Powered by Deep Web Technologies
Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

2

Fuel cell generating plant  

SciTech Connect

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

3

Camptothecine, a selective plant growth regulator  

Science Journals Connector (OSTI)

Camptothecine, a selective plant growth regulator ... The literature documents several hundred plant products that appear to exhibit growth-regulating activity. ...

J. George Buta; Joseph F. Worley

1976-05-01T23:59:59.000Z

4

Next Generation Nuclear Plant Phenomena  

NLE Websites -- All DOE Office Websites (Extended Search)

5 ORNLTM-2007147, Vol. 5 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs Office of Nuclear Regulatory Research...

5

Frequency regulator for synchronous generators  

DOE Patents (OSTI)

The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices.

Karlicek, Robert F. (1920 Camino Centroloma, Fullerton, CA 92633)

1982-01-01T23:59:59.000Z

6

Frequency regulator for synchronous generators  

DOE Patents (OSTI)

The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices. 11 figs.

Karlicek, R.F.

1982-08-10T23:59:59.000Z

7

A Geothermic Generating Plant  

Science Journals Connector (OSTI)

... energy is generated in the turbo-alternators at 25,000 volts and transmitted to the substations along the ViareggioRome railway, where it is converted to 3,000 volts direct ...

1939-10-28T23:59:59.000Z

8

Method for regulation of plant lignin composition  

DOE Patents (OSTI)

A method is disclosed for the regulation of lignin composition in plant tissue. Plants are transformed with a gene encoding an active F5H gene. The expression of the F5H gene results in increased levels of syringyl monomer providing a lignin composition more easily degraded with chemicals and enzymes.

Chapple, Clint (West Lafayette, IN)

1999-01-01T23:59:59.000Z

9

Plant phytotoxicity: A self-regulating pathway  

SciTech Connect

During the session on regulating sludge utilization, held at BioCycle's 19th Annual National conference on Composting and Recycling, a participant asked one of the speakers, Dr. Alan Rubin of the US EPA's Office of Water Regulations and Standards, why the plant phytotoxicity pathway should be the most limiting, especially when there is no concern about human or animal health. The question related specifically to copper being the most limiting metal concentration limit for many sludge composting and land application programs under the proposed Part 503 regulations. And the most limiting pathway for copper is Pathway 7, sludge-soil-plant phytotoxicity. Rubin responded that the regulation is supposed to protect both human health and the environment, e.g. plants and animals other than humans.

Not Available

1989-07-01T23:59:59.000Z

10

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Life-Cycle Assessment in Pesticide Product Development:? Methods and Case Study on Two Plant-Growth Regulators from Different Product Generations  

Science Journals Connector (OSTI)

Life-cycle assessment (LCA) enables a more comprehensive evaluation by additionally assessing the impacts of pesticide production and application (e.g. ... Also, the break-even point depends strongly on the yield increase data determined in field trials, which are specific to the use of growth regulators in intensive agriculture. ...

Georg Geisler; Stefanie Hellweg; Thomas B. Hofstetter; Konrad Hungerbuehler

2005-03-04T23:59:59.000Z

12

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy April 20, 2011 - 1:45pm Addthis U.S. Energy...

13

Efficiently generate steam from cogeneration plants  

SciTech Connect

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

14

Mesaba next-generation IGCC plant  

SciTech Connect

Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

NONE

2006-01-01T23:59:59.000Z

15

Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Second Generation Second Generation Biofuel Plant Depreciation Deduction Allowance to someone by E-mail Share Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on Facebook Tweet about Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on Twitter Bookmark Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on Google Bookmark Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on Delicious Rank Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on Digg Find More places to share Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on AddThis.com...

16

GENERATING CLIMBING PLANTS USING L-SYSTEMS Johan Knutzen1  

E-Print Network (OSTI)

and heliotropism, as well pseudo- tropisms. The structure of the generated climbing plants is discretized

Assarsson, Ulf

17

Transcriptional Regulation in Algae, Fungi and Plants: Mating Loci, Splicing, and miRNAs  

E-Print Network (OSTI)

from organisms ranging from algae to fungi and plants. WeTranscriptional Regulation in Algae, Fungi and Plants:Transcriptional Regulation in Algae, Fungi and Plants:

Douglass, Stephen Michael

2014-01-01T23:59:59.000Z

18

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network (OSTI)

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

19

Water generator replaces bottled water in nuclear power plant  

Science Journals Connector (OSTI)

WaterPure International Incorporated of Doylestown, Pennsylvania, USA, has announced that it has placed its atmospheric water generator (AWG) inside a selected nuclear power plant.

2007-01-01T23:59:59.000Z

20

Table 11a. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " constant dollars per million Btu in ""dollar year"" specific to each...

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,Summary of Nuclear Power Plant Operating Experience for

Nero, A.V.

2010-01-01T23:59:59.000Z

22

Power generation using solar power plant.  

E-Print Network (OSTI)

??Pursuing the commitment of California State to generate at least 20 percent of total generated energy from the renewable source by the year 2010 rather (more)

Amin, Parth

2010-01-01T23:59:59.000Z

23

Regulators caught in fierce crossfire on new generation  

SciTech Connect

Efforts of several utilities to construct new power plants not based on conventional coal but rather coal-gasification technology or nuclear fission are described. Several have been canceled because of rising costs. State regulators are faced with trying to protect customers from high rates and unsound investments by utilities. Critics maintain that ratepayers should not be forced to pay higher rates for plants that may never be built.

NONE

2008-07-15T23:59:59.000Z

24

Development of second-generation PFB combustion plants  

SciTech Connect

Research is being conducted under United States Department of Energy (USDOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fueled plant for electric power generation. This new type of plant--called an Advanced or Second-generation Pressurized Fluidized Bed Combustion (APFBC) plant--offers the promise of efficiencies greater than 45 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot-plant R&D work being conducted to develop this new type of plant and discusses a proposed design that should reduce demonstration-plant risks and costs.

Robertson, A.; Domeracki, W.; Horazak, D. [and others

1995-12-31T23:59:59.000Z

25

Water Balance in Terrestrial PlantsWater Balance in Terrestrial Plants Water Regulation on LandWater Regulation on Land --PlantsPlants WWipip= W= Wrr + W+ Waa --WWtt --WWss  

E-Print Network (OSTI)

1 Water Balance in Terrestrial PlantsWater Balance in Terrestrial Plants Water Regulation on LandWater waters internal water WWrr =Roots=Roots WWaa = Air= Air WWtt = Transpiration= Transpiration WWss = Secretions= Secretions Water Regulation on Land - Plants Water Balance in Terrestrial PlantsWater Balance

Cochran-Stafira, D. Liane

26

The Next Generation Nuclear Plant (NGNP) Project  

SciTech Connect

The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOEs project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10 CFR 52, for the purpose of demonstrating the suitability of high-temperature gas-cooled reactors for commercial electric power and hydrogen production. Products that will support the licensing of the NGNP include the environmental impact statement, the preliminary safety analysis report, the NRC construction permit, the final safety analysis report, and the NRC operating license. The fuel development and qualification program consists of five elements: development of improved fuel manufacturing technologies, fuel and materials irradiations, safety testing and post-irradiation examinations, fuel performance modeling, and fission product transport and source term modeling. Two basic approaches will be explored for using the heat from the high-temperature helium coolant to produce hydrogen. The first technology of interest is the thermochemical splitting of water into hydrogen and oxygen. The most promising processes for thermochemical splitting of water are sulfur-based and include the sulfur-iodine, hybrid sulfur-electrolysis, and sulfur-bromine processes. The second technology of interest is thermally assisted electrolysis of water. The efficiency of this process can be substantially improved by heating the water to high-temperature steam before applying electrolysis.

F. H. Southworth; P. E. MacDonald

2003-11-01T23:59:59.000Z

27

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network (OSTI)

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

28

Industry Participation Sought for Design of Next Generation Nuclear Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Participation Sought for Design of Next Generation Nuclear Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled nuclear reactor prototype with the capability to produce process heat, electricity and/or hydrogen. The very high temperature reactor is based on research and development activities supported by DOE's Generation IV nuclear energy systems initiative.

29

Turbine Drive Gas Generator for Zero Emission Power Plants  

SciTech Connect

The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

Doyle, Stephen E.; Anderson, Roger E.

2001-11-06T23:59:59.000Z

30

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

31

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Regulated apparatus for the generation of electrical energy, such as a wind generator  

SciTech Connect

The invention relates to a regulated apparatus for the generation of electrical energy. A wind generator comprises a propeller having fixed blades and a generator connected by a transmission to the propeller and having sets of main and secondary brushes. The hub of the propeller comprises a rotor of an eddy-current brake whose inductor stator is supplied by a current delivered, starting from a certain speed , by the secondary brushes of the generator which are angularly shifted relative to their neutral position.

Kant, M.

1980-04-15T23:59:59.000Z

33

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

34

Utility of Plant Growth Regulation in Cotton Production D.M. Dodds, Mississippi State University  

E-Print Network (OSTI)

Utility of Plant Growth Regulation in Cotton Production Authors D.M. Dodds, Mississippi State State University, formerly Louisiana State University R.L. Nichols, Cotton Incorporated Plant Growth Regulation in Cotton Plant growth regulators (PGRs) are commonly used to manage vegetative growth in cotton

Behmer, Spencer T.

35

Incentive regulation of investor-owned nuclear power plants by public utility regulators. Revision 1  

SciTech Connect

The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The current report is an update of NUREG/CR-5975, Incentive Regulation of Investor-Owned Nuclear Power Plants by Public Utility Regulators, published in January 1993. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

McKinney, M.D.; Seely, H.E.; Merritt, C.R.; Baker, D.C. [Pacific Northwest Lab., Richland, WA (United States)

1995-04-01T23:59:59.000Z

36

Final Report for Regulation of Embryonic Development in Higher Plants  

SciTech Connect

The overall goal of the project was to define the cellular processes that underlie embryo development in plants at a mechanistic level. Our studies focused on a critical transcriptional regulator, Arabidopsis LEAFY COTYLEDON (LEC1), that is necessary and sufficient to induce processes required for embryo development. Because LEC1 regulates lipid accumulation during the maturation phase of embryo development, information about LEC1 may be useful in designing approaches to enhance biofuel production in plants. During the tenure of this project, we determined the molecular mechanisms by which LEC1 acts as a transcription factor in embryos. We also identified genes directly regulated by LEC1 and showed that many of these genes are involved in maturation processes. This information has been useful in dissecting the gene regulatory networks controlling embryo development. Finally, LEC1 is a novel isoform of a transcription factor that is conserved among eukaryotes, and LEC1 is active primarily in seeds. Therefore, we determined that the LEC1-type transcription factors first appeared in lycophytes during land plant evolution. Together, this study provides basic information that has implications for biofuel production.

Harada, John J. [University of California, Davis] [University of California, Davis

2013-10-22T23:59:59.000Z

37

Metabolic regulation of the plant hormone indole-3-acetic acid  

SciTech Connect

The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

Jerry D. Cohen

2009-11-01T23:59:59.000Z

38

Modeling Generator Power Plant Portfolios and Pollution Taxes in  

E-Print Network (OSTI)

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

Nagurney, Anna

39

Power Plant Emission Reductions Using a Generation Performance Standard  

Gasoline and Diesel Fuel Update (EIA)

Power Plant Emission Reductions Power Plant Emission Reductions Using a Generation Performance Standard by J. Alan Beamon, Tom Leckey, and Laura Martin There are many policy instruments available for reducing power plant emissions, and the choice of a policy will affect compliance decisions, costs, and prices faced by consumers. In a previous analysis, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and carbon dioxide (CO 2 ) emissions, assuming a policy instru- ment patterned after the SO 2 allowance program created in the Clean Air Act Amendments of 1990. 1 This report compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard (GPS) as an instrument for reducing CO 2 emissions. 2 In general, the results of the two analyses are similar: to reduce

40

Technology Data for Electricity and Heat Generating Plants  

E-Print Network (OSTI)

.................................................................................63 13 Centralised Biogas Plants

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Capital Cost Estimates Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

42

Steam generator design considerations for modular HTGR plant  

SciTech Connect

Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the US.

McDonald, C.F.; DeFur, D.D.

1986-05-01T23:59:59.000Z

43

NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

Mark Holbrook

2010-09-01T23:59:59.000Z

44

Role of a Transcriptional Regulator in Programmed Cell Death and Plant Development  

SciTech Connect

The long-term goal of this research is to understand the role(s) and molecular mechanisms of programmed cell death (PCD) in the controlling plant growth, development and responses to biotic and abiotic stress. We developed a genetic selection scheme to identify A. thaliana FB1-resistant (fbr) mutants as a way to find genes involved in PCD (Stone et al., 2000; Stone et al., 2005; Khan and Stone, 2008). The disrupted gene in fbr6 (AtSPL14) responsible for the FB1-insensitivity and plant architecture phenotypes encodes a plant-specific SBP DNA-binding domain transcriptional regulator (Stone et al., 2005; Liang et al., 2008). This research plan is designed to fill gaps in the knowledge about the role of SPL14 in plant growth and development. The work is being guided by three objectives aimed at determining the pathways in which SPL14 functions to modulate PCD and/or plant development: (1) determine how SPL14 functions in plant development, (2) identify target genes that are directly regulated by SPL14, and (3) identify SPL14 modifications and interacting proteins. We made significant progress during the funding period. Briefly, some major accomplishments are highlighted below: (1) To identify potential AtSPL14 target genes, we identified a consensus DNA binding site for the AtSPL14 SBP DNA-binding domain using systematic evolution of ligands by exponential selection (SELEX) and site-directed mutagenesis (Liang et al., 2008). This consensus binding site was used to analyze Affymetrix microarray gene expression data obtained from wild-type and fbr6 mutant plants to find possible AtSPL14-regulated genes. These candidate AtSPL14-regulated genes are providing new information on the molecular mechanisms linking plant PCD and plant development through modulation of the 26S proteasome. (2) Transgenic plants expressing epitope-tagged versions of AtSPL14 are being used to confirm the AtSPL14 targets (by ChIP-PCR) and further dissect the molecular interactions (Nazarenus, Liang and Stone, in preparation) (3) Double mutants generated between fbr6 and various accelerated cell death (acd) mutants indicate that sphingolipid metabolism is influenced by AtSPL14 and sphingolipidomics profiling supports this conclusion (Lin, Markham and Stone, in preparation). (4) A new set of phenotypes have been uncovered in the original fbr6-1 mutant, including a short-root phenotype related to auxin signaling and altered photosynthetic parameters related to stomatal density and conductance (Lin and Stone, in preparation; Lin, Madhavan and Stone, in preparation). Additional AtSPL14-related mutants and transgenic plants have been generated to effectively dissect the functions of AtSPL14, including a dominant negative fbr6-2 allele and transgenic plants overexpressing FBR6/AtSPL14 that display an accelerated cell death (acd) phenotype.

Julie M. Stone

2008-09-13T23:59:59.000Z

45

A HIRARC model for safety and risk evaluation at a hydroelectric power generation plant  

Science Journals Connector (OSTI)

Abstract There are many formal techniques for the systematic analysis of occupational safety and health in general, and risk analysis in particular, for power generation plants at hydroelectric power stations. This study was initiated in order to create a HIRARC model for the evaluation of environmental safety and health at a hydroelectric power generation plant at Cameron Highlands in Pahang, Malaysia. The HIRARC model was used to identify the primary and secondary hazards which may be inherent in the system which were determined as a serious threat for plant operation and maintenance. The primary tools of the model consisted of, generic check-lists, work place inspection schemes which included task observation and interview, safety analysis as well as accident and incident investigation. For risk assessment, the Likert scale was complemented by the severity matrix analysis in order to determine the probability and extent of safety and health at the study power generation plant. These were used to identify and recommend control measures which included engineering and administrative aspects as well as the use of personal protective equipment (PPE). A total of forty-one important hazard items were identified in the system at target power generation plant. These hazards were mainly identified by means of checklists which were sourced from literature and subsequently customized for the current purpose. Risk assessment was conducted by initially classifying the hazards into three levels such as Low, Medium and High. Generally 66% of the hazards identified were at low risk, 32% at medium and 2% at high risk. This indicated that there was sufficient awareness and commitment to safety and health at the study power station. Meanwhile the Power Station was also certified by MS 1722:2005, OHSAS 18001, MS ISO 14001:2004, MS ISO 9001:2000 and scheduled waste regulation 2005 which give credibility to the current study in creating a working model which may find widespread application in the future.

A.M. Saedi; J.J. Thambirajah; Agamuthu Pariatamby

2014-01-01T23:59:59.000Z

46

Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen  

E-Print Network (OSTI)

Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen are not well understood. We have previously shown that ethylene-insensitive tomato plants infected not accumulate in ethylene-insensitive plants. Exogenous feeding of SA to ethylene-de®cient plants restores

Klee, Harry J.

47

Gaseous diffusion plant transition from DOE to external regulation  

SciTech Connect

After many years of operation as government-owned/contractor-operated facilities, large portions of the gaseous diffusion plants (GDPs) at Portsmouth, Ohio, and Paducah, Kentucky, were leased to the United States Enrichment Corporation (USEC). These facilities are now certified by the U.S. Nuclear Regulatory Commission (NRC) and subject to oversight by the Occupational Safety and Health Administration (OSHA). The transition from DOE to NRC regulation was more difficult than expected. The original commitment was to achieve NRC certification in October 1995; however, considerably more time was required and transition-related costs escalated. The Oak Ridge Operations Office originally estimated the cost of transition at $60 million; $240 million has been spent to date. The DOE`s experience in transitioning the GDPs to USEC operation with NRC oversight provides valuable lessons (both positive and negative) that could be applied to future transitions.

Dann, R.K.; Crites, T.R.; Rahm-Crites, L.K. [Lawrence Livermore National Lab., CA (United States)

1997-12-01T23:59:59.000Z

48

Plugging of steam generator tubes and consequences for plant operation  

SciTech Connect

The simulation of pressurized water reactor (SIROP) code was created using the SICLE software developed by the study and research department at Electricite de France. It is the largest computer code with this software (260 tubes, 1800 computation points, 19 water-steam cavities, 9 pumps, 6 turbines, 32 control system elements). It simulates the general operating conditions of a 900-MW(electric) CP2 power plant by computing the main physical parameters from the reactor core to the condenser. The study was performed by the study and research department (Reactor Physics Division) with the help of SEPTEN following an SPT (power operation department) request. It consisted of identifying the change in margins with respect to emergency shutdown protections (especially for ..delta..T protections) as a function of the number of plugged steam generators (1, 2, or 3) and the degree of plugging (10, 20, and 30%) under the following operating conditions: (1) steady state at 100% full power; and (2) main transients: manual load rejection, load rejection induced by grid fault, turbine tripping. The purpose was to assess the effect of a large number of steam generator plugged tubes on the behavior of the plant to secure a long-term prediction for the date of replacement of these steam generators.

Agnoux, D.; Chenal, J.C.

1987-01-01T23:59:59.000Z

49

Next Generation Nuclear Plant Resilient Control System Functional Analysis  

SciTech Connect

Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

Lynne M. Stevens

2010-07-01T23:59:59.000Z

50

Next Generation Nuclear Plant Materials Selection and Qualification Program Plan  

SciTech Connect

The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

R. Doug Hamelin; G. O. Hayner

2004-11-01T23:59:59.000Z

51

Hydrogen Production from the Next Generation Nuclear Plant  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

M. Patterson; C. Park

2008-03-01T23:59:59.000Z

52

GRR/Section 7 - Power Plant Siting, Construction, and Regulation Overview |  

Open Energy Info (EERE)

GRR/Section 7 - Power Plant Siting, Construction, and Regulation Overview GRR/Section 7 - Power Plant Siting, Construction, and Regulation Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7 - Power Plant Siting, Construction, and Regulation Overview 07PowerPlantSitingConstructionOverview (2).pdf Click to View Fullscreen Contact Agencies Federal Energy Regulatory Commission Triggers None specified Click "Edit With Form" above to add content 07PowerPlantSitingConstructionOverview (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The power plant's location, size, type of customer the power plant sells energy to, and whether the power plant sells energy in "interstate

53

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

54

Fuel cell power plants in a distributed generator application  

SciTech Connect

ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

55

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

56

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

57

Bruchins: Insect-derived plant regulators that stimulate neoplasm formation  

Science Journals Connector (OSTI)

...Departments of Horticulture and Zoology, and...of pods grown under greenhouse conditions. Greenhouse...from plants grown in a greenhouse with set points of 16...Such supplemental lighting reduced the incidence...ordinarily seen on greenhouse-grown plants...

Robert P. Doss; James E. Oliver; William M. Proebsting; Sandra W. Potter; SreyReath Kuy; Stephen L. Clement; R. Thomas Williamson; John R. Carney; E. David DeVilbiss

2000-01-01T23:59:59.000Z

58

Protein nucleocytoplasmic transport and its light regulation in plants  

E-Print Network (OSTI)

of plant cells and how light may exert its regulatory effect. Nuclear import system An overview investigations into plant nuclear transport systems and specific cases where nucleocytoplasmic transport conditions. Among a variety of environmental stimuli that affect plants, light exerts the most promi- nent

Deng, Xing-Wang

59

A review of the secondary plant modifications on steam generator performance  

SciTech Connect

This paper provides recommendations for modifications in the secondary system of existing pressurized water reactor (PWR) plants for the purpose of arresting the problem of steam generator corrosion.

Asarpota, A.; Snaith, R.

1983-01-01T23:59:59.000Z

60

Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant  

SciTech Connect

The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Power plants coordination for economic and environmental load dispatch of thermal power plants with wind generation systems  

Science Journals Connector (OSTI)

Economic load dispatch (ELD) and economic emission dispatch (EED) have been applied to obtain generation scheduling of thermal power plants at optimum fuel cost and emissions. Due to limited availability of quality coal, issue of environmental emissions and high prices of coal, installation of renewable energy systems are suggested in power grid. Renewable energy system preferably wind generators are used in co-working with thermal plant which reduces generation cost, coal requirement and environmental emissions. This paper presents Newton-Raphson method to obtain ELD and EED. System simulation and programming is carried out in MATLAB environment. Analysis has been made on generation cost and for nitrous oxides emissions only due to its harmful effects and its rising tendency with excess air. Price penalty factor is also calculated to determine emission cost. Doubly fed induction generator (DFIG) is suggested as wind energy systems in combination with coal-based thermal plant. Performance results related to generation scheduling, transmission line loading, bus voltages, total cost and environmental emissions are shown for coal-based thermal power plant and with co-generation. The investigation shows that with co-generation, coal-based thermal power plant runs at minimum emissions level which further reflects on the generation economy.

Kishor B. Porate; Krishna L. Thakre; Ghanashyam Bodhe

2013-01-01T23:59:59.000Z

62

Property:EIA/861/OperatesGeneratingPlant | Open Energy Information  

Open Energy Info (EERE)

OperatesGeneratingPlant OperatesGeneratingPlant Jump to: navigation, search This is a property of type Boolean. Description: Operates Generating Plant Entity operates power generating plants (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/OperatesGeneratingPlant" Showing 25 pages using this property. (previous 25) (next 25) A A & N Electric Coop (Virginia) + true + AEP Generating Company + true + AES Eastern Energy LP + true + AGC Division of APG Inc + true + Akiachak Native Community Electric Co + true + Alabama Municipal Elec Authority + true + Alabama Power Co + true + Alaska Electric & Energy Coop + true + Alaska Electric Light&Power Co + true + Alaska Energy Authority + true +

63

Transcriptional Regulators and the Evolution of Plant Form  

Science Journals Connector (OSTI)

...change in the cis-regulatory elements of transcriptional...of them. In this review, we have presented...changes in the cis-regulatory regions of transcriptional...plant MADS-box regulatory gene family Raff...the insect body plan Wessler S. Bureau...Non-P.H.S. Review | 0 Plant Proteins...

