially lower for the PCF slags. This difference diminished with time as the redox sates of the metal oxides in slags began to be controlled by exposure to air in the tests. Thus, the deference in cerium release due to the differences in slag redox state may be transitory. The cerium solubility is a complex function of redox state and solution pH and Eh.

  8. Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990

    SciTech Connect (OSTI)

    Balsavich, J.C.; Breault, R.W.

    1990-10-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

  9. Injection of natural gas in the blast furnace at high rates: Field experiments at Armco Steel Company. Topical technical report, January 1990-September 1992

    SciTech Connect (OSTI)

    Agarwall, J.C.; Brown, F.C.; Chin, D.L.; Frydenlund, A.R.

    1993-04-01

    A study of the benefits of the injection of natural gas as a supplemental fuel for commercial blast furnaces is presented. Tests were carried out for sustained periods at natural gas injection levels of 150 and 200 pounds per therm (lb/thm). Average coke replacement ratios of 1.30 pounds of coke per pound of natural gas injected and productivity increases of about 10% were achieved at a gas injection rate of 200 lb/thm. The results were obtained without adverse effects on hot metal chemistry or furnace operability. The ability of natural gas to effectively replace an appreciable amount of coke should enable a decrease in coke production levels.

  10. Large-Scale Evaluation of Nickel Aluminide Rools In A Heat-Treat Furnace at Bethlehem Steel's (now ISG) Burns Harbor Plate Mill

    SciTech Connect (OSTI)

    John Mengel; Anthony Martocci; Larry Fabina; RObert Petrusha; Ronald Chango

    2003-09-01

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry, Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system.

  11. TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates

    SciTech Connect (OSTI)

    Veena Sahajwalla; Sushil Gupta

    2005-04-15

    Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

  12. Chapter 5, Residential Furnaces and Boilers Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Residential Furnaces and Boilers Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 5 - 1 Chapter 5 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol

  13. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOE Patents [OSTI]

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  14. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne

    2010-05-04

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  15. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne

    2010-08-24

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  16. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  17. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W.; Bannister, Ronald L.

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  18. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    Fuel cells are electrochemical devices that produce electricity without combustion. Due to their high efficiency and minimal emissions, fuel cells are an attractive option for distributed power...

  19. Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. Tungsten-rhenium composite tube fabricated by CVD for application in 1800/sup 0/C high thermal efficiency fuel processing furnace

    SciTech Connect (OSTI)

    Svedberg, R.C.; Bowen, W.W.; Buckman, R.W. Jr.

    1980-04-01

    Chemical Vapor Deposit (CVD) rhenium was selected as the muffle material for an 1800/sup 0/C high thermal efficiency fuel processing furnace. The muffle is exposed to high vacuum on the heater/insulation/instrumentation side and to a flowing argon-8 V/0 hydrogen gas mixture at one atmosphere pressure on the load volume side. During operation, the muffle cycles from room temperature to 1800/sup 0/C and back to room temperature once every 24 hours. Operational life is dependent on resistance to thermal fatigue during the high temperature exposure. For a prototypical furnace, the muffle is approximately 13 cm I.D. and 40 cm in length. A small (about one-half size) rhenium closed end tube overcoated with tungsten was used to evaluate the concept. The fabrication and testing of the composite tungsten-rhenium tube and prototypic rhenium muffle is described.

  1. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  2. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  3. Characterization of emissions from a fluidized-bed wood chip home heating furnace. Final report Apr 82-May 83

    SciTech Connect (OSTI)

    Truesdale, R.S.

    1984-03-01

    The report gives results of measurements of emissions from a residential wood-chip combustor, operated in both a fluidized-bed and cyclone-fired mode, and their comparison with those from a conventional woodstove and industrial wood-fired boilers. In general, the combustion efficiency of the fluidized-bed and cyclone-fired wood-chip burner is higher than that of conventional woodstoves. Concomitant with this increase in efficiency is a decrease in most emissions. For the fluidized-bed tests, significant reductions of total hydrocarbons and CO were observed, compared to woodstove emissions. The cyclone test showed PAH levels far below those of conventional woodstoves, approaching levels measured in industrial wood-fired boilers. A baghouse, installed during two fluidized-bed tests, was extremely effective in reducing both particulate and PAH emissions. Method 5 samples from above the fluid bed suggest that appreciable PAH is formed in the upper region of the furnace or in the watertube heat exchangers. In general, the cyclone-fired mode was more effective in reducing emissions from residential wood combustion than the fluidized-bed mode.

