Powered by Deep Web Technologies
Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Real Power Regulation for the Utility Power Grid via ...  

Real Power Regulation for the Utility Power Grid via Responsive Loads Technology Summary A new methodology for dynamically managing an electrical ...

2

Real Power Regulation for the Utility Power Grid via Responsive ...  

Vehicles and Fuels; Wind Energy; Partners (27) Visual Patent ... •Manufacturers of equipment sold to utilities to maximize the efficiency power generation More ...

3

Incentive regulation of investor-owned nuclear power plants by public utility regulators. Revision 1  

Science Conference Proceedings (OSTI)

The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The current report is an update of NUREG/CR-5975, Incentive Regulation of Investor-Owned Nuclear Power Plants by Public Utility Regulators, published in January 1993. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

McKinney, M.D.; Seely, H.E.; Merritt, C.R.; Baker, D.C. [Pacific Northwest Lab., Richland, WA (United States)

1995-04-01T23:59:59.000Z

4

Incentive regulation of investor-owned nuclear power plants by public utility regulators  

Science Conference Proceedings (OSTI)

The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, including states with new programs, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

McKinney, M.D.; Elliot, D.B. (Pacific Northwest Lab., Richland, WA (United States))

1993-01-01T23:59:59.000Z

5

Incentive regulation of nuclear power plants by state public utility commissions  

Science Conference Proceedings (OSTI)

This report on incentive regulation of nuclear power plants by state public utility commissions (PUCs). Economic performance incentives established by state PUCs are applicable to the construction or operation of about 45 nuclear power reactors owned by 30 utilities in 17 states. The NRC staff monitors development of the incentives and periodically provides an updated report on all nuclear plant incentives to its regional offices. The staff maintains contact with the PUCs and the utilities responsible for implementing the incentives in order to obtain the updated information and to consider potential safety effects of the incentives. This report presents the NRC staff's concerns on potential safety effects of economic performance incentives. It also includes a plant-by-plant survey that describes the mechanics of each incentive and discusses the financial effects of the incentive on the utility-owner(s) of the plant.

Petersen, J.C.

1987-12-01T23:59:59.000Z

6

Incentive regulation of nuclear power plants by state Public Utility Commissions  

Science Conference Proceedings (OSTI)

Economic performance incentives established by state Public Utility Commissions (PUCs) currently are applicable to the construction or operation of approximately 73 nuclear power reactors owned by 27 utilities with investment greater than 10% in 18 states. The NRC staff monitors development of the incentives and periodically provides an updated report on all nuclear plant incentives to its headquarters and regional offices. The staff maintains contact with the PUCs and the utilities responsible for implementing the incentives in order to obtain the updated information and to consider potential safety effects of the incentives. This report on incentive regulation of nuclear power plants by state PUCs presents the NRC staff's concerns on potential safety effects of economic performance incentives. It also includes a plant-by-plant survey that describes the mechanics of each incentive and discusses the financial effects of the incentive on the utility-owner(s) of the plant.

Martin, R.L.; Olson, J. (Battelle Human Affairs Research Center, Seattle, WA (USA)); Hendrickson, P. (Pacific Northwest Lab., Richland, WA (USA))

1989-12-01T23:59:59.000Z

7

Real power regulation for the utility power grid via responsive loads  

DOE Patents (OSTI)

A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.

McIntyre, Timothy J. (Knoxville, TN); Kirby, Brendan J. (Knoxville, TN); Kisner, Roger A. (Knoxville, TN), Van Dyke, James W. (Knoxville, TN)

2009-05-19T23:59:59.000Z

8

Re-Examining first principles of regulation: NRG power marketing, LLC v. Maine public utilities Commission  

SciTech Connect

Maine PUC and Morgan Stanley have resolved some of the key issues facing the energy industry. The Supreme Court has plainly and directly in both cases reaffirmed the central role that private contracts play in the energy industry and set terms to balance the need to secure long-term investment with the public interest that lies at the heart of the Federal Power Act. (author)

Haskell, Mark R.

2010-03-15T23:59:59.000Z

9

Using consensus building to improve utility regulation  

Science Conference Proceedings (OSTI)

The utility industry and its regulatory environment are at a crossroads. Utilities, intervenors and even public utility commissions are no longer able to initiate and sustain changes unilaterally. Traditional approaches to regulation are often contentious and costly, producing results that are not perceived as legitimate or practical. Consensus building and alternative dispute resolution have the potential to help utilities, intervenors and regulators resolve a host of regulatory issues. This book traces the decline of consensus in utility regulation and delineates current controversies. It presents the theory and practice of alternative dispute resolution in utility regulation and offers a framework for evaluating the successes and failures of attempts to employ these processes. Four regulatory cases are analyzed in detail: the Pilgrim nuclear power plant outage settlement, the use of DSM collaboratives, the New Jersey resource bidding policy and the formation of integrated resource management rules in Massachusetts.

Raab, J.

1994-12-31T23:59:59.000Z

10

Mandatory Utility Green Power Option  

Energy.gov (U.S. Department of Energy (DOE))

In Montana, regulated electric utilities are required to offer customers the option of purchasing electricity generated by certified, environmentally-preferred resources that include, but are not...

11

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC`S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

12

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC'S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

13

American Municipal Power (Public Electric Utilities) - Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency...

14

Public Utility Regulation (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Regulation (Iowa) Utility Regulation (Iowa) Public Utility Regulation (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any person, partnership, business association, or corporation that owns or operates any facilities for furnishing gas by piped distribution system, electricity, communications services, or water to the public for compensation. Regulations pertaining to these facilities can be found in this section. Some exemptions apply

15

Primer on Wind Power for Utility Applications  

SciTech Connect

The wind industry still faces many market barriers, some of which stem from utilities' lack of experience with the technology. Utility system operators and planners need to understand the effects of fluctuating wind power on system regulation and stability. Without high-frequency wind power data and realistic wind power plant models to analyze the problem, utilities often rely on conservative assumptions and worst-case scenarios to make engineering decisions. To remedy the situation, the National Renewable Energy Laboratory (NREL) has undertaken a project to record long-term, high-resolution (1-hertz [Hz]) wind power output data from large wind power plants in various regions. The objective is to systematically collect actual wind power data from large commercial wind power plants so that wind power fluctuations, their frequency distribution, the effects of spatial diversity, and the ancillary services of large commercial wind power plants can be analyzed. It also aims to provide the industry with nonproprietary wind power data in different wind regimes for system planning and operating impact studies. This report will summarize the results of data analysis performed at NREL and discuss the wind power characteristics related to power system operation and planning.

Wan, Y.

2005-12-01T23:59:59.000Z

16

Primer on Wind Power for Utility Applications  

DOE Green Energy (OSTI)

The wind industry still faces many market barriers, some of which stem from utilities' lack of experience with the technology. Utility system operators and planners need to understand the effects of fluctuating wind power on system regulation and stability. Without high-frequency wind power data and realistic wind power plant models to analyze the problem, utilities often rely on conservative assumptions and worst-case scenarios to make engineering decisions. To remedy the situation, the National Renewable Energy Laboratory (NREL) has undertaken a project to record long-term, high-resolution (1-hertz [Hz]) wind power output data from large wind power plants in various regions. The objective is to systematically collect actual wind power data from large commercial wind power plants so that wind power fluctuations, their frequency distribution, the effects of spatial diversity, and the ancillary services of large commercial wind power plants can be analyzed. It also aims to provide the industry with nonproprietary wind power data in different wind regimes for system planning and operating impact studies. This report will summarize the results of data analysis performed at NREL and discuss the wind power characteristics related to power system operation and planning.

Wan, Y.

2005-12-01T23:59:59.000Z

17

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Utility Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Mandatory Utility Green Power Option Provider Iowa Utilities Board All electric utilities operating in Iowa, including those not rate-regulated by the Iowa Utilities Board (IUB), are required to offer green power options to their customers. These programs allow customers to make voluntary contributions to support the development of renewable energy sources in Iowa. Utilities must file their program plans and tariff schedules with the IUB; however, the filings for non-rate-regulated utilities are intended to be for informational purposes only. This policy

18

Utility Regulation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Indiana) Regulation (Indiana) Utility Regulation (Indiana) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Generating Facility Rate-Making Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control any equipment for the production, transmission, delivery, or furnishing of heat, light,

19

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

1989-02-01T23:59:59.000Z

20

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State New Mexico Program Type Mandatory Utility Green Power Option Provider New Mexico Public Regulation Commission In addition to meeting the requirements of the state [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... renewables portfolio standard], New Mexico investor-owned utilities (IOUs) are required to offer a voluntary program for purchasing renewable energy to customers. The voluntary renewable tariff may also allow consumers to purchase renewable energy within certain energy blocks and by source of

22

Utility Grid-Connected Distributed Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 Asheville, NC April 1996 Donald E. OsbornDavid E. Collier Sacramento Municipal Utility...

23

Virginia Electric Utility Regulation Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Regulation Act (Virginia) Electric Utility Regulation Act (Virginia) Virginia Electric Utility Regulation Act (Virginia) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia State Corporation Commission The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation Commission to construct regulations for electric utilities, and contains information on

24

Utility downsizings pose a dilemma for regulators  

Science Conference Proceedings (OSTI)

A utility's job-generating potential is critical to most local economies. At the same time, however, high utility employment levels maintain an upward pressure on rates, an effect that does not escape regulators' notice, especially during an economic slowdown. More than on regulator has been heard to say that hard-hit ratepayers should not be called on to support what some may seen as a bloated utility workforce scaled to better times. To complicate things even more, popular cost-cutting goals that include improving productivity and relying more on conservation could mean fewer jobs, at least at the utility. What's more, utility rates play a significant role in how local industries and businesses respond to an economic slowdown. This interplay of economic forces has complicated the ratemaking process. The size of a utility's workforce is an issue of growing significance in rate hearings. Forecasts for test-period salary and wage expenses are less reliable. Early retirement plans promise future savings for ratepayers, but at a cost today.

Cross, P.S.

1993-08-01T23:59:59.000Z

25

Concentrating solar power technologies offer utility-scale power ...  

U.S. Energy Information Administration (EIA)

Concentrating solar power (CSP) is a utility-scale renewable energy option for generating electricity that is receiving considerable attention in the southwestern ...

26

Utility Power Plant Construction (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Power Plant Construction (Indiana) Utility Power Plant Construction (Indiana) Eligibility Construction InstallerContractor MunicipalPublic Utility Rural Electric...

27

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

28

American Municipal Power (Public Electric Utilities) - Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Funding Source American Municipal Power Start Date 01/2011 Expiration Date 12/31/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Ceiling Fan with Lights: $15 Dehumidifier: $25 Select Clothes Washer: $50 ENERGY STAR Refrigerator: $50 Refrigerator/Freezer Recycling: $50 Furnace Fan with ECM: $100 Heat Pump Water Heaters: $250 CFLs: up to 85% of cost Efficiency Smart (tm) provides energy efficiency incentives to the American

29

The Sacramento power utility experience in solar  

SciTech Connect

An overview of the development of three solar power technologies for use in Sacramento, California is provided. A central receiver power plant, Solar One, is being converted to a molten salt design with thermal energy storage by the Sacramento Municipal Utility District (SMUD) and six other utilities. SMUD is also investigating a solar dish/sterling engine system and technologies to reduce photovoltaic conversion costs.

Smeloff, E. [Sacramento Municipal Utility District (SMUD), CA (United States)

1993-12-31T23:59:59.000Z

30

Utilities expand baseload power plant plans  

Science Conference Proceedings (OSTI)

This article examines the plans being made by electric utilities to expand the number of baseload plants to accommodate increasing power demands. The results of a survey of utility's construction plans is presented. The topics include current construction, construction planning in the Southeast, current baseload technology, nuclear potential, and incorporation of environmental externalities impact in planning.

Smock, R.

1993-04-01T23:59:59.000Z

31

Role of wind power in electric utilities  

SciTech Connect

Current estimates suggest that the cost of wind-generated power is likely to be competitive with conventionally generated power in the near future in regions of the United States with favorable winds and high costs for conventionally generated electricity. These preliminary estimates indicate costs of $500 to 700 per installed kW for mass-produced wind turbines. This assessment regarding competitiveness includes effects of reduced reliability of wind power compared to conventional sources. Utilities employing wind power are likely to purchase more peaking capacity and less baseload capacity than they would have otherwise to provide the lowest-cost reserve power. This reserve power is needed mainly when wind outages coincide with peak loads. The monetary savings associated with this shift contribute substantially to the value of wind energy to a utility.

Davitian, H

1977-09-01T23:59:59.000Z

32

Green Power Network: Top Ten Utility Green Power Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Top Ten Utility Green Power Programs (as of December 2012) Which utilities are having the greatest success with their green power programs? NREL has compiled extensive data on utility green power programs and produced the following "Top Ten" lists of program characteristics and results: total sales of renewable energy to program participants; total number of customer participants; customer participation rates; percentage of renewable energy in total retail sales; the lowest premium charged to support new renewables development; and utilities using at least two percent solar to supply their green pricing programs. Download Information Release: NREL Highlights 2012 Utility Green Power Leaders Previous Top Ten Lists - December 2010, December 2009, December 2008, December 2007, December 2006, December 2005, December 2004, December 2003, December 2002, December 2001, June 2001, November 2000, April 2000

33

Green Power Network: Mandatory Utility Green Power Option  

NLE Websites -- All DOE Office Websites (Extended Search)

Mandatory Utility Green Power Option Mandatory Utility Green Power Option A number of states have adopted policies requiring or encouraging electricity suppliers to offer green power options to consumers. This section provides summaries of these policies and links to the full text of the legislation or public utility commission rules. Connecticut Iowa Maine Minnesota Montana New Jersey New Mexico Oregon Vermont Virginia Washington Connecticut June 2003—On June 26, Connecticut Governor John G. Rowland signed a bill (SB 733) amending the state's Electric Restructuring Act and granting authority to the Department of Public Utility Control (DPUC) to require electric distribution companies to offer green power options. The legislation enables the DPUC to determine the terms and conditions of renewable energy or energy efficiency options, including the contract terms and the minimum percentage of electricity to be derived from renewable energy sources. The green energy options will be developed and implemented by third-party companies selected through a competitive bidding process.

34

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

35

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

36

International Benchmarking and Yardstick Regulation: An Application to European Electricity Utilities  

E-Print Network (OSTI)

. Also, due to electricity market liberalisation and privatisation policies, power markets and ownership of the utilities are becoming increasingly international, and mergers and acquisitions tend to reduce the domestic information base. Regulators can...

Jamasb, Tooraj; Pollitt, Michael G.

2004-06-16T23:59:59.000Z

37

NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NARUC Releases Cybersecurity Primer for Utility Regulators (June NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) June 14, 2012 - 4:50pm Addthis The National Association of Regulatory Utility Commissioners (NARUC) has released "Cybersecurity for State Regulators," a primer that explains conceptual cybersecurity basics and points to additional resources that can help regulators develop internal cybersecurity expertise, ask questions of their utilities, engage in partnerships with the public and private sector to develop and implement cost-effective cybersecurity, and begin to explore the integrity of their internal cybersecurity practices. The primer was developed by the State Electricity Regulators Capacity Assessment and Training (SERCAT) program and was funded by a $4 million

38

Incentive regulation of nuclear power plants by state regulators  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission (NRC) monitors incentive programs established by state regulators in order to obtain current information and to consider the potential safety effects of the incentive programs as applied to nuclear units. The current report is an update of NUREG/CR-5509, Incentive Regulation of Nuclear Power Plants by State Public Utility Commissions, published in December 1989. The information in this report was obtained from interviews conducted with each state regulator and each utility with a minimum entitlement of 10%. The agreements, orders, and settlements from which each incentive program was implemented were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program. The programs currently in effect represent the adoption of an existing nuclear performance incentive program proposal and one new program. In addition, since 1989 a number of nuclear units have been included in one existing program; while one program was discontinued and another one concluded. 6 refs., 27 tabs.

Martin, R.L.; Baker, K.; Olson, J. (Battelle Human Affairs Research Center, Seattle, WA (USA))

1991-02-01T23:59:59.000Z

39

Least cost planning regulation; Restructuring the roles of utility management and regulators  

Science Conference Proceedings (OSTI)

This purpose of this paper is to examine the roles of regulators in long-range utility resource planning. Summary of major points include: Three regulatory options exist today with respect to integrated resource planning: Command and Control Regulation; Incentive Regulation; and Flexible Regulation. If deregulation is likely in the end, flexible regulation today offers the greatest promise of long-run success. Flexible regulation requires commissions and companies to agree on underlying principles and for utility management to exercise defensible judgment.

Donovan, D.J.; Goldfield, S.R. (Richard Metzler and Associates, Northbrook, IL (US))

1992-01-01T23:59:59.000Z

40

Public Power & Utility, Inc. (New York) | Open Energy Information  

Open Energy Info (EERE)

Inc. (New York) Jump to: navigation, search Name Public Power & Utility, Inc. Place New York Utility Id 56259 References EIA Form EIA-861 Final Data File for 2010 -...

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CAPTURE OR CONTRACT?: THE EARLY YEARS OF ELECTRIC UTILITY REGULATION  

E-Print Network (OSTI)

(forthcoming) study the historical origins of governance institutions for natural gas and water, respectivelyCAPTURE OR CONTRACT?: THE EARLY YEARS OF ELECTRIC UTILITY REGULATION Thomas P. Lyon Nathan Wilson prices rose in states that adopted state regulation before 1917, suggesting that regulators were

Lyon, Thomas P.

42

Mandatory Utility Green Power Option | Open Energy Information  

Open Energy Info (EERE)

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Jump to: navigation, search Several states require certain electric utilities to offer customers the option of buying electricity generated from renewable resources, commonly known as “green power.” Typically, utilities offer green power generated using renewable resources that the utilities own (or for which they contract), or they buy renewable energy credits (RECs) from a renewable energy provider certified by a state public utilities commission [1] Mandatory Utility Green Power Option Incentives CSV (rows 1 - 17) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active DEMEC - Green Power Program (Delaware) Mandatory Utility Green Power Option Delaware Municipal Utility Solar Water Heat

43

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

green-power program. A "significant portion" of the electricity sold by a utility as green power must be generated using qualifying renewables, including wind energy,...

44

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to purchase green power from any licensed retail supplier. For information about the green power utilities and suppliers in Virginia, see the Department of Energy, Energy...

45

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Investor-Owned Utility Municipal Utility Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Wind Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Maine Public Utilities Commission Legislation enacted in 2009 directed the Maine Public Utilities Commission (PUC) to develop a program offering green power as an option to residential and small commercial customers in the state. The PUC issued rules in October 2010 and issued an RFP. The PUC selected a company, 3 Degrees, to manage the statewide green power program for Maine's transmission and distribution territories. The program includes community-based renewable

46

Risk-based regulation: A utility's perspective  

SciTech Connect

Yankee Atomic Electric Company (YAEC) has supported the operation of several plants under the premise that regulations and corresponding implementation strategies are intended to be [open quotes]risk based.[close quotes] During the past 15 yr, these efforts have changed from essentially qualitative to a blend of qualitative and quantitative. Our observation is that implementation of regulatory requirements has often not addressed the risk significance of the underlying intent of regulations on a proportionate basis. It has caused our resource allocation to be skewed, to the point that our cost-competitiveness has eroded, but more importantly we have missed opportunities for increases in safety.

Chapman, J.R. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

47

Utility Energy Service Contracts Laws and Regulations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contracts Laws and Regulations Contracts Laws and Regulations Utility Energy Service Contracts Laws and Regulations October 7, 2013 - 2:19pm Addthis The Energy Policy Act (EPAct) of 1992 authorizes and encourages Federal agencies to participate in utility energy efficiency programs. Legislation authorizing utility energy service contracts (UESCs) is outlined below, along with legal opinions outlining the use of UESCs by Federal agencies. Laws and Regulations 42 USC Section 8256 (Energy Policy Act of 1992): Incentives for Federal agencies, legislation addressing contracts, the Federal Energy Efficiency Fund, utility incentive programs, and the Financial Incentive Program for Facility Energy Managers. 10 USC Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

48

A primer on incentive regulation for electric utilities  

SciTech Connect

In contemplating a regulatory approach, the challenge for regulators is to develop a model that provides incentives for utilities to engage in socially desirable behavior. In this primer, we provide guidance on this process by discussing (1) various models of economic regulation, (2) problems implementing these models, and (3) the types of incentives that various models of regulation provide electric utilities. We address five regulatory models in depth. They include cost-of-service regulation in which prudently incurred costs are reflected dollar-for-dollar in rates and four performance-based models: (1) price-cap regulation, in which ceilings are placed on the average price that a utility can charge its customers; (2) revenue-cap regulation, in which a ceiling is placed on revenues; (3) rate-of-return bandwidth regulation, in which a utility`s rates are adjusted if earnings fall outside a {open_quotes}band{close_quotes} around equity returns; and (4) targeted incentives, in which a utility is given incentives to improve specific components of its operations. The primary difference between cost-of-service and performance-based approaches is the latter sever the tie between costs and prices. A sixth, {open_quotes}mixed approach{close_quotes} combines two or more of the five basic ones. In the recent past, a common mixed approach has been to combine targeted incentives with cost-of-service regulation. A common example is utilities that are subject to cost-of-service regulation are given added incentives to increase the efficiency of troubled electric-generating units.

Hill, L.J.

1995-10-01T23:59:59.000Z

49

Utility Incentives for Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Utility Incentives for Combined Heat and Power Utility Incentives for Combined Heat and Power Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Incentives for Combined Heat and Power Focus Area: Solar Topics: Policy Impacts Website: www.epa.gov/chp/documents/utility_incentives.pdf Equivalent URI: cleanenergysolutions.org/content/utility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental Protection Agency study that researched 41 U.S. utilities and found that nearly half provided some kind of support for combined heat and power (CHP). Here they profile 16 utility programs that support CHP in ways excluding direct financial incentives. References Retrieved from "http://en.openei.org/w/index.php?title=Utility_Incentives_for_Combined_Heat_and_Power&oldid=514610

50

Mandatory Green Power Option for Large Municipal Utilities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Power Option for Large Municipal Utilities Green Power Option for Large Municipal Utilities Mandatory Green Power Option for Large Municipal Utilities < Back Eligibility Municipal Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State Colorado Program Type Mandatory Utility Green Power Option Provider Colorado Public Utilities Commission Municipal electric utilities serving more than 40,000 customers in Colorado must offer an optional green-power program that allows retail customers the choice of supporting emerging renewable technologies. This policy complements Colorado's renewable portfolio standard (RPS), which requires municipal utilities serving more than 40,000 customers to use renewable energy and energy recycling to account for 10% of retail sales by 2020.

51

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State District of Columbia Program Type Mandatory Utility Green Power Option Provider Washington State Department of Commerce In May 2001, Washington enacted legislation (EHB 2247) that requires all electric utilities serving more than 25,000 customers to offer customers the option of purchasing renewable energy. Eligible renewables include wind, solar, geothermal, landfill gas, wave or tidal action, wastewater treatment gas, certain biomass resources, and "qualified hydropower" that is fish-friendly. Beginning January 1, 2002, each electric utility must inform its customers

52

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase  

Open Energy Info (EERE)

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2010 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Citation U.S. Geothermal Inc.. 2010. Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement. Boise Idaho: (!) . Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Idaho_Public_Utilities_Commission_Approves_Neal_Hot_Springs_Power_Purchase_Agreement&oldid=682748"

53

Idaho Public Utilities Commission Approves Neal Hot Springs Power...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase...

54

Estimated Economic Impacts of Utility Scale Wind Power in Iowa  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimated Economic Impacts of Utility Scale Wind Power in Iowa Sandra Halvatzis and David Keyser National Renewable Energy Laboratory Technical Report NRELTP-6A20-53187 November...

55

"2012 Non-Utility Power Producers- Customers"  

U.S. Energy Information Administration (EIA) Indexed Site

Customers" Customers" "(Data from form EIA-861U)" ,,,"Number of Customers" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Riceland Foods Inc.","AR","Non_Utility",".",".",1,".",1 "Constellation Solar Arizona LLC","AZ","Non_Utility",".",".",1,".",1 "FRV SI Transport Solar LP","AZ","Non_Utility",".",1,".",".",1 "MFP Co III, LLC","AZ","Non_Utility",".",1,".",".",1 "RV CSU Power II LLC","AZ","Non_Utility",".",1,".",".",1

56

UTILITIES COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UTILITIES UTILITIES COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone (720) 962-7154 Email drake@wapa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone (706) 213-3823 Email annc@sepa.doe.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone (918) 595-6671 Email gary.bridges@swpa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 OREGON BONNEVILLE POWER ADMIN POC Greg Eisenach Telephone (360) 418-8063 Email gaeisenach@bpa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan

57

Energy Department and Federal Efforts to Support Utility Power Restoration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Efforts to Support Utility Power Federal Efforts to Support Utility Power Restoration Efforts Energy Department and Federal Efforts to Support Utility Power Restoration Efforts October 31, 2012 - 5:19pm Addthis 58,000 workers are currently repairing power lines across the Mid-Atlantic in the aftermath of Hurricane Sandy. | Photo courtesy of the Energy Department 58,000 workers are currently repairing power lines across the Mid-Atlantic in the aftermath of Hurricane Sandy. | Photo courtesy of the Energy Department Jen Stutsman Press Secretary, Office of Public Affairs What does this mean for me? Restoring power is a top priority for the Obama Administration and the Department of Energy. As of 2 PM EDT today, utilities have restored power to nearly 2.4 million customers. This is a 28 percent decrease from the peak following the storm.

58

Energy Department and Federal Efforts to Support Utility Power Restoration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department and Federal Efforts to Support Utility Power Energy Department and Federal Efforts to Support Utility Power Restoration Efforts Energy Department and Federal Efforts to Support Utility Power Restoration Efforts October 31, 2012 - 5:19pm Addthis 58,000 workers are currently repairing power lines across the Mid-Atlantic in the aftermath of Hurricane Sandy. | Photo courtesy of the Energy Department 58,000 workers are currently repairing power lines across the Mid-Atlantic in the aftermath of Hurricane Sandy. | Photo courtesy of the Energy Department Jen Stutsman Press Secretary, Office of Public Affairs What does this mean for me? Restoring power is a top priority for the Obama Administration and the Department of Energy. As of 2 PM EDT today, utilities have restored power to nearly 2.4 million customers.

59

Planning Your First Wind Power Project: A Primer for Utilities  

Science Conference Proceedings (OSTI)

For most U.S. utilities, wind power is a new technology they need to understand in order to evaluate its use in their systems. This primer addresses questions commonly asked by utilities and the issues to be considered in bringing a wind power plant on-line.

1995-02-10T23:59:59.000Z

60

Program on Technology Innovation: Distributed Photovoltaic Power Applications for Utilities  

Science Conference Proceedings (OSTI)

Emerging PV technology brings significant opportunities for many stakeholders including electric utilities, electric customers, energy-service providers and PV equipment vendors. The opportunities for utilities range from owning and deploying various PV generation resources and related products to incentivizing other owners to install PV systems and technology that provide benefits to the power system. This technical update describes PV power system concepts that utilities may want to consider as they pl...

2009-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Power-grade butanol recovery and utilization  

DOE Green Energy (OSTI)

As an alternative to the traditional recovery systems, it was proposed in a previous publication that the n-butanol/acetone/ethanol fermentation products could be recovered as a power grade fuel blend and used directly as a fuel. This would affect a savings in process energy requirements because each chemical component would not have to be processed individually to technical grade purity. Further, some residual water could be tolerated in the fuel blend. To develop such a power grade fuel recovery scheme beyond the conceptual stage, the Energy Research and Resource Division of the Kansas Energy Office undertook a two-fold program to demonstrate and test a power grade butanol/acetone/ethanol fuel recovery system, and further to demonstrate the feasibility of using the fuel blend in a standard type engine. A development program was initiated to accomplish the following objectives: design and test an operational power grade butanol recovery plant that would operate at one liter per hour output; and test and assess the performance of power grade butanol in a spark ignition automotive engine. This project has demonstrated that recovery of a power grade butanol fuel blend is simple and can be accomplished at a considered energy advantage over ethanol. It was further demonstrated that such a power grade blend works well in a typical spark ignition engine.

Noon, R.

1982-02-12T23:59:59.000Z

62

NREL: News - NREL Highlights 2012 Utility Green Power Leaders  

NLE Websites -- All DOE Office Websites (Extended Search)

213 213 NREL Highlights 2012 Utility Green Power Leaders Top 10 programs support more than 4.2 million MWh of voluntary green power June 5, 2013 The Energy Department's National Renewable Energy Laboratory (NREL) today released its assessment of leading utility green power programs. Under these voluntary programs, residential and commercial consumers can choose to help support additional electricity production from renewable resources - such as wind and solar - that diversify our nation's energy portfolio and protect our air and water. "Participating in utility green power programs allows consumers to support renewable energy above and beyond what utilities are procuring to comply with state renewable portfolio standards," NREL Analyst Jenny Heeter said. "These utilities are offering first-rate programs that give

63

NETL: IEP - Coal Utilization By-Products Current Regulations Governing Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Products Current Regulations Governing Coal Combustion By-Products - Database of State Regulations Database of State Regulations Affecting Disposal and Utilization of Coal Combustion By-Products A Summary Provided by the National Energy Technology Laboratory and the American Coal Ash Association Coal Combustion By-Products (CCBs) are generated when coal is used to generate electricity and power industrial processes. Tens of millions of tons of these materials are produced each year. Many uses of these byproducts are possible, but currently most of them wind up in landfills. Previous work at the National Energy Technology Laboratory (NETL) identified regulatory issues as one factor preventing more widespread reuse of CCBs. CCBs are generally regulated by state authorities, and the various states have developed widely differing rules. This web site was developed as one way to help CCB generators, users, and regulators share information across state boundaries.