John Doebley; Lewis Lukens

64

Next Generation Geothermal Power Plants (NGGPP) process data for binary cycle plants  

SciTech Connect

The Next Generation Geothermal Power Plants (NGGPP) study provides the firm estimates - in the public domain - of the cost and performance of U.S. geothermal systems and their main components in the early 1990s. The study was funded by the U.S. Department of Energy Geothermal Research Program, managed for DOE by Evan Hughes of the Electric Power Research Institute, Palo Alto, CA, and conducted by John Brugman and others of the CE Holt Consulting Firm, Pasadena, CA. The printed NGGPP reports contain detailed data on the cost and performance for the flash steam cycles that were characterized, but not for the binary cycles. The nine Tables in this document are the detailed data sheets on cost and performance for the air cooled binary systems that were studied in the NGGPP.

Not Available

1996-10-02T23:59:59.000Z

65

The Plant Cell, Vol. 7, 1555-1567, October 1995 0 1995 American Society of Plant Physiologists Arabidopsis TCH4, Regulated by Hormones and the  

E-Print Network (OSTI)

Sciences, Daniel Rutherford Building, The King's Buildings, Adaptation of plants to environmental as structural On leave from the Department of Morphogenesis,Environmental Plant Pollution Laboratory, lnstitute expression is regulated by auxin and brassinosteroids, by environmental stimuli, and during development

Braam, Janet

66

North Brawley Power Plant Placed in Service; Currently Generating 17 MW;  

Open Energy Info (EERE)

North Brawley Power Plant Placed in Service; Currently Generating 17 MW; North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Author Electric Energy Publications Inc. Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Citation Electric Energy Publications Inc.. North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update [Internet]. [updated 2010;cited 2010]. Available from:

67

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76: Vogtle Electric Generating Plant, Units 3 and 4 76: Vogtle Electric Generating Plant, Units 3 and 4 EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 Summary This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download February 17, 2012 EIS-0476: Notice of Adoption of Final Environmental Impact Statement Vogtle Electric Generating Plant, Units 3 and 4, Issuance of a Loan Guarantee to Support Funding for Construction, Burke County, GA

68

Management activities for retrieved and newly generated transuranic waste, Savannah River Plant  

SciTech Connect

The purpose of this Environmental Assessment (EA) is to assess the potential environmental impacts of the retrieval and processing of retrieved and newly generated transuranic (TRU) radioactive waste at the Savannah River Plant (SRP), including the transportation of the processes TRU waste to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. A new TRU Waste Facility (TWF) will be constructed at SRP to retrieve and process the SRP TRU waste in interim storage to meet WIPP criteria. This EA has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, and the requirements of the Council of Environmental Quality Regulations for implementing NEPA (40 CFR Parts 1500--1508). The National Environmental Policy Act (NEPA) requires the assessment of environmental consequences of all major federal actions that may affect the quality of the human environment. This document describes the environmental impact of constructing and operating the TWF facility for processing and shipment of the TRU waste to WIPP and considers alternatives to the proposed action. 40 refs., 12 figs., 12 tabs.

Not Available

1988-08-01T23:59:59.000Z

69

Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water  

SciTech Connect

An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

Bud'ko, I. O. [JSC NIITsE 'Tsentrenergo' (Russian Federation)] [JSC NIITsE 'Tsentrenergo' (Russian Federation); Zhukov, A. G. [Rostov Nuclear Power Plant (Russian Federation)] [Rostov Nuclear Power Plant (Russian Federation)

2013-11-15T23:59:59.000Z

70

AVESTAR Center for operational excellence of electricity generation plants  

SciTech Connect

To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energys National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment.

Zitney, S.

2012-01-01T23:59:59.000Z

71

Letter to NEAC to Review the Next Generation Nuclear Plant Activities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to NEAC to Review the Next Generation Nuclear Plant to NEAC to Review the Next Generation Nuclear Plant Activities Letter to NEAC to Review the Next Generation Nuclear Plant Activities The Next Generation Nuclear Plant (NGNP) project was established under the Energy Policy Act in August 2005 (EPACT-2005). EPACT-2005 defined an overall plan and timetable for NGNP research, design, licensing, construction and operation by the end of FY 2021. At the time that EPACT-2005 was passed, it was envisioned that key aspects of the project included: NGNP is based on R&D activities supported by the Gen-IV Nuclear Energy initiative;  NGNP is to be used to generate electricity, to produce hydrogen or (to do) both;  The Idaho National Laboratory (INL) will be the lead national lab for the project;  NGNP will be sited at the INL in

72

Next Generation Nuclear Plant: A Report to Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a high-temperature nuclear energy source. The project is being executed in collaboration with industry, DOE national laboratories, and U.S. universities. The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing and regulatory oversight of the demonstration nuclear reactor.

73

Next Generation Nuclear Plant: A Report to Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a high-temperature nuclear energy source. The project is being executed in collaboration with industry, DOE national laboratories, and U.S. universities. The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing and regulatory oversight of the demonstration nuclear reactor.

74

Improving heat capture for power generation in coal gasification plants  

E-Print Network (OSTI)

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

75

Co-Generation at a Practical Plant Level  

E-Print Network (OSTI)

The Steam Turbine: A basic description of how a steam turbine converts available heat into mechanical energy to define the formulae used for the cost comparisons in the subsequent examples. Co-Generation: Comparison between condensing cycle...

Feuell, J.

1980-01-01T23:59:59.000Z

76

DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeks Additional Input on Next Generation Nuclear Plant Seeks Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest from prospective participants and interested parties on utilizing cutting-edge high temperature gas reactor technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels used by industry for process heat. "This is an opportunity to advance the development of safe, reliable, and

77

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

78

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Olkhovskii; A. V. Ageev; S. V. Malakhov

2006-07-01T23:59:59.000Z

79

Electrical generation plant design practice intern experience at Power Systems Engineering, Inc.: an internship report  

E-Print Network (OSTI)

. One involved design of a 480 MW power plant. The other was the design of a 8.2 MW induction generator for cogeneration. The author's activities during this period can be categorized into two major areas. First, technically oriented...

Lee, Ting-Zern Joe, 1950-

2013-03-13T23:59:59.000Z

80

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

July 24, 2009, Visiting Speakers Program - The Next Generation of (Safety) Regulation for HRO's by Christopher Hart  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulating Regulating HRO's: Next Generation July 24, 2009 Federal Aviation Administration 1 Federal Aviation Administration The Next Generation of (Safety) Regulation for HRO's Presentation to: HSS Visiting Speakers Program Name: Christopher A. Hart Date: July 24, 2009 Aviation Safety Experience - Conventional Wisdom: More vigorous regulation and enforcement will result in improved safety - Lesson Learned from Experience: There is a mishap rate plateau beyond which further improvement necessitates a more collaborative approach 2 Regulating HRO's: Next Generation July 24, 2009 Federal Aviation Administration The Context: Increasing Complexity * More System Interdependencies - Large, complex, interactive system - Often tightly coupled - Hi-tech components - Continuous innovation AIRLINES

82

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

83

Photosynthesis 481 C3 plants, which regulate the opening of stomatal  

E-Print Network (OSTI)

Photosynthesis 481 C3 plants, which regulate the opening of stomatal pores for gas exchange.; Govindjee Bacterial Photosynthesis Certain bacteria have the ability to perform photo- synthesis Niel, who gave a general equa- tion for bacterial photosynthesis. This is shown in reaction (9). 2H2A

Govindjee "Gov"

84

Title 20, California Code of Regulations Article 5. Electricity Generation Source Disclosure  

E-Print Network (OSTI)

facility, the sum capacity of which does not exceed 30 megawatts. (4) Solar. For purposes1 Title 20, California Code of Regulations Article 5. Electricity Generation Source Disclosure that a retail seller offers to sell to consumers in California under terms and conditions specific to an offer

85

Plant Physiol. (1995) 107: 1343-1 353 The Tomato Never-ri'e Locus Regulates Ethylene-lnducible  

E-Print Network (OSTI)

Plant Physiol. (1995) 107: 1343-1 353 The Tomato Never-ri'e Locus Regulates Ethylene-lnducible Gene regulator ethylene (M.B. Lanahan, H.-C. Yen, J.J. Ciovannoni, H.J. Klee I19941 Plant Cell 6: 521-530). We report here ethylene sensi- tivity over a range of concentrations in normal and Nr tomato seedlingsand

Klee, Harry J.

86

Interaction of a plant pseudo-response regulator with a calmodulin-like protein  

SciTech Connect

Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)] [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: ranty@scsv.ups-tlse.fr [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)] [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)

2010-08-06T23:59:59.000Z

87

Table 2. Ten Largest Plants by Generation Capacity, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "1. Northeastern","Coal","Public Service Co of Oklahoma",1815 "2. Muskogee","Coal","Oklahoma Gas & Electric Co",1524 "3. Seminole","Gas","Oklahoma Gas & Electric Co",1504 "4. Kiamichi Energy Facility","Gas","Kiowa Power Partners LLC",1178 "5. Redbud Power Plant","Gas","Oklahoma Gas & Electric Co",1160 "6. Oneta Energy Center","Gas","Calpine Central L P",1086 "7. Riverside","Gas","Public Service Co of Oklahoma",1070 "8. Sooner","Coal","Oklahoma Gas & Electric Co",1046 "9. GRDA","Coal","Grand River Dam Authority",1010

88

MHD (magnetohydrodynamics) retrofit of a coal-fired generating plant  

SciTech Connect

This report presents the following appendices on the design of a coal-fired MHD retrofit: AVCO part load study; AVCO full load calculations; MSE mass balance calculations; Corette/MHD combined plant overall efficiency estimate; Corette boiler efficiency estimate; dynamic modeling and control simulation; combustor and nozzle scaling approach; field inductance and energy calculations; diagnostic instrumentation listing; equipment list; cost estimate factors; equipment and vendor costs data; CFFF test information; HRSR-ESP seed/ash calculations; and K{sub 2}/S molar ratio.

Not Available

1989-01-01T23:59:59.000Z

89

Regulating the ethylene response of a plant by modulation of F-box proteins  

SciTech Connect

The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

2014-01-07T23:59:59.000Z

90

Next Generation Nuclear Plant Defense-in-Depth Approach  

SciTech Connect

The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

Edward G. Wallace; Karl N. Fleming; Edward M. Burns

2009-12-01T23:59:59.000Z

91

MHK Technologies/The Ocean Hydro Electricity Generator Plant | Open Energy  

Open Energy Info (EERE)

MHK Technologies/The Ocean Hydro Electricity Generator Plant MHK Technologies/The Ocean Hydro Electricity Generator Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The O H E G plant is a revolutionary concept using tidal energy designed by FreeFlow 69 The plant uses tidal energy to create electricity 24 hours a day making this a unique project 24 hour power is produced by using both the kinetic energy in tidal flow and the potential energy created by tidal height changes The O H E G plant is completely independent of the wind farm however it does make an ideal foundation for offshore wind turbines combining both tidal energy and wind energy The O H E G plant is not detrimental to the surrounding environment or ecosystem and due to its offshore location it will not be visually offensive

92

New generation enrichment monitoring technology for gas centrifuge enrichment plants  

SciTech Connect

The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

Ianakiev, Kiril D [Los Alamos National Laboratory; Alexandrov, Boian, S. [Los Alamos National Laboratory; Boyer, Brian, D. [Los Alamos National Laboratory; Hill, Thomas, R. [Los Alamos National Laboratory; Macarthur, Duncan, W. [Los Alamos National Laboratory; Marks, Thomas [Los Alamos National Laboratory; Moss, Calvin, E. [Los Alamos National Laboratory; Sheppard, Gregory, A. [Los Alamos National Laboratory; Swinhoe, Martyn, T. [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

93

Energization of Plant Cell Membranes by H+-Pumping ATPases: Regulation and Biosynthesis  

Science Journals Connector (OSTI)

...may also regulate the electrochemical gradient. Fusicoccin...which responds to auxin treatment. Nonvascular tissues...uptake of ions and water into cells and vacuoles...of the chaotrope by dialysis, the two sectors reassemble...generating a proton electrochemical gradient (120 to 160...

Heven Sze; Xuhang Li; Michael G. Palmgren

94

STATCOM-based voltage and frequency regulator for stand-alone asynchronous generator  

Science Journals Connector (OSTI)

This paper presents a STATCOM-based voltage and frequency regulation for stand-alone asynchronous generator feeding linear and nonlinear loads. The SEIG have inherent poor voltage and frequency regulation. The voltage and frequency depend upon the load current and power factor of the load with fixed excitation capacitor employing unregulated turbines. The changing consumer load requires variable reactive power compensation for excitation requirement. Consumer load contains harmonics and performance of SEIG is largely affected by these load harmonics. A current controlled voltage source inverter working as STATCOM is used for harmonic elimination, load balancing and variable reactive power compensation. A DC chopper with dump load is connected across DC bus capacitor to regulate varying consumer load. The control algorithm has been first co-simulated with processor in the loop (PIL) and then experimentally validated. The transient behaviour of developed prototype system for application and removal of balanced, unbalanced, nonlinear load is investigated.

Dheeraj Kumar Palwalia

2014-01-01T23:59:59.000Z

95

Efficiency analysis of hydroelectric generating plants: A case study for Portugal  

Science Journals Connector (OSTI)

This paper estimates changes in total productivity, breaking this down into technically efficient change and technological change, by means of data envelopment analysis (DEA) applied to the hydroelectric energy generating plants of EDP the Portugal Electricity Company. The aim of this procedure is to seek out those best practices that will lead to improved performance in the energy market. We rank the plants according to their change in total productivity for the period 20012004, concluding that some plants experienced productivity growth while others experienced a decrease in productivity. The implications arising from the study are that EDP should adopt an internal benchmark management procedure in order to evaluate the relative position of each hydroelectric generating plant and to adopt managerial strategies designed to catch up with the frontier of best practices. As the frontier is shifting along the time, constant efforts are needed in this respect along the time.

Carlos Pestana Barros

2008-01-01T23:59:59.000Z

96

National Lab Helping to Train Operators for Next Generation of Power Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Lab Helping to Train Operators for Next Generation of National Lab Helping to Train Operators for Next Generation of Power Plants National Lab Helping to Train Operators for Next Generation of Power Plants January 25, 2013 - 11:10am Addthis AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy What Does AVESTAR Provide? Advanced dynamic simulation, control and virtual plant technologies

97

National Lab Helping to Train Operators for Next Generation of Power Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Helping to Train Operators for Next Generation of Lab Helping to Train Operators for Next Generation of Power Plants National Lab Helping to Train Operators for Next Generation of Power Plants January 25, 2013 - 11:10am Addthis AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy What Does AVESTAR Provide? Advanced dynamic simulation, control and virtual plant technologies

98

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

SciTech Connect

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

99

The importance of combined cycle generating plants in integrating large levels of wind power generation  

SciTech Connect

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

100

Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.  

SciTech Connect

This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Martin Next Generation Solar Energy Center Solar Power Plant | Open Energy  

Open Energy Info (EERE)

Center Solar Power Plant Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation Solar Energy Center Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer FPL Energy Location Martin County, Florida Coordinates 27.051214°, -80.553389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.051214,"lon":-80.553389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

A Systematic Comparison on Power Block Efficiencies for CSP Plants with Direct Steam Generation  

Science Journals Connector (OSTI)

Abstract The increase of the process temperature of concentrating solar power plants above the degradation temperature of thermal oil (400C) opens the way for increased power block efficiency and thus reduced cost of electricity production. Direct solar steam generation is one technical option to follow this path. The paper presents different power block designs for direct steam generation parabolic trough and linear Fresnel power plants. Based on a systematic modelling approach, results for efficiency gains are derived and compared against a reference case of an oil-based plant. The results show that different reheat configurations are feasible and that efficiency gains in the range from 4 to 6% can be expected based on todays or near future solar collector technology.

T. Hirsch; A. Khenissi

2014-01-01T23:59:59.000Z

103

High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion  

SciTech Connect

In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

El-Genk, Mohamed S.; Tournier, Jean-Michel P. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Department, The University of New Mexico, Albuquerque, NM (United States)

2002-07-01T23:59:59.000Z

104

Space Coast Next Generation Solar Energy Center Solar Power Plant | Open  

Open Energy Info (EERE)

Space Coast Next Generation Solar Energy Center Solar Power Plant Space Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast Next Generation Solar Energy Center Sector Solar Facility Type Photovoltaic Developer FPL Energy Location Orlando, Florida Coordinates 28.5383355°, -81.3792365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5383355,"lon":-81.3792365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

DeSoto Next Generation Solar Energy Center Solar Power Plant | Open Energy  

Open Energy Info (EERE)

Next Generation Solar Energy Center Solar Power Plant Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name DeSoto Next Generation Solar Energy Center Solar Power Plant Facility DeSoto Next Generation Solar Energy Center Sector Solar Facility Type Photovoltaic Developer FPL Energy Location DeSoto County, Florida Coordinates 27.2142078°, -81.7787021° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.2142078,"lon":-81.7787021,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Impact of wind power on generation economy and emission from coal based thermal power plant  

Science Journals Connector (OSTI)

The major chunk of power generation is based on coal fueled thermal power plant. Due to increasing demand of power there will be future crises of coal reservoirs and its costing. Apart from this, coal based thermal power plant is the main source of environmental emissions like carbon dioxides (CO2), sulfur dioxides (SO2) and oxides of nitrogen (NOx) which not only degrades the air quality but also is responsible for global warming, acid rain etc. This paper proposes a combined working of Doubly Fed Induction Generator (DFIG) with coal based Synchronous Generator (SG) in the MATLAB environment. STATCOM is suggested at common coupling point to maintain voltage stability and also maintain the system in synchronism. Analysis have been made for environmental emissions, coal requirement and system economy for both the cases, when the total load supplied by only SG and with the combination. Emission analysis have been also made with the application of washed coal in SG. With the impact of DFIG energy generation from SG have been reduces which proportionally affects on coal requirement, generation cost and environmental emissions. Application of washed coal improves the performance of SG and also reduces the environmental emissions.

K.B. Porate; K.L. Thakre; G.L. Bodhe

2013-01-01T23:59:59.000Z

107

Decommissioning of Large Components as an Example of Steam Generator from PWR Nuclear Power Plants  

SciTech Connect

This paper describes the procedure for the qualification of large components (Steam Generators) as an IP-2 package, the ship transport abroad to Sweden and the external treatment of this components to disburden the Nuclear Power Plant from this task, to assure an accelerated the deconstruction phase and to minimize the amount of waste. In conclusion: The transport of large components to an external treatment facility is linked with many advantages for a Nuclear Power Plant: - Disburden of the Nuclear Power Plant from the treatment of such components, - no timely influence on the deconstruction phase of the power reactor and therewith an accelerated deconstruction phase and - minimization of the waste to be returned and therewith less demand of required waste storage capacity. (authors)

Beverungen, M. [GNS Gesellschaft fur Nuklear-Service mbH, Hollestrabe 7A (Germany)

2008-07-01T23:59:59.000Z

108

Survey of insulation used in nuclear power plants and the potential for debris generation. Technical report  

SciTech Connect

In support of Unresolved Safety Issue A-43, 'Containment Emergency Sump Performance,' 11 nuclear power plants representative of different U.S. reactor manufacturers and architect-engineers were surveyed to identify and document the types and amounts of insulation used, location within containment, components insulated, material characteristics, and methods of installation and attachment. A preliminary assessment was made of the potential effects of insulation debris generated as the result of a loss-of-coolant accident (pipe break).

Reyer, R.; Gahan, E.; Riddington, J.W.

1981-10-01T23:59:59.000Z

109

New technology for purging the steam generators of nuclear power plants  

SciTech Connect

A technology for removal of undissolved impurities from a horizontal steam generator using purge water is developed on the basis of a theoretical analysis. A purge with a maximal flow rate is drawn off from the zone with the highest accumulation of sludge in the lower part of the steam generator after the main circulation pump of the corresponding loop is shut off and the temperatures of the heat transfer medium at the inlet and outlet of the steam generator have equilibrated. An improved purge configuration is used for this technology; it employs shutoff and regulator valves, periodic purge lines separated by a cutoff fixture, and a D{sub y} 100 drain union as a connector for the periodic purge. Field tests show that the efficiency of this technology for sludge removal by purge water is several times that for the standard method.

Budko, I. O.; Kutdjusov, Yu. F.; Gorburov, V. I. [Scientific-Research Center for Energy Technology 'NICE Centrenergo' (Russian Federation); Rjasnyj, S. I. [JSC 'The All-Rissia Nuklear Power Engineering Research and Development Institute' (VNIIAM) (Russian Federation)

2011-07-15T23:59:59.000Z

110

Informing the next nuclear generation - how does the Ginna plant branch do it?  

SciTech Connect

Most of us are familiar with the latest advertising phrase, ``Our children are our future.`` This phrase has been used in so many instances - from concerns about waste, Social Security, and the federal deficit to drug abuse and violence. One more area can be added to the list and advertised nuclear power. Since the establishment of the Ginna plant branch (GPB) in 1992, our target audience has been the next nuclear generation (our children), but our vehicle for dissemination has been the current generation (the adults). Have you ever thought about how often your opinions affect the children you come in contact with? One of GPB`s goals is to provide as much information as possible to teachers, neighbors, and civic organizations of our community so that there is a nuclear future that can be carried on by the next generation.

Saavedra, A. [Rochester Gas and Electric Corporation, Ontario, NY (United States)

1995-12-31T23:59:59.000Z

111

Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.  

SciTech Connect

The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

NONE

2005-07-01T23:59:59.000Z

112

Planning for a multi-generational future : policies, regulations, and designs for multi-generational housing in the United States  

E-Print Network (OSTI)

Multi-generational housing is a rising trend that is increasingly being considered as a viable housing option for the Boomerang generation, Baby Boomers and the aging population, and immigrant families. Cultural preferences, ...

Shin, Stephanie H

2012-01-01T23:59:59.000Z

113

Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report  

SciTech Connect

This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

John Saurwein

2011-07-15T23:59:59.000Z

114

Evaluation of cracking in steam generator feedwater piping in pressurized water reactor plants  

SciTech Connect

Cracking in feedwater piping was detected near the inlet to steam generators in 15 pressurized water reactor plants. Sections with cracks from nine plants are examined with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Using transmission electron microscopy, fatigue striations are observed on replicas of cleaned crack surfaces. Calculations based on the observed striation spacings gave a cyclic stress value of 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses and it is concluded that the overriding factor in the cracking problem was the presence of such undocumented cyclic loads.

Goldberg, A.; Streit, R.D.

1981-05-01T23:59:59.000Z

115

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts (Revised), Energy Analysis, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Navajo Generating Station Navajo Generating Station Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts David J. Hurlbut, Scott Haase, Gregory Brinkman, Kip Funk, Rachel Gelman, Eric Lantz, Christina Larney, David Peterson, Christopher Worley National Renewable Energy Laboratory Ed Liebsch HDR Engineering, Inc. Prepared under Task No. WFJ5.1000 Technical Report NREL/TP-6A20-53024 * Revised March 2012 Contract No. DE-AC36-08G028308 Produced under direction of the U.S. Department of the Interior by the National Renewable Energy Laboratory (NREL) under Interagency Agreement R11PG30024 and Task No. WFJ5.1000. ERRATA SHEET NREL REPORT/PROJECT NUMBER: NREL/TP-6A20-53024 DOE NUMBER: N/A TITLE: Navajo Generating Station and Air Visibility Regulations: Alternatives and

116

Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report  

SciTech Connect

Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

Gillow, J.B.; Francis, A.

