Powered by Deep Web Technologies
Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Generation capacity expansion in restructured energy markets.  

E-Print Network [OSTI]

??With a significant number of states in the U.S. and countries around the world trading electricity in restructured markets, a sizeable proportion of capacity expansion… (more)

Nanduri, Vishnuteja

2009-01-01T23:59:59.000Z

2

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

3

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

4

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint  

SciTech Connect (OSTI)

An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-08-01T23:59:59.000Z

5

Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model  

SciTech Connect (OSTI)

An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-03-01T23:59:59.000Z

6

POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES.  

E-Print Network [OSTI]

POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES. ALAIN BONNAF´E Abstract. We study positivity cases, estimates and asymptotic expansions of condenser p the internal part of the condenser has a non-empty interior. The study of the point and its approximation

Boyer, Edmond

7

Capacity expansion analysis in a chemical plant using linear programming  

Science Journals Connector (OSTI)

An analysis of the fuel additive production process of a US mid-western chemical manufacturer is described. Material balance constraints for each potential bottleneck of the manufacturing process are included as part of a linear programming model. Several capacity expansion scenarios are evaluated. The optimal way of modifying and expanding manufacturing capacity to meet forecast demand is determined.

Kenneth H. Myers; Reuven R. Levary

1996-01-01T23:59:59.000Z

8

Oil Production Capacity Expansion Costs for the Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

TR/0606 TR/0606 Distribution Category UC-950 Oil Production Capacity Expansion Costs For The Persian Gulf January 1996 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration Oil Production Capacity Expansion Costs for the Persian Gulf iii Preface Oil Production Capacity Expansion Costs for the Persian Gulf provides estimates of development and operating costs for various size fields in countries surrounding the Persian

9

[working paper] Regional Economic Capacity, Economic Shocks,  

E-Print Network [OSTI]

1 [working paper] Regional Economic Capacity, Economic Shocks, and Economic that makes them more likely to resist economic shocks or to recover quickly from of resilience capacity developed by Foster (2012) is related to economic resilience

Sekhon, Jasjeet S.

10

Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint  

SciTech Connect (OSTI)

Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

2014-05-01T23:59:59.000Z

11

Regulatory Factors and Capacity-Expansion Planning in Global Chemical Supply Chains  

Science Journals Connector (OSTI)

In what follows, we first extensively review the existing work on capacity-expansion planning to highlight the scarcity of literature considering regulatory factors. ... The model determines new processes, expansion plans, and shutdown policies to maximize the net present value of a project given the forecasts of prices and demands of the chemicals over a long planning horizon. ... Using the sales forecast from the marketing division, the multinational company wishes to develop an optimum, strategic, and global capacity-expansion plan over a planning horizon of T fiscal years or periods (t = 1, 2, ..., T). ...

Hong-Choon Oh; I. A. Karimi

2004-05-28T23:59:59.000Z

12

Wholesale price rebate vs. capacity expansion: The optimal strategy for seasonal products in a supply chain  

Science Journals Connector (OSTI)

Abstract We consider a supply chain in which one manufacturer sells a seasonal product to the end market through a retailer. Faced with uncertain market demand and limited capacity, the manufacturer can maximize its profits by adopting one of two strategies, namely, wholesale price rebate or capacity expansion. In the former, the manufacturer provides the retailer with a discount for accepting early delivery in an earlier period. In the latter, the production capacity of the manufacturer in the second period can be raised so that production is delayed until in the period close to the selling season to avoid holding costs. Our research shows that the best strategy for the manufacturer is determined by three driving forces: the unit cost of holding inventory for the manufacturer, the unit cost of holding inventory for the retailer, and the unit cost of capacity expansion. When the single period capacity is low, adopting the capacity expansion strategy dominates as both parties can improve their profits compared to the wholesale price rebate strategy. When the single period capacity is high, on the other hand, the equilibrium outcome is the wholesale price rebate strategy.

Kwei-Long Huang; Chia-Wei Kuo; Ming-Lun Lu

2014-01-01T23:59:59.000Z

13

Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis  

SciTech Connect (OSTI)

Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

Sullivan, P.; Eurek, K.; Margolis, R.

2014-07-01T23:59:59.000Z

14

On Integrating Theories of International Economics in the Strategic Planning of Global Supply Chains and Dynamic Supply Chain Reconfiguration with Capacity Expansion and Contraction  

E-Print Network [OSTI]

of the dissertation deals with the DSCR model with capacity expansion and contraction. The strategic dynamic supply chain reconfiguration (DSCR) problem is to prescribe the location and capacity of each facility, select links used for transportation, and plan...

Lee, Chaehwa

2012-02-14T23:59:59.000Z

15

AGA Producing Region Natural Gas Underground Storage Capacity (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116 2,110,116 2,108,116 2,110,116 2,127,294 2,126,618 2,134,784 2,140,284 2,140,284 2,144,784 2,144,784 1997 2,143,603 2,149,088 2,170,288 2,170,288 2,170,178 2,170,178 2,189,642 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 1998 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,197,859

16

AGA Western Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,228,208 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1997 1,228,395 1,228,395 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1998 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586

17

AGA Eastern Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948 4,600,548 4,603,048 4,603,048 4,607,048 4,740,509 4,740,509 4,742,309 4,743,309 4,743,309 4,743,309 4,743,309 1997 4,681,090 4,574,740 4,586,024 4,578,486 4,586,024 4,582,146 4,582,146 4,582,146 4,585,702 4,585,702 4,585,702 4,585,702 1998 4,585,702 4,585,702 4,585,702 4,585,702 4,585,702 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,805,622

18

A review of Oil production capacity expansion costs for the Persian Gulf  

E-Print Network [OSTI]

The U.S. Energy Information Agency has recently published a report prepared by Petroconsultants, Inc. that addresses the cost of expanding crude oil production capacity in the Persian Gulf. A study on this subject is much ...

Adelman, Morris Albert

1996-01-01T23:59:59.000Z

19

Evaluation Model for Safety Capacity of Chemical Industrial Park Based on Acceptable Regional Risk  

Science Journals Connector (OSTI)

Abstract The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose to explore the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity for chemical industrial park, and then by combining with the safety storage capacity,a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized the regional risk control to the Park effectively.

Guohua Chen; Shukun Wang; Xiaoqun Tan

2014-01-01T23:59:59.000Z

20

Event:CBD Africa Regional Consultation and Capacity Building Workshop on  

Open Energy Info (EERE)

CBD Africa Regional Consultation and Capacity Building Workshop on CBD Africa Regional Consultation and Capacity Building Workshop on REDD+, Including on Relevant Biodiversity Safeguards Jump to: navigation, search Calendar.png CBD Africa Regional Consultation and Capacity Building Workshop on REDD+, Including on Relevant Biodiversity Safeguards: on 2011/09/19 "This workshop is being convened by the Secretariat of the Convention on Biological Diversity (CBD), in collaboration with the South African National Biodiversity Institute and with financial support from Norway, the UK and the UN-REDD Programme. Its purpose is to consult effectively with parties on the development of advice on relevant safeguards for biodiversity, so that REDD+ (reducing emissions from deforestation and forest degradation in developing countries, as well as conservation,

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A Control Theoretic Interpretation for the Capacity Region of the MAC with Feedback  

E-Print Network [OSTI]

and Achilleas Anastasopoulos EECS Department, University of Michigan Abstract We consider the problem the error performance or simplifying the transmission scheme. When it comes to the multiple-access channels it was shown to be strictly smaller than the capacity region for other channels [5]. Along this line

Anastasopoulos, Achilleas

22

Multi-region capacity planning model with contracts of varying duration under uncertainty : a satellite capacity acquisition case study  

E-Print Network [OSTI]

This paper highlights the issues associated with and presents a modeling framework for long-term capacity planning problems constrained in a similar fashion to satellite capacity acquisition. Although ambiguities exist, ...

Lydiard, John M., IV

2014-01-01T23:59:59.000Z

23

The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations  

SciTech Connect (OSTI)

Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

Kirby, Brendan J [ORNL

2006-07-01T23:59:59.000Z

24

Regional differences and convergence of resources carrying capacity: a comparison of nine provinces and municipalities in China  

Science Journals Connector (OSTI)

This paper applies an improved resources carrying capacity model established by Huang and He (2012), and estimates a single and composite resources carrying capacity, and uses sigma convergence, beta convergence and club convergence to investigate the dynamics of resources carrying capacity in nine provinces and municipalities in China from 1978 to 2008. Our results show that there exists time domain and regional characteristics in sigma convergence and club convergence of carrying capacity in China. But, the growth of carrying capacity of nine provinces and municipalities in China is beta absolute convergence.

Chang-Feng Huang; Jian Yu

2013-01-01T23:59:59.000Z

25

Factors predicting the capacity of Los Angeles city-region recreation programs to promote energy expenditure  

Science Journals Connector (OSTI)

Abstract An audit of recreation programs with moderate or higher levels of physical activity (PA) in Los Angeles area cities (N=82) was conducted using internet, telephone, and survey methods. Metabolic Equivalents (METs) were used to code programs? physical activity intensity. MET-hours per recreation program was associated with required age for enrollment, percent of residents >64 years of age, and fiscal capacity of cities. Capacity to promote energy expenditure may depend on targeted age groups, age of population, and municipal fiscal capacity. Cities with lower fiscal capacity might offer those higher MET-hour activities which require less specialized equipment and seek outside funding to offer higher MET programs.

Kim D. Reynolds; Nicholas Dahmann; Jennifer Wolch; Pascale Joassart-Marcelli; Genevieve Dunton; Diana Rudulph; Joshua Newell; Jennifer Thayer; Michael Jerrett

2014-01-01T23:59:59.000Z

26

Investment strategies for capacity expansion.  

E-Print Network [OSTI]

??This thesis addresses a problem at the nexus of operations, strategy, and economics: in concentrated markets, on the one hand firms may need to expand… (more)

Yang, Shu-Jung Sunny

2007-01-01T23:59:59.000Z

27

Problems of regional energy provision in the energy strategy of Russia to 2030 and prospects for low-capacity nuclear power plant development  

Science Journals Connector (OSTI)

One problem of energy policy is stimulation of comprehensive development of a regional power supply, including power generation by low-capacity nuclear power plants in the regions where such sources could be comp...

N. I. Voropai; O. V. Marchenko; V. A. Stennikov

2012-03-01T23:59:59.000Z

28

An interpretation of the Cover and Leung capacity region for the MAC with feedback through  

E-Print Network [OSTI]

stochastic control Achilleas Anastasopoulos and Kihyuk Sohn EECS Department, University of Michigan Abstract interpretation provides an understanding of the role of auxiliary random variables and can also hint at on-line capacity-achieving transmission schemes. I. INTRODUCTION Shannon showed in his early work [1

Anastasopoulos, Achilleas

29

Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity  

Science Journals Connector (OSTI)

The adsorption of molecular hydrogen on a metal-organic framework (MOF) material, MOF-5, has been studied using the density-functional formalism. The calculated potential-energy surface shows that there are two main adsorption regions: both near the OZn4 oxide cores at the vertices of the cubic skeleton of MOF-5. The adsorption energies in those regions are between 100 and 130 meV/molecule. Those adsorption regions have the shape of long, wide, and deep connected trenches and passage of the molecule between regions needs to surpass small barriers of 30–50 meV. The shape of these regions, and not only the presence of metal atoms, explains the large storage capacity measured for MOF-5. The elongated shape explains why some authors have previously identified only one type of adsorption site, associated to the Zn oxide core, and others identified two or three sites. One should consider adsorption regions rather than adsorption sites. A third region of adsorption is near the benzenic rings of the MOF-5. We have also analyzed the possibility of dissociative chemisorption. The chemisorption energy with respect to two separated H atoms is 1.33 eV/H atom; but, since dissociating the free molecule costs 4.75 eV, the physisorbed H2 molecule is more stable than the dissociated chemisorbed state by about 2 eV. Dissociation of the adsorbed molecule costs less energy, but the dissociation barrier is still high.

I. Cabria; M. J. López; J. A. Alonso

2008-11-24T23:59:59.000Z

30

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network [OSTI]

expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from powerEstimating the potential of controlled plug-in hybrid electric vehicle charging to reduce

Michalek, Jeremy J.

31

Robust capacity expansion solutions for telecommunication ...  

E-Print Network [OSTI]

?Orange Labs, R&D, France. †Ordecsys, place de ..... Unfortunately, those data are not available in practice, and very little information can be obtained on the ...

2010-08-03T23:59:59.000Z

32

Powering the people: India's capacity expansion plans  

SciTech Connect (OSTI)

India has become a global business power even though hundreds of millions of its citizens still live in poverty. To sustain economic growth and lift its people out of poverty, India needs more and more reliable power. Details of government plans for achieving those goals demonstrate that pragmatism may be in shorter supply than ambition and political will. 1 ref., 12 figs., 1 tab.

Patel, S.

2009-05-15T23:59:59.000Z

33

Capacity Allocation with Competitive Retailers Masabumi Furuhata  

E-Print Network [OSTI]

to uncertainty of market demands, costly capacity construction and time consuming capacity expansion. This makes the market to be unstable and malfunc- tioning. Such a problem is known as the capacity allocation investigate the properties of capacity allocation mechanisms for the markets where a sin- gle supplier

Zhang, Dongmo

34

Experimental and calculated evaluation of the supporting capacity of steel 13KhGMF welded joints in the low endurance region  

SciTech Connect (OSTI)

In recent years thermally-hardened low-alloy steel 13KhGMF, which exhibits high mechanical properties and good weldability, has found use in hydrotechnical structures. In this work, besides studying static and cyclic properties of individual zones of butt joints in steel 13KhGMF, consideration is given to regularities of deformation and failure for welded joints made by the methods indicated with measurement of the geometric parameters of the joints, and a calculated evaluation is also given for their supporting capacity in the region of loading cycles not exceeding 10/sup 5/. The results show that the mechanical properties of the different zones of joints made by manual and electroslag welding differ markedly. The metal resistance of different joints to low-cycle failure is presented. A comparison is shown of experimental and calculated curves for the development of a fatigue crack in welded joints of steel 13KhGMF. The effect of nonuniformity in mechanical properties on the supporting capacity of joints in steel 13KhGMF is shown to be most marked in the quasistatic failure region.

Yakubovskii, V.V.

1987-03-01T23:59:59.000Z

35

Representation of the Solar Capacity Value in the ReEDS Capacity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model Preprint Ben Sigrin, Patrick Sullivan, Eduardo Ibanez, and Robert Margolis Presented at the 40th...

36

Open versus closed loop capacity equilibria in electricity markets ...  

E-Print Network [OSTI]

May 7, 2012 ... Abstract: We consider two game-theoretic models of the generation capacity expansion problem in liberalized electricity markets. The first is an ...

S. Wogrin

2012-05-07T23:59:59.000Z

37

Fundamentals of Capacity Control  

Science Journals Connector (OSTI)

Whereas capacity planning determines in advance the capacities required to implement a production program, capacity control determines the actual capacities implemented shortly beforehand. The capacity control...

Prof. Dr.-Ing. habil. Hermann Lödding

2013-01-01T23:59:59.000Z

38

Development of High Expansion Ratio Helium Turbo Expander  

Science Journals Connector (OSTI)

The authors developed a high expansion ratio radial inflow turbine for a helium liquefier of 100 L/h capacity for use with a 70 MW superconductive generator. The following results were obtained from this devel...

N. Ino; A. Machida; K. Ttsugawa; Y. Arai; M. Matsuki…

1991-01-01T23:59:59.000Z

39

Capacity Markets for Electricity  

E-Print Network [OSTI]

ternative Approaches for Power Capacity Markets”, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions”, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

40

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

42

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

43

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

44

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

45

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network [OSTI]

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

46

Refinery Capacity Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum...

47

Property:Plants with Unknown Planned Capacity | Open Energy Information  

Open Energy Info (EERE)

Plants with Unknown Planned Capacity Plants with Unknown Planned Capacity Jump to: navigation, search Property Name Plants with Unknown Planned Capacity Property Type String Description Number of plants with unknown planned capacity per GEA Pages using the property "Plants with Unknown Planned Capacity" Showing 21 pages using this property. A Alaska Geothermal Region + 1 + C Cascades Geothermal Region + 2 + Central Nevada Seismic Zone Geothermal Region + 9 + G Gulf of California Rift Zone Geothermal Region + 4 + H Hawaii Geothermal Region + 0 + Holocene Magmatic Geothermal Region + 0 + I Idaho Batholith Geothermal Region + 1 + N Northern Basin and Range Geothermal Region + 11 + Northern Rockies Geothermal Region + 0 + Northwest Basin and Range Geothermal Region + 9 + R Rio Grande Rift Geothermal Region + 1 +

48

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

Regional Energy Deployment System (ReEDS) Regional Energy Deployment System (ReEDS) (Redirected from Regional Energy Deployment System) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Energy Deployment System Agency/Company /Organization: NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/analysis/reeds/ OpenEI Keyword(s): EERE tool, Regional Energy Deployment System, ReEDS References: Regional Energy Deployment System (ReEDS) Web site[1] Regional Energy Deployment System (ReEDS) is a multiregional, multitimeperiod, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. The model, developed by NREL's Strategic Energy Analysis

49

Magnus expansion generator  

Science Journals Connector (OSTI)

A recursion formula for the Magnus expansion is presented which can be used to deduce higher-order terms and to investigate their properties. The application of this formula is illustrated with several examples which were motivated by NMR spectroscopy.

D. P. Burum

1981-10-01T23:59:59.000Z

50

First mideast capacity planned  

SciTech Connect (OSTI)

Kuwait catalyst Co.`s (KCC) plans to build a hydrodesulfurization (HDS) catalysts plant in Kuwait will mark the startup of the first refining catalysts production in the Persian Gulf region. KCC, owned by a conglomerate of Kuwait companies and governmental agencies, has licensed catalyst manufacturing technology from Japan Energy in a deal estimated at more than 7 billion ($62 million). Plant design will be based on technology from Orient Catalyst, Japan Energy`s catalysts division. Construction is expected to begin in January 1997 for production startup by January 1998. A source close to the deal says the new plant will eventually reach a capacity of 5,000 m.t./year of HDS catalysts to supply most of Kuwait`s estimated 3,500-m.t./year demand, driven primarily by Kuwait National Petroleum refineries. KCC also expects to supply demand from other catalyst consumers in the region. Alumina supply will be acquired on the open market. KCC will take all production from the plant and will be responsible for marketing.

Fattah, H.

1996-11-06T23:59:59.000Z

51

The Universe Adventure - Expansion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expansion: Chunk-by-Chunk Expansion: Chunk-by-Chunk A sample of the Universe. A very small portion of the Universe. In order to better understand the significance of expansion, let's look at a cubic sample of space. By considering a finite volume we can follow changes in the size of the Universe as we move forwards and backwards in time. Remember, only the size of the cube will change. The galaxies inside the cube stay the same size. This animation illustrates how our cubic piece of the Universe changes with time. If the Universe followed the simplest expansionary models, its size would increase linearly with time. The Universe would continue to expand at a constant rate forever. If you look at only a narrow time-slice of the Universe's history, it does, in fact, appear that this is how the Universe

52

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

Regional Energy Deployment System (ReEDS) Regional Energy Deployment System (ReEDS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Energy Deployment System Agency/Company /Organization: NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/analysis/reeds/ OpenEI Keyword(s): EERE tool, Regional Energy Deployment System, ReEDS References: Regional Energy Deployment System (ReEDS) Web site[1] Regional Energy Deployment System (ReEDS) is a multiregional, multitimeperiod, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. The model, developed by NREL's Strategic Energy Analysis Center (SEAC), is designed to conduct analysis of the critical energy

53

Bi-level Optimization for Capacity Planning in Industrial Gas Markets  

E-Print Network [OSTI]

Bi-level Optimization for Capacity Planning in Industrial Gas Markets P. Garcia-Herreros, E. Arslan are dynamic: · Suppliers must anticipate demand growth · Most markets are served locally Capacity expansion supplier · Set of plants from independent suppliers with limited capacity · Rational markets that select

Grossmann, Ignacio E.

54

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

55

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

56

Chemical Plant Expansion  

Science Journals Connector (OSTI)

Despite $4 billion of capital expenditure for plant expansion over the past seven years, a high level of construction activity is expected to continue ... A marked increase in capital expenditures of t h e six largest chemical companies tooïç place in 1951 over 1950. ...

JOHN M. WEISS

1952-06-09T23:59:59.000Z

57

Static gas expansion cooler  

DOE Patents [OSTI]

Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

Guzek, J.C.; Lujan, R.A.

1984-01-01T23:59:59.000Z

58

WINDExchange: About Regional Resource Centers  

Wind Powering America (EERE)

Development Siting About Regional Resource Centers Significant expansion of wind energy deployment will be required to achieve the President's goal of doubling renewable...

59

Photovoltaics effective capacity: Interim final report 2  

SciTech Connect (OSTI)

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

60

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

62

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

63

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

64

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

65

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

66

Inhomogeneity implies accelerated expansion  

Science Journals Connector (OSTI)

The Einstein equations for an inhomogeneous irrotational dust universe are analyzed. A set of mild assumptions, all of which are shared by the standard Friedmann-Lemaitre-Robertson-Walker–type scenarios, results in a model that depends only on the distribution of scalar spatial curvature. If the shape of this distribution is made to fit the structure of the present Universe, with most of the matter in galaxy clusters and very little in the voids that will eventually dominate the volume, then there is a period of accelerated expansion after cluster formation, even in the absence of a cosmological constant.

Harald Skarke

2014-02-10T23:59:59.000Z

67

Load regulating expansion fixture  

DOE Patents [OSTI]

A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

Wagner, L.M.; Strum, M.J.

1998-12-15T23:59:59.000Z

68

Load regulating expansion fixture  

DOE Patents [OSTI]

A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

1998-01-01T23:59:59.000Z

69

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

SciTech Connect (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

70

Efficiency enhancements for evolutionary capacity planning in distribution grids  

Science Journals Connector (OSTI)

In this paper, we tackle the distribution network expansion planning (DNEP) problem by employing two evolutionary algorithms (EAs): the classical Genetic Algorithm (GA) and a linkage-learning EA, specifically a Gene-pool Optimal Mixing Evolutionary Algorithm ... Keywords: capacity planning, distribution networks, electricity, linkage learning, optimal mixing

Ngoc Hoang Luong; Marinus O.W. Grond; Han La Poutré; Peter A.N. Bosman

2014-07-01T23:59:59.000Z

71

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

72

Panama Canal capacity analysis  

SciTech Connect (OSTI)

Predicting the transit capacities of the various Panama Canal alternatives required analyzing data on present Canal operations, adapting and extending an existing computer simulation model, performing simulation runs for each of the alternatives, and using the simulation model outputs to develop capacity estimates. These activities are summarized in this paper. A more complete account may be found in the project final report (TAMS 1993). Some of the material in this paper also appeared in a previously published paper (Rosselli, Bronzini, and Weekly 1994).

Bronzini, M.S. [Oak Ridge National Lab., Knoxville, TN (United States). Center for Transportation Analysis

1995-04-27T23:59:59.000Z

73

Expansion Capital Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Expansion Capital Partners LLC Expansion Capital Partners LLC Jump to: navigation, search Name Expansion Capital Partners LLC Address One Embarcadero Center, Suite 4100 Place San Francisco, California Zip 94111 Region Bay Area Product Venture capital firm that invests in expansion-stage, clean technology enterprises Year founded 2001 Phone number (415) 788-8802 Website http://www.expansioncapital.co Coordinates 37.794497°, -122.39962° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.794497,"lon":-122.39962,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Zambia-Long-Term Generation Expansion Study | Open Energy Information  

Open Energy Info (EERE)

Zambia-Long-Term Generation Expansion Study Zambia-Long-Term Generation Expansion Study Jump to: navigation, search Logo: Zambia-Long-Term Generation Expansion Study Name Zambia-Long-Term Generation Expansion Study Agency/Company /Organization Argonne National Laboratory Sector Energy Topics Implementation, GHG inventory, Background analysis Resource Type Software/modeling tools, Lessons learned/best practices Website http://www.dis.anl.gov/pubs/61 Country Zambia UN Region Eastern Africa References Zambia-Long-Term Generation Expansion Study[1] Abstract The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. Overview "The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. The

75

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2006-2030) for Electricity Capacity and Generation by Fuel Tables (2006-2030) International Energy Outlook 2009 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2006-2030) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

76

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) International Energy Outlook 2008 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Formats Data Table Titles (1 to 12 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

77

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2007-2035) for Electricity Capacity and Generation by Fuel Tables (2007-2035) International Energy Outlook 2010 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2007-2035) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Appendix H. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

78

Thermal Expansion of Confined Water  

Science Journals Connector (OSTI)

Typical results for expansion measurements on the bulk liquid, reported in ref 3, agreed with the handbook values with errors DOE Contract DEFG 02-97ER45642. ...

Shuangyan Xu; George W. Scherer; T. S. Mahadevan; Stephen H. Garofalini

2009-03-10T23:59:59.000Z

79

Iceland Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Iceland Geothermal Region Energy Generation Facilities within the Iceland Geothermal Region...

