Sample records for regional wastewater treatment

  1. EIS-0224: Southeast Regional Wastewater Treatment Plant Facilities Improvements

    Broader source: Energy.gov [DOE]

    "This EIS analyzes the Lake County Sanitation District joint venture with the geothermal industry, specifically the Northern California Power Agency, Calpine Corporation (Calpine), and Pacific Gas and Electric Company, to develop a plan for disposal of secondary-treated effluent from the Southeast Regional Wastewater Treatment Plant near the City of Clearlake, California, in the Southeast Geysers Geothermal Steam Field."

  2. Regional factors governing performance and sustainability of wastewater treatment plants in Honduras : Lake Yojoa Subwatershed

    E-Print Network [OSTI]

    Walker, Kent B. (Kent Bramwell)

    2011-01-01T23:59:59.000Z

    Lake Yojoa, the largest natural lake in Honduras, is currently experiencing eutrophication from overloading of nutrients, in part due to inadequate wastewater treatment throughout the Lake Yojoa Subwatershed. Some efforts ...

  3. WASTEWATER TREATMENT OVER SAND COLUMNS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the biological mechanisms responsible for wastewater treatment. The first part of the study, conducted on site93/0096 WASTEWATER TREATMENT OVER SAND COLUMNS TREATMENT YIELDS, LOCALISATION OF THE BIOMASS Domestic wastewater treatment by infiltration-percolation is a process that becomming common in France

  4. Channel Design to Increase Wastewater Treatment Wetland Capacity and Connectivity in Stockton, CA

    E-Print Network [OSTI]

    Cubbison, Erin O.

    2006-01-01T23:59:59.000Z

    Control Facility. Treatment Wetland System Startup PeriodDesign to Increase Wastewater Treatment Wetland Capacity andof wastewater treatment wetlands at the Stockton Regional

  5. Onsite Wastewater Treatment Systems: Aerobic Treatment Unit

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-31T23:59:59.000Z

    Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them....

  6. Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains

    E-Print Network [OSTI]

    Fay, Noah

    Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains plants radically improve the overall quality of the treated wastewa- ter compared to secondary plants

  7. Field's Point Wastewater Treatment Facility (Narragansett Bay...

    Open Energy Info (EERE)

    Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

  8. Simultaneous wastewater treatment and biological electricity generation

    E-Print Network [OSTI]

    Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 £ 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

  9. Onsite Wastewater Treatment Systems: Graywater Safety

    E-Print Network [OSTI]

    Melton, Rebecca; Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    irrigation and decr,ease the amount of wastewater entering sewers or onsite wastewater treatment systems. Onsite wastewater treatment systems However, homeowners who irrigate their lawns with graywater need to understand the risks and safety issues.... Residential wastewater can be classified as either blackwater (sew- age containing fecal matter or food wastes) or graywater. If graywater is collected separately from blackwater, it can be dispersed as irrigation water with less treatment than...

  10. Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-02T23:59:59.000Z

    Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a...

  11. Onsite Wastewater Treatment Systems: Liquid Chlorination

    E-Print Network [OSTI]

    Weaver, Richard; Lesikar, Bruce J.; Richter, Amanda; O'Neill, Courtney

    2008-10-23T23:59:59.000Z

    This publication explains the process, components, legal requirements, factors affecting performance, and maintenance needs of liquid chlorination systems for onsite wastewater treatment....

  12. Onsite Wastewater Treatment Systems: Constructed Wetlands

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    A constructed wetland system for domestic wastewater treatment is designed to mimic the natural wetland treatment process of Mother Nature. This publication explains the treatment, design, operation and maintenance of constructed wetlands....

  13. Wastewater and Wastewater Treatment Systems (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Oklahoma Department of Environmental Quality administers regulations for waste water and waste water treatment systems. Construction of a municipal treatment work, non-industrial waste water...

  14. Influence of wastewater-treatment effluent on

    E-Print Network [OSTI]

    Influence of wastewater- treatment effluent on concentrations and fluxes of solutes in the Bush of treated effluents from wastewater-treatment plants (WWTPs) will increasingly affect the chemical biological processes associated with very low flow conditions, such as denitrification and sulfate reduction

  15. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

  16. Onsite Wastewater Treatment Systems: Sand Filters 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

  17. Onsite Wastewater Treatment Systems: Sand Filters

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

  18. Onsite Wastewater Treatment Systems: Operation and Maintenance

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    Soil absorption fieldTwo-compartment septic tank Perforated pipe for effluent disposal Sand/loam soil Gravel Geotextile fabric Onsite wastewater treatment systems Operation and maintenance L-5347 8-08 Figure 1: A septic tank and soil absorption... field system. I f your home or business uses an onsite wastewater treatment system, common- ly known as a septic system, you need to know how to operate and maintain the system properly to prevent pollution and sewage backups. For many years, people...

  19. Treatment and reuse of coal conversion wastewaters

    SciTech Connect (OSTI)

    Luthy, R.G.

    1980-01-01T23:59:59.000Z

    This paper presents a synopsis of recent experimental activities to evaluate processing characteristics of coal conversion wastewaters. Treatment studies have been performed with high-BTU coal gasification process quench waters to assess enhanced removal of organic compounds via powdered activated carbon-activated sludge treatment, and to evaluate a coal gasification wastewater treatment train comprised of sequential processing by ammonia removal, biological oxidation, lime-soda softening, granular activated carbon adsorption, and reverse osmosis. In addition, treatment studies are in progress to evaluate solvent extraction of gasification process wastewater to recover phenolics and to reduce wastewater loading of priority organic pollutants. Biological oxidation of coal gasification wastewater has shown excellent removal efficiencies of major and trace organic contaminants at moderate loadings, addition of powdered activated carbon provides lower effluent COD and color. Gasification process wastewater treated through biological oxidation, lime-soda softening and activated carbon adsorption appears suitable for reuse as cooling tower make-up water. Solvent extraction is an effective means to reduce organic loadings to downstream processing units. In addition, preliminary results have shown that solvent extraction removes chromatographable organic contaminants to low levels.

  20. Applications of Energy Efficiency Technologies in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Chow, S.; Werner, L.; Wu, Y. Y.; Ganji, A. R.

    "Depending on the level and type of treatment, municipal wastewater treatment (WWT) can be an energy intensive process, constituting a major cost for the municipal governments. According to a 1993 study wastewater treatment plants consume close to 1...

  1. Harvesting Energy from Wastewater Treatment

    E-Print Network [OSTI]

    -7% of electricity used in USA is for water &wastewater #12;Global Energy & Health Issues 1 Billion people lack the demand for fossil fuels and energy ­ US production of oil peaked 30 years ago ­ Global production of oil electricity generation: 13 quad 5% used for W&WW: 0.6 quad 97 quad [quadrillion BTUs]= 28,400 terawatt hours

  2. Modeling Onsite Wastewater Treatment Systems in the Dickinson Bayou Watershed

    E-Print Network [OSTI]

    Forbis-Stokes, Aaron

    2012-10-19T23:59:59.000Z

    Onsite wastewater treatment systems (OWTSs) are a commonly used means of wastewater treatment in the Dickinson Bayou watershed which is located between Houston and Galveston. The Dickinson Bayou is classified as "impaired" by the Texas Commission...

  3. On-Site Wastewater Treatment Systems: Selecting and Permitting (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2005-04-30T23:59:59.000Z

    This publication explains how to select and obtain a permit for an on-site wastewater treatment system in Texas....

  4. ENVIRONMENTAL BIOTECHNOLOGY Brewery wastewater treatment using air-cathode

    E-Print Network [OSTI]

    . 1994; Parawira et al. 2005). Biological treatment processes are particularly effective for wastewaterENVIRONMENTAL BIOTECHNOLOGY Brewery wastewater treatment using air-cathode microbial fuel cells wastewater treatment using microbial fuel cells (MFCs) will require a better understanding of how operational

  5. Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment

    E-Print Network [OSTI]

    Gu, Tingyue

    used in bioconversions to produce biological products as well as in wastewater treatmentModeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment Tingyue Gu* and Mei for wastewater treatment using oxidation-reduction potential. Cohen (10) reviewed bio- filtration

  6. ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS

    E-Print Network [OSTI]

    Boucherie, Richard J.

    .j.boucherie@utwente.nl Abstract In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge in the Netherlands. An important step in the commonly applied biological wastewater treatment processADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS Arie de Niet1 , Maartje van de Vrugt2

  7. Computing the Resilience of a Wastewater Treatment Bioreactor Nabil Mabrouk

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    guillaume.deffuant@cemagref.fr Abstract--Biological wastewater treatment reactor are de- signed to reduce and industrial activities. In biological wastewater treatment processes, a community of microorganisms, a gas that can be used in energy production. Biological wastewater treatment reactors are often de

  8. Wastewater treatment and energy : an analysis on the feasibility of using renewable energy to power wastewater treatment plants in Singapore

    E-Print Network [OSTI]

    Foley, Kevin John

    2010-01-01T23:59:59.000Z

    Wastewater treatment is a very energy intensive industry. Singapore has a state-of-the-art wastewater treatment system that uses a number of sustainable techniques that greatly improve its overall efficiency. The centralized ...

  9. Fuzzy predictive control for nitrogen removal in biological wastewater treatment

    E-Print Network [OSTI]

    Fuzzy predictive control for nitrogen removal in biological wastewater treatment S. Marsili predictive control; wastewater treatment plant Introduction The problem of improving the nitrogen removal wastewater is too low, full denitrification is difficult to obtain and an additional source of organic carbon

  10. Treatment of Wood Preserving Wastewater

    E-Print Network [OSTI]

    Reynolds, T. D.; Shack, P. A.

    accumulation, and miscellaneous design aspects are discussed. A treatment scheme incorporating atmospheric evaporation ponds after chemical coagulation and settling is proposed....

  11. Making wastewater environmentally sustainable: Innovative technology offers new possibilities for wastewater treatment

    E-Print Network [OSTI]

    Heinrich, Katie

    2013-01-01T23:59:59.000Z

    Inc., a wastewater screening equipment engineering company in Houston, the NCEBR is a#22;empting to accelerate the move of e-beam technology commercialization from the research laboratory to the marketplace, Pillai said. E-beam processing... in their treatment of wastewater by pursuing new electron beam (e-beam) technology being researched at a Texas A&M AgriLife Research center in College Station. To help these plants in their move to increased sustainability in wastewater treatment, the National...

  12. Formation of aerobic granular sludge biofilms for sustainable wastewater treatment

    E-Print Network [OSTI]

    ENAC/ Formation of aerobic granular sludge biofilms for sustainable wastewater treatment David G Research, Microbiology of Interfaces, Magdeburg (Germany) EDCE 2011 / From activated sludge flocs

  13. EA-1190: Wastewater Treatment Capability Upgrade, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed upgrade of the U.S. Department of Energy Pantex Plant Wastewater Treatment Plant in Amarillo, Texas.

  14. On-Site Wastewater Treatment Systems: Constructed Wetland Media

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Weaver, Richard; Richter, Amanda; O'Neill, Courtney

    2005-02-19T23:59:59.000Z

    This publication explains the functions, characteristics, choices, configurations and maintenance needs for constructed wetland media in on-site wastewater treatment systems....

  15. Applications of nanotechnology in water and wastewater treatment

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Applications of nanotechnology in water and wastewater treatment Xiaolei Qu, Pedro J.J. Alvarez Accepted 11 September 2012 Available online 26 March 2013 Keywords: Nanotechnology Nanomaterials Water. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency

  16. Author's personal copy Effectiveness of domestic wastewater treatment using microbial fuel cells

    E-Print Network [OSTI]

    2009 Elsevier Ltd. All rights reserved. 1. Introduction Conventional biological wastewater treatmentAuthor's personal copy Effectiveness of domestic wastewater treatment using microbial fuel cells 2009 Available online 5 September 2009 Keywords: Domestic wastewater treatment Energy recovery

  17. On-Site Wastewater Treatment Systems: Mound System

    E-Print Network [OSTI]

    Lesikar, B.; Waynard, V.

    Septic tank Pump tank Distribution pipe Sand Gravel Geotextile fabric On-site wastewater treatment systems Mound system Bruce Lesikar and Vance Weynand Associate Professor and Extension Agricultural Engineering Specialist, Extension Assistant.... The wastewater is pumped at low pressure in controlled doses to ensure that it is distributed uniformly throughout the bed. It flows through holes in the pipes, trickles downward through the absorption area and percolates into the sand. Treatment Wastewater must...

  18. Onsite Wastewater Treatment Systems: Spray Distribution System

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    Spray distribution systems for wastewater are much like lawn sprinkler systems, in that they spray treated wastewater over the surface of a yard. This publication explains how spray distribution systems work, what their design requirements are...

  19. Onsite Wastewater Treatment Systems: Tablet Chlorination

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    Wastewater that is sprayed onto lawns must first be disinfected to prevent odors and remove disease-causing organisms. This publication explains how tablet chlorinators disinfect wastewater and gives tips on how to maintain them....

  20. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01T23:59:59.000Z

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  1. Economic Analysis of Wastewater Treatment Alternatives in Rural Texas Communities.

    E-Print Network [OSTI]

    Victurine, Raymond F.; Goodwin, H.L. Jr; Lacewell, Ronald D.

    1985-01-01T23:59:59.000Z

    )C \\245.7 73 ).l'la\\ J :--7:...---_- r----'??-=--=--::------. I UElRAH ! MAY 16 1985 Texas A&M University Economic Analysis of J. Wastewater Treatment Alternatives IN RURAL TEXAS COMMUNITIES B-1491 January 1985 The Texas Agricultural..., Gary Lightsey, and Charles Hart from the Farmers Home Administration in Temple, Texas, also deserve a special vote of thanks. They provided an orientation to the economics of treatment plant investment. ECONOMIC ANALYSIS OF WASTEWATER TREATMENT...

  2. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    Embaby, and M. Rao (2006). Refinery Wastewater Treatment: Aand Assessment of Al Ruwais Refinery Wastewater." Journal ofThe Effects of Petroleum Refinery Wastewater on the Rate of

  3. Applications of Energy Efficiency Technologies in Wastewater Treatment Facilities 

    E-Print Network [OSTI]

    Chow, S.; Werner, L.; Wu, Y. Y.; Ganji, A. R.

    2009-01-01T23:59:59.000Z

    % of the electrical power in Northern and Central California. Activated sludge is the most common method for wastewater treatment, and at the same time the most energy intensive process. New energy efficient technologies can help reduce energy consumption...

  4. Chemically enhanced primary treatment of wastewater in Honduran Imhoff tanks

    E-Print Network [OSTI]

    Mikelonis, Anne M. (Anne Marie)

    2008-01-01T23:59:59.000Z

    Imhoff tanks represent approximately 40% of the wastewater treatment infrastructure in Honduras. This thesis evaluates the usage of solid aluminum sulfate as a means to achieving national effluent regulations in Imhoff ...

  5. Life-cycle assessment of wastewater treatment plants

    E-Print Network [OSTI]

    Dong, Bo, M. Eng. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

  6. On-Site Wastewater Treatment Systems: Selecting and Permitting

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2005-04-30T23:59:59.000Z

    This publication explains factors to consider when choosing an on-site wastewater treatment system and lists the nine steps required to obtain a permit for one. It includes addresses and phone numbers of Texas Natural Resource Conservation...

  7. Onsite Wastewater Treatment Systems: Homeowner's Guide to Evaluating Service Contracts

    E-Print Network [OSTI]

    Lesikar, Bruce J.; O'Neill, Courtney; Deal, Nancy; Loomis, George; Gustafson, David; Lindbo, David

    2008-10-23T23:59:59.000Z

    This guide helps homeowners who are seeking maintenance services for their onsite wastewater treatment systems (such as septic systems). Included are definitions of common terms used in service contracts, types of service contracts available...

  8. On-Site Wastewater Treatment Systems: Evapotranspiration Bed

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-01T23:59:59.000Z

    Evapotranspiration (ET) beds treat wastewater in the soil by evaporation and by transpiration from plants growing there. This publication explains the treatment, design, operation and maintenance of ET beds....

  9. HIRICH et al. Wastewater reuse in the Mediterranean region: Case

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    are also, the most vulnerable to global climate change. Studies have shown that the peopleHIRICH et al. Wastewater reuse in the Mediterranean region: Case of Morocco Abdelaziz HIRICH, Morocco. (E-mail: hirich_aziz@yahoo.fr ; redouane53@yahoo.fr ) Abstract The southern Mediterranean region

  10. Production of Electricity during Wastewater Treatment Using a

    E-Print Network [OSTI]

    treatment produces methane gas, which if released, can contribute to global warming. One method has beenProduction of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell H cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate

  11. Onsite Wastewater Treatment Systems: Pump Tank

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    Pump tanks are concrete, fiberglass or polyethylene containers that collect wastewater to be dosed into the soil at intervals. This publication explains the design and maintenance of pump tanks, and it offers advice on what to do if a pump tank...

  12. Biological treatment of underground coal gasification wastewaters

    SciTech Connect (OSTI)

    Bryant, C.W. Jr.; Humenick, M.J.; Cawein, C.C.; Nolan, B.T. III

    1985-05-01T23:59:59.000Z

    Biotreatability studies using underground coal gasification (UCG) wastewaters were performed by the University of Arizona and the University of Wyoming. The University of Arizona researchers found that UCG condensate could be effectively treated by activated sludge, using feed wastewaters of up to 50% strength. Total organic carbon (TOC) and chemical oxygen demand (COD) removals approached 90% during this research. The University of Wyoming researchers found that solvent extraction and hot-gas stripping were effective pretreatments for undiluted UCG condensate and that addition of powdered activated carbon enhanced the biotreatment process. TOC and COD removals resulting from the combination of pretreatments and biotreatment were 91% and 95%, respectively. The yield, decay, and substrate removal rate coefficients were greater in the University of Wyoming study than in the University of Arizona study. This was possibly caused by removing bioinhibitory substances, such as ammonia, with pretreatment. 18 refs., 25 figs., 6 tabs.

  13. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19T23:59:59.000Z

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  14. To appear in Proceedings of ECSCW99 Dynamics in Wastewater Treatment

    E-Print Network [OSTI]

    Bertelsen, Olav W.

    reports on our study of a modern wastewater treatment plant in Denmark. The following section describesTo appear in Proceedings of ECSCW99 Dynamics in Wastewater Treatment: A Framework for Understanding on the study of unskilled work in a Danish wastewater treatment plant, the problem of formalisation of work

  15. Anaerobic Migrating Blanket Reactor Treatment of Low-Strength Wastewater at

    E-Print Network [OSTI]

    Angenent, Lars T.

    Anaerobic Migrating Blanket Reactor Treatment of Low-Strength Wastewater at Low Temperatures Largus anaerobic migrating blanket reactor (AMBR) was studied for the treatment of low- strength soluble wastewater). KEYWORDS: anaerobic treatment, low-strength wastewater, low-tem- perature conditions, compartmentalized

  16. Real-time fault detection and isolation in biological wastewater treatment plants

    E-Print Network [OSTI]

    Real-time fault detection and isolation in biological wastewater treatment plants F. Baggiani and S@dsi.unifi.it Automatic fault detection is becoming increasingly important in wastewater treatment plant operation, given automation controllers, wastewater treatment INTRODUCTION Real-time monitoring is an increasingly important

  17. Onsite Wastewater Treatment Systems: Responding to Power Outages and Floods

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

    2008-10-23T23:59:59.000Z

    People and the environment can be harmed if a home's onsite wastewater treatment system does not work properly after a flood or power outage. This publication explains the steps to take after such an event to get the system back into service. 4 pp...

  18. APPLIED ISSUES Effects of stream restoration and wastewater treatment

    E-Print Network [OSTI]

    Hershey, Anne

    APPLIED ISSUES Effects of stream restoration and wastewater treatment plant effluent on fish.S.A. Three site types were examined on each stream; two urban (restored and unrestored) and a forested site was not significant. 3. Restored stream sites had significantly higher fish richness and a trend towards greater

  19. On-Site Wastewater Treatment Systems: Soil Particle Analysis Procedure

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2005-08-18T23:59:59.000Z

    Soil is an important component of an on-site wastewater treatment system. This publication explains the composition of soils, the sizing of soil particles, and the ways soil particles are analyzed to determine whether a site is suitable for a...

  20. Sandusky Wastewater Treatment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)Project JumpSanMiguel,Wastewater

  1. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    and sludges produced by retort water treatment should bewaters woulp not require treatment since they are producedtreatment technology. Mine waters, by contrast, are produced

  2. Treatment of Organic-Contaminated Wastewater by Pervaporation

    E-Print Network [OSTI]

    Wijmans, J. G.; Kaschemekat, J.; Baker, R. W.; Simmons, V. L.

    . However, the stream contains too much solvent to be discharged. Currently, these waste streams would be trucked to an incinerator or perhaps to a solvent reclaimer, both of which are expensive alternatives. The objective of the pervaporation process...TREATMENT OF ORGANIC-CONTAMINATED WASTEWATER BY PERVAPORATION J.G. WIJMANS J. KASCHEMEKAT R.W. BAKER V.L. SIMMONS Research Director Design Engineer President Marketing Director Membrane Technology and Research, Inc., Menlo Park, CA ABSTRACT...

  3. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

  4. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

  5. Radiological Risk Assessment for King County Wastewater Treatment Division

    SciTech Connect (OSTI)

    Strom, Daniel J.

    2005-08-05T23:59:59.000Z

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

  6. Passive treatment of wastewater and contaminated groundwater

    DOE Patents [OSTI]

    Phifer, Mark A. (N. Augusta, SC); Sappington, Frank C. (Dahlonega, GA); Millings, Margaret R. (N. Augusta, SC); Turick, Charles E. (Aiken, SC); McKinsey, Pamela C. (Aiken, SC)

    2007-11-06T23:59:59.000Z

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  7. Passive treatment of wastewater and contaminated groundwater

    DOE Patents [OSTI]

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2006-12-12T23:59:59.000Z

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  8. Measurement and Treatment of Nuisance Odors at Wastewater Treatment Plants

    E-Print Network [OSTI]

    Abraham, Samantha Margaret

    2014-01-01T23:59:59.000Z

    the ability of existing treatment technologies at Plant 1 toof existing treatment technologies at both OCSD plantsof existing treatment technologies at both OCSD plants

  9. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01T23:59:59.000Z

    > ARC Advisory Group, SCADA Market for Water & Wastewater toand Data Acquisition (SCADA) systems in wastewater treatmenttreatment facilities, SCADA systems direct when to operate

  10. 1.85 Water and Wastewater Treatment Engineering, Spring 2005

    E-Print Network [OSTI]

    Shanahan, Peter

    Theory and design of systems for treating industrial and municipal wastewater and potable water supplies. Methods for characterizing wastewater properties. Physical, chemical, and biological processes, including primary ...