2011-07-01T23:59:59.000Z

117

Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47 1.50 AEO 1996 1994 1.32 1.29 1.28 1.27 1.26 1.26 1.25 1.27 1.27 1.27 1.28 1.27 1.28 1.27 1.28 1.26 1.28

118

Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual" b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.502753725,1.549729719,1.64272351,1.727259934,1.784039735,1.822135762,1.923203642,2.00781457,2.134768212,2.217425497,2.303725166,2.407715232,2.46134106,2.637086093,2.775389073,2.902293046,3.120364238,3.298013245 "AEO 1995",,1.4212343,1.462640338,1.488780998,1.545300242,1.585877053,1.619428341,1.668671498,1.7584219,1.803937198,1.890547504,1.968695652,2.048913043,2.134750403,2.205281804,2.281690821,2.375434783,2.504830918 "AEO 1996",,,1.346101641,1.350594221,1.369020126,1.391737646,1.421340737,1.458772082,1.496497523,1.561369914,1.619940033,1.674758358,1.749420803,1.800709877,1.871110564,1.924495246,2.006850327,2.048938234,2.156821499

119

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas Utilizing proven and reliable technology and equipment Maximizing electrical efficiency Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill Maximizing equipment uptime Minimizing water consumption Minimizing post-combustion emissions The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhs of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

120

Active noise within the generating/pumping groups of a large hydroelectric plant  

Science Journals Connector (OSTI)

This work is related to a feasibility study for the implementation of an active noise control system to reduce the hydraulic turbomachines noise in the Presenzano power plant. Previous studies showed that interested turbines are low frequencies noise sources generating pure tones at 150 and 200 Hz (third and fourth harmonics of the turbines BPF). At these frequencies passive noise control systems are ineffective in front of relevant costs and an active approach was so decided to be tested. In accordance with a classical architecture the preliminary system was composed of four error microphones four secondary noise sources and a digital controller implementing an adaptive digital filter. Main performed activities could be identified through four successive steps: (i) analysis of the turbomachines generated primary field levels and space distribution (ii) secondary sources generated noise field measurement ten different loudspeakers locations were investigated at this stage; (iii) sensor and actuator locations optimization by the use of a genetic algorithms procedure and (iv) active noise control tests. A mean reduction of 15 dB at 150 Hz and 7.5 dB at 200 Hz was measured at the error sensors during these tests revealing the good opportunities of such an approach but also the opportune improvement to pass at a practical implementation.

Leonardo Lecce; Massimo Viscardi; Bruno Maja; Vincenzo Limone; Mario DIschia; Francesco Di Maso

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

122

International Association for Energy Economics | 35 Regulating Generation Investment in Latin America  

E-Print Network (OSTI)

auctioned in Colombia; · Successful auction of other renewables such as wind, biomass and small hydro: more in which small hydro, biomass and wind plants compete with each other; (iii) biomass- and wind-scale hydroelectric plants: about 18,000 MW in Bra- zil, including Santo Antonio and Jirau hydro plants (3,500 MW each

Catholic University of Chile (Universidad Católica de Chile)

123

Coordinated Control and Optimization of Virtual Power Plants for Energy and Frequency Regulation Services in Electricity Markets  

E-Print Network (OSTI)

and bidding strategy for VPPs to provide energy balancing and grid frequency regulation services in electricity market environment. In this thesis, the VPP consists of two energy conversion assets: a Doubly Fed Induction Generator (DFIG)-based wind farm and a...

Zhang, Fan

2012-02-14T23:59:59.000Z

124

INVESTING IN NEW BASE LOAD GENERATING CAPACITY  

Annual Energy Outlook 2012 (EIA)

game for investments in new regulated generating plants (e.g. as Florida is doing) * Fish or cut bait on wholesale and retail competition * Facilitate utility and IPP mergers...

125

A new Rankine cycle for hydrogen-fired power generation plants and its exergetic efficiency  

Science Journals Connector (OSTI)

A novel power generation cycle is proposed in this paper taking hydrogen as fuel and using steam generated by hydrogen firing as working fluid. The progress of the development work and side issues such as the application of hydrogen combustion turbines to environmentally clean fossil fuel power plants for early commercialisation of the system are reviewed. We propose the hydrogen-fired Rankine cycle as similar to (C) type developed earlier by Hisadome et al. and Sugishita et al. and then making a new design of it by increasing the performance characteristics and efficiencies with (reheating, regenerative and recuperation) of the working fluid of the bottoming cycle respectively, and in this case we present two types (C1 and C2). In the case of type C2 the cycle is called the ''New Rankine Cycle''. These cycles are also compared with the Rankine cycle of type (C) for hydrogen-fired to show the advantages of the performance characteristics of the new design at which the highest value of exergetic efficiency reaches 63.58% as HHV at 1700°C of the combustor discharge temperature. These cycles are analysed through thermodynamics, particularly by exergy analysis, and the performance characteristics of the cycles are also studied.

Mohammed Ghiyath Soufi; Terushige Fujii; Katsumi Sugimoto; Hitoshi Asano

2004-01-01T23:59:59.000Z

126

Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project  

SciTech Connect

At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest i.e., within the next 10-15 years.

L.E. Demick

2010-09-01T23:59:59.000Z

127

July 24, 2009, Visiting Speakers Program - The Next Generation of Regulation for High-Reliability Organizations by HON. John Bresland  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation of Regulation for Next Generation of Regulation for High-Reliability Organizations National Academy of Public Administration Washington, DC July 24, 2009 John Bresland Chairman United States Chemical Safety Board www.csb.gov What is a High Reliability Organization? * Management commitment * The right equipment * The right people * Standard procedures and training * Accountability * Employee feedback * Emergency response preparation * Leadership - must "walk the walk" www.csb.gov 2 * 3 www.csb.gov Are these HROs? www.csb.gov WEST PHARMACEUTICAL INVESTIGATION - 1/29/2003 www.csb.gov www.csb.gov 7 www.csb.gov Imperial Sugar Company Refinery, Port Wentworth, Georgia February 7, 2008 www.csb.gov 8 T2 Laboratories Jacksonville, Florida December 19, 2007 www.csb.gov www.csb.gov

128

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

SciTech Connect

The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

J. K. Wright; R. N. Wright

2008-04-01T23:59:59.000Z

129

Regulation of Singlet Oxygen Generation Using Single-Walled Carbon Zhiwen Tang,  

E-Print Network (OSTI)

be effectively used to control 1 O2 generation upon target binding. Aptamers are synthetic DNA/RNA probes

Tan, Weihong

130

Regulating the ethylene response of a plant by modulation of F-box proteins  

SciTech Connect

The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding a F-box protein, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding a F-box protein.

Guo, Hongwei (La Jolla, CA); Ecker, Joseph R. (Carlsbad, CA)

2010-02-02T23:59:59.000Z

131

Regulating the ethylene response of a plant by modulation of F-box proteins  

SciTech Connect

The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding an F-box protein that interacts with a EIN3 involved in an ethylene response of plants, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding an F-box protein. The inventions also relates to methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein.

Guo, Hongwei (Beijing, CN); Ecker, Joseph R. (Carlsbad, CA)

2011-03-08T23:59:59.000Z

132

Table 12. Coal Prices to Electric Generating Plants, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Prices to Electric Generating Plants, Projected vs. Actual Coal Prices to Electric Generating Plants, Projected vs. Actual (nominal dollars per million Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2.03 2.17 2.33 2.52 2.73 2.99 AEO 1983 1.99 2.10 2.24 2.39 2.57 2.76 4.29 AEO 1984 1.90 2.01 2.13 2.28 2.44 2.61 3.79 AEO 1985 1.68 1.76 1.86 1.95 2.05 2.19 2.32 2.49 2.66 2.83 3.03 AEO 1986 1.61 1.68 1.75 1.83 1.93 2.05 2.19 2.35 2.54 2.73 2.92 3.10 3.31 3.49 3.68 AEO 1987 1.52 1.55 1.65 1.75 1.84 1.96 2.11 2.27 2.44 3.55 AEO 1989* 1.50 1.51 1.68 1.77 1.88 2.00 2.13 2.26 2.40 2.55 2.70 2.86 3.00 AEO 1990 1.46 1.53 2.07 2.76 3.7 AEO 1991 1.51 1.58 1.66 1.77 1.88 1.96 2.06 2.16 2.28 2.41 2.57 2.70 2.85 3.04 3.26 3.46 3.65 3.87 4.08 4.33 AEO 1992 1.54 1.61 1.66 1.75 1.85 1.97 2.03 2.14 2.26 2.44 2.55 2.69 2.83 3.00 3.20 3.40 3.58 3.78 4.01 AEO 1993 1.92 1.54 1.61 1.70

133

Self-cooling mono-container fuel cell generators and power plants using an array of such generators  

DOE Patents (OSTI)

A mono-container fuel cell generator (10) contains a layer of interior insulation (14), a layer of exterior insulation (16) and a single housing (20) between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation (14) in the interior (12) of the generator, and the generator is capable of operating at temperatures over about 650.degree. C., where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing (20) below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

134

Self-cooling mono-container fuel cell generators and power plants using an array of such generators  

DOE Patents (OSTI)

A mono-container fuel cell generator contains a layer of interior insulation, a layer of exterior insulation and a single housing between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation in the interior of the generator, and the generator is capable of operating at temperatures over about 650 C, where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling. 7 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.

1998-05-12T23:59:59.000Z

135

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs  

SciTech Connect

Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV) concepts, such as the NGNP, it is fully expected that the behavior of these graphites will conform to the recognized trends for near isotropic nuclear graphite. Thus, much of the data needed is confirmatory in nature. Theories that can explain graphite behavior have been postulated and, in many cases, shown to represent experimental data well. However, these theories need to be tested against data for the new graphites and extended to higher neutron doses and temperatures pertinent to the new Gen IV reactor concepts. It is anticipated that current and planned future graphite irradiation experiments will provide the data needed to validate many of the currently accepted models, as well as providing the needed data for design confirmation.

Burchell, Timothy D [ORNL; Bratton, Rob [Idaho National Laboratory (INL); Marsden, Barry [University of Manchester, UK; Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission; Penfield, Scott [Technology Insights; Mitchell, Mark [PBMR (Pty) Ltd.; Windes, Will [Idaho National Laboratory (INL)

2008-03-01T23:59:59.000Z

136

Web-Queryable Large-Scale Data Sets for Hypothesis Generation in Plant Biology  

Science Journals Connector (OSTI)

...improve function prediction are key to...understanding the plant as a collection...technology and machine learning methods, short...that mediate disease resistance...to available plant large-scale...gene function prediction, similar to...

Siobhan M. Brady; Nicholas J. Provart

2009-04-28T23:59:59.000Z

137

Regulatory analysis for amendments to regulations for the environmental review for renewal of nuclear power plant operating licenses. Final report  

SciTech Connect

This regulatory analysis provides the supporting information for a proposed rule that will amend the Nuclear Regulatory Commission`s environmental review requirements for applications for renewal of nuclear power plant operating licenses. The objective of the proposed rulemaking is to improve regulatory efficiency by providing for the generic evaluation of certain environmental impacts associated with nuclear plant license renewal. After considering various options, the staff identified and analyzed two major alternatives. With Alternative A, the existing regulations would not be amended. This option requires that environmental reviews be performed under the existing regulations. Alternative B is to assess, on a generic basis, the environmental impacts of renewing the operating license of individual nuclear power plants, and define the issues that will need to be further analyzed on a case-by-case basis. In addition, Alternative B removes from NRC`s review certain economics-related issues. The findings of this assessment are to be codified in 10 CFR 51. The staff has selected Alternative B as the preferred alternative.

NONE

1996-05-01T23:59:59.000Z

138

The Plant TPX2 Protein Regulates Prospindle Assembly before Nuclear Envelope Breakdown  

Science Journals Connector (OSTI)

...system equipped with argon and helium/neon lasers, standard filters, and a 63, 1.4 NA...was supported by Spanish grants (Grants HF-2006-0067, BFU2006-04694, and CSD2006-00023...expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant...

Jan W. Vos; Laurent Pieuchot; Jean-Luc Evrard; Natacha Janski; Marc Bergdoll; Dryas de Ronde; Laurent H. Perez; Teresa Sardon; Isabelle Vernos; Anne-Catherine Schmit

2008-10-21T23:59:59.000Z

139

Arabidopsis SAMT1 Defines a Plastid Transporter Regulating Plastid Biogenesis and Plant Development  

Science Journals Connector (OSTI)

...protein (PAC)]. The pac mutant, which is defective in the PAC, was previously shown to have...samt1 Plants. (A) Total carotenoid (CAR) and chlorophyll (CHL) contents of wild-type...SAMT1-Silenced Plants. (A) Total carotenoid (CAR) and chlorophyll (CHL) contents...

Florence Bouvier; Nicole Linka; Jean-Charles Isner; Jérôme Mutterer; Andreas P.M. Weber; Bilal Camara

2006-11-10T23:59:59.000Z

140

Arabidopsis SAMT1 Defines a Plastid Transporter Regulating Plastid Biogenesis and Plant Development  

Science Journals Connector (OSTI)

...multiple transport systems might be involved...unrelated transport systems for folates...retrograde control of nuclear...be further integrated into the thylakoid...could influence plant secondary metabolism...homogenates from plant tissues. Planta...Nothing goes to waste. Trends Biochem...sodium carbonate treatment: Application...

Florence Bouvier; Nicole Linka; Jean-Charles Isner; Jérôme Mutterer; Andreas P.M. Weber; Bilal Camara

2006-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Global Regulation of Virulence Determinants During Plant Colonization in the Bacterial Phytopathogen, Pantoea stewartii subsp. stewartii  

E-Print Network (OSTI)

Induction of peroxide and superoxide protective enzymes and physiological cross-protection against peroxide killing by a superoxide generator

Burbank, Lindsey

2014-01-01T23:59:59.000Z

142

Central CellDerived Peptides Regulate Early Embryo Patterning in Flowering Plants  

Science Journals Connector (OSTI)

...Commun. 2 , 512 ( 2011 ). 10.1038/ncomms1520 22027592 22 Beets I. Janssen T. Meelkop E. Temmerman L. Suetens N. Rademakers S. Jansen G. Schoofs L. , Vasopressin/oxytocin-related signaling regulates gustatory associative learning in C. elegans...

Liliana M. Costa; Eleanor Marshall; Mesfin Tesfaye; Kevin A. T. Silverstein; Masashi Mori; Yoshitaka Umetsu; Sophie L. Otterbach; Ranjith Papareddy; Hugh G. Dickinson; Kim Boutiller; Kathryn A. VandenBosch; Shinya Ohki; Jos F. Gutierrez-Marcos

2014-04-11T23:59:59.000Z

143

Review of nuclear power plant offsite power source reliability and related recommended changes to the NRC rules and regulations  

SciTech Connect

The NRC has stated its concern about the reliability of the offsite power system as the preferred emergency source and about the possible damage to a pressurized water reactor (PWR) that could result from a rapid decay of power grid frequency. ORNL contracted with NRC to provide technical assistance to establish criteria that can be used to evaluate the offsite power system for the licensing of a nuclear power plant. The results of many of the studies for this contract are recommendations to assess and control the power grid during operation. This is because most of the NRC regulations pertaining to the offsite power system are related to the design of the power grid, and we believe that additional emphasis on monitoring the power grid operation will improve the reliability of the nuclear plant offsite power supply. 46 refs., 10 figs.

Battle, R.E.; Clark, F.H.; Reddoch, T.W.

1980-05-01T23:59:59.000Z

144

The design of solar chimney power plant for sustainable power generation.  

E-Print Network (OSTI)

??The solar chimney power plant (SCPP) also known as solar updraft tower is a nonconcentrating solar thermal technology, which employs both solar and wind energy (more)

Asante, David

2014-01-01T23:59:59.000Z

145

Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alone wind turbine  

Science Journals Connector (OSTI)

Abstract Given the significant water-energy problems associated with many remote and arid areas of the planet, most studies, projects and developments of installations for the production of fresh water using desalination technologies powered by renewable energy sources have focussed on small-scale stand-alone systems. The most commonly used energy sources have been solar photovoltaic and wind and the most widely applied desalination technology that of reverse osmosis (RO). Most of the systems use batteries as a means of mass energy storage and the RO plants normally operate at constant pressure and flow rate. This paper presents a small-scale prototype SWRO (seawater reverse osmosis) desalination plant designed to continuously adapt its energy consumption to the variable power supplied by a wind turbine (WT), dispensing with mass energy storage in batteries and proposing the use of a supercapacitor bank as a dynamic regulation system. A description is given of the tests performed to date with the SWRO desalination plant connected to the conventional grid while controlling the number of pressure vessels that are connected/disconnected to/from the system and regulating their operating pressures and flow rates (within predetermined admissible limits) to maintain a constant permeate recovery rate and adapt the energy consumption of the plant to a widely varying simulated wind energy supply. One of the most important conclusions that can be drawn from the studies undertaken is the feasibility of adapting the consumption of the prototype of the SWRO desalination plant to widely varying WT-generated power. Despite using various time interval lengths in which it was assumed that the WT output power remained constant, a perfect fit was not obtained between the theoretical WT-generated power and the power consumed by the SWRO desalination plant, nor was it possible to maintain a constant permeate recovery rate at each instant.

Jos A. Carta; Jaime Gonzlez; Pedro Cabrera; Vicente J. Subiela

2015-01-01T23:59:59.000Z

146

A STATCOM based voltage regulator for parallel operated isolated asynchronous generators feeding three-phase four-wire loads  

Science Journals Connector (OSTI)

This paper presents an investigation on a voltage regulator for parallel operated isolated asynchronous generators (IAGs) supplying three-phase four-wire loads driven by constant speed prime mover like diesel engine, bio-mass, gasoline, etc. The proposed voltage regulator is realised using a static compensator (STATCOM) for providing the reactive power compensation, harmonic elimination and load balancing. Three single-phase insulated gate bipolar transistors (IGBTs) based VSCs along-with three single-phase transformers and self-supporting DC bus are used as a voltage controller for supplying three-phase four-wire loads. The neutral point of the load is achieved using the neutral point of the excitation capacitors and primary windings terminal of the transformers. The proposed isolated electrical generating system is modelled and simulated on MATLAB using Simulink and power system blockset (PSB) toolboxes. The performance of the proposed voltage controller for IAGs is demonstrated while feeding linear and non-linear balanced and unbalanced loads.

Gaurav Kumar Kasal; Bhim Singh

2009-01-01T23:59:59.000Z

147

Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report  

SciTech Connect

The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

1997-03-01T23:59:59.000Z

148

Microbial gas generation under expected Waste Isolation Pilot Plant repository conditions  

SciTech Connect

Gas generation from the microbial degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository was investigated at Brookhaven National Laboratory. The biodegradation of mixed cellulosics (various types of paper) and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, neoprene, hypalon, and leaded hypalon) was examined. The rate of gas production from cellulose biodegradation in inundated samples incubated for 1,228 days at 30 C was biphasic, with an initial rapid rate up to approximately 600 days incubation, followed by a slower rate. The rate of total gas production in anaerobic samples containing mixed inoculum was as follows: 0.002 mL/g cellulose/day without nutrients; 0.004 mL/g cellulose/day with nutrients; and 0.01 mL/g cellulose/day in the presence of excess nitrate. Carbon dioxide production proceeded at a rate of 0.009 {micro}mol/g cellulose/day in anaerobic samples without nutrients, 0.05 {micro}mol/g cellulose/day in the presence of nutrients, and 0.2 {micro}mol/g cellulose/day with excess nitrate. Adding nutrients and excess nitrate stimulated denitrification, as evidenced by the accumulation of N{sub 2}O in the headspace (200 {micro}mol/g cellulose). The addition of the potential backfill bentonite increased the rate of CO{sub 2} production to 0.3 {micro}mol/g cellulose/day in anaerobic samples with excess nitrate. Analysis of the solution showed that lactic, acetic, propionic, butyric, and valeric acids were produced due to cellulose degradation. Samples incubated under anaerobic humid conditions for 415 days produced CO{sub 2} at a rate of 0.2 {micro}mol/g cellulose/day in the absence of nutrients, and 1 {micro}mol/g cellulose/day in the presence of bentonite and nutrients. There was no evidence of biodegradation of electron-beam irradiated plastic and rubber.

Francis, A.J.; Gillow, J.B.; Giles, M.R. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

1997-03-01T23:59:59.000Z

149

Regulation of Cell-Specific Inositol Metabolism and Transport in Plant Salinity Tolerance  

Science Journals Connector (OSTI)

...reagent (Bio-Rad) on a portion of the extract from which excess SDS was removed by precipitation with 100 mM potassium phosphate...Oda K. Gruissem W. Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family Hayashi H...

Donald E. Nelson; Gerald Rammesmayer; Hans J. Bohnert

150

Arabidopsis SAMT1 Defines a Plastid Transporter Regulating Plastid Biogenesis and Plant Development  

Science Journals Connector (OSTI)

...SAMT1-Silenced Plants. (A) Total carotenoid (CAR) and chlorophyll (CHL) contents...constitutes the sole plastid SAMT or whether alternative pathways exist for SAM import. For a...MCB-0348074 and MCB-0519740, Department of Energy Grant DE-FG02-04ER15562, and an Alexander-von-Humboldt...

Florence Bouvier; Nicole Linka; Jean-Charles Isner; Jérôme Mutterer; Andreas P.M. Weber; Bilal Camara

2006-11-10T23:59:59.000Z

151

The Arabidopsis Elongator Complex Subunit2 Epigenetically Regulates Plant Immune Responses  

Science Journals Connector (OSTI)

...and 1% formaldehyde) and vacuum infiltrated three times for...concentration of 100 mM and vacuum infiltration for 5 min. Plant...Elongator subunit 2 is an accelerator of immune responses in Arabidopsis...and Dong, X. (2000). Nuclear localization of NPR1 is required...

Yongsheng Wang; Chuanfu An; Xudong Zhang; Jiqiang Yao; Yanping Zhang; Yijun Sun; Fahong Yu; David Moraga Amador; Zhonglin Mou

2013-02-22T23:59:59.000Z

152

Framework for risk informed performance based regulation for nuclear power plants  

E-Print Network (OSTI)

Currently the electric utility companies are going through a deregulation process that is going to result in market competition for the generating and the transmission companies. The competition is going to be mainly ...

Abdelkader, Sarah Ali

1998-01-01T23:59:59.000Z

153

Regulation of chloroplast number and DNA synthesis in higher plants. Final report  

SciTech Connect

The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

Mullet, J.E.

1995-11-10T23:59:59.000Z

154

Regulation of chloroplast number and DNA synthesis in higher plants. Final report  

SciTech Connect

The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

Mullet, J.E.

1995-11-10T23:59:59.000Z

155

Regulation: EPA sued for undercounting toxic emissions at refineries, chemical plants  

Science Journals Connector (OSTI)

Several community organizations have filed a lawsuit to force the Environmental Protection Agency to review the way it measures toxic air pollution from oil refineries and petrochemical plants along the Texas-Louisiana Gulf Coast. ... Recent independent studies at Marathon Oil, Shell, and BP refineries measured actual emissions at levels 10 to 100 times higher than estimates based on the methods facilities currently use to report their releases, the suit says. ...