80

Austria Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Austria Geothermal Region Energy Generation Facilities within the Austria Geothermal Region...

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

IAEA Planning and Economic Studies Section (PESS) Capacity Building | Open  

Open Energy Info (EERE)

IAEA Planning and Economic Studies Section (PESS) Capacity Building IAEA Planning and Economic Studies Section (PESS) Capacity Building Jump to: navigation, search Tool Summary Name: IAEA Planning and Economic Studies Section (PESS) Capacity Building Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Non-renewable Energy, Energy Efficiency, Renewable Energy Topics: Pathways analysis Resource Type: Software/modeling tools, Training materials References: IAEA PESS capacity building[1] Logo: IAEA Planning and Economic Studies Section (PESS) Capacity Building "PESS offers assistance to Member States, particularly from developing regions, to improve their energy system analysis & planning capabilities. Assistance can include: transferring modern planning methods, tools and databanks

82

ON MIMO CHANNEL CAPACITY, SPATIAL SAMPLING AND THE LAWS OF ELECTROMAGNETISM  

E-Print Network [OSTI]

ON MIMO CHANNEL CAPACITY, SPATIAL SAMPLING AND THE LAWS OF ELECTROMAGNETISM Sergey Loyka School by the laws of electromagnetism on achievable MIMO channel capacity in its general form. Our approach is a two expansion of a generic electromagnetic wave combined with Nyquist sampling theorem in the spatial domain, we

Loyka, Sergey

83

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

84

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

85

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

86

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

87

Capacity Building in Wind Energy for PICs  

E-Print Network [OSTI]

1 Capacity Building in Wind Energy for PICs Presentation of the project Regional Workshop Suva hydropower is relatively important (Papua New Guinea, Fiji and Samoa · The traditional use of wind energy has indicates that significant wind energy potential exists. · A monitoring project showed that in Rarotonga

88

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

89

Capacity of steganographic channels  

Science Journals Connector (OSTI)

An information-theoretic approach is used to determine the amount of information that may be safely transferred over a steganographic channel with a passive adversary. A steganographic channel, or stego-channel is a pair consisting of the channel transition ... Keywords: information spectrum, information theory, steganalysis, steganographic capacity, steganography, stego-channel

Jeremiah J. Harmsen; William A. Pearlman

2005-08-01T23:59:59.000Z

90

ISO New England Forward Capacity Market (Rhode Island) | Department of  

Broader source: Energy.gov (indexed) [DOE]

ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) < Back Eligibility Developer Industrial State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Generating Facility Rate-Making Under the Forward Capacity Market (FCM), ISO New England projects the capacity needs of the region's power system three years in advance and then holds an annual auction to purchase the power resources that will satisfy those future regional requirements. Resources that clear in the auction are obligated to provide power or curtail demand when called upon by the ISO. The Forward Capacity Market was developed by ISO New England, the six New

91

Capacity Value of Solar Power  

SciTech Connect (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

92

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

93

Crossroads Expansion | Open Energy Information  

Open Energy Info (EERE)

Expansion Expansion Jump to: navigation, search Name Crossroads Expansion Facility Crossroads Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oklahoma Gas & Electric Developer RES Americas Energy Purchaser Oklahoma Gas & Electric Coordinates 36.021°, -98.667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.021,"lon":-98.667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Clocking the Early Universe's Expansion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expansion Calculations Performed at NERSC Help Scientists Close in on the Nature of Dark Energy April 17, 2014 Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 NERSC PI: David...

95

Thermal expansion of SOFC materials  

Science Journals Connector (OSTI)

A short overview is given for the thermal expansion of solid oxide fuel cell materials. The thermomechanical compatibility of state-of-the-art materials is compared with alternative, new materials. With these ...

F. Tietz

1999-01-01T23:59:59.000Z

96

AEOP2011:Electricity Generation Capacity by Electricity Market Module  

Open Energy Info (EERE)

AEOP2011:Electricity Generation Capacity by Electricity Market Module AEOP2011:Electricity Generation Capacity by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 97, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into Texas regional entity, Florida reliability coordinating council, Midwest reliability council and Northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB)

97

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

98

EMPIRE ULTIMATE EXPANSION: RESONANCES AND COVARIANCES.  

SciTech Connect (OSTI)

The EMPIRE code system is being extended to cover the resolved and unresolved resonance region employing proven methodology used for the production of new evaluations in the recent Atlas of Neutron Resonances. Another directions of Empire expansion are uncertainties and correlations among them. These include covariances for cross sections as well as for model parameters. In this presentation we concentrate on the KALMAN method that has been applied in EMPIRE to the fast neutron range as well as to the resonance region. We also summarize role of the EMPIRE code in the ENDF/B-VII.0 development. Finally, large scale calculations and their impact on nuclear model parameters are discussed along with the exciting perspectives offered by the parallel supercomputing.

HERMAN,M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.; PIGNI, M.T.; KAWANO, T.; CAPOTE, R.; ZERKIN, V.; TRKOV, A.; SIN, M.; CARSON, B.V.; WIENKE, H. CHO, Y.-S.

2007-04-22T23:59:59.000Z

99

Honeywell triples capacity for low GWP blowing agent  

Science Journals Connector (OSTI)

Honeywell reports that it has tripled production capacity for its low global-warming-potential (GWP) product HFO-1234ze to meet the growing need for the material, which is used in multiple foam and aerosol applications. The production expansion was made at Honeywell's small-scale HFO-1234ze manufacturing facility at its Buffalo Research Lab in Buffalo, NY, USA, and was achieved through equipment upgrades and overall productivity improvements during the past 18 months.

2011-01-01T23:59:59.000Z

100

Simplified expansions for radiation from a baffled circular piston  

E-Print Network [OSTI]

Simplified expansions for radiation from a baffled circular piston T. Douglas Mast Department from a baffled circular piston continues be an active area of investigation, both as a canonical computations of piston fields in lossless and attenuative fluid media. For the region r a, where

Mast, T. Douglas

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Worldwide Energy Efficiency Action through Capacity Building and Training  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Agency/Company /Organization National Renewable Energy Laboratory, The International Partnership for Energy Efficiency Cooperation Sector Energy Focus Area Energy Efficiency Topics Background analysis Resource Type Training materials Website http://www.nrel.gov/ce/ipeec/w Country Mexico, India UN Region Northern America References Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT)[1] Abstract Included are training materials for the Worldwide Energy Efficiency Action through Capacity Building & Training (WEACT) Workshop in Mexico City, 28-30 September 2010.

102

On the Capacity of a Class of MIMO Cognitive Radios  

E-Print Network [OSTI]

Cognitive radios have been studied recently as a means to utilize spectrum in a more efficient manner. This paper focuses on the fundamental limits of operation of a MIMO cognitive radio network with a single licensed user and a single cognitive user. The channel setting is equivalent to an interference channel with degraded message sets (with the cognitive user having access to the licensed user's message). An achievable region and an outer bound is derived for such a network setting. It is shown that the achievable region is optimal for a portion of the capacity region that includes sum capacity.

Sridharan, Sriram

2007-01-01T23:59:59.000Z

103

Critical point anomalies include expansion shock waves  

SciTech Connect (OSTI)

From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

2014-02-15T23:59:59.000Z

104

EIS-0404: Los Vaqueros Reservoir Expansion Project, California | Department  

Broader source: Energy.gov (indexed) [DOE]

404: Los Vaqueros Reservoir Expansion Project, California 404: Los Vaqueros Reservoir Expansion Project, California EIS-0404: Los Vaqueros Reservoir Expansion Project, California Summary This EIS/Environmental Impact Report was prepared by the Department of the Interior (Bureau of Reclamation, Mid-Pacific Region) and the Contra Costa Water District to evaluate the environmental impacts of a proposal to enlarge the existing Los Vaqueros Reservoir in Contra Costa County, California. DOE's Western Area Power Administration (Western) was a cooperating agency because it has jurisdiction over transmission facilities that were expected to be relocated under the proposed action. Based on project changes, however, Western has no action and therefore will not adopt the EIS or issue a ROD. Public Comment Opportunities No public comment opportunities available at this time.

105

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

106

Adaptive capacity and its assessment  

SciTech Connect (OSTI)

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

107

Evaluation of absorption/stripping for second phase expansion of KG gas cracker  

SciTech Connect (OSTI)

This report addresses technology evaluation for a second phase expansion of BP Chemical Ltd.`s (BPCL) KG cracker. Its primary objective was to determine if the absorption/stripping technology being developed by BPCL is competitive with cryogenic demethanization technology. The expansion basis for this evaluation is a 150,000 MTA ethylene increment. This increment represents an increase in KG`s capacity from 450,000 MTA after the current expansion to an ultimate capacity of 600,000 MTA. Two recovery systems for a 150,000 MTA expansion are compared: (1) Case A - Absorption/Stripping Expansion; and (2) Case B - ARS Expansion. Another objective of this report was to confirm the magnitude of the economic advantages of the absorption/stripping technology for grass roots applications. For that evaluation, absorption/stripping was compared with the original 350,000 MTA KG recovery system. The two additional 350,000 MTA grass roots cases evaluated are: (1) Case C - Absorption/Stripping - Grass Roots Design; (2) Case D - Conventional Cryogenic Recovery (Original KG 350,000 MTA design).

NONE

1995-12-01T23:59:59.000Z

108

Hypersonic expansion of the Fokker--Planck equation  

SciTech Connect (OSTI)

A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is made via the Fokker--Planck equation governing its velocity distribution function. In particular, two different hypersonic expansions of the Fokker--Planck equation are considered, differing from each other in the momentum equation of the heavy gas used as the basis of the expansion: in the first of them, the pressure tensor is neglected in that equation while, in the second expansion, the pressure tensor term is retained. The expansions are valid when the light gas Mach number is O(1) or larger and the difference between the mean velocities of light and heavy components is small compared to the light gas thermal speed. They can be applied away from regions where the spatial gradient of the distribution function is very large, but it is not restricted with respect to the temporal derivative of the distribution function. The hydrodynamic equations corresponding to the lowest order of both expansions constitute two different hypersonic closures of the moment equations. For the subsequent orders in the expansions, closed sets of moment equations (hydrodynamic equations) are given. Special emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one might have expected from the ordinary scaling of the hypersonic closure. Also it is found that the normal solution of both expansions is a Gaussian distribution at the lowest order.

Fernandez-Feria, R.

1989-02-01T23:59:59.000Z

109

Cosmic antifriction and accelerated expansion  

Science Journals Connector (OSTI)

We explain an accelerated expansion of the present Universe, suggested from observations of supernovae of type Ia at high redshift, by introducing an antifrictional force that is self-consistently exerted on the particles of the cosmic substratum. Cosmic antifriction, which is intimately related to “particle production,” is shown to give rise to an effective negative pressure of the cosmic medium. While other explanations for an accelerated expansion (cosmological constant, quintessence) introduce a component of dark energy in addition to “standard” cold dark matter (CDM) we resort to a phenomenological one-component model of CDM with internal self-interactions. We demonstrate how the dynamics of the cold dark matter model with a cosmological constant may be recovered as a special case of cosmic antifriction. We discuss the connection with two-component models and obtain an attractor behavior for the ratio of the energy densities of both components which provides a possible phenomenological solution to the coincidence problem.

Winfried Zimdahl; Dominik J. Schwarz; Alexander B. Balakin; Diego Pavón

2001-08-03T23:59:59.000Z

110

1/N expansion in noncommutative quantum mechanics  

SciTech Connect (OSTI)

We study the 1/N expansion in noncommutative quantum mechanics for the anharmonic and Coulombian potentials. The expansion for the anharmonic oscillator presented good convergence properties, but for the Coulombian potential, we found a divergent large N expansion when using the usual noncommutative generalization of the potential. We proposed a modified version of the noncommutative Coulombian potential which provides a well-behaved 1/N expansion.

Ferrari, A. F. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Rua Santa Adelia, 166, 09210-170, Santo Andre, SP (Brazil); Gomes, M.; Stechhahn, C. A. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo - SP (Brazil)

2010-08-15T23:59:59.000Z

111

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS)  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies Program Enhancing Capacity for Low Emission Development Strategies Program Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2014 Country Albania, Bangladesh, Cambodia, Colombia, Costa Rica, Gabon, Georgia, Guatemala, Indonesia, Jamaica, Kazakhstan, Kenya, Republic of Macedonia, Malawi, Malaysia, Mexico, Moldova, Peru, Philippines, Serbia, South Africa, Thailand, Ukraine, Vietnam, Zambia UN Region Southern Asia References Enhancing Capacity for Low Emission Development Strategies Program[1]

112

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Broader source: Energy.gov (indexed) [DOE]

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

113

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Broader source: Energy.gov (indexed) [DOE]

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

114

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

115

Indian Policy and Westward Expansion  

E-Print Network [OSTI]

Transition in Indian Policy, 1840-48 85 First settlements in Oregon—Oregon Trail, roads and military- posts—Santa Fé Trail and the southwestern commerce—Pur chase of right of way for Oregon Trail recommended—Organi zation of Oregon and Nebraska proposed...—Effect on Indian policy. Development of the Four Great Factors, 1848-5J? 40 Westward Expansion and Settlement of the Pacific Coast 41 Summary o£ early period—Population when organized—Oregon emigration after 1848—California emigration after 1848—Re lation...

Malin, James Claude

1921-11-01T23:59:59.000Z

116

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Broader source: Energy.gov (indexed) [DOE]

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

117

QUANTITY AND CAPACITY EXPANSION DECISIONS FOR ETHANOL IN NEBRASKA AND A MEDIUM SIZED PLANT.  

E-Print Network [OSTI]

??Corn-based ethanol is the leader of sustainable sources of energy in the United States due to the abundance of corn and the popularity of ethanol-gasoline… (more)

Khoshnoud, Mahsa

2012-01-01T23:59:59.000Z

118

Outside a Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Outside a Geothermal Region Outside a Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Outside a Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) This is a category for geothermal areas added that do not fall within an existing geothermal region. As a number of these accumulate on OpenEI, new regions can be created and areas moved into those regions accordingly. Geothermal Regions Map[1] References ↑ "Geothermal Regions Map" Geothermal Region Data State(s) Wyoming, Colorado Area USGS Resource Estimate for this Region Identified Mean Potential Undiscovered Mean Potential Planned Capacity Planned Capacity Plants Included in Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Outside a Geothermal Region

119

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

120

High thermal expansion, sealing glass  

DOE Patents [OSTI]

A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

Brow, R.K.; Kovacic, L.

1993-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High Capacity Immobilized Amine Sorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

122

Hospital-Based Coalition to Improve Regional Surge Capacity  

E-Print Network [OSTI]

and Response. Report on the hospital preparedness program.ORIGINAL RESEARCH Hospital-Based Coalition to Improveoptimization of access to hospital beds is a limiting factor

Terndrup, Thomas E; Leaming, James M.; Adams, R Jerry; Adoff, Spencer

2012-01-01T23:59:59.000Z

123

Thermal expansion and lattice dynamics of RB66 compounds at low temperatures  

SciTech Connect (OSTI)

Thermal characteristics of the phonon and magnon subsystems of icosahedral borides RB66 (R = Gd, Tb, Dy, Ho, Eu, or Lu) have been studied based on the obtained experimental data on the thermal expansion of the borides and the earlier results on their heat capacity in the range of 2–300 K. The contribution to the expansion of borides containing paramagnetic R 3+ ions, which is characteristic of transition to the spin-glass state, has been revealed. The phonon spectrum moments of RB66 compounds and the Grüneisen parameters have been calculated.

Novikov, V V [Petrovsky Bryansk State University; Avdashchenko, D V [Petrovsky Bryansk State University; Mitroshenkov, N V [Petrovsky Bryansk State University; Matovnikov, A V [Petrovsky Bryansk State University; Budko, Serguei L [Ames Laboratory

2014-10-01T23:59:59.000Z

124

Africa Adaptation Programme: Capacity Building Experiences-Improving  

Open Energy Info (EERE)

Africa Adaptation Programme: Capacity Building Experiences-Improving Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Jump to: navigation, search Tool Summary Name: Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Agency/Company /Organization: United Nations Development Programme (UNDP) Sector: Climate, Energy Topics: Adaptation, Co-benefits assessment, - Energy Access Resource Type: Dataset, Lessons learned/best practices Website: www.undp.org/environment/library.shtml Cost: Free UN Region: Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa Language: English Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Screenshot

125

Albania-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Albania-Enhancing Capacity for Low Emission Development Strategies Albania-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Albania-Enhancing Capacity for Low Emission Development Strategies Program Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Albania UN Region Southern Asia References Enhancing Capacity for Low Emission Development Strategies Program[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet

126

Ultracold plasma expansion as a function of charge neutrality  

SciTech Connect (OSTI)

Ultracold plasmas (UCPs) are created under conditions of near but not perfect neutrality. In the limit of zero electron temperature, electron screening results in non-neutrality manifesting itself as an interior region of the UCP with both electrons and ions and an exterior region composed primarily of ions. The interior region is the region of the most scientific interest for 2-component ultracold plasma physics. This work presents a theoretical model through which the time evolution of non-neutral UCPs is calculated. Despite Debye screening lengths much smaller than the characteristic plasma spatial size, model calculations predict that the expansion rate and the electron temperature of the UCP interior is sensitive to the neutrality of the UCP. The predicted UCP dependence on neutrality has implications for the correct measurement of several UCP properties, such as electron temperature, and a proper understanding of evaporative cooling of the electrons in the UCP.

Witte, Craig; Roberts, Jacob L. [Colorado State University, Fort Collins, Colorado 80523 (United States)

2014-10-15T23:59:59.000Z

127

Cosmic Growth History and Expansion History  

E-Print Network [OSTI]

of the expansion history dark energy equation of state,and growth history constraints on the dark energy equationand growth history constraints on the dark energy equation

Linder, Eric V.

2009-01-01T23:59:59.000Z

128

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

129

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

130

Economic Dispatch of Electric Generation Capacity | Department...  

Broader source: Energy.gov (indexed) [DOE]

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

131

November 15, 2012 Webinar: Exploring Opportunities for Energy Efficiency as a Revenue Stream in the Forward Capacity Markets  

Broader source: Energy.gov [DOE]

November 15, 2012 Webinar: Exploring Opportunities for Energy Efficiency as a Revenue Stream in the Forward Capacity Markets, Better Buildings Neighborhood Program; regional transmission organizations (RTOs)

132

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

133

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

134

Hybrid Zero-capacity Channels  

E-Print Network [OSTI]

There are only two known kinds of zero-capacity channels. The first kind produces entangled states that have positive partial transpose, and the second one - states that are cloneable. We consider the family of 'hybrid' quantum channels, which lies in the intersection of the above classes of channels and investigate its properties. It gives rise to the first explicit examples of the channels, which create bound entangled states that have the property of being cloneable to the arbitrary finite number of parties. Hybrid channels provide the first example of highly cloneable binding entanglement channels, for which known superactivation protocols must fail - superactivation is the effect where two channels each with zero quantum capacity having positive capacity when used together. We give two methods to construct a hybrid channel from any binding entanglement channel. We also find the low-dimensional counterparts of hybrid states - bipartite qubit states which are extendible and possess two-way key.

Sergii Strelchuk; Jonathan Oppenheim

2012-07-04T23:59:59.000Z

135

Building Regulatory Capacity for Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

136

Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)  

SciTech Connect (OSTI)

The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume.

Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B. [Oak Ridge National Lab., TN (United States); Griess, J.C. [Griess (J.C.), Knoxville, TN (United States)

1994-12-31T23:59:59.000Z

137

Dynamic sub-transmission substation expansion planning using learning automata  

Science Journals Connector (OSTI)

This paper presents a new method to solve the dynamic sub-transmission substation expansion planning (SSEP) in electric power distribution networks. The method employs a new algorithm based on learning automata for optimization process. The developed algorithm includes different electrical constraints such as voltage drops, thermal limits, power flow and radial flow constraints. Moreover, prevalent cost indices are taken into consideration. The proposed method is used to solve the dynamic SSEP for Birjand city, center of South-Khorasan province of Iran, up to the year 2024. In addition, effects of the dynamic and pseudo-dynamic planning models are investigated at the study region and the obtained results are compared to those of genetic algorithm. Detailed numerical results and comparisons presented in the paper show that the proposed approach leads to proper solutions and can be used as an effective tool for the dynamic sub-transmission substation expansion planning in an actual large scale distribution network.

Seyed Mahdi Mazhari; Hassan Monsef

2013-01-01T23:59:59.000Z

138

Delayed Linear Expansion of Two Ultra-low Expansion Dental Stones  

E-Print Network [OSTI]

The purpose of this study was to measure the linear setting expansion of two ultra-low expansion dental stones used in definitive cast/ prosthesis fabrication which claim to have very low to no setting expansion. Five specimens of each material...

Oppedisano, Michael

2013-12-20T23:59:59.000Z

139

Multipole Expansion Model in Gravitational Lensing  

E-Print Network [OSTI]

Non-transparent models of multipole expansion model and two point-mass model are analyzed from the catastrophe theory. Singularity behaviours of $2^n$-pole moments are discussed. We apply these models to triple quasar PG1115+080 and compare with the typical transparent model, softened power law spheroids. Multipole expansion model gives the best fit among them.

T. Fukuyama; Y. Kakigi; T. Okamura

1997-01-31T23:59:59.000Z

140

APEX user`s guide - (Argonne production, expansion, and exchange model for electrical systems), version 3.0  

SciTech Connect (OSTI)

This report describes operating procedures and background documentation for the Argonne Production, Expansion, and Exchange Model for Electrical Systems (APEX). This modeling system was developed to provide the U.S. Department of Energy, Division of Fossil Energy, Office of Coal and Electricity with in-house capabilities for addressing policy options that affect electrical utilities. To meet this objective, Argonne National Laboratory developed a menu-driven programming package that enables the user to develop and conduct simulations of production costs, system reliability, spot market network flows, and optimal system capacity expansion. The APEX system consists of three basic simulation components, supported by various databases and data management software. The components include (1) the investigation of Costs and Reliability in Utility Systems (ICARUS) model, (2) the Spot Market Network (SMN) model, and (3) the Production and Capacity Expansion (PACE) model. The ICARUS model provides generating-unit-level production-cost and reliability simulations with explicit recognition of planned and unplanned outages. The SMN model addresses optimal network flows with recognition of marginal costs, wheeling charges, and transmission constraints. The PACE model determines long-term (e.g., longer than 10 years) capacity expansion schedules on the basis of candidate expansion technologies and load growth estimates. In addition, the Automated Data Assembly Package (ADAP) and case management features simplify user-input requirements. The ADAP, ICARUS, and SMN modules are described in detail. The PACE module is expected to be addressed in a future publication.

VanKuiken, J.C.; Veselka, T.D.; Guziel, K.A.; Blodgett, D.W.; Hamilton, S.; Kavicky, J.A.; Koritarov, V.S.; North, M.J.; Novickas, A.A.; Paprockas, K.R. [and others

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The struggle for safe nuclear expansion in China  

Science Journals Connector (OSTI)

Abstract After a temporary halt following the Fukushima nuclear disaster in March 2011, China resumed its fast, yet cautious, expansion of nuclear energy programme. Nuclear energy is considered as part of the general strategy to deal with the challenges of energy security and climate change and to advance with ‘state of the art’ technology in its development. This article briefly discusses recent development in and driving forces behind nuclear industry in China, and several challenges it has been facing: how to adopt, adapt, standardise and indigenise whose technologies, and how to address the shortage of qualified nuclear engineers, scientists, skilled labour force and qualified regulators. More importantly, it argues that safe and secure nuclear development requires consistent policies and effective regulations. Therefore, it is crucial to build policy and regulatory capacities based on coordination, planning and management of government agencies and the industry.