  11. Measurement and Treatment of Nuisance Odors at Wastewater Treatment Plants

    E-Print Network [OSTI]

    Abraham, Samantha Margaret

    2014-01-01T23:59:59.000Z

    oil refineries, and waste treatment operations such as composting, sludgeoil refineries, and waste treatment operations such as composting, sludge

  12. Innovative Treatment Technologies for Natural Waters and Wastewaters

    SciTech Connect (OSTI)

    Childress, Amy E.

    2011-07-01T23:59:59.000Z

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  13. CONTROL OF AN IDEAL ACTIVATED SLUDGE PROCESS IN WASTEWATER TREATMENT VIA AN ODE-PDE MODEL

    E-Print Network [OSTI]

    Diehl, Stefan

    CONTROL OF AN IDEAL ACTIVATED SLUDGE PROCESS IN WASTEWATER TREATMENT VIA AN ODE-PDE MODEL STEFAN treatment plants, consists basically of a biological reactor followed by a sedi- mentation tank, which has. 1. Introduction The need for efficient wastewater treatment plants in terms of low effluent con

  14. ACCEPTED BY WATER ENVIRONMENT RESEARCH ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT

    E-Print Network [OSTI]

    ACCEPTED BY WATER ENVIRONMENT RESEARCH _______ ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT of biofilters for sequential removal of H2S and VOCs from wastewater treatment plant waste air. The biofilter of VOCs. In Europe, biological treatment in biofilters has rapidly been gaining ground as a relatively

  15. Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant

    SciTech Connect (OSTI)

    Goshe, A.J.; Nodianos, M.J. [Wheeling-Pittsburgh Steel Corp., Follansbee, WV (United States)

    1995-12-01T23:59:59.000Z

    Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

  16. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect (OSTI)

    Not Available

    1981-03-31T23:59:59.000Z

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  17. Author's personal copy Modelling and automation of water and wastewater treatment processes

    E-Print Network [OSTI]

    Author's personal copy Preface Modelling and automation of water and wastewater treatment processes on the applications of modelling and automation to water and wastewater treatment processes. The session, under their profession, with automation figuring prominently among the new disciplines required to improve

  18. A nonlinear observer design for an activated sludge wastewater treatment process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A nonlinear observer design for an activated sludge wastewater treatment process B. Boulkrounea , M of the proposed observer are shown through the application to an activated sludge process model. Keywords : Activated sludge, wastewater treatment process, Lyapunov function, Lips- chitz singular discrete

  19. Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone

    E-Print Network [OSTI]

    Barthelat, Francois

    Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Yuan Ma-scale reactors were operated at the LaPrairie Wastewater Treatment plant (one control and one ozonated) to investigate the sludge reduction potential of partially ozonating sludge return activated sludge (RAS

  20. Microbial response to single-cell protein production and brewery wastewater treatment

    E-Print Network [OSTI]

    fisheries decline, microbial single-cell protein (SCP) produced from brewery process water has been wastewater treatment plant and a parallel pilot bioreactor modified to produce an SCP productMicrobial response to single-cell protein production and brewery wastewater treatment Jackson Z

  1. Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile Creek,

    E-Print Network [OSTI]

    Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer........................................................................................................................................................... 5 Field Measurements, Nutrients, Carbon, Major Ions, Trace Elements, and Biological Components

  2. Wastewater treatment in the oil-shale industry

    SciTech Connect (OSTI)

    Fox, J.P.; Phillips, T.E.

    1980-08-01T23:59:59.000Z

    Because of the stringent state and federal standards governing the discharge of wastes into local waters and the limited water supplies in this area, an oil shale industry will probably reuse process effluents to the maximum extent possible and evaporate the residuals. Therefore, discharge of effluents into surface and ground waters may not be necessary. This paper reviews the subject of wastewater treatment for an oil shale industry and identifies key issues and research priorities that must be resolved before a large-scale commercial industry can be developed. It focuses on treatment of the waters unique to an oil shale industry: retort water, gas condensate, and mine water. Each presents a unique set of challenges.

  3. On-Site Wastewater Treatment Systems: Trickling Filter 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2000-02-04T23:59:59.000Z

    A trickling filter is a bed of gravel or plastic media over which pretreated wastewater is sprayed. This publication explains how trickling filters treat wastewater and gives tips on how to maintain them....

  4. On-Site Wastewater Treatment Systems: Trickling Filter

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2000-02-04T23:59:59.000Z

    A trickling filter is a bed of gravel or plastic media over which pretreated wastewater is sprayed. This publication explains how trickling filters treat wastewater and gives tips on how to maintain them....

  5. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

  6. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01T23:59:59.000Z

    05CH11231. References EPRI, Energy Audit Manual for Water/Research Institute, Energy Audit Manual for Water/Wastewater

  7. Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France: comparison of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    13 Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France In France, vertical flow constructed wetlands and waste stabilisation ponds are both extensive treatment Vertical Flow Constructed Wetlands, Waste Stabilization Ponds, operation and maintenance, sludge management

  8. 2005 Borchardt Conference: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI

    E-Print Network [OSTI]

    Nerenberg, Robert

    -25, Ann Arbor, MI Conference Proceedings 1 Membrane Biofilm Reactors for Water and Wastewater Treatment and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings 2 (sparging) to replenish oxygen: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings

  9. Aeration control in a full-scale activated sludge wastewater treatment plant: impact on performances, energy consumption

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for stratospheric ozone [1]. In biological wastewater treatment, microbial processes such as hydroxylamine oxidationAeration control in a full-scale activated sludge wastewater treatment plant: impact strategy on energy consumption and nitrous oxide (N2O) emission in a full-scale wastewater treatment plant

  10. MIC on stainless steels in wastewater treatment plants

    SciTech Connect (OSTI)

    Iversen, A. [Avesta Sheffield AB (Sweden)

    1999-11-01T23:59:59.000Z

    Field tests of stainless steels were carried out at five wastewater treatment plants for one year. Three stainless steel grades i.e. AISI 304 (UNS S30400), AISI 316 (UNS S31600) and duplex 2205 (UNS S31803) were tested in the final settling tank in the plants. The time dependence of the open circuit potential (OCP) was measured for all coupons. Ennoblement of the OCP, similar to that reported from investigations in seawater, was found in one of the plants. Waters from three of the exposure sites, containing dispersed deposits from exposed coupons, were chemically analyzed. Pitting corrosion was observed after the field test on steel grade AISI 304 in three of the five plants, and on AISI 316 in one plant. No corrosion was found on 2205 in any of the plants. Laboratory measurements of the OCP were carried out for AISI 304, AISI 316 and 2205 in water collected from one of the plants. Cathodic polarization curves were determined as well in wastewater from the same plant. The cathodic reaction rate increased at the highest OCP. Simulation of the ennoblement was carried out by potentiostatic polarization in a 600 ppm chloride solution. The current response indicated corrosion on AISI 304 welded material and on AISI 304, AISI 316 in crevice assemblies after a long period of induction time.

  11. Evaluation of biological treatment for the degradation of petroleum hydrocarbons in a wastewater treatment plant

    E-Print Network [OSTI]

    Basu, Pradipta Ranjan

    2005-08-29T23:59:59.000Z

    Training Field, 2004) 6 Figure 2. Layout of the Fire Training Field (Map of Brayton Fire Training Field and Disaster City, 2004 ) 7 TREATMENT PLANT UNITS The wastewater treatment plant consists of four basic units, namely...-Blaze contains several strains of non-pathogenic, spore forming, facultative bacteria, Bacillus, along with a surfactant and nutrients sufficient for biodegradation. The physical characteristics listed for the product (Micro Blaze Spill Control, 2004...

  12. A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane Biocathode for Wastewater Treatment

    E-Print Network [OSTI]

    A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane-biocathode microbial fuel cell- membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater that some of these systems require wastewater aeration. Treatment technologies such as membrane bioreactors

  13. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    SciTech Connect (OSTI)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01T23:59:59.000Z

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  14. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. CHP and Bioenergy Systems for Landfills and Wastewater...

  15. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    SciTech Connect (OSTI)

    Thompson, Lisa; Lekov, Alex; McKane, Aimee; Piette, Mary Ann

    2010-08-20T23:59:59.000Z

    This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions of 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.

  16. Water/Wastewater Treatment Plant Field Device Wiring Method Decision Analysis

    E-Print Network [OSTI]

    Dicus, Scott C.

    2011-12-16T23:59:59.000Z

    The choice of field device wiring method for water and wastewater treatment plant design is extremely complex and contains many variables. The choice not only affects short-term startup and equipment costs, but also ...

  17. The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

  18. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Household Wastewater Treatment

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    Household wastewater treatment systems (septic systems) can contaminate ground water unless they are properly designed, constructed and maintained. This publication describes various kinds of systems and guides the homeowner in assessing...

  19. EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment Facilities in Portfolio Manager

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn how to track the progress of energy efficiency efforts and compare the energy use of wastewater treatment plants to other peer facilities across the country. Attendees will learn how to...

  20. Wastewater treatment and flow patterns in an onsite subsurface flow constructed wetland

    E-Print Network [OSTI]

    Stecher, Matthew C

    2001-01-01T23:59:59.000Z

    Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common as a secondary treatment of onsite domestic wastewater. Even though SFCWs are being used widely, sufficient data has not been collected to determine how parameters...

  1. Plant species as a significant factor in wastewater treatment in constructed wetlands

    E-Print Network [OSTI]

    Varvel, Tracey W

    2013-02-22T23:59:59.000Z

    Constructed wetlands are one of the newest wastewater treatment technologies. They should reduce the Biochemical Oxygen Demand (BOD) and utilize a large amount of the influent. The BOD determines how much oxygen is used bymicro organisms while...

  2. On-Site Wastewater Treatment Systems: Alternative Collection Systems

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2000-08-30T23:59:59.000Z

    Rural Texas communities have new options for wastewater management infrastructure that are cost effective but still protect human health and environmental quality. Such communities now can combine different kinds of systems in a new approach called...

  3. On-Site Wastewater Treatment Systems: Subsurface Drip Distribution

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-06T23:59:59.000Z

    A subsurface drip system distributes wastewater to the lawn through a system of tubing installed below the ground. This publication explains the advantages and disadvantages of subsurface drip distribution systems, as well as estimated costs...

  4. On-Site Wastewater Treatment Systems: Mound System

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-04-22T23:59:59.000Z

    A mound system is a soil absorption system placed above the natural surface of the ground. The system distributes treated wastewater into the soil. This publication discusses the design and maintenance of mound systems....

  5. On-Site Wastewater Treatment Systems: Leaching Chambers

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2000-02-04T23:59:59.000Z

    Leaching chambers distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of leaching chamber systems, explains how to maintain them and gives estimates of costs....

  6. On-Site Wastewater Treatment Systems: Spray Distribution

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-06T23:59:59.000Z

    A spray distribution system is very similar to a lawn irrigation system. Spray heads are used to distribute treated wastewater to the surface of the yard. This publication explains the advantages and disadvantages of spray distribution systems...

  7. On-Site Wastewater Treatment Systems: Gravel-less Pipe

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2000-04-10T23:59:59.000Z

    Gravel-less pipe systems distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of gravel-less pipe systems, explains how to maintain them and gives estimates of costs....

  8. Radiological Instrumentation Assessment for King County Wastewater Treatment Division

    SciTech Connect (OSTI)

    Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

    2005-05-19T23:59:59.000Z

    The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 ?Ci per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine “innocent” alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

  9. Determination of Baselines for Evaluation and Promotion of Energy Efficiency in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Chow, S. A.; Ganji, A. R.; Fok, S.

    to facilitate the design and implementation of energy efficiency and demand response programs in wastewater treatment plants for PG&E?s 2009-2011 program cycle. An overview of activities by PG&E and the U.S. to promote energy efficiency in wastewater..., research and development project addressing energy efficiency in these plants, case studies on energy efficient equipment and best practices. Information gathered from the literature search was used in conjunction with the administered survey...

  10. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    biological operations. Tertiary treatment processes wastewaterwastewater treatment system, called the Living Machine, uses natural non-chemical biologicalbiological (Wilkinson 2000). Each type generally refers to a certain point in the wastewater treatment

  11. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations

    E-Print Network [OSTI]

    Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations) was tested for treatment and reclamation of water from drilling waste to facilitate beneficial water reuse recover more than 80% of the water from the drilling waste. Osmotic backwashing was demonstrated

  12. Ph.D. viva voce examination of Mr. Vikrant Sarin ( 2005CHZ8243) Title : Wastewater treatment using membrane bioreactor

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    Ph.D. viva voce examination of Mr. Vikrant Sarin ( 2005CHZ8243) Title : Wastewater treatment using membrane bioreactor Abstract Membrane Bioreactor combines membranes with biological processes for treatment involves using MBR Pilot Plant for studying the treat ability of Municipal Wastewater and Industrial

  13. A multilevel coordinated control strategy for energy conservation in wastewater treatment plants

    E-Print Network [OSTI]

    A multilevel coordinated control strategy for energy conservation in wastewater treatment plants and energy conservation. To achieve these goals automatic control must be applied. This paper describes on the basis of energy conservation, provided that the effluent quality meets the environmental standards

  14. Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge

    SciTech Connect (OSTI)

    Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P. [Huazhong University of Science and Technology, Wuhan (China)

    2009-03-15T23:59:59.000Z

    Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

  15. Wastewater treatment by aerobic granular biofilmWastewater treatment by aerobic granular biofilmaste ate t eat e t by ae ob c g a u a b o Aeration pulses to improve N eliminationAeration pulses to improve N-eliminationAeration pulses to improve N eliminat

    E-Print Network [OSTI]

    Wastewater treatment by aerobic granular biofilmWastewater treatment by aerobic granular wastewater treatment p p denitrification Nitrification is the oxidation from ammonium (NH +) first activated sludge for biological N-elimination is a two step process: aerobic nitrification and anoxicp g g g

  16. Subsurface flow constructed wetland: treatment of domestic wastewater by gravel and tire chip media and ultraviolet disinfection of effluent

    E-Print Network [OSTI]

    Richmond, Amanda Yvette

    2002-01-01T23:59:59.000Z

    Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common in on-site treatment of wastewater. Gravel is the most popular form of wetland fill medium, but tire chips provide more porosity, are less dense, and cheaper. Before...

  17. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike lewis

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  18. 2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Michael G. Lewis

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  19. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  20. Onsite Wastewater Treatment Systems: Septic Tank/Soil Absorption Field

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    For septic tank and soil absorption systems to work properly, homeowners must choose the right kind of system for their household size and soil type, and they must maintain them regularly. This publication explains the treatment, design, operation...

  1. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01T23:59:59.000Z

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  2. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  3. On-Site Wastewater Treatment Systems: Alternative Collection Systems (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2002-04-22T23:59:59.000Z

    regiones rurales tienen m?s opciones que nunca para manejar las aguas negras. Estas opciones ofrecen: a19 Protecci?n ambiental, a19 Flexibilidad para que las comunidades planeen su futuro desarrollo econ?mico, y a19 Costos de instalaci?n m?s bajos que los... negras sean transportadas a elevaciones m?s altas. Puesto que las l?neas deben colocarse en un ?ngulo lo suficientemente agudo para mover la materia s?lida por la tuber?a, el costo de la excavaci?n puede ser consider- able para instalar un sistema de...

  4. On-Site Wastewater Treatment Systems: Alternative Collection Systems (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2002-04-22T23:59:59.000Z

    estatal para el trata- miento econ?mico de aguas negras municipales en las regiones rurales, muchas comunidades rurales de Texas tienen que crear sistemas para el manejo de aguas negras para proteger eficazmente la salud p?blica y la calidad ambiental...Residuos crudos Tanque s?ptico Efluente Sistemas individuales para el tratamiento de aguas negras Sistemas de recolecci?n alternativos Bruce Lesikar y Juan Enciso Promotores Especialistas en Ingenier?a Agr?cola El Sistema Universitario Texas A&M B...

  5. Tritiated wastewater treatment and disposal evaluation for 1995

    SciTech Connect (OSTI)

    Allen, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-08-01T23:59:59.000Z

    A second annual summary and analysis of potential processes for the mitigation of tritium contained in process effluent, ground water and stored waste is presented. It was prepared to satisfy the Hanford Federal Facility and Consent Order (Tri-Party Agreement) Milestone M-26-05B. Technologies with directed potential for separation of tritium at present environmental levels are organized into two groups. The first group consists of four processes that have or are undergoing significant development. Of these four, the only active project is the development of membrane separation technology at the Pacific Northwest Laboratory (PNL). Although research is progressing, membrane separation does not present a near term option for the mitigation of tritium. A second grouping of five early stage projects gives an indication of the breadth of interest in low level tritium separation. If further developed, two of these technologies might prove to be candidates for a separation process. At the present, there continues to be no known commercially available process for the practical reduction of the tritium burden in process effluent. Material from last year`s report regarding the occurrence, regulation and management of tritium is updated and included in the appendices of this report. The use of the State Approved Land Disposal Site (SALDS) for disposal of tritiated effluent from the 200 Area Effluent Treatment Facility (ETF) begins in the fall of 1995. This is the most significant event impacting tritium in the environment at the Hanford Site this coming year.

  6. Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes

    DOE Patents [OSTI]

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-05-28T23:59:59.000Z

    The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

  7. 2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT

    SciTech Connect (OSTI)

    LUECK KJ; GENESSE DJ; STEGEN GE

    2009-02-26T23:59:59.000Z

    Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed and updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the atmosphere, and (4) use of barriers to minimize the transport of tritium in groundwater. Continuing development efforts for tritium separations processes are primarily to support the International Thermonuclear Experimental Reactor (ITER) program, the nuclear power industry, and the production of radiochemicals. While these applications are significantly different than the Hanford application, the technology could potentially be adapted for Hanford wastewater treatment. Separations based processes to reduce tritium levels below the drinking water MCL have not been demonstrated for the scale and conditions required for treating Hanford wastewater. In addition, available cost information indicates treatment costs for such processes will be substantially higher than for discharge to SALDS or other typical pump and treat projects at Hanford. Actual mitigation projects for groundwater with very low tritium contamination similar to that found at Hanford have focused mainly on controlling migration and on evaporation for dispersion in the atmosphere.

  8. Introduction Wetlands are increasingly used for wastewater

    E-Print Network [OSTI]

    Hall, Sharon J.

    Introduction Wetlands are increasingly used for wastewater treatment Plant community changes and related nutrient retention within an aridland constructed wastewater treatment wetland How does plant community composition change in an aridland constructed wastewater treatment wetland and how do those

  9. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOE Patents [OSTI]

    Tiernan, Joan E. (Novato, CA)

    1990-01-01T23:59:59.000Z

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  10. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into the Use of Solar Aquatic Wastewater Treatment in The new UBC

    E-Print Network [OSTI]

    into the Use of Solar Aquatic Wastewater Treatment in The new UBC Farm Center Building: A Triple Bottom Line Investigation into the Use of Solar Aquatic Wastewater Treatment in The new UBC Farm Center Building: A Triple farm is moving forward with the design and construction of a new farm center building and as a world

  11. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into the Applicability of the CIRS Solar Aquatic Wastewater Treatment

    E-Print Network [OSTI]

    into the Applicability of the CIRS Solar Aquatic Wastewater Treatment System at UBC Farm Noah Joy Peter Lillos Steven Lam An Investigation into the Applicability of the CIRS Solar Aquatic Wastewater Treatment System at UBC Farm Authors of a project/report. #12;ii ABSTRACT The UBC Farm is currently looking for a sustainable solution to treat

  12. K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN

    SciTech Connect (OSTI)

    Swientoniewski M.D.

    2008-02-24T23:59:59.000Z

    This paper discusses the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource ConservatioN and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. the incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (below down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinverator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 35 to 75 gallons per minute (gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, microfiltration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other applications, the system was installed in three, over-the-road semi trailers, and interconnected with piping and power. Trailers were oriented on a small site footprint to facilitate ease of installation. A remote sump pump skid was provided to convey water from two holding sumps adjacent to the treatment process. An accumulation tank and pump were also provided to receive miscellaneous wastewaters for treatment if they meet the waste acceptance criteria. The paper includes details of the technology used in the design, the requirements for compliance, and the initial performance demonstration and jar testing results. The WWTS successfully allowed for highly efficient, high-volume treatment with compliant discharge to off-site surface water.

  13. Resource recovery and epidemiology of anaerobic wastewater treatment process in a controlled ecological life support system. Final report

    SciTech Connect (OSTI)

    Li, K.; Hunt, M.D.

    1995-02-01T23:59:59.000Z

    The results of work accomplished under two different areas: (1) Resource Recovery of an Anaerobic Wastewater Treatment process, and (2) Epidemiological Study of an Anaerobic Wastewater Treatment Process are documented. The first part of the work was to set up and test three anaerobic digesters and then run these three digesters with a NASA-simulated wastewater. The second part of the work was to use a multi-drug resistant strain of Salmonella choleraesuis as the indicator bacteria for the epidemiological study. Details of these two parts can be found in two master`s theses and are described in Sections 3 and 4 of this report. Several important results condensed from these two parts are summarized in Section 2.

  14. ^--'^ Poster session : 4st confrence on Small Wastewater Treatment Plants. Stratford-upon-Avon, April 18-21, 1999 f . Contact e-mail : catherine.boutin@cemagref.fr

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . They are biological Systems for wastewater treatment, for which the effective bacterial culture is developing on added^--'^ Poster session : 4st conférence on Small Wastewater Treatment Plants. Stratford a large number of communities with less than 2 000 inhabitants. The adjustment of wastewater treatment

  15. Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981

    SciTech Connect (OSTI)

    Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

    1981-06-01T23:59:59.000Z

    The results of the feasibility study for utilizing low temperature geothermal heat in the City of San Bernardino Wastewater Treatment Plant are summarized. The study is presented in terms of preliminary engineering design, economic analysis, institutional issues, environmental impacts, resource development, and system implementation.

  16. 1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important when

    E-Print Network [OSTI]

    Stenstrom, Michael K.