64

Power generating system and method utilizing hydropyrolysis  

DOE Patents (OSTI)

A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

Tolman, R.

1986-12-30T23:59:59.000Z

65

Renewable Energy Price-Stability Benefits in Utility Green Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Report NRELTP-670-43532 August 2008 Renewable Energy Price-Stability Benefits in Utility Green Power Programs Lori A. Bird and Karlynn S. Cory National Renewable Energy Laboratory...

66

Non-utility power generation continues to grow  

SciTech Connect

This article examines why the number of non-utility power plants is increasing. The topics include the impact of the changes to the Public Utility Holding Company Act, and bidding for capacity. It includes a look at Texaco's Puget Sound oil refinery and how its efficiency problems were solved using cogeneration including the need to improve energy balance and engineering of the plant. Grayling generating station (wood waste) and Kalaeloa cogeneration power plant (low sulfur fuel oil) are also discussed.

Smith, D.J.

1993-05-01T23:59:59.000Z

67

Electrolysis: Information and Opportunities for Electric Power Utilities  

DOE Green Energy (OSTI)

Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

2006-09-01T23:59:59.000Z

68

Utility Response to Railroad Market Power: Assessment of Options  

Science Conference Proceedings (OSTI)

Coal transportation is one of the largest and potentially least competitive costs of power generation. This report reviews possible strategies and recourse available to utilities to counter railroad market power. The implosion of the major carriers into just two major companies in the east and the west heralds an era of duopoly pricing for which no single solution presents itself, past strategies may no longer apply, and the prospect of burgeoning power transactions may offer surprisingly little help to ...

1997-10-31T23:59:59.000Z

69

Career Concerns, Inaction, and Market Inefficiency: Evidence from Utility Regulation  

E-Print Network (OSTI)

Abstract: This paper examines how career concerns can generate inefficiencies not only within firms but also in market outcomes. Career concerns may lead agents to avoid actions that, while value-increasing in expectation, could potentially be directly associated with a bad outcome. We apply this theory to natural gas procurement by regulated public utilities and show that career concerns may lead to a reduction in surplus-increasing market transactions during periods when the benefits of trade are likely to be greatest. We show that data from natural gas markets are consistent with this prediction and difficult to explain using alternative theories.

Severin Borenstein; Meghan Busse; Ryan Kellogg; Contributions From Lucas Davis; Paul Gertler; Erin Mansur; Steve Tadelis; Matt White; Frank Wolak

2010-01-01T23:59:59.000Z

70

Power electronics in electric utilities: HVDC power transmission systems  

SciTech Connect

High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

Nozari, F.; Patel, H.S.

1988-04-01T23:59:59.000Z

71

Combined Heat and Power with Your Local Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership Working Group Combined Heat and Power C.A. Skip Cofield October 16, 2012 Agenda * Southern Company * Combined Heat and Power (CHP) * Southern Company CHP * Utility Partnerships 2 Southern Company Overview Operating Companies: * Alabama Power * Georgia Power * Gulf Power * Mississippi Power Subsidiaries: * Southern LINC * Southern Nuclear * Southern Power * Southern Telecom 3 Retail Generating Units Wholesale Generating Units * 4.4 million customers * 43,500+ MW * 26,000+ employees * 120,000 square miles of retail service territory * 27,000 mi. of transmission lines * 3,700 substations * $17.7B in operating revenue * $2.2B in net income * $39.2B in market cap * $59.3B in assets * $13.5B annual op. expense 4 Southern Company Overview

72

Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation  

E-Print Network (OSTI)

In specifying a cogeneration or independent power plant, the owner should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design, reliability/ availability, operating capabilities and modes, etc. This paper will note examples of some of the major factors which could impact the project developer and his economics, as well as discuss potential mitigation measures. Areas treated include wheeling, utility ownership interests, dispatchability, regulatory acceptance and other considerations which could significantly affect the plant definition and, as a result, its attendant business and financing structure. Finally, suggestions are also made for facilitating the process of integration with the electric utility.

Felak, R. P.

1986-06-01T23:59:59.000Z

73

Evaluation of the Geothermal Public Power Utility Workshops in California  

DOE Green Energy (OSTI)

The federal government devotes significant resources to educating consumers and businesses about geothermal energy. Yet little evidence exists for defining the kinds of information needed by the various audiences with specialized needs. This paper presents the results of an evaluation of the Geothermal Municipal Utility Workshops that presented information on geothermal energy to utility resource planners at customer-owned utilities in California. The workshops were sponsored by the Western Area Power Administration and the U.S. Department of Energy's GeoPowering the West Program and were intended to qualitatively assess the information needs of municipal utilities relative to geothermal energy and get feedback for future workshops. The utility workshop participants found the geothermal workshops to be useful and effective for their purposes. An important insight from the workshops is that utilities need considerable lead-time to plan a geothermal project. They need to know whether it is better to own a project or to purchase geothermal electricity from another nonutility owner. California customer-owned utilities say they do not need to generate more electricity to meet demand, but they do need to provide more electricity from renewable resources to meet the requirements of the state's Renewable Portfolio Standard.

Farhar, B. C.

2004-10-01T23:59:59.000Z

74

Globally Optimal Distributed Power Control for Nonconcave Utility Maximization  

E-Print Network (OSTI)

Future wireless networks are expected to operate in dense environments where the system capacity is fundamentally limited by severe co-channel interference among neighboring links. Transmit-power control has been recently explored as an important interference-mitigation technique that aims to maximize a system efficiency metric, which is often measured by a system utility function. Optimal power control is known to be difficult to achieve, mainly because the optimization problem is in general highly non-convex. This problem had eluded researchers and remained open until our recent work [11], where a centralized optimal power control algorithm, referred to as MAPEL, is developed based on a monotonic optimization framework. However, there does not yet exist a distributed power control algorithm that achieves the global optimal solution for generic utility functions, although the distributed implementation is crucial for the wireless infrastructureless networks such as ad hoc and sensor networks. This paper fill...

Qian, Li Ping; Zhang,; Chiang, Mung

2011-01-01T23:59:59.000Z

75

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

Science Conference Proceedings (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

1999-09-01T23:59:59.000Z

76

The Clean Air Act's Impact on Environmental Regulation and Electric Power Conservation and Production  

E-Print Network (OSTI)

The demand for electric power in Texas is expected to grow at about 2.3 percent over the next 15 years. Utilities plan to satisfy this demand by increasing the number of power generating facilities and improving energy conservation programs. New stringent environmental regulations force utilities to reconsider how best to meet the power demand. The new Clean Air Act permits utilities to use a market driven system of allowances to comply with sulfur dioxide emission limits. This paper discusses some of the environmental regulatory changes and their effect on the provision of electric power.

Ashley, H.

1993-03-01T23:59:59.000Z

77

Wind Power Generation Dynamic Impacts on Electric Utility Systems  

Science Conference Proceedings (OSTI)

This technical planning study is an initial assessment of potential dynamic impacts on electric utility systems of wind power generation via large wind turbines. Three classes of dynamic problems-short-term transient stability, system frequency excursions, and minute-to-minute unit ramping limitations - were examined in case studies based on the Hawaiian Electric Co. System.

1980-11-01T23:59:59.000Z

78

Power Switches Utilizing Superconducting Material for Accelerator Magnets  

E-Print Network (OSTI)

Power switches that utilize superconducting material find application in superconducting systems. They can be used for the protection of magnets as a replacement for warm DC breakers, as well as for the replacement of cold diodes. This paper presents a comparison of switches made of various superconducting materials having transport currents of up to 600 A and switching times of the order of milliseconds. The switches operate in the temperature range 4.2-77 K and utilize stainless steel clad YBCO tape and MgB2 tape with a nickel, copper, and iron matrix. Results from simulations and tests are reported.

March, S A; Yang, Y; 10.1109/TASC.2009.2017890

2009-01-01T23:59:59.000Z

79

Investigation of anti-islanding schemes for utility interconnection of distributed fuel cell powered generations  

E-Print Network (OSTI)

The rapid emergence of distributed fuel cell powered generations (DFPGs) operating in parallel with utility has brought a number of technical concerns as more DFPGs are connected to utility grid. One of the most challenging problems is known as islanding phenomenon. This situation occurs when a network is disconnected from utility grid and is energized by local DFPGs. It can possibly result in injury to utility personnel arriving to service isolated feeders, equipment damage, and system malfunction. In response to the concern, this dissertation aims to develop a robust anti-islanding algorithm for utility interconnection of DFPGs. In the first part, digital signal processor (DSP) controlled power electronic converters for utility interconnection of DFPGs are developed. Current control in a direct-quadrature (dq) synchronous frame is proposed. The real and reactive power is controlled by regulating inverter currents. The proposed digital current control in a synchronous frame significantly enhances the performance of DFPGs. In the second part, the robust anti-islanding algorithm for utility interconnection of a DFPG is developed. The power control algorithm is proposed based on analysis of a real and reactive power mismatch. It continuously perturbs (±5%) the reactive power supplied by the DFPG while monitoring the voltage and frequency. If islanding were to occur, a measurable frequency deviation would take place, upon which the real power of the DFPG is further reduced to 80%; a drop in voltage positively confirms islanding. This method is shown to be robust and reliable. In the third part, an improved anti-islanding algorithm for utility interconnection of multiple DFPGs is presented. The cross correlation method is proposed and implemented in conjunction with the power control algorithm. It calculates the cross correlation index of a rate of change of the frequency deviation and (±5%) the reactive power. If this index increases above 50%, the chance of islanding is high. The algorithm initiates (±10%) the reactive power and continues to calculate the correlation index. If the index exceeds 80%, islanding is now confirmed. The proposed method is robust and capable of detecting islanding in the presence of several DFPGs independently operating. Analysis, simulation and experimental results are presented and discussed.

Jeraputra, Chuttchaval

2004-12-01T23:59:59.000Z

80

Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market  

SciTech Connect

We are assembled today to discuss the opportunities and challenges for expanding the sales of geothermally-generated electric power in a competitive utility market. First, however, I would like to note that growth in geothermal sales might not be a germane topic were it not for the early participation in the development of the geothermal industry by utilities themselves. Without their contributions to research and development, environmental breakthroughs, and, perhaps, above all, their early use of geothermal power and continuing investment in the industry, we might still be at ''Square One''--confronting inhibiting doubts of the energy utilization industry. I feel certain that utility involvement has served to inspire far greater confidence in the reliability of the resource on the part of other utilities and other investors than could have been generated by federal programs and/or the resource developer arm of the geothermal community. While acknowledging that we have not completely resolved all problems which geothermal energy faced 20 years ago--confidence, institutional restraints, environmental compliance, and technical and economic uncertainties--this audience and our predecessors have addressed them, individually and collectively, and, to a large extent, we have surmounted them. But it took generation or contracted purchase of geothermal power by utilities--whatever their discrete reasons for doing so--to demonstrate to the public and government regulators that there is a place for geothermal power in the service areas of large utilities. In addition, in using an alternative fuel, the participating utilities have already exposed themselves to changing concepts and practices in their industry.

Mock, John E.

1992-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market  

DOE Green Energy (OSTI)

We are assembled today to discuss the opportunities and challenges for expanding the sales of geothermally-generated electric power in a competitive utility market. First, however, I would like to note that growth in geothermal sales might not be a germane topic were it not for the early participation in the development of the geothermal industry by utilities themselves. Without their contributions to research and development, environmental breakthroughs, and, perhaps, above all, their early use of geothermal power and continuing investment in the industry, we might still be at ''Square One''--confronting inhibiting doubts of the energy utilization industry. I feel certain that utility involvement has served to inspire far greater confidence in the reliability of the resource on the part of other utilities and other investors than could have been generated by federal programs and/or the resource developer arm of the geothermal community. While acknowledging that we have not completely resolved all problems which geothermal energy faced 20 years ago--confidence, institutional restraints, environmental compliance, and technical and economic uncertainties--this audience and our predecessors have addressed them, individually and collectively, and, to a large extent, we have surmounted them. But it took generation or contracted purchase of geothermal power by utilities--whatever their discrete reasons for doing so--to demonstrate to the public and government regulators that there is a place for geothermal power in the service areas of large utilities. In addition, in using an alternative fuel, the participating utilities have already exposed themselves to changing concepts and practices in their industry.

Mock, John E.

1992-03-24T23:59:59.000Z

82

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Update Steve Kiesner Director, National Customer Markets FUPWG Spring 2010 Meeting April 14, 2010 What's On the Minds of Your Utilities?  Transformation of the Electricity Industry  Emerging smart technology  Financial reform  Reliability  Major initiatives to address climate change  Gaps / Lack of Clarity in Federal / State Decisions on Infrastructure and Market Issues  Operating in a carbon constrained world EEI  Our members serve 95% of the ultimate customers in the shareholder-owned segment of the industry,  and represent approximately 70% of the U.S. electric power industry.  We also have more than 80 international electric companies as Affiliate Members  Organized in 1933, EEI works closely with all of its members, representing their interests and

83

COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION  

SciTech Connect

Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

2012-07-01T23:59:59.000Z

84

Electrolysis: Information and Opportunities for Electric Power Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis: Electrolysis: Information and Opportunities for Electric Power Utilities B. Kroposki, J. Levene, and K. Harrison National Renewable Energy Laboratory Golden, Colorado P.K. Sen Colorado School of Mines Golden, Colorado F. Novachek Xcel Energy Denver, Colorado Technical Report NREL/TP-581-40605 September 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Electrolysis: Information and Opportunities for Electric Power Utilities B. Kroposki, J. Levene, and K. Harrison National Renewable Energy Laboratory Golden, Colorado P.K. Sen Colorado School of Mines Golden, Colorado F. Novachek Xcel Energy Denver, Colorado Prepared under Task No. HY61.3620 Technical Report NREL/TP-581-40605 September 2006

85

NARUC Releases Cybersecurity Primer for Utility Regulators (June...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Cybersecurity for State Regulators," a primer that explains conceptual cybersecurity basics and points to additional resources that can help regulators develop internal...

86

Central station advanced power conditioning: technology, utility interface, and performance  

Science Conference Proceedings (OSTI)

A new concept is proposed for central station SPV power conditioning. It avoids heavy dc bus and extensive ac distribution, and so offers technical, cost, and efficiency advantages. Cost and efficiency comparisons with a more conventional approach, akin to that being implemented for the SMUD installation, are presented. Although the capital gains are not great, the simplification of site preparation and installation is considerable. The design used to generate data for this paper if fully compatible with utility transmission system requirements.

Wood, P.

1984-08-01T23:59:59.000Z

87

Power quality - Utilities begin to set up monitoring networks  

SciTech Connect

The time of day at which power-quality problems occur, and their coincidence with other events on the electrical system, are two of the earliest clues to the source of the problem. Today, utilities are beginning to answer customer complaints by installing networks of power-monitoring devices and showing the customer how to use the data they supply. A monitoring network often provides the additional benefit of enabling an engineer to anticipate power-quality problems before the begin to affect production. Advanced electronic packaging allows power-quality monitors to perform three functions that originally required several different instruments: Transient recording and analysis; Harmonics analysis; and, Power measurement-including demand, kilowatt-hours, VArs, power factor, etc. There is a wide range of power-quality monitors on the market with a confusing array of capabilities. The problem is complicated by the frequent introduction of new models, designed to meet specific applications at the lowest possible cost. This paper describes the important features to look for, which include: sampling rate, peak detection, channels, communications, environmental capability, analysis, protocols, and portability. 3 figs.

Reason, J.

1995-12-01T23:59:59.000Z

88

SUMMARY OF REGULATIONS IMPLEMENTING FEDERAL POWER ACT SECTION 216 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY OF REGULATIONS IMPLEMENTING FEDERAL POWER ACT SECTION 216 SUMMARY OF REGULATIONS IMPLEMENTING FEDERAL POWER ACT SECTION 216 SUMMARY OF REGULATIONS IMPLEMENTING FEDERAL POWER ACT SECTION 216 The Energy Policy Act of 2005 added section 216(h) to the Federal Power Act providing for the Department of Energy to act as the lead agency for coordinating all applicable Federal authorizations and related environmental reviews required under Federal law in order to site an electric transmission facility. The Act authorized DOE to issue any regulations necessary to implement the provisions of 216(h). SUMMARY OF REGULATIONS IMPLEMENTING FEDERAL POWER ACT SECTION 216 More Documents & Publications SUMMARY OF REGULATIONS IMPLEMENTING FEDERAL POWER ACT SECTION 216 Comments on Notice of Proposed Rulemaking for Coordination of Federal

89

The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers  

DOE Green Energy (OSTI)

Utility-interactive (UI) photovoltaic power systems mounted on residences and commercial buildings are likely to become a small, but important source of electric generation in the next century. This is a new concept in utility power production--a change from large-scale central generation to small-scale dispersed generation. As such, it requires a re-examination of many existing standards and practices to enable the technology to develop and emerge into the marketplace. Much work has been done over the last 20 years to identify and solve the potential problems associated with dispersed power generation systems. This report gives an overview of these issues and also provides a guide to applicable codes, standards and other related documents. The main conclusion that can be drawn from this work is that there are no major technical barriers to the implementation of dispersed PV generating systems. While more technical research is needed in some specific areas, the remaining barriers are fundamentally price and policy.

Wills, R.H. [Solar Design Associates, Harvard, MA (United States)

1994-06-01T23:59:59.000Z

90

Conductor requirements for high-temperature superconducting utility power transformers  

Science Conference Proceedings (OSTI)

High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Mehrotra, V. [Waukesha Electric Systems, Waukesha, WI; Schwenterly, S W [ORNL

2010-01-01T23:59:59.000Z

91

Reliability analysis of a utility-scale solar power plant  

DOE Green Energy (OSTI)

This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4% and an overall plant availability, including scheduled outages, of 91%. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91% exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91% availability is a credible estimate. 16 refs.

Kolb, G.J.

1992-08-01T23:59:59.000Z

92

Reliability analysis of a utility-scale solar power plant  

DOE Green Energy (OSTI)

This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4% and an overall plant availability, including scheduled outages, of 91%. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91% exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91% availability is a credible estimate. 16 refs.

Kolb, G.J.

1992-01-01T23:59:59.000Z

93

Utility interface requirements for a solar power system  

DOE Green Energy (OSTI)

This study specifies that the southern tier of the US (south of the 36th parallel) should be examined to see what problems might develop with the installation of a Satellite Power System (SPS) in the year 2000. One or more 5-GW SPS units could be installed in the utility systems of the southern states in the year 2000. The 345- and 500-kV transmission systems that will probably exist at that time could be readily extended to accommodate the SPS units. The operation of the units will present the utilities with new and difficult problems in system stability and frequency control. The problems will arise because a somewhat variable 5-GW output will be produced by a generator having no mechanical inertia. The unavoidable time lag in controlling the position of the energy beam at the receiving station may have a very critical effect on the stability of the utility systems. The maintenance problems associated with the energy-receiving device, a continuous structure covering more than 40 mi/sup 2/, must be given careful consideration. Repair of lightning damage while maintaining SPS operation may be the most critical requirement. Acquisition and preparation of the 90 mi/sup 2/ land required for the receiving antenna (rectenna) will create many new and difficult environmental problems.

Donalek, P.J.; Whysong, J.L.

1978-09-01T23:59:59.000Z

94

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

DOE Green Energy (OSTI)

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

95

Power saving regulated light emitting diode circuit  

SciTech Connect

A power saving regulated light source circuit, comprising a light emitting diode (LED), a direct current source and a switching transistor connected in series with the LED, a control voltage producing resistor connected in series with the LED to produce a control voltage corresponding to the current through the LED, a storage capacitor connected in parallel with the series combination of the LED and the resistor, a comparator having its output connected to the input of the transistor, the comparator having a reference input and a control input, a stabilized biasing source for supplying a stabilized reference voltage to the reference input, the control input of the comparator being connected to the control voltage producing resistor, the comparator having a high output state when the reference voltage exceeds the control voltage while having a low output state when the control voltage exceeds the reference voltage, the transistor being conductive in response to the high state while being nonconductive in response to the low state, the transistor when conductive being effective to charge the capacitor and to increase the control voltage, whereby the comparator is cycled between the high and low output states while the transistor is cycled between conductive and nonconductive states.

Haville, G. D.

1985-03-12T23:59:59.000Z

96

Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller  

E-Print Network (OSTI)

Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller propose to utilize solar power in wireless sensor networks, establishing a topology where ­ changing over show that both protocols provide significant energy savings when utilizing solar power. The paper shows

Voigt, Thiemo

97

Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems  

DOE Green Energy (OSTI)

This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

Veselka, T.D.; Portante, E.C.; Koritarov, V. [and others

1995-03-01T23:59:59.000Z

98

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

DOE Green Energy (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

99

NREL: Financing Geothermal Power Projects - Policies and Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Policies and Regulations Affecting Geothermal Power Project Financing Policies and Regulations Affecting Geothermal Power Project Financing Federal and state policies, including leasing and permitting, federal financial incentives, renewable portfolio standards, and greenhouse gas emission reduction regulations, can affect geothermal power project development financing processes and timelines. The related issues that should be considered during the project development cycle regarding these policies are summarized in the following table and described in more detail below. Note that this table is not meant to guide developers through the entire policy landscape, and should not be assumed to include all related issues in geothermal power development. Roles of Policies and Regulations in the Geothermal Power Project Development Process*

100

Developing a strategic roadmap for supply chain process improvement in a regulated utility  

E-Print Network (OSTI)

This thesis covers work done at Tracks Energy, a regulated utility, to develop a strategic roadmap for supply chain process improvement. The focus of Tracks Energy has always been on keeping the lights on and the gas flowing ...

Yoder, Brent E. (Brent Edward)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The relationship between regulation and competition policy for network utilities  

E-Print Network (OSTI)

prospect of competition in supply, well- head gas prices were regulated, creating huge inefficiencies after the oil price rises of the 1970s. The subsequent collapse of the market as long-term contracts were signed at the peak of the oil price boom... -head (to which gas is delivered by various oil and gas companies using their own pipelines). Fortunately, by the time the electricity supply industry (ESI) came to be privatised in 1990, the message of restructuring to introduce competition before...

Newbery, David

102

Wind Power for America: Rural Electric Utilities Harvest New Crop (Brochure)  

DOE Green Energy (OSTI)

Wind Power for America: Rural Electric Utilities Harvest a New Crop is a trifold brochure that strives to educate rural landowners and rural co-op utilities about the benefits of wind power development. It provides examples of rural utilities that have successful wind energy projects and supportive statements from industry members.

Not Available

2002-02-01T23:59:59.000Z

103

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

NONE

1998-09-01T23:59:59.000Z

104

Inventory of Electric Utility Power Plants in the United States  

Reports and Publications (EIA)

Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

Information Center

2002-03-01T23:59:59.000Z

105

Uses and Applications of Climate Forecasts for Power Utilities  

Science Conference Proceedings (OSTI)

The uses and potential applications of climate forecasts for electric and gas utilities were assessed 1) to discern needs for improving climate forecasts and guiding future research, and 2) to assist utilities in making wise use of forecasts. In-...

Stanley A. Changnon; Joyce M. Changnon; David Changnon

1995-05-01T23:59:59.000Z

106

"2012 Non-Utility Power Producers- Sales"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales" Sales" "(Data from form EIA-861U)" ,,,"Sales (Megawatthours)" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Riceland Foods Inc.","AR","Non_Utility",".",".",33463,".",33463 "Constellation Solar Arizona LLC","AZ","Non_Utility",".",".",6883,".",6883 "FRV SI Transport Solar LP","AZ","Non_Utility",".",1820,".",".",1820 "MFP Co III, LLC","AZ","Non_Utility",".",9651,".",".",9651

107

"2012 Non-Utility Power Producers- Revenue"  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue" Revenue" "(Data from form EIA-861U)" ,,,"Revenue (thousand dollars)" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Riceland Foods Inc.","AR","Non_Utility",".",".",1735,".",1735 "Constellation Solar Arizona LLC","AZ","Non_Utility",".",".",798,".",798 "FRV SI Transport Solar LP","AZ","Non_Utility",".",243,".",".",243 "MFP Co III, LLC","AZ","Non_Utility",".",603,".",".",603

108

American Municipal Power (Public Electric Utilities)- Commercial Efficiency Smart Program  

Energy.gov (U.S. Department of Energy (DOE))

Efficiency Smart™ provides energy efficiency incentives and technical assistance to the American Municipal Power, Inc (AMP) network of public power communities. The Efficiency Smart service...

109

American Municipal Power (Public Electric Utilities)- Residential Efficiency Smart Program  

Energy.gov (U.S. Department of Energy (DOE))

Efficiency Smart ™ provides energy efficiency incentives to the American Municipal Power, Inc (AMP) network of public power communities. Efficiency Smart assists residential, commercial , and...

110

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants  

E-Print Network (OSTI)

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

111

Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators  

SciTech Connect

Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

1993-08-01T23:59:59.000Z

112

Reti attive di distribuzione: le applicazioni Virtual Power Plant e Virtual Utility.  

E-Print Network (OSTI)

??Il presente lavoro si occupa di nuove applicazioni per la gestione e l’ottimizzazione di risorse distribuite, così dette Virtual Power Plant (VPP) o Virtual Utility… (more)

Baroncelli, Paolo

2005-01-01T23:59:59.000Z

113

Inventory of Electric Utility Power Plants in the United States 2000  

U.S. Energy Information Administration (EIA)

DOE/EIA-0095(2000) Inventory of Electric Utility Power Plants in the United States 2000 March 2002 Energy Information Administration Office of Coal, Nuclear, Electric

114

Delimiting “Thunderstorm Watch” Periods by Real-Time Lightning Location for a Power Utility Company  

Science Conference Proceedings (OSTI)

During times of thunderstorm activity, the power utility serving metropolitan New York enters a potentially costly “thunderstorm watch” mode of operation which is designed to prevent a major power outage caused by lightning. To evaluate the ...

Vincent P. Idone; Richard E. Orville

1990-03-01T23:59:59.000Z

115

Design & optimization of automotive power electronics utilizing FITMOS MOSFET technology  

E-Print Network (OSTI)

Power electronics are essential to many automotive applications, and their importance continues to grow as more vehicle functions incorporate electronic controls. MOSFETs are key elements in automotive power electronic ...

Li, Wei, Ph. D. Massachusetts Institute of Technology. Department. of Electrical Engineering and Computer Science.

2009-01-01T23:59:59.000Z

116

Solar two: Utility-scale power from the sun  

DOE Green Energy (OSTI)

Information is presented on the Solar Two solar-powered electric generating plant located east of Barstow California.

NONE

1996-02-01T23:59:59.000Z

117

NIST Team Demystifies Utility of Power Factor Correction ...  

Science Conference Proceedings (OSTI)

... M. Misakian, TL Nelson and WE Feero. Regarding Electric Energy Savings, Power Factors, and Carbon Footprints: A Primer. ...

2011-10-03T23:59:59.000Z

118

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

119

Interruptible Power Rates and Their Role in Utility Distributed Resources Programs  

Science Conference Proceedings (OSTI)

On-site generators installed primarily for use during power outages represent a significant distributed resource (DR). These generators can be readily incorporated into power markets through existing "interruptible" rate structures where customers agree to reduce the electrical demand (on the utility) for specified periods. The extent to which utilities have adopted and/or encouraged interruptible rates is the subject of this report.

2003-02-20T23:59:59.000Z

120

Entering new territory. [Application of financial incentive regulations to gas utilities  

SciTech Connect

This paper reviews the application of the performance-based rate making incentive regulation which applies to the purchasing procedures of natural gas utility companies. It describes how these financial incentives were used by San Diego Gas and Electric Company to optimize the purchasing processes used to acquire gas for their customers. The goal of this process is to allow the utility to project energy performance into the future and try to exceed these projected values rather than doing a performance review after a year of already conducted purchases. The paper outlines the company's plans to implement a formal process for procurement under these new regulations.

Funke, C.A. (San Diego Gas and Electric Co., CA (United States))

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wireless Product Applications for Utilities: Technical Services for Power Utilities in Wireless Communications  

Science Conference Proceedings (OSTI)

Wireless technology applications are abundant, with products and services ranging from two-way paging to Personal Communications Services (PCS) to low cost satellite data transmission. With this in mind, utilities are encouraged to develop relationships and business arrangements with telecommunication companies--relationships that can benefit both industries. These arrangements promise to streamline utility operations and, in selected cases, create new businesses and provide sources of revenue for utilit...

1997-02-12T23:59:59.000Z

122

Energy-based analysis of utility scale hybrid power systems.  

E-Print Network (OSTI)

??The promise of large-scale use of renewables such as wind and solar for supplying electrical power is tempered by the sources' transient behavior and the… (more)

Agyenim-Boateng, Kwame

2011-01-01T23:59:59.000Z

123

Energy Department and Federal Efforts to Support Utility Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

currently repairing power lines across the Mid-Atlantic in the aftermath of Hurricane Sandy. | Photo courtesy of the Energy Department 58,000 workers are currently repairing...