  4. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    SciTech Connect (OSTI)

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  5. U.S. Manufacturer Going Above and Beyond with Superior Energy Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Manufacturer Going Above and Beyond with Superior Energy Performance U.S. Manufacturer Going Above and Beyond with Superior Energy Performance October 11, 2013 - 10:17am Addthis General Dynamics' Bliss Three Forge Furnace is a natural gas-fired rotary hearth furnace used to heat steel before forging. Refurbished with a new high performance refractory, high efficiency burner controls, and natural gas recuperators, the furnace improvements translated into a 25%

  6. Integrated emissions control system for residential CWS furnace. Annual status report No. 2, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  7. Effects of the furnace temperature on the CO, CO{sub 2}, NO{sub x} and unburned hydrocarbon emissions from the combustion of coal and alternative fuels

    SciTech Connect (OSTI)

    Levendis, Y.A.; Atal, A.; Courtemanche, B.

    1999-07-01

    Results are presented on the emissions of carbon monoxide (CO), carbon dioxide (CO{sub 2}), unburned aromatic hydrocarbons, as well as oxides of nitrogen (NO{sub x}) from the combustion of pulverized bituminous coal, tire-derived fuel and, for a limited number of runs, waste plastics-derived fuel. The particle size cuts of pulverized coal, tire and plastics were 63--75 {micro}m and 180--300 {micro}m, respectively. Combustion experiments were conducted in a laboratory-scale drop-tube furnace at gas temperatures, in the range of 1,300--1,600 K, and several fuel mass loadings in the furnace, expressed in terms of global equivalence ratios in the range of 0.4--2.4. The CO, CO{sub 2} and NO{sub x} emissions were monitored continuously with infrared absorption and chemiluminescent instruments. Up to sixty 2-7 ring polynuclear aromatic hydrocarbons (PAH) were detected by capillary gas chromatography - mass spectrometry (GC-MS) techniques. Results showed that the PAH emission yields (mg/g fuel introduced) increased drastically with increasing bulk equivalence ratio (in the aforementioned range), at fixed furnace temperatures. This was also true for the CO yields, while the CO{sub 2} yields increased with increasing {o}, reached a maximum around stoichiometry and then decreased mildly. NO{sub x} yields decreased precipitously with increasing equivalence ratio. The CO and, especially, the PAH yields from tire-derived and plastics-derived fuels were much higher than those from coal, but the relative amounts of individual PAH components were remarkably similar in the combustion effluent of all fuels. The CO{sub 2} emissions and, especially, the NO{sub x} emissions from tire crumb were lower than those from coal. The CO{sub 2} emissions from plastics were comparable to those from coal, but their NO {sub x} emissions were much lower than those from tire. At fixed bulk equivalence ratios, however, as the furnace gas temperature increased the PAH yields from coal, tire crumb, and

  8. Consumer Condensing Gas Furnaces

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards.

  9. Furnaces | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  10. Residential Condensing Gas Furnaces

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards.

  11. Reheating dynamics affects non-perturbative decay of spectator fields

    SciTech Connect (OSTI)

    Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav E-mail: rose.lerner@helsinki.fi

    2013-11-01

    The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field ? coupled to the Higgs Boson ? through the term g{sup 2}?{sup 2}?{sup 2}, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling g?>10{sup ?3}, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.

  12. Multiple-Reheat Brayton Cycles for Nuclear Power Conversion with...

    Office of Scientific and Technical Information (OSTI)

    Volume: 144; Journal Issue: 3; Other Information: Copyright (c) 2006 American Nuclear Society (ANS), United States, ... CAPITALIZED COST; CHEMICAL REACTIONS; ...

  13. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    Eaton, W.C.

    1995-05-31

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

  14. A neural network model for predicting the silicon content of the hot metal at No. 2 blast furnace of SSAB Luleaa

    SciTech Connect (OSTI)

    Zuo Guangqing; Ma Jitang; Bo, B.

    1996-12-31

    To predict the silicon content of hot metal at No. 2 blast furnace, SSAB, Luleaa Works, a three-layer Back-Propagation network model has been established. The network consists of twenty-eight inputs, six middle nodes and one output and uses a generalized delta rule for training. Different network structures and different training strategies have been tested. A well-functioning network with dynamic updating has been designed. The off-line test and the on-line application results showed that more than 80% of the predictions can match the actual silicon content in hot metal in a normal operation, if the allowable prediction error was set to {+-}0.05% Si, while the actual fluctuation of the silicon content was larger than {+-}0.10% Si.

  15. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 6, April--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.

  16. Evaluation of the three-phase, electric arc melting furnace for treatment of simulated, thermally oxidized radioactive and mixed wastes. Part 1: Design criteria and description of integrated waste treatment facility

    SciTech Connect (OSTI)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.; Hartman, A.D.