    1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important = CL (CL + HcVG) (6) where CL = liquid phase concentration, VL = liquid volume, CG = gas phase concentration, VG = gas volume, Hc = dimensionless Henry's law coefficient and M = mass of gas. Now use two

  17. National and Regional Water and Wastewater Rates For Use inCost-Benefit Models and Evaluations of Water Efficiency Programs

    SciTech Connect (OSTI)

    Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

    2006-09-01T23:59:59.000Z

    Calculating the benefits and costs of water conservation orefficiency programs requires knowing the marginal cost of the water andwastewater saved by those programs. Developing an accurate picture of thepotential cost savings from water conservation requires knowing the costof the last few units of water consumed or wastewater released, becausethose are the units that would be saved by increased water efficiency.This report describes the data we obtained on water and wastewater ratesand costs, data gaps we identified, and other issues related to using thedata to estimate the cost savings that might accrue from waterconservation programs. We identified three water and wastewater ratesources. Of these, we recommend using Raftelis Financial Corporation(RFC) because it: a) has the most comprehensive national coverage; and b)provides greatest detail on rates to calculate marginal rates. The figurebelow shows the regional variation in water rates for a range ofconsumption blocks. Figure 1A Marginal Rates of Water Blocks by Regionfrom RFC 2004Water and wastewater rates are rising faster than the rateof inflation. For example, from 1996 to 2004 the average water rateincreased 39.5 percent, average wastewater rate increased 37.8 percent,the CPI (All Urban) increased 20.1 percent, and the CPI (Water andSewerage Maintenance) increased 31.1 percent. On average, annualincreases were 4.3 percent for water and 4.1 percent for wastewater,compared to 2.3 percent for the All Urban CPI and 3.7 percent for the CPIfor water and sewerage maintenance. If trends in rates for water andwastewater rates continue, water-efficient products will become morevaluable and more cost-effective.

  18. An improved ion exchange method for treatment of slightly contaminated wastewaters

    SciTech Connect (OSTI)

    Collins, E.D.; Begovich, J.M.; Brown, C.H.; Campbell, D.O.; Lasher, L.C.; Morris, M.I.; Robinson, S.M.; Scott, C.B.

    1986-01-01T23:59:59.000Z

    An improved method is being developed for the treatment of wastewaters that contain predominantly calcium, sodium, and magnesium bicarbonates and are slightly contaminated with /sup 90/Sr and /sup 137/Cs. The process decontaminates the water sufficiently for release to the environment while concentrating the radioactive materials into a nonhazardous waste form that can be safely stored with minimum surveillance. The water is passed through a series of columns containing a natural chabazite type of zeolite. The loaded zeolite in discharged columns is dewatered and transferred to a disposal container. Excellent results have been obtained in both partial and full-scale tests. The process is simple, reliable, and economical. 8 refs., 4 figs., 5 tabs.

  19. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    SciTech Connect (OSTI)

    Ragsdale, R.G., Jr

    1994-12-01T23:59:59.000Z

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented.

  20. Evaluation of effects of phenol recovery on biooxidation and tertiary treatment of SRC-I wastewater. Final technical report

    SciTech Connect (OSTI)

    Mitchell, J.W.; Watt, J.C.; Cowan, W.F.; Schuyler, S.E.

    1983-09-01T23:59:59.000Z

    Addition of phenol recovery to the wastewater treatment scheme in the Baseline Design for the SRC-I Demonstration Plant was evaluated as a major post-Baseline effort. Phenol recovery affects many downstream processes, but this study was designed to assess primarily its effects on biooxidation and subsequent tertiary treatment. Two parallel treatment schemes were set up, one to treat dephenolated wastewaters and the other for processed nondephenolated wastewaters, a simulation of the Baseline Design. The study focused on comparisons of five areas: effluent quality; system stability; the need for continuous, high-dose powdered activated carbon (PAC) augmentation to the bioreactor; minimum bioreactor hydraulic residence time (HRT); and tertiary treatment requirements. The results show that phenol recovery improves the quality of the bioreactor effluent in terms of residual organics and color. With phenol recovery, PAC augmentation is not required; without phenol recovery, PAC is needed to produce a comparable effluent. Dephenolization also enhances the stability of biooxidation, and reduces the minimum HRT required. With tertiary treatment, both schemes can meet the effluent concentrations published in the SRC-I Final Envivornmental Impact Statement, as well as the anticipated effluent limits. However, phenol recovery does provide a wider safety margin and could eliminate the need for some of the tertiary treatment steps. Based solely on the technical merits observed in this study, phenol recovery is recommended. The final selection should, however, also consider economic tradeoffs and results of other studies such as toxicology testing of the effluents. 34 references, 30 figures and 26 tables.

  1. Analysis and Characterization of Halogenated Transformation Products of Pharmaceuticals and Personal Care Products in Wastewater Effluent

    E-Print Network [OSTI]

    Bulloch, Daryl Neil

    2013-01-01T23:59:59.000Z

    and biological treatments for wastewater decontamination- Atreatment involves biological degradation of organic wastewaterBiological effects of transformation products. The extent of attenuation of PPCPs through wastewater treatment

  2. Evaluation of biological treatment for the degradation of petroleum hydrocarbons in a wastewater treatment plant 

    E-Print Network [OSTI]

    Basu, Pradipta Ranjan

    2005-08-29T23:59:59.000Z

    Biodegradation of petroleum hydrocarbon can be an effective treatment method applied to control oil pollution in both fresh water and marine environments. Hydrocarbon degraders, both indigenous and exogenous, are responsible for utilizing petroleum...

  3. Analytical support for a new, low-level radioactive wastewater treatment plant

    SciTech Connect (OSTI)

    Jones, V.D.; Marsh, J.H.; Ingram, L.M.; Melton, W.L.; Magonigal, E.J.

    1990-01-01T23:59:59.000Z

    The Savannah River Site (SRS) located in Aiken, SC, is operated by Westinghouse Savannah River Company under contract with the US Department of Energy. The mission of SRS is to manufacture radioisotopes for use in national defense and space exploration. The F/H Effluent Treatment Facility (ETF) is a wastewater treatment plant supporting SRS for low-level radioactive process waste streams. In order to comply with the Federal Resource Conservation and Recovery Act, the facility had to become operational by November 8, 1988. The F/H ETF employs pH adjustment, microfiltration, organic removal, reverse osmosis, evaporation, and ion exchange to remove contaminants prior to discharge to the environment via a state-permitted outfall. Concentrated contaminants removed by these processes are diverted to other facilities for further processing. The ETF is supported by a 24 hr/day facility laboratory for process control and characterization of influent feed, treated effluent water, and concentrated waste. Permit compliance analyses reported to the state of SC are performed by an offsite certified contract laboratory. The support laboratory is efficiently organized to provide: metal analyses by ICP-AES, alpha/beta/gamma activity counting, process ions by Ion Selective Electrode (ISE), oil and grease analyses by IR technique, mercury via cold vapor AA, conductivity, turbidity, and pH. All instrumentation is contained in hoods for radioactive sample handling.

  4. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    SciTech Connect (OSTI)

    Nelson, E; John Gladden, J

    2007-03-22T23:59:59.000Z

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  5. The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain

    E-Print Network [OSTI]

    Xu, Xin, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

  6. Biologically induced concrete deterioration in a wastewater treatment plant assessed by combining microstructural analysis with thermodynamic modeling

    SciTech Connect (OSTI)

    Leemann, A., E-mail: andreas.leemann@empa.c [Empa, Duebendorf (Switzerland); Lothenbach, B.; Hoffmann, C. [Empa, Duebendorf (Switzerland)

    2010-08-15T23:59:59.000Z

    In the nitrification basins of wastewater treatment plants, deterioration of the concrete surface can occur due to acid attack caused by a nitrifying biofilm covering the concrete. To identify the mechanism of deterioration, concrete cubes of different composition were suspended in an aerated nitrification basin of a wastewater treatment plant for two years and analyzed afterwards. The microstructural investigation reveals that not only dissolution of hydrates takes place, but that calcite precipitation close to the surface occurs leading to the formation of a dense layer. The degree of deterioration of the different cubes correlates with the CaO content of the different cements used. Cements which contain a high fraction of CaO form more calcite offering a better protection against the acid attack. The presence of slag, which lowers the amount CaO in the cement, leads to a faster deterioration of the concrete than observed for samples produced with pure OPC.

  7. Doctoral Defense "Sustainable Wastewater Management

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Medications and Wastewater Solids" Sherri Cook Date: May 22, 2014 Time: 11:00 AM Location: 2355 GGB Chair with treatment technology assessments and applied it to two key wastewater treatment sustainability issues associated with the direct disposal of medication to a wastewater treatment plant, to a household trashcan

  8. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOE Patents [OSTI]

    Tiernan, Joan E. (38 Clay Ct., Novato, CA 94947)

    1991-01-01T23:59:59.000Z

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

  9. A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants

    SciTech Connect (OSTI)

    Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Hospido, A., E-mail: almudena.hospido@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Bagley, D.M., E-mail: bagley@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, 82072 Laramie, WY (United States); Moreira, M.T., E-mail: maite.moreira@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Feijoo, G., E-mail: gumersindo.feijoo@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain)

    2012-11-15T23:59:59.000Z

    The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

  10. Municipal Wastewater Characteristics of Sylhet City, Bangladesh

    E-Print Network [OSTI]

    Alam, Raquibul; Ahmed, Mushtaq; Chowdhury, Md. Aktarul Islam; Nath, Suman Kanti

    2006-01-01T23:59:59.000Z

    biological treatment of the sewage. According to the Metcalf & Eddy (1995), a standard reference for wastewater treatment

  11. Designed ecosystem services: application of ecological principles in wastewater treatment engineering

    E-Print Network [OSTI]

    Graham, David W.; Smith, Val H.

    2004-05-01T23:59:59.000Z

    applications as well. Wastewater engineers should use the fundamentals of ecological theory to help guide future system design and ecologists should view engineered biosystems as valuable new platforms for ecological research. Front Ecol Environ 2004; 2(4): 199...

  12. Designed ecosystem services: application of ecological principles in wastewater treatment engineering

    E-Print Network [OSTI]

    Graham, David W.; Smith, Val H.

    2004-01-01T23:59:59.000Z

    applications as well. Wastewater engineers should use the fundamentals of ecological theory to help guide future system design and ecologists should view engineered biosystems as valuable new platforms for ecological research. Front Ecol Environ 2004; 2(4): 199...

  13. Upflow anaerobic sludge blanket reactors for treatment of wastewater from the brewery industry

    E-Print Network [OSTI]

    Scampini, Amanda C

    2010-01-01T23:59:59.000Z

    Anaerobic digestion can be utilized to convert industrial wastewater into clean water and energy. The goal of this project was to set up lab-scale anaerobic digesters to collect data that will be used to develop and validate ...

  14. On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-06T23:59:59.000Z

    Conventional septic systems have traditionally been the most commonly used technology for treating wastewater. This publication explains the advantages and disadvantages of conventional septic tank/drain fields, as well as estimated costs...

  15. On-Site Wastewater Treatment Systems: Low-Pressure Dosing System

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-06T23:59:59.000Z

    A low-pressure dosing system treats wastewater and then pumps it into the soil several times daily. This publication explains the advantages and disadvantages of low-pressure dosing systems as well as estimated costs and maintenance requirements....

  16. Treatment of domestic wastewater for reuse with activated silica and magnesia

    E-Print Network [OSTI]

    Lindner, John Howard

    1985-01-01T23:59:59.000Z

    which are of concern in treat- ment for potable purposes are organics and trace inorganics. This research project was conducted in an attempt to determine if organic oxides such as activated silica and magnesia in various combinations with alum... in Wastewater Toxic Inorganics in Wastewater Existing Technology Coagulation and Flocculation Lime Coagulation . . ~ Alum Coagulation . ~ ~ ~ ~ Activated Silica Magnesia 5 6 8 9 10 13 14 15 16 III EXPERIMENTAL PLAN Was tewater ~ ~ ~ ~ ~ Jar...

  17. Proceedings ASCE EWRI World Water and Environmental Resources Congress 2005 May 15-19, 2005 Modeling and evaluating temperature dynamics in wastewater treatment plants

    E-Print Network [OSTI]

    Wells, Scott A.

    Modeling and evaluating temperature dynamics in wastewater treatment plants Scott A. Wells1 , Dmitriy treatment plants (WWTP). This type of model would allow operators to evaluate alternatives for reducing conditions. Temperatures were taken at 6 control points throughout the treatment plant and used as a basis

  18. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30T23:59:59.000Z

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

  19. Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor Manufacturing

    E-Print Network [OSTI]

    Fay, Noah

    Manufacturing Devin Whipple James C. Baygents & James Farrell, Associate Professors Department of Chemical of treating wastewater streams in the semiconductor manufacturing industry. Electrocoagulation involves in particular has the possibility of immediate application at one of Intel's plants. In addition, these both

  20. Environmental Assessment and Finding of No Significant Impact: Wastewater Treatment Capability Upgrade, Project NO. 96-D-122 Pantex Plant Amarillo, Texas

    SciTech Connect (OSTI)

    N /A

    1999-05-27T23:59:59.000Z

    This Environmental Assessment (EA) addresses the U.S. Department of Energy (DOE) proposed action regarding an upgrade of the Pantex Plant Wastewater Treatment Facility (WWTF). Potential environmental consequences associated with the proposed action and alternative actions are provided. DOE proposes to design, build, and operate a new WWTF, consistent with the requirements of Title 30 of the Texas Administrative Code (TAC), Chapter 317, ''Design Criteria for Sewage Systems,'' capable of supporting current and future wastewater treatment requirements of the Plant. Wastewater treatment at Pantex must provide sufficient operational flexibility to meet Pantex Plant's anticipated future needs, including potential Plant mission changes, alternative effluent uses, and wastewater discharge permit requirements. Treated wastewater effluent and non-regulated water maybe used for irrigation on DOE-owned agricultural land. Five factors support the need for DOE action: (1) The current WWTF operation has the potential for inconsistent permit compliance. (2) The existing WWTF lies completely within the 100-year floodplain. (3) The Pantex Plant mission has the potential to change, requiring infrastructure changes to the facility. (4) The life expectancy of the existing facility would be nearing its end by the time a new facility is constructed. (5) The treated wastewater effluent and non-regulated water would have a beneficial agricultural use through irrigation. Evaluation during the internal scoping led to the conclusion that the following factors are present and of concern at the proposed action site on Pantex Plant: (1) Periodic wastewater effluent permit exceedances; (2) Wetlands protection and floodplain management; (3) Capability of the existing facility to meet anticipated future needs of Pantex (4) Existing facility design life; and (5) Use of treated wastewater effluent and non-regulated water for irrigation. Evaluation during the internal scoping led to the conclusion that the following conditions are not present, nor of concern at the proposed site on Pantex Plant, and no further analysis was conducted: (1) State or national parks, forests, or other conservation areas; (2) Wild and scenic rivers; (3) Natural resources, such as timber, range, soils, minerals; (4) Properties of historic, archeological, or architectural significance; (5) Native American concerns; (6) Minority and low-income populations; and (7) Prime or unique farmland. In this document, DOE describes the proposed action and a reasonable range of alternatives to the proposed action, including the ''No-Action'' alternative. The proposed action cited in the ''U.S. Department of Energy Application for a Texas Pollutant Discharge Elimination System Permit Modifying Permit to Dispose of Waste, No. 02296,'' December 1998, included the construction of a new wastewater treatment facility, a new irrigation storage pond, and the conversion of the current wastewater treatment facility into an irrigation storage pond. Although a permit modification application has been filed, if a decision on this EA necessitates it, an amendment to the permit application would be made. The permit application would be required for any of the alternatives and the filing does not preclude or predetermine selection of an alternative considered by this EA. This permit change would allow Pantex to land-dispose treated wastewater by irrigating agricultural land. This construction for the proposed action would include designing two new lagoons for wastewater treatment. One of the lagoons could function as a facultative lagoon for treatment of wastewater. The second lagoon would serve as an irrigation storage impoundment (storage pond), with the alternative use as a facultative lagoon if the first lagoon is out of service for any reason. The new facultative lagoon and irrigation water storage pond would be sited outside of the 100-year flood plain. The existing WWTF lagoon would be used as a storage pond for treated wastewater effluent for irrigation water, as needed. The two new lagoons would be li

  1. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2012-12-20T23:59:59.000Z

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

  2. Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981

    SciTech Connect (OSTI)

    Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

    1981-06-01T23:59:59.000Z

    A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. The environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.

  3. Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater

    SciTech Connect (OSTI)

    Terry Yost; Paul Pier; Gregory Brodie

    2007-12-31T23:59:59.000Z

    TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with less toxic ash pond water, and replanted due to low survival rates from the first planting the previous summer. The goals of the TVA-EPRI-DOE collaboration include building a better understanding of the chemical transformations that trace elements such as arsenic, selenium, and mercury undergo as they are treated in a passive treatment system, and to evaluate the performance of a large-scale replicated passive treatment system to provide additional design criteria and economic factors.

  4. NITRO-HYDROLYSIS: AN ENERGY EFFICIENT SOURCE REDUCTION AND CHEMICAL PRODUCTION PROCESS FOR WASTEWATER TREATMENT PLANT BIOSOLIDS

    SciTech Connect (OSTI)

    Klasson, KT

    2003-03-10T23:59:59.000Z

    The nitro-hydrolysis process has been demonstrated in the laboratory in batch tests on one municipal waste stream. This project was designed to take the next step toward commercialization for both industrial and municipal wastewater treatment facility (WWTF) by demonstrating the feasibility of the process on a small scale. In addition, a 1-lb/hr continuous treatment system was constructed at University of Tennessee to treat the Kuwahee WWTF (Knoxville, TN) sludge in future work. The nitro-hydrolysis work was conducted at University of Tennessee in the Chemical Engineering Department and the gas and liquid analysis were performed at Oak Ridge National Laboratory. Nitro-hydrolysis of sludge proved a very efficient way of reducing sludge volume, producing a treated solution which contained unreacted solids (probably inorganics such as sand and silt) that settled quickly. Formic acid was one of the main organic acid products of reaction when larger quantities of nitric acid were used in the nitrolysis. When less nitric acid was used formic acid was initially produced but was later consumed in the reactions. The other major organic acid produced was acetic acid which doubled in concentration during the reaction when larger quantities of nitric acid were used. Propionic acid and butyric acid were not produced or consumed in these experiments. It is projected that the commercial use of nitro-hydrolysis at municipal wastewater treatment plants alone would result in a total estimated energy savings of greater than 20 trillion Btu/yr. A net reduction of 415,000 metric tons of biosolids per year would be realized and an estimated annual cost reduction of $122M/yr.

  5. Biosolids are the solids produced during municipal wastewater treatment. Composts are made from a variety of organic materials, including both urban and agriculture

    E-Print Network [OSTI]

    Collins, Gary S.

    ISSUE Biosolids are the solids produced during municipal wastewater treatment. Composts are made and compost users need information on the product's proper use, safety, and benefits. Furthermore, biosolids and compost producers need up-to-date information on making and marketing their products, as well

  6. Treatment of domestic wastewater for reuse with activated silica and magnesia 

    E-Print Network [OSTI]

    Lindner, John Howard

    1985-01-01T23:59:59.000Z

    and lime are effective at removing these components' The effectiveness of these coagulants was determined by running a series of jar tests on treated domestic wastewater over a range of pH values. Samples were taken of each coagulant dose added and a... of activated silica in combination with 60 mg/1 alum. Both series 20 were run at pH values of 4, 5, 6, 7, 8 and 9. A third series of jar tests were conducted with low doses of activated silica and sufficient lime to obtain a pH of 9, 10 and 11...

  7. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

  8. Electric Power Generation from Municipal, Food, and Animal Wastewaters Using Microbial Fuel Cells

    E-Print Network [OSTI]

    Angenent, Lars T.

    ) technology can replace activated sludge processes for secondary wastewater treatment. We will discuss sustainable technology is attractive. Keywords: Microbial fuel cells, Wastewater treatment, Economical cell technology to wastewater treatment. Motivations of their work were based on the economic

  9. Endocrine Active Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater-

    E-Print Network [OSTI]

    , Wastewater- Treatment Plant Effluent, and Bed Sediment, and Biological Characteristics in Selected Streams Water, Wastewater- Treatment Plant Effluent, and Bed Sediment, and Biological Characteristics Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater- Treatment Plant

  10. Rules Establishing Minimum Standards Relating to Location, Design, Construction, and Maintenance of Onsite Wastewater Treatment Systems (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of these rules is to protect public health and the environment by establishing minimum standards for the proper location, design, construction and maintenance of onsite wastewater...

  11. Optimization of low-cost phosphorus removal from wastewater using co-treatments with constructed

    E-Print Network [OSTI]

    Florida, University of

    water treatment residuals with vertical-flow constructed wetland mesocosms planted with Schoenoplectus. This process of accretion may take many years. However, treatment wetlands can decline in performance over to improve P removal by wetland treatment systems (Brix et al., 2001; Gru¨neberg and Kern, 2001). Other

  12. Removal of phenols and aromatic amines from wastewater by a combination treatment with tyrosinase and a coagulant

    SciTech Connect (OSTI)

    Wada, Shinji; Ichikawa, Hiroyasu; Tatsumi, Kenji (National Inst. for Resources and Environment, Ibaraki (Japan))

    1995-02-20T23:59:59.000Z

    Removal of phenols and aromatic amines from industrial wastewater by tyrosinase was investigated. A color change from colorless to dark brown was observed, but no precipitate was formed. Colored products were found to be easily removed by a combination treatment with tyrosinase and a cationic polymer coagulant containing amino group, such as hexamethylenediamine-epichlorohidrin polycondensate, polyethleneimine, or chitosan. The first two coagulants, synthetic polymers, were more effective than chitosan, a polymer produced in crustacean shells. Phenols and aromatic amines are not precipitated by any kind of coagulants, but their enzymatic reaction products are easily precipitated by a cationic polymer coagulant. These results indicate that the combination of tyrosinase and a cationic polymer coagulant is effective in removing carcinogenic phenols and aromatic amines from an aqueous solution. Immobilization of tyrosinase on magnetite gave a good retention of activity (80%) and storage stability i.e., only 5% loss after 15 days of storage at ambient temperature. In the treatment of immobilized tyrosinase, colored enzymatic reaction products were removed by less coagulant compared with soluble tyrosinase.

  13. An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet

    E-Print Network [OSTI]

    Bernard, Olivier

    controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality to degrade slowly degradable substrates at high #12;concentrations, very low sludge production, low energy

  14. Demonstration of constructed wetlands for treatment of municipal wastewaters, monitoring report for the period, March 1988--October 1989

    SciTech Connect (OSTI)

    Choate, K.D.; Watson, J.T.; Steiner, G.R.

    1990-08-01T23:59:59.000Z

    To evaluate the constructed wetland technology, the Tennessee Valley Authority (TVA) implemented a municipal wastewater demonstration project in western Kentucky. Using combined city, State, and TVA appropriated funds, three constructed wetland systems were built at Benton, Hardin, and Pembroke, Kentucky. Demonstration objectives include evaluating relative advantages and disadvantages of these types of systems; determining permit compliance ability; developing, evaluating, and improving basic design and operation criteria; evaluating cost effectiveness; and transferring technology to users and regulators. A demonstration monitoring project was implemented with a partnership of funds from the Environmental Protection Agency (EPA) Region IV, other EPA funds through the National Small Flows Clearinghouse (NSFC), and TVA appropriations. TVA is managing the project in cooperation with an interagency team consisting of EPA, Kentucky Division of Water and NSFC. This report, which supersedes the first monitoring report (Choate, et. al., 1989) of these demonstration projects, describes each constructed wetland system, its status, and summarizes monitoring data and plans for each system. 5 refs., 30 figs., 26 tabs.