GLENN HESS

2013-05-13T23:59:59.000Z

156

The New Generation of Uranium In Situ Recovery Facilities: Design Improvements Should Reduce Radiological Impacts Relative to First Generation Uranium Solution Mining Plants  

SciTech Connect

In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium In Situ Leaching / In Situ Recovery (ISL / ISR - also referred to as 'solution mining'), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and are expected to make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since the mid 1970's. However, current designs are expected to result in less radiological wastes and emissions relative to these 'first' generation plants (which were designed, constructed and operated through the 1980's). These early designs typically used alkaline leach chemistries in situ including use of ammonium carbonate which resulted in groundwater restoration challenges, open to air recovery vessels and high temperature calcining systems for final product drying vs the 'zero emissions' vacuum dryers as typically used today. Improved containment, automation and instrumentation control and use of vacuum dryers in the design of current generation plants are expected to reduce production of secondary waste byproduct material, reduce Radon emissions and reduce potential for employee exposure to uranium concentrate aerosols at the back end of the milling process. In Situ Recovery in the U.S. typically involves the circulation of groundwater, fortified with oxidizing (gaseous oxygen e.g) and complexing agents (carbon dioxide, e.g) into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant ( mill). Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. The radiological character of these processes are described using empirical data collected from many operating facilities. Additionally, the major aspects of the health physics and radiation protection programs that were developed at these first generation facilities are discussed and contrasted to circumstances of the current generation and state of the art of uranium ISR technologies and facilities. In summary: This paper has presented an overview of in situ Uranium recovery processes and associated major radiological aspects and monitoring considerations. Admittedly, the purpose was to present an overview of those special health physics considerations dictated by the in situ Uranium recovery technology, to point out similarities and differences to conventional mill programs and to contrast these alkaline leach facilities to modern day ISR designs. As evidenced by the large number of ISR projects currently under development in the U.S. and worldwide, non conventional Uranium recovery techniques

Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

2008-07-01T23:59:59.000Z

157

Improving the Capacity or Output of a Steam Turbine Generator at XYZ Power Plant in Illinois  

E-Print Network (OSTI)

and capacitance mapping ? Performed wedge tightness check by means of manual tap test ? Performed RTD functioning test ? Cleaned generator brush rigging ? Inspected generator brush rigging for signs of heating, arcing or other damage... turbine with a net generating rating of 366MW. The unit began commercial operation in 1976. Coal is received by rail and limestone by rail by rail or truck. Rail cars are unloaded in a rotary car dumper at a rate of 20-25 cars per hour. A 30 day...

Amoo-Otoo, John Kweku

2006-05-19T23:59:59.000Z

158

Arabidopsis SAMT1 Defines a Plastid Transporter Regulating Plastid Biogenesis and Plant Development  

Science Journals Connector (OSTI)

...downloaded from the AtGenExpress website ( http://www.weigelworld...agar plates lacking uracil (SC-U). For heterologous expression...pMSU133 grown overnight in 5 mL of SC-U containing 2% raffinose...generation of protein database search programs. Nucleic Acids Res...

Florence Bouvier; Nicole Linka; Jean-Charles Isner; Jérôme Mutterer; Andreas P.M. Weber; Bilal Camara

2006-11-10T23:59:59.000Z

159

Coupling between Switching Regulation and Torque Generation in Bacterial Flagellar Motor  

Science Journals Connector (OSTI)

The bacterial flagellar motor plays a crucial role in both bacterial locomotion and chemotaxis. Recent experiments reveal that the switching dynamics of the motor depend on the rotation speed of the motor, and thus the motor torque, nonmonotonically. Here we present a unified mathematical model which treats motor torque generation based on experimental torque-speed curves and the torque-dependent switching based on the conformational spread model. The model successfully reproduces the observed switching rate as a function of the rotation speed, and provides a generic physical explanation independent of most details. A stator affects the switching dynamics through two mechanisms: accelerating the conformational flipping rate of individual rotor-switching units, which contributes most when the stator works at a high torque and thus a low speed; and influencing a larger number of rotor-switching units within unit time, whose contribution is the greatest when the motor rotates at a high speed. Consequently, the switching rate shows a maximum at intermediate speed, where the above two mechanisms find an optimal output. The load-switching relation may serve as a mechanism for sensing the physical environment, similar to the chemotaxis mechanism for sensing the chemical environment. It may also coordinate the switch dynamics of motors within the same cell.

Fan Bai; Tohru Minamino; Zhanghan Wu; Keiichi Namba; Jianhua Xing

2012-04-24T23:59:59.000Z

160

Web-Queryable Large-Scale Data Sets for Hypothesis Generation in Plant Biology  

Science Journals Connector (OSTI)

...connectivity can be identified using Antipole, a graph clustering algorithm (Ferro et al...sequencing abilities in terms of time and cost. Within the next 10 years, thousands...members of photosynthesis-associated nuclear gene families in Arabidopsis. Plant Physiol...

Siobhan M. Brady; Nicholas J. Provart

2009-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Investigation on the Excitation Capacitor for a Wind Pumping Plant Using Induction Generator  

Science Journals Connector (OSTI)

This paper presents a SEIG-IM system using a self excited induction generator driven by wind turbine and supplying an induction motor which is coupled to a centrifugal...

Manel Ouali; Mohamed Ben Ali Kamoun

2012-01-01T23:59:59.000Z

162

Restoration of the graphite memory of a reactor in the third power-generating unit of the Leningrad nuclear power plant  

Science Journals Connector (OSTI)

The restoration of the graphite masonry of cell 52-16 in the reactor in the third power-generating unit of the Leningrad nuclear power plant is described. The process reduces to moving...

V. I. Lebedev; Yu. V. Garusov; M. A. Pavlov; A. N. Peunov; E. P. Kozlov

1999-11-01T23:59:59.000Z

163

Abstract-Private investment in generation plants in Ecuador has been null over the last 10 years due to several political  

E-Print Network (OSTI)

Abstract- Private investment in generation plants in Ecuador has been null over the last 10 years and the Ministry of Electricity are the only ones initiating the construction of new hydro plants of significant in place for the last 10 years, particularly in relation to incentive to private investment. Arguments

Catholic University of Chile (Universidad Católica de Chile)

164

Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Doubly Fed Induction Generator Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz Preprint Eduard Muljadi, Mohit Singh, and Vahan Gevorgian To be presented at the IEEE Energy Conversion Congress and Exhibition Raleigh, North Carolina September 15-20, 2012 Conference Paper NREL/CP-5500-55573 June 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

165

Management Activities for Retrieved and Newly Generated Transuranic Wastes Savannah River Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 WL 253648 (F.R.) 8 WL 253648 (F.R.) NOTICES DEPARTMENT OF ENERGY Finding of No Significant Impact; Transuranic Waste Management Activities at the Savannah River Plant, Aiken, SC Tuesday, August 30, 1988 *33172 AGENCY: Department of Energy. ACTION: Finding of No Significant Impact. SUMMARY: The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -0315, for transuranic (TRU) waste management activities at DOE's Savannah River Plant (SRP), including the construction and operation of a new TRU Waste Processing Facility. Based on analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact

166

Energy intensities, \\{EROIs\\} (energy returned on invested), and energy payback times of electricity generating power plants  

Science Journals Connector (OSTI)

The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no primary energy weighting, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an unbuffered scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power.

D. Weibach; G. Ruprecht; A. Huke; K. Czerski; S. Gottlieb; A. Hussein

2013-01-01T23:59:59.000Z

167

Artificial neural network based models for forecasting electricity generation of grid connected solar PV power plant  

Science Journals Connector (OSTI)

This paper presents an artificial neural network (ANN) approach for forecasting the performance of electric energy generated output from a working 25-kWp grid connected solar PV system and a 100-kWp grid connected PV system installed at Minicoy Island of Union Territory of Lakshadweep Islands. The ANN interpolates among the solar PV generation output and relevant parameters such as solar radiation, module temperature and clearness index. In this study, three ANN models are implemented and validated with reasonable accuracy on real electric energy generation output data. The first model is univariate based on solar radiation and the output values. The second model is a multivariate model based on module temperature along with solar radiation. The third model is also a multivariate model based on module temperature, solar radiation and clearness index. A forecasting performance measure such as percentage root mean square error has been presented for each model. The second model, which gives the most accurate results, has been used in forecasting the generation output for another PV system with similar accuracy.

Imtiaz Ashraf; A. Chandra

2004-01-01T23:59:59.000Z

168

Modeling and Control of Co-generation Power Plants: A Hybrid System Approach  

E-Print Network (OSTI)

cycle is driven by some fossil fuel (usually natural gas) and produces electric power via expansion of the gas turbine and generates both electricity and steam for the industrial processes. Clearly, the liberalization of the energy market has promoted the need of operating CCPPs in the most efficient way

Ferrari-Trecate, Giancarlo

169

A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant  

Science Journals Connector (OSTI)

Abstract This paper develops a model different from existing models to analyze the cost and benefit of a reinforced concrete solar chimney power plant (RCSCPP) built in northwest China. Based on the model and some assumptions for values of parameters, this work calculates total net present value (TNPV) and the minimum electricity price in each phase by dividing the whole service period into four phases. The results show that the minimum electricity price in the first phase is higher than the current market price of electricity, but the minimum prices in the other phases are far less than the current market price. The analysis indicates that huge advantages of the RCSCPP over coal-fired power plants can be embodied in phases 24. In addition, the sensitivity analysis performed in this paper discovers TNPV is very sensitive to changes in the solar electricity price and inflation rate, but responds only slightly to changes in carbon credits price, income tax rate and interest rate of loans. Our analysis predicts that \\{RCSCPPs\\} have very good application prospect. To encourage the development of RCSCPPs, the government should provide subsidy by setting higher electricity price in the first phase, then lower electricity price in the other phases.

Weibing Li; Ping Wei; Xinping Zhou

2014-01-01T23:59:59.000Z

170

Model of sludge behavior in nuclear plant steam generators. Final report  

SciTech Connect

The accumulation of large amounts of sludge in pressurized water reactor steam generators is thought to be a cause of accelerated corrosion by trace impurities which concentrate in such deposits. Based on fundamental principles, this study develops a mathematical model for predicting the behavior (e.g., deposition and reentrainment) of sludge in steam generators. The calculated sludge behavior shows good agreement with the limited amount of experimental data available. The results suggest that the continued accumulation of sludge on the tubesheet might be preventable, and that if it could be, the incoming sludge would be removed by blowdown. An analysis of the uncertainties in the model led to suggested priorities for further analytical and experimental work to gain a better understanding of sludge behavior. 29 refs., 12 figs., 15 tabs.

Beal, S.K.; Chen, J.H.

1986-06-01T23:59:59.000Z

171

Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies  

Science Journals Connector (OSTI)

Abstract Worldwide energy production requirements could not be fully satisfied by nuclear and renewables sources. Therefore a sustainable use of fossil fuels (coal in particular) will be required for several decades. In this scenario, carbon capture and storage (CCS) represents a key solution to control the global warming reducing carbon dioxide emissions. The integration between CCS technologies and power generation plants currently needs a demonstration at commercial scale to reduce both technological risks and high capital and operating cost. This paper compares, from the technical and economic points of view, the performance of three coal-fired power generation technologies: (i) ultra-supercritical (USC) plant equipped with a conventional flue gas treatment (CGT) process, (ii) USC plant equipped with SNOX technology for a combined removal of sulphur and nitrogen oxides and (iii) integrated gasification combined cycle (IGCC) plant based on a slurry-feed entrained-flow gasifier. Each technology was analysed in its configurations without and with CO2 capture, referring to a commercial-scale of 1000MWth. Technical assessment was carried out by using simulation models implemented through Aspen Plus and Gate-Cycle tools, whereas economic assessment was performed through a properly developed simulation model. USC equipped with CGT systems shows an overall efficiency (43.7%) comparable to IGCC (43.9%), whereas introduction of SNOX technology increases USC efficiency up to 44.8%. Being the CCS energy penalties significantly higher for USC (about 10.5% points vs. about 8.5 for IGCC), the IGCC with CCS is more efficient (35.3%) than the corresponding CO2-free USC (34.2% for the SNOX-based configuration). Whereas, for the case study, USC is most profitable than IGCC (with a net present value, NPV, of 190M vs. 54M) for a conventional configuration, CO2-free IGCC shows a higher NPV (?673M) than USC (?711M). In any cases, the NPV of all the CO2-free configurations is strongly negative: this means that, with the current market conditions, the introduction of a CCS system cannot be economically justified without a significant incentive.

Vittorio Tola; Alberto Pettinau

2014-01-01T23:59:59.000Z

172

High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant  

SciTech Connect

The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

J. M. Beck; L. F. Pincock

2011-04-01T23:59:59.000Z

173

Monitoring and smart management for hybrid plants (photovoltaicgenerator) in Ghardaia  

Science Journals Connector (OSTI)

In this paper an effective operation of standalone hybrid photovoltaic (PV) system is proposed by implementing a management program via control strategy. The system is composed of photovoltaic modules a liquid petroleum gas (LPG) fired generator and electrochemical batteries. The system configuration can solve problems that affect the quality and reliability of power supplies. This document includes the state of the art work carried out so far in the field of hybrid energy systems including the study and evaluation of control methods. This paper focuses on the design and implementation of an electronic control module and optimal energy management in hybrid energy systems using real weather data and load profile. The results have shown a reliable behavior of the control system and a good robustness to perturbations.

2014-01-01T23:59:59.000Z

174

Evaluation of cracking in feedwater piping adjacent to the steam generators in Nine Pressurized Water Reactor Plants  

SciTech Connect

Cracking in ASTM A106-B and A106-C feedwater piping was detected near the inlet to the steam generators in a number of pressurized water reactor plants. We received sections with cracks from nine of the plants with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Variations were observed in piping surface irregularities, corrosion-product, pit, and crack morphology, surface elmental and crystal structure analyses, and steel microstructures and mechanical properties. However, with but two exceptions, namely, arrest bands and major surface irregularities, we were unable to relate the extent of cracking to any of these factors. Tensile and fracture toughness (J/sub Ic/ and tearing modulus) properties were measured over a range of temperatures and strain rates. No unusual properties or microstructures were observed that could be related to the cracking problem. All crack surfaces contained thick oxide deposits and showed evidence of cyclic events in the form of arrest bands. Transmission electron microscopy revealed fatigue striations on replicas of cleaned crack surfaces from one plant and possibly from three others. Calculations based on the observed striation spacings gave a value of ..delta..sigma = 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses. Although surface irregularities and corrosion pits were sources for crack initiation and corrosion may have contributed to crack propagation, it is proposed that the overriding factor in the cracking problem is the presence of unforeseen cyclic loads.

Goldberg, A.; Streit, R.D.; Scott, R.G.

1980-06-25T23:59:59.000Z

175

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

SciTech Connect

A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

2013-06-29T23:59:59.000Z

176

From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the Worlds First nuclear power plant  

Science Journals Connector (OSTI)

Successful commissioning in the 1954 of the Worlds First nuclear power plant constructed at the Institute for Physics ... center for training Soviet and foreign specialists on nuclear power plants, the personnel...

V. I. Rachkov; S. G. Kalyakin; O. F. Kukharchuk; Yu. I. Orlov

2014-05-01T23:59:59.000Z

177

Plant Hormones and Regulators  

Science Journals Connector (OSTI)

...gibberellins in seed ger-mination...molecular level. Seeds of cereals have two major...germination the starch of the storage...also weaken the seed coats and allow...The growth of cereal seedlings has...hydrolyze the starch to reducing sugar...

J. van Overbeek

1966-05-06T23:59:59.000Z

178

Plant Hormones and Regulators  

Science Journals Connector (OSTI)

...in-hibits a-amylase activity (44...dormin inhibits a-amylase activity induced...tubes to grow down the style toward...digestion of the starch-filled storage...radi-cle) to break through, and...now called a-amylase) responsible...liqui-fying the reserve starch. The pres-ence...

J. van Overbeek

1966-05-06T23:59:59.000Z

179

U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)  

Reports and Publications (EIA)

Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

2010-01-01T23:59:59.000Z

180

Assuring the Competitiveness of New Nuclear Plants in a Deregulated U.S. Market  

Science Journals Connector (OSTI)

Deregulation of the U.S. electric power industry will dramatically impact the way in which future plant buyers evaluate technologies available for adding new generating capacity. Compared to the regulated util...

George A. Davis

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.  

SciTech Connect

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 ???????????????????????????????? September 2004. ???????????????????????????????· Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. ???????????????????????????????· Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. ???????????????????????????????· Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. ???????????????????????????????· Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. ???????????????????????????????· Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. ???????????????????????????????· Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

2005-06-03T23:59:59.000Z

182

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.  

SciTech Connect

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

183

Solar aided power generation of a 300MW lignite fired power plant combined with line-focus parabolic trough collectors field  

Science Journals Connector (OSTI)

Abstract Nowadays, conventional coal or gas fired power plants are the dominant way to generate electricity in the world. In recent years there is a growth in the field of renewable energy sources in order to avoid the threat of climate change from fossil fuel combustion. Solar energy, as an environmental friendly energy source, may be the answer to the reduction of global CO2 emissions. This paper presents the concept of Solar Aided Power Generation (SAPG), a combination of renewable and conventional energy sources technologies. The operation of the 300MW lignite fired power plant of Ptolemais integrated with a solar field of parabolic trough collectors was simulated using TRNSYS software in both power boosting and fuel saving modes. The power plant performance, power output variation, fuel consumption and CO2 emissions were calculated. Furthermore, an economic analysis was carried out for both power boosting and fuel saving modes of operation and optimum solar contribution was estimated.

G.C. Bakos; Ch. Tsechelidou

2013-01-01T23:59:59.000Z

184

REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198  

SciTech Connect

Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.

Lowry, N.

2010-11-05T23:59:59.000Z

185

GEOTHERMAL POWER GENERATION PLANT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

186

Annual Energy Outlook with Projections to 2025- Legislation and Regulations  

Gasoline and Diesel Fuel Update (EIA)

State Air Emission Regulations State Air Emission Regulations Legislation and Regulations. State Air Emission Regulations Several States, primarily in the Northeast, have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the States and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected States include Connecticut, North Carolina, Massachusetts, Maine, New Hampshire, New Jersey, New York, and Oregon. The regulations govern emissions of NOx, sulfur dioxide (SO2), carbon dioxide (CO2), and mercury from power plants. Table 2 shows emissions of NOx, SO2, and CO2 by electricity generators in the eight States and in the rest of the country. Comparable data on mercury emissions by State are not available.

187

Radiation-Generating Devices Guide for Use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection  

Directives, Delegations, and Requirements

For use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. This Guide provides an acceptable methodology for establishing and operating a sealed radioactive source accountability and control program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart M of 10 CFR 835. Canceled by DOE G 441.1-1B.

1999-04-15T23:59:59.000Z

188

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

189

Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation  

SciTech Connect

The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

2011-09-15T23:59:59.000Z

190

Air Pollution Control Regulations: No. 43- General Permits for Smaller-Scale Electric Generation Facilities (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

This rule applies to any generator that: (a) has a heat input capacity of 350,000 Btus or more per hour or, in the case of internal combustion engines, is 50 HP or larger; and, (b) is not subject...

191

High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs  

DOE Patents (OSTI)

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

Shimer, D.W.; Lange, A.C.

1995-05-23T23:59:59.000Z

192

High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs  

DOE Patents (OSTI)

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

1995-01-01T23:59:59.000Z

193

Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants  

SciTech Connect

The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

1998-07-01T23:59:59.000Z

194

CO2 Capture from Coal-Fired Utility Generation Plant Exhausts and Sequestration by a Biomimetic Route Based on Enzymatic Catalysts-Current Status  

NLE Websites -- All DOE Office Websites (Extended Search)

from Coal-Fired Utility Generation Plant Exhausts, and from Coal-Fired Utility Generation Plant Exhausts, and Sequestration by a Biomimetic Route Based on Enzymatic Catalysis - Current Status Gillian M. Bond (gbond@nmt.edu; 505-835-5653) Margaret-Gail Medina (magail@nmt.edu; 505-835-5229) New Mexico Tech 801 Leroy Socorro, NM 87801 John Stringer (jstringe@epri.com; 650-855-2472) Electric Power Research Institute 3412 Hillview Avenue Palo Alto, CA 94304 F. Arzum Simsek-Ege (fatma.a.simsek-egel@intel.com; 505-893-8694) Intel Corporation Albuquerque, New Mexico Introduction A range of carbon management strategies will have to be implemented if meaningful reductions in CO 2 emissions are to be achieved in response to concerns about global climate change. It is becoming increasingly clear that some form or forms of carbon

195

The analysis and specification of large high-pressure, high-temperature valves for combustion turbine protection in second-generation PFB power plants: Topical report  

SciTech Connect

The purpose of this study was to provide a specification for the high-pressure/high-temperature valves for turbine overspeed protection in a commercial-scale second-generation pressurized fluidized bed combustion (PFBC) power plant. In the event of a loss of external (generator) load, the gas turbine rapidly accelerates from its normal operating speed. Protection from excessive overspeed can be maintained by actuation of fuel isolation and air bypass valves. A design specification for these valves was developed by analyses of the turbine/compressor interaction during a loss of load and analyses of pressure and flow transients during operation of the overspeed protection valves. The basis for these analyses was the Phase 1 plant conceptual design prepared in 1987.

Not Available

1994-08-01T23:59:59.000Z

196

Reactor Physics Parametric and Depletion Studies in Support of TRISO Particle Fuel Specification for the Next Generation Nuclear Plant  

SciTech Connect

Reactor physics calculations were initiated to answer several major questions related to the proposed TRISO-coated particle fuel that is to be used in the prismatic Very High Temperature Reactor (VHTR) or the Next Generation Nuclear Plant (NGNP). These preliminary design evaluation calculations help ensure that the upcoming fuel irradiation tests will test appropriate size and type of fuel particles for a future NGNP reactor design. Conclusions from these calculations are expected to confirm and suggest possible modifications to the current particle fuel parameters specified in the evolving Fuel Specification. Calculated results dispel the need for a binary fuel particle system, which is proposed in the General Atomics GT-MHR concept. The GT-MHR binary system is composed of both a fissile and fertile particle with 350- and 500- micron kernel diameters, respectively. For the NGNP reactor, a single fissile particle system (single UCO kernel size) can meet the reactivity and power cycle length requirements demanded of the NGNP. At the same time, it will provide substantial programmatic cost savings by eliminating the need for dual particle fabrication process lines and dual fuel particle irradiation tests required of a binary system. Use of a larger 425-micron kernel diameter single fissile particle (proposed here), as opposed to the 350-micron GT-MHR fissile particle size, helps alleviate current compact particle packing fractions fabrication limitations (<35%), improves fuel block loading for higher n-batch reload options, and tracks the historical correlation between particle size and enrichment (10 and 14 wt% U-235 particle enrichments are proposed for the NGNP). Overall, the use of the slightly larger kernel significantly broadens the NGNP reactor core design envelope and provides increased design margin to accommodate the (as yet) unknown final NGNP reactor design. Maximum power-peaking factors are calculated for both the initial and equilibrium NGNP cores. Radial power-peaking can be fully controlled with particle packing fraction zoning (no enrichment zoning required) and discrete burnable poison rods. Optimally loaded NGNP cores can expect radial powerpeaking factors as low as 1.14 at beginning of cycle (BOC), increasing slowly to a value of 1.25 by end of cycle (EOC), an axial power-peaking value of 1.30 (BOC), and for individual fuel particles in the maximum compact <1.05 (BOC) and an approximate value of 1.20 (EOC) due to Pu-239 buildup in particles on the compact periphery. The NGNP peak particle powers, using a conservative total power-peaking factor (~2.1 factor), are expected to be <150 mW/particle (well below the 250 mW/particle limit, even with the larger 425-micron kernel size).