    1995-06-01

    The US Bureau of Mines and the Department of Energy (DOE), through its contractor EG and G Idaho Inc., are collaborating on a multiyear research project to evaluate the applicability of three-phase, electric-arc furnace melting technology to vitrify materials simulating low-level radioactive and mixed wastes buried or stored at the Idaho National Engineering Laboratory and other DOE sites. The melter is sealed, 1-t (1.1-st), three-phase, 800-kV {center_dot} A electric arc melting furnace with 10.2-cm- (4-in-) diameter graphite electrodes, water-cooled roof and sidewalls, and four water-cooled feed tubes. A water-cooled copper fixture provides for continuous tapping of slag. An instrumented air pollution control system (APCS) with access ports for analysis and a feeder based on screw conveyors and a bucket elevator are dedicated to the facility. Test data are provided by an arc furnace analyzer and by sensors indicating feed rate; slag temperature; and temperature, pressure, and velocity in the APCS. These data are received by a data logger, digitized, and transmitted to a personal computer for storage and display. This unique waste treatment facility is available for public and private use on a cost-sharing basis.

  17. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag

    SciTech Connect (OSTI)

    Kim, Min Sik; Jun, Yubin; Lee, Changha Oh, Jae Eun

    2013-12-15

    The use of calcium oxide (CaO) demonstrates a superior potential for the activation of ground granulated blast furnace slag (GGBFS), and it produces a higher mechanical strength than calcium hydroxide [Ca(OH){sub 2}]. The mechanical strength differences between CaO- and Ca(OH){sub 2}-activated GGBFS binders are explored using isothermal calorimetry, powder X-ray diffraction, thermogravimetric and differential thermal analysis (TGA and DTA) as well as compressive strength testing. Calcium silicate hydrate (C–S–H), Ca(OH){sub 2} and a hydrotalcite-like phase are found as reaction products in all samples. The TGA and DTA results indicate that the use of CaO produces more C–S–H, although this is not likely to be the primary cause of higher strength development in the CaO-activated GGBFS. Rather, other factors such as porosity may govern the strength at a higher order of magnitude. Significant reduction of Ca(OH){sub 2} occurs only with the use of Ca(OH){sub 2}, followed by the formation of carbonate (CaCO{sub 3}), indicating carbonation. -- Highlights: •CaO showed a better potential for the activation of GGBFS than Ca(OH){sub 2}. •Strength test, XRD, TGA/DTA and isothermal calorimetry are used. •C-S-H, Ca(OH){sub 2}, and a hydrotalcite-like phase are found in all samples. •The use of Ca(OH){sub 2} causes some degree of carbonation.

  18. Heat pipes for industrial waste heat recovery

    SciTech Connect (OSTI)

    Merrigan, M.A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes have been investigated. Economic studies of the use of heat-pipe based recuperators in industrial furnaces have been conducted and payback periods determined as a function of material, fabrication, and installation cost.

  19. Synthesis of homogeneous Ca{sub 0.5}Sr{sub 0.5}FeO{sub 2.5+{delta}} compound using a mirror furnace method

    SciTech Connect (OSTI)

    Mahboub, M.S.; Zeroual, S.; Laboratoire de Cristallographie, Departement de Physique, Faculte des Sciences Exactes, Universite Mentouri, Constantine 25000 ; Boudjada, A.

    2012-02-15

    Graphical abstract: X-ray diffraction pattern indexing of Ca{sub 0.5}Sr{sub 0.5}FeO{sub 2.5+{delta}} powder sample obtained by mirror furnace method after thermal treatment. Highlights: Black-Right-Pointing-Pointer A homogenous compound Ca{sub 0.5}Sr{sub 0.5}FeO{sub 2.5+{delta}} has been synthesized for the first time by a mirror furnace method. Black-Right-Pointing-Pointer Ca{sub 0.5}Sr{sub 0.5}FeO{sub 2.5+{delta}} powder sample is perfectly homogenous, confirmed by X-ray diffraction, Raman spectroscopy and EDS technique. Black-Right-Pointing-Pointer The thermal treatment of Ca{sub 0.5}Sr{sub 0.5}FeO{sub 2.5+{delta}} powder sample can increase their average grain sizes. -- Abstract: A new synthesis method using melting zone technique via the double mirror furnace around 1600 Degree-Sign C is used to obtain homogenous brownmillerite compounds Ca{sub 1-x}Sr{sub x}FeO{sub 2.5+{delta}} in the range 0.3 {<=} x {<=} 0.7. These compounds play important role in understanding the mystery of the oxygen diffusion in the perovskite-related oxides. We have successfully solved the miscibility gap problem by synthesizing a good quality of homogenous powder samples of Ca{sub 0.5}Sr{sub 0.5}FeO{sub 2.5+{delta}} compound. Our result was confirmed by X-rays diffraction, Raman spectroscopy and energy dispersive spectroscopy analysis. Thermal treatment was also applied until 800 Degree-Sign C under vacuum to confirm again the homogeneity of powder samples, improve its quality and show that no decomposition or return to form Ca- and Sr-enriched microdomains takes place as a result of phase separation.