  15. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges

    SciTech Connect (OSTI)

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A. [Oak Ridge National Lab., TN (United States); Bickford, D.F. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1994-01-01T23:59:59.000Z

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

  16. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect (OSTI)

    Jon Creighton

    2012-03-13T23:59:59.000Z

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  17. Plants in constructed wetlands help to treat agricultural processing wastewater

    E-Print Network [OSTI]

    Grismer, Mark E; Shepherd, Heather L

    2011-01-01T23:59:59.000Z

    Evaluation of constructed wetland treatment performance forof a con- structed wetland for treatment of winery effluent.constructed wetlands for process wastewater treatment at two

  18. Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    over a Israel agricultural wastewater reuse e Residence veryenergy for waste- water treatment. Furthermore, agriculturalagricultural crops, gardens, golf courses, and conservation areas. Primary concerns associated with wastewater

  19. The effect of chemical composition on the PCT durability of mixed waste glasses from wastewater treatment sludges

    SciTech Connect (OSTI)

    Resce, J.L.; Ragsdale, R.G.; Overcamp, T.J. [Clemson Univ., SC (United States); Bickford, D.F.; Cicero, C.A. [Savannah River Technology Center, Aiken, SC (United States)

    1995-01-25T23:59:59.000Z

    An experimental program has been designed to examine the chemical durability of glass compositions derived from the vitrification of simulated wastewater treatment sludges. These sludges represent the majority of low-level mixed wastes currently in need of treatment by the US DOE. The major oxides in these model glasses included SiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}, Na{sub 2}O, CaO and Fe{sub 2}O{sub 3}. In addition, three minor oxides, BaO, NiO, and PbO, were added as hazardous metals. The major oxides were each varied at two levels resulting in 32 experimental glasses. The chemical durability was measured by the 7-Day Product Consistency Test (PCT). The normalized sodium release rates (NRR{sub Na}) of these glasses ranged from 0.01 to 4.99 g/m{sup 2}. The molar ratio of the glass-former to glass-modifier (F/M) was found to have the greatest effect on PCT durability. Glass-formers included SiO{sub 2}, Al{sub 2}O{sub 3}, and B{sub 2}O{sub 3}, while Na{sub 2}O, CaO, BaO, NiO, and PbO were glass-modifiers. As this ratio increased from 0.75 to 2.0, NRR{sub Na} was found to decrease between one and two orders of magnitude. Another important effect on NRR{sub Na} was the Na{sub 2}O/CaO ratio. As this ratio increased from 0.5 to 2.0, NRR{sub Na} increased up to two orders of magnitude for the glasses with the low F/M ratio but almost no effect was observed for the glasses with the high F/M ratio. Increasing the iron oxide content from 2 to 18 mole% was found to decrease NRR{sub Na} one order of magnitude for the glasses with low F/M but iron had little effect on the glasses with the high F/M ratio. The durability also increased when 10 mole percent Al{sub 2}O{sub 3} was included in low iron oxide glasses but no effect was observed with the high iron glasses. The addition of B{sub 2}O{sub 3} had little effect on durability. The effects of other composition parameters on durability are discussed as well.

  20. The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams

    E-Print Network [OSTI]

    New Mexico State University, Las Cruces, NM, USA c Hydration Technology Innovations, Albany, OR, USA d, and especially oil and gas (O&G) exploration and production wastewaters. High salt concentrations, decentralized Elsevier B.V. All rights reserved. Desalination 333 (2014) 23­35 Corresponding author. Tel.: +1 303 273

  1. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Milking Center Wastewater Treatment

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    be affected by manure, milk solids, ammonia, phosphorus, and detergents. Wastewater from the dairy milking center is made up of waste from the milking parlor (manure, feed solids, hoof dirt, bulk tank rinse water and detergent used in cleaning), and should... topics: 1. Combining wastes 2. Application methods 3. Slow surface infiltration Combining Wastes When milking center wastes are combined with manure a common disposal system can be used for both types of waste. A liquid manure storage facility, properly...

  2. Rules Governing Water and Wastewater Operator Certification (Tennessee)

    Broader source: Energy.gov [DOE]

    The Rules Governing Water and Wastewater Operator Certification are applicable to all projects that will require a water treatment site. Everyone who plans to operate a wastewater or water...

  3. Household water treatment and safe storage options for Northern Region Ghana : consumer preference and relative cost

    E-Print Network [OSTI]

    Green, Vanessa (Vanessa Layton)

    2008-01-01T23:59:59.000Z

    A range of household water treatment and safe storage (HWTS) products are available in Northern Region Ghana which have the potential to significantly improve local drinking water quality. However, to date, the region has ...

  4. Treated Wastewater Effluent Reduces Sperm Motility Along an Osmolality Gradient

    E-Print Network [OSTI]

    Julius, Matthew L.

    of the Metropolitan Wastewater Treatment Plant, St. Paul, Minnesota, and from an upstream site on the MississippiTreated Wastewater Effluent Reduces Sperm Motility Along an Osmolality Gradient H. L. Schoenfuss Æ 2008 Ó Springer Science+Business Media, LLC 2008 Abstract Many toxic effects of treated wastewater

  5. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments

    E-Print Network [OSTI]

    biological process used for wastewater treatment is desirable to avoid discharge of untreated wastewaterExamination of microbial fuel cell start-up times with domestic wastewater and additional Available online 30 April 2011 Keywords: Microbial fuel cell Domestic wastewater Startup time Substrate a b

  6. Organic removal from domestic wastewater by activated alumina adsorption

    E-Print Network [OSTI]

    Yang, Pe-Der

    1982-01-01T23:59:59.000Z

    of the major groups of pollutants in wastewaters. Adsorption by granular activated carbon, a non-polar adsorbent, is now the primary treatment process for removal of residual organics from biologically treated wastewater. The ability of activated alumina... to human health if they exist in the water supply at relatively high concentrations. A wide variety of treatment processes are available to remove organic matter from wastewater. Biological treatment is the most cost effective method for removing oxygen...

  7. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    SciTech Connect (OSTI)

    Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

    2013-10-01T23:59:59.000Z

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondarytreated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  8. Oregon Construction/Installation Permit for Onsite Wastewater...

    Open Energy Info (EERE)

    Oregon ConstructionInstallation Permit for Onsite Wastewater Treatment System Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Construction...

  9. Detection of Wastewater Plumes from the 15 N Isotopic Composition of

    E-Print Network [OSTI]

    Vallino, Joseph J.

    via septic systems and wastewater treatment facilities. 5 Mya arenaria were collected at each systems and wastewater treatment facilities (McClelland & Valiela, 1997). West Falmouth Harbor of nitrogen loading into West Falmouth Harbor originated from wastewater treatment facilities (60%) and septic

  10. Wastewater sludge management options for Honduras

    E-Print Network [OSTI]

    Bhattacharya, Mahua, M. Eng. Massachusetts Institute of Technology.

    2009-01-01T23:59:59.000Z

    Sludge management is a fundamental area of concern across wastewater treatment systems in Honduras. The lack of timely sludge removal has led to declining plant performance in many facilities throughout the country. In ...

  11. Wetland treatment of oil and gas well wastewaters. Quarterly technical report, May 25, 1992---August 24, 1992

    SciTech Connect (OSTI)

    Kadlec, R.H.; Srinivasan, K.R.

    1995-11-01T23:59:59.000Z

    The purpose of this study is to extend the knowledge base for wetland treatment to include processes and substances of particular importance to small, on-site systems receiving oil and gas well waste water. Collection of data on the sorption of heavy metals and the degradation of toxic organics is one of the key tasks. The toxic organics phenolics and anthracene, and chromium and copper have been selected as target adsorbates. An information search was performed on oil refinery waste treatment wetland systems.

  12. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    E-Print Network [OSTI]

    Treatability studies on different refinery wastewater samples using high-throughput microbial, University Park, PA 16802, USA h i g h l i g h t s Refinery wastewaters were tested as fuels in MECs effective for treatment or pre-treatment of some refinery wastewaters. The best way to start up MECs

  13. The application of PHREEQCi, a geochemical computer program, to aid in the management of a wastewater treatment wetland

    E-Print Network [OSTI]

    Mitzman, Stephanie

    1999-01-01T23:59:59.000Z

    to Enhance Treatment Capability at the TMPA Site. . Step 1 . . Step 2. . Step 3 . . Page nl IV V I I IX 4 4 10 10 13 18 18 20 26 26 28 29 29 32 32 33 33 36 43 43 44 55 59 59 59 62 62 64 64 CONCLUSIONS . . PHREEQCI... 6 8 pH 10 12 B 20 15 10 A C B -10 -15 -20 -0 Eh 05 Figure 1. Theoretical speciation curves as a function of saturation index (SI), pH (A) and Eh (B). Horizontal dashed lines represent a SI value of zero, indicating the species...

  14. Field Demonstration of the Performance of Wastewater Treatment Solution (WTS®) to Reduce Phosphorus and other Substances from Dairy Lagoon Effluent

    E-Print Network [OSTI]

    Mukthar, Saqib; Rahman, Shafiqur; Gregory, Lucas

    Average T ere filled ped at a shallow depth. Compared with lagoon response, TS were slightly greater than TS concentrations d in Mukhtar et al., 2004), and tank T2. (Note: September 2007 sampling is the pre-treatment sampling.) S in both tanks...) observed by Mukhtar et al. (2004), Barker et al. (2001; cite Converse and Karthikeyan (2004). Solids concentration in LS was also slightly higher (2.4 to 2.6%) than the typical 1% found in the supernatant of most anaerobic dairy lagoons. This higher TS...

  15. Effects of UV Light Disinfection on Tetracycline Resistant Bacteria in Wastewater Effluents 

    E-Print Network [OSTI]

    Childress, Hannah

    2011-10-21T23:59:59.000Z

    of antibioticresistance genes (ARGs) and antibiotic-resistant and multidrug resistant bacteria in wastewater and drinking water treatment plants. There is also evidence to suggest that ARGs spread to the environment, and to humans and animals, through wastewater effluents...

  16. Wastewater Discharge Program (Maine)

    Broader source: Energy.gov [DOE]

    The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the state, or to the ocean. Typical discharges...

  17. Biologically Inspired Photocatalytically Active Membranes for Water Treatment

    E-Print Network [OSTI]

    Kinsinger, Nichola

    2013-01-01T23:59:59.000Z

    wastewater treatment systems include treatment of the influent by a series of stages: pretreatment, primary sedimentation, biological

  18. Optimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica

    E-Print Network [OSTI]

    Vogel, Richard M.

    Optimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica Ana Martha- ated with their mismanagement and deterioration. Historically, fecal sludge management has been-9496 2008 134:1 55 CE Database subject headings: Sludge; System analysis; Waste stabilization ponds

  19. Harvesting Energy from Wastewater Treatment

    E-Print Network [OSTI]

    theGlobal industrial growth will increase the demand for fossil fuels and energydemand for fossil fuels and energy ­­ US production of oil peaked 30 years agoUS production of oil peaked 30 years ago microbial fuelElectricity production using microbial fuel cellscells Hydrogen production from biomass

  20. Harvesting Energy from Wastewater in a 2-Chamber

    E-Print Network [OSTI]

    . The microorganisms oxidize the organic food matter, and transfer the electrons to the anode. The electrons travel wastewater treatment plants utilize aerobic bacteria. Organic material in wastewater contains energy that can a microbial fuel cell (MFC), it takes a source of bacteria, food, no oxygen, and two electrodes

  1. Polishing of synthetic electroplating wastewater in microcosm upflow constructed wetlands: Metals removal mechanisms

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of these articles reported application of CWs for the treatment of electroplating wastewater. The challenge

  2. E-Print Network 3.0 - aquatic plant wastewater Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Collection: Environmental Sciences and Ecology 56 APPLIED ISSUES Effects of stream restoration and wastewater treatment Summary: , terrestrial versus aquatic food...

  3. 1 st INTERNATIONAL SEMINAR ON THE USE OF AQUATIC MACROPHYTES FOR WASTEWATER

    E-Print Network [OSTI]

    Brix, Hans

    ON THE USE OF AQUATIC MACROPHYTES FOR WASTEWATER TREATMENT IN CONSTRUCTED WETLANDS May 8 ­ 10, 2003 - Lisb 3 DANISH EXPERIENCES WITH WASTEWATER TREATMENT IN CONSTRUCTED WETLANDS Hans Brix Department of Plant is described. KEYWORDS Constructed wetland; reed bed; root-zone system; treatment wetland; vertical flow

  4. Implementing Energy Efficiency in Wastewater to Reduce Costs 

    E-Print Network [OSTI]

    Cantwell, J. C.

    2008-01-01T23:59:59.000Z

    and assessed many municipal and industrial wastewater systems across the state, identified opportunities to save energy and assisted in implementing energy efficiency modifications without adversely impacting the quality of the treatment system...

  5. Food service establishment wastewater characterization and management practice evaluation 

    E-Print Network [OSTI]

    Garza, Octavio Armando

    2006-04-12T23:59:59.000Z

    Food service establishments that use onsite wastewater treatment systems are experiencing hydraulic and organic overloading of pretreatment systems and/or drain fields. Design guidelines for these systems are typically ...

  6. City in Colorado Fueling Vehicles with Gas Produced from Wastewater...

    Broader source: Energy.gov (indexed) [DOE]

    the key facts? Grand Junction built a five mile pipeline to transport compressed natural gas (CNG) from its local wastewater treatment facility to its CNG station to fuel the city...

  7. Food service establishment wastewater characterization and management practice evaluation

    E-Print Network [OSTI]

    Garza, Octavio Armando

    2006-04-12T23:59:59.000Z

    Food service establishments that use onsite wastewater treatment systems are experiencing hydraulic and organic overloading of pretreatment systems and/or drain fields. Design guidelines for these systems are typically provided in State regulations...

  8. Removal of indicator bacteria from municipal wastewater in an experimental two-stage vertical flow constructed

    E-Print Network [OSTI]

    Brix, Hans

    reasons for wastewater treatment. Constructed wetland systems remove pathogens by factors such as natural that constructed wetlands are generally chosen as a solution for autonomous wastewater treatment and that commonly constructed wetland system C.A. Arias*, A. Cabello*, H. Brix* and N.-H. Johansen** * Department of Plant

  9. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Energy Savers [EERE]

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop: Agenda and Objectives Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop:...

  10. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  11. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01T23:59:59.000Z

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  12. Humic substance formation during wastewater infiltration

    SciTech Connect (OSTI)

    Siegrist, R.L. (Oak Ridge National Lab., TN (United States)); Hildmann-Smed, R.; Filip, Z.K. (Bundesgesundheitsamt (BGA), Langen (Germany). Inst. fuer Wasser-, Boden- und Lufthygiene); Jenssen, P.D. (Norges Landbrukshoegskole, Aas (Norway). Centre for Soil and Environmental Research)

    1991-01-01T23:59:59.000Z

    Soil infiltration of wastewater effluents is a widely practiced method of treatment and disposal/reuse throughout the world. Renovation of the wastewater results from a wide variety of complex physicochemical and biological processes. One set of processes is speculated to involve the accumulation of organic matter by filtration and sorption followed by formation of humic substances. This humic substance formation can effect the performance of soil treatment systems by contributing to soil pore clogging and reduction in hydraulic capacity, and by yielding reactive substances and an enhancement of purification processes. While there has been a wealth of research into the nature and genesis of humic substances in terrestrial environments, there has been limited research of humic substance formation during soil infiltration of wastewater. The purpose of the research reported herein was to determine if humic substances can form under conditions typical of those present during wastewater infiltration into natural soil systems. This work was conducted during 1989 to 1990 as a collaborative effort between the Centre for Soil and Environmental Research, located in Aas, Norway and the Institute for Water, Soil and Air Hygiene located in Langen, West Germany. 11 refs., 3 figs., 6 tabs.

  13. The effect of mean cell residence time on the adsorbability of dissolved organic compounds found in petrochemical wastewaters

    E-Print Network [OSTI]

    Johnson, Timothy Loring

    1979-01-01T23:59:59.000Z

    , each with a different mean cell residence time, biologically treated the waste- water. Follow1ng biolog1cal treatment, the wastewater was subjected to activated carbon adsorption treatment. The Freundlich isotherm, non-adsorbable organic compound... residence time on adsorbability is the same for petrochemical wastewater as it is for municipal wastewater. The purpose of this thesis is to determine if the mean cell residence time in a biological treatment process can af'feet the ad- sorbability...

  14. Uniformity of wastewater dispersal using subsurface drip emitters

    E-Print Network [OSTI]

    Persyn, Russell Alan

    2000-01-01T23:59:59.000Z

    An on-site wastewater treatment project site with two separate drip fields produced data on emitter flow rates and uniformity after 6 years of operation. The site served a two-bedroom residence in Weslaco, Texas, with treatment through a septic...

  15. Purdue AgronomyPurdue AgronomyCrop, Soil, and EnvironmEntal SCiEnCES Wastewater Biological Oxygen Demand in Septic Systems

    E-Print Network [OSTI]

    Holland, Jeffrey

    , commonly called a biomat. This biomat is where the bulk of biological wastewater treatment occursPurdue AgronomyPurdue AgronomyCrop, Soil, and EnvironmEntal SCiEnCES Wastewater Biological Oxygen to surface or groundwater it can result in low dissolved oxygen #12; Wastewater Biological Oxygen Demand

  16. Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant

    E-Print Network [OSTI]

    Kusiak, Andrew

    ; Energy consumption; Data collection; Neural networks; Dynamic models; Statics; Water treatment plants. Author keywords: Wastewater pump models; Energy consumption; Pump energy; Data mining; Head influenceModels for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant Zijun Zhang

  17. Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater

    E-Print Network [OSTI]

    to osmotic water extraction. Bioenergy recovered from wastewater can potentially support pumping system osmosis into an MFC for simultaneous wastewater treatment, bioenergy recovery, and water extraction and water extraction [9]. An MFC using an FO membrane as a separator between its anode and cathode is called

  18. ORIGINAL RESEARCH PAPER Removal of selenite from wastewater using microbial fuel

    E-Print Network [OSTI]

    Tullos, Desiree

    generation Á Microbial fuel cell Á Selenium removal Á Wastewater treatment Introduction Selenium (SeORIGINAL RESEARCH PAPER Removal of selenite from wastewater using microbial fuel cells Tunc Catal Æ; Lenz T. Catal Á H. Liu (&) Department of Biological and Ecological Engineering, Oregon State University

  19. Design and study of a risk management criterion for an unstable anaerobic wastewater

    E-Print Network [OSTI]

    Bernard, Olivier

    Design and study of a risk management criterion for an unstable anaerobic wastewater treatment an unstable biological process used for wastewater treat- ment. This anaerobic digestion ecosystem can have digestion, Nonlinear systems diagnosis 1 Introduction and motivation Control of biological systems is a very

  20. Removal of Selenium from Wastewater using ZVI and Hybrid ZVI/Iron Oxide Process

    E-Print Network [OSTI]

    Yang, Zhen

    2012-12-20T23:59:59.000Z

    . The hZVI system process is a novel chemical treatment that has shown valuable potential for removing several heavy metals from wastewater. This study concluded that at bench scale, the removal efficiency of SeCN- in the wastewater is over 99% with 2...

  1. Wastewater Effluent Polishing Systems of Anaerobic Baffled Reactor Treating Black-water from Households

    E-Print Network [OSTI]

    Richner, Heinz

    %, respectively. The highest treatment performances in the sand filter and constructed wetland units were reached systems for the treatment of domestic blackwater, aimed at determining the treatment performance of different integrated low-cost wastewater treatment systems, comprising one ABR as first treatment step

  2. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop March 18, 2015 8:00AM EDT to...

  3. Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment

    DOE Patents [OSTI]

    Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

    1982-01-01T23:59:59.000Z

    A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.

  4. The effect of solids retention time on tertiary ozonation and carbon adsorption of petrochemical wastewaters

    E-Print Network [OSTI]

    Buys, Ronald Earl

    1980-01-01T23:59:59.000Z

    . Biological treatment of wastewater has been used since the turn of the century, and while its application has grown in complexity since that time, the fundamental biological reaction mechanisms have remained unchanged. Most important... organic carbon from the wastewater by conversion into microbial cells, or some other desirable form. Biological waste treatment is usually intended for the removal of organic matter, but certain other contaminants are also removed, For example...

  5. Optimiziing the laboratory monitoring of biological wastewater-purification systems

    SciTech Connect (OSTI)

    S.V. Gerasimov [OAO Koks, Kemerovo (Russian Federation)

    2009-05-15T23:59:59.000Z

    Optimization of the laboratory monitoring of biochemical wastewater-treatment systems at coke plants is considered, for the example of OAO Koks. By adopting a methodological approach to determine the necessary data from chemical analysis, it is possible to reduce the time, labor, and materials required for monitoring, without impairing the purification process or compromising the plant's environmental policies.

  6. Selective hydrolysis of wastewater sludge Part 1, December 2008

    E-Print Network [OSTI]

    the production of biogas based power and heat besides reduce the power consumption from handling and treatment selective hydrolysis of sludge as if established at the existing sludge digester system . The Esbjerg digester technology .l'he plant treats combined household and industrial wastewater with a considerable

  7. Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment

    DOE Patents [OSTI]

    Pankove, J.I.; Wu, C.P.

    1982-03-30T23:59:59.000Z

    A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gassing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen. 2 figs.