Y.C. Xu

2014-01-01T23:59:59.000Z

142

Examining Repository Loading Options to Expand Yucca Mountain Repository Capacity  

SciTech Connect (OSTI)

Siting a high level nuclear waste repository entails high economic, social, and political costs. Given the difficulty in siting the Yucca Mountain repository and the already identified need for additional capacity, the concept of expanding the capacity of the Yucca Mountain repository is of significant interest to the nuclear industry and the Department of Energy (DOE). As the capacity of the repository is limited by the decay heat inventory of the spent nuclear fuel in relation to the thermal design limits, expanding the capacity requires appropriate schemes for decay heat and spent fuel loading management. The current Yucca Mountain repository is based on a single level, fixed drift spacing design for a fixed area or footprint. Studies performed to date investigating the capacity of Yucca Mountain often assume that the loading of spent fuel is uniform throughout the repository and use the concept of a linear loading or areal power density (APD). However, use of linear loading or APD can be problematic with the various cooling times involved. The temperature within the repository at any point in time is controlled by the integral of the heat deposited in the repository. The integral of the decay heat varies as a function of pre-loading cooling periods even for a fixed linear loading. A meaningful repository capacity analysis requires the use of a computer model that describes the time-dependent temperature distributions of the rock from the dissipation of the heat through the repository system. If variations from the current Yucca Mountain repository design were to be considered, expanding the capacity of the repository would be pursued in several ways including: (1) increase the footprint size; (2) implement multiple-levels in the repository for the given footprint; (3) allow the drift distance to vary within thermal limits; and, (4) allow non-uniform loading of wastes into the drifts within thermal limits. Options (1) and (2) have been investigated by other researchers. This paper investigates options (3) and (4) for possible expansion of the Yucca Mountain repository capacity. To support the work, a thermal analysis model was needed to describe the temperature changes in the rock around the waste packages against the thermal design limits as a function of spent fuel characteristics and composition. Under the high temperature operating mode (HTOM), the relevant thermal design limits are: (1) the rock temperature midway between adjacent drifts must remain below the local boiling point (96 deg. C); and (2) the rock temperature at drift walls must remain below 200 deg. C. As the work involves a large number of calculations, examining the compliance within thermal design limits, the capability to perform efficient mountain-scale heat-transfer analyses was necessary. A related topic of importance in this investigation was also the effect of uncertainty. As the modeling exercise relies on the use of computational models, uncertainties are unavoidable and understanding the uncertainty in the interpretation of the results is important. The concept of variable drift spacing and variable drift thermal loading was investigated with respect to possible capacity expansion of the Yucca Mountain repository. Also, a computer model was developed for efficient repository heat transfer calculations and sensitivity and uncertainty analyses were performed to identify key parameters and to estimate the uncertainty in the results and understand how the repository capacity estimation would be affected by the uncertainty. (authors)

Li, Jun; Nicholson, Mark; Proctor, W. Cyrus; Yim, Man-Sung; McNelis, David [Department of Nuclear Engineering, North Carolina State University (United States)

2007-07-01T23:59:59.000Z

143

Expansion and Change on the U.S. Natural Gas Pipeline Network 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 EIA Home > Natural Gas > Natural Gas Analysis Publications Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Printer-Friendly Version Expansion and Change on the U.S. Natural Gas Pipeline Network - 2002 Text Box: This special report looks at the level of new capacity added to the national natural gas pipeline network in 2002 and the current capability of that network to transport supplies from production areas to U.S. markets. In addition, it examines the amount of additional capacity proposed for development during the next several years and to what degree various proposed projects will improve the deliverability of natural gas to key market areas. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835. james.tobin@eia.doe.gov

144

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

145

EIA - Projections of Oil Production Capacity and Oil Production In three  

Gasoline and Diesel Fuel Update (EIA)

Projections of Oil Production Capacity and Oil Production in Three Cases (1990-2030) Projections of Oil Production Capacity and Oil Production in Three Cases (1990-2030) International Energy Outlook 2006 Projections of Oil Production Capacity and Oil Production In Three Cases Data Tables (1990-2030) Formats Table Data Titles (1 to 6 complete) Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800. Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table E1 World Oil Production Capacity by Region and Country, Reference Case Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800.

146

Climate Change Capacity Development (C3D+) | Open Energy Information  

Open Energy Info (EERE)

C3D+) C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) Agency/Company /Organization United Nations Institute for Training and Research (UNITAR) Partner Caribbean Climate Change Community Centre (CCCCC), Climate System Analysis Group at UCT Cape Town (CSAG), Environment and Development Action in the Third World (ENDA-TM), University of Cape Town-Energy Research Centre, South Pacific Regional Environment Programme (SPREP), Munasinghe Institute (MIND), Center for International Forestry Research, International Institute for Sustainable Development (IISD), Stockholm Environment Institute Sector Climate Topics Low emission development planning Resource Type Training materials

147

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005  

Gasoline and Diesel Fuel Update (EIA)

percent increase in capacity additions (see percent increase in capacity additions (see Box, "Capacity Measures," p. 4). Indeed, less new natural gas pipeline mileage was added in 2005 than in any year during the past decade. 1 Energy Information Administration, Office of Oil and Gas, August 2006 1 In 2005, at least 31 natural gas pipeline projects of varying profiles 2 were completed in the lower 48 States and the Gulf of Mexico (Figure 3, Table 1). Of these, 15 were expansions (increases in capacity) on existing natural gas pipelines while the other 16 were 9 system extensions or laterals associated with existing natural gas pipelines, 5 new natural gas pipeline systems, and 2 oil pipeline conversions. Expenditures for natural gas pipeline development amounted to less than $1.3

148

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License

149

High capacity immobilized amine sorbents  

DOE Patents [OSTI]

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

150

Too Much Mobility Limits the Capacity of Wireless Ad-hoc Networks  

E-Print Network [OSTI]

Too Much Mobility Limits the Capacity of Wireless Ad-hoc Networks Syed Ali Jafar Electrical@ece.uci.edu Abstract-- We consider a Ã? user isotropic fast fading ad-hoc network with no channel state information determine the capacity region of this ad-hoc network for any partition of the users into transmitters

Jafar, Syed A.

151

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

152

Load Hindcasting: A Retrospective Regional Load Prediction Method Using Reanalysis Weather Data.  

E-Print Network [OSTI]

??The capacity value (CV) of a power generation unit indicates the extent to which it contributes to the generation system adequacy of a region’s bulk… (more)

Black, Jonathan D

2011-01-01T23:59:59.000Z

153

Ocotillo Wind I Expansion | Open Energy Information  

Open Energy Info (EERE)

I Expansion I Expansion Jump to: navigation, search Name Ocotillo Wind I Expansion Facility Ocotillo Wind I Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Pattern Energy Developer Pattern Energy Energy Purchaser San Diego Gas & Electric Location Ocotillo CA Coordinates 32.76302656°, -116.0466957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.76302656,"lon":-116.0466957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Century Wind Project Expansion | Open Energy Information  

Open Energy Info (EERE)

Project Expansion Project Expansion Jump to: navigation, search Name Century Wind Project Expansion Facility Century Wind Project Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer EnXco Energy Purchaser MidAmerican Energy Location Wright and Hamilton Counties IA Coordinates 42.509141°, -93.682151° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.509141,"lon":-93.682151,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Design Under Uncertainty Employing Stochastic Expansion Methods  

E-Print Network [OSTI]

Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) meth- ods and ability to produce functional representations of stochastic variability. PCE estimates coefficients with both techniques for general probabilistic analysis problems. Once PCE or SC representations have been

156

Low expansion superalloy with improved toughness  

DOE Patents [OSTI]

A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4 K is disclosed. The composition is adapted for use with wrought superconducting sheathing.

Smith, D.F.; Stein, L.I.; Hwang, I.S.

1995-06-20T23:59:59.000Z

157

ARM - Lesson Plans: Thermal Expansion of Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of sea water expands. It is this thermal expansion of the ocean water which makes the sea level rise. Recently, it was asked why a bunsen burner was heating the Erlenmeyer flask in...

158

Meteorological Network Expansion Using Information Decay Concept  

Science Journals Connector (OSTI)

A generalized network design methodology was developed by using the basic entropy concept introduced by Shannon in communication engineering. In order to select potential sites for meteorological network expansion purposes, the meteorological ...

Tahir Husain; Mustafa A. Ukayli; Hasin U. Khan

1986-03-01T23:59:59.000Z

159

Flat Ridge 2 Expansion | Open Energy Information  

Open Energy Info (EERE)

Flat Ridge 2 Expansion Flat Ridge 2 Expansion Jump to: navigation, search Name Flat Ridge 2 Expansion Facility Flat Ridge 2 Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy Developer BP Wind Energy Energy Purchaser Arkansas Electric Cooperative Corp Location Sharon KS Coordinates 37.383239°, -98.334088° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.383239,"lon":-98.334088,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Ultracold Plasma Expansion in a Magnetic Field  

Science Journals Connector (OSTI)

We measure the expansion of an ultracold plasma across the field lines of a uniform magnetic field. We image the ion distribution by extracting the ions with a high-voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma (magnetic field (up to 70 G). We observe that the expansion velocity scales as B-1/2, explained by a nonlinear ambipolar diffusion model with anisotropic diffusion in two different directions.

X. L. Zhang; R. S. Fletcher; S. L. Rolston; P. N. Guzdar; M. Swisdak

2008-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating...

162

Fair capacity sharing of multiple aperiodic servers  

E-Print Network [OSTI]

For handling multiple aperiodic tasks with different temporal requirements, multiple aperiodic servers are used. Since capacity is partitioned statically among the multiple servers, they suffer from heavy capacity exhaustions. Bernat and Burns...

Melapudi, Vinod Reddy

2002-01-01T23:59:59.000Z

163

Can Science and Technology Capacity be Measured?  

E-Print Network [OSTI]

The ability of a nation to participate in the global knowledge economy depends to some extent on its capacities in science and technology. In an effort to assess the capacity of different countries in science and technology, this article updates a classification scheme developed by RAND to measure science and technology capacity for 150 countries of the world.

Wagner, Caroline S; Dutta, Arindum

2015-01-01T23:59:59.000Z

164

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network [OSTI]

Internal Markets for Supply Chain Capacity Allocation David McAdams and Thomas W. Malone Sloan David McAdams & Thomas Malone #12;Internal Markets for Supply Chain Capacity Allocation David Mc ("internal markets") to help allocate manufacturing capacity and determine the prices, delivery dates

165

Capacity Building on Promoting Sustainable Development in the GMS | Open  

Open Energy Info (EERE)

Promoting Sustainable Development in the GMS Promoting Sustainable Development in the GMS Jump to: navigation, search Name Capacity Building on Promoting Sustainable Development in the GMS Agency/Company /Organization AIT-UNEP Regional Resource Centre for Asia and the Pacific Sector Energy, Land Topics Implementation, Policies/deployment programs, Background analysis Resource Type Guide/manual Website http://www.rrcap.unep.org/nsds Country Cambodia, China, Laos, Thailand, Vietnam, Myanmar UN Region South-Eastern Asia References Capacity Building in GMS[1] Summary "The study assesses the state of sustainable development strategies (SDS) in the Greater Mekong Subregion (GMS) - within each of the six member-countries and in the subregion as a whole - with a view towards identifying appropriate improvements that would bring about strong national

166

Estimation of capacity credit for wind power in Libya  

Science Journals Connector (OSTI)

This paper presents the results of a study that evaluated the wind potential at the central region of the Libyan coast and estimated the capacity credit of wind power in the national network. Several sites were investigated to choose the most suitable sites for wind farm establishment. Different sizes of Wind Energy Converter Systems (WECSs) were selected to estimate the wind potential. The sizes were selected to satisfy present and future market development as well as to satisfy technical, economic, and environmental aspects. Wind data from three meteorological stations in the proposed region were used in assessing the wind potential. The wind potential was estimated according to the characteristics of the sites and power curves of the WECSs, and considering certain assumptions. The results showed that the capacity credit varied from about 20% to 50%, depending on penetration levels of wind power, for the assumptions made in this study.

Wedad B. El-Osta; Mohamed Ali Ekhlat; Amal S. Yagoub; Yousef Khalifa; E. Borass

2005-01-01T23:59:59.000Z

167

Effects of restraint on expansion due to delayed ettringite formation  

Science Journals Connector (OSTI)

Delayed ettringite formation (DEF) is a chemical reaction that causes expansion in civil engineering structures. The safety level of such damaged structures has to be reassessed. To do this, the mechanical conditions acting on DEF expansions have to be analysed and, in particular, the variation of strength with expansion and the effect of restraint on the DEF expansion. This paper highlights several points: DEF expansion is isotropic in stress-free conditions, compressive stresses decrease DEF expansion in the direction subjected to restraint and lead to cracks parallel to the restraint, and expansion measured in the stress-free direction of restrained specimens is not modified. Thus restraint causes a decrease of the volumetric expansion and DEF expansion under restraint is anisotropic. Moreover, the paper examines the correlation between DEF expansion and concrete damage, providing data that can be used for the quantification of the effect of stresses on DEF induced expansion.

Hassina Bouzabata; Stéphane Multon; Alain Sellier; Hacène Houari

2012-01-01T23:59:59.000Z

168

Revamp of Ukraine VCM plant will boost capacity, reduce emissions  

SciTech Connect (OSTI)

Oriana Concern (formerly P.O. Chlorvinyl) is revamping its 250,000 metric ton/year (mty) vinyl chloride monomer (VCM) plant at Kalusch, Ukraine. At the core of the project area new ethylene dichloride (EDC) cracking furnace and direct chlorination unit, and revamp of an oxychlorination unit to use oxygen rather than air. The plant expansion and modernization will boost capacity to 370,000 mty. New facilities for by-product recycling and recovery, waste water treatment, and emissions reduction will improve the plant`s environmental performance. This paper shows expected feedstock and utility consumption for VCM production. Techmashimport and P.O. Chlorvinyl commissioned the Kalusch plant in 1975. The plant was built by Uhde GmbH, Dortmund, Germany. The paper also provides a schematic of the Hoechst/Uhde VCM process being used for the plant revamp. The diagram is divided into processing sections.

NONE

1996-05-13T23:59:59.000Z

169

DOE Transmission Capacity Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

170

Coexistence of individual and social learners during range-expansion Joe Yuichiro Wakano  

E-Print Network [OSTI]

experienced rapid population growth and range expansion during "out-of-Africa." Here we model the spatial in regions where the population density is low. Due to this attenuation effect, the invasion speed of social essentially implies constant population size. Predictions from such "static" models may only be of partial

Wakano, Joe Yuichiro

171

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

172

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

173

METRIC PROPERTIES AND EXCEPTIONAL SETS OF THE OPPENHEIM EXPANSIONS  

E-Print Network [OSTI]

METRIC PROPERTIES AND EXCEPTIONAL SETS OF THE OPPENHEIM EXPANSIONS OVER THE FIELD OF LAURENT SERIES in a large class of Oppenheim expansions of Laurent series, including Luroth, Engel, Sylvester expansions properties fail to hold. Key Words and Phrases Oppenheim expansions, Laurent series, #12;nite #12;eld

Fan, Ai-Hua

174

Forward Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Forward Expansion Wind Farm Forward Expansion Wind Farm Facility Forward Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Alliant- Wisconsin Public Service-Madison Gas & Electric- Wisconsin Public Power Location Dodge and Fond du Lac Counties WI Coordinates 43.631519°, -88.556421° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.631519,"lon":-88.556421,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

DOE/EA-0845 Environmental Assessment Expansion  

Broader source: Energy.gov (indexed) [DOE]

45 45 Environmental Assessment Expansion of the Idaho National Engineering Laboratory Research Center March 1994 U.S. Department of Energy MASTER DOE Idaho Operations Office Idaho Falls, Idaho _.OJ Oi_lll_lHl:lUTION OF TFII$O_r, UM_._T _ U_LJ_!_3'_ [6450-01] U.S. DEPARTMENT OF ENERGY FINDINGOF NO SIGNIFICANT IMPACT . FOR EXPANSION OF THE IDAHONATIONALENGINEERING LABORATORY RESEARCH CENTER AGENCY: Department of Energy ACTION: Findingof No Significant Impact(FONSI) SUMMARY: The Department of Energy(DOE)has prepared an environmental assessment (EA),DOE/EA-0845, for expansion and upgrade of facilities at the IdahoNationalEngineering Laboratory (INEL)Research Center(IRC)in Idaho Falls,Idaho. Construction and operation of proposed facilities wouldnot causesignificant environmental impacts. Basedon the analysesin the EA, DOE has determined that the proposedactionis

176

Expansion of Urban Area in Irrigation Districts of the Rio Grande River Basin, 1996 - 2006: A Map Series  

E-Print Network [OSTI]

The border region of Texas is experiencing rapid urban growth which is expected to have a continuing and increasing impact on the irrigation districts of the region. This report presents an analysis of the expansion of urban area during the ten year...

Leigh, Eric; Barroso, M.; Fipps, G.

177

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

178

Design and Evaluation of Novel High Capacity Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials...

179

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

180

Stateline Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stateline Expansion Wind Farm Stateline Expansion Wind Farm Jump to: navigation, search Name Stateline Expansion Wind Farm Facility Stateline Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Walla Walla County OR Coordinates 46.012769°, -118.751528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.012769,"lon":-118.751528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

24 February 1999 Determining Age, Expansion and  

E-Print Network [OSTI]

To Be Younger Than Its Oldest Stars (See Fact #3). 2.) A Universe That Enlarges with Accelerating Expansion (See that of "pure" vacuum space, and the measured capacitance will increase as more and more particles are placed, vapors, nuclear particles, (quarks, wimps, and neutrinos, if they existed separately) or any

Tesfatsion, Leigh

182

Intrepid Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Intrepid Expansion Wind Farm Intrepid Expansion Wind Farm Jump to: navigation, search Name Intrepid Expansion Wind Farm Facility Intrepid Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location Buena Vista & Sac Counties IA Coordinates 42.483311°, -95.308807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.483311,"lon":-95.308807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Exploiting External Collections for Query Expansion  

Science Journals Connector (OSTI)

A persisting challenge in the field of information retrieval is the vocabulary mismatch between a user’s information need and the relevant documents. One way of addressing this issue is to apply query modeling: to add terms to the original query ... Keywords: Query modeling, blog post retrieval, external expansion

Wouter Weerkamp; Krisztian Balog; Maarten de Rijke

2012-11-01T23:59:59.000Z

184

High-resolution thermal-expansion measurements of tetrathiafulvalenetetracyanoquinodimethane (TTF-TCNQ)  

Science Journals Connector (OSTI)

An analysis of our measurements of the b-axis expansivity ?b of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) within the Debye approximation suggests an unexpectedly high effective Debye temperature (?b=200±30 K) and a large anharmonicity (?=5±1.5) for the low-lying b-axis polarized acoustic phonons. These values for ? and ?b indicate substantial softening of the lattice above 100 K and also suggest an expansivity contribution from intramolecular vibrational modes. No anomalous length changes were observed in the region of the metal-semiconductor transition (45-65 K) to within ?LbLb?3×10-5.

D. E. Schafer; G. A. Thomas; F. Wudl

1975-12-15T23:59:59.000Z

185

Major PM expansion at Universal-Cyclops features new consolidation process  

SciTech Connect (OSTI)

A major expansion of powder-metallurgy facilities at Bridgeville, PA., has been recently announced by Universal-Cyclops Speciality Steel Div., Cyclops Corp. Production capacity for high-temperature alloys initially will be increased to two million pounds. Included in the planned project will be expansion of vacuum-induction melting (VIM), gas atomization, screening, blending, degassing, and handling capabilities. Air-atmosphere sintering furnaces will be installed to consolidate powder preforms by Universal-Cyclops' patented CAP (Consolidation by Atmospheric Pressure) process. Production from the new facility will serve the aircraft gas-turbine market. After chemical activation, the powder is placed in glass molds which are then evacuated and sealed. The filled molds are placed in a refractory container, surrounded by sand, and the entire assembly is heated in conventional air atmosphere electric or gas-fired furnace to temperatures over 2000/degree/F.

Not Available

1981-12-01T23:59:59.000Z

186

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

187

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

188

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

189

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

190

Definition: Nameplate Capacity | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Nameplate Capacity Jump to: navigation, search Dictionary.png Nameplate Capacity The maximum amount of electric energy that a generator can produce under specific conditions, as rated by the manufacturer. Generator nameplate capacity is expressed in some multiple of watts such as megawatts (MW), as indicated on a nameplate that is physically attached to the generator.[1] View on Wikipedia Wikipedia Definition Also Known As Capacity Related Terms electricity generation, power References ↑ http://www.nrc.gov/reading-rm/basic-ref/glossary/generator-nameplate-capacity.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Nameplate_Capacity&oldid=480378"

191

EEI/DOE Transmission Capacity Report  

Broader source: Energy.gov (indexed) [DOE]

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

192

Quantum capacity of channel with thermal noise  

E-Print Network [OSTI]

The quantum capacity of thermal noise channel is studied. The extremal input state is obtained at the postulation that the coherent information is convex or concave at its vicinity. When the input energy tends to infinitive, it is verified by perturbation theory that the coherent information reaches its maximum at the product of identical thermal state input. The quantum capacity is obtained for lower noise channel and it is equal the one shot capacity.

Xiao-yu Chen

2006-02-11T23:59:59.000Z

193

216-B-3 expansion ponds closure plan  

SciTech Connect (OSTI)

This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

Not Available

1994-10-01T23:59:59.000Z

194

Controlling the bullwhip with transport capacity constraints  

Science Journals Connector (OSTI)

The bullwhip effect can be costly to companies in terms of capacity-on costs and stock-out costs. This paper examines the possibilities for controlling the bullwhip effect with transport capacity management in the supply chain. The goal is to examine how inventories and service levels react to transport capacity constraints in a simulated supply chain that is prone to the bullwhip effect. By controlling the transport capacities, the companies may be able to reduce the impacts of demand amplification and inventory variations. Thus, there may be significant practical implications of the findings for logistics managers in today's volatile business environments.

Jouni Juntunen; Jari Juga

2009-01-01T23:59:59.000Z

195

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

196

Increasing the Capacity of Existing Power Lines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

works with Idaho Power engineers to train system operators in the use of weather station data and software tools to generate transmission capacity operat- ing limits. The ability...

197

Increasing water holding capacity for irrigation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

198

Property:USGSMeanCapacity | Open Energy Information  

Open Energy Info (EERE)

Resource Assessment of the United States. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For...

199

Solar Energy and Capacity Value (Fact Sheet)  

SciTech Connect (OSTI)

This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

Not Available

2013-09-01T23:59:59.000Z

200

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

WINDExchange: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

The animation shows the progress of installed wind capacity between 1999 and 2013. The Energy Department's annual Wind Technologies Market Report provides information about wind...

202

Expansion of Facilities on the North Slope of Alaska in Time for the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expansion of Facilities on the North Slope of Alaska in Time for the Expansion of Facilities on the North Slope of Alaska in Time for the International Polar Year Zak, Bernard Sandia National Laboratories Ivey, Mark Sandia National Laboratories Zirzow, Jeffrey Sandia National Laboratories Brower, Walter UIC Science Division ARM/NSA Ivanoff, James NSA Whiteman, Doug NSA/AAO Sassen, Kenneth University of Alaska Fairbanks Truffer-Moudra, Dana University of Alaska Fairbanks Category: Infrastructure & Outreach The International Polar Year (IPY; 2007-2008) will stimulate research in both polar regions, primarily focusing on the rapid climate-related changes occurring at high latitudes. In part in preparation for the IPY, facilities at the NSA ACRF are undergoing expansion. In addition, with funding through NOAA, Phase 1 of the planned $60M Barrow Global Climate Change Research

203

Large-Spin and Large-Winding Expansions of Giant Magnons and Single Spikes  

E-Print Network [OSTI]

We generalize the method of our recent paper on large-spin expansions of Gubser-Klebanov-Polyakov (GKP) strings to the large-spin and large-winding expansions of finite-size giant magnons and finite-size single spikes. By expressing the energies of long open strings in RxS2 in terms of Lambert's W-function, we compute the leading, subleading and next-to-subleading series of classical exponential corrections to the dispersion relations of Hofman-Maldacena giant magnons and infinite-winding single spikes. We also compute the corresponding expansions in the doubled regions of giant magnons and single spikes that are respectively obtained when their angular and linear velocities become smaller or greater than unity.

Emmanuel Floratos; Georgios Linardopoulos

2014-06-03T23:59:59.000Z

204

Template:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

GeothermalRegion GeothermalRegion Jump to: navigation, search This is the GeothermalRegion template. To define a new Geothermal Region, please use the Geothermal Region form. Parameters Map - The map of the region. State - The state in which the resource area is located. Area - The estimated size of the area in which the resource area is located, in km². IdentifiedHydrothermalPotential - The identified hydrothermal electricity generation potential in megawatts, from the USGS resource estimate. UndiscoveredHydrothermalPotential - The estimated undiscovered hydroelectric generation potential in megawatts from the USGS resource estimate. PlannedCapacity - The total planned capacity for the region in megawatts. Number of Plants Included in Planned Estimate - The number of plants

205

On Quantum Capacity and its Bound  

E-Print Network [OSTI]

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.