124

Novel Power Cycle for Combined-Cycle Systems and Utility Power Plants  

E-Print Network (OSTI)

The description of a new power cycle, based on the use of a multicomponent working fluid, was published earlier. A thermodynamic analysis of this cycle has demonstrated its superiority over the currently used Rankine Cycle, and a distribution of losses in the subsystems of this cycle has been established. A new, improved variant of the cycle, which provides 10% efficiency improvement over the initial variant, has been developed. The new variant employs a cooling of the working fluid between turbine stages and a recuperation of the released heat for supplementation of the boiler heat supply. Analysis shows that with this new, improved cycle efficiencies of up to 52% for a combined-cycle system employing standard turbines, and of up to 55% when modern high-temperature gas turbines are employed, can be achieved. The same cycle can be utilized to retrofit existing direct-fired power plants, providing an efficiency of up to 42%. The possible implications off such a cycle implementation are briefly discussed. The Electric Power Research Institute (EPRI) is now conducting a study of this cycle.

Kalina, A. L.

1986-06-01T23:59:59.000Z

125

Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells  

SciTech Connect

ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

None

2010-09-01T23:59:59.000Z

126

Feasibility of Utility-Provided Uninterruptible DC Power for Telecommunication Applications  

Science Conference Proceedings (OSTI)

Providing uninterruptible power to the telecommunication industry is a natural fit for the expertise of the electric utility industry and represents a significant opportunity for revenue growth. This report analyzes the power requirements for different sectors of the telecommunication industry and examines existing and emerging technologies for providing uninterruptible power.

2001-11-30T23:59:59.000Z

127

City of Burbank Water and Power, California (Utility Company) | Open Energy  

Open Energy Info (EERE)

Burbank Water and Power, California (Utility Company) Burbank Water and Power, California (Utility Company) (Redirected from Burbank Water and Power) Jump to: navigation, search Name City of Burbank Water and Power Place Burbank, California Utility Id 2507 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Burbank Water and Power Smart Grid Project was awarded $20,000,000 Recovery

128

From Investor-owned Utility to Independent Power Producer  

E-Print Network (OSTI)

L G & E Energy Corporation Xcel Energy IPP Y N Y Y Y Y Y Y YAmerican Electric Power Co Ine Xcel Energy IPP Y Y Y N Y Y NPower Co Ine UtiliCorp United Xcel Energy American Electric

Ishii, Jun

2003-01-01T23:59:59.000Z

129

Economic analysis of municipal wastewater utilization for thermoelectric power production  

Science Conference Proceedings (OSTI)

The thermoelectric power industry in the U.S. uses a large amount of freshwater. The large water demand is increasingly a problem, especially for new power plant development, as availability of freshwater for new uses diminishes in the United States. Reusing non-traditional water sources, such as treated municipal wastewater, provides one option to mitigate freshwater usage in the thermoelectric power industry. The amount of freshwater withdrawal that can be displaced with non-traditional water sources at a particular location requires evaluation of the water management and treatment requirements, considering the quality and abundance of the non-traditional water sources. This paper presents the development of an integrated costing model to assess the impact of degraded water treatment, as well as the implications of increased tube scaling in the main condenser. The model developed herein is used to perform case studies of various treatment, condenser cleaning and condenser configurations to provide insight into the ramifications of degraded water use in the cooling loops of thermoelectric power plants. Further, this paper lays the groundwork for the integration of relationships between degraded water quality, scaling characteristics and volatile emission within a recirculating cooling loop model.

Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Theregowda, R.; Dzombak, D.; Miller, D.

2011-01-01T23:59:59.000Z

130

Can incentive regulation improve utility performance. The inherent danger of a simple answer  

SciTech Connect

US electric utilities face fewer incentives for efficient performance than nonregulated firms that operate in competitive markets, so regulators have traditionally relied on regulatory lag and a scrutiny of costs and management procedures. Characterizing the incentive programs which have been implemented by many state regulatory commissions as misguided, the author identifies an alternative adjustment mechanism with a potential for more effective promotion of utility performance improvements. The automatic rate adjustment mechanism (ARAM) links adjustments to cost elements recovered in a utility's rates to changes in external cost indexes for those cost elements. Ratepayers and utility shareholders would be better served by a regulatory scheme that relies on market forces, not shadow managements, to ensure efficient performance.

Goins, D.

1985-01-10T23:59:59.000Z

131

Siting Utility-Scale Concentrating Solar Power Projects  

DOE Green Energy (OSTI)

In 2002, Congress asked the U.S. Department of Energy to develop and scope out an initiative to fulfill the goal of having 1,000 megawatts (MW) of new parabolic trough, power tower, and dish engine solar capacity supplying the southwestern United States. In this paper, we present a review of the solar resource for Arizona, California, Nevada, and New Mexico. These four states have the greatest number of ''premium'' solar sites in the country and each has a renewable portfolio standard (RPS). We present information on the generation potential of the solar resources in these states. We also present regions within New Mexico that may be ideally suited for developing large-scale concentrating solar power (CSP) plants because of their proximity to load and their access to unconstrained transmission.

Mehos, M.; Owens, B.

2005-01-01T23:59:59.000Z

132

Reducing Power Production Costs by Utilizing Petroleum Coke  

Science Conference Proceedings (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke. It is most commonly blended with coal in proportions suitable to meet sulfur emission compliance, and is generally less reactive than coal. Therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the comb...

2000-05-05T23:59:59.000Z

133

Implications of Carbon Regulation for Green Power Markets  

Science Conference Proceedings (OSTI)

This paper examines the potential effects that emerging mandatory carbon markets have for voluntary markets for renewable energy, or green power markets. In an era of carbon regulation, green power markets will continue to play an important role because many consumers may be interested in supporting renewable energy development beyond what is supported through mandates or other types of policy support. The paper examines the extent to which GHG benefits motivate consumers to make voluntary renewable energy purchases and summarizes key issues emerging as a result of these overlapping markets, such as the implications of carbon regulation for renewable energy marketing claims, the demand for and price of renewable energy certificates (RECs), and the use of RECs in multiple markets (disaggregation of attributes). It describes carbon regulation programs under development in the Northeast and California, and how these might affect renewable energy markets in these regions, as well as the potential interaction between voluntary renewable energy markets and voluntary carbon markets, such as the Chicago Climate Exchange (CCX). It also briefly summarizes the experience in the European Union, where carbon is already regulated. Finally, the paper presents policy options for policymakers and regulators to consider in designing carbon policies to enable carbon markets and voluntary renewable energy markets to work together.

Bird, L.; Holt, E.; Carroll, G.

2007-04-01T23:59:59.000Z

134

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

135

City of Burbank Water and Power, California (Utility Company) | Open Energy  

Open Energy Info (EERE)

Power, California (Utility Company) Power, California (Utility Company) Jump to: navigation, search Name City of Burbank Water and Power Place Burbank, California Utility Id 2507 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Burbank Water and Power Smart Grid Project was awarded $20,000,000 Recovery Act Funding with a total project value of $62,650,755.

136

Utility Lines and Facilities (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

137

Implications of Carbon Regulation for Green Power Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Implications of Carbon Implications of Carbon Regulation for Green Power Markets Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates Inc. Ghita Carroll, Research Participant National Renewable Energy Laboratory Technical Report NREL/TP-640-41076 April 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Implications of Carbon Regulation for Green Power Markets Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates Inc. Ghita Carroll, Research Participant National Renewable Energy Laboratory Prepared under Task No. ASG6.1005 Technical Report NREL/TP-640-41076 April 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

138

Implications of Carbon Regulation for Green Power Markets  

Wind Powering America (EERE)

Implications of Carbon Implications of Carbon Regulation for Green Power Markets Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates Inc. Ghita Carroll, Research Participant National Renewable Energy Laboratory Technical Report NREL/TP-640-41076 April 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Implications of Carbon Regulation for Green Power Markets Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates Inc. Ghita Carroll, Research Participant National Renewable Energy Laboratory Prepared under Task No. ASG6.1005 Technical Report NREL/TP-640-41076 April 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

139

High Power Modulator/regulators for neutral beam sources  

SciTech Connect

PPPL has recently completed two new Modulator/Regulators for neutral injection sources used on the ATC machine and is constructing four new ones for use with sources on the PLT machine. The ATC modulator uses the well proven 4CX35,000C tetrode as the main switch tube, while the PLT modulators will be using the new but significantly higher powered X-2170 tetrodes. Some interesting circuit and manufacturing techniques are discussed. (MOW)

Lawson, J.Q.; Deitz, A.

1975-01-01T23:59:59.000Z

140

Coordination of reactive power scheduling in a multi-area power system operated by independent utilities.  

E-Print Network (OSTI)

??This thesis addresses the problem of reactive power scheduling in a power system with several areas controlled by independent transmission system operators (TSOs). To design… (more)

Phulpin, Yannick

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Offering Premium Power to Select Customer Segments: Using Distributed Resources for Distribution Utilities  

Science Conference Proceedings (OSTI)

Electric sector restructuring will likely lead to increased opportunities for distributed resources (DR) technologies and solutions. In particular, distribution utilities may be able to use DR to provide innovative services that can help increase customer value and open new sources of revenue. Using DR to offer premium power services to customers with special sensitivity to power quality disturbances is one such opportunity.

2001-01-11T23:59:59.000Z

142

MPC for Wind Power Gradients --Utilizing Forecasts, Rotor Inertia, and Central Energy Storage  

E-Print Network (OSTI)

MPC for Wind Power Gradients -- Utilizing Forecasts, Rotor Inertia, and Central Energy Storage iterations. We demonstrate our method in simulations with various wind scenarios and prices for energy. INTRODUCTION Today, wind power is the most important renewable energy source. For the years to come, many

143

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort, initiated in 2011, to define, track, and evaluate the expanding range of regulated utility solar energy acquisition activities. This report provides a high-level overview of the conceptual framework by which EPRI-SEPA are classifying regulated utility solar business models (USBMs) in the United States. It then provides five case studies detailing existing ...

2012-12-31T23:59:59.000Z

144

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 2013 Prepared by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

145

DC switching regulated power supply for driving an inductive load  

DOE Patents (OSTI)

A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.

Dyer, George R. (Norris, TN)

1986-01-01T23:59:59.000Z

146

Green Power Network: Top Ten Utility Green Pricing Programs, December 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2001 December 2001 Customer Participants (as of December 2001) Rank Utility Program # of Participants 1 Los Angeles Department of Water and Power Green Power for a Green L.A. 87,0001 2 Xcel Energy (Colorado) WindSource 18,600 3 Sacramento Municipal Utility District Greenergy - All Renewables 14,200 4 Xcel Energy (Colorado) Renewable Energy Trust 10,900 5 Wisconsin Electric Power Company Energy for Tomorrow 10,700 6 PacifiCorp Blue Sky 7,300 7 Austin Energy GreenChoice 6,600 8 Portland General Electric Company Salmon Friendly Clean Wind Power 5,700 9 Wisconsin Public Service SolarWise for Schools 5,200 10 Tennessee Valley Authority Green Power Switch 4,9002 Source: NREL Notes: 1 About half of the total are low-income customers that receive existing renewables at no extra cost.

147

Pacific gas electric: 1993 EL P Utility of the Year. Incentive nuclear regulation spurs financial comeback  

SciTech Connect

Incentive agreements for Diablo Canyon nuclear plant helped spur Pacific Gas Electric Co.'s financial comeback. Consistent nuclear plant capacity factors above 80 percent contributed 38 percent of 1992 PG E earnings per share. This, plus aggressive cost cutting and reorganization, industry leading demand-side management, environmental measures and a rate refund and freeze are among the reasons Electric Light Power magazine names Pacific Gas Electric Co. the 1993 EL P Utility of the Year. San Francisco-based PG E is the 25th utility to receive the annual award for investor-owned electric utilities. PG E employees strive to create the kind of environment that can address increasing industry competitiveness. Rather than just doing their jobs, people consistently challenge each other to do their jobs better, trying to anticipate the changes of tomorrow and the next millennium.

Hoske, M.T.; Beaty, W.

1993-12-01T23:59:59.000Z

148

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network (OSTI)

Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper examines the status, economic outlook, and future directions of combustion turbine technology for industrial and utility power generation. The discussion takes into account the ongoing deregulation and increasing competition that are shaping the electric power generation business. Included is a comparison between heavy-duty industrial combustion turbines and their rapidly evolving competition, aeroderivative machines, with emphasis on the appropriate application of each. The prospects for future improvements in the cost and performance of combustion turbines are reviewed, and the likely impact of advanced combustion turbine power generation concepts is considered. Also summarized is the outlook for power generation fuels, including the longer term reemergence of coal and the potential for widespread use of coal gasification-based combustion turbine systems. The paper draws heavily from a technical, economic, and business analysis, Combustion Turbine Power Systems, recently completed by SFA Pacific. The analysis was sponsored by an international group of energy companies that includes utilities, independent power producers (IPPs), and power industry equipment vendors.

Karp, A. D.; Simbeck, D. R.

1994-04-01T23:59:59.000Z

149

On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy  

DOE Green Energy (OSTI)

Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

2008-05-27T23:59:59.000Z

150

State regulation and power plant productivity: background and recommendations  

Science Conference Proceedings (OSTI)

This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements.

Not Available

1980-09-01T23:59:59.000Z

151

Utility to Purchase Low-Carbon Power from Innovative Clean Coal Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility to Purchase Low-Carbon Power from Innovative Clean Coal Utility to Purchase Low-Carbon Power from Innovative Clean Coal Plant Utility to Purchase Low-Carbon Power from Innovative Clean Coal Plant January 19, 2012 - 5:00pm Addthis Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in the Texas Clean Energy Project. | Photo courtesy of llnlphotos. Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon

152

Assessment of the potential of solar thermal small power systems in small utilities. Final report  

DOE Green Energy (OSTI)

This study involved an assessment of the potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities. Five different solar thermal small power system configurations were considered in the study representing three different solar thermal technologies. The configurations included: (1) 1-MW, 2-MW, and 10-MW parabolic dish concentrators with a 15-kW heat engine mounted at the focal point of each dish. These systems utilized advanced battery energy storage. (2) A 10-MW system with variable slat concentrators and central steam Rankine energy conversion. This system utilized sensible thermal energy storage. (3) A 50-MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system. This system also utilized sensible thermal storage. The approach used in determining the potential for solar thermal small power systems in the small utility market involved a comparison of the economics of power supply expansion plans for seven hypothetical small utilities through the year 2000 both with and without the solar thermal small power systems. Insolation typical of the Southwestern US was assumed. A comparison of the break-even capital costs with the range of plant costs estimated in this study yields the following conclusions: (1) The parabolic dish concentrator systems could be economically competitive with conventional generation if the lowest capital costs can be achieved. (2) The variable slat concentrator and central receiver systems would have to achieve lower costs than the lowest in the cost ranges generally assumed in the study to become economically competitive. (3) All of the solar thermal plant types are potentially more competitive in utilities which are heavily dependent upon oil.

Steitz, P.; Mayo, L.G.; Perkins, S.P. Jr.

1978-11-01T23:59:59.000Z

153

Railroad Consolidation and Market Power: Challenges to a Deregulating Electric Utility Industry  

Science Conference Proceedings (OSTI)

The railroad industry is shrinking into a handful of mega-carriers, a development of great importance to the electric utility industry, which depends on railroads for most shipments of coal. As the electric utilities face deregulation, the impact of railroad market power on the delivered price of coal is a critical competitive issue. This report examines the motivations for railroad consolidation and assesses the likely business strategies of the five major coal hauling railroads.

1997-03-08T23:59:59.000Z

154

Incentive regulation in the electric utility industry. Volume II. Final report  

SciTech Connect

On October 15, 1982, Resource Consulting Group, Inc. (RCG), submitted a draft report to the Federal Energy Regulatory Commission (FERC) titled, Incentive Regulation in the Electric Utility Industry. The FERC distributed the draft report to more than 60 individuals and organizations who were requested to review and comment on the various proposals and recommendations outlined in the report. In response to the FERC's request, 18 organizations submitted formal review comments. This report contains reviewers comments on each of the three programs recommended. The three major incentive programs are: (1) Rate Control Incentive program (RCIP); (2) Construction Cost Control Incentive Program (CCIP); and (3) Automatic Rate Adjustment Mechanism (ARAM).

Goins, D.; Fisher, M.; Smiley, R.; Hass, J.; Ehrenberg, R.

1983-09-01T23:59:59.000Z

155

Wind power and electric utilities: a review of the problems and prospects. [USA  

DOE Green Energy (OSTI)

The use of windpower poses a variety of problems for utilities primarily due to the uncontrollability of the power source and the high degree of variability of the wind. Differences in the dynamic behavior of the wind and of utility load patterns and the problems that arise from these differences are described. Utility capacity expansion methods and modifications to them to incorporate the characteristics of wind machines into the analytic procedure are outlined and results from initial studies employing these modifications are reviewed. These results indicate that, in general, storage devices are too expensive to be purchased by utilities if they serve mainly to balance the output of the wind machines; wind machines tend to supplant purchases of conventional baseload capacity but require additional peaking units; and the economic value of wind machines to utilities is composed of savings in both fuel and capacity related expenditures for conventional equipment.

Davitian, H

1978-04-01T23:59:59.000Z

156

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

157

Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System  

Science Conference Proceedings (OSTI)

This report describes complete results of the project entitled ''Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System''. This demonstration project was initiated in July 2003 and completed in March 2005. The objective of the project was to develop an integrated power production/variable frequency drive system that could easily be deployed in the oil field that would increase production and decrease operating costs. This report describes all the activities occurred and documents results of the demonstration.

Randy Peden; Sanjiv Shah

2005-07-26T23:59:59.000Z

158

A good integrated resource plan: Guidelines for electric utilities and regulators  

SciTech Connect

Integrated resource planning helps utilities and state regulatory commissions consistently assess a broad range of demand and supply resources to meet customer energy-service needs cost-effectively. Key characteristics of this planning approach include: explicit consideration and fair treatment of a wide variety of demand and supply options, consideration of the environmental and other social costs of providing energy services, public participation in the development of the resource plan, and analysis of the uncertainties associated with different external factors and resource options. Integrated resource planning differs from traditional planning in the types and scope of resources considered, the owners of the resources, the organizations involved in resource planning, and the criteria for resource selection. This report presents suggestions to utilities on how to conduct such planning and what to include in their resource-planning reports. These suggestions are based on a review of about 50 resource plans as well as discussions with and presentations to regulators and utilities. The suggestions cover four broad topics; the technical competence with which the plan was developed; the adequacy, detail, and consistency (with the long-term plan) of the short-term action plan; the extent to which the interests of various stakeholders was considered, both in public participation in plan development and in the variety of resource plans developedand assessed; and the clarity and comprehensiveness of the utility`s report on its plan. Technical competence includes energy and demand forecasts, assessment of supply and demand resources, resource integration, and treatment of uncertainty. Issues associated with forecasts include forecasting approaches; links between the forecasts of energy use and peak demands; and links between the forecasts and the effects of past, present, and future demand-side management programs.

Hirst, E.

1992-12-01T23:59:59.000Z

159

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

DOE Green Energy (OSTI)

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

160

Co-utilization of biomass and natural gas: a new route for power productin from biomass  

E-Print Network (OSTI)

Abstract Co-utilization of biomass and natural gas: a new route for power productin from biomass production is proposed in which biomass energy is used to partially reform natural gas in gas turbines. As a result, part of the natural gas fuel supply can be replaced by biomass while keeping the biomass

Glineur, François

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Low complexity subcarrier and power allocation for utility maximization in uplink OFDMA systems  

Science Conference Proceedings (OSTI)

We consider the joint subcarrier and power allocation problem with the objective of maximizing the total utility of users in the uplink of an OFDMA system. Our formulation includes the problems of sum rate maximization, proportional fairness and max-min ...

Cho Yiu Ng; Chi Wan Sung

2008-05-01T23:59:59.000Z

162

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Concentrating Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Technical Report NREL/TP-6A20-51137 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442

163

Notices DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative, Inc.:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

670 Federal Register 670 Federal Register / Vol. 76, No. 212 / Wednesday, November 2, 2011 / Notices DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative, Inc.: Notice of Intent To Prepare an Environmental Impact Statement and Hold Public Scoping Meetings AGENCY: Rural Utilities Service, USDA. ACTION: Notice. SUMMARY: The Rural Utilities Service (RUS), an agency within the U.S. Department of Agriculture (USDA), intends to prepare an environmental impact statement (EIS) for Basin Electric Power Cooperative's (Basin Electric) proposed Antelope Valley Station (AVS) to Neset Transmission Project (Project) in North Dakota. RUS is issuing this Notice of Intent (NOI) to inform the public and interested parties about the proposed Project, conduct a public

164

DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Energy Service Contracts, and More Utility Energy Service Contracts, and More DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy Service Contracts, and More August 21, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars August 21: Live Webinar on the 2012 Distributed Wind Market Report Webinar Sponsor: EERE's Wind and Water Power Technologies Program The Energy Department will present a live webcast titled "2012 Market Report on U.S. Wind Technologies in Distributed Applications" on Wednesday,

165

Expected Power-Utility Maximization Under Incomplete Information and with Cox-Process Observations  

SciTech Connect

We consider the problem of maximization of expected terminal power utility (risk sensitive criterion). The underlying market model is a regime-switching diffusion model where the regime is determined by an unobservable factor process forming a finite state Markov process. The main novelty is due to the fact that prices are observed and the portfolio is rebalanced only at random times corresponding to a Cox process where the intensity is driven by the unobserved Markovian factor process as well. This leads to a more realistic modeling for many practical situations, like in markets with liquidity restrictions; on the other hand it considerably complicates the problem to the point that traditional methodologies cannot be directly applied. The approach presented here is specific to the power-utility. For log-utilities a different approach is presented in Fujimoto et al. (Preprint, 2012).

Fujimoto, Kazufumi, E-mail: m_fuji@kvj.biglobe.ne.jp [Bank of Tokyo-Mitsubishi UFJ, Ltd., Corporate Risk Management Division (Japan)] [Bank of Tokyo-Mitsubishi UFJ, Ltd., Corporate Risk Management Division (Japan); Nagai, Hideo, E-mail: nagai@sigmath.es.osaka-u.ac.jp [Osaka University, Division of Mathematical Science for Social Systems, Graduate School of Engineering Science (Japan)] [Osaka University, Division of Mathematical Science for Social Systems, Graduate School of Engineering Science (Japan); Runggaldier, Wolfgang J., E-mail: runggal@math.unipd.it [Universita di Padova, Dipartimento di Matematica Pura ed Applicata (Italy)

2013-02-15T23:59:59.000Z

166

Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report  

DOE Green Energy (OSTI)

The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

NONE

1997-03-01T23:59:59.000Z

167

PERFORMANCE ENHANCEMENT OF WIND TURBINE POWER REGULATION BY SWITCHED LINEAR CONTROL  

E-Print Network (OSTI)

PERFORMANCE ENHANCEMENT OF WIND TURBINE POWER REGULATION BY SWITCHED LINEAR CONTROL D.J.Leith W Power regulation of horizontal-axis grid-connected up-wind constant-speed pitch-regulated wind turbines, switched linear control is more suited for application to wind turbines than the nonlinear control strategy

Duffy, Ken

168

Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability  

SciTech Connect

Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

1995-03-01T23:59:59.000Z

169

Wind Power for Municipal Utilities. Office of Energy Efficiency and Renewable Energy (EERE) Brochure.  

Wind Powering America (EERE)

Clean energy has a bright future. Today a growing number Clean energy has a bright future. Today a growing number of public utilities are harvesting a new source of homegrown energy. From Massachusetts to California, more than two dozen municipal utilities have wind power in their energy mix. Wind energy is attractive for many reasons: * Wind energy is clean and renewable. * Wind energy is economically competitive. * Wind energy reduces energy price risks. Unlike coal, natural gas, or oil, the "fuel" for a wind turbine will always be free. * Wind energy is popular with the public. A RECORD YEAR - Wind power is booming. Worldwide, a record 3,800 megawatts (MW) were installed in 2001. These sleek, impressive wind turbines have closed the cost gap with conventional power plants. Depending on size and location, wind farms produce electricity for 3-6

170

A good integrated resource plan: Guidelines for electric utilities and regulators  

SciTech Connect

Integrated resource planning helps utilities and state regulatory commissions consistently assess a broad range of demand and supply resources to meet customer energy-service needs cost-effectively. Key characteristics of this planning approach include: explicit consideration and fair treatment of a wide variety of demand and supply options, consideration of the environmental and other social costs of providing energy services, public participation in the development of the resource plan, and analysis of the uncertainties associated with different external factors and resource options. Integrated resource planning differs from traditional planning in the types and scope of resources considered, the owners of the resources, the organizations involved in resource planning, and the criteria for resource selection. This report presents suggestions to utilities on how to conduct such planning and what to include in their resource-planning reports. These suggestions are based on a review of about 50 resource plans as well as discussions with and presentations to regulators and utilities. The suggestions cover four broad topics; the technical competence with which the plan was developed; the adequacy, detail, and consistency (with the long-term plan) of the short-term action plan; the extent to which the interests of various stakeholders was considered, both in public participation in plan development and in the variety of resource plans developedand assessed; and the clarity and comprehensiveness of the utility's report on its plan. Technical competence includes energy and demand forecasts, assessment of supply and demand resources, resource integration, and treatment of uncertainty. Issues associated with forecasts include forecasting approaches; links between the forecasts of energy use and peak demands; and links between the forecasts and the effects of past, present, and future demand-side management programs.

Hirst, E.

1992-12-01T23:59:59.000Z

171

Efficient Power Converters for PV Arrays : Scalable Submodule Power Conversion for Utility-Scale Photovoltaics  

Science Conference Proceedings (OSTI)

Solar ADEPT Project: SolarBridge is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That’s because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

None

2012-02-23T23:59:59.000Z

172

The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments  

SciTech Connect

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The following utility- and site-specific conditions that may affect the economic viability of distributed renewable energy sources were considered: distribution system characteristics, and design standards, and voltage levels; load density, reliability, and power quality; solar insolation and wind resource levels; utility generation characteristics and load profiles; and investor-owned and publicly owned utilities, size, and financial assumptions.

Zaininger, H.W.

1994-01-01T23:59:59.000Z

173

Financial impacts of nonutility power purchases on investor-owned electric utilities  

SciTech Connect

To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities` cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

Not Available

1994-06-01T23:59:59.000Z

174

A low-power, high-bandwidth LDO voltage regulator with no external capacitor  

E-Print Network (OSTI)

A low-dropout (LDO) voltage regulator for low-power applications is designed without an external capacitor for compensation. The regulator has two stages, the first a folded cascode amplifier and the second a large pass ...

Ha, Miranda J. (Miranda Joy)

2008-01-01T23:59:59.000Z

175

State Air Emission Regulations That Affect Electric Power Producers (Update) (released in AEO2006)  

Reports and Publications (EIA)

Several States have recently enacted air emission regulations that will affect the electricity generation sector. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

Information Center

2006-02-01T23:59:59.000Z

176

Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications  

DOE Green Energy (OSTI)

Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

Tolbert, L.M.

2005-12-21T23:59:59.000Z

177

SUMMARY OF AIR TOXICS -. EMISSIONS TESTING AT SIXTEEN UTILITY POWER PLANTS  

NLE Websites -- All DOE Office Websites (Extended Search)

AIR TOXICS AIR TOXICS -. EMISSIONS TESTING AT SIXTEEN UTILITY POWER PLANTS Prepared for U.S. Department of Energy Pittsburgh Energy Technology Center Prepared Under Burns and Roe Services Corporation Contract No. DE-AC22-94PC92100 .Subtask 44.02 July 1996 SUMMARY OF AIR TOXICS EMISSIONS TESTING AT SIXTEEN . . UTILITY POWER PLANTS Prepared for U.S. Department of Energy Pittsburgh Energy Technology Center . Prepared by Adrian Radziwon and Edward Winter Burns and Roe Services Corporation Terence J. McManus, Oak Ridge Associated Universities July 1996 TABLE OF CONTERlW SECTION 1.0 INTRODUCTION ................... 1 Background . : .................. 1 Objectives .................... 1 Report Structure ................. 3 Uncertainties ................... 3 SECTION 2.0 EXECUTIVE SUMMARY ................. 7

178

Green Power Network: Top Ten Utility Green Pricing Programs, December 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Green Pricing Program Renewable Energy Sales (as of December 2007) Rank Utility Resources Used Sales (kWh/year) Sales (Avg. MW)a 1 Austin Energy Wind, landfill gas 577,636,840 65.9 2 Portland General Electricb Geothermal, biomass, wind 553,677,903 63.2 3 PacifiCorpcde Wind, biomass, landfill gas, solar 383,618,885 43.8 4 Florida Power & Lightb Biomass, wind, landfill gas, solar 373,596,000 42.6 5 Xcel Energyef Wind 326,553,866 37.3 6 Sacramento Municipal Utility Districte Wind, landfill gas, small hydro, solar 275,481,584 31.4 7 Puget Sound Energye Wind, solar, biomass, landfill gas 246,406,200 28.1 8 Basin Electric Power Cooperative Wind 226,474,000 25.9 9 National Gridgh Biomass, wind, small hydro, solar 180,209,571 20.6

179

Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems  

Science Conference Proceedings (OSTI)

The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

2009-01-11T23:59:59.000Z

180

Utility Test Results of a 2-Megawatt, 10-Second Reserve-Power System  

DOE Green Energy (OSTI)

This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.

BALL,GREG J.; NORRIS,BENJAMIN L.

1999-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sacramento Municipal Utility District Geothermal Power Plant, SMUDGEO No. 1. Final report  

DOE Green Energy (OSTI)

The proposed construction of 72-MW geothermal power plant is discussed. The following aspects are covered: the project as proposed by the utility; the environmental setting; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the Growth Inducing Impacts. (MHR)

Not Available

1981-02-01T23:59:59.000Z

182

Harmonization of Utility Common Information Model (CIM) with other IEC Power System Management Standards  

Science Conference Proceedings (OSTI)

EPRI has sponsored the development of a number of international standards which provide the basis for information exchange to support power system management. One of the most important is the Common Information Model (CIM), which is rapidly gaining acceptance throughout the world as a common semantic model to unify and integrate the data from a myriad of systems involved in support of real-time electric utility operations. As its acceptance as the basis for information integration grows and areas of appl...