  8. Introduction to Wastewater Bruce J. Lesikar

    E-Print Network [OSTI]

    Wastewater Constituents Organic matter ­ Biochemical Oxygen Demand ­ indicator Solids ­ TSS FOG ­ Fats, Oil

  9. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1990-01-01T23:59:59.000Z

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  10. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1999-02-02T23:59:59.000Z

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  11. Shaping the Future of Water and Wastewater Services

    E-Print Network [OSTI]

    Painter, Kevin

    -Scotland Strategies Regional Strategies Asset & System Plans Operational & Capital Delivery Plans "company Asset & System Plans Operational & Capital Delivery Plans "company-wide strategies that set outShaping the Future of Water and Wastewater Services Jim Conlin Acting GM Long Term Asset Strategy

  12. Radiofrequency power disinfects and disinfests food, soils and wastewater

    E-Print Network [OSTI]

    Lagunas-Solar, Manuel C.; Zeng, Nolan X.; Essert, Timothy K.; Truong, Tin D.; Pina U., Cecilia

    2006-01-01T23:59:59.000Z

    rice, soils, agricultural wastewater, and other foods andNUMBER 4 Treating agricultural wastewater We investigatedthe disinfection of agricultural wastes using wastewater

  13. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    Used Radionuclides in Sewage Sludge. Water, Air, and Soilin Ground Level Air and Sewage Sludge. Water, Air, and SoilMeans of Measurements on Sewage Sludge. Water, Air, and Soil

  14. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    after discovery of nuclear fission. During the World War II,operation of nuclear reactors, each fission results in thesupplies by fallout. Fission products from nuclear tests and

  15. Quantitative Analyses of Anaerobic Wastewater Treatment Processes

    E-Print Network [OSTI]

    Timmer, Jens

    -knit community of bacteria cooperate to form a stable, self- regulating fermentation that transforms organic-chain fatty acids); fermentation of aminoacids and sugars; anaero- bic oxidation of long-chain fatty acids and alcohols; anaerobic oxidation of intermediary products such as volatile fatty acids; conversion of acetate

  16. Use of magnetic nanoparticles for wastewater treatment

    E-Print Network [OSTI]

    Parekh, Asha, 1942-

    2013-01-01T23:59:59.000Z

    Contamination of marine sediments and water environments by urban runoffs, industrial and domestic effluents and oil spills is proving to be of critical concern as they affect aquatic organisms and can quickly disperse to ...

  17. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    can be mined in Niger, Kazakhstan, Uzbekistan and Gabon, 4)can be found in China, Kazakhstan, Russian Federation andCanada, Australia and Kazakhstan. During the period between

  18. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    found that the uranium content in seawater ranges from 1.1rocks. Seawater also contains a noticeable amount of uraniumof seawater; however, is not proportional to its uranium

  19. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    due to the Fukushima nuclear plant accident. Journal of21 3. NUCLEAR POWER PLANTS……………………………………………….. 23 3.1-25 3.2- WASTES FROM NUCLEAR POWER PLANTS………………………… 28 4.

  20. On-Site Wastewater Treatment Systems: Graywater

    E-Print Network [OSTI]

    Melton, Rebecca; Lesikar, Bruce J.; Smith, David; O'Neill, Courtney

    2008-04-03T23:59:59.000Z

    pollutants being added to the graywater. Each source contributes different contami- nants due to its particular water com- ? can be cleaned; and ? meets structural requirements of the 2004 American Water Works Association (AWWA) standards. Settling tank...; ? that can be cleaned; and ? that meet the structural standards of the 2004 American Water Works Association (AWWA) standards. (Look for a stamp indicating the tank meets AWWA standards.) ? The graywater system must use piping...

  1. Energy from vascular plant wastewater treatment systems

    SciTech Connect (OSTI)

    Wolverton, B.C.; McDonald, R.C.

    1981-04-01T23:59:59.000Z

    Water hyacinth (Eichhornia crassipes) duckweed (Spirodela sp. and Lemna sp.), water pennywort (Hydrocotyle ranunculoides), and kudzu (Pueraria lobata) were anaerobically fermented using an anaerobic filter technique that reduced the total digestion time from 90 d to an average of 23 d and produced 0.14 to 0.22 m/sup 3/ CH/sub 4//kg (dry weight) (2.3 to 3.6 ft/sup 3//lb) from mature filters for the 3 aquatic species. Kudzu required an average digestion time of 33 d and produced an average of 0.21 m/sup 3/ CH/sub 4//kg (dry weight) (3.4 ft/sup 3//lb). The anaerobic filter provided a large surface area for the anaerobic bacteria to establish and maintain an optimal balance of facultative, acid-forming, and methane-producing bacteria. Consequently the efficiency of the process was greatly improved over prior batch fermentations.

  2. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    Comments on the Presence of Chernobyl Derived Cs and Tc inRadiological Impact of the Chernobyl Debris Compared with42 5.3- CHERNOBYL…………………………………………………………… 43 v   5.4-

  3. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

  4. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    were measured by gamma-spectrometry. Also the partition oftreatment process. In gamma-spectrometry of sludge, the

  5. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    though our water and biosolids recycling systems. Areas inoften rely on beneficial reuse of biosolids for disposal.to recycle water or reuse biosolids because of low-level

  6. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    tests. Atmospheric nuclear weapon tests introduced largethrough 1980 from nuclear weapon tests, mostly in megatonFROM WEAPONS TESTS The primary use of nuclear energy after

  7. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    Radioactive Plume from Fukushima: Is There a Correlation?France due to the Fukushima nuclear accident. Journal ofGreece due to the Fukushima nuclear accident. Journal of

  8. Fischer-Tropsch Wastewater Utilization

    DOE Patents [OSTI]

    Shah, Lalit S. (Sugar Land, TX)

    2003-03-18T23:59:59.000Z

    The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

  9. anaerobic biological treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    results for an anaerobic digestion system operated at an existing wastewater treatment plant. Based on scale-up evaluation, the test system should yield an energy balance with...

  10. aerobic treatment units: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (g) Settling time (min) Time (days) Time (days) Biomass 25 Field investigation on the treatment of partially-treated pigfarm wastewater by a constructed wetland. Open Access...

  11. albendazole treatments enhance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment Geosciences Websites Summary: in a wastewater constructed wetland (175 m2 area)...

  12. aerated treatment pond: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nitratenitrite can be reduced with influent BOD. The key feature Nerenberg, Robert 50 Treatment of saltwater crocodile Pond wastewater using constructed Wetland system;. Open...

  13. Effects of UV Light Disinfection on Tetracycline Resistant Bacteria in Wastewater Effluents

    E-Print Network [OSTI]

    Childress, Hannah

    2011-10-21T23:59:59.000Z

    and support. I would also like to thank Bailey Sullivan for teaching lab procedures, and the operators at the wastewater treatment plant for their assistance. I am grateful to the Department of Biological and Agricultural Engineering for providing a... of the requirements for the degree of MASTER OF SCIENCE August 2010 Major Subject: Biological and Agricultural Engineering EFFECTS OF UV LIGHT DISINFECTION ON TETRACYCLINE RESISTANT BACTERIA IN WASTEWATER EFFLUENTS A Thesis by HANNAH...

  14. Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia 

    E-Print Network [OSTI]

    Al-Rifai, Jawad H.; Gabelish, Candace L.; Schäfer, Andrea

    2007-01-01T23:59:59.000Z

    to concentrate many of the compounds was demonstrated and highlights the need for continued research into monitoring wastewater treatment, concentrate disposal, improved water recycling schemes and ultimately, safer water and a cleaner environment....

  15. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect (OSTI)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01T23:59:59.000Z

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they will be included in a future public release of WRF-Chem.

  16. Using CO2 & Algae to Treat Wastewater and

    E-Print Network [OSTI]

    Keller, Arturo A.

    Using CO2 & Algae to Treat Wastewater and Produce Biofuel Feedstock Tryg Lundquist Cal Poly State of the Industry and Growth · Algae's Role in WW Treatment · CO2's New Role · Research at Cal Poly · Future Work/MG 0.3 MGD average flow per facility #12;Reclaimed Algae Bacteria O2 CO2 N Organics N P CO2 P CO2 Waste

  17. BULKING SLUDGE TREATMENT BY MICROSCOPIC OBSERVATION AND MECHANICAL TREATMENT

    E-Print Network [OSTI]

    for the operation of the biological stage of waste water treatment plants. If the threatening extensive growth of wastewater treatment plants often need a complex control for the optimal processing. The measurement status and for the regulation of biological parts in waste water treatment plants. Furthermore, e

  18. On-Site Wastewater Treatment Systems: Aerobic Treatment Unit (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-08-29T23:59:59.000Z

    sea de alta calidad. En el sistema, las aguas negras primero entran al tanque de pretratamiento o a la trampa de basura, que saca los objetos pl?sticos y otros s?lidos que flotan o se asientan. Despu?s, entra a un tanque de aireaci?n donde el ox... Sistemas individuales para el tratamiento de aguas negras Fosa de basura de un compartimiento Cloronizador Unidad de tratamiento aer?bico Rociadores Tanque bomba Unidad de tratamiento aer?bico Bruce Lesikar y Juan Enciso Promotores Especialistas de...

  19. Measurement and Treatment of Nuisance Odors at Wastewater Treatment Plants

    E-Print Network [OSTI]

    Abraham, Samantha Margaret

    2014-01-01T23:59:59.000Z

    in the presence of MTBE, ETBE and TAME. Chemosphere 85, 616-Xanthomonas sp. MTBE/ETBE/TAME a Acinetobacter calcoaceticusMTBE= Methyl tert-Butyl Ether, ETBE= Ethyl tert-Butyl Ether,

  20. On-Site Wastewater Treatment Systems: Aerobic Treatment Unit (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-08-29T23:59:59.000Z

    puestas a prueba y tener una certificaci?n de acuerdo con las normas internacionales Standard 40 de la ?National Sanitation Foundation? para los dispositivos de tratamiento de aguas negras. Las unidades de tratamiento aer?bico que pasan las pruebas se...

  1. Removal of Eutrophic Nutrients from Wastewater and their UNIVERSITY OF THE DISTRICT OF COLUMBIA Bioconversion to Bacterial Single Cell Protein for Animal

    E-Print Network [OSTI]

    District of Columbia, University of the

    Removal of Eutrophic Nutrients from Wastewater and their UNIVERSITY OF THE DISTRICT OF COLUMBIA OF EUTROPHIC NUTRIENTS FROM WASTEWATER AND THEIR BIOCONVERSION TO BACTERIAL SINGLE CELL PROTEIN FOR ANIMAL FEED plants. The two major eutrophic nutrients present in effluents from municipal treatment plants

  2. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    SciTech Connect (OSTI)

    Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

    2009-09-09T23:59:59.000Z

    Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

  3. Plants in constructed wetlands help to treat agricultural processing wastewater

    E-Print Network [OSTI]

    Grismer, Mark E; Shepherd, Heather L

    2011-01-01T23:59:59.000Z

    help to treat agricultural processing wastewater by Mark E.oxygen demand Agricultural processing wastewaters may haveAgricultural Engineering, and Hydrology, UC Davis; and H.L. Shepherd is Independent Wastewater

  4. anti-parasite treatment removes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ... Xu, Xin, S.M. Massachusetts Institute...

  5. FAILURE ANALYSIS: WASTEWATER DRUM BULGING

    SciTech Connect (OSTI)

    Vormelker, P

    2008-09-15T23:59:59.000Z

    A 55 gallon wastewater drum lid was found to be bulged during storage in a remote area. Drum samples were obtained for analysis. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

  6. File:CDPHE Industrial Individual Wastewater Discharge Permit...

    Open Energy Info (EERE)

    Industrial Individual Wastewater Discharge Permit Application.pdf Jump to: navigation, search File File history File usage Metadata File:CDPHE Industrial Individual Wastewater...

  7. Iowa Water and Wastewater Operators Seek SEP Certification in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iowa Water and Wastewater Operators Seek SEP Certification in New Pilot Program Iowa Water and Wastewater Operators Seek SEP Certification in New Pilot Program September 18, 2014 -...

  8. Sandia National Laboratories: domestic reuse of wastewater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    domestic reuse of wastewater Sandia, the Atlantic Council, and NM Water Resource Research Institute Sponsor Roundtable on Western Water Scarcity On October 4, 2013, in Climate,...

  9. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Value Challenges Panel Presentations The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse, Perry McCarty, Stanford University...

  10. Wastewater Construction and Operation Permits (Iowa)

    Broader source: Energy.gov [DOE]

    These regulations describe permit requirements for the construction and operation of facilities treating wastewater, and provide separation distances from other water sources.

  11. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment

    E-Print Network [OSTI]

    Heal, Kate

    Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment K in a wastewater constructed wetland (175 m2 area) in Berwickshire, UK. The hydraulic and treatment performance wetlands are widely used for tertiary wastewater treatment but, although effective for nitrogen removal

  12. The treatment of wood preserving wastes with activated carbon

    E-Print Network [OSTI]

    Pence, Robert Fuller

    1978-01-01T23:59:59.000Z

    requirement and treatment schemes should be based on these combined requirements. Current treatment schemes employed in the wood preserving industry combine physical, chemical, and biological processes and operations in treating wastewaters. Jones, et al...-five of the plants performed secondary treatment on-site of which 32 used biological methods. Only 6 per- cent discharged their wastewaters directly to the environment without any form of treatment and approximately 40 percent of the plants planned to change...

  13. TECHNICAL REPORTS Constructed treatment wetlands are a relatively low-cost

    E-Print Network [OSTI]

    Florida, University of

    TECHNICAL REPORTS 1904 Constructed treatment wetlands are a relatively low significantly affect the biogeochemistry of treatment wetlands and needs further investigation. Soil Biogeochemical Characteristics Influenced by Alum Application in a Municipal WastewaterTreatmentWetland Lynette M

  14. Removal of phenols from wastewater by soluble and immobilized tyrosinase

    SciTech Connect (OSTI)

    Wada, Shinji; Ichikawa, Hiroyasu; Tatsumi, Kenji (National Inst. for Resources and Environment, Ibaraki (Japan))

    1993-09-20T23:59:59.000Z

    An enzymatic method for removal of phenols from industrial wastewater was investigated. Phenols in an aqueous solution were removed after treatment with mushroom tyrosinase. The reduction order of substituted phenols is catechol > p-cresol > p-chlorophenol > phenol > p-methoxyphenol. In the treatment of tyrosinase alone, no precipitate was formed but a color change from colorless to dark-brown was observed. The colored products were removed by chitin and chitosan which are available abundantly as shellfish waste. In addition, the reduction rate of phenols was observed to be accelerated in the presence of chitosan. Tyrosinase, immobilized by using amino groups in the enzyme on cation exchange resins, can be used repeatedly. By treatment with immobilized tyrosinase, 100% of phenol was removed after 2 h, and the activity was reduced very little even after 10 repeat treatments.

  15. ED-WAVE: an Educational Software for Training on Wastewater Technologies

    E-Print Network [OSTI]

    Gutierrez, Diego

    in the sustainability book. Moreover, in develop- ing countries of South-East Asia great issues of water shortage, water database and case base reasoning in the field of wastewater treatment and water reclamation. ED-WAVE aims also to provide a sustainable platform for ongoing learning on technologies improving water quality

  16. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01T23:59:59.000Z

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  17. ON RELIABLE AND UNRELIABLE NUMERICAL METHODS FOR THE SIMULATION OF SECONDARY SETTLING TANKS IN WASTEWATER

    E-Print Network [OSTI]

    Bürger, Raimund

    . A one-dimensional model for the sedimentation-compression-dispersion process in the secondary settling and experience, the sedimenta- tion process in the SST is still a challenge in modelling the full-scale operation of wastewater treatment plants (WWTPs). In modelling the activated sludge process, biological reactors have

  18. Wastewater Discharge, Nutrient Loading, and Dissolved Oxygen Dynamics in a Shallow Texas Bay

    E-Print Network [OSTI]

    Schroer, Lee Allen

    2014-05-07T23:59:59.000Z

    In Oso Bay, a wastewater treatment plant acts as a source of eutrophication and may have measureable impact on the health of the bay. The objectives of this study were to create a model for modeling dissolved oxygen concentrations over time...

  19. Safe use of wastewater in agriculture and aquaculture

    E-Print Network [OSTI]

    Richner, Heinz

    hazardous chemicals from industrial wastewater. Residues of agrochemicals (pesticides, nitrates) may also

  20. An Itegrated Approach to Water Treatment in Oil and Gas Industry via Thermal Membrane Distillation

    E-Print Network [OSTI]

    Elsayed, Nesreen Ahmed Abdelmoez Mohamed

    2014-10-14T23:59:59.000Z

    and discharge to conserve water resources and reduce the negative environmental impact associated with discharging wastewater into the environment. Wastewater treatment enables providing water with specifications suitable for either recycle in the same... process or reuse in other ways within the process or outside the process. Therefore, water treatment and recycle/reuse contribute to addressing both of the aforementioned water problems: fresh water sacristy and environmental impact of wastewater...

  1. Falmouth Wastewater | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFREDJump to: navigation,Wastewater

  2. Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    environments and are very salty, like the Marcellus shale and other oil and gas formations underlying the areaUnderground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies), Region 3. Marcellus Shale Educational Webinar, February 18, 2010 (Answers provide below by Karen Johnson

  3. Reducing the Risks. In the aftermath of a terrorist attack, wastewater utilities may have to contend with decontamination water containing chemical, biological, or radiological substances

    SciTech Connect (OSTI)

    Warren, Linda P.; Hornback, Chris; Strom, Daniel J.

    2006-08-01T23:59:59.000Z

    In the aftermath of a chemical, biological, or radiological (CBR) attack, decontamination of people and infrastructure will be needed. Decontamination inevitably produces wastewater, and wastewater treatment plants (WTPs) need to know how to handle decontamination wastewater. This article describes CBR substances; planning, coordinating, and communicating responses across agencies; planning within a utility; coordination with local emergency managers and first responders; mitigating effects of decontamination wastewater; and mitigating effects on utility personnel. Planning for Decontamination Wastewater: A Guide for Utilities, the document on which this article is based, was developed under a cooperative agreement from the U.S. Environmental Protection Agency by the National Association of Clean Water Agencies (NACWA) and its contractor, CH2MHILL, Inc.

  4. The effect of fertilizer treatments on several amino acids of Dallis grass grown in the Gulf Coast region of Texas 

    E-Print Network [OSTI]

    Polzer, Wilfred Leo

    1956-01-01T23:59:59.000Z

    blook experiment with twelve treatments each replioated four times. It was set up as a pasture fertilizer test with sulfur, sources of phosphorus and lime used as fertilizer for the treatments. Table 1 gives the field randomiza- tion of the twelve... Super and 46 Sulfur Lime and Super 47 Hock Phos. and Sulfur Super Lime and Super and Sulfur Rock Pbos. 1954. The spr1ng and summer had been especially dry at the location of this test; therefore the forage d1d not have good growth...

  5. Optimization of wastewater stabilization ponds in Honduras

    E-Print Network [OSTI]

    Kullen, Lisa

    2009-01-01T23:59:59.000Z

    During the academic year of 2008-2009, three Master of Engineering students from the Department of Civil and Environmental Engineering at the Massachusetts Institute of Technology (MIT) conducted a study of wastewater ...

  6. Making Refinery Wastewater Clean | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refinery Wastewater Clean Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on...

  7. Wastewater heat recovery method and apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-01-01T23:59:59.000Z

    This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  8. accelerated carbonation treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A; Rowe, A; Wong, M; Sergatskov, D; Khabiboulline, T; Barkov, F 2013-01-01 9 The carbon-sequestration potential of municipal wastewater treatment Diego Rosso *, Michael K....

  9. area industrial wastewater: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grapes into wine wasn material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than to experience wine making and wine, and now they can...

  10. act incinerator wastewater: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grapes into wine wasn material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than to experience wine making and wine, and now they can...

  11. EIS-0224: Record of Decision

    Broader source: Energy.gov [DOE]

    Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project

  12. Combined process for 2,4-Dichlorophenoxyacetic acid treatment Coupling of an electrochemical system with a biological treatment.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    system with a biological treatment. Jean-Marie Fontmorina,b *, Florence Fourcadea,b Florence Genestec-made electrochemical flow cell was used for the pre-treatment and a biological treatment was then carried out using activated sludge supplied by a local wastewater treatment plant. 2,4-D was used as a target compound

  13. APPLICATIONS OF LAYERED DOUBLE HYDROXIDES IN REMOVING OXYANIONS FROM OIL REFINING AND COAL MINING WASTEWATER

    SciTech Connect (OSTI)

    Song Jin; Paul Fallgren

    2006-03-01T23:59:59.000Z

    Western Research Institute (WRI), in conjunction with the U.S. Department of Energy (DOE), conducted a study of using the layered double hydroxides (LDH) as filter material to remove microorganisms, large biological molecules, certain anions and toxic oxyanions from various waste streams, including wastewater from refineries. Results demonstrate that LDH has a high adsorbing capability to those compounds with negative surface charge. Constituents studied include model bacteria, viruses, arsenic, selenium, vanadium, diesel range hydrocarbons, methyl tert-butyl ether (MTBE), mixed petroleum constituents, humic materials and anions. This project also attempted to modify the physical structure of LDH for the application as a filtration material. Flow characterizations of the modified LDH materials were also investigated. Results to date indicate that LDH is a cost-effective new material to be used for wastewater treatment, especially for the treatment of anions and oxyanions.

  14. Biotechnology to separate and treat metals in sludge and wastewater: A literature review. Final report

    SciTech Connect (OSTI)

    Kim, B.; Cha, D.K.; Song, J.S.

    1995-09-01T23:59:59.000Z

    Army industrial sludge may be classified as a hazardous waste when it contains oil and grease, metals, and energetic compounds. Biologic separation/treatment of metals from industrial sludge has been identified as a possible alternative to conventional technologies for treating industrial sludge. Biologic treatment of sludge uses naturally occurring biochemical reactions in which pollutants can be used as resources. The process offers a low-cost, highly efficient alternative to existing sludge treatment methods. This report summarizes a literature review that examined the development and status of biotechnology to separate and treat metals in sludge and wastewater.

  15. Synthesis of an optimal wastewater reuse network Y.H. Yang, H.H. Lou, Y.L. Huang*

    E-Print Network [OSTI]

    Huang, Yinlun

    Huang's approach, Smith and associates [6±10] have developed the water pinch technology. The technology utilizes the pinch analysis technology that was invented originally for heat integration [11 wastewater reduction and treatment technologies have been developed and practiced in the industries [1

  16. Most modern wastewater treatment systems rely on microbial processes to remove contaminants. This makes wastewater

    E-Print Network [OSTI]

    Auckland, University of

    also generates nearly 300 tonnes of biosolids each day which are sent to a landfill for disposal plant operation and the disposal of biosolids generated in the process. The need to deliver more

  17. Wastewater recycling and heat reclamation at the Red Lion Central Laundry, Portland, Oregon

    SciTech Connect (OSTI)

    Garlick, T.F.; Halverson, M.A.; Ledbetter, M.R.

    1996-09-01T23:59:59.000Z

    This report discusses water, energy, and cost savings that can be achieved in a commercial laundry through the use of a wastewater recycling and heat recovery system. Cost savings are achieved through reductions in water use, reduction in sewage charges, reductions in water heating energy, and potential reductions in water treatment chemicals. This report provides an economic analysis of the impact of capital investment, daily consumption, and local utility rates on the payback period.

  18. Catalytic hydrodechlorination of industrial wastewater containing chlorinated hydrocarbons in a trickle bed reactor

    E-Print Network [OSTI]

    Leong, Chee Kong

    1996-01-01T23:59:59.000Z

    reaction has long been applied in chemical synthesis and liquid organic waste decomposition, very little attention is devoted to direct treatment of chlorinated hydrocarbons in wastewater (aqueous) or contannnated groundwater with hydrogen. The main..., Trichlorobenzene m Benzene Catal sts Group VIII Metals (Pt, Pd, Rh, Ru, Os, Ir, Ni) Rare earth oxide of the Lanthanide series and metal of the Platinum u Supported Palladium catalyst Tem efature 80 - 2750C 400 - 600'C 170 C Pressure atm...