  20. 2015-03-24 Issuance: ASRAC; Notice of Intent to Establish the Commercial Package Air Conditioners and Heat Pumps and Commercial Warm Air Furnaces Working Group to Negotiate Potential Energy Conservation Standards

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register Notice of Intent regarding potential Energy Conservation Standards for Commercial Package Air Conditioners and Heat Pumps and Commercial Warm Air Furnaces, as issued by the Deputy Assistant Secretary for Energy Efficiency on March 24, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Operational and environmental benefits of oxy-fuel combustion in the steel industry

    SciTech Connect (OSTI)

    Farrell, L.M.; Pavlack, T.T.; Rich, L.

    1995-03-01

    Due to the high flame temperature of conventional oxygen-fuel burners, these burners have typically not been used in reheat furnaces where temperature uniformity is critical. Praxair has developed a number of burners and associated control systems that have been successfully operated in a variety of reheat furnaces beginning in 1980. The burners have also recently been used for ladle preheating. All burners have been operated with 100% oxygen. The patented burners have designs that result in flame temperatures equivalent to conventional air-fuel burners. Flexible flame patterns are possible, resulting in uniform temperature distribution. In addition, the low flame temperature combined with minimal nitrogen in the furnace results in very low NO{sub x} emissions. The design of the control systems insure safe and reliable operation. In the following sections, oxygen-fuel combustion will be described, with a discussion of fuel savings and other benefits. Unique designs will be discussed along with the features which make them applicable to reheat applications and which result in lower emissions. Other equipment provided with the burners to complete the oxy-fuel combustion system will be described briefly. There will also be a short discussion of how both the fuel and oxygen price can affect the economics of fuel saving. Results from the commercial retrofit installations in continuous and batch reheat furnaces, soaking pits and ladle preheaters will be described. Finally, NO{sub x} emissions data will be discussed.

  2. Reduction of iron-oxide-carbon composites: part II. Rates of reduction of composite pellets in a rotary hearth furnace simulator

    SciTech Connect (OSTI)

    Halder, S.; Fruehan, R.J.

    2008-12-15

    A new ironmaking concept is being proposed that involves the combination of a rotary hearth furnace (RHF) with an iron-bath smelter. The RHF makes use of iron-oxide-carbon composite pellets as the charge material and the final product is direct-reduced iron (DRI) in the solid or molten state. This part of the research includes the development of a reactor that simulated the heat transfer in an RHF. The external heat-transport and high heating rates were simulated by means of infrared (IR) emitting lamps. The reaction rates were measured by analyzing the off-gas and computing both the amount of CO and CO{sub 2} generated and the degree of reduction. The reduction times were found to be comparable to the residence times observed in industrial RHFs. Both artificial ferric oxide (PAH) and naturally occurring hematite and taconite ores were used as the sources of iron oxide. Coal char and devolatilized wood charcoal were the reductants. Wood charcoal appeared to be a faster reductant than coal char. However, in the PAH-containing pellets, the reverse was found to be true because of heat-transfer limitations. For the same type of reductant, hematite-containing pellets were observed to reduce faster than taconite-containing pellets because of the development of internal porosity due to cracking and fissure formation during the Fe2O{sub 3}-to-Fe3O{sub 4} transition. This is, however, absent during the reduction of taconite, which is primarily Fe3O{sub 4}. The PAH-wood-charcoal pellets were found to undergo a significant amount of swelling at low-temperature conditions, which impeded the external heat transport to the lower layers. If the average degree of reduction targeted in an RHF is reduced from 95 to approximately 70 pct by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced 1.5 to 2 times. The use of a two- or three-layer bed was found to be superior to that of a single layer, for higher productivities.

  3. CUPOLA FURNACE COMPUTER PROCESS MODEL

    Office of Scientific and Technical Information (OSTI)

    ... of energy consumption and environmental pollution during melting in iron foundries - ... Although the benefits of refractory linings and heating of blast air are known to be ...

  4. Characterisation of Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    SciTech Connect (OSTI)

    Mobasher, Neda; Bernal, Susan A.; Hussain, Oday H.; Apperley, David C.; Kinoshita, Hajime; Provis, John L.

    2014-12-15

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO{sub 4} and BaCO{sub 3}, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH){sub 2} and Na{sub 2}SO{sub 4} act as alkaline activators and control the reaction of the slag in addition to forming insoluble BaSO{sub 4}, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH){sub 2} is added. An increased content of Ba(OH){sub 2} promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes.