James W. Sterbentz; Bren Phillips; Robert L. Sant; Gray S. Chang; Paul D. Bayless

2003-09-01T23:59:59.000Z

197

Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

Michael W. Patterson

2008-05-01T23:59:59.000Z

198

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

199

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

200

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

202

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

203

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

204

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

205

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

206

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

207

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

208

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

209

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

210

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

211

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

212

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

213

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

214

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

215

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

216

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

217

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

218

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

219

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

220

Predictive current control of outer-rotor five-phase BLDC generators applicable for off-shore wind power plants  

Science Journals Connector (OSTI)

Abstract Model predictive control algorithms have recently gained more importance in the field of wind power generators. One of the important categories of model predictive control methods is improved deadbeat control in which the reverse model of generator is used to calculate the appropriate inputs for the next iteration of controlling process. In this paper, a new improved deadbeat algorithm is proposed to control the stator currents of an outer-rotor five-phase BLDC generator. Extended Kalman filter is used in the estimation step of proposed method, and generator equations are used to calculate the appropriate voltages for the next modulation period. Two aspects of proposed controlling method are evaluated including its sensitivity to generator parameter variations and its speed in following the reference values of required torque during transient states. Wind power generators are kept in mind, and proposed controlling method is both simulated and experimentally evaluated on an outer-rotor five-phase BLDC generator.

Jose Luis Romeral Martinez; Ramin Salehi Arashloo; Mehdi Salehifar; Juan Manuel Moreno

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Protection from ground faults in the stator winding of generators at power plants in the Siberian networks  

SciTech Connect

The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

Vainshtein, R. A., E-mail: vra@tpu.ru [Tomsk Polytechnical University (Russian Federation); Lapin, V. I. [ODU Sibiri (Integrated Dispatcher Control for Siberia), branch of JSC 'SO EES' (Russian Federation); Naumov, A. M.; Doronin, A. V. [JSC NPP 'EKRA' (Russian Federation); Yudin, S. M. [Tomsk Polytechnical University (Russian Federation)

2010-05-15T23:59:59.000Z

222

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

223

Growth regulator reversal of simulated high temperature shipping effects on flower senescence and leaf abscission in miniature potted rose plants  

E-Print Network (OSTI)

flower stages, pea-bud, stage 1, 2, and 3 were designated. The plants were then placed at 16C for 4 days. The evaluations were made in the interior at 21C for all the experiments. Results from the storage experiments show that 4C stored OS and RS had... longer post-storage floral decorative life (PSDL), best flower quality, and less leaf abscission. For plants stored at 16C, PSDL decreased when the duration was longer than 4 days for both summer and winter experiments. At 28C, PSDL and flower quality...

Chen, Lisa Lisu

1990-01-01T23:59:59.000Z

224

Minimum Cost of Photovoltaic Energy for a Utility Grid and General Features of a Generating Plant Using Costless Solar Cells  

Science Journals Connector (OSTI)

The purpose of this work is to evaluate the minimum long term cost of electricity produced by future photovoltaic plants connected to a utility grid. As the cost of photovoltaic cells is supposed to drop drama...

Daniel Madet

1982-01-01T23:59:59.000Z

225

A Novel Plant Leucine-Rich Repeat Receptor Kinase Regulates the Response of Medicago truncatula Roots to Salt Stress  

Science Journals Connector (OSTI)

...of transfer, and root growth from this point was measured after 6 d. Three biological...Roots were collected at the indicated time points and immediately frozen in liquid nitrogen...and stress signaling in plants. Proc. Indian Nat. Sci. Acad. 72: 63-78. Mahajan...

Laura de Lorenzo; Francisco Merchan; Philippe Laporte; Richard Thompson; Jonathan Clarke; Carolina Sousa; Martín Crespi

2009-02-24T23:59:59.000Z

226

Phosphorylation of an ERF Transcription Factor by Arabidopsis MPK3/MPK6 Regulates Plant Defense Gene Induction and Fungal Resistance  

Science Journals Connector (OSTI)

...for distribution of materials integral to the findings...phosphorylation sites. (B) Diagram of ERF6 protein with...could be a result of the handling of seedlings during...signaling. METHODS Plant Materials, Growth Conditions...Supplemental Data The following materials are available in the...

Xiangzong Meng; Juan Xu; Yunxia He; Kwang-Yeol Yang; Breanne Mordorski; Yidong Liu; Shuqun Zhang

2013-03-22T23:59:59.000Z

227

The Phytochrome-Interacting VASCULAR PLANT ONE??ZINC FINGER1 and VOZ2 Redundantly Regulate Flowering in Arabidopsis  

Science Journals Connector (OSTI)

...of Functional VOZ2. (A) Diagrams of GFP-VOZ2 constructs with...nuclear fraction was lost during handling (Figure 5D). To detect...degradation. METHODS Plant Materials and Growth Conditions The...Supplemental Data The following materials are available in the online...

Yukiko Yasui; Keiko Mukougawa; Mitsuhiro Uemoto; Akira Yokofuji; Ryota Suzuri; Aiko Nishitani; Takayuki Kohchi

2012-08-17T23:59:59.000Z

228

Electricity Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Generation Electricity Generation Photo of geothermal power plant. A geothermal resource requires fluid, heat and permeability in order to generate electricity:...

229

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

Solar Turbines Inc Olinda Generating Plant Marina Landfill GasSolar Turbines Inc Olinda Generating Plant Marina Landfill Gas

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

230

Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides  

SciTech Connect

Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi

Grigoriev, Igor; Nicolas, Francisco; Moxon, Simon; Haro, Juan de; Calo, Silvia; Torres-Martinez, Santiago; Moulton, Vincent; Ruiz-Vazquez, Rosa; Dalmay, Tamas

2011-09-01T23:59:59.000Z

231

Options for Generating Steam Efficiently  

E-Print Network (OSTI)

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

Ganapathy, V.

232

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network (OSTI)

turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor...

Barner, Robert Buckner

2007-04-25T23:59:59.000Z

233

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network (OSTI)

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

234

Distributed Generation versus Centralised Supply: a Social Cost-Benefit Analysis  

E-Print Network (OSTI)

, regulators and legislators in distributed generation (DG), namely, the integrated or stand-alone use of small, modular power generation close to the point of consumption as an alternative to large power generation and electricity transport over long distances... condensing boiler providing heat for space heating and sanitary uses (hot water). A conventional compressing refrigerator supplies cold for air conditioning. Imported electricity is assumed to be generated by a combined cycle-gas turbine plant (CCGT), with 51...

Gulli, Francesco

2004-06-16T23:59:59.000Z

235

Optimisation of voltage and frequency regulation in an isolated wind-driven six-phase self-excited induction generator  

Science Journals Connector (OSTI)

Abstract This paper presents a constant voltage operation of a Six-Phase Self-Excited Induction Generator (SPSEIG) driven by a fixed speed wind turbine using an Ant colony optimisation (ACO) technique to predict the behaviour of a the machine. In this paper, an attempt has been made to estimate the excitation capacitance requirements of a SPSEIG for maintaining rated terminal voltage and frequency. The range of capacitance variation required for maintaining constant terminal voltage while supplying a load of variable magnitude is evaluated. Analytical approaches, suitable for all the configurations of shunt capacitances such as variable excitation capacitance connected across (i) single three-phase winding set only and (ii) both the three-phase winding sets of an SPSEIG for operation as a simple shunt on no load and pure resistive load, are presented. The mathematical model developed is based on loop impedance method using graph theory. It is shown that the proposed technique is very effective and useful for making the SPSEIG feasible for remote areas with wind potential. The proposed approach is tested and compared with Genetic Algorithm (GA) and Fmincon technique.

A. Senthil Kumar; Josiah L. Munda

2014-01-01T23:59:59.000Z

236

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

237

Effects of variable renewable power on a country-scale electricity system: High penetration of hydro power plants and wind farms in electricity generation  

Science Journals Connector (OSTI)

The present article analyses the effects caused by variable power. The analysis concerns a country-scale electricity system with a relatively high penetration of seasonally variable hydro power plants and wind farms in the total electricity generation in 2030. For this purpose, the Latvian electricity system was chosen as an appropriate case study, as around half of its electricity is already generated from hydro power and numerous wind farm installations are planned for 2030. Results indicate that in such systems high renewable power variations occur between seasons causing a high probability of power deficit in the winter and power surplus in the spring. Based on the results, the wind farms' influence on the power deficit and surplus occurrences are discussed in detail. Wind farm generation decreases the probability of the electricity system being in power deficit, but increases the probability of the system being in power surplus. In the latter situation, the maximum value of power surplus increases since it is enhanced by the wind farm generation. Probability equations to express these changes are provided.

Arturs Purvins; Ioulia T. Papaioannou; Irina Oleinikova; Evangelos Tzimas

2012-01-01T23:59:59.000Z

238

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

239

The effects of a steam-electric generating plant on suitability of adjacent estuarine waters for growth of phytoplankton  

E-Print Network (OSTI)

'F above normal levels. Roessler (1971) and Steidinger and Breedveld (1971) reported thermal discharges from power plants in Florida caused benthic macroalgae and grasses to be replaced by fil- amentous blue green algae mats. Morgan and Stross... on the north and east by a line running from Morgan's Point to Cedar Point then southeastward to Smith Point (Masch and Espy 1967). The Bay extends south and west from this line to form arm-like East and West Bays. Outlets to the Gulf of Mexico...

Kelsey, John Allen

2012-06-07T23:59:59.000Z

240

Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants  

SciTech Connect

TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

Elliott, Jeannine

2013-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A preliminary user-friendly, digital console for the control room parameters supervision in old-generation Nuclear Plants  

SciTech Connect

Improvements in the awareness of a system status is an essential requirement to achieve safety in every kind of plant. In particular, in the case of Nuclear Power Plants (NPPs), a progress is crucial to enhance the Human Machine Interface (HMI) in order to optimize monitoring and analyzing processes of NPP operational states. Firstly, as old-fashioned plants are concerned, an upgrading of the whole console instrumentation is desirable in order to replace an analog visualization with a full-digital system. In this work, we present a novel instrument able to interface the control console of a nuclear reactor, developed by using CompactRio, a National Instruments embedded architecture and its dedicated programming language. This real-time industrial controller composed by a real-time processor and FPGA modules has been programmed to visualize the parameters coming from the reactor, and to storage and reproduce significant conditions anytime. This choice has been made on the basis of the FPGA properties: high reliability, determinism, true parallelism and re-configurability, achieved by a simple programming method, based on LabVIEW real-time environment. The system architecture exploits the FPGA capabilities of implementing custom timing and triggering, hardware-based analysis and co-processing, and highest performance control algorithms. Data stored during the supervisory phase can be reproduced by loading data from a measurement file, re-enacting worthwhile operations or conditions. The system has been thought to be used in three different modes, namely Log File Mode, Supervisory Mode and Simulation Mode. The proposed system can be considered as a first step to develop a more complete Decision Support System (DSS): indeed this work is part of a wider project that includes the elaboration of intelligent agents and meta-theory approaches. A synoptic has been created to monitor every kind of action on the plant through an intuitive sight. Furthermore, another important aim of this work is the possibility to have a front panel available on a web interface: CompactRio acts as a remote server and it is accessible on a dedicated LAN. This supervisory system has been tested and validated on the basis of the real control console for the 1-MW TRIGA reactor RC-1 at the ENEA, Casaccia Research Center. In this paper we show some results obtained by recording each variable as the reactor reaches its maximum level of power. The choice of a research reactor for testing the developed system relies on its training and didactic importance for the education of plant operators: in this context a digital instrument can offer a better user-friendly tool for learning and training. It is worthwhile to remark that such a system does not interfere with the console instrumentation, the latter continuing to preserve the total control. (authors)

Memmi, F.; Falconi, L.; Cappelli, M.; Palomba, M.; Santoro, E.; Bove, R.; Sepielli, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy)

2012-07-01T23:59:59.000Z

242

Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect

A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

Freeze, G.A.; Larson, K.W. [INTERA Inc., Austin, TX (United States); Davies, P.B. [Sandia National Laboratories, Albuquerque, NM (United States)

1995-10-01T23:59:59.000Z

243

Library Regulations Library Regulations  

E-Print Network (OSTI)

Library Regulations 2012-13 Library Regulations UNIVERSITY OF BIRMINGHAM REGULATIONS LIBRARY REGULATIONS Preamble: The Library Regulations apply to all users of library facilities managed on behalf of the University by Library Services, and thus there are sections that apply also to non- members of the University

Birmingham, University of

244

Regulation of Meiotic Recombination  

SciTech Connect

Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system for assaying recombination using tetrad analysis in a higher eukaryotic system (6). This system enabled the measurement of the frequency and distribution of recombination events at a genome wide level in wild type Arabidopsis (7), construction of genetic linkage maps which include positions for each centromere (8), and modeling of the strength and pattern of interference (9). This proposal extends the use of tetrad analysis in Arabidopsis by using it as the basis for assessing the phenotypes of mutants in genes important for recombination and the regulation of crossover interference and performing a novel genetic screen. In addition to broadening our knowledge of a classic genetic problem - the regulation of recombination by crossover interference - this proposal also provides broader impact by: generating pedagogical tools for use in hands-on classroom experience with genetics, building interdisciplinary collegial partnerships, and creating a platform for participation by junior scientists from underrepresented groups. There are three specific aims: (1) Isolate mutants in Arabidopsis MUS81 homologs using T-DNA and TILLING (2) Characterize recombination levels and interference in mus81 mutants (3) Execute a novel genetic screen, based on tetrad analysis, for genes that regulate meiotic recombination

Gregory p. Copenhaver

2011-11-09T23:59:59.000Z

245

Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 119 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

246

First-year's operation of a full-scale second-generation FBC in an industrial plant  

SciTech Connect

Data related to the operation of a two stage coal fired fluidized bed boiler installed for Iowa Beef Processors, Inc. Amarillo, Texas are presented. This steam generator, which has a rating of 70,000 lb/hr steam, 650 psig, is the large privately funded fluidized bed coal combustion installation in the United States. The facility includes a dual bed combustor, whereby the coal is burned in a lower bed containing steam tubes and sulfur dioxide is collected in an upper bed containing dolomite. Coal burns predominantly in the lower bed at relatively high temperatures while combustion is completed in the upper bed. The upper bed also improves sulfur capture by reacting with SO/sub 2/ generated in the freeboard, which would be difficult to capture in early designs for FBC packaged boilers. The two stage concept provides high combustion efficiency, low NO/sub X/ emissions, and high sulfur capture. The results of recent measurements of emissions of sulfur dioxide will be included in this presentation. 4 figures.

Baty, G.B.

1984-01-01T23:59:59.000Z

247

TRU (transuranic) waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the Waste Isolation Pilot Plant: Revision 2  

SciTech Connect

Compliance requirements are presented for certifying that unclassified, newly generated (NG), contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated; however, interim storage sites may have additional requirements consistent with these requirements. All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig.

Not Available

1989-01-01T23:59:59.000Z

248

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

249

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

250

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

251

Okeanskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

252

Mendeleevskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

253

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers  

SciTech Connect

Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line monitoring of small structural flaws by the use of transient and nonlinear acoustic signal analysis, and its implementation by the proper design of a piezo-electric transducer suite.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

254

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

255

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

U. S. Conunercial Nuclear Power Plants", Report WASH-1400 (Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

256

Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant  

SciTech Connect

This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfer visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of Colburn j-factor) associated with deployment of the winglets with circular as well as oval tubes. In general, toe-in (common flow up) type winglets appear to have better performance than the toe-out (common flow down) type winglets. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. During the course of their independent research, all of the researchers have established that about 10 to 30% enhancement in Colburn j-factor is expected. However, actual increase in heat transfer rate from a heat exchanger employing finned tubes with winglets may be smaller, perhaps on the order of 2 to 5%. It is also concluded that for any specific application, more full-size experimentation is needed to optimize the winglet design for a specific heat exchanger application. If in place of a circular tube, an oval tube can be economically used in a bundle, it is expected that the pressure drop across the tube bundle with the application of vortex generators (winglets) will be similar to that in a conventional circular tube bundle. It is hoped that the results of this research will demonstrate the benefits of applying vortex generators (winglets) on the fins to improve the heat transfer from the air-side of the tube bundle.

Manohar S. Sohal

2005-09-01T23:59:59.000Z

257

Biomass: Biogas Generator  

NLE Websites -- All DOE Office Websites (Extended Search)

BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to...

258

Voltage controlled stand-alone microhydro induction generator system  

Science Journals Connector (OSTI)

The paper discusses simulated control cases of the wound rotor self-excited induction generator WRSEIG. The generator external controller is designed to regulate the output voltage and frequency for constant or variable speed operation of the prime mover and has the inherent capability of protecting the load from short circuit, which permits voltage collapse under heavy loads. WRSEIG is self-excited using one set of excitation capacitance connected across the generator stator side. At the rotor side, a PWM controlled resistor is connected to the rotor windings through the rotating slips and act as a slip power controller. The controller can be configured to regulate the voltage as the speed or the load changes. The presented system has the capability to generate good quality AC power source with minimum controlling elements and can operate under constant or adjustable prime mover speed that suits many microhydro electricity-generating plants.

K.A. Nigim

2005-01-01T23:59:59.000Z

259

Vermont Hazardous Waste Management Regulations (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations are intended to protect public health and the environment by comprehensively regulating the generation, storage, collection, transport, treatment, disposal, use, reuse, and...

260

Hormonal Regulation in Higher Plants  

Science Journals Connector (OSTI)

...acid inhibits the synthesis of a-amylase in barley grains and is antagonistic...zone (11), not just a passive break. Evidence suggests that, during...particu-larly the enzymes involved in the break-down of the cell wall. Thus the separa-tion...

Arthur W. Galston; Peter J. Davies

1969-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Permit compliance monitoring for the power generation industry  

SciTech Connect

The Clean Air Act Amendments (CAAA) of 1990 authorized EPA to develop regulations requiring facilities to monitor the adequacy of emission control equipment and plant operations. Furthermore, under the CAAA, EPA is required to issue regulations to require owners and operators of large industrial facilities to enhance air pollution monitoring and certify compliance with air pollution regulations. The fossil-fueled power generation industry has been targeted with the promulgation of the Acid Rain Program regulations of 40 CFR 72, and the Continuous Emissions Monitoring requirements of 40 CFR 75. The Part 75 regulations, with a few exceptions, establish requirements for monitoring, recordkeeping, and reporting of sulfur dioxide, nitrogen oxides, and carbon dioxide emissions, volumetric flow, and opacity data from affected units under the Acid Rain Program. Depending upon the type of unit and location, other applicable emission limitations may apply for particulate emissions (both total and PM-10), carbon monoxide, volatile organic compounds and sulfuric acid mist.

Macak, J.J. III [Mostardi-Platt Associates, Inc., Elmhurst, IL (United States); Platt, T.B. [Commonwealth Edison Company, Waukegan, IL (United States); Miller, S.B. [Commonwealth Edison Company, Chicago, IL (United States)

1996-12-31T23:59:59.000Z

262

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

263

Impact of Electric Generating Facilities (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact of Electric Generating Facilities (Virginia) Impact of Electric Generating Facilities (Virginia) Impact of Electric Generating Facilities (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality After a proposed power plant has received approval from the State Corporation Commission (SCC) and location approval from the local government, it must apply for all applicable permits from the Virginia

264

Interdisciplinary Research and Training Program in the Plant Sciences  

SciTech Connect

Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

Wolk, C.P.

1992-01-01T23:59:59.000Z

265

Next Generation Nuclear Plant Phenomena  

NLE Websites -- All DOE Office Websites (Extended Search)

High- importance phenomena related to the RPV include crack initiation and subcritical crack growth; field fabrication process control; property control in heavy...

266

Next Generation Nuclear Plant Phenomena  

NLE Websites -- All DOE Office Websites (Extended Search)

of enhanced heat transfer in the primary heat exchanger. After blowdown, there will be a loss of the heat sink. < Leak into reactor primary system. The total gas inventory in the...

267

Load regulating expansion fixture  

DOE Patents (OSTI)

A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

Wagner, L.M.; Strum, M.J.

1998-12-15T23:59:59.000Z

268

Load regulating expansion fixture  

DOE Patents (OSTI)

A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

1998-01-01T23:59:59.000Z

269

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

270

Ethylene, the Natural Regulator of Leaf Abscission  

Science Journals Connector (OSTI)

... ETHYLENE is increasingly thought of as an integral part of plant auto-regulation1; a concept ... as an integral part of plant auto-regulation1; a concept originating from the discovery that ethylene was a natural product of plant metabolism2,3. More recently, the use of gas ...

MICHAEL B. JACKSON; DAPHNE J. OSBORNE

1970-03-14T23:59:59.000Z

271

Measurements of photon ionizing radiation fields in the reactor room of the 4th power-generating unit of the chernobyl nuclear power plant  

Science Journals Connector (OSTI)

A radiation examination of the reactor room of the damaged fourth unit of the Chernobyl nuclear power plant was performed. The most strongly radiating surfaces...

A. G. Volkovich; V. N. Potapov; S. V. Smirnov; L. I. Urutskoev

2000-03-01T23:59:59.000Z

272

Minnesota Power Plant Siting Act (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant Siting Act (Minnesota) Power Plant Siting Act (Minnesota) Minnesota Power Plant Siting Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This Act regulates the siting of large electric power generating plants, which are defined as plants designed for or capable of operating with a

273

Update on State Air Emission Regulations That Affect Electric Power Producers (released in AEO2005)  

Reports and Publications (EIA)

Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the states and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected states include Connecticut, Massachusetts, Maine, Missouri, New Hampshire, New Jersey, New York, North Carolina, Oregon, Texas, and Washington. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

2005-01-01T23:59:59.000Z

274

Alternative Fuels Data Center: Alternative Fuel Resale and Generation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Resale and Generation Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

275

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

276

GRR/Section 7-OR-d - Expedited Plant Commissioning Process | Open Energy  

Open Energy Info (EERE)

7-OR-d - Expedited Plant Commissioning Process 7-OR-d - Expedited Plant Commissioning Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-OR-d - Expedited Plant Commissioning Process 07ORDExpeditedPlantCommissioningProcess.pdf Click to View Fullscreen Contact Agencies Oregon Department of Energy Regulations & Policies Revised Statute 469 Oregon Administrative Rules 345-015 Triggers None specified Click "Edit With Form" above to add content 07ORDExpeditedPlantCommissioningProcess.pdf 07ORDExpeditedPlantCommissioningProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Power Plants with an average electric generating capacity of less than 100

277

Power Plant Dams (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant Dams (Kansas) Power Plant Dams (Kansas) Power Plant Dams (Kansas) < Back Eligibility Commercial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across any watercourse, the party so desiring to do the same may run the stream over the land of any other person by ditching or otherwise, and he, she or it may obtain the right to erect and maintain said dam and keep up and maintain the necessary ditches

278

Heat Recovery Steam Generator Simulation  

E-Print Network (OSTI)

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

279

Regulation of Branching by Phytochrome and Phytohormones  

E-Print Network (OSTI)

Light is the fundamental source of energy and information throughout the plant life cycle. Light signals regulate plant architecture and branching, key processes that determine biomass production and grain yield. Low red (R) to far-red (FR) light...

Krishnareddy, Srirama R.

2012-07-16T23:59:59.000Z

280

RESEARCH ARTICLE PLANT GENETICS  

E-Print Network (OSTI)

relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of s of regulation among alleles. S porophytic self-incompatibility (SI) is a genetic system that evolved in hermaph

Napp, Nils

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . . . . .

Yen, W.W.S.

2010-01-01T23:59:59.000Z

282

Local Generation Limited | Open Energy Information  

Open Energy Info (EERE)

Generation Limited Place: United Kingdom Sector: Biomass Product: UK-based biomass firm developing anaerobic digestion plants. References: Local Generation Limited1 This article...

283

Participation of wind power plants in system frequency control: Review of grid code requirements and control methods  

Science Journals Connector (OSTI)

Abstract Active power reserves are needed for the proper operation of an electrical system. These reserves are continuously regulated in order to match the generation and consumption in the system and thus, to maintain a constant electrical frequency. They are usually provided by synchronized conventional generating units such as hydraulic or thermal power plants. With the progressive displacement of these generating plants by non-synchronized renewable-based power plants (e.g. wind and solar) the net level of synchronous power reserves in the system becomes reduced. Therefore, wind power plants are required, according to some European Grid Codes, to also provide power reserves like conventional generating units do. This paper focuses not only on the review of the requirements set by Grid Codes, but also on control methods of wind turbines for their participation in primary frequency control and synthetic inertia.