2007-03-27T23:59:59.000Z

183

Design of programmable, low power, low dropout voltage regulators for portable applications  

E-Print Network (OSTI)

As portable electronics constantly find their way into the hands of eager consumers, the demands placed on these products and their circuits are ever increasing. More features and more performance are continuously demanded by consumers. This feature-driven market has brought with it several constraints on the type of circuits utilized in developing these portable devices. Cell-Phones, PDA's, MP3 players and various other portable electronics require different voltage levels to power different architectures that realize the many features within the device. This work demonstrates a technique to design Programmable Low Power Low Dropout Voltage Regulators (LDO). The LDO proposed in this research utilizes a fast-transient feedback loop in order to improve transient response and guarantee stability in all the programmable output levels. Specifically, the main parameters to be improved are stability over the entire load current range, reduced overshoot and undershoot variations in transient response, reduction of LDO deflection voltage, minimization of standby current and low voltage (Vin = 1.2V) operation.

Islas Ohlmaier, Abraham

2005-12-01T23:59:59.000Z

184

Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint  

DOE Green Energy (OSTI)

This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

Hodge, B. M.; Shedd, S.; Florita, A.

2012-08-01T23:59:59.000Z

185

Future Carbon Regulations and Current Investments in Alternative Coal-Fired Power Plant Designs  

E-Print Network (OSTI)

This paper assesses the role of uncertainty over future U.S. carbon regulations in shaping the current choice of which type of power plant to build. The pulverized coal technology (PC) still offer the lowest cost power— ...

Sekar, Ram C.

186

PQ TechWatch: What To Expect from Normal, Utility-Grade Electrical Power: Educating End Users  

Science Conference Proceedings (OSTI)

Although “perfect” electrical power—power that never stops or deviates from a true sine wave—may be an impossibility, consumers want to know what kind of power they can expect from electric power providers. It is up to utilities to educate their customers on what normal, utility-grade power looks like, how it is generated and distributed, and how to identify and deal with problems related to reliability and power quality. This education should also lead to a two-way ...

2012-12-31T23:59:59.000Z

187

Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices  

SciTech Connect

Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

None

2012-01-25T23:59:59.000Z

188

Regulated utilities and solar energy: a legal-economic analysis of the major issues affecting the solar commercialization effort  

DOE Green Energy (OSTI)

The reaction of public utilities to the addition (and competitive) sources of energy supplied by solar technologies will have a significant impact on the commercialization of solar energy. Decentralized applications of solar energy need utility-produced power to back up the energy produced by solar means. The cost and availability of this power will largely determine the acceptance of solar energy. There are three legal issues surrounding the role of utilities in the solar commercialization effort: (1) the extent to which utilities may own, sell, lease, finance, or service solar devices for utility customers; (2) the degree to which solar-powered utilities may be able to compete with existing utilities; and (3) the degree to which various utility rate structures will be allowed to penalize decentralized solar users. The impact of state constitutional and statutory provisions upon these issues is examined, along with relevant federal constitutional doctrines. Finally, the statutes of the National Energy Act, many of which specifically address the above issues, are discussed.

Laitos, J.; Feuerstein, R. J.

1979-06-01T23:59:59.000Z

189

paper “CO2 Regulations and Electricity Prices: Cost Estimates for Coal-Fired Power Plants. ” We thank  

E-Print Network (OSTI)

For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer the potential for significant reductions in CO2 emissions. We examine the break-even value for CCS adoptions, that is, the critical value in the charge for CO2 emissions that would justify investment in CCS capabilities. Our analysis takes explicitly into account that the supply of electricity at the wholesale level (generation) is organized competitively in some U.S. jurisdictions, while in others a regulated utility provides integrated generation and distribution services. For either market structure, we find that emissions charges in the range of $25-$30 per tonne of CO2 would be the break-even value for adopting CCS capabilities at new coal-fired power plants. The corresponding break-even values for natural gas plants are substantially higher, near $60 per tonne. Our break-even estimates serve as a basis for projecting the change in electricity prices once carbon emissions become costly. CCS capabilities effectively put an upper bound on the rise in electricity prices. We estimate this bound to be near 30 % at the retail level for both coal and natural gas plants. In contrast to the competitive power supply scenario, however, these price increases materialize only gradually for a regulated utility. The delay in price adjustments reflects that for regulated

Stefan Reichelstein; Erica Plambeck

2009-01-01T23:59:59.000Z

190

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

191

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

192

Dependence of delivered energy on power conditioner electrical characteristics for utility-interactive PV systems  

SciTech Connect

In a utility-interactive photovoltaic system, the electrical characteristics of the dc-to-ac power-conditioning unit (inverter) influence the quantity of electrical energy delivered by the system, and therefore, affect the user worth of the system. An analysis of the effect of relevant inverter electrical characteristics on the quantity of system-delivered energy is undertaken using computer simulations of system behavior. Significant conclusions are that: (1) the annual system performance advantage of maximum-power-point voltage tracking is small compared with fixed-dc-input voltage operation; (2) low levels of inverter ac-power consumption during times of zero insolation can significantly degrade system performance; (3) the effect of small changes in the array-to-inverter size ratio on the user worth of the system is small; and (4) most of the system energy is delivered at power levels greater than one-half of the nominal array rating, and consequently, the inverter low-power efficiency is less important than is its full-power efficiency. A formula that approximates the inverter annual throughput efficiency with only four laboratory measurements on the inverter is presented.

Rasmussen, N.E.; Branz, H.M.

1981-01-01T23:59:59.000Z

193

Optimal site selection and sizing of distributed utility-scale wind power plants  

DOE Green Energy (OSTI)

As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)] [Minnesota Dept. of Public Service, St. Paul, MN (United States)

1998-04-01T23:59:59.000Z

194

A high-voltage low-power DC-DC buck regulator for automotive applications  

Science Conference Proceedings (OSTI)

This work presents a High-Voltage Low-Power CMOS DC-DC buck regulator for automotive applications. The overall system, including the high and low voltage analog devices, the power MOS and the low voltage digital devices, was realized in the Austriamicrosystems ... Keywords: DC-DC regulator, buck converter, current control, low quiscent current, pulse frequency modulation

G. Pasetti; L. Fanucci; R. Serventi

2010-03-01T23:59:59.000Z

195

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

a result, the utility’s revenues between rate cases are notspending, allowing utilities to earn a rate of return onto rate-of-return regulation, and public utilities and power

Hopper, Nichole

2008-01-01T23:59:59.000Z

196

The Economic Impact of Wind Power on Ercot Regulation Market.  

E-Print Network (OSTI)

??U.S. wind power generation has grown rapidly in the last decade due to government policies designed to reduce pollution. Although wind power does not contribute… (more)

Zheng, Bin

2013-01-01T23:59:59.000Z

197

GRR/Section 7 - Power Plant Siting, Construction, and Regulation Overview |  

Open Energy Info (EERE)

GRR/Section 7 - Power Plant Siting, Construction, and Regulation Overview GRR/Section 7 - Power Plant Siting, Construction, and Regulation Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7 - Power Plant Siting, Construction, and Regulation Overview 07PowerPlantSitingConstructionOverview (2).pdf Click to View Fullscreen Contact Agencies Federal Energy Regulatory Commission Triggers None specified Click "Edit With Form" above to add content 07PowerPlantSitingConstructionOverview (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The power plant's location, size, type of customer the power plant sells energy to, and whether the power plant sells energy in "interstate

198

Green Power Network: Top Ten Utility Green Pricing Programs, December 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Green Power Program Renewable Energy Sales (as of December 2005) Rank Utility Resources Used Sales (kWh/year) Sales (Avg. MWa) 1 Austin Energy Wind, landfill gas 435,140,739 49.7 2 Portland General Electricb Existing geothermal and hydro, wind 339,577,170 38.8 3 PacifiCorpcd Wind, biomass, solar 234,163,591 26.7 4 Florida Power & Light Biomass, wind, solar 224,574,530 25.6 5 Sacramento Municipal Utility Districte Wind, landfill gas, small hydro, solar 195,081,504 22.3 6 Xcel Energyef Wind 147,674,000 16.9 7 National Gridghi Biomass, wind, small hydro, solar 127,872,457 14.6 8 Basin Electric Power Cooperative Wind 113,957,000 13.0 9 Puget Sound Energy Wind, solar, biogas 71,341,000 8.1 10 OG&E Electric Services Wind 63,591,526 7.3

199

Green Power Network: Top Ten Utility Green Pricing Programs, December 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Green Power Program Renewable Energy Sales (as of December 2006) Rank Utility Resources Used Sales (kWh/year) Sales (Avg. MWa) 1 Austin Energy Wind, landfill gas 580,580,401 66.3 2 Portland General Electricb Existing geothermal and hydro, wind 432,826,408 49.4 3 Florida Power & Light Landfill gas, biomass, wind, solar 302,792,000 34.6 4 PacifiCorpcd Wind, biomass, solar 299,862,690 34.2 5 Xcel Energyef Wind 236,505,718 27.0 6 Basin Electric Power Cooperative Wind 217,427,000 24.8 7 Sacramento Municipal Utility Districte Wind, landfill gas,small hydro 216,476,278 24.7 8 National Gridghi Biomass, wind,small hydro, solar 156,447,869 17.9 9 OG&E Electric Services Wind 134,553,920 15.4 10 Puget Sound Energy Wind, solar, biogas 131,742,000 15.0

200

Multi-area power system state estimation utilizing boundary measurements and phasor measurement units ( PMUs)  

E-Print Network (OSTI)

The objective of this thesis is to prove the validity of a multi-area state estimator and investigate the advantages it provides over a serial state estimator. This is done utilizing the IEEE 118 Bus Test System as a sample system. This thesis investigates the benefits that stem from utilizing a multi-area state estimator instead of a serial state estimator. These benefits are largely in the form of increased accuracy and decreased processing time. First, the theory behind power system state estimation is explained for a simple serial estimator. Then the thesis shows how conventional measurements and newer, more accurate PMU measurements work within the framework of weighted least squares estimation. Next, the multi-area state estimator is examined closely and the additional measurements provided by PMUs are used to increase accuracy and computational efficiency. Finally, the multi-area state estimator is tested for accuracy, its ability to detect bad data, and computation time.

Freeman, Matthew A

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sacramento Municipal Utility District 100 MW Photovoltaic Power Plant: Final environmental impact report  

Science Conference Proceedings (OSTI)

The Sacramento Municipal Utility District (SMUD) proposes constructing a 100 megawatt (MW) solar photovoltaic electric generation facility adjacent to its Rancho Seco nuclear plant. The project, to be built in increments over the next 12 years, is the largest facility of its kind proposed by any utility in the country. The initial 1 MW photovoltaic field will consist of four 250 kW subfields, each with its own power conditioning unit. Photovoltaic cell modules will be mounted on flat-plate arrays attached to centrally located torque tubes which allow the arrays to rotate on their long axis to )openreverse arrowquotes)track)closereverse arrowquotes) the sun. This Final Environmental Impact Report (FEIR) addresses environmental aspects of the proposed project according to the guidelines for implementing the California Environmental Quality Act and the National Enviornmental Policy Act (NEPA).

Not Available

1982-04-01T23:59:59.000Z

202

Green Power Network: Top Ten Utility Green Pricing Programs, December 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2009 December 2009 Green Pricing Program Renewable Energy Sales (as of December 2009) Rank Utility Resources Used Sales (kWh/year) Sales (aMW)a 1 Austin Energy Wind, landfill gas 764,895,830 87.3 2 Portland General Electricb Wind, biomass, geothermal 740,880,487 84.6 3 PacifiCorpcde Wind, biomass, landfill gas, solar 578,744,080 66.1 4 Sacramento Municipal Utility Districtc Wind, hydro, biomass, solar 377,535,530 43.1 5 Xcel Energycf Wind, solar 374,296,375 42.7 6 Puget Sound Energycg Wind, landfill gas, biomass, small hydro, solar 303,046,167 34.6 7 Connecticut Light and Power/ United Illuminating Wind, hydro 197,458,734 22.5 8 National Gridh Biomass, wind, small hydro, solar 174,536,130 19.9 9 Public Service Company of New Mexico Wind 173,863,751 19.8

203

100-MW NUCLEAR POWER PLANT UTILIZING A SODIUM COOLED, GRAPHITE MODERATED REACTOR  

SciTech Connect

The conceptual design of a 100 Mw(e) nuclear power plant is described. The plant utilized a sodium-cooled graphite-moderated reactor with stainless- steel clad. slightiy enriched UO/sub 2/ fuel. The reactor is provided with three main coolant circuits, and the steam cycle has three stages of regenerative heating. The plant control system allows automatic operation over the range of 20 to 100% load, or manual operation at all loads. The site, reactor, sodium systems, reactor auxiliaries, fuel handling, instrumentation, turbine-generator, buildings. and safety measures are described. Engineering drawings are included. (W.D.M.)

1958-02-28T23:59:59.000Z

204

European legislation in the United Kingdom: a threat to coal-fired power station product utilization?  

SciTech Connect

The author considers that the European Union has not taken the approach adopted in the USA where environmental regulators are keen to promote the use of coal-fired power station ash by-product and recycled materials. The United Kingdom has seen, with some dismay, the effects EU legislation is having on the ash industry. This article outlines only some of the problems being tackled. The Waste Framework Directive is difficult to interpret and fails to define critical aspects of the problem. This directive is discussed at some length in the article. A total of nine directives effect the operation of coal-fired power plant. Many are imprecise and open to interpretation and cause a deal of frustration, delays and confusion to the ash supplier and contractor. This is causing markets to suffer.

Sear, K.A. [Quality Ash Association (United Kingdom)

2006-07-01T23:59:59.000Z

205

Superconducting magnetic energy storage applications and benefits for electric utility power systems  

DOE Green Energy (OSTI)

Large SMES units are being studied for electric utility applications as diurnal, load-curve leveling and as transient stabilizer units. Such SMES units show promise of providing greater operating flexibility than pumped-hydro or other types of energy storage. This operating flexibility, together with its fast response capability to provide transient and dynamic stabilization benefits to a power system, are discussed. Small SMES units are being designed for dynamic stability applications on electric power systems for use when negatively damped system operating conditions are encountered. The 30-MJ, 10-MW SMES dynamic-stabilizer design is presented; and the status of the component development and fabrication contracts which have been placed with commercial manufacturers is discussed.

Turner, R.D.

1979-01-01T23:59:59.000Z

206

Review of nuclear power plant offsite power source reliability and related recommended changes to the NRC rules and regulations  

SciTech Connect

The NRC has stated its concern about the reliability of the offsite power system as the preferred emergency source and about the possible damage to a pressurized water reactor (PWR) that could result from a rapid decay of power grid frequency. ORNL contracted with NRC to provide technical assistance to establish criteria that can be used to evaluate the offsite power system for the licensing of a nuclear power plant. The results of many of the studies for this contract are recommendations to assess and control the power grid during operation. This is because most of the NRC regulations pertaining to the offsite power system are related to the design of the power grid, and we believe that additional emphasis on monitoring the power grid operation will improve the reliability of the nuclear plant offsite power supply. 46 refs., 10 figs.

Battle, R.E.; Clark, F.H.; Reddoch, T.W.

1980-05-01T23:59:59.000Z

207

The regulation of internet interconnection : assessing network market power  

E-Print Network (OSTI)

Interconnection agreements in the telecommunications industry have always been constrained by regulation. Internet interconnection has not received the same level of scrutiny. Recent debates regarding proposed mergers, ...

Maida, Elisabeth M. (Elisabeth Marigo)

2013-01-01T23:59:59.000Z

208

Simulation of one-minute power output from utility-scale photovoltaic generation systems.  

SciTech Connect

We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

2011-08-01T23:59:59.000Z

209

The role of the US electric utility industry in the commercialization of renewable energy technologies for power generation  

SciTech Connect

A key element in the federal government's plan to commercialize R/As was to guarantee a market for the generated electric power at an attractive price. This was provided by the passage of the Public Utility Regulatory Policies Act of 1978, better known as PURPA. Under PURPA, utilities were required to buy all that was produced by Qualifying Facilities or QFs{sup 2} and were required to pay for QF power based on the utilities; avoided costs. Utilities were also required to interconnect with such producers and provide supplemental and backup power to them at fair and reasonable rates. This article reviews the reason behind the rapid rise, and the subsequent oversupply, of R. As over the past decade in the context of the way PURPA was implemented. The article focuses on the critical role of the electric power industry in the commercialization of R/A technologies and the implications.

Nola, S.J.; Sioshansi, F.P. (Southern California Edison Co., Rosemead, CA (US))

1990-01-01T23:59:59.000Z

210

Green Power Network: Top Ten Utility Green Pricing Programs, December 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Green Power Program Renewable Energy Sales (as of December 2004) Rank Utility Resources Used Sales (kWh/year) Sales (Avg. MWa) 1 Austin Energy Wind, landfill gas, small hydro 334,446,101 38.2 2 Portland General Electricb Existing geothermal, wind, small hydro 262,142,564 29.9 3 PacifiCorpcd Wind, biomass,solar 191,838,079 21.9 4 Sacramento Municipal Utility Districte Landfill gas, wind, small hydro, solar 176,774,804 20.2 5 Xcel Energy Wind 137,946,000 15.7 6 National Gridfgh Biomass, wind, small hydro, solar 88,204,988 10.1 7 Los Angeles Department of Power & Water Wind and landfill gas 75,528,746 8.6 8 OG&E Electric Services Wind 56,672,568 6.5 9 Puget Sound Energy Wind, solar, biogas 46,110,000 5.3 10 We Energiese Landfill gas, wind, small hydro 40,906,410 4.7

211

A utility survey and market assessment on repowering in the electric power industry  

SciTech Connect

Section 1 of this report provides a background about the DOE High Performance Power Systems (HIPPS) program. There are two kinds of HIPPS cycles under development. One team is led by the Foster Wheeler Development Corporation, the other team is led by the United Technologies Research Center. These cycles are described. Section 2 summarizes the feedback from the survey of the repowering needs of ten electric utility companies. The survey verified that the utility company planners favor a repowering for a first-of-a-kind demonstration of a new technology rather than an all-new-site application. These planners list the major factor in considering a unit as a repowering candidate as plant age: they identify plants built between 1955 and 1965 as the most likely candidates. Other important factors include the following: the need to reduce operating costs; the need to perform major maintenance/replacement of the boiler; and the need to reduce emissions. Section 3 reports the results of the market assessment. Using the size and age preferences identified in the survey, a market assessment was conducted (with the aid of a power plant data base) to estimate the number and characteristics of US generating units which constitute the current, primary potential market for coal-based repowering. Nearly 250 units in the US meet the criteria determined to be the potential repowering market.

Klara, J.M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Weinstein, R.E. [Parsons Power Group Inc., Reading, PA (United States); Wherley, M.R. [Science Applications International Corp., Reston, VA (United States)

1996-08-01T23:59:59.000Z

212

A control system for improved battery utilization in a PV-powered peak-shaving system  

SciTech Connect

Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

Palomino, E [Salt River Project, Phoenix, AZ (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1996-08-01T23:59:59.000Z

213

Utility-Scale Silicon Carbide Power Transistors: 15 kV SiC IGBT Power Modules for Grid Scale Power Conversion  

SciTech Connect

ADEPT Project: Cree is developing silicon carbide (SiC) power transistors that are 50% more energy efficient than traditional transistors. Transistors act like a switch, controlling the electrical energy that flows through an electrical circuit. Most power transistors today use silicon semiconductors to conduct electricity. However, transistors with SiC semiconductors operate at much higher temperatures, as well as higher voltage and power levels than their silicon counterparts. SiC-based transistors are also smaller and require less cooling than those made with traditional silicon power technology. Cree's SiC transistors will enable electrical circuits to handle higher power levels more efficiently, and they will result in much smaller and lighter electrical devices and power converters. Cree, an established leader in SiC technology, has already released a commercially available SiC transistor that can operate at up to 1,200 volts. The company has also demonstrated a utility-scale SiC transistor that operates at up to 15,000 volts.

None

2010-09-01T23:59:59.000Z

214

Principle-agent Incentives, Excess Caution, and Market Inefficiency: Evidence from Utility Regulation  

E-Print Network (OSTI)

give LDCs incentives to reduce their natural gas purchasenatural gas distribution company may, due to regulatory incentives,incentives impose on utilities can distort forward natural gas

Borenstein, Severin; Busse, Meghan; Kellog, Ryan

2007-01-01T23:59:59.000Z

215

Principal-agent incentives, excess caution, and market inefficiency: Evidence from utility regulation  

E-Print Network (OSTI)

give LDCs incentives to reduce their natural gas purchasenatural gas distribution company may, due to regulatory incentives,incentives impose on utilities can distort forward natural gas

Borenstein, Severin; Busse, Meghan; KELLOGG, RYAN M

2007-01-01T23:59:59.000Z

216

Real-Time Power Control of Data Centers for Providing Regulation Service  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Power Control of Data Centers for Providing Regulation Service Real-Time Power Control of Data Centers for Providing Regulation Service Speaker(s): Ayse K. Coskun Date: November 19, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Girish Ghatikar Today's US power markets offer new opportunities for the energy consumers to reduce their energy costs by first promising an average consumption rate for the next hour and then by following a regulation signal broadcast by the independent system operators (ISOs), who need to match supply and demand in real time in presence of volatile and intermittent renewable energy generation. This talk proposes a management framework for the data centers to participate in the power markets. First, I will discuss how to solve the data center "regulation service (RS)" optimization problem to

217

Small power systems study technical summary report. Volume II. Inventory of small generating units in U. S. utility systems  

SciTech Connect

Data identifying small (less than or equal to 10 MW) power units in the United States are tabulated. The data are listed alphabetically by state and are reported sequentially for investor owned utilities, municipal utilities, and electrical cooperatives and other utility systems. For a given utility system, the generating units are divided into steam turbines, diesel generators and gas turbines. The number and size of generating units are listed. A summary tabulation of the number of generating units of each type and total generating capacity by state is presented.

Sitney, L.R.

1978-05-31T23:59:59.000Z

218

Public Utilities (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities (Florida) Utilities (Florida) Public Utilities (Florida) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Generating Facility Rate-Making Provider Florida Public Service Commission Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the state's support for incorporating cogenerators and small power producers into the grid, and directs the Public Service Commission to establish regulations and

219

Commercialization of coal diesel engines for non-utility and export power markets  

DOE Green Energy (OSTI)

The basic motivation behind this project is to develop coal-burning heat engine technology primarily for 10-100 MW modular stationary power applications in the late 1990`s and beyond, when oil and gas prices may return to the $5--7/MMBtu range. The fuel is a low-cost, coal-based liquid with the consistency of black paint, composed of 12-micron mean size premium 2% ash coal dust mixed 50/50 with water. The Clean Coal Diesel Plant of the future is targeted for the 10-100 MW non-utility generation (NUG) and small utility markets, including independent power producers (IPP) and cogeneration. A family of plant designs will be offered using the Cooper-Bessemer 3.8, 5.0, and 6.3 MW Model LS engines as building blocks. In addition, larger plants will be configured with an engine in the 10-25 MW class (Cooper will license the technology to other large bore stationary engine manufacturers). The reciprocating engine offers a remarkable degree of flexibility in selecting plant capacity. This flexibility exists because the engines are modular in every sense (fuel cell stacks have similar modularity). Scale-up is accomplished simply by adding cylinders (e.g., 20 vs 16) or by adding engines (4 vs 3). There is no scale-up of the basic cylinder size. Thus, there is essentially no technical development needed to scale-up the Cooper-Bessemer Clean Coal Diesel Technology all the way from 2 MW (one 6-cylinder engine) to 50 MW (eight 20-cylinder engines), other than engineering adaptation of the turbocharger to match the engine.

Wilson, R.P.; Balles, E.N.; Rao, K.; Benedek, K.R.; Benson, C.E.; Mayville, R.A.; Itse, D.; Kimberley, J.; Parkinson, J.

1993-11-01T23:59:59.000Z

220

Green Power Network: Top Ten Utility Green Pricing Programs, December 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Green Pricing Program Renewable Energy Sales (as of December 2002) Rank Utility Resources Sales (kWh/year) Sales (Avg. MW)1 1 Austin Energy Wind, landfill gas, solar 251,520,000 28.7 2 Sacramento Municipal Utility District Landfill gas, wind, solar 104,344,0002 11.9 3 Xcel Energy Wind and solar 103,739,0003 11.8 4 Los Angeles Department of Power and Water Wind and landfill gas 66,666,0004 7.6 5 Portland General Electric5 Wind and geothermal 57,989,000 6.6 6 PacifiCorp5 Wind and geothermal 55,615,000 6.3 7 Tennessee Valley Authority Wind, biomass, landfill gas, solar 35,955,000 4.1 8 We Energies Landfill gas, wind, hydro 35,161,000 4.0 9 Puget Sound Energy Wind and solar 20,334,000 2.3 10 Madison Gas and Electric Wind 15,593,000 1.8

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Utility-scale combined-cycle power systems with Kalina bottoming cycles  

SciTech Connect

A new power-generation technology, often referred to as the Kalina cycle, is being developed as a direct replacement for the Rankine steam cycle. It can be applied to any thermal heat source, low or high temperature. Among several Kalina cycle variations, there is one that is particularly well suited as a bottoming cycle for utility combined-cycle applications. It is the subject of this paper. Using an ammonia/water mixture as the working fluid and a condensing system based on absorption-refrigeration principles, the Kalina bottoming cycle outperforms a triple-pressure steam cycle by 16%. Additionally, this version of the Kalina cycle is characterized by an intercooling feature between turbine stages, diametrically opposite to normal reheating practice in steam plants. Energy and mass balances are presented for a 200-MW(electric) Kalina bottoming cycle. Kalina cycle performance is compared to a triple-pressure steam plant. Energy and mass balances are presented as well for a 200-MW(electric) Kalina direct-fired cycle designed for utility purposes.

Kalina, A.I.

1987-01-01T23:59:59.000Z

222

Economic impact of non-utility generation on electric power systems .  

E-Print Network (OSTI)

??Non-Utility Generation is a major force in the way electrical energy is now being produced and marketed, and electric utilities are reacting to the growth… (more)

Gupta, Rajnish

1997-01-01T23:59:59.000Z

223

Method and system for regulating peak residential power demand  

SciTech Connect

A temperature monitoring system that monitors temperature outside the residence and a supply system responsive to the monitoring system that controls the supply of electrical power to major home appliances such as air conditioning devices, food preparation devices, clothes drying devices, and water heating devices is described. The major home appliances are arranged in pairs and connected to a main power distribution system in these pair arrangements through a load dispatcher including continuity sensitive switches. The appliances are continuously connected to the electrical power distribution system when the outdoor temperature is below a predetermined value. However, when the outdoor temperature exceeds the predetermined value, the continuity switches then control the supply of power to the appliances by supplying power to one of the appliances to the exclusion of the other in each pair arrangement. Whenever electrical power is not being supplied to one of the appliances in the pair arrangement requiring power, the other of the appliances is supplied with electrical power. In accordance with another aspect of the invention, the outdoor temperature is monitored and controls the operation of an air conditioning unit. When the outdoor temperature exceeds a predetermined value, the air conditioner is cycled between on and off conditions on a timed, periodic basis without regard to the temperature inside the residence at least until the temperature outside the residence drops below the predetermined value. The air conditioner may be cycled between on and off conditions on the periodic basis until the outdoor temperature drops a predetermined amount below the predetermined value, for example, drops at least 5/sup 0/ or 6/sup 0/ below the predetermined value. 12 Claims, 5 Drawing Figures.

Dixon, W.A.

1975-12-09T23:59:59.000Z

224

Property:OpenEI/UtilityRate/DemandReactivePowerCharge | Open Energy  

Open Energy Info (EERE)

DemandReactivePowerCharge DemandReactivePowerCharge Jump to: navigation, search This is a property of type Number. Pages using the property "OpenEI/UtilityRate/DemandReactivePowerCharge" Showing 25 pages using this property. (previous 25) (next 25) 0 00b7ccdc-c7e0-40d2-907f-acb6ae828292 + 0.25 + 00e0b930-90c6-43c2-971a-91dade33f76a + 0.32 + 00e2a43f-6844-417a-b459-edf32d33b051 + 0.0092 + 00fb7dca-d0a6-4b11-b7de-791c2fb9f2e1 + 2.7 + 01a64840-7edc-4193-8073-ed5604e098ca + 0.83 + 035f3d22-3650-47cc-a427-bb35170db128 + 0.3 + 042f06f4-6a5b-424f-a31f-8e1c5a838700 + 0.27 + 0479cd85-894d-412b-b2ce-3b96912e9014 + 0.2 + 04bab597-fe1e-4507-8d90-144980aeba73 + 0.3 + 05211bd7-b6d3-425c-9f96-0845b7828c3c + 0.27 + 052fbe23-ac02-4195-b76d-e572cc53f669 + 0.68 + 05490683-8158-4d2f-ad96-66d5e4980890 + 0.25 +

225

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

Science Conference Proceedings (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

226

Benchmarking and incentive regulation of quality of service: an application to the UK electricity distribution utilities  

E-Print Network (OSTI)

. Regulation of Electricity Distribution The paradigm of electricity sector liberalisation systems separates the basic functions of electricity generation, transmission, distribution, and supply (or retailing). Generation plants produce electricity, which...