  5. Low Temperature Combustion with Thermo-chemical Recuperation to Maximize In-use Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  6. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  7. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  8. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    SciTech Connect (OSTI)

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  9. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  10. STEAM-SIDE OXIDE SCALE EXFOLIATION BEHAVIOR IN SUPERHEATERS AND REHEATERS

    SciTech Connect (OSTI)

    Sabau, Adrian S; Shingledecker, John P.; Wright, Ian G

    2011-01-01

    Advances in materials for power plants include not only new materials with higher-temperature capabilities, but also the use of current materials at increasingly higher temperatures. This latter activity builds on extensive experience of the performance of the various alloys, and provides a basis for identifying changes in alloy behavior with increasing temperature as well as understanding the factors that ultimately determine the maximum use temperatures of the different alloy classes. This paper presents results from an effort to model the exfoliation processes of steam-side oxide scales in a manner that describes as accurately as possible the evolution of strains in oxides growing inside small-diameter tubes subjected to large thermal gradients and to thermal transients typical of normal steam boiler operation. One way of portraying the results of such calculations is by plotting the evolving strains in a given oxide scale on an Exfoliation Diagram (of the type pioneered by Manning et al. of the British Central Electricity Research Laboratory) to determine the earliest time at which the trajectory of these strains intersects a criterion for scale failure. Understanding of how such strain trajectories differ among different alloys and are affected by the major variables associated with boiler operation has the potential to suggest boiler operating strategies to manage scale exfoliation, as well as to highlight the mode of scale failure and the limitations of each alloy. Preliminary results are presented of the strain trajectories calculated for alloys T22, T91, and TP347 subjected to the conditions experienced by superheaters under assumed boiler operating scenarios. For all three alloys the earliest predicted scale failures were associated with the increased strains developed during a boiler shut-down event; indeed, in the cases considered it appeared unlikely that scale failure would occur in any practically meaningful time due to strains accumulated during operation in a load-following mode in the absence of a shut down. The accuracy of the algorithms used for the kinetics of oxide growth appeared to be a very important consideration, especially for alloy TP347 for which large effects on oxide growth rate are known to occur with changes in alloy grain size and surface cold work.

  11. The impact of coal chlorine on the fireside corrosion behavior of boiler tubing: A UK perspective

    SciTech Connect (OSTI)

    James, P.J.; Pinder, L.W.

    1997-08-01

    Boiler tube failures are the principal cause of loss of power plant availability worldwide. A significant proportion of the failures in the furnace wall and pendant/platen superheater and reheater stages are the result, either directly or indirectly, of excessive metal loss by fireside corrosion. Despite fundamental differences in the corrosion mechanisms active on furnace walls (gaseous) and superheater/reheater stages (molten salt), much of the worsening fireside corrosion problems experienced in both sections on UK plant in the 1960`s and 1970`s was attributed to fuel chemistry, in particular the coal chlorine content. This paper explores the more recent history of fireside corrosion in CEGB and PowerGen Stations and details the current view of the impact of coal chlorine on the wastage mechanisms concerned in each boiler stage.

  12. Dilute Oxygen Combustion - Phase 3 Report

    SciTech Connect (OSTI)

    Riley, Michael F.

    2000-05-31

    Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good, and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel's standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion on furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

  13. Dilute Oxygen Combustion Phase 3 Final Report

    SciTech Connect (OSTI)

    Riley, M.F.; Ryan, H.M.

    2000-05-31

    Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel?s standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion of furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

  14. Microwave furnace having microwave compatible dilatometer

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  15. Microwave furnace having microwave compatible dilatometer

    DOE Patents [OSTI]

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  16. List of Furnaces Incentives | Open Energy Information

    Open Energy Info (EERE)

    Municipal Solid Waste Renewable Fuels Small Hydroelectric Wind Fuel Cells using Renewable Fuels Yes Alternative and Clean Energy State Grant Program (Pennsylvania) State Grant...

  17. Furnace control apparatus using polarizing interferometer

    DOE Patents [OSTI]

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1995-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  18. Furnace and Boiler Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings ...

  19. Furnace control apparatus using polarizing interferometer

    DOE Patents [OSTI]

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-03-28

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  20. Petrochemical feedstock from basic oxygen steel furnace

    SciTech Connect (OSTI)

    Greenwood, C.W.; Hardwick, W.E.

    1983-10-01

    Iron bath gasification in which coal, lime, steam and oxygen are injected into a bath of molten iron for the production of a medium-Btu gas is described. The process has its origin in basic oxygen steelmaking. It operates at high temperatures and is thus not restrictive on the type of coal used. The ash is retained in the slag. The process is also very efficient. The authors suggest that in the present economic climate in the iron and steel industry, such a plant could be sited where existing coal-handling, oxygen and steelmaking equipment are available.

  1. Furnaces and Boilers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed via baseboard radiators or radiant floor systems, or can heat air via a ...