Francisco Daz-Gonzlez; Melanie Hau; Andreas Sumper; Oriol Gomis-Bellmunt

2014-01-01T23:59:59.000Z

284

Complete genome sequence of Micromonospora L5, a potential plant-growth regulating actinomycete, originally isolated from Casuarina equisetifolia root nodules.  

SciTech Connect

Micromonospora species live in diverse environments and exhibit a broad range of functions including antibiotic production, biocontrol, and ability to degrade complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico.

Hirsch, Ann M. [University of California, Los Angeles] University of California, Los Angeles; Alvarado, Johana [University of California, Los Angeles] University of California, Los Angeles; Bruce, David [Los Alamos National Laboratory (LANL)] Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL)] Los Alamos National Laboratory (LANL); DeHoff, Peter L. [University of California, Los Angeles] University of California, Los Angeles; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute] U.S. Department of Energy, Joint Genome Institute; Fujishige, Nancy A. [University of California, Los Angeles] University of California, Los Angeles; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL)] Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute] U.S. Department of Energy, Joint Genome Institute; Han, Shunsheng [Los Alamos National Laboratory (LANL)] Los Alamos National Laboratory (LANL); Ivanova, N [U.S. Department of Energy, Joint Genome Institute] U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL] ORNL; Lum, Michelle R. [University of California, Los Angeles] University of California, Los Angeles; Milani-Nejad, Nima [University of California, Los Angeles] University of California, Los Angeles; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute] U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute] U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute] U.S. Department of Energy, Joint Genome Institute; Tran, Stephen S. [University of California, Los Angeles] University of California, Los Angeles; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute] U.S. Department of Energy, Joint Genome Institute; Valdes, Maria [Escuela Nacional de Ciencias Biologicas, I.P.N., Mexico] Escuela Nacional de Ciencias Biologicas, I.P.N., Mexico

2013-01-01T23:59:59.000Z

285

Power Plant Power Plant  

E-Print Network (OSTI)

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

286

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

287

GRR/Section 7-CA-d - CPCN for Small Power Plant Exemption | Open Energy  

Open Energy Info (EERE)

GRR/Section 7-CA-d - CPCN for Small Power Plant Exemption GRR/Section 7-CA-d - CPCN for Small Power Plant Exemption < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-CA-d - CPCN for Small Power Plant Exemption 07CADCPCNForSmallPowerPlantExemption.pdf Click to View Fullscreen Contact Agencies California Public Utilities Commission Regulations & Policies General Order 131-D California Environmental Quality Act Triggers None specified Click "Edit With Form" above to add content 07CADCPCNForSmallPowerPlantExemption.pdf 07CADCPCNForSmallPowerPlantExemption.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A public utility seeking to construct a new generation facility in excess

288

GRR/Section 7-OR-a - State Plant Construction | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-OR-a - State Plant Construction GRR/Section 7-OR-a - State Plant Construction < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-OR-a - State Plant Construction 07ORAStatePlantConstruction (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Energy Regulations & Policies Facility siting rules and statutes Triggers None specified Click "Edit With Form" above to add content 07ORAStatePlantConstruction (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The State Siting Board has siting jurisdiction over electric power generating plants described as energy facilities in Oregon Revised Statute

289

Planting Food or Fuel: Developing an Interdisciplinary Approach to Understanding the Role of Culture in Farmers Decisions to Grow Second-Generation Biofuel Feedstock Crops  

E-Print Network (OSTI)

Recent interest in biofuels as an alternative energy source has spurred considerable changes in agricultural practice worldwide. These changes will be more pronounced as second-generation biofuels, such as switch grass, gain prominence; this article...

White, Stacey Swearingen; Brown, J. Christopher; Gibson-Carpenter, Jane W.; Hanley, Eric; Earnhart, Dietrich H.

2009-12-01T23:59:59.000Z

290

CleanDistributedGeneration.pdf | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

anDistributedGeneration.pdf More Documents & Publications Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 CHP Assessment, California Energy...

291

"1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220 "3. North Pole","Petroleum","Golden Valley Elec Assn Inc",144 "4. Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 "5. Anchorage 1","Gas","Anchorage Municipal Light and Power",88 "6. Snettisham","Hydroelectric","Alaska Electric Light&Power Co",78 "7. Bernice Lake","Gas","Chugach Electric Assn Inc",62 "8. Lemon Creek","Petroleum","Alaska Electric Light&Power Co",58

292

Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.  

SciTech Connect

Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

McDowell, Jason (General Electric, Schenectady, NY); Walling, Reigh (General Electric, Schenectady, NY); Peter, William (SunPower, Richmond, CA); Von Engeln, Edi (NV Energy, Reno, NV); Seymour, Eric (AEI, Fort Collins, CO); Nelson, Robert (Siemens Wind Turbines, Orlando, FL); Casey, Leo (Satcon, Boston, MA); Ellis, Abraham; Barker, Chris. (SunPower, Richmond, CA)

2012-02-01T23:59:59.000Z

293

Unit Commitment Considering Generation Flexibility and Environmental Constraints  

SciTech Connect

This paper proposes a new framework for power system unit commitment process, which incorporates the generation flexibility requirements and environmental constraints into the existing unit commitment algorithm. The generation flexibility requirements are to address the uncertainties with large amount of intermittent resources as well as with load and traditional generators, which causes real-time balancing requirements to be variable and less predictable. The proposed flexibility requirements include capacity, ramp and ramp duration for both upward and downward balancing reserves. The environmental constraints include emission allowance for fossil fuel-based generators and ecological regulations for hydro power plants. Calculation of emission rates is formulated. Unit commitment under this new framework will be critical to the economic and reliable operation of the power grid and the minimization of its negative environmental impacts, especially when high penetration levels of intermittent resources are being approached, as required by the renewable portfolio standards in many states.

Lu, Shuai; Makarov, Yuri V.; Zhu, Yunhua; Lu, Ning; Prakash Kumar, Nirupama; Chakrabarti, Bhujanga B.

2010-07-31T23:59:59.000Z

294

Power Generation and the Environment  

Science Journals Connector (OSTI)

...such as hydro and gas tur- bines. It...these increases in power costs will be a...aspects of power generation: the exploration...residual fuels for power plants, as well...concepts of oil-fired power generation plants for the...

Rolf Eliassen

1971-01-01T23:59:59.000Z

295

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Response Planning for Nuclear Power Plants in California",and Related Standards for Nuclear Power Plants", Lawrencejected lifetime for a nuclear power plant is 40 years, a

Nero, jA.V.

2010-01-01T23:59:59.000Z

296

Ethylene synthesis and sensitivity in crop plants.  

E-Print Network (OSTI)

?? The gaseous plant hormone ethylene is a small molecule that regulates developmental change. Research was conducted in three areas: sensitivity, synthesis, and alterations to (more)

Romagnano, Joseph F.

2008-01-01T23:59:59.000Z

297

Ethylene Synthesis and Sensitivity in Crop Plants.  

E-Print Network (OSTI)

??The gaseous plant hormone ethylene is a small molecule that regulates developmental change. Research was conducted in three areas: sensitivity, synthesis, and alterations to synthesis. (more)

Romagnano, Joseph F.

2008-01-01T23:59:59.000Z

298

Generating Economic Development from a Wind Power Plant in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts  

Wind Powering America (EERE)

Generating Economic Development from a Wind Power Generating Economic Development from a Wind Power Project in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts Sandra Reategui Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 January 2009 DOE/GO-102009-2760 Acknowledgements ....................................................................................................................... 1 Introduction ................................................................................................................................... 2 Report Overview ......................................................................................................................... 2

299

Economic comparison between coal-fired and liquefied natural gas combined cycle power plants considering carbon tax: Korean case  

Science Journals Connector (OSTI)

Economic growth is main cause of environmental pollution and has been identified as a big threat to sustainable development. Considering the enormous role of electricity in the national economy, it is essential to study the effect of environmental regulations on the electricity sector. This paper aims at making an economic analysis of Korea's power plant utilities by comparing electricity generation costs from coal-fired power plants and liquefied natural gas (LNG) combined cycle power plants with environmental consideration. In this study, the levelized generation cost method (LGCM) is used for comparing economic analysis of power plant utilities. Among the many pollutants discharged during electricity generation, this study principally deals with control costs related only to CO2 and NO2, since the control costs of SO2 and total suspended particulates (TSP) are already included in the construction cost of utilities. The cost of generating electricity in a coal-fired power plant is compared with such cost in a LNG combined cycle power plant. Moreover, a sensitivity analysis with computer simulation is performed according to fuel price, interest rates and carbon tax. In each case, these results can help in deciding which utility is economically justified in the circumstances of environmental regulations.

Suk-Jae Jeong; Kyung-Sup Kim; Jin-Won Park; Dong-soon Lim; Seung-moon Lee

2008-01-01T23:59:59.000Z

300

Economics of Hydropower Plants  

Science Journals Connector (OSTI)

The feed-in tariff scheme, as its name suggests is based ... plant. The most important aspect of a feed-in tariff system is that the grid operator cannot ... stations must reduce their power generation. The feed-in

Prof. Dr.-Ing Hermann-Josef Wagner

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIS-0036: Coal Conversion Program, New England Power Company, Brayton Point Generating Station Plants 1, 2 and 3, Sommerset, Bristol County, Massachusetts  

Energy.gov (U.S. Department of Energy (DOE))

The Economic Regulatory Administration developed this EIS to evaluate the site-specific environmental impacts of issuing a Notice of Effectiveness to New England Power Company's Brayton Point Generating Station, Units 1, 2 and 3 to prohibit burning of gas or oil as the primary source of fuel.

302

Specific activity of243Am and243Cm in the fuel of the 4th power-generating unit of the Chernobyl nuclear power plant  

Science Journals Connector (OSTI)

The activity ratios241Am/241Am.243Cm/244Cm, and242Cm/244Cm in core samples taken at the industrial site of the object Cover were measured. The content of243Am and243Cm in the fuel in the 4th power-generating un...

V. A. Ageev; S. L. Vyrichek; A. P. Lashko; T. N. Lashko; A. A. Odintsov

1999-11-01T23:59:59.000Z

303

Biogass Generator  

NLE Websites -- All DOE Office Websites (Extended Search)

Another internet tool by: Another internet tool by: Build Your Own Page 1 of 5 Teach...build...learn...renewable energy! Biogas Generator A Renewable Energy Project Kit The Pembina Institute What Is Biogas? Biogas is actually a mixture of gases, usually carbon dioxide and methane. It is produced by a few kinds of microorganisms, usually when air or oxygen is absent. (The absence of oxygen is called "anaerobic conditions.") Animals that eat a lot of plant material, particularly grazing animals such as cattle, produce large amounts of biogas. The biogas is produced not by the cow or elephant, but by billions of microor- ganisms living in its digestive system. Biogas also develops in bogs and at the bottom of lakes, where decaying organic matter builds up under wet and

304

Modulating lignin in plants  

SciTech Connect

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

305

Plant Phenotype Characterization System  

SciTech Connect

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

306

Intercellular Communication during Plant Development  

Science Journals Connector (OSTI)

...metabolic processes; however, levels are tightly regulated as excess ROS can be cytotoxic. Plants also actively produce ROS through...circadian and ultradian clocks, such as their disruption by lithium, suggest that these clocks may share some regulatory mechanisms...

Jaimie M. Van Norman; Natalie W. Breakfield; Philip N. Benfey

2011-03-08T23:59:59.000Z

307

Next Generation Safeguards Initiative: Analysis of Probability of Detection of Plausible Diversion Scenarios at Gas Centrifuge Enrichment Plants Using Advanced Safeguards  

SciTech Connect

Over the last decade, efforts by the safeguards community, including inspectorates, governments, operators and owners of centrifuge facilities, have given rise to new possibilities for safeguards approaches in enrichment plants. Many of these efforts have involved development of new instrumentation to measure uranium mass and uranium-235 enrichment and inspection schemes using unannounced and random site inspections. We have chosen select diversion scenarios and put together a reasonable system of safeguards equipment and safeguards approaches and analyzed the effectiveness and efficiency of the proposed safeguards approach by predicting the probability of detection of diversion in the chosen safeguards approaches. We analyzed the effect of redundancy in instrumentation, cross verification of operator instrumentation by inspector instrumentation, and the effects of failures or anomalous readings on verification data. Armed with these esults we were able to quantify the technical cost benefit of the addition of certain instrument suites and show the promise of these new systems.

Hase, Kevin R. [Los Alamos National Laboratory; Hawkins Erpenbeck, Heather [Los Alamos National Laboratory; Boyer, Brian D. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

308

Boiler and steam generator corrosion: Fossil-fuel power plants. March 1977-December 1989 (A Bibliography from the NTIS data base). Report for March 1977-December 1989  

SciTech Connect

This bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. Hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 88 citations fully indexed and including a title list.)

Not Available

1990-05-01T23:59:59.000Z

309

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Licensing. Regulator. Standard Review_ Plan~. October 1974Reactor Licen- sing. Standard Review Plan. Section 2.1.3. "Reactor Regulation. Standard Review Plan. Section 2.1.1. "

Yen, W.W.S.

2010-01-01T23:59:59.000Z

310

Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency  

SciTech Connect

A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

Not Available

1985-07-04T23:59:59.000Z

311

Interdisciplinary Research and Training Program in the Plant Sciences. Technical progress report, February 1, 1991--November 30, 1992  

SciTech Connect

Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

Wolk, C.P.

1992-07-01T23:59:59.000Z

312

Solar Thermal Central Receiver Pilot Plant Overview. Part II: A Utility Perspective  

Science Journals Connector (OSTI)

The Solar One Pilot Plant has been connected to ... to evaluate the plants performance as a utility generation resource.

J. N. Reeves

1985-01-01T23:59:59.000Z

313

Diophantine Generation,  

E-Print Network (OSTI)

Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

Shlapentokh, Alexandra

314

Application of membrane technology to power generation waters  

SciTech Connect

Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

1980-03-01T23:59:59.000Z

315

EPA Regulation Compliance | Department of Energy  

Office of Environmental Management (EM)

below: Mercury and Air Toxics Standards for Electric Generation Units - MATS Cross State Air Pollution Rule - CSAPR Carbon Pollution Standards for New Power Plants - 111(b) Carbon...

316

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

317

Characterization of the oxide formed in the presence of poly acrylic acid over the steam generator structural materials of nuclear power plants  

Science Journals Connector (OSTI)

On-line addition of polymeric dispersants, such as poly acrylic acid (PAA), to the steam generator (SG) results in the formation of a better protective inner oxide layer that reduces subsequent corrosion of structural materials. Its dispersive action inhibits the growth of a secondary oxide layer thereby facilitating their easy removal. This paper discusses the effect of PAA on the nature of oxides formed over the surfaces of SG. In the case of carbon steel, the inner oxide layer (magnetite) formed in the presence of PAA was protective. Electrochemical studies showed a minimum concentration of 350ppb of PAA was found to be optimum. On the monel surface, in the absence of PAA, nickel ferrite was formed while in the presence of PAA, the oxide formed was a mixture of oxides of copper and nickel. A concentration of 700ppb of PAA was found to be optimum for monel. In the case of incoloy, the effect of PAA was not discernible except for the size and morphology of the crystallites formed.

Akhilesh C. Joshi; Appadurai L. Rufus; Sumathi Suresh; Palogi Chandramohan; Srinivasan Rangarajan; Sankaralingam Velmurugan

2013-01-01T23:59:59.000Z

318

E-Print Network 3.0 - activity plant growth Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

<< < 1 2 3 4 5 > >> 1 Plant Tissue Culture Venus Flytrap: Dionaea muscipula Summary: of fruit 2. Cytokinin (kinetin) Activation of cell division and regulation of plant growth...

319

Oleic AcidDependent Modulation of NITRIC OXIDE ASSOCIATED1 Protein Levels Regulates Nitric  

E-Print Network (OSTI)

the generation of monounsaturated FA in plant cells (Shanklin and Cahoon, 1998; Kachroo et al., 2007

Kachroo, Pradeep

320

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Plants with modified lignin content and methods for production thereof  

DOE Patents (OSTI)

The invention provides methods for decreasing lignin content and for increasing the level of fermentable carbohydrates in plants by down-regulation of the NST transcription factor. Nucleic acid constructs for down-regulation of NST are described. Transgenic plants are provided that comprise reduced lignin content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops. Methods for processing plant tissue and for producing ethanol by utilizing such plants are also provided.

Zhao, Qiao; Chen, Fang; Dixon, Richard A.

2014-08-05T23:59:59.000Z

322

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

323

Cecropia peltata Accumulates Starch or Soluble Glycogen by Differentially Regulating Starch Biosynthetic Genes  

Science Journals Connector (OSTI)

...transporter MEX1 to fuel metabolism at...by concurrent degradation accompanying...required for starch degradation in Arabidopsis thaliana. Plant Cell 21 : 334-346...regulator of starch degradation in plants...transporter. Plant Cell 13 : 1907-1918...

Sylvain Bischof; Martin Umhang; Simona Eicke; Sebastian Streb; Weihong Qi; Samuel C. Zeeman

2013-04-30T23:59:59.000Z

324

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

325

Plant design: Integrating Plant and Equipment Models  

SciTech Connect

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process EngineeringOpen), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

326

California Energy Commission PROPOSED REGULATIONS  

E-Print Network (OSTI)

, such as fossil fuelbased power plants, and may ameliorate air quality problems and improve public health renewable energy resources, such as wind, solar, biomass, landfill gas, digester gas, geothermal, or smallCalifornia Energy Commission PROPOSED REGULATIONS INITIAL STATEMENT OF REASONS FOR ENFORCEMENT

327

Government Regulation  

E-Print Network (OSTI)

Abstract. Interest in the use of so-called voluntary approaches to supplement or replace formal environmental regulation is on the rise, both in Europe and in the United States. These approaches fall into two general ...

Ashford, Nicholas

2005-01-01T23:59:59.000Z

328

1. Generation 1 1. Generation  

E-Print Network (OSTI)

1. Generation 1 _________________________________________________________________________ 1. Generation Sound and vibrations or, in more general terms, oscillations of matter (solids or fluids) are generated in many different dynamic processes. The basic mechanisms which underlie these oscillations

Berlin,Technische Universität

329

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network (OSTI)

pulverized coal plants, combined cycle natural gas plants,natural gas plants, and combined cycle natural gas plants.generated largely from combined-cycle Capacity (GW) yd r as

Hand, Maureen

2008-01-01T23:59:59.000Z

330

AVESTAR® - Smart Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Plant In the area of smart plant operations, AVESTAR's dynamic simulators enable researchers to analyze plant-wide performance over a wide range of operating scenarios, including plant startup (cold, warm, hot), shutdown, fuel switchovers, on-load cycling, high-load operations of 90-120% of rated capacity, and high frequency megawatt changes for automatic generation control. The dynamic simulators also let researchers analyze the plant's response to disturbances and malfunctions. The AVESTAR team is also using dynamic simulators to develop effective strategies for the operation and control of pre-combustion capture technology capable of removing at least 90% of the CO2 emissions. Achieving operational excellence can have significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. If deployment of new CO2 capture technologies is to be accelerated, power generators must be confident in ensuring efficient, flexible, reliable, environmentally-friendly, and profitable plant operations.

331

Epigenetics, a mode for plants to respond to abiotic stresses  

Science Journals Connector (OSTI)

Epigenetics has been becoming a hot topic in recent years. It can be mechanisms that regulate gene expression without changing DNA base sequence. In plants epigenetic regulation has been implicated to be a ver...

Weihua Qiao; Liumin Fan

2011-12-01T23:59:59.000Z

332

Dubuque generation station, Dubuque, Iowa  

SciTech Connect

Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

Peltier, R.

2008-10-15T23:59:59.000Z

333

October 11, 2011 Wind Generation  

E-Print Network (OSTI)

years. #12;Reading on ESRP 285 Website #12;The Competition: Gas-Fired Generation from a Combined CycleESRP 285 October 11, 2011 Wind Generation · Videos · Power Point Lecture #12;Wind Videos Wind (CC) Power Plant #12;Wind Investors Face These Costs #12;Fixed Costs #12;Variable Costs #12;Bottom

Ford, Andrew

334

Loan Guarantee Recipient Awarded Power Plant of the Year  

Energy.gov (U.S. Department of Energy (DOE))

The Ivanpah Solar Electric Generating System, a DOE loan guarantee recipient, won 2014 Plant of the Year from POWER Magazine.

335

World's Largest Concentrating Solar Power Plant Opens in California  

Energy.gov (U.S. Department of Energy (DOE))

The Ivanpah Solar Electric Generating System, the world’s largest concentrating solar power plant, officially opened on February 13.

336

Design and simulation of a plant control system for a GCFR demonstration plant  

SciTech Connect

A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations.

Estrine, E.A.; Greiner, H.G.

1980-02-01T23:59:59.000Z

337

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

338

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

339

Electric generating prospects for nuclear power  

Science Journals Connector (OSTI)

Most of the nuclear power plants in the U.S. today are of the light-water variety. In many parts of the U.S. these plants are competitive with plants burning coal, but the electricity that they generate will be more costly in the future as uranium supplies ...

Manson Benedict

1970-07-01T23:59:59.000Z

340

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy storage for frequency regulation on the electric grid  

E-Print Network (OSTI)

Ancillary services such as frequency regulation are required for reliable operation of the electric grid. Currently, the same traditional thermal generators that supply bulk power also perform nearly all frequency regulation. ...

Leitermann, Olivia

2012-01-01T23:59:59.000Z

342

Paducah Gaseous Diffusion Plant environmental report for 1992  

SciTech Connect

This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.

Horak, C.M. [ed.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

1993-09-01T23:59:59.000Z

343

Plants having modified response to ethylene  

DOE Patents (OSTI)

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

1997-11-18T23:59:59.000Z

344

Plants having modified response to ethylene  

DOE Patents (OSTI)

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

Meyerowitz, Elliot M. (Pasadena, CA); Chang, Caren (Pasadena, CA); Bleecker, Anthony B. (Madison, WI)

1998-01-01T23:59:59.000Z

345

Plants having modified response to ethylene  

DOE Patents (OSTI)

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

Meyerowitz, Elliott M. (Pasadena, CA); Chang, Caren (Pasadena, CA); Bleecker, Anthony B. (Madison, WI)

1997-01-01T23:59:59.000Z

346

EIS-0362: Colorado Springs Utilities' Next Generation CFB Coal Generating Unit, CO  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's decision to approve Colorado Springs Utilities design, construction, and operation of their Next- Generation Circulating Fluidized Bed (CFB) Coal Generating Unit demonstration plant near Fountain, El Paso County, Colorado.

347

Third Generation Flywheels for electric storage  

SciTech Connect

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel the "Power Ring" with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing a radial gap shear-force levitator that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

348

Alternative Regulation (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Vermont) Regulation (Vermont) Alternative Regulation (Vermont) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Generating Facility Rate-Making Utility regulators, including the Public Service Board, have applied a new type of regulation, often called "alternative regulation" or "incentive regulation." There are many variants of this type of regulation, but the common foundation is that rates are set differently from the traditional cost-of-service approach. Sometimes there is a performance-based aspect to

349

A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants  

Science Journals Connector (OSTI)

We propose a stochastic model for the daily operation scheduling of a generation system including pumped storage hydro plants and wind power plants, where the uncertainty is represented by the hourly wind power p...