Giannakis, D; Jamasb, Tooraj; Pollitt, Michael G.

2004-06-16T23:59:59.000Z

227

Incentive regulation in the electric utility industry. Volume I. Final report  

Science Conference Proceedings (OSTI)

This report describes the results of conducting a comprehensive analysis of the issues involved in formulating an incentive regulation program and to develop and evaluate an incentive regulation program to be considered for implementation by FERC. In conducting this study, the analysis was structured with the primary objective of designing an incentive regulation program that would encourage the provision of electrical service to customers at the lowest possible price, consistent with a satisfactory level of service quality. To facilitate structuring such a program, we identified and analyzed a set of fundamental issues that must be considered in designing and implementing an incentive regulation program. Three major incentive programs were recommended: (1) a rate contol incentive program; (2) a construction cost control incentive program; and (3) an automatic rate adjustment mechanism. 83 references, 21 figures.

Goins, D.; Fisher, M.; Smiley, R.; Hass, J.; Ehrenberg, R.

1983-09-01T23:59:59.000Z

228

Autonomous induction generator/rectifier as regulated DC power supply for hybrid renewable energy systems  

Science Conference Proceedings (OSTI)

The present article deals with the wind power-generating unit of a Hybrid Photovoltaic-Wind Renewable Energy System (HPVWRES). The dynamic flux model of the self-excited induction generator used in the wind power-generating unit is given. This model, ... Keywords: experimental investigation, hybrid, induction generator, modeling, rectifier, regulation, renewable Energy

A. Nesba; R. Ibtiouen; S. Mekhtoub; O. Touhami; N. Takorabet

2005-10-01T23:59:59.000Z

229

Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators  

Science Conference Proceedings (OSTI)

The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ``major`` sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ``an ample margin of safety,`` the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country`s economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern.

Szpunar, C.B.

1993-08-01T23:59:59.000Z

230

Joint Electrical Utilities (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) < Back Eligibility Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease, construction, reconstruction, extension, remodeling, improvement, repair, and equipping of the facility. This chapter does not limit the powers or authority of

231

DOE/EA-1498: Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky (01/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1498 EA-1498 Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky Final Environmental Assessment January 2005 Note: No comments were received during the public comment period from September 25 to October 25, 2004. Therefore, no changes to the Draft Environmental Assessment were necessary. National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The proposed Federal action is to provide funding, through a cooperative agreement with the University of Kentucky Research Foundation (UKRF), Center for Applied Energy Research (CAER), for the design, construction, and operation of an advanced coal ash beneficiation processing plant at Kentucky Utilities (KU) Ghent Power Station in Carroll County, Kentucky.

232

Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion  

Science Conference Proceedings (OSTI)

ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

None

2010-09-01T23:59:59.000Z

233

COST IMPACT OF SAFE DRINKING WATER ACT COMPLIANCE FOR COMMISSION-REGULATED WATER UTILITIES  

E-Print Network (OSTI)

(NRRI) with funding provided by participating member commissions of the National Association of Regulatory Utility Commissioners (NARUC). The views and opinions of the authors do not necessarily state or reflect the views, opinions, or policies of the NRRI, the NARUC, or NARUC member commissions. EXECUTIVE SUMMARY This study was prepared for state public utility commissioners and their staff in response to the growing concern about the effect of the Safe Drinking Water Act (SDWA) on water utilities under their jurisdiction. Compliance with the SDWA is expected to have a significant impact on water utilities and the rates they charge for service. A sensitivity analysis was developed for this report using a hypothetical water company to identify the costs associated with alternative treatment processes. A total of eighteen different treatment processes are considered, from conventional treatment to granular activated carbon (GAC) adsorption and reverse osmosis. Capital costs for these processes range from $100,000 to $3.25 million for a water plant with a designed capacity of one million

Patrick C. Mann; Janice A. Beecher

1989-01-01T23:59:59.000Z

234

Sacramento Municipal Utility District, 100-MW photovoltaic power plant: draft environmental impact report  

SciTech Connect

The Sacramento Municipal Utility District proposes constructing a 100 MW solar photovoltaic electric generation facility adjacent to its Rancho Seco nuclear plant. After a brief description of the proposed facility, including the location and an explanation of the need for it, the project-specific environmental analysis is presented. This addresses: geology/seismicity, soils, biological resources, land use, air quality, water resources, water quality, wastes management, public/occupational health, safety, energy and material resources, cultural resources, socioeconomics, and aesthetics. For each of these areas, the setting is described, impacts analyzed, mitigation measures given where appropriate, and cumulative impacts described. Unavoidable adverse environmental effects, irreversible environmental changes and irretrievable commitments of energy and materials are summarized. Also briefly summarized is the relationship between local short-term use of the environment and the maintenance and enhancement of long-term productivity. Environmental benefits and disadvantages associated with various alternatives to building and operating the proposed solar photovoltaic power plant are described, considering project objectives other than producing electricity. (LEW)

Not Available

1982-02-01T23:59:59.000Z

235

Three Human Factors Engineering Training Courses for Utilities Involved in New Nuclear Power Plant Designs, Construction and Operati on  

Science Conference Proceedings (OSTI)

This product provides an assembled package of three Electric Power Research Institute (EPRI) developed human factors engineering (HFE) training courses to support a range of needs. The training materials for these courses were developed for utility personnel involved in new nuclear power plant (NPP) design, construction and operation. The training material is also useful for vendors and other stakeholders. The primary focus of the HFE training courses is the main control room and its human-system interfa...

2012-03-23T23:59:59.000Z

236

Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities  

Reports and Publications (EIA)

This report provides an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities.

Information Center

1994-06-15T23:59:59.000Z

237

Renewable Energy Price-Stability Benefits in Utility Green Power Programs  

SciTech Connect

This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

Bird, L. A.; Cory, K. S.; Swezey, B. G.

2008-08-01T23:59:59.000Z

238

Administrative Code Title 83, Public Utilities (Illinois) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administrative Code Title 83, Public Utilities (Illinois) Administrative Code Title 83, Public Utilities (Illinois) Administrative Code Title 83, Public Utilities (Illinois) < Back Eligibility Commercial Municipal/Public Utility Rural Electric Cooperative Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Illinois Program Type Environmental Regulations Generating Facility Rate-Making Renewables Portfolio Standards and Goals Safety and Operational Guidelines Training/Technical Assistance Provider Illinois Commerce Commission In addition to general rules for utilities, this article states regulations for the protection of underground utilities, promotional practices of electric and gas public utilities construction of electric power and

239

EEI Presentation: The Utility Challenge 2010-2020 - Environmental and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EEI Presentation: The Utility Challenge 2010-2020 - Environmental EEI Presentation: The Utility Challenge 2010-2020 - Environmental and Climate Regulation, Legislation and Litigation (October 29, 2010) EEI Presentation: The Utility Challenge 2010-2020 - Environmental and Climate Regulation, Legislation and Litigation (October 29, 2010) Presentation before the Electricity Advisory Committee, October 29, 2010 on The Utility Challenge 2010-2020: Environmental and Climate Regulation, Legislation and Litigation by the Edison Electric Institute (EEI). The Utility Challenge 2010-2020: Environmental and Climate Regulation, Legislation and Litigation More Documents & Publications EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 EA-1881: Final Environmental Assessment EA-1892: Draft Environmental Assessment

240

Public Utility Commission Regulation and Cost-Effectiveness of Title IV: Lessons for CAIR  

SciTech Connect

There is growing evidence that the cost savings potential of the Title IV SO{sub 2} cap-and-trade program is not being reached. PUC regulatory treatment of compliance options appears to provide one explanation for this finding. That suggests that PUCs and utility companies should work together to develop incentive plans that will encourage cost-minimizing behavior for compliance with the EPA's recently issued Clean Air Interstate Rule.

Sotkiewicz, Paul M.; Holt, Lynne

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

American Municipal Power (Public Electric Utilities)- Commercial Efficiency Smart Program (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

Efficiency Smart™ provides energy efficiency incentives and technical assistance to the American Municipal Power, Inc (AMP) network of public power communities. The Efficiency Smart service...

242

$18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations...

243

The ambiguous infrastructural ideal: the urbanisation of water and power and the 'golden age' of utility networks  

E-Print Network (OSTI)

1 The ambiguous infrastructural ideal: the urbanisation of water and power and the 'golden age' of utility networks Denis Bocquet (CNRS-LATTS) and Fionn Mackillop (LATTS) Abstract Current debates around historically allowed for service universalization and the emergence of a "modern infrastructural ideal

Paris-Sud XI, Université de

244

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS  

E-Print Network (OSTI)

and daily generation flexibility in the installed hydro capacity, the total annual energy produced, 2003] 6 #12;· Renewable (non-conventional hydro) energy generation. This includes wind, solar, conventional hydro power, and renewable energy capacities because these are already fully utilized. Nuclear

245

Update on State Air Emission Regulations That Affect Electric Power Producers (released in AEO2005)  

Reports and Publications (EIA)

Several States have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the States and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected States include Connecticut, Massachusetts, Maine, Missouri, New Hampshire, New Jersey, New York, North Carolina, Oregon, Texas, and Washington. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

Information Center

2005-02-01T23:59:59.000Z

246

Dynamic Power Flow Controller: Compact Dynamic Phase Angle Regulators for Transmission Power Routing  

SciTech Connect

GENI Project: Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid’s ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.

None

2012-01-03T23:59:59.000Z

247

Resource Management Services: Water Regulation, Part 600: Applications for Licenses and Preliminary Permits Under the Water Power Act (New York)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations provide instructions for applications proposing the construction, repair, or operation of hydropower sources. Applications are reviewed by the Water Power and Control Commission.

248

Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007  

Science Conference Proceedings (OSTI)

This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

Davis, M. W.; Broadwater, R.; Hambrick, J.

2007-07-01T23:59:59.000Z

249

Survey of Instrumentation and Control Practices in the Process Industries for Application to the Power Utilities  

Science Conference Proceedings (OSTI)

With impending deregulation and ever-tightening environmental constraints, utilities are increasing their emphasis on maximizing operating efficiency and reducing maintenance and operational costs. It is likely that utilities can use the capabilities of modern control and information management systems more effectively than they currently do. This report documents lessons learned over many years by experts in the process industries that might benefit the utility industry as it transitions to a competitiv...

1999-04-08T23:59:59.000Z

250

Use of Level 3 PSA in Risk Informed, Performance Based Regulation of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

At the request of the South Texas Electric Generating Station (STP), EPRI assessed the role of probabilistic safety assessment (PSA) Level 3 consequence analysis in the regulation of nuclear power plants. By surveying use of consequence analysis codes, their development, and current status, this report attempts to put Level 3 PSAs in perspective relative to their usefulness for making regulatory decisions.

1998-02-19T23:59:59.000Z

251

Using Distributed Energy Resources to Supply Reactive Power for Dynamic Voltage Regulation  

Science Conference Proceedings (OSTI)

Abstract Distributed energy (DE) resources are power sources located near load centers and equipped with power electronics converters to interface with the grid, therefore it is feasible for DE to provide reactive power (along with active power) locally for dynamic voltage regulation. In this paper, a synchronous condenser and a DE source with an inverter interface are implemented in parallel in a distribution system to regulate the local voltage. Developed voltage control schemes for the inverter and the synchronous condenser are presented. Experimental results show that both the inverter and the synchronous condenser can regulate the local voltage instantaneously although the dynamic response of the inverter is much faster than the synchronous condenser. In a system with multiple DEs performing local voltage regulation, the interaction of multiple DE at different locations under different load levels may have an impact to the control parameter setting for each individual DE control system. Future research is needed to find out the interaction of DEs to identify the optimal control parameter settings with the consideration of many factors such as system configuration, load variation, and so on

Xu, Yan [ORNL; Li, Fangxing [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Rizy, D Tom [ORNL; Kueck, John D [ORNL

2008-01-01T23:59:59.000Z

252

The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments  

Science Conference Proceedings (OSTI)

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

1994-06-01T23:59:59.000Z

253

Italian Association of Energy EconomistsYardstick Regulation of Electricity Distribution Utilities Based on the Estimation of an Average Cost Function *  

E-Print Network (OSTI)

In this paper we estimate an average-cost function for a panel of 45 Swiss electricity distribution utilities as a basis for yardstick regulation of the distribution-network access prices. Unlike the existing literature, we separate the electricity sales function of utilities from the network operation function. Several exogenous variables measuring the heterogeneity of the service areas were included in the model specification in order to allow the regulator to set differentiated benchmark prices incorporating this heterogeneity. We can identify different exogenous service area characteristics that affect average cost. These are the load factor, the customer density and the output density of different consumer groups. Moreover, the estimation results indicate the existence of significant economies of scale; i.e. most of the Swiss utilities in our sample are too small to reach minimum efficient scale. However, to give the small utilities incentives to merge the size of the utilities must not be included in the yardstick calculation. 1.

Massimo Filippini; Jörg Wild; Massimo Filippini; Jörg Wild

1999-01-01T23:59:59.000Z

254

A Regulator's View of Cogeneration  

E-Print Network (OSTI)

The Pennsylvania Public Utility Commission regulates essentially all types of public utilities and has the authority to investigate issues of public interest. To establish a point of reference, Pennsylvania's utilities contribute about 5 percent of the total national electric generation. In view of the energy requirements of Pennsylvania's industry and the impact of increasing energy costs on employment the Commission directed its technical staff to investigate the potential for industrial cogeneration and a pricing formula consistent with the electric utilities' costs. The Commission's technical staff has completed proposed regulations to implement the provisions of the Public Utility Regulatory Policies Act (PURPA) Section 210 concerning small power producers. The regulations incorporate suggestions from both potential producers and utilities. Staff has devised a strategy for utility purchases of energy and capacity which should be of interest to regulators in other jurisdictions, encourage potential cogenerators and satisfy utilities.

Shanaman, S. M.

1982-01-01T23:59:59.000Z

255

Power Harvesting for Sensors in Electric Power Utility Applications: State of Science Review and Test Bed Development  

Science Conference Proceedings (OSTI)

The value of wireless sensor networks in remote locations or at high-voltage applications depends on the networks’ reliable operation for extended period of times without human intervention. Therefore, a major consideration when using wireless sensors is the problem of providing power to the sensors. Presently, wireless sensor nodes are commonly powered by batteries. This situation presents a substantial roadblock to the widespread deployment of wireless sensors due to battery lifetimes and other issues ...

2011-12-21T23:59:59.000Z

256

Understanding Premium Power Grades: Final Report  

Science Conference Proceedings (OSTI)

For many utility customers, quality of power has become as important as reliability of power, and providing this required quality serves as the basis of a premium power offering. This report addresses the key technical and economic issues related to premium power grades that utilities, regulators, and end users need to understand to make informed decisions.

2000-11-17T23:59:59.000Z

257

Documenting Wind Speed and Power Deficits behind a Utility-Scale Wind Turbine  

Science Conference Proceedings (OSTI)

High-spatial-and-temporal-resolution radial velocity measurements surrounding a single utility-scale wind turbine were collected using the Texas Tech University Ka-band mobile research radars. The measurements were synthesized to construct the ...

Brian D. Hirth; John L. Schroeder

2013-01-01T23:59:59.000Z

258

Studies of solar hybrid repowering of utility electric-power plants (interim report)  

DOE Green Energy (OSTI)

A baseline repowering configuration used as a reference is defined, and the potential benefits of repowering are outlined from the programmatic, utility, and national viewpoints. The market size for solar repowering is reviewed with the split by plants and their requirements imposed on solar technology and plant design. Various solar technology implementation options are discussed. Highlights of the key results of studies on the economics of integration of solar repowered plants into utility systems are presented. (LEW)

Not Available

1980-01-01T23:59:59.000Z

259

Human Factors Engineering Training Course for Utilities Involved in New Nuclear Power Plant Designs, Construction, and Operation  

Science Conference Proceedings (OSTI)

This report provides training materials for a three-day course in human factors engineering (HFE). The course was developed for utility personnel involved in new nuclear power plant (NPP) design and is also useful for vendors and other stakeholders. The primary focus of the HFE training is the main control room and its human-system interfaces (HSIs). However, it also addresses other operator work locations such as the remote shutdown station, local control stations, and emergency response facilities. In ...

2011-12-23T23:59:59.000Z

260

Integrated Control of Active and Reactive Power Flow Controllers to Optimize Transmission System Utilization  

Science Conference Proceedings (OSTI)

Optimized power system control requires oversight of numerous control elements to efficiently and reliably transfer power across the system. The objective of this project was to minimize losses in the Consolidated Edison Electric power system via modification of control variables available to the system operator. These variables include generator voltages, transformer voltage/phase angle tap set points, and switched shunt status. System constraints include bus voltages, branch/interface flow limits, ...

2012-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design and analysis of modern three-phase AC/AC power converters for AC drives and utility interface  

E-Print Network (OSTI)

Significant advances in modern ac/ac power converter technologies and demands of industries have reached beyond standard ac/ac power converters with voltage-source inverters fed from diode rectifiers. Power electronics converters have been matured to stages toward compact realization, increased high-power handling capability, and improving utility interface. Modern ac/ac power converter topologies with various control strategies have been introduced for the further improvements, such as matrix converters, current-fed converters, PWM rectifiers, and active power filters. In this dissertation, several new converter topologies are proposed in conjunction with developed control schemes based on the modern ac/ac converters which enhance performance and solve the drawbacks of conventional converters. In this study, a new fault-tolerant PWM strategy is first proposed for matrix converters. The added fault-tolerant scheme would strengthen the matrix converter technology for aerospace and military applications. A modulation strategy is developed to reshape output currents for continuous operation, against fault occurrence in matrix converter drives. This study designs a hybrid, high-performance ac/ac power converter for high power applications, based on a high-power load commutated inverter and a mediumpower voltage source inverter. Natural commutation of the load commutated inverter is actively controlled by the voltage source inverter. In addition, the developed hybrid system ensures sinusoidal output current/voltage waveforms and fast dynamic response in high power areas. A new topology and control scheme for a six-step current source inverter is proposed. The proposed topology utilizes a small voltage source inverter, to turn off main thyristor switches, transfer reactive load energy, and limit peak voltages across loads. The proposed topology maximizes benefits of the constituent converters: highpower handling capability of large thyristor-based current source inverters as well as fast and easy control of small voltage source inverters. This study analyzes, compares, and evaluates two topologies for unity power factor and multiple ac/ac power conversions. Theoretical analyses and comparisons of the two topologies, grounded on mathematical approaches, are presented from the standpoint of converter kVA ratings, dc-link voltage requirements, switch ratings, semiconductor losses, and reactive component sizes. Analysis, simulation, and experimental results are detailed for each proposed topology.

Kwak, Sangshin

2006-05-01T23:59:59.000Z

262

30 MJ superconducting magnetic energy storage performance on the Bonneville Power Administration utility transmission system*  

DOE Green Energy (OSTI)

The 30 MJ, 10 MW superconducting magnetic energy storage (SMES) system was devised to interact in the Western U.S. Power System as an alternate means to damp unstable oscillations at 0.35 Hz on the Pacific HVAC Intertie. The SMES unit was installed at the Tacoma Substation of the Bonneville Power Administration (BPA). The operating limits of the 30 MJ SMES unit were established, and different means of controlling real and reactive power were tested. The unit can follow a sinusoidal power demand signal with an amplitude of up to 8.6 MW with the converter working in a 12 pulse mode. When the converter operates in the constant VAR mode, a time varying real power demand signal of up to 5 MW can be met. Experiments showed that the Pacific AC Intertie has current and reactive power variations of the same frequency as the modulating frequency of the SMES device. Endurance tests were run to assess the reliability of the SMES subsystems with a narrow band noise input, which is characteristic of the modulation signal for stabilizer operation. In this mode, the energy of the power spectrum is not concentrated at one frequency to avoid exciting a resonance frequency of the ac transmission system. During the endurance tests, parameters of the ac power system were determined. Accurate power system data are necessary for tuning the control algorithm so that the SMES unit can operate in the closed loop stabilizer mode.

Rogers, J.D.; Boenig, H.J.

1984-08-01T23:59:59.000Z

263

UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program  

SciTech Connect

The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never a member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.

Wolfe, Lothar PhD

2000-03-01T23:59:59.000Z

264

Carbon Dioxide Footprint of the Northwest Power System Comments submitted by Grant County Public Utility District  

E-Print Network (OSTI)

Carbon Dioxide Footprint of the Northwest Power System Comments submitted by Grant County Public paper: Carbon Dioxide Footprint of the Northwest Power System, dated September 13, 2007. The Grant done a very thorough job of assessing the current and future carbon dioxide footprints of the Northwest

265

The electric power industry : deregulation and market structure  

E-Print Network (OSTI)

The US electricity industry currently consists of vertically integrated regional utilities welding monopolistic power over their own geographic markets under the supervision of state and federally appointed regulators. ...

Thomson, Robert George

1995-01-01T23:59:59.000Z

266

Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR  

SciTech Connect

This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

1983-08-01T23:59:59.000Z

267

Soft-stall control versus furling control for small wind turbine power regulation  

DOE Green Energy (OSTI)

Many small wind turbines are designed to furl (turn) in high winds to regulate power and provide overspeed protection. Furling control results in poor energy capture at high wind speeds. This paper proposes an alternative control strategy for small wind turbines -- the soft-stall control method. The furling and soft-stall control strategies are compared using steady state analysis and dynamic simulation analysis. The soft-stall method is found to offer several advantages: increased energy production at high wind speeds, energy production which tracks the maximum power coefficient at low to medium wind speeds, reducing furling noise, and reduced thrust.

Muljadi, E.; Forsyth, T.; Butterfield, C.P.

1998-07-01T23:59:59.000Z

268

Tree Growth Regulators for Management of Trees in Electric Utility Rights-of-Way: A Literature and Current Application Status Review  

Science Conference Proceedings (OSTI)

Chemical growth regulators -- initially developed for horticultural and field crops -- provide a promising, cost-effective tool for management of trees under electric transmission and distribution lines in utility rights-of-way (ROWs). Paclobutrazol (commercial product Profile® 2SC) and flurprimidol (commercial product Cutless® tree implants) are potent tree growth regulators for a broad range of herbaceous and woody gymnosperm and angiosperm species. This review summarizes the published literatu...

2000-10-31T23:59:59.000Z

269

Utility Grid-Connected Distributed Power Systems National Solar Energy Conference  

E-Print Network (OSTI)

OF THE PROPOSED REGULATION REPEAL: UCF-8.002 Solar Thermal Collector and PV Module Testing Standards. (1) The Testing and Standards Program shall apply to solar thermal collectors and PV modules submitted for testing thermal collectors or PV modules in Florida. (3) The criteria for testing the performance of solar thermal

270

Utility Activities for Nuclear Power Plant Life Cycle Management and License Renewal  

Science Conference Proceedings (OSTI)

This report provides guidance to nuclear utilities on steps to take, industry activities undertaken, and products developed for life cycle management and license renewal (LCM/LR) activities. It provides information for establishing LCM/LR programs and may be useful to those underway.

1995-06-27T23:59:59.000Z

271

Wind Power for America: Rural Electric Utilities Harvest a New Crop  

Wind Powering America (EERE)

Independent Power Independent Power Producer Financing Co-op Financing Cost of Energy (cents /kWh) 8.0 7.0 6.0 5.0 4.0 3.0 Installed Wind Turbine Capacity 2 MW 10 MW 50 MW 50 MW Without Federal incentives (current $) With Federal incentives (current $) WIND ECONOMICS AT A GLANCE Wind power is one of mankind's oldest energy sources. In 1700, the most powerful machines in Europe were Dutch windmills. During the 1930s, half a million windmills pumped water on the Great Plains. Today's wind turbine is a far cry from the old water pumpers. By using state-of-the-art engineering, wind turbine manufacturers have produced sleek, highly efficient machines that produce inexpensive electricity, and lots of it. Depending on their size and location, wind farms can produce electricity for 4-6 cents per kilowatt-hour (kWh).

272

Utilizing Load Response for Wind and Solar Integration and Power System Reliability  

DOE Green Energy (OSTI)

Responsive load is still the most underutilized reliability resource in North America. This paper examines the characteristics of concern to the power system, the renewables, and to the loads.

Milligan, M.; Kirby, B.

2010-07-01T23:59:59.000Z

273

Engineering and Economic Evaluation of Utility-Scale Wind Power Plants  

Science Conference Proceedings (OSTI)

This report addresses the status of wind turbine and related technology for both onshore and offshore applications and presents the results of an engineering and economic evaluation of the performance and cost of onshore and offshore wind power plants.

2010-05-20T23:59:59.000Z

274

Computer simulation of the operations of utility grid connected photovoltaic power plants  

Science Conference Proceedings (OSTI)

In order to evaluate the commercial viability of photovoltaic power systems it is necessary to have reliable estimates and descriptions of the supply of electricity generated by the solar technology, the demand for that electricity, and the market application. ...

Chester S. Borden

1980-05-01T23:59:59.000Z

275

Test of Polymer Electrolyte Membrane Fuel Cell / Uninterruptible Power Supply for Electric Utility Battery Replacement Markets  

Science Conference Proceedings (OSTI)

A sub-scale polymer electrolyte membrane (PEM) fuel cell/capacitor uninterruptible power supply (UPS) was designed and constructed based on previous research. Testing of this sub-scale UPS as a replacement for existing battery systems is documented in this report. The project verified that the PEM fuel cells, coupled with an ultracapacitor, could functionally replace batteries used for emergency power at electric generating stations. Remaining steps to commercialization include continuing market research...

2001-12-18T23:59:59.000Z

276

The influence of utility - interactive PV system characteristics to AC power network  

SciTech Connect

Two experimental PV systems are constructed and operated. One is a system with a line-commutated inverter and another uses a self-commutated inverter and is operated alone as an independent power source when the power network is in trouble. Operating and generating characteristics have been measured for the line-commutated inverter system and for the self-commutated inverter system connected to the Ac simulated network which simulates the actual power distribution system. For the system voltage fluctuation, amplitude of variation in AC voltage was measured at the joining point of the simulated distribution network connected to the PV system by changing the system short circuit current ration. For the harmonics characteristics, the line-commutated inverter system is a harmonic current power source and the self-commutated inverter system is a harmonic voltage power source. The protective sequence for failures in the power system or PV system is also studied. An optimum protection control method with an emphasis on safety is proposed for the self-commutated inverter system. This paper also describes examples of failures in solar cell arrays during the operation of these PV systems and proposes data for improving the reliability of solar cell arrays.

Takeda, Y.; Kaminosono, H.; Takigawa, K.

1982-09-01T23:59:59.000Z

277

Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter  

Science Conference Proceedings (OSTI)

Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

Chakraborty, S.; Kroposki, B.; Kramer, W.

2008-11-01T23:59:59.000Z

278

NRRI summary of Texas Utility Commission staff analysis of the incentive regulation plan established in Docket No. 8585: The first three years  

Science Conference Proceedings (OSTI)

A Texas Public Utility Commission Staff review of Southwestern Bell Telephone Company of Texas` (SWBT of Texas) incentive regulation plan (the Plan) yielded mixed results. The evaluation of the Plan found that it provided benefits to Texas ratepayers, yet, as with any experiment, there have been both successes and failures in different aspects of the Plan.

NONE

1995-12-31T23:59:59.000Z

279

Optimal consumption and investment with bounded downside risk for power utility functions  

E-Print Network (OSTI)

We investigate optimal consumption and investment problems for a Black-Scholes market under uniform restrictions on Value-at-Risk and Expected Shortfall. We formulate various utility maximization problems, which can be solved explicitly. We compare the optimal solutions in form of optimal value, optimal control and optimal wealth to analogous problems under additional uniform risk bounds. Our proofs are partly based on solutions to Hamilton-Jacobi-Bellman equations, and we prove a corresponding verification theorem. This work was supported by the European Science Foundation through the AMaMeF programme.

Kluppelberg, Claudia

2010-01-01T23:59:59.000Z

280

Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power  

DOE Green Energy (OSTI)

The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

Harder, J.E.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Green Power Network: Top Ten Utility Green Pricing Programs, December 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Green Pricing Program Renewable Energy Sales (as of December 2008) Rank Utility Resources Used Sales (kWh/year) Sales (Avg. MW)a 1 Austin Energy Wind, landfill gas 723,824,901 82.6 2 Portland General Electricb Wind, biomass 681,943,576 77.9 3 PacifiCorpcde Wind, biomass, landfill gas, solar 492,892,222 56.3 4 Xcel Energyef Wind 362,040,082 41.3 5 Sacramento Municipal Utility Districte Wind, solar, biomass, landfill gas, hydro 325,275,628 37.1 6 Puget Sound Energye Wind, solar, biomass, landfill gas, hydro 291,166,600 33.2 7 Public Service Company of New Mexico Wind 176,497,697 20.1 8 We Energiese Wind, landfill gas, solar 176,242,630 20.1 9 National Gridgh Biomass, wind, small hydro, solar 174,612,444 19.9 10 PECOi Wind 172,782,490 19.7

282

High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation  

DOE Green Energy (OSTI)

Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that on a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.

Grijalva, R. L.; Sanemitsu, S. K.

1978-11-01T23:59:59.000Z

283

Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines  

DOE Green Energy (OSTI)

The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

Kearney, D.

2013-03-01T23:59:59.000Z

284

Enloe power development feasibility assessment report. Public utility district No. 1 of Okanogan County  

DOE Green Energy (OSTI)

The feasibility of rehabilitating an existing power house at the Enloe Dam in Washington was evaluated with consideration of expected power production, social and environmental impacts, regulatory aspects, technical requirements, financing, costs, and market potential. This assessment showed that rebuilding the existing powerhouse and appurtenant facilities is technically feasible. Rebuilding the existing turbines and generators proved to be the most desirable of three alternatives considered. The following four factors lead to this conclusion: rebuilding the old equipment is less costly than installing new turbines and generators; no major structural changes to the powerhouse would be required; rebuilding the turbines with increased flow capacity made the rebuilding alternative competitive with new equipment from an energy production standpoint; and rebuilding is compatible with the Enloe site's recent addition to the National Register of Historic Places.