  2. C2R2. Compact Compound Recirculator/Recuperator for Renewable Energy and Energy Efficient Thermochemical Processing.

    SciTech Connect (OSTI)

    Ermanoski, Ivan; Orozco, Adrian

    2015-08-01

    In this report we present the development of a packed particle bed recirculator and heat exchanger. The device is intended to create countercurrent flows of packed particle beds and exchange heat between the flows. The project focused on the design, fabrication, demonstration, and modifications of a simple prototype, in order to attain high levels of heat exchange between particle flows while maintaining an effective particle conveying rate in a scalable package. Despite heat losses in a package not optimized for heat retention, 50% heat recovery was achieved, at a particle conveying efficiency of 40%.

  3. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    SciTech Connect (OSTI)

    VonDrasek, William; Melsio-Pubill, Anna

    2006-05-30

    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance

  4. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect (OSTI)

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in

  5. Microturbines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Microturbines are small combustion turbines, approximately the size of a refrigerator, with outputs of 25-500 kilowatt (kW). They evolved from automotive and truck turbochargers, auxiliary power units for airplanes, and small jet engines and are composed of a compressor, a combustor, a turbine, an alternator, a recuperator, and a generator. Microturbines offer a number of potential advantages over other technologies for small-scale power generation. These include their small number of moving parts, compact size, light weight, greater efficiency, lower emissions, lower electricity costs, and ability to use waste fuels. They can be located on sites with space limitations for the production of power, and waste heat recovery can be used to achieve efficiencies of more than 80%. Turbines are classified by the physical arrangement of their component parts: single-shaft or two-shaft, simple-cycle or recuperated, inter-cooled, and reheat. The machines generally rotate more than 40,000 rotations per minute (rpm). Bearing selection, whether the manufacturer uses oil or air, is dependent on use. Single-shaft is the more common design because it is simpler and less expensive to build. Conversely, the split shaft is necessary for machine drive applications because it does not require an inverter to change the frequency of the AC power.

  6. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  7. Dilute Oxygen Combustion Phase I Final Report

    SciTech Connect (OSTI)

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.

    1997-10-31

    increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300°F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

  8. Dilute Oxygen Combustion Phase 2 Final Report

    SciTech Connect (OSTI)

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.

    2005-09-30

    increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300?F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

  9. Operational and environmental benefits of oxy-fuel combustion in the steel industry

    SciTech Connect (OSTI)

    Farrell, L.M. ); Pavlack, T.T. . Linde Division); Rich, L. )

    1993-07-01

    A number of patented, field-tested 100% oxy-fuel burner systems have been developed which provide fuel savings, reduced emissions (CO[sub 2] and NO[sub x]) and improved operational performances. These systems can be applied to high-temperature continuous and batch reheat furnaces, soaking pits and ladle preheaters. Fuel consumption and carbon dioxide and NO[sub x] emissions can be reduced by 40 to 60%. Burner design (including nonwater cooled models), commercial experience, measured and projected emissions reductions, and additional operating benefits associated with new and retrofitted applications are described.

  10. Reconsideration of natural-gas immersion burners to melt recycled aluminum

    SciTech Connect (OSTI)

    Clark, John A., III; Thekdi, Arvind; Ningileri, S.; Han, Q.

    2005-09-01

    The best open flame reverberatory aluminum melting furnaces are approximately 45% efficient. Furnace efficiency can be increased by using immersed tube burners. Currently, recuperated tube burners with capacities to remelt aluminum are available. Tube burners would allow remelt furnaces to operate at lower temperatures, reduce dross formation, reduce particulate emissions, and provide clean flue gas to other energy intensive processes. Babcock and Wilcox, under GRI (now GTI – Gas Technology Institute) contract in the late-1980’s, demonstrated the technically feasibility of immersion melting of aluminum. However, tube reliability was problematic due to metal penetration, dross build-up, thermal shock, and mechanical failure. Also, the concept of “cold start” melting was not addressed. The Albany Research Center (U.S. DOE) is cooperating with Secat, E3M Inc., the University of Kentucky, and Oak Ridge National Laboratory in an ITP-sponsored program to combine emerging technologies in a retrofitable furnace package targeting improved remelt efficiency ranging from 55% to 75%.

  11. Fluidized bed boiler having a segmented grate

    DOE Patents [OSTI]

    Waryasz, Richard E.

    1984-01-01

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  12. Enabling Low Temperature Combustion Through Thermo-Chemical Recuperati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Through Thermo-Chemical Recuperation Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation Poster presentation from the 2007 Diesel ...

  13. Oil-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown...

  14. Advanced Diagnostics and Control for Furnaces, Fired Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into current process optimization models, allowing the industry to use existing models and to leverage computational fluid dynamic modeling capabilities to model heat transfer. ...