Masanori Ohya; Igor V. Volovich

2004-06-29T23:59:59.000Z

206

Expansion and Collapse in the Cosmic Web  

Science Journals Connector (OSTI)

We study the kinematics of the gaseous cosmic web at high redshift using Ly? forest absorption in multiple QSO sight lines. Observations of the projected velocity shifts between Ly? absorbers common to the lines of sight to a gravitationally lensed QSO and three more widely separated QSO pairs are used to directly measure the expansion of the cosmic web in units of the Hubble velocity, as a function of redshift and spatial scale. The lines of sight used span a redshift range from about 2 to 4.5 and represent transverse scales from the subkiloparsec range to about 300 h physical kpc. Using a simple analytic model and a cosmological hydrodynamic simulation, we constrain the underlying three-dimensional distribution of expansion velocities from the observed line-of-sight distribution of velocity shear across the plane of the sky. The shape of the shear distribution and its width (14.9 km s-1 rms for a physical transverse separation of 61 h kpc at z = 2, 30.0 km s-1 for 261 h kpc at z = 3.6) are found to be in good agreement with the IGM undergoing large-scale motions dominated by the Hubble flow, making this one of the most direct observations possible of the expansion of the universe. However, modeling the Ly? clouds with a simple "expanding pancake" model, the average expansion velocity of the gaseous structures causing the Ly? forest in the lower redshift (z ~ 2) smaller separation (61 kpc) sample appears about 20% lower than the local Hubble expansion velocity. In order to understand the observed velocity distribution further we investigated the statistical distribution of expansion velocities in cosmological Ly? forest simulations. The mean expansion velocity in the (z ~ 2, separation ~ 60 kpc) simulation is indeed somewhat smaller than the Hubble velocity, as found in the real data. We interpret this finding as tentative evidence for some Ly? forest clouds breaking away from the Hubble flow and undergoing the early stages of gravitational collapse. However, the distribution of velocities is highly skewed, and the majority of Ly? forest clouds at all redshifts from 2 to 3.8 expand with super-Hubble velocities, typically about 5%-20% faster than the Hubble flow. This behavior is explained if most Ly? forest clouds in the column density range typically detectable are expanding filaments that stretch and drain into more massive nodes. The significant difference seen in the velocity distributions between the high- and low-redshift samples may conceivably reflect actual peculiar deceleration, the differences in spatial scale, or our selecting higher densities at lower redshift for a given detection threshold for Ly? forest lines. We also investigate the alternative possibility that the velocity structure of the general Ly? forest could have an entirely different, local origin, as expected if the Ly? forest were produced or at least significantly modified by galactic feedback, e.g., winds from star-forming galaxies at high redshift. However, we find no evidence that the observed distribution of velocity shear is significantly influenced by processes other than Hubble expansion and gravitational instability. To avoid overly disturbing the IGM, galactic winds may be old and/or limp by the time we observe them in the Ly? forest, or they may occupy only an insignificant volume fraction of the IGM. We briefly discuss the observational evidence usually presented in favor of an IGM afflicted by high-redshift extragalactic superwinds and find much of it ambiguous. During the hierarchical buildup of structure, galaxies are expected to spill parts of their interstellar medium and to heat and stir the IGM in ways that make it hard to disentangle this gravitational process from the effects of winds.

Michael Rauch; George D. Becker; Matteo Viel; Wallace L. W. Sargent; Alain Smette; Robert A. Simcoe; Thomas A. Barlow; Martin G. Haehnelt

2005-01-01T23:59:59.000Z

207

Low thermal expansion seal ring support  

DOE Patents [OSTI]

Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.

Dewis, David W. (San Diego, CA); Glezer, Boris (Del Mar, CA)

2000-01-01T23:59:59.000Z

208

Tests for the Expansion of the Universe  

E-Print Network [OSTI]

Almost all cosmologists accept nowadays that the redshift of the galaxies is due to the expansion of the Universe (cosmological redshift), plus some Doppler effect of peculiar motions, but can we be sure of this fact by means of some other independent cosmological test? Here I will review some recent tests: CMBR temperature versus redshift, time dilation, the Hubble diagram, the Tolman or surface brightness test, the angular size test, the UV surface brightness limit and the Alcock--Paczy\\'nski test. Some tests favour expansion and others favour a static Universe. Almost all the cosmological tests are susceptible to the evolution of galaxies and/or other effects. Tolman or angular size tests need to assume very strong evolution of galaxy sizes to fit the data with the standard cosmology, whereas the Alcock--Paczynski test, an evaluation of the ratio of observed angular size to radial/redshift size, is independent of it.

Lopez-Corredoira, Martin

2015-01-01T23:59:59.000Z

209

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

210

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

211

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

212

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

213

Low temperature expansion for the Ising model  

Science Journals Connector (OSTI)

On simple cubic lattices, we compute the low-temperature expansion for the energy of the Ising model through 50 excited bonds in three dimensions and 44 excited bonds in four dimensions. We also give the magnetization through 42 excited bonds. Our method is a recursive enumeration of states with given energies on a set of finite lattices with generalized helical boundary conditions. A linear combination of such lattices cancels finite volume effects.

Gyan Bhanot; Michael Creutz; Jan Lacki

1992-09-28T23:59:59.000Z

214

Accelerating cosmological expansion from shear viscosity  

E-Print Network [OSTI]

The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

Floerchinger, Stefan; Wiedemann, Urs Achim

2014-01-01T23:59:59.000Z

215

Shock compression and expansion in central collisions  

SciTech Connect (OSTI)

Physics of central symmetric reactions of heavy nuclei, in the beam energy range from few tens of MeV to a couple of GeV per nucleon, is discussed. Within transport simulations, it is shown that shock fronts perpendicular to the beam axis form in the head-on reactions. The fronts propagate into projectile and target and they separate hot compressed matter from normal matter. With an increase of the impact parameter, the angle of inclination of fronts relative to the beam axis decreases, and in-between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to the shock motion (and parallel to fronts), starts to expand sideways, early within reactions. Expansion in the direction of shock motion follows, after the shocks traverse nuclei, but due to the delay does not acquire same strength. Expansion affects angular distributions and mean-energy components, and further shapes of spectra and mean energies of different particles emitted into any one direction, and also particle yields. Both the anisotropy in the expansion and a collective motion associated with the weak discontinuity, affect the magnitude of sideward flow within reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions, depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter. The missing energy, considered in the past in association with low measured pion-multiplicity in central reactions, may be identified with the energy of collective expansion.

Danielewicz, P. [Univ. of Washington, Seattle, WA (United States). Institute for Nuclear Theory]|[Michigan State Univ., East Lansing, MI (United States)

1995-01-01T23:59:59.000Z

216

WORK PROGRAMME 2010 REGIONS OF KNOWLEDGE  

E-Print Network [OSTI]

of regional players in enhancing science and technology based development. Its purpose is to enable regions to strengthen their capacity for investing in and conducting research and technological development activities components of the cluster; · business entities (large enterprises and SMEs as defined in the EC

Milano-Bicocca, Università

217

Statement from Energy Secretary Samuel W. Bodman on the Expansion...  

Broader source: Energy.gov (indexed) [DOE]

the Expansion of the Strategic Petroleum Reserve to 1.5 Billion Statement from Energy Secretary Samuel W. Bodman on the Expansion of the Strategic Petroleum Reserve to 1.5 Billion...

218

Clean Technology for Diesel Expansion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology for Diesel Expansion Clean Technology for Diesel Expansion Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE...

219

ORIGINAL PAPER Crystal chemistry, thermal expansion, and Raman spectra  

E-Print Network [OSTI]

along the brucite­forsterite join, linear regression gives a systematic linear decrease in expansivity expansion Á Iron effect Introduction The dense hydrous magnesium silicate (DHMS) minerals along the brucite

Jacobsen, Steven D.

220

Earth pressures and deformations in civil infrastructure in expansive soils  

E-Print Network [OSTI]

This dissertation includes the three major parts of the study: volume change, and lateral earth pressure due to suction change in expansive clay soils, and design of civil infrastructure drilled pier, retaining wall and pavement in expansive soils...

Hong, Gyeong Taek

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thermal and electrostrictive expansion characteristics of MLC (Multilayer Ceramic) capacitors  

SciTech Connect (OSTI)

We have measured by strain gauge technique, in-plane thermal expansivity (coefficient of thermal expansion) as a function of temperature and electrostrictive expansion as a function of applied DC voltage for ceramic capacitors with X7R, NPO and N1500 dielectrics. Multilayer Ceramic (MLC) capacitor materials from two commercial suppliers were evaluated. Thermal expansivities of these materials were compared to polyimide-quartz boards and alumina ceramic substrates. 4 refs., 9 figs., 1 tab.

Chanchani, R.; Hall, C.A.

1991-01-01T23:59:59.000Z

222

Hanford Waste Vitrification Plant capacity increase options  

SciTech Connect (OSTI)

Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package.

Larson, D.E.

1996-04-01T23:59:59.000Z

223

Exploring Small-Scale Meat Processing Expansions in Iowa  

E-Print Network [OSTI]

Exploring Small-Scale Meat Processing Expansions in Iowa A Technical Report Submitted@iastate.edu #12;2Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Overview of Findings Iowa;3Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Introduction Iowa is a national leader

Debinski, Diane M.

224

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

225

Ethylene capacity tops 77 million mty  

SciTech Connect (OSTI)

World ethylene production capacity is 77.8 million metric tons/year (mty). This total represents an increase of more than 6 million mty, or almost 9%, over last year`s survey. The biggest reason for the large change is more information about plants in the CIS. Also responsible for the increase in capacity is the start-up of several large ethylene plants during the past year. The paper discusses construction of ethylene plants, feedstocks, prices, new capacity, price outlook, and problems in Europe`s ethylene market.

Rhodes, A.K.; Knott, D.

1995-04-17T23:59:59.000Z

226

Lattice-structures and constructs with designed thermal expansion coefficients  

SciTech Connect (OSTI)

A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

Spadaccini, Christopher; Hopkins, Jonathan

2014-10-28T23:59:59.000Z

227

renewable energy generating capacity | OpenEI  

Open Energy Info (EERE)

energy generating capacity energy generating capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

228

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2009 2010 2011 2012 2013 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,027 14,659 15,177 15,289 15,373 15,724 1985-2013 Operable Capacity (Calendar...

229

Information capacity of a single photon  

Science Journals Connector (OSTI)

Quantum states of light are the obvious choice for communicating quantum information. To date, encoding information into the polarization states of single photons has been widely used as these states form a natural closed two-state qubit. However, photons are able to encode much more—in principle, infinite—information via the continuous spatiotemporal degrees of freedom. Here we consider the information capacity of an optical quantum channel, such as an optical fiber, where a spectrally encoded single photon is the means of communication. We use the Holevo bound to calculate an upper bound on the channel capacity, and relate this to the spectral encoding basis and the spectral properties of the channel. Further, we derive analytic bounds on the capacity of such channels, and, in the case of a symmetric two-state encoding, calculate the exact capacity of the corresponding channel.

Peter P. Rohde; Joseph F. Fitzsimons; Alexei Gilchrist

2013-08-09T23:59:59.000Z

230

Information capacity of holograms in photorefractive crystals  

Science Journals Connector (OSTI)

From a single measurement of the signal-to-noise ratio of the image reconstructed from a hologram it is possible to estimate the information capacity of superimposed holograms and to...

Miridonov, S V; Kamshilin, A A; Khomenko, A V; Tentori, D

1994-01-01T23:59:59.000Z

231

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network [OSTI]

This paper explores the possibility of solving supply chain capacity allocation problems using internal markets among employees of the same company. Unlike earlier forms of transfer pricing, IT now makes it easier for such ...

McAdams, David

2005-07-08T23:59:59.000Z

232

Tripling the capacity of wireless communications using  

E-Print Network [OSTI]

channels of electric-®eld polarization for wireless communication. In order to make our statements more................................................................. Tripling the capacity of wireless .............................................................................................................................................. Wireless communications are a fundamental part of modern information infrastructure. But wireless bandwidth

233

Heat Capacity as A Witness of Entanglement  

E-Print Network [OSTI]

We demonstrate that the presence of entanglement in macroscopic bodies (e.g. solids) in thermodynamical equilibrium could be revealed by measuring heat-capacity. The idea is that if the system were in a separable state, then for certain Hamiltonians heat capacity would not tend asymptotically to zero as the temperature approaches absolute zero. Since this would contradict the third law of thermodynamics, one concludes that the system must contain entanglement. The separable bounds are obtained by minimization of the heat capacity over separable states and using its universal low-temperature behavior. Our results open up a possibility to use standard experimental techniques of solid state physics -- namely, heat capacity measurements -- to detect entanglement in macroscopic samples.

Marcin Wiesniak; Vlatko Vedral; Caslav Brukner

2005-08-26T23:59:59.000Z

234

Ising expansion for the Hubbard model  

Science Journals Connector (OSTI)

We develop series expansions for the ground state properties of the Hubbard model by introducing an Ising anisotropy into the Hamiltonian. For the two-dimensional square lattice half-filled Hubbard model, the ground state energy, local moment, sublattice magnetization, uniform magnetic susceptibility, and spin stiffness are calculated as a function of U/t, where U is the Coulomb constant and t is the hopping parameter. Magnetic susceptibility data indicate a crossover around U?4 between spin density wave antiferromagnetism and Heisenberg antiferromagnetism. Comparisons with Monte Carlo simulations, random phase approximation result, and mean-field solutions are also made.

Zhu-Pei Shi and Rajiv R. P. Singh

1995-10-01T23:59:59.000Z

235

Accelerating cycle expansions by dynamical conjugacy  

E-Print Network [OSTI]

Periodic orbit theory provides two important functions---the dynamical zeta function and the spectral determinant for the calculation of dynamical averages in a nonlinear system. Their cycle expansions converge rapidly when the system is uniformly hyperbolic but greatly slowed down in the presence of non-hyperbolicity. We find that the slow convergence can be associated with singularities in the natural measure. A properly designed coordinate transformation may remove these singularities and results in a dynamically conjugate system where fast convergence is restored. The technique is successfully demonstrated on several examples of one-dimensional maps and some remaining challenges are discussed.

Ang Gao; Jianbo Xie; Yueheng Lan

2011-06-06T23:59:59.000Z

236

Calculations of Surface Thermal-Expansion  

E-Print Network [OSTI]

, the quasiharmon- ic approximation (plus the Lennard-Jones potential) predicts values of e???which are too large. " The monic approximation (plus the Lennard- Jones poten- 0 20 40 TEMPERATURE T 60 FIG. 9. Surface thermal expansion for Xe. tial) thus tend... to cancel, so that our results are more accurate than those obtained in more rigorous calcu- lations based on the quasihar monic approximation. The bulk results shown in Figs. 1-6 were ob- tained for a slab having a (111)surface orientation...

KENNER, VE; Allen, Roland E.

1973-01-01T23:59:59.000Z

237

Measuring the capacity impacts of demand response  

SciTech Connect (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

238

Capacity factors and solar job creation  

Science Journals Connector (OSTI)

We discuss two main job creation statistics often used by solar advocates to support increased solar deployment. Whilst overall solar technologies have a tendency to be labor-intensive, we find that the jobs per gigawatt hour statistic is relatively mis-leading as it has a tendency to reward technologies that have a low capacity factor. Ultimately the lower the capacity factor the more amplified the solar job creation number.

Matt Croucher

2011-01-01T23:59:59.000Z

239

Central Appalachia: Coal mine productivity and expansion  

SciTech Connect (OSTI)

Coal mine productivity is a key determinant of coal prices and vice versa. This report, focusing on supplies of very low sulfur coal in the eastern United States, presents alternative scenarios of how the price-productivity relationship may evolve in response to growing utility demand. It also documents the next tier of projects where the coal industry is prepared to expand capacity. 19 refs., 14 figs., 6 tabs.

Suboleski, S.C.; Frantz, R.L.; Ramani, R.V.; Rao, G.P. (Pennsylvania State Univ., University Park, PA (United States). Mining Engineering Section); Price, J.P. (Resource Dynamics Corp., Vienna, VA (United States))

1991-09-01T23:59:59.000Z

240

Regional Purchasing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Purchasing Regional Purchasing Regional Purchasing Pursuant to Appendix M of Prime Contract No. DE-AC52-06NA25396 between DOE/NNSA and Los Alamos National Security, LLC (LANS), LANS is committed to building a strong supplier base with Northern New Mexico businesses and the local Native American pueblos in the purchases of goods and services. Contact Small Business Office (505) 667-4419 Email We seek out and utilize known Northern New Mexico business as suppliers The Northern New Mexico counties included are Los Alamos Santa Fe Rio Arriba Taos Mora San Miguel Sandoval The eight regional pueblos included are Nambe Ohkay Owingeh (formerly known as San Juan) Picuris Pojoaque San Ildefonso Santa Clara Taos Tesuque When the Laboratory cannot identify regional firms, it will expand its

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Is Hubble's Expansion due to Dark Energy  

E-Print Network [OSTI]

{\\it The universe is expanding} is known (through Galaxy observations) since 1929 through Hubble's discovery ($V = H D$). Recently in 1999, it is found (through Supernovae observations) that the universe is not simply expanding but is accelerating too. We, however, hardly know only $4\\%$ of the universe. The Wilkinson Microwave Anisotropy Probe (WMAP) satellite observational data suggest $73\\%$ content of the universe in the form of dark-energy, $23\\%$ in the form of non-baryonic dark-matter and the rest $4\\%$ in the form of the usual baryonic matter. The acceleration of the universe is ascribed to this dark-energy with bizarre properties (repulsive-gravity). The question is that whether Hubble's expansion is just due to the shock of big-bang & inflation or it is due to the repulsive-gravity of dark-energy? Now, it is believed to be due to dark-energy, say, by re-introducing the once-discarded cosmological-constant $\\Lambda$. In the present paper, it is shown that `the formula for acceleration due to dark-energy' is (almost) exactly of same-form as `the acceleration formula from the Hubble's law'. Hence, it is concluded that: yes, `indeed it is the dark-energy responsible for the Hubble's expansion too, in-addition to the current on-going acceleration of the universe'.

R. C. Gupta; Anirudh Pradhan

2010-10-19T23:59:59.000Z

242

Perturbation Expa]nsion in Dynamical Nuclear Field Theory and Its Relation with Boson Expansion Theory  

Science Journals Connector (OSTI)

......Perturbation Expa]nsion in Dynamical Nuclear Field Theory and Its Relation...April 1990. With the Dynamical Nuclear Field Theory (DNFT) in the...vibrational mode of a spherical nuclear system. Due to the effects...coupling strength and boson energy fails at full self-consistency......

Teruo Kishimoto; Tetsuo Kammuri

1990-09-01T23:59:59.000Z

243

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand in the event of a pipeline disruption. The study modeled gas demand for select market areas in the Northeast under a range of different weather conditions. The study then determined how interstate pipeline flow patterns could change in the event of a pipeline disruption to one or more of the pipelines serving the region in order to meet the gas demand. The results

244

GIZ-Developing Climate Policy Capacity within the South African Department  

Open Energy Info (EERE)

Policy Capacity within the South African Department Policy Capacity within the South African Department of Environmental Affairs (DEA) Jump to: navigation, search Name South Africa - Developing Climate Policy Capacity within DEA Agency/Company /Organization German Agency for International Cooperation (GIZ) Partner South African Department of Environmental Affairs (DEA), Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Sector Energy Focus Area Energy Efficiency Topics Background analysis, Low emission development planning, Pathways analysis Website http://www.gtz.de/en/weltweit/ Program Start 2009 Program End 2011 Country South Africa UN Region Eastern Africa References Championing Action against Climate Change in South Africa[1] "This project will support DEA in its climate policy capacity building, in

245

Regional Inventories  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This year has not started well for gasoline inventories, with inventories being low across regions of the country. The Midwest region (PADD II) had been running lower than most regions, but began to catch up during the last week in April. Gasoline inventories ran about 9% below their 5-year average for this time of year and about 4% below where they were last year. The recent refinery problems in the Midwest, though, could erase some of that recovery. The impacts of Tosco's Wood River refinery and Marathon's St Paul refinery are not fully realized. But inventories were also precariously low along the East Coast (PADD I) and are extremely low in the Rocky Mountain region (PADD IV), although the size of this market mitigates any national impact. While the

246

DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION  

E-Print Network [OSTI]

1 DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION SULEYMAN KARABUK semiconductor manufacturer: marketing managers reserve capacity from manufacturing based on product demands, while attempting to maximize profit; manufacturing managers allocate capacity to competing marketing

Wu, David

247

Increasing the Capacity of Existing Power Lines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increasing the Capacity of Existing Power Lines Increasing the Capacity of Existing Power Lines The capacity of the grid has been largely unchanged for decades and needs to expand...

248

Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm  

Science Journals Connector (OSTI)

Abstract Distribution feeders and substations need to provide additional capacity to serve the growing electrical demand of customers without compromising the reliability of the electrical networks. Also, more control devices, such as DG (Distributed Generation) units are being integrated into distribution feeders. Distribution networks were not planned to host these intermittent generation units before construction of the systems. Therefore, additional distribution facilities are needed to be planned and prepared for the future growth of the electrical demand as well as the increase of network hosting capacity by DG units. This paper presents a multiobjective optimization algorithm for the MDEP (Multi-Stage Distribution Expansion Planning) in the presence of \\{DGs\\} using nonlinear formulations. The objective functions of the MDEP consist of minimization of costs, END (Energy-Not-Distributed), active power losses and voltage stability index based on SCC (Short Circuit Capacity). A MPSO (modified Particle Swarm Optimization) algorithm is developed and used for this multiobjective MDEP optimization. In the proposed MPSO algorithm, a new mutation method is implemented to improve the global searching ability and restrain the premature convergence to local minima. The effectiveness of the proposed method is tested on a typical 33-bus test system and results are presented.

Jamshid Aghaei; Kashem M. Muttaqi; Ali Azizivahed; Mohsen Gitizadeh

2014-01-01T23:59:59.000Z

249

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

250

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic...

251

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Broader source: Energy.gov (indexed) [DOE]

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

252

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

253

Los Alamos Neutron Science Center gets capacity boost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Science Center capacity boost Los Alamos Neutron Science Center gets capacity boost The facility can simulate the effects of hundreds or thousands of years of...

254

Working and Net Available Shell Storage Capacity as of September...  

Gasoline and Diesel Fuel Update (EIA)

capacity and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to...

255

Guatemala-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Guatemala-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Guatemala-Enhancing Capacity for Low Emission Development Strategies...

256

Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...

257

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 September 11, 2014 -...

258

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

259

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Broader source: Energy.gov (indexed) [DOE]

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

260

High-capacity hydrogen storage in lithium and sodium amidoboranes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

262

Development of High-Capacity Cathode Materials with Integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures 2013 DOE Hydrogen and Fuel Cells...

263

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

Design and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2009 DOE Hydrogen Program and Vehicle Technologies...

264

Development of high-capacity cathode materials with integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of high-capacity cathode materials with integrated structures Development of high-capacity cathode materials with integrated structures 2009 DOE Hydrogen Program and...

265

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

266

,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...  

U.S. Energy Information Administration (EIA) Indexed Site

Other",,,"All Technologies" ,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...

267

Thermal expansion recovery microscopy: Practical design considerations  

SciTech Connect (OSTI)

A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

Mingolo, N., E-mail: nmingol@fi.uba.ar; Martínez, O. E. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

2014-01-15T23:59:59.000Z

268

OMV studies ethylene expansion in Germany  

SciTech Connect (OSTI)

OMV(Vienna) is evaluating plans to debottleneck its ethylene plant at Burghausen from 310,000 m.t./year to at least 400,000 m.t./year. Senior v.p. Jochen Berger says OMV is studying the limits to which the cracker can be expanded. {open_quotes}We`re pretty sure we can go to 400,000 m.t./year, but in two months we`ll have a better idea,{close_quotes} says Berger. The expansion will also depend on the future requirements of downstream operations at the Burghausen site, which include OMV plastics subsidiary PCD`s high-density polyethylene and polypropylene units and the vinyl chloride monomer and polyvinyl chloride units operated by Hoechst-Wacker joint venture Vinnolit.

NONE

1996-10-23T23:59:59.000Z

269

Cumulant expansion for studying damped quantum solitons  

Science Journals Connector (OSTI)

The quantum statistics of damped optical solitons is studied using cumulant-expansion techniques. The effect of absorption is described in terms of ordinary Markovian relaxation theory, by coupling the optical field to a continuum of reservoir modes. After introduction of local bosonic field operators and spatial discretization, pseudo-Fokker-Planck equations for multidimensional s-parametrized phase-space functions are derived. These partial differential equations are equivalent to an infinite set of ordinary differential equations for the cumulants of the phase-space functions. Introducing an appropriate truncation condition, the resulting finite set of cumulant evolution equations can be solved numerically. Solutions are presented in a Gaussian approximation and the quantum noise is calculated, with special emphasis on squeezing and the recently measured spectral photon-number correlations [Spälter et al., Phys. Rev. Lett. 81, 786 (1998)].

Eduard Schmidt; Ludwig Knöll; Dirk-Gunnar Welsch

1999-03-01T23:59:59.000Z

270

Energy Infrastructure Events and Expansions Year-in-Review 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Events and Expansions Year-in-Review 2011 Infrastructure Events and Expansions Year-in-Review 2011 Energy Infrastructure Events and Expansions Year-in-Review 2011 The 2011 Year-in-Review (YIR) provides a summary of significant energy disruptions and infrastructure changes that occurred in the United States throughout 2011. The focus is on the United States, but international events that impacted the United States are also reported. The 2011 YIR is based primarily on information reported in the Energy Assurance Daily (EAD) between January 1, 2011 and December 31, 2011. Energy Infrastructure Events and Expansions Year-in-Review 2011.pdf More Documents & Publications Year-in-Review: 2012 Energy Infrastructure Events and Expansions (July 2013) Energy Infrastructure Events and Expansions Year-in-Review 2010

271

DOE mixed waste treatment capacity analysis  

SciTech Connect (OSTI)

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

272

Ethical receptive capacity and teaching business ethics  

Science Journals Connector (OSTI)

In this study, we proposed the ethical receptive capacity (ERC) perspective on teaching business ethics. The ERC perspective was developed on two premises: the separation of personal moral values and professional ethics, and the path dependent nature of professional ethics, such that individuals in the early stage of their profession have higher ERC (i.e., individuals' capacity to receive ethical contents) and thus are more receptive to new ethical contents prescribed to them. The experimental results in this study supported the ERC perspective, suggesting that business ethics education should be introduced to students as early as possible in their business programme.