None

1979-02-01T23:59:59.000Z

285

Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets  

DOE Green Energy (OSTI)

The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

1992-12-31T23:59:59.000Z

286

Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets  

DOE Green Energy (OSTI)

The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

1992-01-01T23:59:59.000Z

287

Investigation of a family of power conditioners integrated into a utility grid: final report Category I  

DOE Green Energy (OSTI)

A study was conducted of the requirements for and technologies applicable to power conditioning equipment in residential solar photovoltaic systems. A survey of companies known or thought to manufacture power conditioning equipment was conducted to asses the technology. Technical issues regarding ac and dc interface requirements were studied. A baseline design was selected to be a good example of existing technology which would not need significant development effort for its implementation. Alternative technologies are evaluated to determine which meet the baseline specification, and their costs and losses are evaluated. Areas in which cost improvements can be obtained are studied, and the three best candidate technologies--the current-sourced converter, the HF front end converter, and the programmed wave converter--are compared. It is concluded that the designs investigated will meet, or with slight improvement could meet, short term efficiency goals. Long term efficiency goals could be met if an isolation transformer were not required in the power conditioning equipment. None of the technologies studied can meet cost goals unless further improvements are possible. (LEW)

Wood, P.; Putkovich, R.P.

1981-07-01T23:59:59.000Z

288

Alternative Regulation (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Utility regulators, including the Public Service Board, have applied a new type of regulation, often called "alternative regulation" or "incentive regulation." There are many variants of this type...

289

{open_quotes}Secure Bus{close_quotes} disturbance-free power at the utility substation level  

Science Conference Proceedings (OSTI)

Over the last 18 months Public Service Company of New Mexico (PNM), El Camino Real Engineering, Inc. (CRE), Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) have worked on the development of disturbance-free power at the medium voltage substation level. The work resulted in the Secure Bus concept, a system in which a medium voltage bus in a substation is immune to power outages and voltage sags on the utility source. The Secure Bus voltage is also immune to voltage sags resulting from faults on any distribution feeder connected to the bus. The Secure Bus concept originated from work conducted to improve power quality for large high-tech manufacturing facilities, in particular for large semiconductor manufacturing plants. For the demands on quality power of a modern facility conventional equipment is not adequate for protecting the end user. For example, the operation of conventional vacuum breakers during short circuit conditions on a feeder circuit, requiring 3 to 5 cycles for breaker opening, does not allow for fast enough current interruption to avoid a voltage dip on the main bus. A sever voltage sag could result in a shut down of sensitive equipment being supplied by the other feeder circuits, which are connected to the main bus. The circumvent the problem, a fast breaker was introduced which interrupts the short circuit before the current causes a significant voltage disturbance. To make the bus immune also to power disturbances caused by power outages, energy storage is introduced to provide the necessary energy back-up in case the primary source is not available.

Boenig, H.J. [Los Alamos National Lab., NM (United States); Jones, W.H. [El Camino Real Engineering, Inc., Corrales, NM (United States)

1996-12-01T23:59:59.000Z

290

Electric utility system planning studies for OTEC power integration. Final report  

DOE Green Energy (OSTI)

Florida Power Corporation (FPC) conducted an evaluation of the possible integration of OTEC into the FPC system. Existing system planning procedures, assumptions, and corporate financial criteria for planning new generating capacity were used without modification. A baseline configuration for an OTEC plant was developed for review with standard planning procedures. The OTEC plant characteristics and costs were incorporated in considerable detail. These basic inputs were examined using the FPC system planning methods. It was found that with the initial set of conditions, OTEC would not be economically viable. Using the same system planning procedures, a number of adjustments were made to the key study assumptions. It was found that two considerations dominate the analysis; the assumed rate of fuel cost escalation, and the projected capital cost of the OTEC plant. The analysis produced a parametric curve: on one hand, if fuel costs were to escalate at a rate greater than assumed (12% vs the assumed 5% for coal), and if no change were made to the OTEC input assumptions, the basic economic competitive criteria would be equivalent to the principal alternative, coal fueled plants. Conversely, if the projected cost of the OTEC plant were to be reduced from the assumed $2256/kW to $1450/kW, the economic competitiveness criterion would be satisfied. After corporate financial analysis, it was found that even if the cost competitive criterion were to be reached, the plan including OTEC could not be financed by Florida Power Corporation. Since, under the existing set of conditions for financing new plant capital requirements, FPC could not construct an OTEC plant, some other means of ownership would be necessary to integrate OTEC into the FPC system. An alternative such as a third party owning the plant and selling power to FPC, might prove attractive. (WHK)

None

1980-11-30T23:59:59.000Z

291

Voltage/Pitch Control for Maximization and Regulation of Active/Reactive Powers in Wind Turbines with Uncertainties  

E-Print Network (OSTI)

This paper addresses the problem of controlling a variable-speed wind turbine with a Doubly Fed Induction Generator (DFIG), modeled as an electromechanically-coupled nonlinear system with rotor voltages and blade pitch angle as its inputs, active and reactive powers as its outputs, and most of the aerodynamic and mechanical parameters as its uncertainties. Using a blend of linear and nonlinear control strategies (including feedback linearization, pole placement, uncertainty estimation, and gradient-based potential function minimization) as well as time-scale separation in the dynamics, we develop a controller that is capable of maximizing the active power in the Maximum Power Tracking (MPT) mode, regulating the active power in the Power Regulation (PR) mode, seamlessly switching between the two modes, and simultaneously adjusting the reactive power to achieve a desired power factor. The controller consists of four cascaded components, uses realistic feedback signals, and operates without knowledge of the C_p-...

Guo, Yi; Jiang, John N; Tang, Choon Yik; Ramakumar, Rama G

2010-01-01T23:59:59.000Z

292

Definition: Electric utility | Open Energy Information  

Open Energy Info (EERE)

utility utility Jump to: navigation, search Dictionary.png Electric utility A corporation, agency, or other legal entity that owns and/or operates facilities for the generation, transmission, distribution or sale of electricity primarily for use by the public. Also known as a power provider.[1][2] View on Wikipedia Wikipedia Definition An electric utility is an electric power company that engages in the generation, transmission, and distribution of electricity for sale generally in a regulated market. The electrical utility industry is a major provider of energy in most countries. It is indispensable to factories, commercial establishments, homes, and even most recreational facilities. Lack of electricity causes not only inconvenience, but also economic loss due to reduced industrial production. Utility in the terms of power system,

293

Analysis of an improved solar-powered cooling system utilizing open-cycle absorbent regeneration  

DOE Green Energy (OSTI)

A solar-powered cooling system which promises high system C.O.P.'s and low collector costs is analyzed. It consists of a desiccant and an absorption cooling system operating in series to both dry and cool the air. A common solution of lithium chloride is used as the absorbant. The lithium chloride solution is regenerated by evaporating the excess water to the atmosphere in an ''open'' collector. This collector consists merely of a blackened flat surface. The weak solution of lithium chloride is introduced at the top of the collector and then flows by gravity over the entire collector surface where it is subsequently heated and dried. The daily performance of this combined system is compared by computer simulation to that of either an absorption or desiccant system alone using actual weather data for five typical U.S. cities. The performance improvement of the combined system ranged from 25% to 95%, the greatest improvement being for humid, windy conditions.

Collier, R.K.

1978-01-01T23:59:59.000Z

294

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

Costs Revenue Costs a b Using utilities’ “internal rule ofof revenues and costs based on a utilities’ "internal ruleRevenue and costs of using EDVs for regulation: power capacity limited only by the internal

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

295

Coordinated regulation of wind power and hydro power with separate ownership; samverkan mellan vindkraft och vattenkraft med olika ägare.  

E-Print Network (OSTI)

?? bad format, retyped Both wind power and hydro power must be built in immediate proximity to the source. Almost all hydro power is concentrated… (more)

Jäderström, Anna

2004-01-01T23:59:59.000Z

296

An assessment of the use of direct contact condensers with wet cooling systems for utility steam power plants  

Science Conference Proceedings (OSTI)

Potential use of a direct contact condenser for steam recovery at the turbine exhaust of a utility power plant using a wet cooling system is investigated. To maintain condensate separate from the cooling water, a bank of plate heat exchangers is used. In a case study for a nominal 130-MW steam power plant, two heat rejection systems, one using a conventional surface condenser and another using a direct contact condenser together with a set of plate heat exchangers are compared on the basis of their performance, operation and maintenance, and system economics. Despite a higher initial cost for the direct contact system, the advantages it offers suggests that this system is viable both technically and economically. Key to the improvements the direct contact system offers is a higher equivalent availability for the power system. Reduction of dissolved oxygen and other metallic ions in the condensate, reduced use of chemical scavengers and polishers, and potential elimination of a plant floor are also major benefits of this system. Drawbacks include added plant components and higher initial cost. The potential for long-term cost reduction for the direct contact system is also identified.

Bharathan, D.; Hoo, E. [National Renewable Energy Lab., Golden, CO (United States); D`Errico, P. [Stone and Webster Engineering Corp., Boston, MA (United States)

1992-02-01T23:59:59.000Z

297

Where do we go from here Now that some utilities have won the incentive regulation war, many executives are wondering how they can manage the peace  

Science Conference Proceedings (OSTI)

Productivity is a measure of how efficiently a company uses its resources. The productivity budgeting model (PBM) is one tool that can aid management in the transition from cost-plus, rate-of-return regulation to the market-oriented, cost-control environment of incentive regulation. Most, if not all, utilities use some type of budgeting/forecasting process that provides the blueprint for future company activity. The PBM reveals the growth in total factor productivity (TFP) implied by a budget and, thus, provides a forecast of the company's future efficiency. The PBM can be used to guide resource usage, because it analyzes investment, labor force, and operating decisions from an economic efficiency perspective. In general, the model makes the budgeting process more relevant to the kind of decisions utility management must make for long-term success under incentive regulation. Furthermore, under many incentive regulation. Furthermore, under many incentive regulation plans (such as the FCC's price-cap plan), a company must meet or beat the productivity offset to increase its profitability. With PBM, the company can determine whether its proposed budget is on track and devise a plan to meet any offset. The PBM can also be used to track productivity using financial data from the period in question.

Christensen, L.R.; Meitzen, M.E.; Schoech, P.E.

1993-06-15T23:59:59.000Z

298

An underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents (OSTI)

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

Hampel, V.E.

1988-05-17T23:59:59.000Z

299

Underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents (OSTI)

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

Hampel, Viktor E. (Pleasanton, CA)

1989-01-01T23:59:59.000Z

300

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market  

DOE Green Energy (OSTI)

The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comparison of Control System Performance for Fossil-Fuel Fired Power Plants Using Emission Measurement Data from the Utility Industr y Information Collection Request for Hazardous Air Pollutants  

Science Conference Proceedings (OSTI)

On On May 3, 2011, the U.S. Environmental Protection Agency (EPA) published a notice of proposed rulemaking (40 Code of Federal Regulations Parts 60 and 63: National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-FuelFired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam-Generating Units). The intent of this rulemaking is to set Maximum Achiev...

2011-12-23T23:59:59.000Z

302

Tracking the Reliability of the U.S. Electric Power System: An Assessment of Publicly Available Information Reported to State Public Utility Commissions  

SciTech Connect

Large blackouts, such as the August 14-15, 2003 blackout in the northeasternUnited States and Canada, focus attention on the importance of reliable electric service. As public and private efforts are undertaken to improve reliability and prevent power interruptions, it is appropriate to assess their effectiveness. Measures of reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities to state public utility commissions for many years. This study examines current state and utility practices for collecting and reporting electricity reliability information and discusses challenges that arise in assessing reliability because of differences among these practices. The study is based primarily on reliability information for 2006 reported by 123 utilities to 37 state public utility commissions.

LaCommare, Kristina H.; Eto, Joseph H.

2008-10-10T23:59:59.000Z

303

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission First Quarter 1984  

DOE Green Energy (OSTI)

At the end of the First Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 322, with a total estimated nominal capacity of 2,643 MW. Of these totals, 215 projects, capable of producing 640 MW, are operational. A map indicating the location of operational facilities under contract with PG and E is provided. Developers of cogeneration, solid waste, or biomass projects had signed 110 contracts with a potential of 1,467 MW. In total, 114 contracts and letter agreements had been signed with projects capable of producing 1,508 MW. PG and E also had under active discussion 35 cogeneration projects that could generate a total of 425 MW to 467 MW, and 11 solid waste or biomass projects with a potential of 94 MW to 114 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 5 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 32, with a generating capability of 848 MW. Also, discussions were being conducted with 18 wind farm projects, totaling 490 MW. There were 101 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 6 other small wind projects under active discussion. There were 64 hydroelectric projects with signed contracts and a potential of 148 MW, as well as 75 projects under active discussion for 316 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 187 MW, that Pg and E was planning to construct.

None

1984-01-01T23:59:59.000Z

304

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Fourth Quarter 1983  

DOE Green Energy (OSTI)

At the end of 1983, the number of signed contracts and letter agreements for cogeneration and small power production projects was 305, with a total estimated nominal capacity of 2,389 MW. Of these totals, 202 projects, capable of producing 566 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration, solid waste, or biomass projects had signed 101 contracts with a potential of 1,408 MW. In total, 106 contracts and letter agreements had been signed with projects capable of producing 1,479 MW. PG and E also had under active discussion 29 cogeneration projects that could generate a total of 402 MW to 444 MW, and 13 solid waste or biomass projects with a potential of 84 MW to 89 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 28, with a generating capability of 618 MW. Also, discussions were being conducted with 14 wind farm projects, totaling 365 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 8 other small wind projects under active discussion. There were 59 hydroelectric projects with signed contracts and a potential of 146 MW, as well as 72 projects under active discussion for 169 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E was planning to construct. Table B displays the above information. In tabular form, in Appendix A, are status reports of the projects as of December 31, 1983.

None

1983-01-01T23:59:59.000Z

305

Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation  

DOE Green Energy (OSTI)

Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into production 25 MW/yr manufacturing capacity for complete MegaModules, including cell packages, receiver plates, and structures with lenses; (6) Designed and deployed Amonix 7700 series systems rated at 63 kW PTC ac and higher. Based on an LCOE assessment using NREL's Solar Advisor Model, Amonix met DOE's LCOE targets: Amonix 2011 LCOE 12.8 cents/kWh (2010 DOE goal 10-15); 2015 LCOE 6.4 cents/kWh (2015 goal 5-7) Amonix and TPP participants would like to thank the U.S. Department of Energy Solar Energy Technology Program for funding received under this program through Agreement No. DE-FC36-07GO17042.

McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

2012-03-31T23:59:59.000Z

306

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission. Second Quarter 1984  

DOE Green Energy (OSTI)

At the end of the Second Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 334, with total estimated nominal capacity of 2,876 MW. Of these totals, 232 projects, capable of producing 678 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration projects had signed 80 contracts with a potential of 1,161 MW. Thirty-three contracts had been signed for solid waste/biomass projects for a total of 298 MW. In total, 118 contracts and letter agreements had been signed with cogeneration, solid waste, and biomass projects capable of producing 1,545 MW. PG and E also had under active discussion 46 cogeneration projects that could generate a total of 688 MW to 770 MW, and 13 solid waste or biomass projects with a potential of 119 MW to 139 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. Two geothermal projects were under active discussion for a total of 2 MW. There were 8 solar projects with signed contracts and a potential of 37 MW, as well as 4 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 34, with a generating capability of 1,042 MW, Also, discussions were being conducted with 23 wind farm projects, totaling 597 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 7 other small wind projects under active discussion. There were 71 hydroelectric projects with signed contracts and a potential of 151 MW, as well as 76 projects under active discussion for 505 MW. In addition, there were 18 hydroelectric projects, with a nominal capacity of 193 MW, that PG and E was planning to construct. Table B displays the above information. Appendix A displays in tabular form the status reports of the projects as of June 30, 1984.

None

1984-01-01T23:59:59.000Z

307

Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995  

SciTech Connect

Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

1995-08-01T23:59:59.000Z

308

Avista Utilities- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

309

Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995  

DOE Green Energy (OSTI)

A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

1995-12-01T23:59:59.000Z

310

A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report  

Science Conference Proceedings (OSTI)

The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

Not Available

1994-06-16T23:59:59.000Z

311

Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation  

Science Conference Proceedings (OSTI)

The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

2011-09-15T23:59:59.000Z

312

Requirements for Defining Utility Drive Cycles: An Exploratory Analysis of Grid Frequency Regulation Data for Establishing Battery Performance Testing Standards  

DOE Green Energy (OSTI)

Battery testing procedures are important for understanding battery performance, including degradation over the life of the battery. Standards are important to provide clear rules and uniformity to an industry. The work described in this report addresses the need for standard battery testing procedures that reflect real-world applications of energy storage systems to provide regulation services to grid operators. This work was motivated by the need to develop Vehicle-to-Grid (V2G) testing procedures, or V2G drive cycles. Likewise, the stationary energy storage community is equally interested in standardized testing protocols that reflect real-world grid applications for providing regulation services. As the first of several steps toward standardizing battery testing cycles, this work focused on a statistical analysis of frequency regulation signals from the Pennsylvania-New Jersey-Maryland Interconnect with the goal to identify patterns in the regulation signal that would be representative of the entire signal as a typical regulation data set. Results from an extensive time-series analysis are discussed, and the results are explained from both the statistical and the battery-testing perspectives. The results then are interpreted in the context of defining a small set of V2G drive cycles for standardization, offering some recommendations for the next steps toward standardizing testing protocols.

Hafen, Ryan P.; Vishwanathan, Vilanyur V.; Subbarao, Krishnappa; Kintner-Meyer, Michael CW

2011-10-19T23:59:59.000Z

313

Municipal Utility Districts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

314

How clean is coal : coal power plant ash pond regulations compared to nuclear reactor decommissioning standards.  

E-Print Network (OSTI)

??Coal power is the prominent source of energy in the United States (U.S.) and around the world. The byproducts of coal power contain many of… (more)

[No author

2011-01-01T23:59:59.000Z

315

Price-based regulation: The elegance of simplicity  

SciTech Connect

In the ongoing efforts to de-regulate the electric utility industry, performance-based regulation, or incentive regulation, supplies an important bridge to a competitive power market. Many utility managers and regulators feel uncomfortable with this approach and would rather return to the more traditional rate-of-return regulation. This article reviews and challenges the concept of cost-of-service regulation and lists three shortcomings of this approach. These shortcomings include: (1) Inadequate incentives to cut costs and increase efficiency and productivity, (2) Too much emphasis on capital investment, and (3) The akwardness of the regulatory process, which adds substantial costs.

Steinmeir, W.D.

1996-01-15T23:59:59.000Z

316

Coordinated Control and Optimization of Virtual Power Plants for Energy and Frequency Regulation Services in Electricity Markets  

E-Print Network (OSTI)

With increasing penetration of intermittent resources such as wind and solar, power system operations are facing much more challenges in cost effective provision of energy balancing and frequency regulation services. Enabled by advances in sensing, control and communication, the concept of Virtual Power Plant (VPP) is proposed as one possible solution which aggregates and firms up spatially distributed resources? net power injection to the system. This thesis proposes a coordinated control and bidding strategy for VPPs to provide energy balancing and grid frequency regulation services in electricity market environment. In this thesis, the VPP consists of two energy conversion assets: a Doubly Fed Induction Generator (DFIG)-based wind farm and a co-located Flywheel Energy Storage System (FESS). The coordination of the VPP is implemented through power electronics?based controllers. A five-bus system test case demonstrates the technical feasibility of VPPs to respond to grid frequency deviation as well as to follow energy dispatch signals. To enable the participation of VPPs in electricity market, this thesis also proposes an optimization based bidding strategy for VPPs in both energy balancing and frequency regulation service markets. The potential economic benefits of this bidding strategy are demonstrated under Denmark wholesale electricity market structure. Four case studies show the economic benefit of coordinating VPPs.

Zhang, Fan

2011-12-01T23:59:59.000Z

317

Minimum Purchase Price Regulations (Prince Edward Island, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Minimum Purchase Price Regulations establish the price which utilities must pay for power produced by large-scale renewable energy generators – that is those capable of producing more than 100...

318

Analysis of system wide distortion in an integrated power system utilizing a high voltage DC bus and silicon carbide power devices  

E-Print Network (OSTI)

This research investigates the distortion on the electrical distribution system for a high voltage DC Integrated Power System (IPS). The analysis was concentrated on the power supplied to a propulsion motor driven by an ...

Fallier, William F. (William Frederick)

2007-01-01T23:59:59.000Z

319

Turbine-Generator Topics for Power Plant Engineers: Synchronous Generator Voltage Regulator Basics  

Science Conference Proceedings (OSTI)

This material is intended for the new engineer, the control room operator, management, or the non-engineer. The basics of a synchronous generator excitation system; the fundamentals of the voltage regulator; and its controls and functions are discussed. The typical exciter types are covered, but not in detail. There is also basic information on voltage regulator maintenance issues. Put simply, the excitation system is made up of three basic component systems. The voltage regulator monitors the synchronou...

2012-02-16T23:59:59.000Z

320

The Sweet Taste of Defeat: American Electric Power Co v. Connecticut and Federal Greenhouse Gas Regulation  

E-Print Network (OSTI)

contribute findings for greenhouse gases under section 202(Connecticut and Federal Greenhouse Gas Regulation KatherineWHAT NEXT? REDUCING GREENHOUSE GASES THROUGH STATE PUBLIC

Trisolini, Katherine A.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Summary of Utility License Termination Documents and Lessons Learned: Summary of License Termination Plan Submittals by Three Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Nuclear Regulatory Commission's (NRC's) 1996 revised decommissioning regulations specify that the operator of a nuclear plant must submit a "License Termination Plan" (LTP) two years prior to termination of the plant license. The LTP explicitly defines the elements that the plant operator must address in the decommissioning plan. This report focuses on the approaches and experience gained by three of the leading plants in the preparation and submittal of their LTP submittals under the 1996 regul...

2002-10-28T23:59:59.000Z

322

Human Factors Engineering for Managers: Computer-Based Training for Utilities Involved in New Nuclear Power Plant Designs, Construct ion and Operation - 2012  

Science Conference Proceedings (OSTI)

This product provides a computer-based training (CBT) course in human factors engineering (HFE) for managers. The training materials for this course were developed to provide a foundation in HFE for managers at utilities involved in new nuclear power plants (NPPs). This course will help managers who may be expected to manage the interactions with the vendor and U.S. Nuclear Regulatory Commission (USNRC) during new plant design certification, detailed design and implementation, and development of procedur...

2012-02-27T23:59:59.000Z

323

Methods of Using Existing Wire Lines (power lines, phone lines, internet lines) for Totally Secure Classical Communication Utilizing Kirchoff's Law and Johnson-like Noise  

E-Print Network (OSTI)

We outline some general solutions to use already existing and currently used wire lines, such as power lines, phone lines, internet lines, etc, for the unconditionally secure communication method based on Kirchoff's Law and Johnson-like Noise (KLJN). Two different methods are shown. One is based on filters used at single wires and the other one utilizes a common mode voltage superimposed on a three-phase powerline.

Laszlo B. Kish

2006-10-02T23:59:59.000Z

324

Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States (Presentation)  

DOE Green Energy (OSTI)

Presentation for the European Wind Energy Conference held February 27--March 2, 2006, in Athens, Greece, showing grid impacts of wind power variability.

Parsons, B.

2006-03-01T23:59:59.000Z

325

Executive Director for Operations UPDATE OF ISSUES RELATED TO NUCLEAR POWER REACTOR FINANCIAL QUALIFICATIONS IN RESPONSE TO RESTRUCTURING OF THE ELECTRIC UTILITY INDUSTRY  

E-Print Network (OSTI)

To provide the Commission with an update of electric utility deregulation and restructuring issues regarding the financial qualifications of power reactor licensees to operate their facilities safely. BACKGROUND: On October 24, 1997, the staff sent to the Commission SECY-97-253, "Policy Options for Nuclear Power Reactor Financial Qualifications in Response to Restructuring of the Electric Utility Industry. " In that paper, the staff discussed three options for the Commission's consideration regarding possible approaches that the NRC could use in assessing the financial qualifications of power reactor licensees to operate their plants safely. (The impact of deregulation and restructuring on decommissioning funding assurance is being addressed in a separate rulemaking, which was published in the Federal Register on September 10, 1997. A final rule is scheduled to be sent to the Commission by June 30, 1998.) In response to SECY-97-253, the Commission issued a staff requirements memorandum on January 15, 1998, and directed the staff to maintain the existing financial qualifications framework as discussed in Option 2 of SECY-97-253 and to "develop a coherent, efficient plan that would allow timely confirmation of the status of licensees (i.e., whether they meet the definition of 'electric utility')as deregulation actions are finalized by States. " In response, on April 16, 1998, the

L. Joseph Callan /s; Robert S. Wood

1998-01-01T23:59:59.000Z

326

NETL: Coal Utilization By-Products (CUB)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Coal Utilization Byproducts Innovations for Existing Plants Solid Waste (Coal Utilization...

327

Energy Crossroads: Utility Energy Efficiency Programs Delaware...  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Chesapeake Utilities Information for Businesses Delmarva Power...

328

Making Biopower Work for Utilities: A Rationale for Near-Term Investment in Integrated Biomass Power Systems  

Science Conference Proceedings (OSTI)

An evaluation of the feasibility studies of six very different integrated biomass power systems suggests potentially large future payoffs from near-term R&D. At this time, when biomass crops are more expensive than fossil fuels, it is the corollary benefits or coproducts associated with biomass power production that make the economics of a system work.

1996-01-13T23:59:59.000Z

329

Tribal Utility Feasibility Study  

DOE Green Energy (OSTI)

• Facility scale, net metered renewable energy systems – These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

Engel, R. A.; Zoellick, J. J.

2007-06-30T23:59:59.000Z

330

Utilizing the heat content of gas-to-liquids by-product streams for commercial power generation  

E-Print Network (OSTI)

The Gas-to-liquids (GTL) processes produce a large fraction of by-products whose disposal or handling ordinarily becomes a cost rather than benefit. As an alternative strategy to market stranded gas reserves, GTL provides middle distillates to an unsaturated global market and offers opportunities to generate power for commercial purposes from waste by-product streams, which normally are associated with increased expenses incurred from additional handling cost. The key concept investigated in this work is the possibility of integrating the GTL process with power generation using conventional waste by-product steam streams. Simulation of the integrated process was conducted with the aim of identifying the critical operating conditions for successful integration of the GTL and power generation processes. About 500 MW of electric power can be generated from 70% of the exit steam streams, with around 20 to 25% steam plant thermal efficiency. A detailed economic analysis on the LNG, stand-alone GTL, and Integrated GTL Power-Generation plants indicates that the integrated system is more profitable than the other options considered. Justifying the technology and economics involved in the use of the by-product streams to generate power could increase the net revenue and overall profitability of GTL projects. This technology may be transferable to GTL projects in the world, wherever a market for generated power exists.

Adegoke, Adesola Ayodeji

2006-08-01T23:59:59.000Z

331

Three-phase power conversion system for utility-interconnected PV applications. Phase 1 technical progress report, 1 October 1995--17 April 1997  

DOE Green Energy (OSTI)

This report describes work performed by Omnion Power Corporation under Phase 1 of a two-phase subcontract. During this phase, Omnion researchers: designed an advanced product specification to guide prototype design and development; analyzed field failure data with Omnion`s hard-switched insulated-Gate Bipolar Transistor technology hardware to better understand where design improvements were needed; presented and reviewed product specifications with key customers/users; drafted a working product specification to serve as a baseline in developing the new power conversion system; developed the core-resonant converter technology in conjunction with Soft Switching Technologies Corp.; designed a 100-kW prototype power conversion system; designed a prototype system package; initiated interaction with vendors to optimize component selection and specifications; initiated the preparation of design documentation; built the prototype core-resonant converter and initiated preliminary testing; and initiated the assembly of a 1-kW prototype power conversion system. This work has demonstrated the potential of the soft-switching resonant DC link (RDCL) inverter and its application to a three-phase utility-interconnected PV power conversion system. The RDCL inverter has demonstrated its advantage over hard-switching pulse-width modulated inverters in terms of efficiency and audible noise. With proper package design and manufacturing process design and implementation, the RDCL power conversion system has the potential to be low-cost and reliable with superior performance.

Porter, D.G.; Meyer, H.; Leang, W. [Omnion Power Engineering Corp., East Troy, WI (United States)

1998-02-01T23:59:59.000Z

332

2012 Green Utility Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home 2012 Green Utility Leaders 2012 Green Utility Leaders 2012 Green Utility Leaders Ranking the Top...

333

A SCR SWITCHED CAPACITOR VOLTAGE REGULATOR FOR 150 kV NEUTRAL BEAM POWER SUPPLY  

E-Print Network (OSTI)

REGULATOR BANK MODULES .26 MJ STORED ENERGY BEAM SOURCE j_amount of stored energy and main bank capacitance is 2J - CEof the main bank, given that the total stored energy is 1.56

Milnes, K.A.

2011-01-01T23:59:59.000Z

334

Framework for risk informed performance based regulation for nuclear power plants  

E-Print Network (OSTI)

Currently the electric utility companies are going through a deregulation process that is going to result in market competition for the generating and the transmission companies. The competition is going to be mainly ...