  15. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    relative to thermal com- fort (based on ASHRAE Standard 55) and operational energy ... Comfort conditions in both houses were consistently outside the ASHRAE Standard 55 thermal ...

  16. Paired Straight Hearth Furnace-Transformational Ironmaking Process

    Office of Environmental Management (EM)

    d to h heat a 2' 2'x2' d i 2' bed of pellets and discharge by raking or tilting y P j ... Decision - Manufacturing of Green Ball Pellets (Go - August 2009) GoNo Go Decision ...

  17. DOE Publishes Final Rule for Residential Furnace Fan Test Procedure...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy (DOE) has published a final rule regarding test procedures for ... EERE-2010-BT-TP-0010. Find product information about current standards and test ...

  18. Numerical analysis and measurement in corner-fired furnace

    SciTech Connect (OSTI)

    Zhengjun, S.; Rongsheng, G.

    1999-07-01

    For several years, numerical analysis has been successfully used by Dongfang Boiler (Group) Co., Ltd. at a 200MW boiler, a 300MW boiler and so on, which were designed and made by DBC. The distribution of results is agreement each other between numerical analysis and measurement. In conclusion, it is considered that numerical analysis can be used as an important reference method in pulverized coal boiler design and test.

  19. Aluminum Bronze Alloys to Improve Furnace Component Life | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additionally, slag from the steel making process does not adhere to the aluminum bronze ... and operational difficulties associated with the accumulation of slag on the skirt. ...

  20. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

  1. Gas-Fired Boilers and Furnaces | Department of Energy

    Energy Savers [EERE]

    A vent damper prevents chimney losses by closing off a boiler's vent when the boiler isn't firing. Steam boilers benefit from vent dampers more than hot water boilers, and bigger ...

  2. Condensing Furnace Venting Part 2: Evaluation of Same-Chimney...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  3. SierraTherm Production Furnaces Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: California Zip: 95076 Product: US manufacturer of crystalline silicon and thin-film cell manufacturing equipment such as coating, diffusion, drying and PECVD...

  4. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    SciTech Connect (OSTI)

    2007-09-01

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metallized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metallized iron nodules at low cost.

  5. DOE Furnace Rule SPH Affidavit May 2012.pdf

    Office of Environmental Management (EM)

    0 DOE F 5631.20 Form is used to request that individuals be granted temporary access to DOE facilities. The form is not to be used for temporary or [ermanent personnel assignments. Request for Visit or Access Approval (154.84 KB) More Documents & Publications Headquarters Facilities Master Security Plan - Chapter 3, Personnel Security DOE HQ F 5631.2 Headquarters Facilities Master Security Plan - Chapter 6, Foreign Interaction

    5 DOE F 5631.25 File Transfer Record DOE F 5631.25 (38.87 KB)

  6. Doe Furnace Rule 9.23.14.pdf

    Office of Environmental Management (EM)

  7. Condensing economizers for small coal-fired boilers and furnaces

    SciTech Connect (OSTI)

    Butcher, T.A.; Litzke, W.

    1994-01-01

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  8. Replacement, Variable-Speed Motors for Furnaces, Syracuse, New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These brushless, permanent-magnet (BPM) motors can use less than half the power of conventional permanent, split-capacitor (PSC) motors. BPM motors are always recommended for new ...

  9. Bethlehem Steel Corporation Blast Furnace Granulated Coal Injection Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    Construction of the proposed BFGCI system is not expected to have significant impacts on air quality, noise, and land use at the Burns Harbor Plant area. Operation of the proposed BFGCI system is not expected to have significant impacts on the environment at the Burns Harbor Plant area. An increase of approximately 30 tons/yr for NO{sub x} and approximately 13 tons/yr for particulate matter (from the coal storage area) is expected. These emissions are within the currently permitted levels. Carbon dioxide emissions, which are unregulated, would increase by about 220,000 tons/yr at the Burns Harbor Plant. Water withdrawn and returned to Lake Michigan would increase by 1.3 million gal/d (0.4 percent of existing permitted discharge) for non-contact cooling water. No protected species, floodplains, wetlands, or cultural resources would be affected by operation of the proposed facility. Small economic benefits would occur from the creation of 5 or 6 permanent new jobs during the operation of the proposed demonstration project and subsequent commercial operation. Under the No Action Alternative, the proposed project would not receive cost-shared funding support from DOE.