Chanchai Tangpong; Michael D. Michalisin; Jin Li

2012-01-01T23:59:59.000Z

273

The effect of rain on freeway capacity  

E-Print Network [OSTI]

. The procedure used was basically a process of selection and processing of data from historical records. The facility used as a source of traific information was t' he Gulf Freeway in Houston, Texas, and rs. infall records were obtained from the Weather... to separate acceptable data, and the accepted capacity figures were related to the weather condition of wet or dry which prevs. iled on the relevant occs. sion. The results showed that rain does have a significant effect on freevray capacity which is very...

Jones, Edward Roy

2012-06-07T23:59:59.000Z

274

Definition: Capacity Benefit Margin | Open Energy Information  

Open Energy Info (EERE)

Benefit Margin Benefit Margin Jump to: navigation, search Dictionary.png Capacity Benefit Margin The amount of firm transmission transfer capability preserved by the transmission provider for Load- Serving Entities (LSEs), whose loads are located on that Transmission Service Provider's system, to enable access by the LSEs to generation from interconnected systems to meet generation reliability requirements. Preservation of CBM for an LSE allows that entity to reduce its installed generating capacity below that which may otherwise have been necessary without interconnections to meet its generation reliability requirements. The transmission transfer capability preserved as CBM is intended to be used by the LSE only in times of emergency generation deficiencies.[1] Related Terms

275

Española entrepreneur breaks ground; expansion will create 50...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Espaola entrepreneur breaks ground; expansion will create 50 new jobs Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:...

276

Small distance expansion for radiative heat transfer between curved objects  

E-Print Network [OSTI]

We develop a small distance expansion for the radiative heat transfer between gently curved objects, in terms of the ratio of distance to radius of curvature. A gradient expansion allows us to go beyond the lowest order proximity transfer approximation. The range of validity of such expansion depends on temperature as well as material properties. Generally, the expansion converges faster for the derivative of the transfer than for the transfer itself, which we use by introducing a near-field adjusted plot. For the case of a sphere and a plate, the logarithmic correction to the leading term has a very small prefactor for all materials investigated.

Vladyslav A. Golyk; Matthias Krüger; Alexander P. McCauley; Mehran Kardar

2012-10-12T23:59:59.000Z

277

Heat Flow Database Expansion for NGDS Data Development, Collection...  

Open Energy Info (EERE)

Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance Project...

278

Observational evidence for poleward expansion of the Hadley circulation  

Science Journals Connector (OSTI)

How the Hadley circulation changes in response to global climate ... consistent and statistically significant poleward expansion of the Hadley circulation in the past few decades is ... independent observational ...

Yongyun Hu ???; Chen Zhou ? ?; Jiping Liu ???

2011-01-01T23:59:59.000Z

279

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

280

On the Use of Pade Forms for Postprocessing Polynomial Expansion  

E-Print Network [OSTI]

... postprocessing the Gegenbauer expansion using the Pade forms. This work was done in collaboration with Laura Lurati (IMA/Boeing) and Sidi Kaber (Paris VI).

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Open versus closed loop capacity equilibria in electricity markets ...  

E-Print Network [OSTI]

ity expansion problem in liberalized electricity markets. The first is an open loop equilibrium model, where generation companies simultaneously choose.

2012-05-06T23:59:59.000Z

282

West Foster Creek Expansion Project 2007 HEP Report.  

SciTech Connect (OSTI)

During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

Ashley, Paul R.

2008-02-01T23:59:59.000Z

283

Power, Capacity, and Efficiency of Pumps  

Science Journals Connector (OSTI)

Power, Capacity, and Efficiency of Pumps ... p. motor through a 40-foot head, friction head included, efficiency of the pump being 50 per cent, join the 40 (column A ) with the 50 per cent (column E ) and locate the intersection with column C . ...

W. F. SCHAPHORST

1940-08-10T23:59:59.000Z

284

Building Environmental Health Capacity in Allegheny County  

E-Print Network [OSTI]

Building Environmental Health Capacity in Allegheny County: Environmental Indicators Outcomes standard Air Quality Computer Systems Days exceeding ozone standard Air Quality Computer Systems Attainment of the annual PM-2.5 standard (Fine particulates) Air Quality Computer Systems Annual PM-2.5 level Air Quality

285

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network [OSTI]

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

286

Fagatele Bay National Marine Sanctuary GIS Capacity  

E-Print Network [OSTI]

Report, configuration notes American Samoa Spatial Data Infrastructure Maps GIS Data CDs Operating System, a number of issues regarding map projections and datums were resolved allowing GIS users to processFagatele Bay National Marine Sanctuary GIS Capacity Binder Index Background 2 Hardware, Software

Wright, Dawn Jeannine

287

CSEM WP 124 Capacity Markets for Electricity  

E-Print Network [OSTI]

CSEM WP 124 Capacity Markets for Electricity Anna Creti, LEEERNA, University of Toulouse for Electricity Anna Creti LEEERNA, University of Toulouse Natalia Fabra Universidad Carlos III de Madrid February 2004 Abstract The creation of electricity markets has raised the fundamental question as to whether

California at Berkeley. University of

288

Partial energies fluctuations and negative heat capacities  

E-Print Network [OSTI]

We proceed to a critical examination of the method used in nuclear fragmentation to exhibit signals of negative heat capacity. We show that this method leads to unsatisfactory results when applied to a simple and well controlled model. Discrepancies are due to incomplete evaluation of potential energies.

Xavier Campi; H. Krivine; E. Plagnol; N. Sator

2004-08-03T23:59:59.000Z

289

Effects of compression and collective expansion on particle emission from central heavy-ion reactions  

SciTech Connect (OSTI)

Conditions under which compression occurs and collective expansion develops in energetic symmetric reactions of heavy nuclei are analyzed, together with their effects on emitted light baryons and pions. Within transport simulations, it is shown that shock fronts perpendicular to beam axis form in head-on reactions. The fronts separate hot compressed matter from normal matter and propagate into the projectile and target. As the impact parameter increases, the angle of inclination of the fronts relative to beam axis decreases, and in between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to shock motion (and parallel to fronts) starts to expand sideways early within the reactions. Expansion in the direction of shock motion follows after the shocks propagate through nuclei, but due to the delay does not acquire the same strength. Expansion affects angular distributions, mean-energy components, shapes of spectra, and mean energies of different particles emitted into any one direction and further particle yields. Both the anisotropy in the expansion and a collective motion associated with the weak discontinuity affect the magnitude of sideward flow within the reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter. The missing energy, considered in the past in association with low measured pion multiplicity in central reactions, may be identified with the energy of collective expansion. Relations are established which govern approximately the behavior of density and entropy in the compressed region in reactions with beam energy and impact parameter.

Danielewicz, P. (National Superconducting Cyclotron Laboratory and Department of Physics Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States))

1995-02-01T23:59:59.000Z

290

Wireless Network Capacity Management: A Real Options Approach  

E-Print Network [OSTI]

capacity, market price of risk, investment timing option 1 Introduction Wireless networks are now regarded

Forsyth, Peter A.

291

The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics  

E-Print Network [OSTI]

The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics JiangYu Li an estimate on the effective pyroelectric and thermal expansion coefficients of fer- roelectric ceramics, and thermal-medical diagnostics (Cross, 1993). A ceramic made of pyroelectric grains does not necessarily

Li, Jiangyu

292

Expansion of a plasma cloud into the solar wind  

E-Print Network [OSTI]

Three-dimensional (3D) hybrid particle-in-cell (PIC) simulations, with kinetic ions and fluid electrons, of a plasma cloud expansion in the solar wind are presented, revealing the dynamics of the expansion, with shock formation, magnetic field compression, and the solar wind ions deflection around the plasma bubble. The similarities of this system with a magnetosphere are also pointed out.

Gargaté, L; Bingham, R; Silva, L O

2008-01-01T23:59:59.000Z

293

ON PROVING FUTURE STABILITY OF COSMOLOGICAL SOLUTIONS WITH ACCELERATED EXPANSION  

E-Print Network [OSTI]

ON PROVING FUTURE STABILITY OF COSMOLOGICAL SOLUTIONS WITH ACCELERATED EXPANSION HANS RINGSTR at an accelerated rate. As a consequence, it is of interest to prove that cosmological solutions to Ein- stein's equations with accelerated expansion are future stable. That is the topic of the present contribution

Ringström, Hans

294

Effects of structural rearrangements on sorption capacity of coals  

SciTech Connect (OSTI)

Recently, the problems in practical application of experimental data and modeling to the sequestration of carbon dioxide in coal seams and the concurrent enhanced coalbed methane (ECBM) recovery have underscored the need for new approaches that take into account the ability of coal for structural rearrangements. Areas of interest include plasticization of coal due to CO2 dissolution, the effect of coal swelling on estimation of the capacity of a coal-seam to adsorb CO2 (adsorption isotherm), and the stability of the CO2 saturated phase once formed, especially with respect to how it might be affected by changes in the post-sequestration environment (environmental effects). Coals are organic macromolecular systems well known to imbibe organic liquids and carbon dioxide. CO2 dissolves in coals and swells them. The problems become more prominent in the region of supercritical CO2. We investigated the effects of moisture content and pressure cycling history on temporal changes in the coal sorptive capacity for a set of Argonne premium coals. The samples were tested as received, dried at 80oC for 36 hours, and moisture equilibrated at 96-97% RH and 30oC for 48 hours. The powders were compared to core samples. Additionally, plasticization of coal powders was studied by high pressure dilatometer.

Romanov, Vyacheslav; Soong, Yee; Warzinski, R.P.; Lynn, R.J.

2006-09-01T23:59:59.000Z

295

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland,  

Broader source: Energy.gov (indexed) [DOE]

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington SUMMARY This EA evaluates the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 EA-1934: Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington

296

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland,  

Broader source: Energy.gov (indexed) [DOE]

4: Expansion of Active Borrow Areas, Hanford Site, Richland, 4: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington SUMMARY This EA evaluates the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 EA-1934: Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington

297

Tanzania Energy Development and Access Expansion Project | Open Energy  

Open Energy Info (EERE)

Energy Development and Access Expansion Project Energy Development and Access Expansion Project Jump to: navigation, search Name of project Tanzania Energy Development and Access Expansion Project Location of project Tanzania Energy Services Lighting, Cooking and water heating, Space heating, Cooling Year initiated 2007 Organization World Bank Website http://documents.worldbank.org Coordinates -6.369028°, 34.888822° References The World Bank[1] The objective of the Energy Development and Access Expansion Project of Tanzania is to improve the quality and efficiency of the electricity service provision in the three main growth centers of Dar es Salaam, Arusha, and Kilimanjaro and to establish a sustainable basis for energy access expansion. The project is consistent with the latest Joint Assistance Strategy (2007-2010) by specifically supporting the goals of the

298

Energy Infrastructure Events and Expansions Year-in-Review 2010 |  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Events and Expansions Year-in-Review 2010 Infrastructure Events and Expansions Year-in-Review 2010 Energy Infrastructure Events and Expansions Year-in-Review 2010 The Year-in-Review provides an overview of the events that occurred in 2010: disruptions and additions to energy infrastructure in the United States as well as international events of importance to U.S. energy supplies. The report is the culminating analysis of all of the 2010 issues of the Energy Assurance Daily (EAD). Energy Infrastructure Events and Expansions Year-in-Review 2010.pdf More Documents & Publications Energy Infrastructure Events and Expansions Year-in-Review 2011 Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane Seasons - August 2010 Comparing the Impacts of the 2005 and 2008 Hurricanes on U.S. Energy

299

"Table A7. Shell Storage Capacity of Selected Petroleum Products by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity of Selected Petroleum Products by Census" Shell Storage Capacity of Selected Petroleum Products by Census" " Region, Industry Group, and Selected Industries, 1991" " (Estimates in Thousand Barrels)" " "," "," "," "," ","Other","RSE" "SIC"," ","Motor","Residual"," ","Distillate","Row" "Code(a)","Industry Groups and Industry","Gasoline","Fuel Oil","Diesel","Fuel Oil","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.9,1,1.1 , 20,"Food and Kindred Products",38,1448,306,531,12.1 2011," Meat Packing Plants",1,229,40,13,13.2

300

Hawaii Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Geothermal Region Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hawaii Geothermal Region Details Areas (16) Power Plants (1) Projects (2) Techniques (0) References Geothermal Region Data State(s) Hawaii Area 28,311 km²28,311,000,000 m² 10,928.046 mi² 304,736,772,900 ft² 33,859,956,000 yd² 6,995,789.655 acres USGS Resource Estimate for this Region Identified Mean Potential 181 MW181,000 kW 181,000,000 W 181,000,000,000 mW 0.181 GW 1.81e-4 TW Undiscovered Mean Potential 2,435 MW2,435,000 kW 2,435,000,000 W 2,435,000,000,000 mW 2.435 GW 0.00244 TW Planned Capacity Planned Capacity 50 MW50,000 kW 50,000,000 W 50,000,000,000 mW 0.05 GW 5.0e-5 TW Plants Included in Planned Estimate 1 Plants with Unknown Planned Capacity 0 Geothermal Areas within the Hawaii Geothermal Region

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay  

Science Journals Connector (OSTI)

We report on the application of a simple and versatile antioxidant capacity assay for dietary polyphenols, vitamin C and vitamin E utilizing the copper(II)-neocuproine (Cu(II)-Nc) reagent as the chromogenic ox...

Re?at Apak; Kubilay Güçlü; Mustafa Özyürek; Saliha Esin Çelik

2008-04-01T23:59:59.000Z

302

High Rate and High Capacity Li-Ion Electrodes for Vehicular Applications  

SciTech Connect (OSTI)

Significant advances in both energy density and rate capability for Li-ion batteries are necessary for implementation in electric vehicles. We have employed two different methods to improve the rate capability of high capacity electrodes. For example, we previously demonstrated that thin film high volume expansion MoO{sub 3} nanoparticle electrodes ({approx}2 {micro}m thick) have a stable capacity of {approx}630 mAh/g, at C/2 (charge/dicharge in 2 hours). By fabricating thicker conventional electrodes, an improved reversible capacity of {approx}1000 mAh/g is achieved, but the rate capability decreases. To achieve high-rate capability, we applied a thin Al{sub 2}O{sub 3} atomic layer deposition coating to enable the high volume expansion and prevent mechanical degradation. Also, we recently reported that a thin ALD Al{sub 2}O{sub 3} coating can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 C. Additionally, Al{sub 2}O{sub 3} ALD films with a thickness of 2 to 4 {angstrom} have been shown to allow LiCoO{sub 2} to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs. Li/Li{sup +}. Capacity fade at this high voltage is generally caused by oxidative decomposition of the electrolyte or cobalt dissolution. We have recently fabricated full cells of NG and LiCoO{sub 2} and coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. In a different approach we have employed carbon single-wall nanotubes (SWNTs) to synthesize binder-free, high-rate capability electrodes, with 95 wt.% active materials. In one case, Fe{sub 3}O{sub 4} nanorods are employed as the active storage anode material. Recently, we have also employed this method to demonstrate improved conductivity and highly improved rate capability for a LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2} cathode material. Raman spectroscopy was employed to understand how the SWNTs function as a highly flexible conductive additive.

Dillon, A. C.

2012-01-01T23:59:59.000Z

303

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Working and Net Available Shell Storage Capacity November 2013 With Data as of September 30, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of September 30, 2013 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

304

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

305

Kuwait pressing toward preinvasion oil production capacity  

SciTech Connect (OSTI)

Oil field reconstruction is shifting focus in Kuwait as the country races toward prewar production capacity of 2 million b/d. Oil flow last month reached 1.7 million b/d, thanks largely to a massive workover program that has accomplished about as much as it can. By midyear, most of the 19 rigs in Kuwait will be drilling rather than working over wells vandalized by retreating Iraqi troops in February 1991. Seventeen gathering centers are at work, with capacities totaling 2.4 million b/d, according to state-owned Kuwait Oil Co. (KOC). This article describes current work, the production infrastructure, facilities strategy, oil recovery, well repairs, a horizontal pilot project, the drilling program, the constant reminders of war, and heightened tensions.

Tippee, B.

1993-03-15T23:59:59.000Z

306

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

307

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

308

Local gravitational physics of the Hubble expansion  

E-Print Network [OSTI]

We study physical consequences of the Hubble expansion of FLRW manifold on measurement of space, time and light propagation in the local inertial frame. We analyse the solar system radar ranging and Doppler tracking experiments, and time synchronization. FLRW manifold is covered by global coordinates (t,y^i), where t is the cosmic time coinciding with the proper time of the Hubble observers. We introduce local inertial coordinates x^a=(x^0,x^i) in the vicinity of a world line of a Hubble observer with the help of a special conformal transformation. The local inertial metric is Minkowski flat and is materialized by the congruence of time-like geodesics of static observers being at rest with respect to the local spatial coordinates x^i. We consider geodesic motion of test particles and notice that the local coordinate time x^0=x^0(t) taken as a parameter along the world line of particle, is a function of the Hubble's observer time t. This function changes smoothly from x^0=t for a particle at rest (observer's clock), to x^0=t+1/2 Ht^2 for photons, where H is the Hubble constant. Thus, motion of a test particle is non-uniform when its world line is parametrized by time t. NASA JPL Orbit Determination Program presumes that motion of light (after the Shapiro delay is excluded) is uniform with respect to the time t but it does not comply with the non-uniform motion of light on cosmological manifold. For this reason, the motion of light in the solar system analysed with the Orbit Determination Program appears as having a systematic blue shift of frequency, of radio waves circulating in the Earth-spacecraft radio link. The magnitude of the anomalous blue shift of frequency is proportional to the Hubble constant H that may open an access to the measurement of this fundamental cosmological parameter in the solar system radiowave experiments.

Sergei Kopeikin

2015-01-21T23:59:59.000Z

309

Calculations of Heat-Capacities of Adsorbates  

E-Print Network [OSTI]

PHYSICAL REVIEW B VOLUME 14, NUMBER 7 1 OCTOBER 1976 Calculations of heat capacities of adsorbates W. R. Lawrence and R. E. Allen Department of Physics, Texas A& M University, College Station, Texas 77843 (Received 2 September 1975) The phonon... the substrate has a perfect (100) surface and the adsorbate goes down as a solid monolayer in registry with the substrate. The quasiharmonic approximation was used, and the results for Ne adsorbates were considerably different from those obtained...

LAWRENCE, WR; Allen, Roland E.

1976-01-01T23:59:59.000Z

310

Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater  

Science Journals Connector (OSTI)

A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m2, an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system.

X.Q. Kong; D. Zhang; Y. Li; Q.M. Yang

2011-01-01T23:59:59.000Z

311

Performance characteristics of a turbo expander substituted for expansion valve on air-conditioner  

Science Journals Connector (OSTI)

An experimental study is conducted on a small turbo expander which could be applied to the expansion process in place of expansion valves in refrigerator or air-conditioner to improve the cycle efficiency by recovering energy from the throttling process. The operating gas is \\{HFC134a\\} and the maximum cooling capacity of experiment apparatus is 32.7 kW. Four different turbo expanders are tested to find the performance characteristics of the turbo expander when they operate at a low partial admission rate. The partial admission rate is 1.70% or 2.37, and expanders are operated in the supersonic flow. In the experiment, pressure and temperature are measured at 10 different locations in the experimental apparatus. In addition to these measurements, output power at the turbo expander is measured through a generator installed on a rotor shaft with the rotational speed. Performance data of the turbo expander are obtained at many part load operations by adjusting the output power of the generator. A maximum of 15.8% total-to-static efficiency is obtained when the pressure ratio and the partial admission ratio are 2.37 and 1.70%, respectively. Experimental results show that the optimal velocity ratio decreases when the pressure ratio is decreased, and peak efficiencies, which are obtained at locally maximized efficiency depending on the operating condition, vary linearly against the subcooling temperature or the pressure ratio.

Soo-Yong Cho; Chong-Hyun Cho; Chaesil Kim

2008-01-01T23:59:59.000Z

312

Performance characteristics of a turbo expander substituted for expansion valve on air-conditioner  

SciTech Connect (OSTI)

An experimental study is conducted on a small turbo expander which could be applied to the expansion process in place of expansion valves in refrigerator or air-conditioner to improve the cycle efficiency by recovering energy from the throttling process. The operating gas is HFC134a and the maximum cooling capacity of experiment apparatus is 32.7 kW. Four different turbo expanders are tested to find the performance characteristics of the turbo expander when they operate at a low partial admission rate. The partial admission rate is 1.70% or 2.37, and expanders are operated in the supersonic flow. In the experiment, pressure and temperature are measured at 10 different locations in the experimental apparatus. In addition to these measurements, output power at the turbo expander is measured through a generator installed on a rotor shaft with the rotational speed. Performance data of the turbo expander are obtained at many part load operations by adjusting the output power of the generator. A maximum of 15.8% total-to-static efficiency is obtained when the pressure ratio and the partial admission ratio are 2.37 and 1.70%, respectively. Experimental results show that the optimal velocity ratio decreases when the pressure ratio is decreased, and peak efficiencies, which are obtained at locally maximized efficiency depending on the operating condition, vary linearly against the subcooling temperature or the pressure ratio. (author)

Cho, Soo-Yong [Department of Mechanical and Aerospace Engineering (ReCAPT), Gyeongsang National University, 900 Gajoa-dong, Jinju 660-701 (Korea); Cho, Chong-Hyun [School of Mechanical and Aerospace Engineering, Gyeongsang National University, 900 Gajoa-dong, Jinju 660-701 (Korea); Kim, Chaesil [Department of Mechanical Engineering, Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea)

2008-09-15T23:59:59.000Z

313

Hydrogen plant expansion using oxygen secondary reforming  

SciTech Connect (OSTI)

As crude oil feedstocks become heavier and more sour, the H/sub 2/ demands of a refinery increase. Heavier sour crudes require more H/sub 2/ for hydrodesulfurization, hydrocracking and hydrotreating to produce the lighter, high quality products currently in demand. In most cases, this additional H/sub 2/ requirement is satisfied by the generation of on purpose H/sub 2/. The on purpose H/sub 2/ demand is typically satisfied by steam methane reforming (SMR). The conventional SMR process, utilizing shift, CO/sub 2/ removal, and methanation for H/sub 2/ purification, can produce 90 to 98% pure H/sub 2/ at 150 to 400 psig at an energy efficiency of 410 Btu (HHV)/SCF H/sub 2/. An SMR process employing shift and pressure swing adsorption (PSA) for H/sub 2/ purification can produce H/sub 2/ at a purity up to 99.999% and an energy efficiency of 390 Btu (HHV)/SCF H/sub 2/. Two options available for satisfying an increased on purpose H/sub 2/ demand are the addition of a new SMR plant and the debottlenecking of an existing SMR. A new SMR plant is the most capital-intensive means of expanding H/sub 2/ capacity.

Snyder, G.D.; Wang, S.I.

1986-01-01T23:59:59.000Z

314

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

315

Kansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

316

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

317

Minnesota Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

318

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

319

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

320

Missouri Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

322

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

323

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

324

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

325

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

326

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

327

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

328

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

329

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

330

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

331

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

332

New York Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

333

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

334

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing countries.

335

Nuclear Fusion Drives Present-Day Accelerated Cosmic Expansion  

SciTech Connect (OSTI)

The widely accepted model of our cosmos is that it began from a Big Bang event some 13.7 billion years ago from a single point source. From a twin universe perspective, the standard stellar model of nuclear fusion can account for the Dark Energy needed to explain the mechanism for our present-day accelerated expansion. The same theories can also be used to account for the rapid inflationary expansion at the earliest time of creation, and predict the future cosmic expansion rate.

Ying, Leong [Princeton Gamma-Tech Instruments, 303C College Road East, Princeton, NJ 07030 (United States)

2010-09-30T23:59:59.000Z

336

Multipole expansions of electromagnetic fields using Debye potentials  

Science Journals Connector (OSTI)

The Debye potentials are introduced by giving new derivations of the multipole expansions of the magnetostatic and electrostatic fields. Simplified derivations of the multipole expansions of the electrodynamic fields are then given. The radiated energy momentum and angular momentum are all calculated in the same manner i.e. using the proper transport equations. The questions of uniqueness and completeness of the Debye potential representations of the fields are discussed. In the Appendices are collected together some useful vector fieldtheorems and operator identities involving the angular momentum operator and also simplified derivations of the spherical harmonic expansions of the static and dynamic Green functions.