Maria Teresa Vespucci; Francesca Maggioni

2012-03-01T23:59:59.000Z

350

Coal-fired diesel generator  

SciTech Connect

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

NONE

1997-05-01T23:59:59.000Z

351

Generation Planning (pbl/generation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998 - 2011) Draft Dry...

352

Regulation 28: Library REGULATION 28: LIBRARY  

E-Print Network (OSTI)

Regulation 28: Library 180 REGULATION 28: LIBRARY The purpose of this Regulation is to safeguard the common interests of all Library users. All persons are admitted on the understanding that they have read and agreed to observe the Library Regulations. Breach of this Regulation could result in membership being

Sussex, University of

353

Developer Installed Treatment Plants  

E-Print Network (OSTI)

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

354

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network (OSTI)

emission*from geothermal power plants W. Investigation ofI i. Plant size. Geothermal power plants are expected TheProcesses for Geothermal Electric Power Generation,

Apps, J.A.

2011-01-01T23:59:59.000Z

355

GRR/Section 7-CA-b - State Plant Commissioning Process, Small Power Plant  

Open Energy Info (EERE)

7-CA-b - State Plant Commissioning Process, Small Power Plant 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Click to View Fullscreen Contact Agencies California Energy Commission Regulations & Policies California Code of Regulations, Title 20 - Public Utilities and Energy Triggers None specified Click "Edit With Form" above to add content 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

356

Energy storage for frequency regulation on the electric grid .  

E-Print Network (OSTI)

??Ancillary services such as frequency regulation are required for reliable operation of the electric grid. Currently, the same traditional thermal generators that supply bulk power (more)

Leitermann, Olivia

2012-01-01T23:59:59.000Z

357

The content of ATP, ADP, AMP, Pi, the activity of enzymes involved in the glycolytic pathway and some problems of its regulation, and energy balance in tobacco plants infected with potato virus Y  

Science Journals Connector (OSTI)

The content of ATP, ADP, AMP, Pi..., the activity of the enzymes involved in the glycolytic pathway, some problems of their regulation by adenine nucleotides and some basic problems connected with tissue energy b...

L. Sindelr

1986-11-01T23:59:59.000Z

358

Texas State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Texas State Regulations: Texas State of Texas The Railroad Commission of Texas (RCC), through the Oil and Gas Division, administers oil and gas exploration, development, and production operations, except for oil and gas leasing, royalty payments, surface damages through oil and gas operations, and operator-landowner contracts. The RCC and the Texas Commission on Environmental Quality (TCEQ), formerly, the Texas Natural Resource Conservation Commission (TNRCC), have entered into a Memorandum of Understanding clarifying jurisdiction over oil field wastes generated in connection with oil and gas exploration, development, and production. The RCC Oil and Gas Division operates nine district offices, each staffed with field enforcement and support personnel.

359

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

360

A system impact analysis of government policies and regulations concerning demand response ; Government regulations on demand response .  

E-Print Network (OSTI)

??A vision of distributed energy generation, storage, electric vehicles and a "smart-grid" has been the driving force of a number of regulations and policies to (more)

Gadhok, Neil, 1978-

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Flexible Coal: An Example Evolution from Baseload to Peaking Plant (Presentation)  

SciTech Connect

Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

Cochran, J.

2014-05-01T23:59:59.000Z

362

Flexible Coal: An Example Evolution from Baseload to Peaking Plant (Presentation)  

SciTech Connect

Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

Cochran, J.

2014-08-01T23:59:59.000Z

363

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazle Spindle LLC Hazle Spindle LLC American Recovery and Reinvestment Act (ARRA) Beacon Power will design, build, and operate a utility-scale 20 MW flywheel energy storage plant at the Humboldt Industrial Park in Hazle Township, Pennsylvania for Hazle Spindle LLC, the Recipient of the ARRA Cooperative Agreement. The plant will provide frequency regulation services to grid operator PJM Interconnection. Flywheel systems are kinetic energy storage devices that react instantly when needed. By accelerating a cylindrical rotor (flywheel) to a very high speed and maintaining the energy in the system as rotational energy, flywheel energy storage systems can moderate fluctuations in grid demand. When generated power exceeds load, the flywheel speeds up; when load exceeds generation, the flywheel is slowed to convert the energy for

364

Power Generation and Human Health  

Science Journals Connector (OSTI)

Emissions from power generation are associated with adverse health and ecological effects. Fossil fuel-based power plants (such as coal, oil, and to a lesser extent, natural gas) are associated with emissions of particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), and a variety of organic contaminants such as mercury and volatile organic compounds (VOCs). Exposure to emissions from power plants has been associated with a variety of respiratory symptoms, typically based on short-term (e.g., from 510min to 24h) increases in ambient concentrations. In addition, exposure to constituents from emissions generated by fossil fuels has been associated with increases in premature mortality, particularly in the elderly, and a variety of respiratory and cardiovascular illnesses. Fossil fuels, particularly coal-fired power plants, are responsible for generating the majority of emissions to which humans are exposed.

K. von Stackelberg

2011-01-01T23:59:59.000Z

365

NETL Water and Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

366

Beyond Regulation  

E-Print Network (OSTI)

to additional countries have since largely come to a halt. For example, I noted that the model was then under active consideration in several countries including Mexico, the Philippines, India and Thailand. There have been few if any subsequent developments... since the time of their study. Second, we argue that, in the absence of privatisation, the CEGB would have engaged in a more extensive and costly programme of building coal and nuclear plant than the study assumed. Our preliminary calculations, which...

Littlechild, Stephen C

2006-03-14T23:59:59.000Z

367

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

368

Notes On Nuclear Energy Regulation  

Science Journals Connector (OSTI)

Notes On Nuclear Energy Regulation ... Geology matters is a key lesson from the 2011 earthquake and tsunami that hit the coast of Japan, resulting in the meltdown of three nuclear reactors at the Fukushima Daiichi power plant complex, said Allison M. Macfarlane, new head of the U.S. Nuclear Regulatory Commission, at her first press briefing last week. ... In her address to energy reporters, she focused on her top priorities for the commission. ...

JEFF JOHNSON

2012-08-20T23:59:59.000Z

369

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

370

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

371

NREL: Energy Analysis: Impacts of Conventional Generators  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts on Conventional Generators Impacts on Conventional Generators Impacts of Renewable Electricity Generation on Efficiency and Emissions of Conventional Generators With increasing penetration of wind and solar generation, conventional fossil-fired power plants may be required to adjust their output level, start up, or shut down more frequently to accommodate the variability and uncertainty of these technologies. These operational changes can negatively impact plant efficiency and emissions. NREL's analyses are focused on understanding and quantifying the emissions and costs associated with these operational changes. NREL's impacts of renewable electricity generation on conventional generators analyses show that: While the emissions impacts of generator cycling and part-loading can be significant (e.g., combined cycle generators), these impacts are

372

How a Plant Builds Leaves  

Science Journals Connector (OSTI)

...affect many different processes. The theory and technology are now poised to define...M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems...regulate plant meristematic cell fate decisions. Sci. Signal. 1 : pe53. Green, P...

Siobhan A. Braybrook; Cris Kuhlemeier

2010-04-27T23:59:59.000Z

373

HAS222d Intro to Energy and Environement: 40% off energy use in US goes into generating electricity  

E-Print Network (OSTI)

goes into generating electricity generation efficiency: 33% electric power loss: plant to consumer 7) http://en.wikipedia.org/wiki/Electric_power_transmission#Losses http fuel power generation plants that dominate our electricity production. Remember that electricity

374

Regulations For Gas Companies (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations For Gas Companies (Tennessee) Regulations For Gas Companies (Tennessee) Regulations For Gas Companies (Tennessee) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Tennessee Program Type Environmental Regulations Safety and Operational Guidelines Provider Tennessee Regulatory Authority The Regulations for Gas Companies, implemented by the Tennessee Regulatory Authority (Authority) outline the standards for metering, distribution and electricity generation for utilities using gas. They follow the same equipment, metering reporting and customer relations standards as the Regulations for Electric Companies. In addition to these requirements these regulations outline purity requirements, pressure limits, piping

375

World electric power plants database  

SciTech Connect

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

376

IEEE POWER ENGINEERING SOCIETY ENERGY DEVELOPMENT AND POWER GENERATION COMMITTEE  

E-Print Network (OSTI)

--Price Cap Regulation: Stimulating Efficiency in Electricity Distribution in Latin America. (Luiz Barroso Sponsored by: International Practices for Energy Development and Power Generation Chairs: Luiz Barroso, PSR

Catholic University of Chile (Universidad Católica de Chile)

377

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

378

The Politically Correct Nuclear Energy Plant  

E-Print Network (OSTI)

The Politically Correct Nuclear Energy Plant Andrew C. Kadak Massachusetts Institute of Technology - Small is Beautiful · Nuclear Energy - But Getting Better #12;Politically Correct ! · Natural Safety is a bad idea. · There is no new nuclear energy plant that is competitive at this time. · De-regulation did

379

Regulators, Requirements, Statutes  

NLE Websites -- All DOE Office Websites (Extended Search)

Statutes Regulators, Requirements, Statutes The Laboratory must comply with environmental laws and regulations that apply to Laboratory operations. Contact Environmental...

380

Frozen plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen plants Frozen plants Name: janicehu Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do some plants freeze and others do not? Replies: The main reason some plants freeze and others do not is that some plants do not have much water in them. Pine tree leaves have little water and are therefore difficult to freeze. Another reason is that some plants make chemicals to put into their fluids that reduce the freezing temperature. Salts and oils are some. The polyunsaturated fats found in many plants freeze at a lower temperature than the saturated fats found in many animals. Therefore plant fats are liquid (oils) at room temperature, and animal fats are solid. Plants could not use so many saturated fats as warm blooded animals do or they would freeze up solid at higher temperatures. I know little of plants but many animals can make ethylene glycol to keep themselves from freezing. Ethylene glycol is the active ingredient in car anti-freeze

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Next Generation CANDU Performance Assurance  

SciTech Connect

AECL is developing a next generation CANDU design to meet market requirements for low cost, reliable energy supplies. The primary product development objective is to achieve a capital cost substantially lower than the current nuclear plant costs, such that the next generation plant will be competitive with alternative options for large-scale base-load electricity supply. However, other customer requirements, including safety, low-operating costs and reliable performance, are being addressed as equally important design requirements. The main focus of this paper is to address the development directions that will provide performance assurance. The next generation CANDU is an evolutionary extension of the proven CANDU 6 design. There are eight CANDU 6 units in operation in four countries around the world and further three units are under construction. These units provide a sound basis for projecting highly reliable performance for the next generation CANDU. In addition, the next generation CANDU program includes development and qualification activities that will address the new features and design extensions in the advanced plant. To limit product development risk and to enhance performance assurance, the next generation CANDU design features and performance parameters have been carefully reviewed during the concept development phase and have been deliberately selected so as to be well founded on the existing CANDU knowledge base. Planned research and development activities are required only to provide confirmation of the projected performance within a modest extension of the established database. Necessary qualification tests will be carried out within the time frame of the development program, to establish a proven design prior to the start of a construction project. This development support work coupled with ongoing AECL programs to support and enhance the performance and reliability of the existing CANDU plants will provide sound assurance that the next generation CANDU plants will meet customer expectations. (authors)

Wren, David J.; Allsop, P.J.; Hopwood, J.M. [Atomic Energy of Canada Ltd., Ontario (Canada)

2002-07-01T23:59:59.000Z

382

Development of the merchant plant  

SciTech Connect

The co-authors of this paper are currently involved in over 1500 megawatts of merchant plant developments in the US. This paper will discuss the latest in combined cycle steam reheat ``H and G'' technology. Big improvements in heat rates along with substantial drop in installed cost will make this power cycle the leading merchant plant of the future. This paper will compare the actual present day performance and clearing price of a state-of-the-art merchant plant versus utility dispatch cost duration curves, known as ``system lambda''. Deregulation of the power market will ultimately provide an open market for these efficient plants to compete effectively against aging utility plants. Comparison of utility system heat rates versus merchant plant heat rates along with an increase need for generation capacity and forecasts of stable gas prices supports to the potential for a large scale building program of these high efficiency generators. This paper will also review the capacity crunch in the Northeast and Wisconsin and how problems with nuclear plants may accelerate the need for merchant plants. This paper will compare the required capacity for the population growth in the SERC Region and in Florida and how this will produce a potential ``hot bed'' for merchant plant development.

Wolfinger, R.; Gilliss, M.B.

1998-07-01T23:59:59.000Z

383

Bidding strategies for renewable energy generation with non stationary statistics  

E-Print Network (OSTI)

for a wind power producer have been studied in [Bathurst et al., 2002, Matevosyan and Soder, 2006, Pinson et of power generation, the cdf s can be estimated from all past data of the power generated by the plant the generated power with respect to the power that could be obtained from the plant under clear-sky conditions

Giannitrapani, Antonello

384

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

385

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

386

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

387

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

388

Carnivorous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Carnivorous Plants Carnivorous Plants Nature Bulletin No. 597-A March 27, 1976 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CARNIVOROUS PLANTS Plants, generally, are eaten by insects or furnish other food for them. But there are a few families of strange plants that, instead, "eat" insects and other small animals. About 500 species are distributed over the world, from the arctic to the tropics. Most of them have peculiar leaves that not only attract insects but are equipped to trap and kill their victims. Even more remarkable is the fact that some have glands which secrete a digestive juice that softens and decomposes the animal until it is absorbed by the plant in much the same way as your stomach digests food.

389

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

390

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

as partial outages or load following. is more directly ahigh demand periods. Load Following:Varying the output of a

Nero, A.V.

2010-01-01T23:59:59.000Z

391

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network (OSTI)

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

392

Utility Regulation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Indiana) Regulation (Indiana) Utility Regulation (Indiana) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Generating Facility Rate-Making Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control any equipment for the production, transmission, delivery, or furnishing of heat, light,

393

Quasiseparable Generators  

Science Journals Connector (OSTI)

It is clear from the preceding chapter that any matrix has quasiseparable representations. By padding given quasiseparable generators with zero matrices of large sizes one ... large orders. However, one is lookin...

Yuli Eidelman; Israel Gohberg

2014-01-01T23:59:59.000Z

394

Evaluation of fossil plants versus hydro plants for load frequency control  

SciTech Connect

The economics of using hydroplants with Francis turbines or fossil plants for load frequency control are evaluated. Using data from the TVA Gallatin steam plant and the TVA Cherokee, Wilson, and Fontana hydroplants, a cost comparison of different modes of operation for load frequency control was performed considering two plants at a time. The results showed that when the fossil plant was used for load frequency control instead of a hydro plant a lower system generation cost was incurred. Dynamic responses of fossil and hydro units, improved controls for fossil plants, and maneuvering costs of the Gallatin plant are also considered.

Broadwater, R.P.; Johnson, R.L.; Duckett, F.E.; Boston, W.T.

1985-01-01T23:59:59.000Z

395

Sempra Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Sempra Generation Place California Utility Id 55701 Utility Location Yes Ownership W NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Sempra_Generation&oldid=411504" Categories: EIA Utility Companies and Aliases

396

E-Print Network 3.0 - arts-1 regulates extracellular Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Neurobiology, Yale University Collection: Biology and Medicine 2 Extracellular ATP signaling in plants Kiwamu Tanaka1 Summary: of extracellular ATP in the regulation of...

397

Interdisciplinary research and training program in the plant sciences  

SciTech Connect

This document is the compiled progress reports from the Interdisciplinary Research and Training Program in the Plant Sciences funded through the MSU-DOE Plant Research Laboratory. Fourteen reports are included, covering topics such as the molecular basis of plant/microbe symbiosis, cell wall proteins and assembly, gene expression, stress responses, growth regulator biosynthesis, interaction between nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and membrane trafficking, regulation of lipid metabolism, the molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria and hormonal involvement in environmental control of plant growth. 132 refs. (MHB)

Wolk, C.P.

1991-01-01T23:59:59.000Z

398

Turbine-generator replacement study  

SciTech Connect

This paper describes an engineering study for the replacement of a nominal 70 Mw turbine-generator in a multi-unit utility cogeneration station. The existing plant is briefly described, alternatives considered are discussed, and the conclusions reached are presented. Key topics are the turbine steam cycle evaluation and the turbine pedestal analysis.

Miller, E.F.; Stuhrke, S.P., Shah, A.A. (Burns and Roe Enterprises, Inc., Oradell, NJ (USA))

1988-01-01T23:59:59.000Z

399

Air-cooled Condensers in Next-generation Conversion Systems  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to reduce the costs associated with the generation of electrical power from air-cooled binary plants.

400

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission...  

Buildings Energy Data Book (EERE)

Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and...

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network (OSTI)

KM. Distributed generation investment and upgrade underin gas fired power plant investments. Review of Financial13] Dixit AK, Pindyck RS. Investment under uncertainty.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

402

EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino County, California July 1,...

403

Stationary/Distributed Generation Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for fuel cells. Stationary fuel cell units are used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation...

404

Re: Potomac River Generating Station Department of Energy, Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the downtown area of the District of Columbia. Earlier scheduled maintenance on these lines was postponed because of the shutdown of Mirant's Potomac River Generating Plant, but...

405

agronomie: plant genetics and breeding Transgenic potato plants can be used to evaluate  

E-Print Network (OSTI)

agronomie: plant genetics and breeding Transgenic potato plants can be used to evaluate stability (Received 3 August 1995; accepted 28 December 1995) Summary 35S-rolC and rbcS-rolC transgenic potato of transgenic potato plants and in subsequent vegetative generations. Transgenics carrying one or two copies

Boyer, Edmond

406

GCFR steam generator conceptual design  

SciTech Connect

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

407

Microwave generator  

DOE Patents (OSTI)

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

Kwan, T.J.T.; Snell, C.M.

1987-03-31T23:59:59.000Z

408

THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING  

E-Print Network (OSTI)

THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING Catherine Wolfram· UC and retail services. The gains are likely to be largest in electric generation because generation costs more heavily regulated. This chapter will evaluate changes in the efficiency of electric generation

Sadoulet, Elisabeth

409

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

410

Plant salt-tolerance mechanisms  

Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

2014-06-01T23:59:59.000Z

411

Simultaneous wastewater treatment and biological electricity generation  

E-Print Network (OSTI)

Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 £ 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

412

Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via  

E-Print Network (OSTI)

results of the power generation loading optimization based on a coal-fired power plant demonstrates algorithm in solving significant industrial problems. I. INTRODUCTION Most power generation plants have.e., heat rate/NOx vs. load, for a given plant condition. There are two objectives for the power generation

Li, Xiaodong

413

Methodology for Scaling Fusion Power Plant Availability  

SciTech Connect

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

414

EIA - AEO2010 - U.S. nuclear power plants: Continued life or replacement  

Gasoline and Diesel Fuel Update (EIA)

U.S. nuclear power plants: continued life or replacement after 60? U.S. nuclear power plants: continued life or replacement after 60? Annual Energy Outlook 2010 with Projections to 2035 U.S. nuclear power plants: Continued life or replacement after 60? Background Nuclear power plants generate approximately 20 percent of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of GHG regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating. The nuclear industry has expressed strong interest in continuing the operation of existing nuclear facilities, and no particular technical issues have been identified that would impede their continued operation. Recent AEOs had assumed that existing nuclear units would be retired after 60 years of operation (the initial 40-year license plus one 20-year license renewal). Maintaining the same assumption in AEO2010, with the projection horizon extended to 2035, would result in the retirement of more than one-third of existing U.S. nuclear capacity between 2029 and 2035. Given the uncertainty about when existing nuclear capacity actually will be retired, EIA revisited the assumption for the development of AEO2010 and modified it to allow the continued operation of all existing U.S. nuclear power plants through 2035 in the Reference case.

415

Suez SNC-Lavalin Nuclear to replace US steam generator  

Science Journals Connector (OSTI)

SNC-Lavalin Nuclear (USA) has signed a contract with Xcel Energy to replace the Unit #2 steam generators at the Prairie Island Nuclear Generating Plant (PINGP) in Welch, Minnesota.

2010-01-01T23:59:59.000Z

416

Hardware simulation of diesel generator and microgrid stability  

E-Print Network (OSTI)

Over the last few years, people have begun to depend less on large power plants with extensive distribution systems, and more on local distributed generation sources. A microgrid, a local collection of distributed generators, ...

Zieve, Michael M

2012-01-01T23:59:59.000Z

417

Hazardous Waste Management Regulations (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations (Mississippi) Regulations (Mississippi) Hazardous Waste Management Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the Mississippi Department of Environmental Quality requires that each generator of greater than 220

418

Modeling Operational Constraints imposed by Renewable Generation  

E-Print Network (OSTI)

investments on ­ Generation, Transmission ­ Fuel & Transportation infrastructure · Capacity · Location · Year Regulation data and Net Load change data ­ ex: ERCOT 2. Function of variability in (Net load + Generation schedule + Tie line frequency) · ex: CAISO, NREL, Xcel MN & Wind Logics 3. Fit regression model

Daniels, Thomas E.

419

NRC - regulator of nuclear safety  

SciTech Connect

The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

NONE

1997-05-01T23:59:59.000Z

420

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal gasification/combined cycle power plant with Texaco gasification process  

SciTech Connect

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the Texaco Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the Texaco IGCC power plant study are summarized in Section 2. In Section 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operation and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group, Inc. assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuel, Inc. are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Appendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 17 figures, 15 tables.

Not Available

1983-06-01T23:59:59.000Z

422

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal-gasification/combined power plant with BGC/Lurgi gasification process  

SciTech Connect

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the BGC/Lurgi Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the British Gas Corporation (BGC)/Lurgi IGCC power plant study are summarized in Section 2. In Secion 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operating and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group Inc. (BGI) assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuels, Inc. (BRHG) are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Apendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 18 figures, 5 tables.

Not Available

1983-06-01T23:59:59.000Z

423

Nonlinear DSTATCOM controller design for distribution network with distributed generation to enhance voltage stability  

E-Print Network (OSTI)

Nonlinear DSTATCOM controller design for distribution network with distributed generation Accepted 19 June 2013 Keywords: Distributed generation Distribution network DSATACOM Partial feedback connected to a distribution network with distributed generation (DG) to regulate the line voltage

Pota, Himanshu Roy

424

17 NMAC 9.592 - Location of Large Capacity Plants and Transmission...  

Open Energy Info (EERE)

NMAC 9.592 - Location of Large Capacity Plants and Transmission Lines Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 17...

425

Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992  

SciTech Connect

This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

Not Available

1994-02-01T23:59:59.000Z

426

Hybrid permanent magnet and variable reluctance generator  

SciTech Connect

This patent describes a hybrid electrical generator. It comprises: a permanent magnet generator having a permanent magnet rotor mounted on a shaft, the permanent magnet generator providing an output voltage over an operating range which falls in response to an increasing electrical load; a variable reluctance generator having a rotor mounted on the shaft with excitation of a stator of the variable reluctance generator being provided from the permanent magnet generator, the variable reluctance generator providing an output voltage which varies in response to an increasing electrical load over an operating range; and a voltage regulator, responsive to combined output voltages of the generators, for controlling the output voltage provided by the variable reluctance generator.

Vaidya, J.; Belanger, D.J.

1990-09-25T23:59:59.000Z

427

Magnetocumulative generator  

DOE Patents (OSTI)

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, J.S.; Wheeler, P.C.