  19. As was hypothesized, annual ET water losses appears to be driven by seasonal variations in the total aboveground biomass of the treatment wetland. We found that only air temperature and PAR were significant climatic drivers of ET. However, unlike

    E-Print Network [OSTI]

    Hall, Sharon J.

    in the total aboveground biomass of the treatment wetland. We found that only air temperature and PAR were budget of an aridland" urban wastewater treatment wetland" Experimental Design and Field Sampling! · 10.T.A. 2003. Water and mass budgets of a vertical=-flow constructed wetland used for wastewater treatment

  20. Wastewater Recycle- A Sustainable Approach Towards Desalination 

    E-Print Network [OSTI]

    Mittal, A.

    2013-01-01T23:59:59.000Z

    Strictly Confidential WASTEWATER RECYCLE ? A SUSTAINABLE APPROACH TOWARDS DESALINATION Presented at Industrial Energy Technology Conference 35th IETC ? 2013 New Orleans May 22, 2013 Arun Mittal Aquatech International Corporation, USA... Sustainable Solutions Water Source ?Surface ?Ground ?Sea ?Waste Environment ?Preserve Ground / Surface Water Goals of Sustainability ?Maximize Recovery / Efficiency of Process ?Minimize Energy Consumption ?Maximize Reuse ?Minimize Liquid Waste...

  1. On-Site Wastewater Treatment Systems: Spray Distribution System (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2002-04-18T23:59:59.000Z

    , y son los m?s econ?micos de instalar de todos los sistemas de distribuci?n de aguas negras. Sin embargo, necesitan un mayor tratamiento de las aguas negras que cualquier otro sistema. Esto aumenta el costo de un sistema de tratamiento completo y de...

  2. On-Site Wastewater Treatment Systems: Leaching Chambers (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-10-13T23:59:59.000Z

    drenaje. El equipo podr?a da?arlo. Costo estimado El costo de instalaci?n fluct?a entre $3.000 y $6.000, seg?n el tipo de suelo, el tama?o de la casa y otros factores. Los costos de mantenimiento del tanque s?ptico son m?s o menos $75 al a?o, si lo bombea... cada 3 a?os. Si se lleva a cabo un mantenimiento m?s frecuente el costo aumentar?. La serie de publicaciones, Sistemas individuales para el tratamiento de aguas negras, es resultado de la colaboraci?n de varias agencias, organizaciones y fuentes de...

  3. Opportunities for CHP at Wastewater Treatment Facilities: Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 EPA CHP Partnership Update Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas Technologies and Integration with Fuel Cells...

  4. Microbial fuel cell treatment of fuel process wastewater

    DOE Patents [OSTI]

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03T23:59:59.000Z

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  5. On-Site Wastewater Treatment Systems: Subsurface Drip Distribution (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    1999-08-12T23:59:59.000Z

    Producido por AgriLife Communications and Marketing, El Sistema Universitario Texas A&M Las publicaciones de Texas AgriLife Extension se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas Agri...

  6. On-Site Wastewater Treatment Systems: Spray Distribution (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    1999-08-12T23:59:59.000Z

    Producido por AgriLife Communications and Marketing, El Sistema Universitario Texas A&M Las publicaciones de Texas AgriLife Extension se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas Agri...

  7. Wastewater treatment in Las Vegas, Santa Barbara, Honduras

    E-Print Network [OSTI]

    Hodge, Matthew M

    2008-01-01T23:59:59.000Z

    The Municipality of Las Vegas, Honduras is located immediately to the west of Lake Yojoa, the largest inland lake in Honduras. Beginning in 2005, the Massachusetts Institute of Technology (MIT) began working with stakeholders ...

  8. Onsite Wastewater Treatment Systems: Understanding and Maintaining your Septic System

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

    2008-10-23T23:59:59.000Z

    It is important that homeowners maintain their septic systems properly. Otherwise, problems that develop could threaten human health and the environment. In this publication you will learn how to maintain all the components of a septic system...

  9. On-Site Wastewater Treatment Systems: Subsurface Drip Distribution (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    1999-08-12T23:59:59.000Z

    Producido por AgriLife Communications and Marketing, El Sistema Universitario Texas A&M Las publicaciones de Texas AgriLife Extension se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas Agri...

  10. On-Site Wastewater Treatment Systems: Spray Distribution (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    1999-08-12T23:59:59.000Z

    Producido por AgriLife Communications and Marketing, El Sistema Universitario Texas A&M Las publicaciones de Texas AgriLife Extension se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas Agri...

  11. Anaerobic filters: an energy plus for wastewater treatment

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Separate abstracts are prepared for 12 papers presented at the seminar/workshop. One had previously appeared in the appropriate DOE data bases. (MCW)

  12. Treatment of Organic-Contaminated Wastewater by Pervaporation 

    E-Print Network [OSTI]

    Wijmans, J. G.; Kaschemekat, J.; Baker, R. W.; Simmons, V. L.

    1991-01-01T23:59:59.000Z

    ," Desalination 52, 327 (1988). 3. I. Blume, J.G. Wijmans, and R.W. Baker, "The Separation of Dissolved Organics from Water by Pervaporation," J. Memb. Sci. 49, 253 (1990) 4. J. Kaschemekat, J.G. Wijmans, R.W. Baker and I., Blume, "Separation of Organics... system able to treat this benzene stream would have a membrane area of 200 2 , producing a permeate with an average concentration of 26%. Because benzene is relatively insoluble in water, permeate vapor of this concentration would separate on condensation...

  13. Opportunities for Combined Heat and Power at Wastewater Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    into five different climate zones 29 based on cooling and heating degree days: Zone 1 - Cold climate with more than 7,000 heating degree days Zone 2 - Coldmoderate climate with...

  14. On-Site Wastewater Treatment Systems: Sand Filters (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-10-13T23:59:59.000Z

    debidamente, el filtro de arena produce un efluente de muy alta calidad. Los filtros de arena son lechos o camas de material granular, o arena, y drenados o escurridos por debajo para que las aguas negras pretrata- das puedan ser tratadas, recogidas y...: http://texaserc.tamu.edu/pubs/ewaste Los programas educacionales del Servicio de Extensi?n Agr?cola de Texas est?n disponibles para todas las personas, sin distinci?n de raza, color, sexo, minusvalid?z, religi?n, edad u origen nacional. Emitido en...

  15. On-Site Wastewater Treatment Systems: Trickling Filter (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2002-04-18T23:59:59.000Z

    mejorar la calidad del efluente. Para orientaci?n sobre la operaci?n y el mantenimiento de los tanques s?pticos y los campos de aplicaci?n superficial, vea las publ- icaciones de Extensi?n Cooperativa sobre esos temas. Se pueden pedir del Servicio de... aplicaci?n al suelo. Distribuye el agua tratada por debajo de la superficie del suelo. Aunque los filtros percoladores son una tecnolog?a sencilla para mejorar la calidad de las aguas negras, algunos fabricantes los venden ya armados. Las compa...

  16. Manganese Based Oxidative Technologies For Water/Wastewater Treatment

    E-Print Network [OSTI]

    Desai, Ishan

    2013-08-27T23:59:59.000Z

    radical production within catalytic ozonation systems. Thus their catalyst effectiveness was determined by measuring R_(ct), ozone exposure, hydroxyl radical production, and ozone decomposition. The effect of catalyst type, catalyst dosage, pre...

  17. On-Site Wastewater Treatment Systems: Evapotranspiration Bed (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2002-04-18T23:59:59.000Z

    Fosa s?ptica de dos compartimentos Suelo arcilloso Piedra quebrada Cama de evapotranspiraci?n Mecha de absorci?n Sistemas individuales para el tratamiento de aguas negras Cama de evapotranspiraci?n Bruce Lesikar y Juan Enciso Promotores... Especialistas en Ingenier?a Agr?cola El Sistema Universitario Texas A&M L-5228S 4-02 Figure 1: Un sistema de lecho de evapotranspiraci?n. U na cama de evapotranspiraci?n (ET) trata las aguas negras usando la evapotranspiraci?n, la p?rdida de agua del suelo por...

  18. On-Site Wastewater Treatment Systems: Leaching Chambers (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-10-13T23:59:59.000Z

    Fosa s?ptica de dos compartimientos C?mara de percolaci?n Campo de absorci?n L-5342S 8-00 Figura 1: Los sistemas de c?mara de percolaci?n pueden tener campos de drenaje m?s peque?os que los de sistemas convencionales. Sistemas individuales para el... tratamiento de aguas negras C?maras de percolaci?n Bruce Lesikar, Juan Enciso y Russell Persyn Promotores Especialistas de Ingenier?a Agr?cola, Promotor Adjunto de Conservaci?n del Agua El Sistema Universitario Texas A&M Un sistema de c?mara de percola- ci...

  19. On-Site Wastewater Treatment Systems: Spray Distribution System (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2002-04-18T23:59:59.000Z

    .035 0.035 0.041 0.041 0.109 0.109 0.086 0.086 0.064 0.064 0.045 0.045 Debido al riesgo del contacto humano con las aguas negras, los sistemas de rociado deben tratar las aguas negras a un nivel de calidad muy alto antes de rociarlas a los jardines. Este... sistema debe tratar las aguas negras hasta alcanzar un ?efluente de segunda calidad?. Esto quiere decir que debe eliminar del 85 al 98 por ciento de los s?lidos o la materia org?nica. Tambi?n debe desinfectar las aguas negras para eliminar los pat...

  20. On-Site Wastewater Treatment Systems: Constructed Wetlands (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2002-04-18T23:59:59.000Z

    microbios para mejorar la calidad de las aguas negras. Los humedales naturales por lo general tienen agua visible en el sistema. Sin embargo, en los de casa, el agua corre por debajo de la superficie del suelo, lo que limita el contacto de los residentes con...Fosa s?ptica de dos compartimentos Campo de absorci?n Humedal artificial Sistemas individuales para el tratamiento de aguas negras Humedales artificiales Bruce Lesikar y Juan Enciso Promotores Especialistas en Ingenier?a Agr?cola El Sistema...

  1. On-Site Wastewater Treatment Systems: Operation and Maintenance (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-08-15T23:59:59.000Z

    Suelo del campo de absorci?n Tanque s?ptico de dos compartimientos Tuber?a perforada para distribuir aguas residuales Suelo arenoso/limoso Grava Tela geotextil L-5347S 7-00 Figura 1: Un tanque s?ptico y su sistema de campo de absorci?n. Sistemas... individuales para el tratamiento de aguas negras Operaci?n y mantenimiento Bruce Lesikar y Juan Enciso Promotores Especialistas de Ingenier?a Agr?cola El Sistema Universitario Texas A&M S i su casa o negocio usa un sistema individual para el tratamiento de...

  2. On-Site Wastewater Treatment Systems: Sand Filters (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-10-13T23:59:59.000Z

    Arena filtrante Fosa s?ptica de dos compartimientos con c?mara de bombeo Descarga al campo de absorci?n L-5229S 8-00 Figura 1: Un sistema de filtro de arena. Sistemas individuales para el tratamiento de aguas negras Filtro de arena Bruce Lesikar y... Juan Enciso Promotores Especialistas de Ingenier?a Agr?cola El Sistema Universitario Texas A&M L a filtraci?n por arena es una de las tecnolog?as de tratamiento de aguas negras m?s antiguas que se conoce. Si se dise?a, construye, opera y mantiene...

  3. On-Site Wastewater Treatment Systems: Tablet Chlorination (Spanish)

    E-Print Network [OSTI]

    Weaver, Richard; Lesikar, Bruce J.; Enciso, Juan

    2006-01-30T23:59:59.000Z

    L-5344S 01-06 Figura 1: La manera m?s com?n de desinfectar los sistemas individuales es la cloraci?n con pastilla. Sistemas individuales para el tratamiento de aguas negras Cloraci?n con pastilla Richard Weaver, Bruce Lesikar y Juan Enciso Profesor... de Microbiolog?a del Medio Ambiente y del Suelo, Promotores Especialistas de Ingenier?a Agr?cola El Sistema Universitario Texas A&M L as aguas negras rociadas al c?sped deben desinfectarse primero para evitar malos olores y eliminar microorganismos...

  4. On-Site Wastewater Treatment Systems: Mound Systems (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-04-18T23:59:59.000Z

    Tanque s?ptico Tanque bomba Tela geotextil Tubo de distribuci?n Arena Grava L-5414S 4-02 Figure 1: Un sistema de mont?culo para distribuir aguas negras tratadas al suelo. U n sistema de mont?culo para el tratamiento de aguas negras es un sistema de... campo de absorci?n colocado encima de la superficie natural del suelo. Los sistemas de mont?culo se utilizan para distribuir las aguas negras en lugares donde hay muy poca tierra antes de llegar a las aguas subterr?neas, suelos impermeables o lechos de...

  5. On-Site Wastewater Treatment Systems: Pump Tank (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-08-29T23:59:59.000Z

    Sistema de tratamiento de aguas negras Tanque bomba Sistema de distribuci?n por rociado L-5346S 8-00 Figura 1: Un tanque bomba recolecta las aguas negras tratadas y las dosifica en intervalos al suelo. Sistemas individuales para el tratamiento de... aguas negras Tanque bomba Bruce Lesikar y Juan Enciso Promotores Especialistas de Ingenier?a Agr?cola El Sistema Universitario Texas A&M L os tanques bomba son contendores de hormig?n, fibra de vidrio o polietileno que recolectan las aguas negras que ser...

  6. On-Site Wastewater Treatment Systems: Trickling Filter (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2002-04-18T23:59:59.000Z

    Campo de absorci?n Tanque s?ptico Tanque de dosificaci?n/Clarificador Filtro percolador Sistemas individuales para el tratamiento de aguas negras Filtro percolador Bruce Lesikar y Juan Enciso Promotores Especialistas en Inenier?a Agr?cola El Sistema... Universitario Texas A&M L-5345S 4-02 Figura 1: Los filtros percoladores son tecnolog?a sencilla para tratar las aguas negras. U n filtro percolador es una cama de grava o un medio pl?stico sobre el cual se roc?an las aguas negras pretratadas. En este sistema de...

  7. Manganese Based Oxidative Technologies For Water/Wastewater Treatment 

    E-Print Network [OSTI]

    Desai, Ishan

    2013-08-27T23:59:59.000Z

    Manganese is a commonly occurring mineral found in soil and sediments that takes part in chemical reactions in groundwater and soil systems. It plays a significant role in controlling the environmental fate and transport ...

  8. anaerobic wastewater treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theses and Dissertations Summary: ??The global concerns of climate change and energy crisis have provoked research efforts to develop energy-efficient alternatives to...

  9. australian wastewater treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theses and Dissertations Summary: ??The global concerns of climate change and energy crisis have provoked research efforts to develop energy-efficient alternatives to...

  10. acidic wastewater treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theses and Dissertations Summary: ??The global concerns of climate change and energy crisis have provoked research efforts to develop energy-efficient alternatives to...

  11. alternative wastewater treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theses and Dissertations Summary: ??The global concerns of climate change and energy crisis have provoked research efforts to develop energy-efficient alternatives to...

  12. Onsite Wastewater Treatment Systems: Graywater Use and Water Quality

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

    2008-08-28T23:59:59.000Z

    : To reuse graywater, a homeowner first must decide which graywater sources to collect. Us- ing graywater from all sources will increase the risk of pollutants in the graywater. Before using graywater, evaluate what it is to be used for and what... using it to water plants that thrive in acidic soils. To prevent salt accumulation, ? distribute graywater over a large surface area and rotate distribu- tion from one area to another. Select reuse applications appro- ? priate for the amount of water...

  13. Opportunities for Automated Demand Response in Wastewater Treatment

    E-Print Network [OSTI]

    ;CHAPTER 4: Facility Baseline Analysis Net Plant Demand Figure 5: Average load profile for net plant demand characteristics and estimated shed potential for six submetered centrifuge Lift Pumps #12;Figure 7: Daily profile on event days compared to average dry season demand Partial-day complete plant shutdown Table 5: Load sheds

  14. On-Site Wastewater Treatment Systems: Evapotranspiration Bed (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2002-04-18T23:59:59.000Z

    . Dise?o Una cama de ET contiene zanjas de almacenamiento, relleno de suelo arcilloso alrededor de las zanjas y arena arcillosa arriba sobre el relleno de suelo arcilloso para que crezca c?sped. Por lo general, el ?rea super- ficial requerida de la cama... se divide entre dos camas. Esto permite cambiar de una cama a otra para evitar la sobrecarga. Se coloca un revestimiento y un colch?n de arena en el suelo, y el sistema de almacenamiento se coloca en el fondo de la cama. Normalmente, el sistema de...

  15. On-Site Wastewater Treatment Systems: Operation and Maintenance (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-08-15T23:59:59.000Z

    de 30 pulgadas (m?nimo) Conexi?n "T" alterna Conexi?n "T" 3 H?gale una limpieza al tanque s?ptico antes de que el lodo acumulado llegue a la parte inferior del dispositivo de desag?e. Si se acumula lodo o suciedad hasta ese nivel, los s?lidos se saldr...?a sobrecargar el ?rea de drenaje, y de esa manera causar que el agua se estanque en la superficie. Tambi?n podr?a hacer salir el agua por el sistema, lo que podr?a llevar s?lidos m?s all? del dispositivo de tratamiento. 3 No conecte el desag?e de l...

  16. On-Site Wastewater Treatment Systems: Pump Tank (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-08-29T23:59:59.000Z

    . Cada uno tiene de dispositivo de tratamiento, un tanque bomba y un sistema de distribuci?n (Figura 1). Un tanque bomba est? compuesto de: 3 Una bomba. Esta empuja el agua del tanque bomba hacia el sistema de distribuci?n. 3 Un flotador que controla al... las aguas negras hayan sido tratadas en un tanque s?ptico o en un dispositivo de tratamiento avanzado. El tipo de bomba que se escoja tambi?n depende de lo que requiera el sistema de distribuci?n de aguas negras de la casa o instalaci?n. Hay dos tipos...

  17. On-Site Wastewater Treatment Systems: Tablet Chlorination (Spanish) 

    E-Print Network [OSTI]

    Weaver, Richard; Lesikar, Bruce J.; Enciso, Juan

    2006-01-30T23:59:59.000Z

    pastilla por lo general tienen cuatro componentes: ? Las pastillas de cloro. ? Un tubo que sostiene las pastillas. ? Un dispositivo de contacto que pone a las pastillas de cloro en contacto con las aguas negras. ? Un tanque de almacenamiento, por... lo general un tanque bomba, donde las aguas negras se almacenan antes de que sean distribuidas. Antes de ser tratadas con cloro, las aguas negras de una casa son tratadas por un dispositivo de trata- miento secundario, general-mente en una...

  18. On-Site Wastewater Treatment Systems: Constructed Wetlands (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2002-04-18T23:59:59.000Z

    tiene dispositivos que distribuyen las aguas negras que entran al sistema y otros que recolectan las aguas negras que salen. El agua que va a tratarse corre horizontalmente por el lecho, permaneciendo por debajo de la superficie de la grava. Las plantas... afectar el rendimiento y el dimensionamiento del humedal. La profundidad del humedal puede variar, pero por lo general fluct?a entre 1 y 2 pies. Un humedal de 1 pie de profundidad tiene dos veces el ?rea superficial para el mismo volumen de almacenamiento...

  19. Water Treatment System Cleans Marcellus Shale Wastewater | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe Water Power Program, partEnergy DC -

  20. Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BVEnergy InformationInformation

  1. Treatment of Fuel Process Wastewater Using Fuel Cells - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQ »

  2. advanced wastewater treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This publication describes various kinds of systems and guides the homeowner in assessing... Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J. 1997-08-29 111 Estimation of E....

  3. CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA SitesCHICAGO HOUSE PARTIES SHOW heat

  4. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA SitesCHICAGO HOUSE PARTIES SHOW

  5. Enhanced Renewable Methane Production System Benefits Wastewater Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovation Portal Industrial

  6. Opportunities for CHP at Wastewater Treatment Facilities: Market Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy 9 OperationsOperations andand Lessons

  7. Oregon Construction/Installation Permit for Onsite Wastewater Treatment

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio:OpowerOrchardCity, Oregon:

  8. Oregon Land Use Compatibility Statement for Onsite Wastewater Treatment

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy Information Fees for Underground Injection||

  9. L AREA WASTEWATER STORAGE DRUM EVALUATION

    SciTech Connect (OSTI)

    Vormelker, P; Cynthia Foreman, C; Zane Nelson, Z; David Hathcock, D; Dennis Vinson, D

    2007-11-30T23:59:59.000Z

    This report documents the determination of the cause of pressurization that led to bulging deformation of a 55 gallon wastewater drum stored in L-Area. Drum samples were sent to SRNL for evaluation. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

  10. Analysis and Characterization of Halogenated Transformation Products of Pharmaceuticals and Personal Care Products in Wastewater Effluent

    E-Print Network [OSTI]

    Bulloch, Daryl Neil

    2013-01-01T23:59:59.000Z

    wastewater contaminants in biosolids destined for landin water, soil, sediment, and biosolids by HPLC/MS/MS. 2007,the organic carbon content of biosolids in wastewater can

  11. Vermont Agency of Natural Resources Wastewater Management Division...

    Open Energy Info (EERE)

    Vermont Agency of Natural Resources Wastewater Management Division Water Pollution Control Permit Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  12. Plants in constructed wetlands help to treat agricultural processing wastewater

    E-Print Network [OSTI]

    Grismer, Mark E; Shepherd, Heather L

    2011-01-01T23:59:59.000Z

    constructed wetlands help to treat agricultural processingacross the western to treat winery process wastewater Uniteddocumented relative to treat- discharged downstream. ment

  13. activated sludge wastewater: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The wastewater shows 7 Temperature Modeling in Activated Sludge Systems: A Case Study Environmental Management and Restoration Websites Summary: steady-state and dynamic...

  14. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    SciTech Connect (OSTI)

    Aslian, Hossein [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sadeghi, Mahdi [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of); Mahdavi, Seied Rabie [Department of Medical Physics, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Babapour Mofrad, Farshid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Astarakee, Mahdi, E-mail: M-Astarakee@Engineer.com [Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khaledi, Navid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Fadavi, Pedram [Department of Radiation Oncology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-09-01T23:59:59.000Z

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  15. Assessment of sludge management options in a waste water treatment plant

    E-Print Network [OSTI]

    Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

  16. COMMUNITY PATTERNS IN TREATMENT WETLANDS, NATURAL WETLANDS, AND CROPLANDS IN FLORIDA

    E-Print Network [OSTI]

    Gawlik, Dale E.