C. G. Gray

1978-01-01T23:59:59.000Z

337

CAPITAL REGION  

Broader source: Energy.gov (indexed) [DOE]

t 09/20/07 15:28 FAX 301 903 4656 t 09/20/07 15:28 FAX 301 903 4656 CAPITAL REGION 0 j002 SDOE F 1325.8 (8-89) EFG (0790) Energy United States Government Department of Energy Memorandum DATE. September 18, 2007 Audit Report No.: OAS-L-07-23 REPLY TO: IG-34 (A07TG036) SUBJECT: Evaluation of "The Federal Energy Regulatory Commission's Cyber Security Program-2007" TO: Chairman, Federal Energy Regulatory Commission The purpose of this report is to inform you of the results o Four evaluation of the Federal Energy Regulatory Commission's (Commission) cyber security program. The evaluation was initiated in May 2007, and our fieldwork was conducted through September 2007. Our methodology is described in the attachment to this report. . INTRODUCTION AND OBJECTIVE The Commission reports that it is constantly improving thl stability, reliability, and

338

Regional Transmission Projects: Finding Solutions  

SciTech Connect (OSTI)

The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association of State Utility Consumer Advocates National Grid Northeast Utilities PA Office of Consumer Advocates Pacific Gas & Electric Corporation Pennsylvania Public Utility Commission PJM Interconnection The Electricity Consumers Resource Council U.S. Department of Energy US Department of the Interior Van Ness Feldman Western Interstate Energy Board Wind on the Wires Wisconsin Public Service Commission Xcel Energy

The Keystone Center

2005-06-15T23:59:59.000Z

339

electricity market module region | OpenEI  

Open Energy Info (EERE)

342 342 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281342 Varnish cache server electricity market module region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

340

Capacity computations of right-turn-on-red using the Highway Capacity Manual  

SciTech Connect (OSTI)

Right-turn-on-red (RTOR) is a traffic control strategy at signalized intersections that allows vehicles to turn right during red phases provided they do not impede the vehicles and pedestrians in green phases. RTOR is primarily a delay and energy conservation measure. Several studies that examined the impact of RTOR on vehicular delays have shown the potential of reducing fuel consumption by about 5 percent on urban streets. The reduction of delay and fuel consumption is related to extra capacity because RTOR allows vehicles to pass through an intersection in red phases. The extra capacity can be significant if an exclusive right-turn lane is provided. The 1985 {ital Highway Capacity Manual} (HCM) provides a powerful technique for evaluating how well an intersection will operate. This technique, however, is less successful in dealing with intersections where RTOR movement is permitted because it requires the analyst to supply RTOR volumes. This situation has led to a need for a formula to compute RTOR capacity. This paper proposes a method to calculate this capacity.

Luh, J.Z. (Langan Engineering Associates, NJ (US)); Lu, Y.J. (Concordia Univ., Loyola Campus, Montreal, PQ (Canada))

1990-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

1992 Annual Capacity Report. Revision 1  

SciTech Connect (OSTI)

The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) requires the Department of Energy (DOE) to issue an Annual Capacity Report (ACR) for planning purposes. This report is the fifth in the series published by DOE. In May 1993, DOE published the 1992 Acceptance Priority Ranking (APR) that established the order in which DOE will allocate projected acceptance capacity. As required by the Standard Contract, the acceptance priority ranking is based on the date the spent nuclear fuel (SNF) was permanently discharged, with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. The 1992 ACR applies the projected waste acceptance rates in Table 2.1 to the 1992 APR, resulting in individual allocations for the owners and generators of the SNF. These allocations are listed in detail in the Appendix, and summarized in Table 3.1. The projected waste acceptance rates for SNF presented in Table 2.1 are nominal and assume a site for a Monitored Retrievable Storage (MRS) facility will be obtained; the facility will initiate operations in 1998; and the statutory linkages between the MRS facility and the repository set forth in the Nuclear Waste Policy Act of 1982, as amended (NWPA), will be modified. During the first ten years following projected commencement of Civilian Radioactive Waste Management System (CRWMS) operation, the total quantity of SNF that could be accepted is projected to be 8,200 metric tons of uranium (MTU). This is consistent with the storage capacity licensing conditions imposed on an MRS facility by the NWPA. The annual acceptance rates provide an approximation of the system throughput and are subject to change as the program progresses.

Not Available

1993-05-01T23:59:59.000Z

342

On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids  

SciTech Connect (OSTI)

The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids.

Sai Venkata Ramana, A., E-mail: asaivenk@barc.gov.in [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

2014-04-21T23:59:59.000Z

343

Stetson Wind Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stetson Wind Expansion Wind Farm Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Location Washington County ME Coordinates 45.595833°, -67.928628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.595833,"lon":-67.928628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio |  

Broader source: Energy.gov (indexed) [DOE]

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio May 24, 2012 - 5:08pm Addthis Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? DuPont's newly expanded solar manufacturing plant in Circleville, Ohio, produces thin film materials to strengthen the durability of solar panels. To support the expansion project, DuPont created 70 new operational

345

DOE Announces Expansion and Solicitation for Entrepreneur in Residence  

Broader source: Energy.gov (indexed) [DOE]

Expansion and Solicitation for Entrepreneur in Expansion and Solicitation for Entrepreneur in Residence Program DOE Announces Expansion and Solicitation for Entrepreneur in Residence Program November 19, 2008 - 4:58pm Addthis Entrepreneurs Accelerate Deployment of Advanced Clean Energy Technologies from DOE's Labs to the Marketplace WASHINGTON - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced a competitive solicitation for five venture capital firms to participate in the expansion of DOE's Entrepreneur in Residence (EIR) program, that aims to accelerate deployment and commercialization of advanced clean energy technologies from DOE's National Laboratories. EIR furthers President Bush's comprehensive strategy to reduce our nation's dependence on foreign oil and reduce greenhouse gas emissions by empowering

346

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio |  

Broader source: Energy.gov (indexed) [DOE]

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio May 24, 2012 - 5:08pm Addthis Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? DuPont's newly expanded solar manufacturing plant in Circleville, Ohio, produces thin film materials to strengthen the durability of solar panels. To support the expansion project, DuPont created 70 new operational

347

Partnership in Assisting Community Expansion (PACE) Program (North Dakota)  

Broader source: Energy.gov (indexed) [DOE]

Partnership in Assisting Community Expansion (PACE) Program (North Partnership in Assisting Community Expansion (PACE) Program (North Dakota) Partnership in Assisting Community Expansion (PACE) Program (North Dakota) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Loan Program The Partnership in Assisting Community Expansion (PACE) Program is available to finance the purchase of equipment or real estate, as well as term working capital. In conjunction with community support, the program provides an interest buy down that can reduce the borrower's rate of interest by as much as 5%. This buy down can mean an interest savings of approximately $462,000 over the term of the loan. In return, the borrower

348

Financial Analysis of Electric Sector Expansion Plans (FINPLAN) | Open  

Open Energy Info (EERE)

Financial Analysis of Electric Sector Expansion Plans (FINPLAN) Financial Analysis of Electric Sector Expansion Plans (FINPLAN) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial Analysis of Electric Sector Expansion Plans (FINPLAN) Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Market analysis Resource Type: Software/modeling tools Website: www-tc.iaea.org/tcweb/abouttc/strategy/Thematic/pdf/presentations/ener References: Overview of IAEA PESS Models [1] "In developing countries, financial constraints are often the most important obstacle to implementing optimal electricity expansion plans. FINPLAN helps assess the financial viability of plans and projects. It takes into account different financial sources - including export credits,

349

Major Business Expansion Bond Program (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Expansion Bond Program (Maine) Expansion Bond Program (Maine) Major Business Expansion Bond Program (Maine) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Bond Program Provider Finance Authority of Maine The Major Business Expansion Bond Program provides long-term, credit-enhanced financing up to $25,000,000 at taxable bond rates for businesses creating or retaining at least 50 jobs; up to $10,000,000 is available for businesses which expand their manufacturing services. The bond proceeds may be used to acquire real estate, machinery, equipment, or rehabilitate or expand an existing facility. The interest rate is determined by market forces at the time of the bond sale

350

Train track expansions of measured foliations February 16, 2003  

E-Print Network [OSTI]

Train track expansions of measured foliations Lee Mosher February 16, 2003 Contents 1 Introduction foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Train tracks and train track's classification of mapping classes . . . . . . . . . . . . . . 47 3 Train tracks 49 3.1 Pretracks

Mosher, Lee

351

Train track expansions of measured foliations December 28, 2003  

E-Print Network [OSTI]

Train track expansions of measured foliations Lee Mosher December 28, 2003 Contents 1 Introduction foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Train tracks and train track's classification of mapping classes . . . . . . . . . . . . . . 53 3 Train tracks 55 3.1 Pretracks

Mosher, Lee

352

Lattice Boltzmann boundary conditions via singular forces: irregular expansion analysis  

E-Print Network [OSTI]

Lattice Boltzmann boundary conditions via singular forces: irregular expansion analysis. We benchmark the method on lattice Boltzmann flows past a rigid disk, comparing its numerical performances with standard boundary condition approaches. Key words: lattice Boltzmann method, boundary

353

Query Expansion Using a Collection Dependent Probabilistic Latent Semantic Thesaurus  

Science Journals Connector (OSTI)

Many queries on collections of text documents are too short to produce informative results. Automatic query expansion is a method of adding terms to the query without interaction from the user in order to obtain ...

Laurence A. F. Park; Kotagiri Ramamohanarao

2007-01-01T23:59:59.000Z

354

Impact of GHG Emission Reduction on Power Generation Expansion Planning  

Science Journals Connector (OSTI)

In this work the impact of greenhouse gas (GHG) emission reduction on Power Generation Expansion Planning ... models, which also consider environmental constraints and GHG emission limits, is presented. After a s...

F. Careri; C. Genesi; P. Marannino; M. Montagna…

2012-01-01T23:59:59.000Z

355

Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP  

Science Journals Connector (OSTI)

We study the resolution complexity of Tseitin formulas over arbitrary rings in terms of combinatorial properties of graphs. We give some evidence that an expansion of a graph is a good characterization of the ...

Dmitry Itsykson; Vsevolod Oparin

2013-01-01T23:59:59.000Z

356

CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project  

Broader source: Energy.gov [DOE]

Categorical Determination Alcoa Tennessee Automotive Sheet Expansion Project CX(s) Applied: B1.31 Date: 05/06/2014 Location(s): Alcoa, Tennessee Offices(s): Loan Programs Office

357

On the Born-Oppenheimer expansion for polyatomic molecules  

Science Journals Connector (OSTI)

We consider the Schrödinger operatorP(h) for a polyatomic molecule in the semiclassical limit where the mass ratioh 2 of electronic to nuclear mass tends to zero. We obtain WKB-type expansions of ...

M. Klein; A. Martinez; R. Seiler; X. P. Wang

358

Pressure recovery in a radiused sudden expansion Barton L. Smith  

E-Print Network [OSTI]

Pressure recovery in a radiused sudden expansion Barton L. Smith Abstract Experiments on a steady were motivated by a similar study for oscillatory flow in the same geometry. Smith and Swift (2003

Smith, Barton L.

359

How are Feynman graphs resumed by the Loop Vertex Expansion?  

E-Print Network [OSTI]

The purpose of this short letter is to clarify which set of pieces of Feynman graphs are resummed in a Loop Vertex Expansion, and to formulate a conjecture on the $\\phi^4$ theory in non-integer dimension.

Vincent Rivasseau; Zhituo Wang

2010-06-23T23:59:59.000Z

360

Generation and transmission expansion planning for renewable energy integration  

SciTech Connect (OSTI)

In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory

2010-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Parametric study of relay seismic capacity  

Science Journals Connector (OSTI)

An evaluation of the existing relay test data base at Brookhaven National Laboratory (BNL) has indicated that the seismic capacity of a relay may depend on various parameters related to the design or the input motion. In order to investigate the effect of these parameters on the seismic fragility level, BNL has conducted a relay test program. Establishing the correlation between the single frequency fragility test input and the corresponding multifrequency response spectrum (TRS) is also an objective of this test program. The testing has been performed at Wyle Laboratories. This paper discusses the methodology used for testing and presents a brief summary of important test results.

K. Bandyopadhyay; C. Hofmayer

1992-01-01T23:59:59.000Z

362

LEDS Capacity Building and Training Inventory | Open Energy Information  

Open Energy Info (EERE)

LEDS Capacity Building and Training Inventory LEDS Capacity Building and Training Inventory Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve LEDS Capacity Building and Training Activities and Resources Upcoming Capacity Building Events CLEAN shares capacity building activity information to encourage technical institutions to better coordinate efforts and avoid duplication of effort. If you are aware of an upcoming LEDS-related training or capacity building event please add it to the calendar below. Add Capacity Building or Training Event Webinars Title Developer Biopower Tool Webinar National Renewable Energy Laboratory United States Department of Energy Centro de Energías Renovables (CER) CESC-Webinar: Building an Innovation and Entrepreneurship Driven Economy: How Policies Can Foster Risk Capital Investment in Renewable Energy Clean Energy Solutions Center

363

Natural Gas Productive Capacity for the Lower-48 States  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States for the Lower-48 States 6/4/01 Click here to start Table of Contents Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Summary - PPT Slide Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide Other Areas PPT Slide PPT Slide PPT Slide

364

U.S. Fuel Ethanol Plant Production Capacity  

Gasoline and Diesel Fuel Update (EIA)

U.S. Fuel Ethanol Plant Production Capacity U.S. Fuel Ethanol Plant Production Capacity Release Date: May 20, 2013 | Next Release Date: May 2014 Previous Issues Year: 2013 2012 2011 Go Notice: Changes to Petroleum Supply Survey Forms for 2013 This is the third release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January 1, 2013. U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District Number of Plants 2013 Nameplate Capacity 2012 Nameplate Capacity (MMgal/year) (mb/d) (MMgal/year) (mb/d) PADD 1 4 360 23 316 21

365

A reduction theorem for capacity of positive maps  

E-Print Network [OSTI]

We prove a reduction theorem for capacity of positive maps of finite dimensional C*-algebras, thus reducing the computation of capacity to the case when the image of a nonscalar projection is never a projection.

Erling Stormer

2005-10-06T23:59:59.000Z

366

Evaluation of capacity release transactions in the natural gas industry  

E-Print Network [OSTI]

The purpose of this thesis is to analyze capacity release transactions in the natural gas industry and to state some preliminary conclusions about how the capacity release market is functioning. Given FERC's attempt to ...

Lautzenhiser, Stephen

1994-01-01T23:59:59.000Z

367

Storage and capacity rights markets in the natural gas industry  

E-Print Network [OSTI]

This dissertation presents a different approach at looking at market power in capacity rights markets that goes beyond the functional aspects of capacity rights markets as access to transportation services. In particular, ...

Paz-Galindo, Luis A.

1999-01-01T23:59:59.000Z

368

Economics and Design of Capacity Markets for the Power Sector  

Science Journals Connector (OSTI)

Capacity markets are a means to assure resource adequacy. The need for a capacity market stems from several market failures the most prominent of which is the absence of a robust demand-side. Limited demand response

Peter Cramton; Axel Ockenfels

2012-06-01T23:59:59.000Z

369

Temperature, Energy, and Heat Capacity of Asymptotically Anti-De Sitter Black Holes  

E-Print Network [OSTI]

We investigate the thermodynamical properties of black holes in (3+1) and (2+1) dimensional Einstein gravity with a negative cosmological constant. In each case, the thermodynamic internal energy is computed for a finite spatial region that contains the black hole. The temperature at the boundary of this region is defined by differentiating the energy with respect to entropy, and is equal to the product of the surface gravity (divided by~$2\\pi$) and the Tolman redshift factor for temperature in a stationary gravitational field. We also compute the thermodynamic surface pressure and, in the case of the (2+1) black hole, show that the chemical potential conjugate to angular momentum is equal to the proper angular velocity of the black hole with respect to observers who are at rest in the stationary time slices. In (3+1) dimensions, a calculation of the heat capacity reveals the existence of a thermodynamically stable black hole solution and a negative heat capacity instanton. This result holds in the limit that the spatial boundary tends to infinity only if the comological constant is negative; if the cosmological constant vanishes, the stable black hole solution is lost. In (2+1) dimensions, a calculation of the heat capacity reveals the existence of a thermodynamically stable black hole solution, but no negative heat capacity instanton.

J. D. Brown; J. Creighton; R. B. Mann

1994-05-03T23:59:59.000Z

370

Development of high-capacity cathode materials with integrated...  

Broader source: Energy.gov (indexed) [DOE]

to improve rate performance * Optimize composition (Li- and Mn composition) and synthesis conditions * Evaluation of electrochemical properties (capacity, cycling performance...

371

Effect of ettringite morphology on DEF-related expansion  

Science Journals Connector (OSTI)

In this study, time dependent ettringite formation in heat-cured mortars has been investigated. In order to clarify the effect of formation place and morphology of ettringite on expansion, secondary electron images of cracked surfaces of mortars at three ages were analysed by SEM–EDS. Also, the X-ray microtomography analysis has been performed to observe the crack formation. The expansive role of delayed formed ettringite was related with its time dependent morphology as a function of formation place. From these observations, mechanism of ettringite reformation after heat curing has been proposed. Alumina rich species were the primary sources of ettringite formation as the starting nuclei. At later ages, if S and Al sources are readily available, the mentioned alumina rich nuclei will grow up and build ball ettringite. At long term, ball type ettringites (non-expansive) converted to massive type (expansive). These conversions can only take places if the form of available space is narrow (preformed micro-cracks). Massive ettringites exert pressure in these narrow spaces and cause expansion of mortar. If the form of the available space is spherical (entrapped air voids) ball ettringites preserve their initial form and do not cause any expansion.

Kamile Tosun; Bülent Baradan

2010-01-01T23:59:59.000Z

372

Weak locking capacity of quantum channels can be much larger than private capacity  

E-Print Network [OSTI]

We show that it is possible for the so-called weak locking capacity of a quantum channel [Guha et al., PRX 4:011016, 2014] to be much larger than its private capacity. Both reflect different ways of capturing the notion of reliable communication via a quantum system while leaking almost no information to an eavesdropper; the difference is that the latter imposes an intrinsically quantum security criterion whereas the former requires only a weaker, classical condition. The channels for which this separation is most straightforward to establish are the complementary channels of classical-quantum (cq-)channels, and hence a subclass of Hadamard channels. We also prove that certain symmetric channels (related to photon number splitting) have positive weak locking capacity in the presence of a vanishingly small pre-shared secret, whereas their private capacity is zero. These findings are powerful illustrations of the difference between two apparently natural notions of privacy in quantum systems, relevant also to quantum key distribution (QKD): the older, naive one based on accessible information, contrasting with the new, composable one embracing the quantum nature of the eavesdropper's information. Assuming an additivity conjecture for constrained minimum output Renyi entropies, the techniques of the first part demonstrate a single-letter formula for the weak locking capacity of complements to cq-channels, coinciding with a general upper bound of Guha et al. for these channels. Furthermore, still assuming this additivity conjecture, this upper bound is given an operational interpretation for general channels as the maximum weak locking capacity of the channel activated by a suitable noiseless channel.

Andreas Winter

2014-03-25T23:59:59.000Z

373

Theory of Molecular Machines. I. Channel Capacity of Molecular Machines  

E-Print Network [OSTI]

Theory of Molecular Machines. I. Channel Capacity of Molecular Machines running title: Channel Capacity of Molecular Machines Thomas D. Schneider version = 5.76 of ccmm.tex 2004 Feb 3 Version 5.67 was submitted 1990 December 5 Schneider, T. D. (1991). Theory of molecular machines. I. Channel capacity

Schneider, Thomas D.

374

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

375

Thermal capacity of composite floor slabs  

Science Journals Connector (OSTI)

AbstractObjective Thermal building simulation tools take account of the thermal capacity of the walls and floors by a one-dimensional characterization. The objective was to obtain thermal equivalent parameters for ribbed or composite slab elements that can be input into one-dimensional models. Method Transient finite element calculations (FEM) were used to establish the heat transfer to and from composite floors using four deck profiles and for daily heating cycles in compartments with defined heat gains and operating conditions. Results The performance of composite slabs was compared to a concrete flat slab for a typical office in the UK and Germany. It was shown that a deep ribbed slab generates a maximum heat flux of 30.5 W/m2 for a 5 °C temperature variation about the mean, and that the daily heat absorbed by a typical composite slab was 220 Wh/m2 floor area. Conclusions Using the thermal capacity of the ribbed floor slabs, the comfort conditions defined in terms of the number of hours over 25 °C are acceptable for many classes of offices. Practical implications Thermally equivalent properties of ribbed slabs can be used in conventional software to predict the thermal performance.

B. Doering; C. Kendrick; R.M. Lawson

2013-01-01T23:59:59.000Z

376

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 9,072,508 9,104,181 9,111,242 9,117,296 9,132,250 9,171,017 1989-2013 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2013 Lower 48 States 8,988,916 9,020,589 9,027,650 9,033,704 9,048,658 9,087,425 2012-2013 Alabama 35,400 35,400 35,400 35,400 35,400 35,400 2002-2013 Arkansas 21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 California 592,711 592,711 592,711 599,711 599,711 599,711 2002-2013 Colorado 122,086 122,086 122,086 122,086 122,086 122,086 2002-2013

377

The Political History of Hydraulic Fracturing’s Expansion Across the West  

E-Print Network [OSTI]

Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.

Forbis, Robert E.

2014-01-01T23:59:59.000Z

378

Optimizing a Modular Expansion of a Wastewater Treatment Plant Using Option Theory and Moment Matching Approximation Abstract  

E-Print Network [OSTI]

We consider a municipality faced with the question of how big to make their new wastewater treatment facility to meet the demand of 10 % expected growth in the number of new connections. Previously, we developed a real options framework for determining optimal plant size and showed that the model takes on the form of an Asian option. Furthermore, it was shown that if the connection rate growths are closely correlated with the market growth, then the penalty costs associated with having insufficient capacity to treat the wastewater can be effectively hedged, significantly reducing overall expected costs. In this study, we introduce an approximate analytical solution and optimize the plant size of a staged / modular expansion. Based on the given construction cost estimates, we show that a staged expansion has a minimal (expected) savings when connection growth rates are closely correlated to the market growth rates. However, as the correlation decreases to zero, or, alternatively, no attempt is made to hedge the penalty costs, a staged expansion has an expected savings of 20%.

Yuri Lawryshyn; Sebastian Jaimungal

379

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth trend that began slowly in 2005 and intensified in 2006. In 2007, about 1,700 miles of pipeline were installed, which was greater than in any year since 2003 (Figure 2). The expansion cycle for natural gas pipeline construction is occurring at the same time as the development of the

380

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth trend that began slowly in 2005 and intensified in 2006. In 2007, about 1,700 miles of pipeline were installed, which was greater than in any year since 2003 (Figure 2). The expansion cycle for natural gas pipeline construction is occurring at the same time as the development of the

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

UNDP-Low Emission Capacity Building Programme | Open Energy Information  

Open Energy Info (EERE)

Programme Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme Agency/Company /Organization United Nations Development Programme (UNDP), European Union Sector Climate, Energy, Land, Water Topics Low emission development planning Resource Type Training materials Website http://www.undp.org/climatestr References UNDP-Low Emission Capacity Building Programme[1] UNDP-Low Emission Capacity Building Programme Screenshot "This collaborative programme aims to strengthen technical and institutional capacities at the country level, while at the same time facilitating inclusion and coordination of the public and private sector in national initiatives addressing climate change. It does so by utilizing the

382

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

383

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building (Redirected from US EPA GHG Inventory Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing

384

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 64,000 64,000 64,000 64,000 64,000 64,000 1988-2012 Salt Caverns

385

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 572,477 572,477 580,380 580,380 580,380 577,944 1988-2012

386

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 690,678 740,477 766,768 783,579 812,394 831,190 1988-2012

387

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 220,359 220,359 220,368 221,751 221,751 221,751 1988-2012

388

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 29,415 29,415 29,565 29,565 29,565 28,750 1989-2012 Salt Caverns

389

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,060,558 1,062,339 1,069,405 1,069,898 1,075,472 1,078,979

390

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,200 1,200 1,200 0 1998-2012 Salt Caverns 0 1999-2012

391

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 19,300 26,900 26,900 32,900 35,400 35,400 1995-2012 Salt Caverns

392

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,067 111,167 111,120 111,120 106,764 124,937 1988-2012

393

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,294 114,937 114,274 111,271 111,313 110,749 1988-2012

394

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 588,711 615,858 651,968 670,880 690,295 699,646 1988-2012

395

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 374,201 374,201 376,301 376,301 376,301 376,301 1988-2012

396

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 9,560 6,200 9,500 9,500 9,500 9,500 1998-2012 Salt Caverns

397

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 166,909 187,251 210,128 235,638 240,241 289,416 1988-2012

398

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 759,365 759,153 776,964 776,822 776,845 774,309 1988-2012

399

The NASA CSTI High Capacity Power Program  

SciTech Connect (OSTI)

The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

Winter, J.M.