Abdelkader, Sarah Ali

1998-01-01T23:59:59.000Z

335

Final Summary Report: Em-Powering Coastal States and Utilities through Model Offshore Wind Legislation and Outreach  

DOE Green Energy (OSTI)

The final summary report summarizes the most significant findings from three project reports detailing: feed-in tariffs, model request for proposals for new generation, and model state offshore wind power legislation.

Jeremy Firestone; Dawn Kurtz Crompton

2011-11-30T23:59:59.000Z

336

Power Quality Mitigation Technology Demonstration at Industrial Customer Sites: Industrial and Utility Harmonic Mitigation Guideline s and Case Studies  

Science Conference Proceedings (OSTI)

However the restructuring of the electric power industry shakes out, the commercial/industrial customer's need for quality power will increase; and customer service will remain a key to retaining current accounts and attracting new customers. The need for demonstrating new harmonics mitigation technologies will thus be an important factor for the wire side of the business as well as for energy service companies. This report provides guidelines for implementing harmonics mitigation demonstration projects ...

2000-11-30T23:59:59.000Z

337

Trends in Utility Green Pricing Programs (2004)  

Science Conference Proceedings (OSTI)

In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, nearly 600 utilities in regulated electricity markets--or almost 20% of all utilities nationally--provide their customers a "green power" option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals about 125. Through these programs, more than 40 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2004 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities as benchmarks by which to gauge the success of their green power programs.

Bird, L.; Brown, E.

2005-10-01T23:59:59.000Z

338

Natural Gas Utility Conservation Programs (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Natural Gas Utility Conservation Programs (Maine) Natural Gas Utility Conservation Programs (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Public Utilities Commission This Chapter describes how natural gas utilities serving more than 5,000 residential customers must implement natural gas energy conservation programs. The regulations describe

339

Ocean thermal energy conversion (OTEC) power system development utilizing advanced, high-performance heat transfer techniques. Volume 1. Conceptual design report  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC Demonstration Plant. In turn, this Demonstration Plant is to demonstrate, by 1984, the operation and performance of an ocean thermal power plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the Demonstration Plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibility studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report describes the full-size power system module, and summarizes the design parameters and associated costs for the Demonstration Plant module (prototype) and projects costs for commercial plants in production. The material presented is directed primarily toward the surface platform/ship basic reference hull designated for use during conceptual design; however, other containment vessels were considered during the design effort so that the optimum power system would not be unduly influenced or restricted. (WHK)

Not Available

1978-05-12T23:59:59.000Z

340

Peak Power Bi-directional Transfer From High Speed Flywheel to Electrical Regulated Bus Voltage System  

E-Print Network (OSTI)

of a suitable EV power supply. Industry experts have concluded that practical EVs must have energy storage's batteries can be extended considerably by supplying peak energy requirements from a secondary source to an external power supply, the braking energy must be stored `on board'. Advanced lead-acid batteries provide

Szabados, Barna

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Combined cycle and waste heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation  

SciTech Connect

A new thermodynamic energy cycle has been developed, using a multicomponent working agent. Condensation is supplemented with absorption, following expansion in the turbine. Several combined power systems based on this cycle have been designed and cost-estimated. Efficiencies of these new systems are 1.35 to 1.5 times higher than the best Rankine Cycle system, at the same border conditions. Investment cost per unit of power output is about two-thirds of the cost of a comparable Rankine Cycle system. Results make cogeneration economically attractive at current energy prices. The first experimental installation is planned by Fayette Manufacturing Company and Detroit Diesel Allison Division of General Motors.

Kalina, A.I.

1983-01-01T23:59:59.000Z

342

Managing Carbon Regulatory Risk in Utility Resource Planning: Current  

NLE Websites -- All DOE Office Websites (Extended Search)

Managing Carbon Regulatory Risk in Utility Resource Planning: Current Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States Title Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States Publication Type Report Year of Publication 2009 Authors Barbose, Galen L., Ryan H. Wiser, Amol Phadke, and Charles A. Goldman Pagination 28 Date Published 03/2009 Publisher LBNL City Berkeley Keywords carbon emissions, electric utilities, electricity markets and policy group, energy analysis and environmental impacts department, power system planning Abstract Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. As such, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demandside resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers

343

Gas Utilities (New York)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

344

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

Many utilities are initiating business plans that enable them to play a more integral role in the solar power value chain. This report summarizes research completed to identify and track utility solar business models (USBMs) in the United States. EPRI and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort to evaluate the expanding range of utility activities in acquiring solar energy, including photovoltaic (PV) asset ownership. Throughout 2011, USBMs have been ca...

2011-11-21T23:59:59.000Z

345

Technology R&D Needs for Integrating High Penetrations of Variable Utility-Scale Renewable Power Sources into the Electric Power Inf rastructure  

Science Conference Proceedings (OSTI)

While the North American electric energy resource portfolio continues to evolve, integrating large-scale renewable resources into the electric power infrastructure presents significant challenges. This is particularly true of variable renewable resources, such as wind and solar, which represent two of the most rapidly growing renewable resources being deployed. The root of this challenge lies in the inherent variability of wind and solar resources, which differentiates these from other renewable resource...

2008-05-15T23:59:59.000Z

346

Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States; Preprint  

SciTech Connect

Because of wind power's unique characteristics, many concerns are based on the increased variability that wind contributes to the grid, and most U.S. studies have focused on this aspect of wind generation. Grid operators are also concerned about the ability to predict wind generation over several time scales. In this report, we quantify the physical impacts and costs of wind generation on grid operations and the associated costs.

Parsons, B.; Milligan, M.; Smith, J. C.; DeMeo, E.; Oakleaf, B.; Wolf, K.; Schuerger, M.; Zavadil, R.; Ahlstrom, M.; Nakafuji, D. Y.

2006-07-01T23:59:59.000Z

347

Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States; Preprint  

DOE Green Energy (OSTI)

Because of wind power's unique characteristics, many concerns are based on the increased variability that wind contributes to the grid, and most U.S. studies have focused on this aspect of wind generation. Grid operators are also concerned about the ability to predict wind generation over several time scales. In this report, we quantify the physical impacts and costs of wind generation on grid operations and the associated costs.

Parsons, B.; Milligan, M.; Smith, J. C.; DeMeo, E.; Oakleaf, B.; Wolf, K.; Schuerger, M.; Zavadil, R.; Ahlstrom, M.; Nakafuji, D. Y.

2006-07-01T23:59:59.000Z

348

Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs  

SciTech Connect

The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

1995-03-01T23:59:59.000Z

349

Measurement of Ancillary Services From Power Plants: Regulation, Load Following and Black Start  

Science Conference Proceedings (OSTI)

In the deregulated electric utility industry, it is anticipated that many ancillary services will be sold by "generators" to Operating Authorities (OAs) or Independent System Operators (ISOs). Such trade in ancillary services will require contractual agreements, and these agreements will need to specify quality and quantity of service to be supplied. This, again, means that it will be necessary to certify or measure the quality of an ancillary service to be supplied, as well as the quantity actually supp...

1999-12-10T23:59:59.000Z

350

Energy Crossroads: Utility Energy Efficiency Programs Maine ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Central Maine Power...

351

Confidential data in a competitive utility environment: A regulatory perspective  

SciTech Connect

Historically, the electric utility industry has been regarded as one of the most open industries in the United States in sharing information but their reputation is being challenged by competitive energy providers, the general public, regulators, and other stakeholders. As the prospect of competition among electricity power providers has increased in recent years, many utilities have been requesting that the data they submit to their utility regulatory commissions remain confidential. Withholding utility information from the public is likely to have serious and significant policy implications with respect to: (1) consumer education, the pursuit of truth, mutual respect among parties, and social cooperation; (2) the creation of a fair market for competitive energy services; (3) the regulatory balance; (4) regional and national assessments of energy-savings opportunities; (5) research and development; and (6) evaluations of utility programs, plans, and policies. In a telephone survey of all public utility commissions (PUCs) that regulate electric and gas utilities in the U.S., we found that almost all PUCs have received requests from utility companies for data to be filed as confidential, and confidential data filings appear to have increased (both in scope and in frequency) in those states where utility restructuring is being actively discussed. The most common types of data submitted as confidential by utilities dealt with specific customer data, market data, avoided costs, and utility costs.

Vine, E.

1996-08-01T23:59:59.000Z

352

Impacts of environmental and utility siting laws on community energy systems  

SciTech Connect

Community Energy Systems provide an interesting energy conservative alternative to the traditional trend of large, central, grid-connected power plant design. The small community energy system (generally smaller than 100 MW), provides for waste heat utilization and utility cogeneration significantly reducing a community's total energy demand. Developers of Community Energy Systems, unfortunately, are faced with a complex of environmental and siting regulations, most of which are aimed at regulating the development and design of large power-generating facilities. Aside from discouraging development of a potentially more economic and environmentally sound approach to power generation, air-pollution regulations discriminate against these smaller systems. Compliance with the many Federal, state and local regulations often make small energy systems uneconomical. This project studies the emissions associated with Community Energy Systems and reviews the Federal, state, and local laws that regulate their design.

Senew, M J; Shimamoto, G T; Seymour, D A; Santini, D J

1978-02-01T23:59:59.000Z

353

Designing superior incentive regulation  

SciTech Connect

The key to success in designing effective incentive regulation is relatively simple: Anticipate all of the incentives that will ultimately come to bear, and structure regulatory policy in advance to limit any adverse incentives. All is a critical word here. Attention commonly is focused on the incentives a proposed regulatory plan creates for the regulated firm to minimize production costs, diversify into new markets, and so on. While the incentives are important in assessing a regulatory plan, they are only one consideration. It is also critical to analyze the incentives the plan creates for other key players in the regulatory arena, particularly regulators. It is premature to draw any broad conclusions about the success of incentive regulation in the electric power and natural gas industries. While there is reason for optimism, concern remain. Some incentive regulation plans have been abandoned, in part because of: (1) unforeseen exogenous event that could not be administered within the confines of the plan; (2) public opposition to rewarding a utility for the superior performance it should have realized without the promise of financial reward; (3) adverse reaction to utility earnings in excess of those commonly authorized under traditional regulation, and (4) questions about the legality of the plans under state statutes.

Sappington, D.E.M.; Weisman, D.L.

1994-02-15T23:59:59.000Z

354

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

355

Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990  

Reports and Publications (EIA)

The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

Information Center

1994-03-01T23:59:59.000Z

356

Utilities weather the storm  

SciTech Connect

Utilities must restore power to storm-damaged transmission and distribution systems, even if it means going out in ice storms or during lightning and hurricane conditions. Weather forecasting helps utilities plan for possible damage as well as alerting them to long-term trends. Storm planning includes having trained repair personnel available and adjusting the system so that less power imports are needed. Storm damage response requires teamwork and cooperation between utilities. Utilities can strengthen equipment in storm-prone or vulnerable areas, but good data are necessary to document the incidence of lighning strikes, hurricanes, etc. 2 references, 8 figures.

Lihach, N.

1984-11-01T23:59:59.000Z

357

Carrots for Utilities: Providing Financial Returns for Utility Investments  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Focus Area: Energy Efficiency Topics: Socio-Economic Website: www.aceee.org/research-report/u111 Equivalent URI: cleanenergysolutions.org/content/carrots-utilities-providing-financial Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Cost Recovery/Allocation This report examines state experiences with shareholder financial incentives that encourage investor-owned utilities to provide energy

358

Cascade Multilevel Inverters for Utility Applications  

SciTech Connect

Cascade multilevel inverters have been developed by the authors for utility applications. A cascade M-level inverter consists of (M-1)/2 H- bridges in which each bridge has its own separate dc source. The new inverter: (1) can generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle, (2) can eliminate transformers of multipulse inverters used in conventional utility interfaces and static var compensators, and (3) makes possible direct parallel or series connection to medium- and high-voltage power systems without any transformers. In other words, the cascade inverter is much more efficient and suitable for utility applications than traditional multipulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for reactive power (var) and harmonic compensation. This paper will summarize features,feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems.Analytical, simulated, and experimental results demonstrate the superiority of the new inverters.

Peng, F.Z., McKeever, J.W., Adams, D.J.

1997-12-31T23:59:59.000Z

359

Analysis of mass transfer processes in geothermal power cycles utilizing direct contact heat exchange. Report of work, September 21, 1978 to September 30, 1979  

DOE Green Energy (OSTI)

A computer program was developed which calculates the isobutane content of the spent brine and the liquid-vapor distribution of carbon dioxide and hydrogen sulfide throughout the components of a geothermal power plant using direct contact heat exchange. The program model assumes separate boiler and preheater vessels, with the preheater being a spray tower. The condenser model is a horizontal tube surface condenser with condensation on the outside. The program was written in Fortran language. The Fortran source deck consists of 976 cards. The program utilizes 320K for compilation and 72K for execution on an IBM 370/3031. Sample cases were run which illustrate the effects of salt concentration in the brine and isobutane-to-brine ratio on isobutane and noncondensible gas content of the spent brine.

Knight, J.J.; Perona, J.J.

1979-01-01T23:59:59.000Z

360

PRISM 2.0: Regional Energy and Economic Model Development and Initial Application: Phase 1: Analysis of Environmental Regulations on the U.S. Power Sector and Economy  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has conducted an analysis of the effect of current and potential U.S. Environmental Protection Agency (EPA) regulations on the nation’s electric industry and economy. The current and potential environmental regulations covered in this analysis include:  Mercury and Air Toxics Standard (MATS) ruleClean Water Act (CWA) 316(b) for cooling water intake structuresResource Conservation and ...

2013-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.  

DOE Green Energy (OSTI)

This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

362

Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling  

Science Conference Proceedings (OSTI)

This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

Klimas, P.C.; Sladky, J.F. Jr.

1985-01-01T23:59:59.000Z

363

Distributed Hierarchical Control of Multi-Area Power Systems with Improved Primary Frequency Regulation  

SciTech Connect

The conventional distributed hierarchical control architecture for multi-area power systems is revisited. In this paper, a new distributed hierarchical control architecture is proposed. In the proposed architecture, pilot generators are selected in each area to be equipped with decentralized robust control as a supplementary to the conventional droop speed control. With the improved primary frequency control, the system frequency can be restored to the nominal value without the help of secondary frequency control, which reduces the burden of the automatic generation control for frequency restoration. Moreover, the low frequency inter-area electromechanical oscillations can also be effectively damped. The effectiveness of the proposed distributed hierarchical control architecture is validated through detailed simulations.

Lian, Jianming; Marinovici, Laurentiu D.; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

2012-12-12T23:59:59.000Z

364

Green Power Network: Past National Green Power Marketing Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Fourth National Green Power Marketing Conference Fourth National Green Power Marketing Conference Key Ingredients for Successful Markets Held May 10-11, 1999 in Philadelphia, Pennsylvania The Fourth National Green Power Marketing Conference was organized to examine the current state of green-power marketing and to explore opportunities to improve on the success of green-power sales in both regulated and deregulated markets. The conference was co-sponsored by the U.S. Department of Energy, Electric Power Research Institute, Renewable Energy Alliance, and Edison Electric Institute. View all of the Conference Presentations in Microsoft PowerPoint 95 (PPT) or Adobe Acrobat PDF format. Format is noted with file sizes. REPORT SUMMARY Today, in regulated monopoly markets, more than 50 utilities offer "green pricing" to their customers, but competitive green power marketing is still in early evolution. After a year of competitive market activity, it has become clear that the rules and mechanisms established for electric industry restructuring are critical to the success of green power marketing. The Fourth National Green Power Conference examined the current state of green power marketing, identified key market and policy needs under electric industry restructuring, and explored opportunities to improve on the success of green power sales in both regulated and deregulated markets.

365

Tracking the Reliability of the U.S. Electric Power System: An Assessment of Publicly Available Information Reported to State Public Utility Commissions  

E-Print Network (OSTI)

lists of major events for only 55 of the 123 such utilities.List of Figures and Tables Figure ES- 1. Summary of States that Provided Utility-

LaCommare, Kristina H.

2008-01-01T23:59:59.000Z

366

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Power Plant Reliability-Availability and State Regulation,"Report on Equipment Availability: Fossil and NuclearBasic Definitions* Availability: Reliability: Base Loading:

Nero, A.V.

2010-01-01T23:59:59.000Z

367

Electric Power Annual  

U.S. Energy Information Administration (EIA)

Electric Power Sector ; Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector; Annual Totals: ...

368

Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in the United States. Preliminary background report  

SciTech Connect

This report is one of a series of preliminary reports describing the laws and regulatory programs of the United States and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. This report describes laws and regulatory programs in the United States. Subsequent reports will (1) describe public utility rate regulatory procedures and practices as they might affect an ICES, (2) analyze each of the aforementioned regulatory programs to identify impediments to the development of ICES, and (3) recommend potential changes in legislation and regulatory practices and procedures to overcome such impediments.

Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

1980-01-01T23:59:59.000Z

369

Energy Crossroads: Utility Energy Efficiency Programs Colorado...  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Colorado Springs Utilities Information for Businesses Nebraska Municipal Power Pool...

370

Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.  

DOE Green Energy (OSTI)

This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

2009-01-01T23:59:59.000Z

371

Treatment of power utilities exhaust  

SciTech Connect

Provided is a process for treating nitrogen oxide-containing exhaust produced by a stationary combustion source by the catalytic reduction of nitrogen oxide in the presence of a reductant comprising hydrogen, followed by ammonia selective catalytic reduction to further reduce the nitrogen oxide level in the exhaust.

Koermer, Gerald (Basking Ridge, NJ)

2012-05-15T23:59:59.000Z

372

Antitrust/Competition Commercial Damages Environmental Litigation and Regulation Forensic Economics Intellectual Property International Arbitration International Trade Product Liability Regulatory Finance and Accounting Risk Management Securities Tax Util  

E-Print Network (OSTI)

Development Overview Distributed Energy Resources (DER) are manifold: · PV · Wind, fuel cells, micro Safety / Reliability Maintained Cost Effective to Society / TRC Bill Savings to Participants Possible Cross Subsidization Issue / Disruption to Utility Model

Greer, Julia R.

373

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

The electric utility industry represents only one source of power available to industry. Although the monopolistic structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to industry. Electric utilities face increased competition, both from other utilities and from industrial self-generation. The paper discusses competition for industrial customers and innovative pricing trends that have evolved nationally to meet the growing competition for industrial sales. Cogeneration activities and the emerging concepts of wheeling power are also discussed. Specifics of industry evaluation and reaction to utility pricing are presented. Also enumerated are examples of the response various utilities throughout the United States have made to the needs of their industrial customers through innovative rate design. Industry/utility cooperation can result in benefits to industry, to the electric utility and to all other ratepayers. This discussion includes examples of successful cooperation between industry and utilities.

Ross, J. A.

1986-06-01T23:59:59.000Z

374

Deregulating the electric utility industry  

E-Print Network (OSTI)

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

375

Program on Technology Innovation: Economic Impacts of Compliance with Dose Based Regulations for Selected Nuclear Power Plant Progra ms  

Science Conference Proceedings (OSTI)

This report explores the economic impact of complying with inconsistent federal and state regulations governing the management of radioactivity. It identifies areas where cost savings might occur if relevant regulations were made consistent with international regulations or if they were updated based on emerging science.

2009-04-21T23:59:59.000Z

376

202-328-5000 www.rff.org“Night of the Living Dead ” or “Back to the Future”? Electric Utility Decoupling, Reviving Rate-of-Return Regulation, and Energy Efficiency  

E-Print Network (OSTI)

The distribution grid for delivering electricity to the user has been paid for as part of the charge per kilowatt-hour that covers the cost of the energy itself. Conservation advocates have promoted the adoption of policies that “decouple ” electric distribution company revenues or profits from how much electricity goes through the lines. Their motivation is that usage-based pricing leads utilities to encourage use and discourages conservation. Because decoupling divorces profits from conduct, it runs against the dominant finding in regulatory economics in the last twenty years—that incentive-based regulation outperforms rate-of-return. Even if distribution costs are independent of use, some usage charges can be efficient. Price-cap regulation may distort utility incentives to inform consumers about energy efficiency—getting more performance from less electricity. Utilities will subsidize efficiency investments, but only when prices are too low. Justifying policies to subsidize energy efficiency requires either prices that are too low or consumers who are ignorant.

Timothy J. Brennan; Timothy J. Brennan

2008-01-01T23:59:59.000Z

377

Portec Voltage Regulators: for Emergency Diesel Generators  

Science Conference Proceedings (OSTI)

This report contains information to help utilities address emergency diesel generator voltage regulator issues.

2004-12-15T23:59:59.000Z

378

Energy Crossroads: Utility Energy Efficiency Programs Utah |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Bonneville Power Administration Information for Businesses Rocky Mountain Power (formerly...

379

Energy Crossroads: Utility Energy Efficiency Programs Virginia...  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Delmarva Power Information for Businesses Dominion Virginia Power Information for...

380

Energy Crossroads: Utility Energy Efficiency Programs Wyoming...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Bonneville Power Administration Information for Businesses Cheyenne Light, Fuel & Power...

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Crossroads: Utility Energy Efficiency Programs Idaho ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Bonneville Power Administration Information for Businesses Idaho Power Company...

382

Energy Crossroads: Utility Energy Efficiency Programs Florida...  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Florida Power & Light Information for Businesses Gulf Power Company Information for...

383

Energy Crossroads: Utility Energy Efficiency Programs Kansas...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Kansas City Power & Light (KSP&L) Information for Businesses Kansas Electric Power...

384

Groundwater Quality at Power Plants in West Virginia  

Science Conference Proceedings (OSTI)

As states develop groundwater regulations, utilities are increasingly being required to examine the effects of all facets of power plant operations on groundwater quality. This report summarizes the results of a four-year study of groundwater quality at 12 power plants in West Virginia.

1999-12-10T23:59:59.000Z

385

Energy Crossroads: Utility Energy Efficiency Programs | Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Programs Energy Efficiency Programs Suggest a Listing Efficiency United The energy efficiency program for 18 Michigan Utilities including Alpena Power Company, Baraga Electric Utility, Bayfield Electric Cooperative, City of Crystal Falls Electric Department, City of Gladstone Department of Power & Light, City of South Haven Public Works, Daggett Electric Company, Hillsdale Board of Public Utilities, Indiana Michigan Power Company, L'Anse Electric Utility, Michigan Gas Utilities, Negaunee Electric Department, The City of Norway Department of Power & Light, SEMCO ENERGY Gas Company, Upper Peninsula Power Company, We Energies, Wisconsin Public Service and Xcel Energy. Energy Company Links A directory of approximately 700 oil and gas companies, utilities and oil

386

By-Products Utilization  

E-Print Network (OSTI)

as the coal ash derived from SOx control technology. Up to 80% of CCA was blended with ground portland cement: blended cement, clean coal ash, sulfate resistance, time of setting #12;3 Zichao Wu is Structural EngineerCenter for By-Products Utilization USE OF CLEAN COAL ASH AS SETTING TIME REGULATOR IN PORTLAND

Wisconsin-Milwaukee, University of

387

Power marketing and renewable energy  

SciTech Connect

Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

Fang, J.M.

1997-09-01T23:59:59.000Z

388

Energy Crossroads: Utility Energy Efficiency Programs Minnesota...  

NLE Websites -- All DOE Office Websites (Extended Search)

Minnesota Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Minnesota Power Information for Businesses Xcel Energy (Minnesota...

389

Energy Crossroads: Utility Energy Efficiency Programs Mississippi...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Entergy Corporation (Mississippi) Information for Businesses Mississippi Power...

390

Solar power and retail electric competition in Arizona  

Science Conference Proceedings (OSTI)

Arizona`s solar portfolio standard serves a model for utilities and regulators by linking solar power and retail electric competition. Like many states, Arizona is pursuing retail electric competition as a substitute for traditional regulated monopolies. In addition the development of the competitive market is being linked with the development of solar power. Topics covered include the following: a simple solar portfolio standard; cost of the solar portfolio; feasibility of the solar portfolio standard. 4 figs., 1 tab.

Berry, D.; Williamson, R. [Arizona Corp. Commission, Phoenix, AZ (United States)

1997-03-01T23:59:59.000Z

391

NSLS Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

392

Dams, Mills, and Electric Power (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mills, and Electric Power (Missouri) Mills, and Electric Power (Missouri) Dams, Mills, and Electric Power (Missouri) < Back Eligibility Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Missouri Program Type Siting and Permitting Provider Missouri Department of Natural Resources The Water Resources Center of the Missouri Department of Natural Resources is responsible for implementing regulations pertaining to dam and reservoir safety. Any person or corporation may erect a dam across any watercourse, provided that: (a) the entity is chartered to construct, operate and

393

PRELIMINARY DESIGN AND COST ESTIMATE FOR THE PRODUCTION OF CENTRAL STATION POWER FROM AN AQUEOUS HOMOGENEOUS REACTOR UTILIZING THORIUM-URANIUM-233  

SciTech Connect

The design and economics of the Aqueous Homogeneous Reactor as basically under development at the Oak Ridge National Laboratory are presented. The reactor system utilizes thorium-U-233 fuel. Conditions accompanying reactor systems generating up to l080 mw of net electrical energy are covered. The study indicates that a generating station, with a net thermal efficiency of 28.l%, might be constructed for approximately 0/kw and 0/kw at the l80 mw and l080 mw electrical levels, respectively. These values result in capital expenses of approximately 4.72 and 2.86 milis/kwh. A major part of fuel cost is the expense of chemical processing. It is therefore advantageous 10 schedule fuel through a relatively large processing system since fixed charges are insensitive to chemical plant size. By handling fuel through a plant large enough for processing 200 kg of thorium per day, total fuel costa of about 1 mill/kwh result. This cost for fuel processing appears applicable to generating stations up to abeut 540 mw in size, decreasing to about 0.6 mills/kwh at the l080 mw level. Operating and maintenance expense, including heavy water cost on a lease basis, varies between l.34 and 0.89 mills/kwh for l80 and l080 megawatts respectively. If the purchase of heavy water is required, 0.3 to 0.4 mills/kwh must be added. It is concluded that the Aqueous Homogeneous Reactor may produce electrical power competitive with conventional generating systems when the remaining technical problems are solved. It is felt ihat the research and development now programed by the Oak Ridge National Laboratory will solve these problems and affect costs favorably. (auth)

Carson, H.G.; Landrum, L.H. eds.

1955-02-01T23:59:59.000Z

394

Oconomowoc Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Oconomowoc Utilities Place Wisconsin Utility Id 13963 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

395

DOE/EA-1631: Final Environmental Assessment for Department of Energy Loan Guarantee for Beacon Power Corporation Frequency Regulation Facility in Stephentown, NY (February 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 31 Environmental Assessment for DEPARTMENT OF ENERGY LOAN GUARANTEE FOR BEACON POWER CORPORATION FREQUENCY REGULATION FACILITY IN STEPHENTOWN, N.Y. U.S. Department of Energy Loan Guarantee Program Office Washington, DC 20585 February 2009 FINAL ENVIRONMENTAL ASSESSMENT Environmental Assessment for Department of Energy Loan Guarantee for Beacon Power Corporation Frequency Regulation Facility in Stephentown, N.Y. DOE/EA-1631 TABLE OF CONTENTS LIST OF ACRONYMS iii 1.0 PURPOSE AND NEED 1 1.1 Introduction 1 1.2 Purpose and Need for Agency Action 1 2.0 DESCRIPTION OF PROPOSED ACTION AND NO ACTION ALTERNATIVE 3 2.1 Location 3 2.2 Proposed Action 3 2.2.1 Flywheel 3 2.2.2 Project Elements 4 2.2.3 Project Systems 5 2.2.4 Construction

396

Coal Utilization Science Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

397

Power Electronics  

Energy.gov (U.S. Department of Energy (DOE))

Power electronics (PE) play a critical role in transforming the current electric grid into the next-generation grid.  PE enable utilities to deliver power to their customers effectively while...

398

Wisconsin Power & Light Co | Open Energy Information  

Open Energy Info (EERE)

Power & Light Co (Redirected from Wisconsin Power and Light Company) Jump to: navigation, search Name Wisconsin Power & Light Co Place Madison, Wisconsin Utility Id 20856 Utility...

399

Operations, Maintenance, and Replacement 10-year plan, 1990-1999 : 1989 Utility OM&R Comparison : A Comparison of BPA (Bonneville Power Administration) and Selected Utility Transmission, Operations and Maintenance Costs.  

SciTech Connect

For the past several years, competing resource demands within BPA have forced the Agency to stretch Operations, Maintenance and Replacement (OM R) resources. There is a large accumulation of tasks that were not accomplished when scheduled. Maintenance and replacements and outages, due to material and equipment failure, appear to be increasing. BPA has made a strategic choice to increase its emphasis on OM R programs by implementing a multi-year, levelized OM R plan which is keyed to high system reliability. This strategy will require a long-term commitment of a moderate increase in staff and dollars allocated to these programs. In an attempt to assess the direction BPA has taken in its OM R programs, a utility comparison team was assembled in early January 1989. The team included representatives from BPA's Management Analysis, Internal Audit and Financial Management organizations, and operation and maintenance program areas. BPA selected four utilities from a field of more than 250 electric utilities in the US and Canada. The selection criteria generally pertained to size, with key factors including transformation capacity, load, gross revenue, and interstate transmission and/or marketing agreements, and their OM R programs. Information was gathered during meetings with managers and technical experts representing the four utilities. Subsequent exchanges of information also took place to verify findings. The comparison focused on: Transmission operations and maintenance program direction and emphasis; Organization, management and implementation techniques; Reliability; and Program costs. 2 figs., 21 tabs.