1981-06-08T23:59:59.000Z

428

Monthly Generation System Peak (pbl/generation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

429

Photon generator  

DOE Patents (OSTI)

A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

Srinivasan-Rao, Triveni (Shoreham, NY)

2002-01-01T23:59:59.000Z

430

COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS  

SciTech Connect

This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes Best Technology Available for intake structures that withdraw cooling water that is used to transfer and reject heat from the plants steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

Gary Vine

2010-12-01T23:59:59.000Z

431

Energeticals power plant engineering | Open Energy Information  

Open Energy Info (EERE)

Energeticals power plant engineering Energeticals power plant engineering Jump to: navigation, search Name energeticals power plant engineering Place München, Bavaria, Germany Zip 81371 Sector Biomass, Geothermal energy Product Planning, design, installation and operation of turnkey plants for heat and electricity generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References energeticals power plant engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energeticals power plant engineering is a company located in München, Bavaria, Germany . References ↑ "[ energeticals power plant engineering]" Retrieved from "http://en.openei.org/w/index.php?title=Energeticals_power_plant_engineering&oldid=344770

432

Tracking New Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

New Coal-Fired Power Plants New Coal-Fired Power Plants (data update 1/13/2012) January 13, 2012 National Energy Technology Laboratory Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to provide an overview of proposed new coal-fired power plants that are under development. This report may not represent all possible plants under consideration but is intended to illustrate the potential that exists for installation of new coal-fired power plants. Additional perspective has been added for non-coal-fired generation additions in the U.S. and coal-fired power plant activity in China. Experience has shown that public announcements of power plant developments do not provide an accurate representation of eventually

433

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network (OSTI)

Feb 17, 2012 ... Energy generation in France is a competitive market, whereas ... from wind farms, solar energy or run of river plant without pondage.

2012-02-17T23:59:59.000Z

434

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

435

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

436

Mapping Geothermal Heat Flow and Existing Plants | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

resources make up most of the current geothermal operating plants in the United States. Power generation comes from drawing heat from the fluid found naturally deep below the...

437

How a Geothermal Power Plant Works (Simple) - Text Version |...  

Energy Savers (EERE)

Lines Deliver Electricity Electrical current from the generator is sent to a step-up transformer outside the power plant. Voltage is increased in the transformer and electrical...

438

Geothermal Power Plants Minimizing Solid Waste and Recovering Minerals  

Energy.gov (U.S. Department of Energy (DOE))

Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

439

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy, (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

440

Medicinal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal Plants Medicinal Plants Nature Bulletin No. 187 April 11, 1981 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation MEDICINAL PLANTS In springtime, many years ago, grandma made her family drink gallons of tea made by boiling roots of the sassafras. That was supposed to thin and purify the blood. Children were sent out to gather dandelion, curly dock, wild mustard, pokeberry and other greens as soon as they appeared -- not only because they added welcome variety to the diet of bread, meat, potatoes and gravy, but because some of them were also laxatives. For a bad "cold on the lungs," she slapped a mustard plaster on the patient's back, and on his chest she put a square of red flannel soaked in goose grease. For whooping cough she used a syrup of red clover blossoms. She made cough medicine from the bloodroot plant, and a tea from the compass plant of the prairies was also used for fevers and coughs. She made a pleasant tea from the blossoms of the linden or basswood tree. For stomach aches she used tea from any of several aromatic herbs such as catnip, fennel, yarrow, peppermint, spearmint, sweetflag, wild ginger, bergamot and splice bush.

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Bog Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bog Plants Bog Plants Nature Bulletin No. 385-A June 6, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BOG PLANTS Fifty years ago there were probably more different kinds of plants within a 50 mile radius from the Loop than anywhere else in the Temperate Zone. Industrial, commercial and residential developments, plus drainage and fires have erased the habitats where many of the more uncommon kinds flourished, including almost all of the tamarack swamps and quaking bogs. These bogs were a heritage from the last glacier. Its front had advanced in a great curve, from 10 to 20 miles beyond what is now the shoreline of Lake Michigan, before the climate changed and it began to melt back. Apparently the retreat was so rapid that huge blocks of ice were left behind, surrounded by the outwash of boulders, gravel and ground-up rock called "drift". These undrained depressions; became lakes. Sphagnum moss invaded many of them and eventually the thick floating mats of it supported a variety of bog-loving plants including certain shrubs, tamarack, and a small species of birch. Such lakes became bogs.

442

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing (except water vapor) is emitted to the atmosphere. Resources below 400°F

443

Plutonium finishing plant dangerous waste training plan  

SciTech Connect

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

ENTROP, G.E.

1999-05-24T23:59:59.000Z

444

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc" "Oconee Unit 1, Unit 2, Unit 3","2,538","20,943",40.3,"Duke Energy Carolinas, LLC" "V C Summer Unit 1",966,"8,487",16.3,"South Carolina Electric&Gas Co" "4 Plants 7 Reactors","6,486","51,988",100.0

445

Second-generation pressurized fluidized bed combustion  

SciTech Connect

Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

Wolowodiuk, W.; Robertson, A.

1992-01-01T23:59:59.000Z

446

Second-generation pressurized fluidized bed combustion  

SciTech Connect

Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

Wolowodiuk, W.; Robertson, A.

1992-05-01T23:59:59.000Z

447

Generation Technologies  

E-Print Network (OSTI)

Many local governments are using green power in their facilities and providing assistance to local businesses and residents to do the same. Green power is a subset of renewable energy that is produced with no GHG emissions, typically from solar, wind, geothermal, biogas, biomass, or low-impact small hydroelectric sources, includes three types of products: utility products (i.e., green power purchased from the utility through the electricity grid), renewable energy certificates (RECs), and on-site generation. Opportunities to purchase these products are increasing significantly, with annual green power market growth rates

Green Power

2005-01-01T23:59:59.000Z

448

Milliwatt Generator Project  

SciTech Connect

This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

Latimer, T.W.; Rinehart, G.H.

1992-05-01T23:59:59.000Z

449

Magnetocumulative generator  

DOE Patents (OSTI)

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

1983-01-01T23:59:59.000Z

450

Implementation of 10 CFR 20.1406, Regarding Minimizing Contamination and the Generation of Waste, and Facilitating Decommissioning through the Design of Facilities and Operating Procedures  

SciTech Connect

In the very near future (perhaps as soon as the fall of 2007), the U.S. Nuclear Regulatory Commission (NRC) anticipates receiving one or more license applications for new nuclear power plants. An important consideration for new facilities is that they be designed and operated to minimize contamination, to minimize the generation of waste, and to facilitate decommissioning. A relatively recent regulation, 10 CFR 20.1406, mandates these requirements. The regulation states, 'Applicants for licenses, other than renewals, after August 20, 1997, shall describe in the application how facility design and procedures for operation will minimize, to the extent practicable, contamination of the facility and the environment, facilitate eventual decommissioning, and minimize, to the extent practicable, the generation of radioactive waste'. This paper summarizes various initiatives taken by the NRC and industry to develop guidance for implementing 10 CFR 20.1406 before submission of license applications. (authors)

O'Donnell, E.; Ott, W.R. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC (United States)

2007-07-01T23:59:59.000Z

451

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

452

Concentrated solar power in the future of electricity generation: a synthesis of reasons  

Science Journals Connector (OSTI)

...electricity generation. Experience...steam-Rankine coal-fired power plants, nuclear...defaults in generation units. Large...need to have a generation system with...the unitary power will have to...and natural gas. Evidently...

2013-01-01T23:59:59.000Z

453

Poisonous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants Plants Nature Bulletin No. 276 October 1, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation POISONOUS PLANTS In the autumn of 1818, Nancy Hanks Lincoln died of milk sickness and left her son, Abe, motherless before he was ten years old. Since colonial times, in most of the eastern half of the United States, that dreaded disease has been a hazard in summer and fall, wherever cattle graze in woodlands or along wooded stream banks. In the 1920s it was finally traced to white snakeroot -- an erect branched plant, usually about 3 feet tall, with a slender round stem, sharply-toothed nettle-like leaves and, in late summer, several small heads of tiny white flowers. Cows eating small amounts over a long period develop a disease called "trembles", and their milk may bring death to nursing calves or milk sickness to humans. When larger amounts are eaten the cow, herself, may die.

454

EIS-0194: Proposed Tenaska-Washington II Generation Project  

Energy.gov (U.S. Department of Energy (DOE))

This environmental impact statement analyzes the Bonneville Power Administration's proposal to purchase electrical power from a proposed privately-owned combustion-turbine electrical generation plant in Washington. The plant would be fired by natural gas and would use combined-cycle technology to generate 240 average megawatts of energy. The plant would be developed, owned, and operated by Tenaska Washington Partners II, L.P.

455

Arabidopsis DE-ETIOLATED1 Represses Photomorphogenesis by Positively Regulating Phytochrome-Interacting Factors in the Dark  

Science Journals Connector (OSTI)

...significant 2-fold changes|ACC, 1-aminocyclopropane-1-carboxylic acid| INTRODUCTION Light not only provides the energy needed for plant development, but also regulates a number of different processes over the course of the plant life cycle...

Jie Dong; Dafang Tang; Zhaoxu Gao; Renbo Yu; Kunlun Li; Hang He; William Terzaghi; Xing Wang Deng; Haodong Chen

2014-09-23T23:59:59.000Z

456

Why sequence Dothideomycetes plant pathogens?  

NLE Websites -- All DOE Office Websites (Extended Search)

Dothideomycetes plant pathogens? Dothideomycetes plant pathogens? The largest and most diverse group of fungi, Dothideomycetes are found on every continent and play key roles in maintaining the local ecosystems by degrading biomass and contributing to regulating the carbon cycle. Many of these fungi are also tolerant of environmental extremes such as heat, humidity and cold. Among the members of this group are pathogens that infect nearly every major crop used for food, fiber or fuel. As crop rotations are being reduced, fewer crops are being grown on larger acreages, making them more susceptible to severe crop losses due to disease. Understanding the plant pathogens of these crops could reduce fertilizer use, which could in turn help reduce greenhouse gas emissions. To better understand the members of this group, the project calls for

457

Surface Coal Mining Regulations (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Coal Mining Regulations (Mississippi) Surface Coal Mining Regulations (Mississippi) Surface Coal Mining Regulations (Mississippi) < Back Eligibility Commercial Construction Developer Industrial Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Department of Environmental Quality The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under special regulation due to their nature, and applies only to state lands. When applied to Coal with Carbon Capture and Storage projects the rules that would apply to a normal coal-mining project still apply. In addition to these measures, a CCS plant would need to adhere to all waste disposal requirements, water usage

458

Computational and experimental analysis of plant microRNAs  

E-Print Network (OSTI)

MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that mediate gene regulation in plants and animals. We demonstrated that Arabidopsis thaliana miRNAs are highly complementary (0-3 mispairs in an ungapped alignment) ...

Jones-Rhoades, Matthew W. (Matthew William)

2005-01-01T23:59:59.000Z

459

Cell Cycle-regulated Gene Expression in Arabidopsis* Received for publication, July 26, 2002  

E-Print Network (OSTI)

Cell Cycle-regulated Gene Expression in Arabidopsis* Received for publication, July 26, 2002¨rich, Switzerland Regulated gene expression is an important mecha- nism for controlling cell cycle progression regulation de- pendent on cell cycle position. Analysis of cell cycle processes in plants has been hampered

Murray, J.A.H.

460

Balancing people, plants, and practices  

SciTech Connect

Two of the biggest challenges facing the US power industry today are retaining an experienced, capable workforce and operating and maintaining a reliable, diversified fleet of generating plants. Success in the marketplace requires a proper balancing of staff and new technology, something few gencos do well. Following this introductory paper in this issue are several technical articles representing a small sample of the steps that gencos nationwide are taking to prolong plant life. Unlike the false promise of Ponce de Leon's fountain of youth in Florida, the promise of longer life for aging plants is real wherever experienced engineers and technicians are on the job. The article looks at problems across America, from the East Coast to the West Coast. It is supported by diagrams projecting US new capacity and plant type additions up to 2014. 5 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Regulations For Electric Companies (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations For Electric Companies (Tennessee) Regulations For Electric Companies (Tennessee) Regulations For Electric Companies (Tennessee) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Tennessee Program Type Generating Facility Rate-Making Net Metering Provider Tennessee Regulatory Authority The Regulations for Electric Companies are under the Authority of the Tennessee Regulatory Authority, which is the public service branch of the state government. These regulations establish the records electricity providers are required to keep and submit. It requires that all electricity

462

Bagdad Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bagdad Plant Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 1000 Independence Avenue SW Washington, DC 205585-0121 Raymond J. Polinski General Manager Grain-Oriented Electrical Steel RE: Distribution Transformers Rulemaking Docket Number EE-2010-STD-0048 RIN 1904-AC04 Submitted 4-10-12 via email Mr. Raba, I was planning to make the following closing comments at the DOE Public Meeting on February 23, 2012, but since the extended building evacuation caused the meeting to run well past the scheduled completion time I decided to submit my comments directly to you for the record.

463

Thermoelectric generator  

SciTech Connect

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

464

NREL: Transmission Grid Integration - Generator Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Generator Modeling Generator Modeling NREL works with the solar and wind industries to provide utilities and grid operators with generator models to help them analyze the impact of variable generation on power system performance and reliability. As the amount of variable generation increases, the need for such models increases. Ensuring the models are as generic as possible allows for ease of use, model validation, data exchange, and analysis. To address this need, NREL researchers are developing generic dynamic models of wind and solar power plants. NREL's dynamic modeling efforts include: Collecting wind plant output data with corresponding wind resource data (speed, direction, and air density) from meteorological towers and performing multivariate analysis of the data to develop an equivalent wind

465

Transcriptomic Analysis Reveals Calcium Regulation of Specific Promoter Motifs in Arabidopsis  

Science Journals Connector (OSTI)

...thousands) of genes in all plant genomes. Calcium regulation...et al., 2006). The power of this type of approach...calcium measurement in plants. Methods Cell Biol...Trewavas, A.J. (1992). Wind-induced plant motion immediately increases...

Helen J. Whalley; Alexander W. Sargeant; John F.C. Steele; Tim Lacoere; Rebecca Lamb; Nigel J. Saunders; Heather Knight; Marc R. Knight

2011-11-15T23:59:59.000Z

466

New York State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

New York New York State Regulations: New York State of New York The primary responsibility for regulating oil and gas activities within New York resides with the Bureau of Oil and Gas Regulation in the Division of Mineral Resources (Office of Natural Resources) of the New York State Department of Environmental Conservation (NYSDEC). Other offices and divisions within the NYSDEC administer the major environmental protection laws. Contact New York State Department of Environmental Conservation Division of Mineral Resources Bureau of Oil and Gas Regulation 625 Broadway, 3rd Floor Albany, NY 12233-6500 (518) 402-8056 (phone) (518) 402-8060 (fax) Disposal Practices and Applicable Regulations Environmental conservation rules and regulations are contained in Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR). The rules and regulations for oil, gas and solution mining are provided in 6 NYCRR Parts 550-559.

467

Regulators, Requirements, Statutes  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulators, Requirements, Statutes Regulators, Requirements, Statutes Regulators, Requirements, Statutes The Laboratory must comply with environmental laws and regulations that apply to Laboratory operations. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Environmental laws and regulations LANL complies with more than 30 state and federal regulations and policies designed to protect human health and the environment. Regulators Regulators Environmental Protection Agency (EPA) EPA Homepage EPA - Region VI U.S. Department of Energy (DOE) DOE Homepage DOE Environmental Policy DOE Citizen's Advisory Board U.S. Fish and Wildlife Service (FWS) Southwest Region 2 New Mexico Environment Department (NMED) NMED Homepage NMED DOE Oversight Office

468

Minimum Purchase Price Regulations (Prince Edward Island, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Minimum Purchase Price Regulations establish the price which utilities must pay for power produced by large-scale renewable energy generators that is those capable of producing more than 100...

469

Cellular oscillations and the regulation of growth: the  

E-Print Network (OSTI)

, and a cytosolic choreography of protons, calcium and, most likely, potassium and chloride. In turn, these can create positive feedback regulation loops that are able to generate and self-sustain a number of spatial

Kunkel, Joseph G.

470

Computer Use Regulation Introduction  

E-Print Network (OSTI)

Computer Use Regulation #12;Introduction · The following training materials will reference the contents of the Computer Use Regulations, but should not serve as a substitute for reading the actual responsibilities NCSU employees have under the regulations. · North Carolina State University's computer networks

Liu, Paul

471

Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants - Final Technical Report  

SciTech Connect

OAK B188 Summary of methods proposed for risk informing the design and regulation of future nuclear power plants. All elements of the historical design and regulation process are preserved, but the methods proposed for new plants use probabilistic risk assessment methods as the primary decision making tool.

Ritterbusch, Stanley; Golay, Michael; Duran, Felicia; Galyean, William; Gupta, Abhinav; Dimitrijevic, Vesna; Malsch, Marty

2003-01-29T23:59:59.000Z

472

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Plant Databases News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

473

Introduction Minimal generation  

E-Print Network (OSTI)

Introduction Minimal generation Random generation Minimal and probabilistic generation of finite generation of finite groups #12;Introduction Minimal generation Random generation Some motivation Let x1 random elements of G = x1, . . . , xk . (G is the group generated by x1, . . . , xk : all possible

St Andrews, University of

474

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip  

E-Print Network (OSTI)

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

475

Definition: Gross generation | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Gross generation Jump to: navigation, search Dictionary.png Gross generation The total amount of electric energy produced by generating units (e.g. power plants) and measured at the generating terminal in kilowatt-hours (kWh) or megawatt-hours (MWh).[1] View on Wikipedia Wikipedia Definition Related Terms Electricity generation, Net generation, power References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=G#gross_gen Retri Like Like You like this.Sign Up to see what your friends like. eved from "http://en.openei.org/w/index.php?title=Definition:Gross_generation&oldid=480543" Category: Definitions What links here Related changes Special pages Printable version Permanent link

476

Calcium Signals: The Lead Currency of Plant Information Processing  

Science Journals Connector (OSTI)

...that mechanical stimuli, such as touch or wind, induce [Ca2+]cyt elevations in plant...Moreover, CIPK15 regulates the plant global energy and stress sensor SnRK1A, thereby integrating...data with advanced fluorescence resonance energy transfer-based monitoring of cellular...

Jörg Kudla; Oliver Batistič; Kenji Hashimoto

2010-03-30T23:59:59.000Z

477

CSEM WP 111R The Efficiency of Electricity Generation  

E-Print Network (OSTI)

CSEM WP 111R The Efficiency of Electricity Generation in the U.S. After Restructuring Catherine Berkeley, California 94720-5180 www.ucei.org #12;THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER-utility generating plants. Then, beginning with California in 1996, nearly half the states passed and a smaller

California at Berkeley. University of

478

Waste acceptance criteria for the Waste Isolation Pilot Plant  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

NONE

1996-04-01T23:59:59.000Z

479

PSCAD Modules Representing PV Generator  

SciTech Connect

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

480

Strigolactone-Regulated Proteins Revealed by iTRAQ-Based Quantitative Proteomics in Arabidopsis  

SciTech Connect

Strigolactones (SLs) are a new class of plant hormones. In addition to acting as a key inhibitor of shoot branching, SLs stimulate seed germination of root parasitic plants and promote hyphal branching and root colonization of symbiotic arbuscular mycorrhizal fungi. They also regulate many other aspects of plant growth and development. At the transcription level, SL-regulated genes have been reported. However, nothing is known about the proteome regulated by this new class of plant hormones. Here, a quantitative proteomics approach using an isobaric chemical labeling reagent, iTRAQ, to identify the proteome regulated by SLs in Arabidopsis seedlings is presented. It was found SLs regulate the expression of about three dozens of proteins that have not been previously assigned to SL pathways. These findings provide a new tool to investigate the molecular mechanism of action of SLs.

Li, Zhou [ORNL] [ORNL; Czarnecki, Olaf [ORNL] [ORNL; Chourey, Karuna [ORNL] [ORNL; Yang, Jun [ORNL] [ORNL; Tuskan, Gerald A [ORNL] [ORNL; Hurst, Gregory {Greg} B [ORNL; Pan, Chongle [ORNL] [ORNL; Chen, Jay [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regulated generating plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Plant Rosettes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rosettes Rosettes Nature Bulletin No. 662 January 13, 1962 Forest Preserve District of Cook County John J. Duffy, President David H. Thompson, Senior Naturalist PLANT ROSETTES In winter our landscape is mostly leafless trees silhouetted against the sky, and the dead stalks of wildflowers, weeds and tall grasses -- with or without a blanket of snow. Some snows lie on the ground for only a few days. Others follow one after another and cover the ground with white for weeks at a time. Soon the eye begins to hunger for a glimpse of something green and growing. Then, in sunny spots where the snow has melted or where youngsters have cleared it away, there appear clusters of fresh green leaves pressed tight to the soil. Whether it is a dandelion in the lawn, a pansy in a flower border, or a thistle in a vacant lot, such a typical leaf cluster -- called a winter rosette -- is a ring of leaves around a short central stem. The leaves are narrow at the base, wider toward the tip, and spread flat on the ground with little or no overlap. This arrangement gives full exposure to sunlight and close contact with the warmer soil beneath. Such plants continue to grow, sometimes faster, sometimes slower, even under snow, throughout winter.

482

Advanced pulverized-coal power plants: A U.S. export opportunity  

SciTech Connect

This paper provides an overview of Low Emission Boiler System (LEBS) power generation systems and its potential for generating power worldwide. Based on the fuel availability, power requirements, and environmental regulations, countries have been identified that need to build advanced, clean, efficient, and economical power generation, systems. It is predicted that ``more electrical generation capacity will be built over the next 25 years than was built in the previous century``. For example, China and India alone, with less than 10% of today`s demand, plan to build what would amount to a quarter of the world`s new capacity. For the near- to mid-term, the LEBS program of Combustion 2000 has the promise to fill some of the needs of the international coal-fired power generation market. The high efficiency of LEBS, coupled with the use of advanced, proven technologies and low emissions, make it a strong candidate for export to those areas whose need for additional power is greatest. LEBS is a highly advanced version of conventional coal-based power plants that have been utilized throughout the world for decades. LEBS employs proven technologies and doesn`t require gasification and/or an unconventional combustion environment (e.g., fluidized bed). LEBS is viewed by the utility industry as technically acceptable and commercially feasible.

Ruth, L.A. [USDOE Pittsburgh Energy Technology Center, PA (United States); Ramezan, M.; Izsak, M.S. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1995-09-01T23:59:59.000Z

483

The desulfurization of flue gas at the Mae Moh Power Plant Units 12 and 13  

SciTech Connect

As pollution of air, water and ground increasingly raises worldwide concern, the responsible national and international authorities establish and issue stringent regulations in order to maintain an acceptable air quality in the environment. In Thailand, the Electricity Generating Authority of Thailand (EGAT) takes full responsibility in environmental protection matters as well as in generating the electricity needed to supply the country`s very rapid power demand growth. Due to the rapidly increasing electricity demand of the country, EGAT had decided to install two further lignite-fired units of 300 MW each (Units 12 and 13) at the Mae Moh power generation station and they are now under construction. The arrangement and the capacity of all the power plant units are as shown. In 1989, EGAT started the work on the flue gas desulfurization system of Mae Moh power plant units 12 and 13 as planned. A study has been conducted to select the most suitable and most economical process for flue gas desulfurization. The wet scrubbing limestone process was finally selected for the two new units. Local limestone will be utilized in the process, producing a by-product of gypsum. Unfortunately, natural gypsum is found in abundance in Thailand, so the produced gypsum will be treated as landfill by mixing it with ash from the boilers of the power plants and then carrying it to the ash dumping area. The water from the waste ash water lake is utilized in the process as much as possible to minimize the requirement of service water, which is a limited resource. The Mae Moh power generation station is situated in the northern region of Thailand, 600 km north of Bangkok and about 30 km east of the town of Lampang, close to the Mae Moh lignite mine. Three lignite-fired units (Units 1-3) of 75 MW each, four units (Units 4-7) of 150 MW each and four units (Units 8-11) of 300 MW each are in operation.

Haemapun, C.

1993-12-31T23:59:59.000Z

484