1994-09-01T23:59:59.000Z

400

Region 9: Pacific Rim Region, Regional Sustainability Plan  

Broader source: Energy.gov (indexed) [DOE]

REGION 9: PACIFIC RIM REGION REGION 9: PACIFIC RIM REGION Regional Sustainability Plan Presented by Ruth Cox Region 9 Regional Administrator Federal Utility Partnership Working Group (FUPWG) May 22 nd , 2013 REGION 9 INFORMATION MANAGE Federal space  36 million RSF in Region Nine * 173 owned buildings, 955 leased buildings * 100,000 Federal workers housed DESIGN & CONSTRUCT new Federal buildings $1.4 billion in FY12 capital construction projects $318 million in FY13 - Los Angeles Courthouse project PROVIDE PROCUREMENT LEADERSHIP across the Federal government  $1.24 billion in total GSA Schedule sales in FY12  $468 million to small businesses  34,000 fleet vehicles, 53% of which are Alternative Fuel Vehicles Pacific Rim Profile - CA, AZ, NV, HI

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluating the Impact of Plug-in Hybrid Electric Vehicles on Regional Electricity Supplies  

SciTech Connect (OSTI)

Plug-in Hybrid Electric Vehicles (PHEVs) have the potential to increase the use of electricity to fuel the U.S. transportation needs. The effect of this additional demand on the electric system will depend on the amount and timing of the vehicles' periodic recharging on the grid. We used the ORCED (Oak Ridge Competitive Electricity Dispatch) model to evaluate the impact of PHEVs on the Virginia-Carolinas (VACAR) electric grid in 2018. An inventory of one million PHEVs was used and charging was begun in early evening and later at night for comparison. Different connection power levels of 1.4 kW, 2 kW, and 6 kW were used. The results include the impact on capacity requirements, fuel types, generation technologies, and emissions. Cost information such as added cost of generation and cost savings versus use of gasoline were calculated. Preliminary results of the expansion of the study to all regions of the country are also presented. The results show distinct differences in fuels and generating technologies when charging times are changed. At low specific power and late in the evening, coal was the major fuel used, while charging more heavily during peak times led to more use of combustion turbines and combined cycle plants.

Hadley, Stanton W [ORNL

2007-01-01T23:59:59.000Z

402

Multifractal analysis based on the Choquet capacity: Application to solar magnetograms  

Science Journals Connector (OSTI)

We explore the multiscale properties of the line-of-sight component of Solar magnetic fields using magnetograms of the full disc obtained from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). Multifractal spectra are estimated by different methods, based on the Choquet capacity, instead of the traditional Borel measure. We have extracted spectra corresponding to active regions (AR) as well as those from quiet regions of the Sun. The shapes of spectra of active regions and those of quiet regions of the Sun are different, displaying different lengths of left-hand and right-hand branches. We indicate that multifractal scaling of magnetograms can be produced by a set of statistically similar elements in digital high resolution images. The same features are found in images of many terrestrial scenes.

N.G. Makarenko; L.M. Karimova; B.V. Kozelov; M.M. Novak

2012-01-01T23:59:59.000Z

403

Estimating Water Needs to Meet 2025 Electricity Generating Capacity Forecasts by NERC Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL-2006/1235 NETL-2006/1235 August 2006 Revised April 8, 2008 Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

404

Projected impacts of climate change on regional capacities for global plant species richness  

Science Journals Connector (OSTI)

...A1, B1, B2). The dark green colour stands for 100% congruence...Hawkins, B. A. , 2003 Energy, water, and broad-scale...between contemporary water-energy dynamics and other non-climatic...significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees...

2010-01-01T23:59:59.000Z

405

State & Regional Resources  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office partners with the National Biomass State and Regional Partnerships' five regional organizations that provide leadership in their regions with regard to policies...

406

Regional Summary Pacific Region Management Context  

E-Print Network [OSTI]

, for the Eastern Pacific Ocean, and the Western and Central Pacific Fishery Commission, for the Western PacificRegional Summary Pacific Region Management Context The Pacific Region includes California, Oregon, and Washington. Federal fisheries in this region are managed by the Pacific Fishery Management Council (PFMC

407

Motiva Enterprises Refinery Expansion Groundbreaking | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enterprises Refinery Expansion Groundbreaking Enterprises Refinery Expansion Groundbreaking Motiva Enterprises Refinery Expansion Groundbreaking December 10, 2007 - 4:44pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Bill. It's good to see Congressman Poe, Rob Routs, Mr. Al-Khayyal and Mayor Prince here. Thank you all for inviting me to be part of this occasion. In 1901 Texas wildcatters struck oil near here at a place called Spindletop, setting off the Texas Oil Boom. Like the California Gold Rush some 50 years before, the Texas Oil Boom helped to build America. People moved across the country in search of prosperity. To achieve it, they needed to develop new technologies and build new infrastructure like the original parts of the Port Arthur refinery, which opened here in 1903. As America's need for energy expanded as our demand for oil and gas

408

EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

88: Cameron Pipeline Expansion Project and Cameron LNG 88: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA SUMMARY Federal Energy Regulatory Commission (FERC) is preparing an EIS, with DOE as a cooperating agency, to analyze the potential environmental impacts of a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export the LNG. PUBLIC COMMENT OPPORTUNITIES Comment Period Ends: 03/03/14 DOCUMENTS AVAILABLE FOR DOWNLOAD January 10, 2014

409

Heat Flow Database Expansion for NGDS Data Development, Collection and  

Open Energy Info (EERE)

Database Expansion for NGDS Data Development, Collection and Database Expansion for NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Data Development, Collection, and Maintenance Project Description In particular the efforts on document and core digitization, the recovery of the BEG geopressure data developed during the approximately $200 million project by DOE in the 1970-1980, the EGS data from the Fenton Hill experiments, and meta-data associated with US thermal mapping are crucial to be performed at this point because they are otherwise in danger of deterioration or complete loss.

410

Mirror Film Company Has 'Concentrated' Plans for Expansion | Department of  

Broader source: Energy.gov (indexed) [DOE]

Mirror Film Company Has 'Concentrated' Plans for Expansion Mirror Film Company Has 'Concentrated' Plans for Expansion Mirror Film Company Has 'Concentrated' Plans for Expansion September 10, 2010 - 1:19pm Addthis Lorelei Laird Writer, Energy Empowers In concentrating solar power, glass is king-but it's fighting to hold on to its crown. The reflectivity of glass mirrors makes them a great choice for focusing sunlight onto a heat generator. However, the glass mirrors can be expensive and heavy -- reducing their ability to compete with conventional energy sources. ReflecTech Inc. has an option: a silvered polymer-based film that does the same job, but with half the weight and cost. Using that film, the company can make 100,000 square feet of mirror panels per year at its factory in Arvada, Colo. Through an Advanced Manufacturing 48C tax credit through the Recovery Act,

411

EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction  

Broader source: Energy.gov (indexed) [DOE]

8: Cameron Pipeline Expansion Project and Cameron LNG 8: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA SUMMARY Federal Energy Regulatory Commission (FERC) is preparing an EIS, with DOE as a cooperating agency, to analyze the potential environmental impacts of a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export the LNG. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 13, 2012 EIS-0488: Notice of Intent to Prepare an Environmental Impact Statement

412

Microsoft Word - MunroControlCenterExpansionCX.docx  

Broader source: Energy.gov (indexed) [DOE]

9, 2012 9, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Joseph Bebee TESF-CSB-2 Proposed Action: Munro Control Center Expansion Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.15 Support Buildings Location: Spokane, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The proposed project includes a 30,000 square foot (sf) expansion to the east side of the existing building and a total of 53,500 sf of additional paved surfaces for access roads and parking to the north. All proposed activities would be on previously disturbed BPA property. The expansion of the existing Munro Control Center is to provide an alternate facility that would support critical BPA functions in the case of a major

413

Horse Hollow Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Horse Hollow Expansion Wind Farm Horse Hollow Expansion Wind Farm Facility Horse Hollow Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Market Location Near Abilene TX Coordinates 32.243193°, -100.265633° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.243193,"lon":-100.265633,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Century Expansion (4Q07) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Century Expansion (4Q07) Wind Farm Century Expansion (4Q07) Wind Farm Facility Century Expansion (4Q07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location IA Coordinates 42.495789°, -93.652368° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.495789,"lon":-93.652368,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Cluster expansion, multichannel scattering, and the optical potential  

Science Journals Connector (OSTI)

This paper investigates approximate solutions for the few-body multichannel reaction problem. In the context of the three-body scattering problem, we extend the cluster expansion formalism that is based on the Karlsson-Zeiger integral equations. The decoupling scheme developed by Bollé and Kuzmichev is modified to extract the elastic channel optical potential. The utility and rate of convergence of the cluster expansion is tested in a model three-boson problem. The interactions for the model problem are chosen to include elastic, inelastic, and rearrangement channels. It is found that only a few terms of the cluster expansion are needed to reproduce the exact three-body solutions and that cusp singularity effects which appear in the phase shift at channel thresholds are accounted for accurately.NUCLEAR REACTIONS Three-body problem. Cluster representations. Optical potential. Threshold singularities. Approximation methods.

D. Eyre; T. A. Osborn; J. P. Svenne

1981-12-01T23:59:59.000Z

416

E-Print Network 3.0 - affecting energy capacity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reserves provided by the block with capacity... , which, in turn, impacts the capacity markets, be they energy or ancillary services markets, is adequacy... capacity ofsellers'...

417

Increasing the renewable energy sources absorption capacity of the Macedonian energy system  

Science Journals Connector (OSTI)

Macedonian energy sector is the main emitter of greenhouse gases with share of about 70% in the total annual emissions. Also 70%–75% of emissions are associated with the electricity generation due to the predominant role of the lignite fuelled power plants. Recently the government has adopted a strategy for the use of renewable energy sources (RES) which identifies a target of 21% of final energy consumption from RES by 2020. In this paper analyses are conducted in order to investigate to which extent and in which way the absorption capacity of the power system for RES electricity can be improved. For this purpose combining various conventional and RES technologies including pump storage hydro power plant and revitalisation of the existing lignite power plants six scenarios for the power system expansion are developed by making use of EnergyPLAN model. Critical excess of electricity analyses are conducted in order to identify the maximal penetration of wind electricity. The results have shown that in the exiting capacities maximal penetration of wind electricity in 2020 is 13% of total electricity consumption. The revitalization of the existing lignite power plants and building of pump storage power plant would increase the wind penetration. Furthermore the developed scenarios are comparatively assessed in terms of the associated greenhouse gases emissions and import of electricity.

2013-01-01T23:59:59.000Z

418

EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Regional/State Underground Natural Gas Storage Table Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) Central Region Colorado 8 42 1,088 0 0 0 0 0 0 8 42 1,088 Iowa 0 0 0 4 77 1,060 0 0 0 4 77 1,060

419

Bethe-Brueckner-Goldstone Expansion in Nuclear Matter  

Science Journals Connector (OSTI)

The equation of state of symmetric nuclear matter at zero temperature is calculated up to the three hole-line level of approximation in the Bethe-Brueckner-Goldstone expansion. Both the standard and the continuous choices for the single particle auxiliary potential are considered. The resulting equation of state shows independence from the choice of the auxiliary potential to a high degree of accuracy. This result gives strong evidence for the convergence of the expansion and establishes the nuclear matter saturation curve for the adopted nucleon-nucleon interaction, the Argonne v14 potential.

H. Q. Song; M. Baldo; G. Giansiracusa; U. Lombardo

1998-08-24T23:59:59.000Z

420

O(4) Expansion of Off-Shell Scattering Amplitudes  

Science Journals Connector (OSTI)

Using an off-mass-shell approach, we develop a method for the O(4) expansion of the scattering amplitude for two unequal-mass, arbitrary-spin particles. General-spin spherical harmonics for O(4) are constructed. With the aid of these spherical harmonics, the M amplitude is decomposed into O(4) partial waves. The prescription for obtaining the on-mass-shell helicity states from the O(4) partial waves is given. This O(4) expansion, which is valid even away from t=0, is useful in simplifying the Bethe-Salpeter equation.

W. R. Frazer, F. R. Halpern, H. M. Lipinski, and D. R. Snider

1968-12-25T23:59:59.000Z

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Derivative expansion at small mass for the spinor effective action  

SciTech Connect (OSTI)

We study the small-mass limit of the one-loop spinor effective action, comparing the derivative expansion approximation with exact numerical results that are obtained from an extension to spinor theories of the partial-wave cutoff method. In this approach, one can compute numerically the renormalized one-loop effective action for radially separable gauge field background fields in spinor QED. We highlight an important difference between the small-mass limit of the derivative expansion for spinor and scalar theories.

Dunne, Gerald V. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046 (United States); Huet, Adolfo [Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046 (United States); Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan 58040 (Mexico); Hur, Jin [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of); Min, Hyunsoo [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of)

2011-05-15T23:59:59.000Z

422

Non-minimal Kinetic coupling to gravity and accelerated expansion  

E-Print Network [OSTI]

We study a scalar field with kinetic term coupled to itself and to the curvature, as a source of dark energy, and analyze the role of this new coupling in the accelerated expansion at large times. In the case of scalar field dominance, the scalar field and potential giving rise to power-law expansion are found in some cases, and a dynamical equation of state is calculated for a given solution of the field equations. A behavior very close to that of the cosmological constant was found.

L. N. Granda

2009-11-19T23:59:59.000Z

423

Relic gravitational waves and the cosmic accelerated expansion  

E-Print Network [OSTI]

The possibility of reconstructing the whole history of the scale factor of the Universe from the power spectrum of relic gravitational waves (RGWs) makes the study of these waves quite interesting. First, we explore the impact of a hypothetical era -right after reheating- dominated by mini black holes and radiation that may lower the spectrum several orders of magnitude. Next, we calculate the power spectrum of the RGWs taking into account the present stage of accelerated expansion and an hypothetical second dust era. Finally, we study the generalized second law of gravitational thermodynamics applied to the present era of accelerated expansion of the Universe.

German Izquierdo

2006-01-10T23:59:59.000Z

424

Regional Climate Change Adaptation Platform for Asia | Open Energy  

Open Energy Info (EERE)

Platform for Asia Platform for Asia Jump to: navigation, search Logo: Regional Climate Change Adaptation Platform for Asia Name Regional Climate Change Adaptation Platform for Asia Agency/Company /Organization United Nations Environment Programme, Swedish International Development Cooperation Agency, Stockholm Environment Institute, Asian Institute of Technology/UNEP Regional Resource Centre for Asia and the Pacific Topics Adaptation, Policies/deployment programs Website http://www.climateadapt.asia/ Country Cambodia, China, Laos, Myanmar, Thailand, Vietnam, Bangladesh, Bhutan, Nepal, Sri Lanka, Indonesia, Malaysia, Philippines UN Region Eastern Asia, South-Eastern Asia References Regional Climate Change Adaptation Platform for Asia[1] Overview "This initiative supports research and capacity building on climate change

425

FAO-Capacity Development on Climate Change | Open Energy Information  

Open Energy Info (EERE)

FAO-Capacity Development on Climate Change FAO-Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land, Climate Focus Area: Forestry, Agriculture Resource Type: Training materials, Lessons learned/best practices, Case studies/examples Website: www.fao.org/climatechange/learning/en/ Cost: Free FAO-Capacity Development on Climate Change Screenshot References: FAO-Capacity Development on Climate Change[1] Logo: FAO-Capacity Development on Climate Change This portal provides a one-stop window for Member States, partners, UN staff and other development actors to access FAO climate change learning resources to facilitate experience-sharing.

426

Property:PotentialEGSGeothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalCapacity PotentialEGSGeothermalCapacity Jump to: navigation, search Property Name PotentialEGSGeothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

427

Capacity Building Project with Howard University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Capacity Building Project with Howard University Capacity Building Project with Howard University Capacity Building Project with Howard University The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of Energy (DOE) facilities and in Washington, DC, the DOE Headquarters host community. The primary focus is on environmental justice communities-low-income and minority communities. Capacity Building Project with Howard University More Documents & Publications National Conference of Black Mayors, Inc. Capacity Building Project with Howard University The State of Environmental Justice in America 2010 Conference Environmental Justice at the U.S. Department of Energy - A Decade of

428

Microsoft Word - GasCapacityReport3-17.doc  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available from natural gas wells considering limitations of the production, gathering, and transportation systems. Surplus or unutilized capacity is the difference between the effective productive capacity and the actual production. This report contains projections of natural gas effective productive capacity in the Lower-48 States for 2003 and is based on prices and production forecasts in EIA's February 2003 Short Term Energy Outlook (STEO). The analysis projects an average surplus capacity of 5.6 Bcf/d in 2003 under STEO Base

429

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

430

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

431

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

432

Property:PotentialBiopowerGaseousCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousCapacity PotentialBiopowerGaseousCapacity Jump to: navigation, search Property Name PotentialBiopowerGaseousCapacity Property Type Quantity Description The nameplate capacity technical potential from gaseous biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

433

Spain Installed Wind Capacity Website | Open Energy Information  

Open Energy Info (EERE)

Spain Installed Wind Capacity Website Spain Installed Wind Capacity Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Spain_Installed_Wind_Capacity_Website&oldid=514562"

434

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

435

Property:PotentialBiopowerSolidCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidCapacity PotentialBiopowerSolidCapacity Jump to: navigation, search Property Name PotentialBiopowerSolidCapacity Property Type Quantity Description The nameplate capacity technical potential from solid biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

436

GIZ-Best Practices in Capacity Building Approaches | Open Energy  

Open Energy Info (EERE)

GIZ-Best Practices in Capacity Building Approaches GIZ-Best Practices in Capacity Building Approaches Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Agency/Company /Organization: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector: Energy, Climate Focus Area: Solar, Wind Resource Type: Publications, Training materials, Lessons learned/best practices Website: prod-http-80-800498448.us-east-1.elb.amazonaws.com/w/images/8/80/Best_ Cost: Free GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Screenshot

437

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,283 15,709 16,327 16,490 16,306 16,162 1985-2013 Operable Capacity (Calendar Day) 17,814 17,815 17,815 17,815 17,815 17,818 1985-2013 Operating 17,005 17,228 17,239 17,450 17,439 17,623 1985-2013 Idle 809 587 576 365 376 195 1985-2013 Operable Utilization Rate (%) 85.8 88.2 91.7 92.6 91.5 90.7 1985-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table. Release Date: 11/27/2013

438

Ukraine-Capacity Building for Low Carbon Growth | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search Name UNDP-Capacity Building for Low Carbon Growth in Ukraine AgencyCompany Organization United Nations Development Programme Sector Energy,...

439

Thailand-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) AgencyCompany Organization United States Agency for International Development, United States Environmental...

440

Information capacity and resolution in an optical system  

Science Journals Connector (OSTI)

The concept of invariance of information capacity is discussed and applied to the resolution of an optical system. Methods of obtaining superresolution in microscopy are discussed, and...

Cox, I J; Sheppard, C J R

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Design and Evaluation of Novel High Capacity Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Design and Evaluation of Novel High Capacity Cathode Materials Christopher Johnson and Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE...

442

John S. Wright Forestry Center Room Sizes, Capacities, and Rates  

E-Print Network [OSTI]

Appendix 1 John S. Wright Forestry Center Room Sizes, Capacities, and Rates Room College the Wright Center contact: Marlene Mann, Administrative Assistant Forestry and Natural Resources Voice: 765

443

Africa Adaptation Programme: Capacity Building Experiences-Improving...  

Open Energy Info (EERE)

Data and Information Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding...

444

Yellowstone Caldera Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Caldera Geothermal Region Yellowstone Caldera Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Yellowstone Caldera Geothermal Region Details Areas (3) Power Plants (0) Projects (0) Techniques (25) Map: {{{Name}}} Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Wyoming, Idaho, Montana Area 11,841 km²11,841,000,000 m² 4,570.626 mi² 127,455,339,900 ft² 14,161,836,000 yd² 2,925,970.305 acres USGS Resource Estimate for this Region Identified Mean Potential 44.0 MW44,000 kW 44,000,000 W 44,000,000,000 mW 0.044 GW 4.4e-5 TW Undiscovered Mean Potential 209.9 MW209,900 kW 209,900,000 W 209,900,000,000 mW 0.21 GW 2.099e-4 TW Planned Capacity Planned Capacity 0 MW0 kW 0 W 0 mW 0 GW 0 TW Plants Included in Planned Estimate 0 Plants with Unknown

445

Century Expansion (08) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Century Expansion (08) Wind Farm Century Expansion (08) Wind Farm Jump to: navigation, search Name Century Expansion (08) Wind Farm Facility Century Expansion (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location IA Coordinates 42.504142°, -93.656316° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.504142,"lon":-93.656316,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Technology Transfer Expansion Planned UTCA is conducting a major project  

E-Print Network [OSTI]

Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples

Carver, Jeffrey C.

447

Expansion of LiF under Neutron Irradiation  

Science Journals Connector (OSTI)

The strain gauge method is applied to the relative linear expansion of LiF under neutron irradiation. The result is (9.9±0.3)×10-5 per 1015 thermal neutrons. An estimate of the number of displacements is in adequate agreement with theory.

D. Binder and W. J. Sturm

1957-07-01T23:59:59.000Z

448

Thermal expansion normalization for large steam turbines in service  

SciTech Connect (OSTI)

Some large steam turbines encounter some problems with their thermal expansion. This shows itself in the broken (leap-like) movement of the bearing pedestals while the turbine is being heated or cooled in the course of transients. This also results in distortion of the casings, torsion of the foundation frame crossbars, increased vibration, damage of the bearings and couplings, etc. The thermal expansion freedom problems hamper the turbine`s start-ups since the relative rotor expansions attain their limits. The main causes why the turbine loses the thermal expansion freedom are the increased friction on the sliding surfaces between the bearing pedestals and foundation frame, increased transversal load on the turbine from the steam-lines connected to the cylinders, poor transition of the axial thrust between the cylinders, and insufficient rigidity of the foundation crossbars. Under consideration are a set of diagnostic, design, and technological measures to reveal the specific causes of the problems and to eliminate them. Among the most widespread and effective countermeasures are the placing of special fluoroplastometallic bands under the bearing pedestals and electrochemical facing of the keys` surfaces, adjustment of the support-and-suspension system and tightening of the foundation frame.

Avrutsky, G.D.; Savenkova, I.A.; Don, E.A.; Lyudomirsky, B.N.; Berezin, M.G. [All-Russia Thermal Engineering Research Inst., Moscow (Russian Federation)

1999-11-01T23:59:59.000Z

449

High-frequency expansion of the plasma dielectric tensor  

Science Journals Connector (OSTI)

We derive high-frequency sum-rule expansion for the transverse elements of the plasma dielectric tensor. The correlation contribution to the ?-4 sum-rule coefficient has a sign opposite to that of the longitudinal element. In addition, photon contributions add to the coefficient.

G. Kalman and R. Genga

1986-01-01T23:59:59.000Z

450

YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF  

E-Print Network [OSTI]

YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

451

SOME CLASSICAL EXPANSIONS FOR KNOP-SAHI AND MACDONALD POLYNOMIALS  

E-Print Network [OSTI]

SOME CLASSICAL EXPANSIONS FOR KNOP-SAHI AND MACDONALD* *t gives the non-symmetric Macdonald polynomial Eff(x; q, t). Macdonald shows that fo* *r any* * symmetrization of Effyields the Macdonald polynomial P~(x; q, t). In the original papers a* *ll

Morse, Jennifer

452

An extension of the linear delta expansion to superspace  

SciTech Connect (OSTI)

We introduce and discuss the method of linear delta expansion for the calculation of effective potentials in superspace, by adopting the improved version of the super-Feynman rules. Calculations are carried out up to two loops and an expression for the optimized Kaehler potential in the Wess-Zumino model is worked out.

Abdalla, M. C. B.; Senise, Carlos R. Jr. [Instituto de Fisica Teorica, UNESP, Rua Pamplona 145, Bela Vista, Sao Paulo, SP, 01405-900 (Brazil); Helayeel-Neto, J. A. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180 (Brazil); Nedel, Daniel L. [Universidade Federal do Pampa, Rua Carlos Barbosa S/N, Bairro Getulio Vargas, 96412-420, Bage, RS (Brazil)

2008-06-15T23:59:59.000Z

453

Program Program Organization Country Region Topic Sector Sector  

Open Energy Info (EERE)

Program Organization Country Region Topic Sector Sector Program Organization Country Region Topic Sector Sector Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS United States Agency for International Development USAID United States Environmental Protection Agency United States Department of Energy United States Department of Agriculture United States Department of State Albania Southern Asia Low emission development planning LEDS Energy Land Climate Algeria Clean Technology Fund CTF Algeria Clean Technology Fund CTF African Development Bank Asian Development Bank European Bank for Reconstruction and Development EBRD Inter American Development Bank IDB World Bank Algeria South Eastern Asia Background analysis Finance Implementation

454

EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective  

Science Journals Connector (OSTI)

Abstract Several methodologies exist for evaluating the economic potential of renewable energy sources. These methodologies either cannot capture how this economic potential depends on its embedding in the whole energy mix, or provide a single cost-optimal energy mix, which is not flexible enough for building consensus among the relevant stakeholders. This article addresses these two limitations and introduces a novel methodology EXPANSE (EXploration of \\{PAtterns\\} in Near-optimal energy ScEnarios) for evaluating the economic potential of renewable energy sources from an energy mix perspective. This methodology is based on generation of cost-optimal and multiple near-optimal energy mixes. These mixes show the maximum, technically feasible, cost-effective potential of a renewable energy source under consideration and how this potential depends on the other supply alternatives and energy savings in an energy mix. The methodology is illustrated with the example of the renewable energy use for heat supply in a Swiss region. The example shows that even a particular renewable energy source is costlier than the currently deployed alternatives such as oil, its economic potential in an energy mix can be as high as its full exploitable (theoretical) potential, when some deviation is allowed from the cost-optimal energy mix. However, the full economic potential of all renewable energy sources cannot be utilized simultaneously. The full deployment of the economic potential of one renewable energy source decreases the economic potential of others. EXPANSE provides basis for analyzing such interlinkages.