United States. Bonneville Power Administration.

1990-09-01T23:59:59.000Z

400

Public Utility Holding Company Act of 1935: 1935--1992  

SciTech Connect

This report provides an economic and legislative history and analysis of the Public Utilities Holding Company Act (PUHCA) of 1935. This Act was substantially amended for the first time in 1992 by passage of the Energy Policy Act (EPACT). The report also includes a discussion of the issues which led to the amendment of PUHCA and projections of the impact of these changes on the electric industry. The report should be of use to Federal and State regulators, trade associations, electric utilities, independent power producers, as well as decision-makers in Congress and the Administration.

Not Available

1993-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Hybrid PSO-Self Regulating VSC-SMC Controller for PV-FC-Diesel-Battery Renewable Energy Scheme for Buildings Electricity Utilization  

Science Conference Proceedings (OSTI)

The paper presents the dynamic modeling and coordinated control strategy for an integrated micro grid scheme using Photo Voltaic PV, Fuel Cell FC, and backup Diesel generation with additional battery backup system. The integrated scheme is fully stabilized ... Keywords: Diesel-driven generator, Photo Voltaic PV, Fuel Cell, Backup Battery, Dynamic Filter Compensator, Green Power Filter, Multi Objective Optimization MOO, Particle Swarm Optimization PSO

Adel M. Sharaf; Adel A. A. El-Gammal

2010-05-01T23:59:59.000Z

402

Utilities Group Aids in Restructuring Process  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Utilities Group Aids in Restructuring Process Researchers at the Energy Analysis Program's (EAP) Utility Planning and Policy (UPP) Group are helping ensure that energy efficiency, renewable energy, and a host of other important issues are not overlooked as California and the nation restructure the electric power industry. The UPP staff is analyzing the potential impact of restructuring on efficiency and renewables, modeling a variety of potential restructuring policies, and assisting federal customers seeking to better understand emerging electricity markets. UPP Group Leader Chuck Goldman is participating in discussions on how to distribute surcharge funds set aside for energy efficiency in California, and Acting EAP Head Stephen Wiel is assisting state lawmakers and regulators by overseeing the National Council on

403

Federal Energy Management Program: Federal Utility Partnership...  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Group on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts Types of Contracts Laws & Regulations Getting the Best Value...

404

Antitrust concerns in the modern public utility environment  

SciTech Connect

Direct regulation of public utility activity and behavior has been the predominant approach to protect the public interest in this country. Changes in technology, as well as new thinking about the optimum role of regulation, have created a changing atmosphere in all of the traditional public utility industries. Competitive markets for many of the products and services in these industries have been developing. While monopoly power will continue to exist in certain parts of these industries and require direct regulation, in many areas a growing reliance upon competition as the best method of serving the public interest is developing. With this shift in emphasis from regulation to free markets, the antitrust laws take on new importance for these industries. In the absence of direct regulator control, those laws are society`s primary method of insuring the markets necessary to make competition an effective device for protecting the public interest. This study provides an overview of the antitrust laws, briefly describes the applicable theoretical underpinnings, and then turns to areas where public utility activity may pose special problems or conflicts with prevailing antitrust policy.

Meeks, J.E. [Ohio State Univ., Columbus, OH (United States). Coll. of Law

1996-04-01T23:59:59.000Z

405

Rising Electricity Costs: A Challenge For Consumers, Regulators...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities Presentation covers...

406

The Natural Gas Competition and Regulation Act of 1998 (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Natural Gas Competition and Regulation Act of 1998 (Georgia) The Natural Gas Competition and Regulation Act of 1998 (Georgia) The Natural Gas Competition and Regulation Act of 1998 (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Low-Income Residential Municipal/Public Utility Residential Rural Electric Cooperative Utility Program Info State Georgia Program Type Generating Facility Rate-Making Industry Recruitment/Support The Natural Gas Competition and Deregulation Act's stated intent and purposes are to: promote competition; protect the consumer during and after the transition to competition; maintain and encourage safe and reliable service; deregulate those components of the industry subject to actual competition; continue to regulate those services subject to monopoly power;

407

Wind Power Plant Monitoring Project Annual Report  

DOE Green Energy (OSTI)

The intermittent nature of the wind resource, together with short-term power fluctuations, are the two principal issues facing a utility with wind power plants in its power grid. To mitigate these issues, utilities, wind power plant developers, and operators need to understand the nature of wind power fluctuations and how they affect the electrical power system, as well as to analyze ancillary service requirements with real wind power plant output data. To provide the necessary data, NREL conducted a study to collect at least 2 years of long-term, high-frequency (1-hertz [Hz]) data from several medium- to large-scale wind power plants with different wind resources, terrain features, and turbine types. Researchers then analyzed the data for power fluctuations, frequency distribution of wind power (by deriving a probability distribution function of wind power plant output variations), spatial and temporal diversity of wind power, and wind power capacity credit issues. Results of these analyses can provide data on the potential effects of wind power plants on power system regulation.

Wan, Y.

2001-07-11T23:59:59.000Z

408

Mezzanine utilities  

Science Conference Proceedings (OSTI)

... Compressed air. Helium gas. Chilled water. Various types of electrical power are also available. We also have several vacuum pumps: ...

409

Lighting and utilities - planning for the future: proceedings  

SciTech Connect

This volume contains selected proceedings of a seminar entitled, Lighting and Utilities: Planning for the Future, held on May 21-22, 1984 in San Francisco, California, and June 5-6, 1984 in Hunt Valley, Maryland to help utility marketing, lighting and customer service executives to understand better the technological changes that affect their lighting loads. The seminar was sponsored by EPRI in cooperation with Baltimore Gas and Electric Company, Pacific Gas and Electric Company, Potomac Electric Power Company, and Public Service Company of Colorado. The seminar addressed the following issues: lighting design, light sources, lighting equipment, lighting maintenance, and utility perspectives. With many changes being proposed to lighting regulations on the national and state level, this publication offers an opportunity for utility executives and others in the lighting community to obtain information on the future direction of lighting technology. Four papers have been entered individually into EDB and ERA; one had been entered previously from other sources. (LTN)

1985-01-01T23:59:59.000Z

410

Natural Gas Utility Restructuring and Customer Choice Act (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to natural gas utilities that have restructured in order to acquire rate-based facilities. The regulations address customer choice offerings by natural gas utilities, which...

411

A Tariff for Reactive Power - IEEE  

DOE Green Energy (OSTI)

This paper describes a suggested tariff or payment for the local supply of reactive power from distributed energy resources. The authors consider four sample customers, and estimate the cost of supply of reactive power for each customer. The power system savings from the local supply of reactive power are also estimated for a hypothetical circuit. It is found that reactive power for local voltage regulation could be supplied to the distribution system economically by customers when new inverters are installed. The inverter would be supplied with a power factor of 0.8, and would be capable of local voltage regulation to a schedule supplied by the utility. Inverters are now installed with photovoltaic systems, fuel cells and microturbines, and adjustable-speed motor drives.

Kueck, John D [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator; Kirby, Brendan J [ORNL

2008-11-01T23:59:59.000Z

412

By-Products Utilization  

E-Print Network (OSTI)

was produced by Wisconsin Electric's coal-fired power plants. The criteria for selecting these mixtures was to utilize minimal cost materials, such as coal combustion by-products (fly ash, bottom ash, etc of sufficient strength to withstand handling, transfer and long term exposure. The final phase (4) was designed

Wisconsin-Milwaukee, University of

413

Voices of Experience: New Guide Offers Utilities' Insights on...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

vendors, regulators, consumer advocates, and other stakeholders from across the electricity industry, utilities discussed their experiences with creating effective...

414

WIND POWER Impacts on Wildlife and Government Responsibilities for Regulating Development and Protecting Wildlife Why GAO Did This Study  

E-Print Network (OSTI)

Wind power has recently experienced dramatic growth in the United States, with further growth expected. However, several wind power-generating facilities have killed migratory birds and bats, prompting concern from wildlife biologists and others about the species affected, and the cumulative effects on species populations. GAO assessed (1) what available studies and experts have reported about the impacts of wind power facilities on wildlife in the United

Protecting Wildlife

2005-01-01T23:59:59.000Z

415

Power Plant Dams (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant Dams (Kansas) Power Plant Dams (Kansas) Power Plant Dams (Kansas) < Back Eligibility Commercial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across any watercourse, the party so desiring to do the same may run the stream over the land of any other person by ditching or otherwise, and he, she or it may obtain the right to erect and maintain said dam and keep up and maintain the necessary ditches

416

Frequency Regulation Basics and Trends  

DOE Green Energy (OSTI)

The electric power system must address two unique requirements: the need to maintain a near real-time balance between generation and load, and the need to adjust generation (or load) to manage power flows through individual transmission facilities. These requirements are not new: vertically integrated utilities have been meeting them for a century as a normal part of conducting business. With restructuring, however, the services needed to meet these requirements, now called ''ancillary services'', are being more clearly defined. Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) has defined such services as those ''necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system''. This statement recognizes the importance of ancillary services for both bulk-power reliability and support of commercial transactions. Balancing generation and load instantaneously and continuously is difficult because loads and generators are constantly fluctuating. Minute-to-minute load variability results from the random turning on and off of millions of individual loads. Longer-term variability results from predictable factors such as the daily and seasonal load patterns as well as more random events like shifting weather patterns. Generators also introduce unexpected fluctuations because they do not follow their generation schedules exactly and they trip unexpectedly due to a range of equipment failures. The output from wind generators varies with the wind. Storage technologies should be ideal suppliers of several ancillary services, including regulation, contingency reserves (spinning reserve, supplemental reserve, replacement reserve), and voltage support. These services are not free; in regions with energy markets, generators are paid to supply these services. In vertically integrated utilities (without energy markets) the utility incurs significant costs to supply these services. Supplying these services may be a significant business opportunity for emerging storage technologies. This report briefly explores the various ancillary services that may be of interest to storage. It then focuses on regulation, the most expensive ancillary service. It also examines the impact that increasing amounts of wind generation may have on regulation requirements, decreasing conventional regulation supplies, and the implications for energy storage.

Kirby, BJ

2005-05-06T23:59:59.000Z

417

Category:Rules, Regulations & Policies Incentive Types | Open Energy  

Open Energy Info (EERE)

Rules, Regulations & Policies Incentive Types Rules, Regulations & Policies Incentive Types Jump to: navigation, search Rules, Regulations and Policies Types. Pages in category "Rules, Regulations & Policies Incentive Types" The following 15 pages are in this category, out of 15 total. A Appliance/Equipment Efficiency Standards B Building Energy Codes E Energy Efficiency Resource Standard Energy Standards for Public Buildings Equipment Certification Requirements G Green Power Purchasing I Interconnection Standards L Line Extension Analysis M Mandatory Utility Green Power Option N Net Metering P Public Benefit Funds R Renewables Portfolio Standards S Solar and Wind Permitting Standards Solar/Wind Access Policy Solar/Wind Contractor Licensing Retrieved from "http://en.openei.org/w/index.php?title=Category:Rules,_Regulations_%26_Policies_Incentive_Types&oldid=390305

418

Single-Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications  

SciTech Connect

Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance. To understand the power flow through the system this paper presents a novel approach to the system model and the impact of different control parameters on the load power. The implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation is also discussed.

Chinthavali, Madhu Sudhan [ORNL; Onar, Omer C [ORNL; Miller, John M [ORNL; Tang, Lixin [ORNL

2013-01-01T23:59:59.000Z

419

2006 UDI directory of electric power producers and distributors  

Science Conference Proceedings (OSTI)

The directory contains profiles of nearly 5,000 energy-related companies across the USA and Canada. This includes over 17,000 executives and other key personnel at: 3,600 regulated electric utilities and holding companies; 700 non-utility generators and service companies; 350 associations; power pools and independent system operators, architects, engineers, consultants, agencies and commissions. The directory covers such essential business information as: electric customer classifications; revenues and sales for utilities; number of employees; electric production and delivery system design; performance data; major interconnections; sources of purchased power; and service territories.

NONE

2005-07-01T23:59:59.000Z

420

Small Power Production Facilities (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities (Montana) Facilities (Montana) Small Power Production Facilities (Montana) < Back Eligibility Commercial Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Interconnection Provider Montana Public Service Commission For the purpose of these regulations, a small power production facility is defined as a facility that: : (a) produces electricity by the use, as a primary energy source, of biomass, waste, water, wind, or other renewable resource, or any combination of those sources; or : (b) produces electricity and useful forms of thermal energy, such as heat

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Using risk-based regulations for licensing nuclear power plants : case study of gas-cooled fast reactor  

E-Print Network (OSTI)

The strategy adopted for national energy supply is one of the most important policy choice for the US. Although it has been dismissed in the past decades, nuclear power today has key assets when facing concerns on energy ...

Jourdan, Grégoire

2005-01-01T23:59:59.000Z

422

Microsoft PowerPoint - DOE Tribal Leader Solar Energy Forum.ppt [Compatibility Mode]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility-Scale Solar Utility-Scale Solar Efforts at SRP Stephen Mellentine Senior Planning Analyst, Resource Planning l i j Salt River Project * Third largest public power tilit i th ti utility in the nation * Over 940,000 electric customers in Phoenix area customers in Phoenix area * 7,400 MW generation portfolio p * Largest water provider in Phoenix area * Delivers nearly 1 million acre- feet annually 2 DOE Tribal Leader Solar Energy Forum Mellentine SRP & Arizona Perspective of Utility Solar SRP & Arizona Perspective of Utility Solar * SRP not regulated by Arizona Corporation Commission regulated by own Board of Commission, regulated by own Board of Directors d l b * IOUs under ACC regulation subject to different solar requirements *

423

Renewable power sparks financial interest  

Science Conference Proceedings (OSTI)

Competition from decentralized energy companies using venture capital and renewable resources to generate electricity or to cogenerate steam and electricity is challenging the monopoly long held by utilities. Legal and financial incentives are replacing former barriers, although the tax changes are under court challenge. Utility lawsuits against Section 210 of the Public Utility Regulatory Policies Act (PURPA) eliminating the exclusive right of utilities to generate and sell electric power claim the Act is unconstitutional and favors small producers. Although the Act was passed three years ago, delays in setting regulations at the local level have meant that the impact of PURPA is just beginning to be felt. That it encourages alternative generation schemes is evident in Windfarms, Energetics, and other small energy companies that have recently formed. (DCK)

Norman, C.

1981-06-26T23:59:59.000Z

424

Energy Harvesting Aware Power Management  

E-Print Network (OSTI)

and J. Schiller, “Utilizing solar power in wireless sensorthat only the actual solar power available, and not anyconverted to electric power using solar cells. The magnitude

Kansal, Aman; Srivastava, Mani B

2005-01-01T23:59:59.000Z

425

Green Power Marketing in the United States: A Status Report (11th Edition)  

Science Conference Proceedings (OSTI)

This report documents green power marketing activities and trends in the United States. It presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets and green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of renewable energy certificates. Key market trends and issues are also discussed.

Bird, L.; Kreycik, C.; Friedman, B.

2008-10-01T23:59:59.000Z

426

Characterization of air toxics from a laboratory coal-fired combustor and utility scale power plants. Quarterly progress report No. 14, January--March, 1995  

SciTech Connect

This report summarized progress on Task 3, Power Plant Studies, and Task 4, Technical Management and Reporting. Task 3 this quarter involved sampling of flue gas from Units 6 and 7 of the host power plant. The operating parameters during the sampling period are given. Laboratory analyses are in progress. Under Task 4, internal and external QA/QC audits were conducted. A data base management system was prepared. An appendix contains a data compilation of plant operating data.

NONE

1995-05-01T23:59:59.000Z

427

Slinger Utilities | Open Energy Information  

Open Energy Info (EERE)

Slinger Utilities Slinger Utilities Jump to: navigation, search Name Slinger Utilities Place Wisconsin Utility Id 17324 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Single-Phase- Time-of-Day Commercial General Service- Three-Phase Commercial General Service- Three-Phase- Time-of-Day Commercial Industrial Power- Time-of-Day Industrial Large Power- Time-of-Day Commercial Ornamental Street Lighting- 150W HPS Lighting Overhead Street Lighting- 150W HPS Lighting

428

MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

MARKET-BASED ADVANCED MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT MAY 1999 DOE/FE-0400 U.S. Department of Energy Office of Fossil Energy Washington, DC 20585 Market-Based Advanced Coal Power Systems 1-1 December 1998 1. INTRODUCTION As deregulation unfolds and privatization of the utility market takes shape, priorities for power plant economics have shifted toward those of a "bottom-line" business and away from a regulated industry. Competition in utility generation and the exposure risks of large capital investments have led to a preference to minimize capital costs and fixed and variable operation and maintenance costs. With global competition from independent power producers (IPPs), non- utility generators, and utilities, the present trend of investments is with conventional pulverized

429

Electric Power Metrology News  

Science Conference Proceedings (OSTI)

... Next-generation "smart" electrical meters for residential and commercial ... NIST Team Demystifies Utility of Power Factor Correction Devices Release ...

2010-05-24T23:59:59.000Z

430

Utility-affiliated cogeneration developer perspective  

SciTech Connect

The ability of the cogeneration industry to address electric power market requirements, some market observations and forecasts, and changes in the cogeneration industry are discussed. It is concluded that utility planning will increasingly need to account for the noted changing power market characteristics. Effective planning for electric utilities will require recognition of the competitive nature of the power business.

Ferrar, T.A.

1985-11-01T23:59:59.000Z

431

Short Term Hydro Power Planning Coordinated with Wind Power in Areas with Congestion Problems  

E-Print Network (OSTI)

In this paper a day-ahead planning algorithm for a multi-reservoir hydropower system coordinated with wind power is developed. Coordination applies to real situations, where wind power and hydropower are owned by different utilities, sharing the same transmission lines, though hydropower has priority for transmission capacity. Coordination is thus necessary to minimize wind energy curtailments during congestion situations. The planning algorithm accounts for the uncertainty of wind power forecasts and power market price uncertainty. Planning for the spot market and the regulating market is considered in the algorithm. The planning algorithm is applied to a case study and the results are summarized in the paper.

J. Matevosyan; et al.

2006-01-01T23:59:59.000Z

432

EM Utility Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 12 EM UTILITY CONTRACT Site State Supplier Executed Contract Type DOE Contract # East Tennessee Technology Park TN Tennessee Valley Authority 4/27/2007 Energy supply contract (retail) DE-AC05-07OR23242 Hanford WA Bonneville Power Administration 10/1/2001 Transmission Service Agreement Hanford WA Bonneville Power Administration 10/1/2011 Power Sales Agreement (retail) Moab UT Paducah KY Electric Energy, Inc. (EEI as agent for DOE) Original Power Contract Portsmouth OH Pike Natural Gas 2/28/2007 Negotiated contract Portsmouth OH Ohio Valley Electric Corporation (OVEC) 9/10/2008 Letter Agreement DE-AC05-03OR22988 Savannah River Site SC South Carolina Electric & Gas

433

Fuel Switching on a Dime -- Boiler Capabilities of Electric Utilities and Industrial Companies: EPRI Report Series on Gas Demands for Power Generation  

Science Conference Proceedings (OSTI)

Electric utilities play an unusual and important role in the natural gas market because so much of their ongoing gas demand is price sensitive. This report, which focuses on the pattern of this demand, tracks how switching between gas and alternative fuels by major users affects the overall market. Events over the past four years and new plant-specific data have changed our understanding of this phenomenon.

1994-01-01T23:59:59.000Z

434

Constitutional Restrictions on Regulation by American States  

E-Print Network (OSTI)

releases from nuclear power plants did not fall within anydischarged from nuclear power plants, they might conceivablynuclear plant to the state through its utility regulatory powers.

Farber, Daniel

2008-01-01T23:59:59.000Z

435

Estimating potential stranded commitments for U.S. investor-owned electric utilities  

SciTech Connect

New technologies, low natural gas prices, and federal and state utility regions are restructuring the electricity industry. Yesterday`s vertically integrated utility with a retail monopoly franchise may be a very different organization in a few years. Conferences, regulatory-commission hearings, and other industry fora are dominated by debates over the extent and form of utility deintegration, wholesale competition, and retail wheeling. A key obstacle to restructuring the electricity industry is stranded commitments. Past investments, power-purchase contracts, and public-policy-driven programs that made sense in an era of cost-of-service regulation may not be cost-effective in a competitive power market. Regulators, utilities, and other parties face tough decisions concerning the mitigation and allocation of these stranded commitments. The authors developed and applied a simple method to calculate the amount of stranded commitments facing US investor-owned electric utilities. The results obtained with this method depend strongly on a few key assumptions: (1) the fraction of utility sales that is at risk with respect to competition, (2) the market price of electric generation, and (3) the number of years during which the utility would lose money because of differences between its embedded cost of production and the market price.

Baxter, L.; Hirst, E.

1995-01-01T23:59:59.000Z

436

Federal Energy Management Program: Utility Contract Competition  

NLE Websites -- All DOE Office Websites (Extended Search)

Competition to someone by E-mail Competition to someone by E-mail Share Federal Energy Management Program: Utility Contract Competition on Facebook Tweet about Federal Energy Management Program: Utility Contract Competition on Twitter Bookmark Federal Energy Management Program: Utility Contract Competition on Google Bookmark Federal Energy Management Program: Utility Contract Competition on Delicious Rank Federal Energy Management Program: Utility Contract Competition on Digg Find More places to share Federal Energy Management Program: Utility Contract Competition on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts Types of Contracts Laws & Regulations Best Practices Financing Decrease Interest Buydown & Buyout Approaches Contract Competition Diversify Project Portfolios

437

Bryan Texas Utilities - SmartHOME Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Savings Bryan Texas Utilities - SmartHOME Program Bryan Texas Utilities - SmartHOME Program Eligibility...

438

EIS-0037: Springfield City Utilities, James River Generating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Springfield City Utilities, James River Generating Station, Power Plants 3 and 4, Springfield, Greene County, Missouri EIS-0037: Springfield City Utilities, James River...

439

Federal Energy Management Program: Utility Energy Service Contracts Laws  

NLE Websites -- All DOE Office Websites (Extended Search)

Contracts Laws and Regulations to someone by E-mail Contracts Laws and Regulations to someone by E-mail Share Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on Facebook Tweet about Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on Twitter Bookmark Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on Google Bookmark Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on Delicious Rank Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on Digg Find More places to share Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on AddThis.com... Energy Savings Performance Contracts ENABLE

440

Flora Utilities | Open Energy Information  

Open Energy Info (EERE)

Flora Utilities Flora Utilities Jump to: navigation, search Name Flora Utilities Place Indiana Utility Id 6425 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Municipal Rate Commercial Power Acct. Rate Commercial Residential Rate Residential Average Rates Residential: $0.0958/kWh Commercial: $0.0893/kWh Industrial: $0.0805/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Flora_Utilities&oldid=410706

Note: This page contains sample records for the topic "regulated utility power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cogeneration: An Industrial Steam and Power Option  

E-Print Network (OSTI)

Industrial facilities of all sizes have the ability to reduce and better control both power and steam costs with a cogeneration system. Unlike the larger systems that sell almost all of the cogenerated power to a regulated electric utility, these internal use systems use the cogenerated power on-site to reduce power purchases. Ranging from a few hundred kilowatts to tens of megawatts, they are somewhat smaller than the Wholesale Power systems; system size is determined by the industrial plant's electric and thermal requirements and not by an external need for power by a utility. These systems can be very cost effective but require considerably more engineering analysis of site conditions than is typical for a Wholesale Power Project; it is necessary to analyze the industrial host's power and thermal requirements on an hour by hour basis. Moreover, because economic viability is dependent upon displacing some or all of the industrial site's purchased power requirements, considerable attention must be given to the analysis of the local utility's retail rates. This paper describes the concept of an Internal Use cogeneration system and reviews some of the key factors that must be considered in evaluating the viability of a cogeneration facility at any specific industrial site.

Orlando, J. A.; Stewart, M. M.; Roberts, J. R.

1993-03-01T23:59:59.000Z

442

The development of advanced lead-acid batteries for utility applications  

DOE Green Energy (OSTI)

Technical advances in lead-acid battery design have created new opportunities for battery systems in telecommunications, computer backup power and vehicle propulsion power. Now the lead-acid battery has the opportunity to become a major element in the mix of technologies used by electric utilities for several power quality and energy and resource management functions within the network. Since their introduction into industrial applications, Valve Regulated Lead-Acid (VRLA) batteries have received widespread acceptance and use in critical telecommunications and computer installations, and have developed over 10 years of reliable operational history. As further enhancements in performance, reliability and manufacturing processes are made, these VRLA batteries are expanding the role of battery-based energy storage systems within utility companies portfolios. This paper discusses the rationale and process of designing, optimizing and testing VRLA batteries for specific utility application requirements.

Szymborski, J. [GNB Industrial Battery Co., Lombard, IL (United States); Jungst, R.G. [Sandia National Labs., Albuquerque, NM (United States)

1993-10-01T23:59:59.000Z

443

Utilities, marketers identify with tax issures in Supreme Court case  

SciTech Connect

A recent US Supreme Court decision effectively highlights the continuing disparity that exists in the taxation of regulated vs. nonregulated energy companies that engage in similar activities. While the federal case (General Motors Corp., vs. Tracy) and its decision involved natural gas utilities and natural gas marketers and how they are taxed locally, some noted electric utility industry professionals said the ruling has the potential of impacting the electric utility industry as it deregulates and works through the tax inequities that exist between it and independent unregulated power marketers. According to the Washington, DC-based law firm Chadbourne & Park LLP, under the Supreme Court ruling, which was handed down in late February and favored gas utilities, {open_quotes}a state can discriminate in favor of regulated utilities by exempting natural gas purchased from local distribution companies from sales taxes while collecting taxes on so-called selfhelp gas bought from gas producers at the wellhead or from independent marketers.{close_quotes} The US Supreme Court ruling appears to be important for the electric utility industry and independent power marketers in that there currently exists similar disparities with respect to taxation. The case involved Ohio and a tax it levies on natural gas. Ohio collects a 5 percent sales or use tax on gas purchased for consumption. According to Chadbourne & Park, in Ohio this tax can be as much as 7 percent when local taxes are tacked on to the state`s 5 percent tax. However, local distribution companies (LDC) are exempt from this tax. LDCs are essentially the local natural gas company or companies that many states, such as Ohio, have. In Ohio, these natural gas companies, which have generally been interpreted as those companies that produce, transport and deliver natural gas to Ohio consumers, are fully exempt from sales and use taxes.

Warkentin, D. [ed.

1997-04-01T23:59:59.000Z

444

Carbon Management Technologies for Sustainable Coal Utilization  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois power station with coal-fueled oxy- combustion * Utilize existing 200 MWe steam turbine & Meredosia plant infrastructure * Pipeline CO 2 30 miles to sequestration...

445

Energy Crossroads: Utility Energy Efficiency Programs Ohio |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Dayton Power & Light (DL&L) Information for Businesses Duke Energy (Ohio) Information for...

446

Energy Crossroads: Utility Energy Efficiency Programs Montana...  

NLE Websites -- All DOE Office Websites (Extended Search)

Montana Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Energy West Information for Businesses Bonneville Power Administration Information for...

447

Energy Crossroads: Utility Energy Efficiency Programs Vermont...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Green Mountain Power Information for Businesses Central Vermont Public Service...

448

Energy Crossroads: Utility Energy Efficiency Programs Georgia...  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Georgia Power Information for Businesses South Carolina Electric & Gas (SCE&G)...

449

Energy Crossroads: Utility Energy Efficiency Programs Alabama...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alabama Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Alabama Power Company Information for Businesses Tennessee Valley Authority (TVA)...

450

Energy Crossroads: Utility Energy Efficiency Programs Louisiana...  

NLE Websites -- All DOE Office Websites (Extended Search)

Louisiana Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Entergy Corporation Information for Businesses Southwestern Electric Power Company...

451

Energy Crossroads: Utility Energy Efficiency Programs Maryland...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maryland Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Baltimore Gas & Electric (BGE) Information for Businesses Delmarva Power Information for...

452

Energy Crossroads: Utility Energy Efficiency Programs Connecticut...  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecticut Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Connecticut Light & Power Information for Businesses Southern Connecticut Gas...

453

Energy Crossroads: Utility Energy Efficiency Programs Nevada...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Bonneville Power Administration Information for Businesses Southwest Gas Corporation...

454

Energy Crossroads: Utility Energy Efficiency Programs Oregon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Bonneville Power Administration Information for Businesses Eugene Water & Electric Board...

455

Energy Crossroads: Utility Energy Efficiency Programs Nebraska...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Nebraska Municipal Power Pool (NMPP) Information for Businesses NorthWestern Energy...

456

Energy Crossroads: Utility Energy Efficiency Programs Iowa |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Iowa Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Alliant Energy Information for Businesses Nebraska Municipal Power Pool...

457

Energy Crossroads: Utility Energy Efficiency Programs Washington...  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Puget Sound Energy Information for Businesses Bonneville Power Administration...

458

Microgrids, virtual power plants and our distributed energy future  

Science Conference Proceedings (OSTI)

Opportunities for VPPs and microgrids will only increase dramatically with time, as the traditional system of building larger and larger centralized and polluting power plants by utilities charging a regulated rate of return fades. The key questions are: how soon will these new business models thrive - and who will be in the driver's seat? (author)

Asmus, Peter

2010-12-15T23:59:59.000Z

459

Butler Public Power District | Open Energy Information  

Open Energy Info (EERE)

Public Power District (Redirected from Butler County Rural P P D) Jump to: navigation, search Name Butler Public Power District Place Nebraska Utility Id 2643 Utility Location Yes...