    COMMUNITY PATTERNS IN TREATMENT WETLANDS, NATURAL WETLANDS, AND CROPLANDS IN FLORIDA TYLER J. BECK of treatment wetlands called Stormwater Treatment Areas (STAs) have been constructed on agricultural land greatly decreased, the creation of constructed wetlands for wastewater treatment has been increasing since

  17. Macrophyte Decomposition Rates in the Tres Rios Constructed Treatment Wetland: Preliminary Results!

    E-Print Network [OSTI]

    Hall, Sharon J.

    Macrophyte Decomposition Rates in the Tres Rios Constructed Treatment Wetland: Preliminary Results wetland. Plant Ecology 200:69-82. Literature Cited! Figure 1A: Aerial photo of the treatment flow cell, such as those associated with municipal wastewater treatment.! Constructed treatment wetlands perform important

  18. The effects of surfactant concentration on grease removal by air flotation in municipal sewage treatment

    E-Print Network [OSTI]

    Perry, Larry Eugene

    1978-01-01T23:59:59.000Z

    systems, high grease loading contributes to the formation of scum blankets which reduce operating efficiency and may lead to expensive shut-down and clean-out operations. Normally, influent wastewater to biological treatment systems with oil and grease... are forcing engineers to take a closer look at specif1c aspects of wastewater treatment. One such aspect is that of remov1ng oil and grease from wastewater streams. The average ind1vidual is well aware of the effects of discharging oily substances...

  19. Using microbes and wastewater to desalinate water Kellyn Betts

    E-Print Network [OSTI]

    with a wide range of salinities, including ocean water. The technology is based on microbial fuel cells (MFCsUsing microbes and wastewater to desalinate water Kellyn Betts Environ. Sci. Technol., Article ASAP Unlikely as it may seem, microbes and wastewater are key components of a new technology capable

  20. Using Animal Manure and Wastewater for Crops and Pastures

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Using Animal Manure and Wastewater for Crops and Pastures * Assistant Professor and Extension Agricultural Engineering Specialist Waste Management; The Texas A&M University System. E-47 9-00 Know and Take Credit for your N, P and K Saqib Mukhtar* E ffluent from animal manure and wastewater impoundments

  1. Collection and representation of GIS data to aid household water treatment and safe storage technology implementation in the northern region of Ghana

    E-Print Network [OSTI]

    VanCalcar, Jenny E. (Jenny Elizabeth)

    2006-01-01T23:59:59.000Z

    In 2005, a start-up social business called Pure Home Water (PHW) was begun in Ghana to promote and sell household water treatment and safe storage (HWTS) technologies. The original aim of the company was to offer a variety ...

  2. ASSESSING GHG EMISSIONS FROM SLUDGE TREATMENT AND DISPOSAL ROUTES THE METHOD BEHIND GESTABOUES TOOL

    E-Print Network [OSTI]

    Boyer, Edmond

    stakeholders to better understand the carbon footprint of sludge treatment and disposal options, we developed by a wastewater treatment plant of x per-captia-equivalents (PCE) during one year. The carbon footprint method we developed is adapted to sludge treatment and disposal processes and based on the "Bilan Carbone® " method

  3. Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment

    E-Print Network [OSTI]

    Angenent, Lars T.

    and agricultural processing, centralized and decentralized wastewater treatment plants, and solid waste recoveryInteraction between temperature and ammonia in mesophilic digesters for animal waste treatment, and their interconnectivity on the methane yield of anaerobic processes for animal waste treatment. During period 1 (day 0

  4. Advanced oxidation treatment of high strength bilge and aqueous petroleum waste

    SciTech Connect (OSTI)

    Hulsey, R.A.; Kobylinski, E.A. [Black and Veatch, Kansas City, MO (United States); Leach, B. [EEC, Inc., Virginia Beach, VA (United States); Pearce, L. [TRITECH, Greensboro, NC (United States)

    1996-11-01T23:59:59.000Z

    The Craney Island Fuel Depot is the largest US Navy fuel terminal in the continental US. Services provided at this facility include fuel storage (current capacity is 1.5 million barrels), fuel reclamation (recovery of oil from oily wastewater), and physical/chemical treatment for the removal of residual oil from bilge water and from aqueous petroleum waste. Current wastewater treatment consists of storage/equalization, oil/water separation, dissolved air flotation, sand filtration, and carbon adsorption. The Navy initiated this study to comply with the State requirement that its existing physical/chemical oily wastewater treatment plant be upgraded to remove soluble organics and produce an effluent which would meet acute toxicity limits. The pilot tests conducted during the study included several variations of chemical and biological wastewater treatment processes. While biological treatment alone was capable of meeting the proposed BOD limit of 26 mg/L, the study showed that the effluent of the biological process contained a high concentration of refractory (nonbiodegradable) organics and could not consistently meet the proposed limits for COD and TOC when treating high-strength wastewater. Additional tests were conducted with advanced oxidation processes (AOPs). AOPs were evaluated for use as independent treatment processes as well as polishing processes following biological treatment. The AOP processes used for this study included combinations of ozone (O{sub 3}) ultraviolet radiation (UV), and hydrogen peroxide (H{sub 2}O{sub 2}).

  5. Montana Facilities Which Do Not Discharge Process Wastewater...

    Open Energy Info (EERE)

    Which Do Not Discharge Process Wastewater (MDEQ Form 2E) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Facilities Which Do Not Discharge Process...

  6. Integrated loading rate determination for wastewater infiltration system sizing

    SciTech Connect (OSTI)

    Jenssen, P.D. (Norges Landbrukshoegskole, Aas (Norway). Centre for Soil and Environmental Research); Siegrist, R.L. (Oak Ridge National Lab., TN (United States))

    1991-01-01T23:59:59.000Z

    One of the principal parameters used in wastewater system design is the hydraulic loading rate. Historically the determination of the loading rate has been a straight forward process involving selection of a rate based on soil texture or water percolation rate. Research and experience over the past decade has provided additional insight into the complex processes occurring within wastewater-amended soil systems and has suggested the fallacy of this approach. A mean grain size vs. sorting (MESO) diagram constitutes a new basis for soil classification for wastewater infiltration system design. Crude characterization of the soil hydraulic properties is possible according to the MESO Diagram and loading rate as well as certain purification aspects can be assessed from the diagram. In this paper, an approach is described based on the MESO Diagram that integrates soil properties and wastewater pretreatment to yield a loading rate. 53 refs., 3 figs., 2 tabs.

  7. Implementing Energy Efficiency in Wastewater to Reduce Costs

    E-Print Network [OSTI]

    Cantwell, J. C.

    2008-01-01T23:59:59.000Z

    In the industrial world creating a quality product at minimum cost is the goal. In this environment all expenses are scrutinized, when they are part of the manufacturing process. However, even at the most conscientious facility the wastewater system...

  8. Water Distribution and Wastewater Systems Operators (North Dakota)

    Broader source: Energy.gov [DOE]

    All public water supply and wastewater disposal systems are subject to classification and regulation by the State of North Dakota, and must obtain certification from the State Department of Health.

  9. Production of Biogas from Wastewaters of Food Processing Industries

    E-Print Network [OSTI]

    Sax, R. I.; Holtz, M.; Pette, K. C.

    1980-01-01T23:59:59.000Z

    volume per day could be treated with the upflow process with a purification efficiency of order 90%. CSM APPLICATION Although the initial work at Wageningen was with potato starch wastewater, the first industrial scale application with this process... was carried out by Centrale Suiker Maatschappij (CSM) , the largest privately-owned beet sugar company in Holland. Their factories had been treating wastewater with oxidation ponds which carried the serious drawbacks of large energy consumption...

  10. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

    2009-06-30T23:59:59.000Z

    This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.

  11. REGIONAL MONITORINGREGIONAL MONITORING PROGRAMPROGRAM

    E-Print Network [OSTI]

    discharges to provide cost savings to implement baseline portions of the RMP, although they recognized of representatives from discharger groups (wastewater, stormwater, dredging, industrial) and regulatory agencies

  12. Integrating BES in the wastewater and sludge

    E-Print Network [OSTI]

    Angenent, Lars T.

    , denitrification, and anaerobic digester treatment systems, while chemical methods include phosphate removal, dye of WAS, including treatment of influent or the accumulated sludge with anaerobic digesters (Rulkens 2008; Seghezzo et al. 1998). This is a more sustainable treatment method because methane in biogas can partly

  13. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling

    E-Print Network [OSTI]

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater) 80:349­355 DOI 10.1007/s00253-008-1546-7 L. Huang School of Environmental and Biological Science of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA e

  14. CITY OF PRINCE GEORGE: RADIO FREQUENCY TREATMENT OF PARTIALLY

    E-Print Network [OSTI]

    #12;CITY OF PRINCE GEORGE: RADIO FREQUENCY TREATMENT OF PARTIALLY DIGESTED/DEWATERED BIOSOLIDS/DEWATERED BIOSOLIDS FINAL REPORT SUMMARY The City of Prince George recently proposed to investigate the possibility of applying radio frequency (RF) technology to partially digested/dewatered biosolids from domestic wastewater

  15. Study of the treatability of wastewater from a coal-gasification plant. Final report, July 15, 1978-July 14, 1980

    SciTech Connect (OSTI)

    Iglar, A. F.

    1980-01-01T23:59:59.000Z

    This study focused on the coal gasification facility serving the Holston Army Ammunition Plant in Kingsport, Tennessee. Objectives were to characterize the wastewater produced by the gasification facility, and to evaluate technology for treating the waste in preparation for dischage to the environment. Most wastewater was recycled for scrubbing and cooling the product gas, with the excess requiring disposal found to be an average of only 1170 gallons per day (53 gallons per ton of coal, as received, and 366 gallons per million cubic feet of product gas). Analysis indicated that the waste was warm, high in alkaline material, especially ammonia, high in organic material, especially phenols, and also contaminated with other substances. Sulfides and thiocyanates were especially high in concentration. It was found that pretreatment could be accomplished by stripping (air injection) at high pH, removal of grease and oil (by pH suppression and light aeration) and neutralizatin. Equations were developed to describe the first two steps. Biological treatment through activated sludge was found to be successful, but effected only a moderate degree of treatment, and was troubled with frequent process upset. Attempts to improve treatment efficiency and stability are described. The data indicated the need to study aerated waste stabilization ponds as an alternative to activated sludge. Biological reaction kinetics were studied for activated sludge. Evaluation of the application of granular activated carbon suggested that this could be an effective practical tertiary treatment.

  16. Processing needs and methodology for wastewaters from the conversion of coal, oil shale, and biomass to synfuels

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    The workshop identifies needs to be met by processing technology for wastewaters, and evaluates the suitability, approximate costs, and problems associated with current technology. Participation was confined to DOE Environmental Control Technology contractors to pull together and integrate past wastewater-related activities, to assess the status of synfuel wastewater treatability and process options, and to abet technology transfer. Particular attention was paid to probable or possible environmental restrictions which cannot be economically met by present technology. Primary emphasis was focussed upon process-condensate waters from coal-conversion and shale-retorting processes. Due to limited data base and time, the workshop did not deal with transients, upsets, trade-offs and system optimization, or with solids disposal. The report is divided into sections that, respectively, survey the water usage and effluent situation (II); identify the probable and possible water-treatment goals anticipated at the time when large-scale plants will be constructed (III); assess the capabilities, costs and shortcomings of present technology (IV); explore particularly severe environmental-control problems (V); give overall conclusions from the Workshop and recommendations for future research and study (VI); and, finally, present Status Reports of current work from participants in the Workshop (VII).

  17. Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas

    E-Print Network [OSTI]

    from agricultural wastes." Napa Wine Company's wastewater comes from grape disposal, wine makingMSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery

  18. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations

    E-Print Network [OSTI]

    Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced 2013 Available online 5 November 2013 Keywords: Microbial fuel cells Refinery wastewater Biodegradability Separator electrode assembly a b s t r a c t The effectiveness of refinery wastewater (RW

  19. Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania

    E-Print Network [OSTI]

    Jackson, Robert B.

    States, oil and gas wastewater is managed through recycling of the wastewater for shale gas operationsImpacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R Supporting Information ABSTRACT: The safe disposal of liquid wastes associated with oil and gas production

  20. Wastewater Recycle- A Sustainable Approach Towards Desalination

    E-Print Network [OSTI]

    Mittal, A.

    2013-01-01T23:59:59.000Z

    removal Disinfection Conventional Activated Sludge Process (ASP) Scheme Effluent Influent Effluent The membrane bioreactor (MBR) is a leading edge biological treatment technology currently being used around the world to treat domestic sewage as well... Confidential 31 Aqua-EMBR + HERO? : An Answer to Petrochemical Effluent Treatment for Recovery Aqua-EMBR (Enhanced Membrane Bioreactor) system consists of an activated sludge extended aeration biological treatment process and an Ultrafiltration (UF...

  1. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Norm Stanley

    2011-02-01T23:59:59.000Z

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  2. Honduras wastewater treatment : chemically enhanced primary treatment and sustainable secondary treatment technologies for use with Imhoff tanks

    E-Print Network [OSTI]

    McLean, Robert C. (Robert Charles)

    2009-01-01T23:59:59.000Z

    (cont.) However, it is doubtful the costs associated with dosages required to achieve these removals are sustainable for communities such as Las Vegas. To address these deficiencies further sustainable practices for ...

  3. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation from model organic wastewater

    E-Print Network [OSTI]

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation from model organic wastewater in a cassette-008-1516-0 T. Shimoyama :S. Komukai :K. Watanabe Laboratory of Applied Microbiology, Marine Biotechnology, Tobitakyu, Chofu, Tokyo 182-0036, Japan B. E. Logan Department of Civil and Environmental Engineering

  4. Energy Recovery Potential from Wastewater Utilities through Innovation

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Energy Recovery Potential from Wastewater Utilities through Innovation Lauren Fillmore, Senior Program Director, Water Environment Research Foundation

  5. August 6, 2009 Wastewater Produces Electricity and Desalinates Water

    E-Print Network [OSTI]

    State The team modified a microbial fuel cell -- a device that uses naturally occurring bacteria of concept." A typical microbial fuel cell consists of two chambers, one filled with wastewater or other, changed the microbial fuel cell by adding a third chamber between the two existing chambers and placing

  6. Gypsum and Polyacrylamide Soil Amendments Used With High Sodium Wastewater

    E-Print Network [OSTI]

    Gardiner, Duane

    and sodium. Two soil amendments were applied to plots furrowirrigated with wastewater. The amendments were gypsum (11 Mg ha-1), and PAM added to irrigation water at rates of 25 mg L-1 PAM applications were made during every irrigation and during every second...

  7. Irrigated Acreage Determination Procedures for Wastewater Application Equipment

    E-Print Network [OSTI]

    IRRIGATION SYSTEM North Carolina Cooperative Extension Service North Carolina State University #12;Irrigation that the nutrients contained in the wastewater can be used by growing crops. However, irrigation systems have in the application area. Step-by-step guidelines for field calibration of hard hose traveler irrigation systems

  8. Bio-composite Nonwoven Media Based on Chitosan and Empty Fruit Bunches for Wastewater Application

    SciTech Connect (OSTI)

    Sadikin, Aziatul Niza; Nawawi, Mohd Ghazali Mohd; Othman, Norasikin

    2011-01-17T23:59:59.000Z

    Fibrous filter media in the form of non-woven filters have been used extensively in water treatment as pre-filters or to support the medium that does the separation. Lignocellulosic such as empty fruit bunches have potential to be used as a low cost filter media as they represent unused resources, widely available and are environmentally friendly. Laboratory filtration tests were performed to investigate the potential application of empty fruit bunches that enriched with chitosan as a fiber filter media to remove suspended solids, oil and grease, and organics in terms of chemical oxygen demand from palm oil mill effluent. The present paper studies the effect of chitosan concentration on the filter media performance. Bench-scaled experiment results indicated that pre-treatment using the fiber filtration system removed up to 67.3% of total suspended solid, 65.1% of oil and grease and 46.1% of chemical oxygen demand. The results show that the lignocellulosic fiber filter could be a potential technology for primary wastewater treatment.

  9. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    SciTech Connect (OSTI)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10T23:59:59.000Z

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  10. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2002-02-15T23:59:59.000Z

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  11. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Lewis, Michael George

    2002-02-01T23:59:59.000Z

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  12. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    E-Print Network [OSTI]

    Thompson, Lisa

    2010-01-01T23:59:59.000Z

    Control and Data Acquisition (SCADA) Systems." NCS TechnicalPG&E PID PIER PLC PPA R&D RTU SCADA SDG&E TOU TSS US VFDControl and Data Acquisition (SCADA) system which is capable

  13. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    E-Print Network [OSTI]

    Thompson, Lisa

    2010-01-01T23:59:59.000Z

    your Power. (2008). "Demand Response Programs." RetrievedTool Berkeley, CA, Demand Response Research Center.2008). "What is Demand Response?" Retrieved 10/10/2008, from

  14. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    E-Print Network [OSTI]

    Thompson, Lisa

    2010-01-01T23:59:59.000Z

    including existing power purchase agreements and utilityincluding existing power purchase agreements and utilityincluding existing power purchase agreements and utility

  15. Linking ceragenins to water-treatment membranes to minimize biofouling.

    SciTech Connect (OSTI)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2012-01-01T23:59:59.000Z

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter katedanii, and Paracoccus marcusii (seawater), and Sphingopyxis spp. (groundwater). The testing demonstrated the ability of these isolates to be used for biofouling control testing under laboratory conditions. Biofilm forming bacteria were obtained from all the source water samples.

  16. MATERIAL FLUX ANALYSIS (MFA) FOR PLANNING OF DOMESTIC WASTES AND WASTEWATER MANAGEMENT

    E-Print Network [OSTI]

    Richner, Heinz

    i MATERIAL FLUX ANALYSIS (MFA) FOR PLANNING OF DOMESTIC WASTES AND WASTEWATER MANAGEMENT: CASE of Nonthaburi, Statistical office of Nonthaburi and Agricultural extension office of Pak Kret for their kind nutrient management, organic waste, wastewater and septage that contained high concentration of nutrients

  17. 1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters

    SciTech Connect (OSTI)

    Jeppson, D.W.; Biyani, R.K.; Duncan, J.B.; Flyckt, D.L.; Mohondro, P.C.; Sinton, G.L.

    1997-07-24T23:59:59.000Z

    This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order.

  18. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  19. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Teresa R. Meachum

    2004-02-01T23:59:59.000Z

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  20. Rutgers Regional Report # Regional Report

    E-Print Network [OSTI]

    Garfunkel, Eric

    , population, income, and building permits over a 32-year period from 1969 to 2001 for the 31-county Tri counties of the Tri-State (Connecticut, New Jersey, and New York) Region have been divided for analytical the nation and the Tri-State Region. What has not been fully documented, however, is the apparent shift

  1. Faculty of Engineering and Applied Science Course Outline 1

    E-Print Network [OSTI]

    Coles, Cynthia

    and membrane filtration, and disinfection; biological wastewater treatment processes focusing on suspended: Water and Wastewater Treatment Instructor Cynthia Coles E-mail ccoles@mun.ca Phone 864-8704 Office freshwater, centralized and decentralized wastewater treatment, regional water supplies and sources of water

  2. Faculty of Engineering and Applied Science Course Outline 1

    E-Print Network [OSTI]

    Coles, Cynthia

    and settling, granular and membrane filtration, and disinfection; biological wastewater treatment processes: Water and Wastewater Treatment Instructor Cynthia Coles E-mail ccoles@mun.ca Phone 864-8704 Office: Overviews of global freshwater, centralized and decentralized wastewater treatment, regional water supplies

  3. Subsurface drip systems for land application of residential wastewater

    E-Print Network [OSTI]

    Neal, Byron Anthony

    1999-01-01T23:59:59.000Z

    classification of the most restrictive soil layer ranging between 4. 12 I/m /day (0. 1 gal/ft /day) for class IV (clay) soils to 20. 6 Vm /day (0. 50 gaV ft /day) for class Ia (sand/gravel) soils (TNRCC, 1997). Texas's design criteria for hydraulic loading... gallons) of wastewater per day. The soil type used for designing the subsurface drip system is a sandy clay loam (type III, 30 TAC Chapter 285, 1997). From the TNRCC (1995) regulations, the hydraulic application rate is 8. 15 I/m /day (0. 20 gal/ft /day...

  4. Conneaut Wastewater Facility Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |UseCondon WindWastewater Facility Wind

  5. Classification and storage of wastewater from floor finish removal operations

    SciTech Connect (OSTI)

    Hunt, C.E.

    1996-05-01T23:59:59.000Z

    This study evaluates the wastewater generated from hard surface floor finish removal operations at Lawrence Livermore Laboratory in order to determine if this wastewater is a hazardous waste, either by statistical evaluation, or other measurable regulatory guidelines established in California Regulations. This research also comparatively evaluates the 55 gallon drum and other portable tanks, all less than 1,000 gallons in size in order to determine which is most effective for the management of this waste stream at Lawrence Livermore Laboratory. The statistical methods in SW-846 were found to be scientifically questionable in their application to hazardous waste determination. In this statistical evaluation, the different data transformations discussed in the regulatory guidance document were applied along with the log transformation to the population of 18 samples from 55 gallon drums. Although this statistical evaluation proved awkward in its application, once the data is collected and organized on a spreadsheet this statistical analysis can be an effective tool which can aid the environmental manager in the hazardous waste classification process.

  6. (Solar clothes dryer and wastewater heat exchanger). Final report

    SciTech Connect (OSTI)

    Baer, B.F.

    1984-12-04T23:59:59.000Z

    The first project investigated the technical possibilities of adapting a domestic electric clothes dryer to utilize solar-heated water as the heat source, replacing electric resistance heat. The second project attempted to extract wastewater heat from a commercial dishwasher to preheat fresh water to be used in the next dish washing cycle. It is felt that the clothes dryer project has met all of intended goals. Although a solar application has some real-world practical problems, the application of a dryer connected directly to the home heating system will prove to be cost-beneficial over the life of a dryer. The additional cost of a heat exchanger is not excessive, and the installation cost, if installed with the initial house plumbing is less than $100. From a practical point of view, the complexity of installing a wastewater heat extracter is considered impractical. The environment in which such equipment must operate is difficult at best, and most restaurants prefer to maintain as simple an operation as possible. If problems were to occur in this type of equipment, the kitchen would effectively be crippled. In conclusion, further research in the concept is not recommended. Recent advances in commercial dishwashers have also considerably reduced the heat losses which accompanied equipment only a few years old.