Evelina Trutnevyte

2013-01-01T23:59:59.000Z

455

Dynamic Long-Term Modelling of Generation Capacity Investment and Capacity Margins  

E-Print Network [OSTI]

is the capital expenditure vector for the project with ??x?1i=0 Mxi = 1. For simplicity, the expenditure schedule uses a lagged 3Which in the case of natural gas match quite well with available future prices from ICE Futures Europe (out to 2017) but are arguably... capacity I(t), which is a parallel cascade of the four technology categories. Each single category is defined by a Delay Differential Equation (DDE): dIx dt = ? (?j ,?j)??x ?j?(t? ?j ? ?x)? ? (?j ,?j)??x ?j?(t? ?j ? ?x ? ?x), (1) where ?(t) is the Dirac...

Eager, Dan; Hobbs, Benjamin; Bialek, Janusz

2012-04-25T23:59:59.000Z

456

Building Partnership Capacity and Sustainability in Financially Challenging Times  

E-Print Network [OSTI]

Building Partnership Capacity and Sustainability in Financially Challenging Times Introduction educational inequality. Partnership Question From the outset, the core objective was to design a sustainable that by focusing on capacity building and sustainability from the beginning, it is possible to build a partnership

457

Capacity of a UMTS system for aeronautical communications  

Science Journals Connector (OSTI)

Current Air Traffic Management and Air Traffic Control systems will experience a demand increase in the following years due to the large number of operating aircrafts. As a consequence, new solution must be studied to overcome this capacity limitation ... Keywords: ATC, ATM, ENR, SDR, TMA, UMTS, W-CDMA, air traffic, capacity

Miguel Calvo Ramón; Ramón Martínez Rodríguez-Osorio; Bazil Taha Ahmed; Juan José Iglesias Jiménez

2007-07-01T23:59:59.000Z

458

Prediction methods for capacity of drag anchors in clayey soils  

E-Print Network [OSTI]

A drag anchor is a marine foundation element, which is penetrated into the seabed by dragging in order to generate a required capacity. The holding capacity of a drag anchor in a particular soil condition is developed by soil resistance acting...

Yoon, Yeo Hoon

2002-01-01T23:59:59.000Z

459

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE  

E-Print Network [OSTI]

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE CHRISTINA PUHL AND SEBASTIAN STILLER Abstract a network, upper arc-capacities and a line pool. E-mail: puhl@math.tu-berlin.de, stiller of the European Commission under contract no. FP6-021235-2. 1 #12;2 CHRISTINA PUHL AND SEBASTIAN STILLER We

Nabben, Reinhard

460

Optimal Demand Response Capacity of Automatic Lighting Control  

E-Print Network [OSTI]

1 Optimal Demand Response Capacity of Automatic Lighting Control Seyed Ataollah Raziei and Hamed-mails: razieis1@udayton.edu and hamed@ee.ucr.edu Abstract--Demand response programs seek to ad- just the normal prior studies have extensively studied the capacity of offering demand response in buildings

Mohsenian-Rad, Hamed

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A dynamic programming approach for the airport capacity allocation problem  

Science Journals Connector (OSTI)

......between air traffic demand and system capacity...IMA Journal of Management Mathematics 14...traffic flow management model. In this...considered traffic demand and capacity...the left-hand side are the number...traffic flow management. ADYNAMIC PROGRAMMING...and the current demand. The state of......

Paolo Dell'Olmo; Guglielmo Lulli

2003-07-01T23:59:59.000Z

462

Software-Defined Networking Based Capacity Sharing in Hybrid Networks  

E-Print Network [OSTI]

Software-Defined Networking Based Capacity Sharing in Hybrid Networks Mateus A. S. Santos and Bruno proposes a novel approach to capacity sharing in hybrid networked environments, i.e., environments that consist of infrastructure-based as well as infrastructure- less networks. The proposed framework is based

Turletti, Thierry

463

Towards Optimal Capacity Segmentation with Hybrid Cloud Pricing  

E-Print Network [OSTI]

and EC2 spot market. Furthermore, we formulate the optimal capacity segmentation strategy as a MarkovTowards Optimal Capacity Segmentation with Hybrid Cloud Pricing Wei Wang, Baochun Li, and Ben Liang markets with different service guarantees. For example, Amazon EC2 prices virtual instances under three

Li, Baochun

464

Towards Optimal Capacity Segmentation with Hybrid Cloud Pricing  

E-Print Network [OSTI]

between periodic auctions and EC2 spot market. Furthermore, we formulate the optimal capacity segmentationTowards Optimal Capacity Segmentation with Hybrid Cloud Pricing Wei Wang, Baochun Li, and Ben Liang priced in multiple markets with different service guarantees. For example, Amazon EC2 prices virtual

Li, Baochun

465

Mechanism Design for Capacity Allocation with Price Competition  

E-Print Network [OSTI]

. This paper examines the problem of mechanism design for capacity allocation in two connected markets whereMechanism Design for Capacity Allocation with Price Competition Masabumi Furuhata Intelligent-users in price competition. We consider the problems of how allocation mechanisms in the upstream market de

Zhang, Dongmo

466

Table 1. U.S. Biodiesel Production Capacity and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel Production Capacity and Production Biodiesel Production Capacity and Production (million gallons) Period 2011 January 2,114 35 February 2,104 40 March 2,081 60 April 2,101 71 May 2,064 77 June 2,069 81

467

Artificial neural network analysis for reliability prediction of regional runoff utilization  

Science Journals Connector (OSTI)

Many factors in the reliability analysis of planning the regional rainwater utilization tank capacity need to be considered. Based on the historical daily rainfall data, the following four analyzing procedures wi...

S. C. Lee; H. T. Lin; T. Y. Yang

2010-02-01T23:59:59.000Z

468

Increased oxidative stress in barn swallows from the Chernobyl region Andrea Bonisoli-Alquati a,  

E-Print Network [OSTI]

Increased oxidative stress in barn swallows from the Chernobyl region Andrea Bonisoli-Alquati a Available online 5 November 2009 Keywords: Antioxidant capacity Barn swallow Chernobyl Oxidative stress Radioactive contamination Reactive oxygen species The Chernobyl nuclear accident produced the largest

Mousseau, Timothy A.

469

LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION  

SciTech Connect (OSTI)

Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the process very vulnerable. Each of these obstacles can be overcome when there is a common goal and vision shared by all parties and adequate funds are provided to accomplish the task. The upgrading and expansion of this facility and the construction of a similar facility on the Far East coast of Russia will enable the Russians to sign the London Convention dumping prohibition. This project is one of the first waste management construction projects in the north-west of Russia with foreign contribution. Its success may open for additional co-operative projects with Russia in the future.

BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

2000-03-01T23:59:59.000Z

470

Assess public and private sector capacity to support initiatives | Open  

Open Energy Info (EERE)

public and private sector capacity to support initiatives public and private sector capacity to support initiatives Jump to: navigation, search Stage 2 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other

471

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

472

Building MRV Standards and Capacity in Key Countries | Open Energy  

Open Energy Info (EERE)

MRV Standards and Capacity in Key Countries MRV Standards and Capacity in Key Countries Jump to: navigation, search Name Building MRV Standards and Capacity in Key Countries Agency/Company /Organization World Resources Institute (WRI) Sector Climate Focus Area Renewable Energy Topics Implementation Website http://www.wri.org/topics/mrv Program Start 2011 Program End 2014 Country Brazil, Colombia, Ethiopia, India, South Africa, Thailand South America, South America, Eastern Africa, Southern Asia, Southern Africa, South-Eastern Asia References World Resources Institute (WRI)[1] Program Overview Developing countries will be required to measure, report, and verify (MRV) mitigation actions according to international guidelines, but few have the capacity to do so. The goal of this project is to build the capacity of a

473

Property:GrossProdCapacity | Open Energy Information  

Open Energy Info (EERE)

GrossProdCapacity GrossProdCapacity Jump to: navigation, search Property Name GrossProdCapacity Property Type Quantity Description Sum of the property AvgAnnlGrossOpCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

474

Assess current country plans, policies, practices, and capacities | Open  

Open Energy Info (EERE)

Assess current country plans, policies, practices, and capacities Assess current country plans, policies, practices, and capacities Jump to: navigation, search Stage 2 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other

475

NREL: Energy Analysis - Utility-Scale Energy Technology Capacity Factors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility-Scale Energy Technology Capacity Factors Utility-Scale Energy Technology Capacity Factors This chart indicates the range of recent capacity factor estimates for utility-scale renewable energy technologies. The dots indicate the average, and the vertical lines represent the range: Average +1 standard deviation and average -1 standard deviation. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update) Operations & Maintenance (September 2013 Update) Utility-Scale Capacity Factors Useful Life Land Use by System Technology LCOE Calculator Capacity factor for energy technologies. For more information, please download supporting data for energy technology costs.

476

AEO2011: Electricity Generating Capacity | OpenEI  

Open Energy Info (EERE)

Generating Capacity Generating Capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed

477

India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate  

Open Energy Info (EERE)

Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Agency/Company /Organization Swiss Agency for Development and Cooperation Sector Energy, Land, Water Focus Area Agriculture Topics Co-benefits assessment, Background analysis Resource Type Lessons learned/best practices Website http://www.intercooperation.or Country India Southern Asia References India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change[1] India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Screenshot Contents 1 Introduction [1] 2 Community-based Institutions [2] 3 Pasture Land Development [3]

478

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

479

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

480

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

augmented with a capacity market payment that is separate92/kW-yr. Recent forward capacity market auctions in ISO-Newzone within PJM. Forward capacity markets, however, are only

Mills, Andrew

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regions capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NETL: Oil & Natural Gas Projects 00516 North Dakota Refining Capacity Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Dakota Refining Capacity Study North Dakota Refining Capacity Study DE-FE0000516 Goal The objective of the North Dakota Refining Capacity study is to assess the feasibility of increasing the oil refinery capacity in North Dakota, and, if possible, determine the scale of such an expansion, the slate of refined product(s) that would produce the most economic benefit, and the preferred ownership model, i.e., private, public or private-public. Performer North Dakota Association of Rural Electric Cooperatives (NDAREC) Corval Group, partnered with Purvin & Gertz and Mustang Engineering Background The genesis of this study came from an April 2008 report issued by the U.S. Geological Survey (USGS) asserting that North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. This assessment shows a 25-fold increase in the amount of recoverable oil compared to the USGS 1995 estimate of 151 million barrels of oil. The Bakken Formation estimate is larger than all other current USGS oil assessments of the lower 48 states and is the largest "continuous" oil accumulation ever assessed by the USGS. The new report points out that the new geologic models applied to the Bakken Formation, advances in drilling and production technologies, and recent oil discoveries have resulted in these substantially larger technically recoverable oil volumes. About 105 million barrels of oil were produced from the Bakken Formation by the end of 2007. In 2008, the formation produced another 27.2 million barrels of oil, which represented 43% of the state’s annual oil production of some 62.3 million barrels. Even though oil prices have dropped significantly in recent months, it appears that oil production from this formation will continue strong for decades to come. Most recently, a major production find has occurred in the Three Forks formation underlying the Bakken. This find is still undergoing significant testing, but early evidence suggests it represents another significant recoverable pool of oil in western North Dakota.

482

Influence of Surface Structure on the Capacity and Irreversible Capacity Loss of Sn-Based Anodes for Lithium Ion Batteries  

Science Journals Connector (OSTI)

(1-5) Numerous solar and wind power energy plants have been invested in to exploit sustainable and renewable energy. ... These materials demonstrate discharge capacities on the order of 1000 mAh/(g Sn), which is consistent with the alloying capacity limit of 4.4 Li atoms per Sn atom, or 991 mAh/(g Sn). ...

Li Li; Xuan Liu; Shulan Wang; Wenzhi Zhao

2014-05-19T23:59:59.000Z

483

Social Logics in Development of Institutional Capacity The Case of Capacity Development for the Clean Development Mechanism in Uganda  

E-Print Network [OSTI]

for the Clean Development Mechanism in Uganda Karen Holm Olsen International Development Studies Department in Uganda 2002-2006. The study finds that the politics of institutional change processes are largely ignored of Institutional Capacity The case of Capacity Development for the CDM in Uganda The 15th International Climate

484

Microsoft Word - PearlSubExpansion_CX.docx  

Broader source: Energy.gov (indexed) [DOE]

3, 2012 3, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Johny Luiz - TEP-CSB-2 Proposed Action: Pearl Substation 500-kilovolt (kV) #6 Bay Addition Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Clackamas County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The proposed project includes modification of existing substation equipment, the addition of a new 500-kV Bay 6, and a one-half acre yard expansion in the southwest corner of the substation. The yard expansion area is within BPA property, consists of mowed grass, and is to facilitate a 40 square foot addition to the Pearl Control House

485

Microsoft Word - CX_DeMoss_Substation_Expansion_130531  

Broader source: Energy.gov (indexed) [DOE]

Alaric Hsu Alaric Hsu Project Manager - TEP-CSB-2 Proposed Action: De Moss Substation Expansion Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Sherman County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to expand its De Moss Substation yard located in Sherman County, Oregon. The expansion is necessary to install additional reactors that would provide the necessary reactive support to address the extreme high voltage at De Moss Substation resulting from the loss of the Big Eddy - DeMoss transmission line during winter peak conditions. The equipment at De Moss Substation is currently sustaining voltage

486

Secretary Bodman Meets with Qatari Officials to Promote Energy Expansion  

Broader source: Energy.gov (indexed) [DOE]

Qatari Officials to Promote Energy Qatari Officials to Promote Energy Expansion Efforts Secretary Bodman Meets with Qatari Officials to Promote Energy Expansion Efforts January 22, 2008 - 10:53am Addthis Thanks U.S. Troops at Camp As-Sayliyah in Qatar for their service DOHA, QATAR - On his fourth stop of a six-nation swing through the Middle East and Europe, U.S. Secretary of Energy Samuel W. Bodman today met with Qatari Amir H.H. Sheikh Hamad Bin Khalifa Al Thani and Qatari Deputy Prime Minister and Energy Minister Abdullah Al-Attiyah to discuss the importance of investments to expand oil and natural gas production, protect critical energy infrastructure as well as promote research and development to diversify world energy supplies. Secretary Bodman also visited U.S. troops at Camp As-Sayliyah to convey the respect and appreciation of the

487

Viscosity of the QGP from a virial expansion  

SciTech Connect (OSTI)

In this work we calculate the shear viscosity {eta} in the quark-gluon plasma within a virial expansion approach with particular interest in the ratio of {eta} to the entropy density s, i.e. {eta}/s. We derive a realistic equation of state using a virial expansion approach which allows us to include the interactions between the partons in the deconfined phase. From the interaction we directly extract the effective coupling {alpha}{sub V} for the determination of {eta}. Our results for {eta}/s show a minimum near to T{sub c} very close with the lowest bound and, furthermore, in line with the experimental point from RHIC as well as with the lattice calculations.

Mattiello, S., E-mail: stefano.mattiello@theo.physik.uni-giessen.de [University of Giessen, Institute for Theoretical Physics (Germany)

2012-06-15T23:59:59.000Z

488

Supersaturated Turbine Expansions for Binary Geothermal Power Plants  

SciTech Connect (OSTI)

The Heat Cycle Research project is developing the technology base that will permit a much greater utilization of the moderate-temperature, liquid-dominated geothermal resources, particularly for the generation of electrical power. The emphasis in the project has been the improvement of the performance of binary power cycles. The investigations have been examining concepts projected to improve the brine utilization by 20% relative to a ''Heber-type'' binary plant; these investigations are nearing completion. preparations are currently underway in the project to conduct field investigations of the condensation behavior of supersaturated turbine expansions. These investigations will evaluate whether the projected additional 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Future program efforts will focus on the problems associated with heat rejection and on the transfer of the technology being developed to industry.

Bliem, C.J.; Mines, G.L.

1992-03-24T23:59:59.000Z

489

West Elk Mine expansion and degasification plans approved  

SciTech Connect (OSTI)

West Elk Mine recently applied for and received approval for an expansion of its mining and methane drainage operation sin Gunnison County, Colorado. The deliberation over this planned expansion among several federal agencies and other groups received considerable local press coverage. One of the key issues focused on the fate of the additional; methane that would be emitted from the mine's degasification system. This article summarizes this process, which highlights the numerous barriers that still affect many coal mine methane (CMM) project opportunities is the United states. As the debate over climate change legislation moves forward in the US Congress and awareness of greenhouse gas emissions increases around the country, lawmakers, regulators, and non-governmental organizations will continue to focus more attention on CMM reduction opportunities,.

NONE

2008-04-01T23:59:59.000Z

490

Theoretical model for plasma expansion generated by hypervelocity impact  

SciTech Connect (OSTI)

The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4?mm on LY12 aluminum target thickness of 23?mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3?km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e})???v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.

Ju, Yuanyuan; Zhang, Qingming, E-mail: qmzhang@bit.edu.cn; Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Gong, Zizheng [National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China)

2014-09-15T23:59:59.000Z

491

Collapse, Expansion, and a Variable Speed of Light  

E-Print Network [OSTI]

This paper presents an information-theoretic view of how an observer within a quantum system will perceive his world. It is argued that because of the indistinguishability of quantum particles, a coherent state will appear to an observer within the system like a singularity. As superposition is lost, space appears to expand, although to the outsider it is merely the collapse of the wave function. Implications of these ideas to cosmology are considered. The superluminal expansion of space provides a basis to understand inflationary cosmologies. This expansion may be taken to be equivalent to a much faster speed of light during the inflationary period. These ideas can be tested by checking for `higher' speed of light from photons emitted by decohering atoms.

Subhash Kak

2001-01-25T23:59:59.000Z

492

Dressed skeleton expansion and the coupling scale ambiguity problem  

SciTech Connect (OSTI)

Perturbative expansions in quantum field theories are usually expressed in powers of a coupling constant. In principle, the infinite sum of the expansion series is independent of the renormalization scale of the coupling constant. In practice, there is a remnant dependence of the truncated series on the renormalization scale. This scale ambiguity can severely restrict the predictive power of theoretical calculations. The dressed skeleton expansion is developed as a calculational method which avoids the coupling scale ambiguity problem. In this method, physical quantities are expressed as functional expansions in terms of a coupling vertex function. The arguments of the vertex function are given by the physical momenta of each process. These physical momenta effectively replace the unspecified renormalization scale and eliminate the ambiguity problem. This method is applied to various field theoretical models and its main features and limitations are explored. For quantum chromodynamics, an expression for the running coupling constant of the three-gluon vertex is obtained. The effective coupling scale of this vertex is shown to be essentially given by {mu}{sup 2} {approximately} Q{sub min}{sup 2}Q{sub med}{sup 2}/Q{sub max}{sup 2} where Q{sub min}{sup 2}Q{sub med}{sup 2}/Q{sub max}{sup 2} are respectively the smallest, the next-to-smallest and the largest scale among the three gluon virtualities. This functional form suggests that the three-gluon vertex becomes non-perturbative at asymmetric momentum configurations. Implications for four-jet physics is discussed.

Lu, Hung Jung

1992-09-01T23:59:59.000Z

493

Meter Expansion Plan Existing Multi-Space Meter  

E-Print Network [OSTI]

Meter Expansion Plan 11 35 9 7 10 20 12 11 12 46 23 15 15 60 23 Existing Multi-Space Meter Split Regulations 136 New Multi-Space Meter Visitor Only New Multi-Space Meter Split Regulations KEY 97 Updated 7/8/13 11 5 #12;HAVE.HAVE. UNION DR. 1 2 3 4 5 New Multi-space Meter After: 5 Meter Spaces Regulations

Duchowski, Andrew T.

494

An engineering geology analysis of home foundations on expansive clays  

E-Print Network [OSTI]

temperature associated with the wetting of dry kaolinite 113 Thermal and isothermal di f f us ivity values versus soil water content in accord with the theory of Philip and de Vries 113 APPENDIX C C-1 Probable general form of the rela- tionship between... limited treatment from three disciplines. The soils engineer has developed a broad understanding of expansive soils based on practical experience, but has only recently becun to apply classical soil mechanics theory to this area. Within the tield...

Castleberry, Joe Patterson

2012-06-07T23:59:59.000Z

495

Inhomogeneous High Frequency Expansion-Free Gravitational Waves  

E-Print Network [OSTI]

We describe a natural inhomogeneous generalization of high frequency plane gravitational waves. The waves are high frequency waves of the Kundt type whose null propagation direction in space-time has vanishing expansion, twist and shear but is not covariantly constant. The introduction of a cosmological constant is discussed in some detail and a comparison is made with high frequency gravity waves having wave fronts homeomorphic to 2-spheres.

C. Barrabes; P. A. Hogan

2007-06-18T23:59:59.000Z

496

Cylinder kernel expansion of Casimir energy with a Robin boundary  

E-Print Network [OSTI]

: : : : : : : : : : : : : : : 7 A. How to construct the Green function for a single bound- ary condition . . . . . . . . . . . . . . . . . . . . . . . . . 7 B. How to construct the Green function for a slab . . . . . . . 10 III CASIMIR ENERGY OF A SLAB WITH DIRICHLET OR NEUMANN....B.G. Casimir published his famous paper [2] in 1948. The Casimir energy can be de?ned directly as the sum of half-frequencies that is interpreted via 3 ?-function regularization [8]. The Green function formalism [9], multiple scattering expansion [10] and heat...

Liu, Zhonghai

2006-10-30T23:59:59.000Z

497

Quick asymptotic expansion aided by a variational principle  

SciTech Connect (OSTI)

It is shown how expanding asymptotically a variational functional can yield the asymptotic expansion of its Euler equation. The procedure is simple but novel and requires taking the variation of the expanded functional with respect to the leading order of the originally unknown function, even though the leading order of this function has already been determined in a previous order. An example is worked out that of a large aspect ratio tokamak plasma equilibrium state with relatively strong flows and high plasma beta.

Hameiri, Eliezer [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

2013-02-15T23:59:59.000Z

498

Linear delta expansion applied to the O'Raifeartaigh model  

SciTech Connect (OSTI)

We reassess the method of the linear delta expansion for the calculation of effective potentials in superspace, by adopting the improved version of the super-Feynman rules in the framework of the O'Raifeartaigh model for spontaneous supersymmetry breaking. The effective potential is calculated using both the fastest apparent convergence and the principle of minimal sensitivity criteria and the consistency and efficacy of the method are checked in deriving the Coleman-Weinberg potential.

Abdalla, M. C. B.; Senise, Carlos R. Jr. [Instituto de Fisica Teorica, UNESP, Rua Pamplona 145, Bela Vista, Sao Paulo, SP, 01405-900 (Brazil); Helayeel-Neto, J. A. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180 (Brazil); Nedel, Daniel L. [Universidade Federal do Pampa, Rua Carlos Barbosa S/N, Bairro Getulio Vargas, 96412-420, Bage, RS (Brazil)

2009-09-15T23:59:59.000Z

499

On optimal multistage electric power distribution networks expansion planning  

Science Journals Connector (OSTI)

Abstract The optimal expansion planning of electric power distribution network to meet system load growth and overcome to pseudo dynamic behavior of network parameters considering a large number of constraints is a hard satisfactory multiobjective optimization problem. This paper implements new developed Imperialist Competitive Algorithm (ICA) for the optimal expansion planning of distribution network. The topology of medium voltage (MV) distribution network as backbone of electric power distribution systems is designed by optimal sizing, siting and timing of medium voltage network components such as HV substation and MV feeders’ routes. A multistage expansion planning is proposed to consider dynamic behavior of the system parameters asset management and geographical constraints. In order to reach the global solution an efficient coding is developed for ICA parameters. The Greedy algorithm is used to solve the minimum spanning tree problem to construct a radial configuration of the mesh network. At each stage of the problem the results are fully illustrated either by figures or by tables. A sensitivity analysis is used to show the robustness of the results with respect to ICA parameters variation. The obtained results are compared with GA as well known heuristic optimization tool. The efficiency and capability of the methodology has been tested on an under developed relatively large-scale distribution network.

S. Najafi Ravadanegh; R. Gholizadeh Roshanagh

2014-01-01T23:59:59.000Z

500

On Perturbation theory improved by Strong coupling expansion  

E-Print Network [OSTI]

In theoretical physics, we sometimes have two perturbative expansions of physical quantity around different two points in parameter space. In terms of the two perturbative expansions, we introduce a new type of smooth interpolating function consistent with the both expansions, which includes the standard Pad\\'e approximant and fractional power of polynomial method constructed by Sen as special cases. We point out that we can construct enormous number of such interpolating functions in principle while the "best" approximation for the exact answer of the physical quantity should be unique among the interpolating functions. We propose a criterion to determine the "best" interpolating function, which is applicable except some situations even if we do not know the exact answer. It turns out that our criterion works for various examples including specific heat in two-dimensional Ising model, average plaquette in four-dimensional SU(3) pure Yang-Mills theory on lattice and free energy in c=1 string theory at self-dual radius. We also mention possible applications of the interpolating functions to system with phase transition.

Masazumi Honda

2014-10-13T23:59:59.000Z