  10. Method and apparatus for thermal power generation

    DOE Patents [OSTI]

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  11. 4 kW Test of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect (OSTI)

    J. E. O'Brien; X. Zhang; G. K. Housley; L. Moore-McAteer; G. Tao

    2012-06-01

    A new test stand has been developed at the Idaho National Laboratory for multi-kW testing of solid oxide electrolysis stacks. This test stand will initially be operated at the 4 KW scale. The 4 kW tests will include two 60-cell stacks operating in parallel in a single hot zone. The stacks are internally manifolded with an inverted-U flow pattern and an active area of 100 cm2 per cell. Process gases to and from the two stacks are distributed from common inlet/outlet tubing using a custom base manifold unit that also serves as the bottom current collector plate. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Sealing is accomplished with compliant mica-glass seals. A spring-loaded test fixture is used for mechanical stack compression. Due to the power level and the large number of cells in the hot zone, process gas flow rates are high and heat recuperation is required to preheat the cold inlet gases upstream of the furnace. Heat recuperation is achieved by means of two inconel tube-in-tube counter-flow heat exchangers. A current density of 0.3 A/cm2 will be used for these tests, resulting in a hydrogen production rate of 25 NL/min. Inlet steam flow rates will be set to achieve a steam utilization value of 50%. The 4 kW test will be performed for a minimum duration of 1000 hours in order to document the long-term durability of the stacks. Details of the test apparatus and initial results will be provided.

  12. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection

    Broader source: Energy.gov [DOE]

    This fact sheet describes a new technology with the potential to reduce operating costs and increase productivity in bar and flat-rolled products for the steel industry.

  13. Recycling and Reuse of Basic Oxygen Furnace (BOF)/Basic Oxygen Process (BOP) Steelmaking Slags

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to develop technologies and methodologies to allow value-added utilization of steelmaking slag, thus reducing waste and saving energy.

  14. ITmk3: High-Quality Iron Nuggets Using a Rotary Hearth Furnace

    Broader source: Energy.gov [DOE]

    The industrial sector consumes 30% of all U.S. energy consumption, of which about half (1.5 quad) is consumed by iron and steel production. Despite steadily increasing demand the iron and steel...

  15. Development of an Energy Efficient High temperature Natural Gas Fired Furnace

    SciTech Connect (OSTI)

    Dr. Mark G. Stevens; Dr. H. Kenneth Staffin; DOE Project Officer - Keith Bennett

    2005-02-28

    The design concept is designated the ''Porous Wall Radiation Barrier'' heating mantle. In this design, combustion gas flows through a porous wall surrounding the retort, transferring its heat to the porous wall, which then radiates heat energy to the retort. Experiments demonstrate that heat transfer rates of 1.8-2.4 times conventional gas fired mantles are achievable in the temperature range of 1600-2350 degrees fahrenheit.

  16. DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from utilities that use conventional power-generating sources such as coal-fired power plants. .........34 LIST OF TABLES Table 1-1 Environmental ...

  17. Review and analysis of emissions data for residential wood-fired central furnaces

    SciTech Connect (OSTI)

    McCrillis, R.C.

    1998-12-31

    The paper reviews data published over the past 10--15 years on domestic wood-fired central heaters. Emphasis is on stick-fired units, the most common type used in the US, but also presented are data on chip- and pellet-fired units, showing that they are capable of achieving lower emissions.

  18. Compilation of RCRA closure plan conditions applicable to boilers and industrial furnaces at cement plants

    SciTech Connect (OSTI)

    Raymond, A.N.

    1998-12-31

    A prudent approach to closure plan development will assist preparers of closure plans to ensure that a cement kiln BIF unit and associated Resources conservation and Recovery Act (RCRA) units are effectively closed in a manner that minimizes potential threats to human health and the environment, as well as facilitating closure in an economical and timely manner. Cement kilns burning hazardous waste-derived-fuel (HWDF) must comply with the general facility standards of Subpart G Closure and Post-Closure requirements of 40 CFR parts 264 or 265 in addition to the RCRA Part b permitting requirements of 40 CFR parts 270.13 and 270.22 (e) and (f). As a result, approved closure plans for BIF facilities (or individual BIF units) will contain general and site-specific permit conditions that will mandate numerous closure activities be conducted to successfully implement the partial or final closure of a permitted or interim status BIF unit or facility. Currently, a scarce amount of published information is available to the cement industry in the form of agency guidance documents that would assist facilities with BIF unit closures. A review of seven approved or implemented closure plans revealed significant differences between plans approved recently versus a few years ago as well as observed differences in acceptable closure criteria between EPA regions and various states agencies. The intent of this paper is to first familiarize readers with general closure plan requirements, followed by a detailed discussion of closure requirements that are pertinent to BIF unit facilities. Comparisons are presented to provide an overview of typical components of BIF unit closure plans.

  19. CONDENSING ECONOMIZERS FOR SMALL COAL-FIRED BOILERS AND FURNACES PROJECT REPORT - JANUARY 1994

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    1994-01-04

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impacts are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  20. DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    burns and releases to the atmosphere, to generate electricity for use at the plant. ... utilities that use conventional power-generating sources such as coal-fired power plants. ...