  7. Energy optimization of water and wastewater management for municipal and industrial applications conference

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use and conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  8. Energy optimization of water and wastewater management for municipal and industrial applications conference

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications, Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use on conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  9. On-Site Wastewater Treatment Systems: Septic Tank/Soil Absorption Field (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-10-13T23:59:59.000Z

    campo de absorci?n y que causen que ?ste falle prematuramente. Campo de absorci?n El campo de absorci?n permite el tratamiento final y la distribuci?n de las aguas negras. Un sistema convencional consiste en tuber?as perforadas rodeadas de materiales...

  10. On-Site Wastewater Treatment Systems: Gravel-less Pipe (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-10-13T23:59:59.000Z

    drenaje se inunde. Costo estimado El costo para instalar un sistema de tuber?a sin grava fluct?a entre $2,000 y $6,000, seg?n el tipo de suelo, el tama?o de la casa y otros factores. El costo para el mantenimiento del tanque s?ptico es m?s o menos de $75... al a?o, si lo bombea cada 3 a?os. Si se lleva a cabo un mantenimiento m?s frecuente, el costo anual aumentar?. 3 Bombee los tanques de tratamiento cada 2 ? 3 a?os para reducir el riesgo de que entren s?lidos a la tuber?a sin grava. 3 Mantenga una...

  11. On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-08-12T23:59:59.000Z

    Producido por AgriLife Communications and Marketing, El Sistema Universitario Texas A&M Las publicaciones de Texas AgriLife Extension se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas Agri...

  12. On-Site Wastewater Treatment Systems: Low-Pressure Dosing System (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-08-12T23:59:59.000Z

    Producido por AgriLife Communications and Marketing, El Sistema Universitario Texas A&M Las publicaciones de Texas AgriLife Extension se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas Agri...

  13. Perceived Risk and the Siting of a Controversial Wastewater Treatment Plant in Central Texas

    E-Print Network [OSTI]

    Kultgen, Pat Morrison

    2013-08-16T23:59:59.000Z

    .1 Resources ..................................................................................................... 25 4.1.1 Power .................................................................................................... 25 4.1.2 Money....1.1 The Role of Power ................................................................................ 59 6.1.2 The Role of Money .............................................................................. 65 6.1.3 The Role of Social Influence...

  14. Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant

    E-Print Network [OSTI]

    Boyer, Edmond

    biodegradable soluble substances (European Commission, 2003). Consequently, in the last decades, AWT has evolved., 2003, Lee et al., 2009

  15. Natural and synthetic estrogens in wastewater treatment plant effuent and the coastal ocean

    E-Print Network [OSTI]

    Griffith, David R. (David Richmond)

    2013-01-01T23:59:59.000Z

    Steroidal estrogens are potent endocrine disrupting chemicals that are naturally excreted by vertebrates (e.g., humans and fish) and can enter natural waters through the discharge of treated and raw sewage. Because estrogens ...

  16. On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-08-12T23:59:59.000Z

    Producido por AgriLife Communications and Marketing, El Sistema Universitario Texas A&M Las publicaciones de Texas AgriLife Extension se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas Agri...

  17. On-Site Wastewater Treatment Systems: Low-Pressure Dosing System (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-08-12T23:59:59.000Z

    Producido por AgriLife Communications and Marketing, El Sistema Universitario Texas A&M Las publicaciones de Texas AgriLife Extension se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas Agri...

  18. PhD thesis `Triclosan removal in wastewater treatment processes' Xijuan Chen Preface and acknowledgements

    E-Print Network [OSTI]

    Kolaei, Alireza Rezania

    of Biotechnology, Chemistry and Environmental Engineering, Aalborg University during the period December 2008-Essen for their support, discussion and cooperation. A special thanks to everybody in the Environmental Biotechnology-Essen and partly at the Department of Environmental Science, Aarhus University. This PhD project has been

  19. Estimation of E. coli Concentrations from Failing On-Site Wastewater Treatment Facilities (OWTS) Using GIS

    E-Print Network [OSTI]

    Virani, Afreen Shiraz

    2014-08-12T23:59:59.000Z

    showed that closer proximity of the OWTS in the study area to the hydrological network had higher fecal contamination (Kelsey et al., 2004). Rios et al. (2013) developed ArcNLET (Nitrate Load Estimation Tool), in GIS platform to stimulate nitrate loads... at least one absolute error measure, RMSE or mean absolute error, and at least one relative error measure (R2 or E). According to Singh, et al. (2004), RMSE values that are closer to 0 represent a perfect fit, however, values that are half of the stand...

  20. Estimating costs and benefits of advanced control for wastewater treatment plants the MAgIC

    E-Print Network [OSTI]

    Benchmarking; cost­benefit analysis; full-scale plant control; on-line process control; sensors Introduction plants. The effective coupling of the sensors to on-line control algorithms is now operational in 10 al., 2004). The methodology is designed such that the evaluation should be possible from existing

  1. A Self-Powered Adaptive Wireless Sensor Network for Wastewater Treatment Plants Christopher M. Twigg,

    E-Print Network [OSTI]

    Chen, Yu

    [3]. In addition, the demand for electricity at WWTPs is expected to grow by 20% over the next 15 of electricity continues to grow and the quality requirements of processed water tightens. However*, Christopher M. Twigg, Omowunmi A. Sadik, § Shiqiong Tong Dept. of Electrical and Computer Engineering

  2. A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater treatment process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ­ the dilution rate and the flow rates of methane and carbon dioxide in the biogas. I. Introduction Before it may. The dynamics of this process are the ones of standard anaerobic digestion, and depend on the type of organic quantities such as the dilution rate and the flow rates of methane and carbon dioxide in the biogas. In [1, 2

  3. On-Site Wastewater Treatment Systems: Gravel-less Pipe (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-10-13T23:59:59.000Z

    Tanque s?ptico de dos compartimientos Campo de absorci?n Tuber?a sin grava L-5343S 8-00 Figura 1: La tuber?a sin grava es flexible y puede ponerse en zanjas siguiendo las curvas a nivel en suelos con pendiente. Sistemas individuales para el... tratamiento de aguas negras Tuber?a sin grava Bruce Lesikar, Juan Enciso y Russell Persyn Promotores Especialistas de Ingenier?a Agr?cola, Promotor Adjunto de Conservaci?n de Agua El Sistema Universitario Texas A&M L os sistemas de tuber?a sin grava...

  4. On-Site Wastewater Treatment Systems: Septic Tank/Soil Absorption Field (Spanish)

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    2000-10-13T23:59:59.000Z

    Campo de absorci?nTanque s?ptico de dos compartimientos Tuber?a perforada para distribuir residuales Suelo arenoso/limoso Grava Tela geotextil L-5227S 8-00 Figura 1: Una fosa s?ptica y un sistema de campo de absorci?n. Sistemas individuales para el... tratamiento de aguas negras Fosa s?ptica y campo de absorci?n Bruce Lesikar y Juan Enciso Promotores Especialistas de Ingenier?a Agr?cola El Sistema Universitario Texas A&M L a fosa s?ptica y el sistema de campo de absorci?n es el m?todo m?s econ...

  5. Temperature profile and heat transfer model for a chemical wastewater treatment plant

    SciTech Connect (OSTI)

    Brown, E.V. (CH2M HILL, Atlanta, GA (United States)); Enzminger, J.D. (CH2M HILL, Parsippany, NJ (United States))

    1991-08-01T23:59:59.000Z

    This paper presents a heat transfer model for equalization, activated sludge, and trickling filter unit processes than can be used to assess the effect of operating temperature on unit process selection, materials of construction selection, and heat retention and cooling requirements. In developing this model, the individual variables that affect the operating temperature of biological systems were first identified. Mathematical relationships were then developed to describe system behavior, based on conservation laws and rate equations. The heat transfer models were then used to developed a temperature profile of the two alternative WWTP configurations.

  6. REMOVAL AND FATE OF SPECIFIC MICROBIAL PATHOGENS WITHIN ON-SITE WASTEWATER TREATMENT SYSTEMS

    E-Print Network [OSTI]

    Pillai, Suresh D.; Lesikar, Bruce A.

    .67 7.13 7.65 5/4/99 327 75 52 22 1.55 1.6 6.67 7.28 5/6/99 356 67 8 16 1.56 1.53 6.80 7.50 5/11/99 27 4 46 30 1.64 1.65 7.19 7.88 5/18/99 123 11 28 0 1.5 1.53 7.18 7.75 5/25/99 163 64 42 16 1.67 1.6 7.20 7.69 6/2/99 14 8 28 12 1.56 1.62 7.58 7....92 6/8/99 11 4 68 18 1.56 1.63 7.37 7.75 21 BOD 5 (mg/L) TSS (mg/L) EC (dS/m) pH Date Influent Effluent Influent Effluent Influent Effluent Influent Effluent 7/21/99 133 6 16 0 1.89 1.75 7.75 8.18 7/27/99 119 35 18 0 1.84 1.77 7.62 7.82 8/3/99...

  7. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater

    E-Print Network [OSTI]

    remove greater than 90% of the influent ammonia (up to 19 mgLÀ1 NH3­N) in both the synthetic the reduction in space as compared to traditional activated sludge system, ease in upgrade of existing

  8. EECBG Success Story: Saving Energy at 24/7 Wastewater Treatment Plant |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah River SiteDepartmentDepartment of EnergyDepartment

  9. EECBG Success Story: Saving Energy at 24/7 Wastewater Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    Coal Creek Fire and Rescue's fire station in New Richmond, Ind. where a new furnace and air conditioner will save energy and money. | Photo courtesy of New Richmond EECBG Success...

  10. Saving Energy at 24/7 Wastewater Treatment Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess Heatingat Homeas a Renter

  11. CRS 25-10-101 On-site Wastewater Treatment Systems Act | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump to:ListCRED: A New Model

  12. OAR 340-071 - On Site Wastewater Treatment Systems Definitions | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn, Colorado:Cables |

  13. ITP Industrial Distributed Energy: CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 |Final

  14. ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 |Finalfor

  15. A Novel Anaerobic Electrochemical Membrane Bioreactor (AnEMBR) with Conductive Hollow-fiber Membrane for Treatment of Low-

    E-Print Network [OSTI]

    A Novel Anaerobic Electrochemical Membrane Bioreactor (AnEMBR) with Conductive Hollow electro- chemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3 ). INTRODUCTION

  16. 16 IDA JournAl | Fourth QuArter 2010 www.IDADesAl.org Treatment Innovations

    E-Print Network [OSTI]

    to overcoming the osmotic pressure of seawater, which also limits maximum system recovery. There are only a few the SWRO feed stream, thereby reducing the required ap- plied pressure and potentially increasing recovery solution and with secondary and tertiary effluent from a domestic wastewater treatment plant as feed

  17. The role of SCADA in developing a lean enterprise for municipal wastewater operations

    E-Print Network [OSTI]

    Prutz, Stanley J

    2005-01-01T23:59:59.000Z

    Central to optimizing a wastewater system's operations is the collection of alarm and operational data from various remote locations throughout a municipality, hence the basic need for supervisory control and data acquisition ...

  18. Anaerobic Co-digestion of Chicken Processing Wastewater and Crude Glycerol from Biodiesel

    E-Print Network [OSTI]

    Foucault, Lucas Jose

    2011-10-21T23:59:59.000Z

    The main objective of this thesis was to study the anaerobic digestion (AD) of wastewater from a chicken processing facility and of crude glycerol from local biodiesel operations. The AD of these substrates was conducted in bench-scale reactors...

  19. Removal of Chloride from Wastewater by Advanced Softening Process Using Electrochemically Generated Aluminum Hydroxide 

    E-Print Network [OSTI]

    Mustafa, Syed Faisal

    2014-07-23T23:59:59.000Z

    solubility. Chloride can be removed from water and wastewater by precipitation as calcium chloroaluminate using advanced softening process. This research was conducted to evaluate chloride removal using electrochemically generated aluminum hydroxide and lime...

  20. Reactive Transport Modeling of Natural Attenuation in Stormwater Bioretention Cells and Under Land Application of Wastewater

    E-Print Network [OSTI]

    Zhang, Jingqiu

    2014-04-29T23:59:59.000Z

    application. Due to less water and chemical input, climate patterns may lead to better removal of heavy metals. For land application of Oil and Gas Exploration and Production wastewater, five scenarios were developed to study the impact of chloride, salts...

  1. ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER

    E-Print Network [OSTI]

    Ossio, Edmundo

    2012-01-01T23:59:59.000Z

    Wastewater Genera ted in Shale Oil Development 9 BattelleControl Technology for Shale Oil Wastewaters 9 11 inPhyllis Fox INTRODUCTION Oil shale retorting produces from

  2. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare – Wastewater Recycling Technology

    SciTech Connect (OSTI)

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

    2014-08-14T23:59:59.000Z

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  3. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    SciTech Connect (OSTI)

    Mondala, Andro H.; Hernandez, Rafael; French, William Todd; Estevez, L. Antonio; Meckes, Mark; Trillo, Marlene; Hall, Jacqueline

    2011-12-01T23:59:59.000Z

    The results of a laboratory scale investigation on ozone pretreatment of primary-treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0% (w/w) ozone at 1 L min -1 resulted into a considerable inactivation of the indigenous heterotrophic bacteria in the wastewater with less than 0.0002% comprising the ozone-resistant fraction of the microbial population. The disinfection process was modeled using first-order inactivation kinetics with a rate constant of 4.39 Ã?Â?Ã?Â? 10 -3 s -1. Chemical oxygen demand (COD) levels were reduced by 30% in 1-h experiments. COD depletion was also modeled using a pseudo-first-order kinetics at a rate constant of 9.50 Ã?Â?Ã?Â? 10 -5 s -1. Biological oxygen demand (BOD 5) values were reduced by 60% up to 20 min of ozonation followed by a plateau and some slight increases attributed to partial oxidation of recalcitrant materials. Ozone also had no substantial effect on the concentration of ammonium and phosphate ions, which are essential for microbial growth and metabolism. Preliminary tests indicated that oleaginous microorganisms could be cultivated in the ozonated wastewater, resulting in relatively higher cell densities than in raw wastewater and comparable results with autoclave-sterilized wastewater. This process could potentially produce significant quantities of oil for biofuel production from municipal wastewater streams.

  4. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2014-09-01T23:59:59.000Z

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  5. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    SciTech Connect (OSTI)

    Peterson, E.S.; Trudeau, J.; Cleary, B.; Hackett, M.; Greene, W.A.

    2003-04-30T23:59:59.000Z

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20?25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  6. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Michael G. Lewis

    2003-02-01T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  7. Waste treatment and metal recovery at the Robbins Company

    SciTech Connect (OSTI)

    Clark, P.

    1990-05-01T23:59:59.000Z

    The Robbins Company, of Attleboro, Massachusetts, a medium-sized jewelry manufacturing and plating company, installed a new wastewater treatment and metal recovery system, which forms a closed-loop, completed in February, 1988. The company now generates very small quantities of hazardous wastes non-contact cooling water from the annealing furnaces, and intends to complete it`s water conservation program by installing one or more chillers on the furnaces. Since 1986, chemical usage has dropped 81.8%, hazardous waste generation 89% and water usage by 47.7%, generating an annual savings of over $71,000.

  8. Regional Summary Pacific Region Management Context

    E-Print Network [OSTI]

    , for the Eastern Pacific Ocean, and the Western and Central Pacific Fishery Commission, for the Western PacificRegional Summary Pacific Region Management Context The Pacific Region includes California, Oregon, and Washington. Federal fisheries in this region are managed by the Pacific Fishery Management Council (PFMC

  9. Microbial Community Analysis of a Single Chamber Microbial Fuel Cell Using Potato Wastewater

    SciTech Connect (OSTI)

    Zhen Li; Rishika Haynes; Eugene Sato; Malcolm Shields; Yoshiko Fujita; Chikashi Sato

    2014-04-01T23:59:59.000Z

    Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bioelectrochemical reactions mediated by microorganisms. We investigated the diversity of the microbial community in an air cathode single chamber MFC that utilized potato-process wastewater as substrate. Terminal Restriction Fragment Length Polymorphism (T-RFLP) results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S rDNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopy results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that utilize potato wastewater.

  10. HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM

    E-Print Network [OSTI]

    HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM date ­ November 23, 2004 · Contract end date ­ March 31, 2006 #12;Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania · Objectives ­ Capture

  11. Utilization of municipal wastewater for cooling in thermoelectric power plants

    SciTech Connect (OSTI)

    Safari, Iman; Walker, Michael E.; Hsieh, Ming-Kai; Dzombak, David A.; Liu, Wenshi; Vidic, Radisav D.; Miller, David C.; Abbasian, Javad

    2013-09-01T23:59:59.000Z

    A process simulation model has been developed using Aspen Plus(R) with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH{sub 3} and CO{sub 2} evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loop pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH{sub 3} mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., k{sub NH3}< 4×10{sup -3} m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO{sub 3}). The effect of the CO{sub 2} mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., k{sub CO2}<4×10{{sup -6} m/s).

  12. Reducing Phosphorus in Dairy Effluent Wastewater through Flocculation and Precipitation

    E-Print Network [OSTI]

    Bragg, A.

    2003-01-01T23:59:59.000Z

    . Dissolved reactive and total phosphorus loads from agricultural and forested basins to surface waters in Finland. Aqua Fennica 21:127-136. 21. Rout, D., R. Verma, and S. Agarwal. 1999. Polyelectrolyte treatment ? An approach for water quality...

  13. Evaluation of treated wastewater for the production of Syngonium podophyllum

    E-Print Network [OSTI]

    Garza Morton, Jose Antonio

    1995-01-01T23:59:59.000Z

    not represent a risk in any of the waters. In the second phase of the research, 5 combinations of reclaimed water with reverse osmosis water were evaluated on the irrigation of Syngonium podophyllum. There was a significant difference between treatments...

  14. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOE Patents [OSTI]

    Smith, Douglas D. (Knoxville, TN); Hiller, John M. (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

  15. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOE Patents [OSTI]

    Smith, D.D.; Hiller, J.M.

    1998-02-24T23:59:59.000Z

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  16. Oil Production by a Consortium of Oleaginous Microorganisms grown on primary effluent wastewater

    SciTech Connect (OSTI)

    Hall, Jacqueline; Hetrick, Mary; French, Todd; Hernandez, Rafael; Donaldson, Janet; Mondala, Andro; Holmes, William

    2011-01-01T23:59:59.000Z

    Municipal wastewater could be a potential growth medium that has not been considered for cultivating oleaginous microorganisms. This study is designed to determine if a consortium of oleaginous microorganism can successfully compete for carbon and other nutrients with the indigenous microorganisms contained in primary effluent wastewater. RESULTS: The oleaginous consortium inoculated with indigenous microorganisms reached stationary phase within 24 h, reaching a maximum cell concentration of 0.58 g L -1. Water quality post-oleaginous consortium growth reached a maximum chemical oxygen demand (COD) reduction of approximately 81%, supporting the consumption of the glucose within 8 h. The oleaginous consortium increased the amount of oil produced per gram by 13% compared with indigenous microorganisms in raw wastewater. Quantitative polymerase chain reaction (qPCR) results show a substantial population increase in bacteria within the first 24 h when the consortium is inoculated into raw wastewater. This result, along with the fatty acid methyl esters (FAMEs) results, suggests that conditions tested were not sufficient for the oleaginous consortium to compete with the indigenous microorganisms.

  17. St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids William Eleazer, Supervising Engineer, Brown and Caldwell

  18. Selenium Biotransformations in an Engineered Aquatic Ecosystem for Bioremediation of Agricultural Wastewater via Brine Shrimp

    E-Print Network [OSTI]

    Selenium Biotransformations in an Engineered Aquatic Ecosystem for Bioremediation of Agricultural Wastewater via Brine Shrimp Production Radomir Schmidt,, Prapakorn Tantoyotai, Sirine C. Fakra, Matthew A, Saskatchewan S7N 5E2, Canada United States Department of Agriculture, Agricultural Research Service, SJVASC

  19. The water concept in the self-sufficient house Drinking rainwater and reusing wastewater

    E-Print Network [OSTI]

    Wehrli, Bernhard

    the chance to do just that. Lack of drinking water hygiene is one of the main sources of disease transmissionThe water concept in the self-sufficient house Drinking rainwater and reusing wastewater Decentralized systems for drinking water processing could make a significant contribution to the Millennium

  20. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater Reyad; available online 29 October 2003 Abstract A by-product fly ash from oil shale processing was converted shale; Ash; Zeolite; Cadmium and lead removal 1. Introduction Oil shale exists in Jordan with large

  1. Universit d'Ottawa Facult de gnie

    E-Print Network [OSTI]

    Petriu, Emil M.

    ­ biological wastewater treatment - K.J. Kennedy ­ biological wastewater treatment - L. Fernandes- treatment) ­ biological wastewater treatment Partners Ontario Ministry of the Environment Walkerton Clean Water Centre encompasses water treatment, wastewater treatment, solid waste management, landfill design, biosolids

  2. Wetlands as Best Management Practices to Mitigate Agricultural Nonpoint Source Pollution

    E-Print Network [OSTI]

    Karpuzcu, Mahmut Ekrem

    2012-01-01T23:59:59.000Z

    biological nutrient removal systems in conventional wastewater treatmentbiological nutrient removal systems, such as conventional wastewater treatment

  3. Northwest Regional Technology Center

    E-Print Network [OSTI]

    Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

  4. Eutrophication potential of secondary and tertiary wastewater effluents

    E-Print Network [OSTI]

    Ivy, James Thomas

    1972-01-01T23:59:59.000Z

    hydroxi de or some other base. 8ecause of its low cost 1n some areas, waste pickle 11quor will probably be useful in some treatment systems. Alum has been used for phosphate removal in both the secondary (act1vated sludge) and tertiary processes.... In the secondary process, alum has reduced the effluent phosphorus concentration to 0 . 5 - 1. 0 mg/1. Tertiary alum treatment has been used at the FWOA ? Lebanon Pilot Plant, Lebanon, Oh1o (8). The pilot plant at Dallas, Texas, is investigating the use of 11...

  5. Selective hydrolysis of wastewater sludge Part 1, September 2007

    E-Print Network [OSTI]

    the production of biogas based power and heat besides reduce the power consumption from handling and treatment of sludge as if established at the existing sludge digester system. The Esbjerg Renseanlæg Vest is a traditional build plant base don the activated sludge concept besides traditional digester technology

  6. Ahmet H. Aydilek, 1 Tuncer B. Edil, 1 Patrick J. Fox2 Consolidation Characteristics of Wastewater Sludge

    E-Print Network [OSTI]

    Aydilek, Ahmet

    Sludge ________________________________________________________________________ Reference: Aydilek, A. H., Edil, T. B., and Fox, P. J., "Consolidation Characteristics of Wastewater Sludge", Geotechnics of High contaminated sludge. The Madison Metropolitan Sewerage District evaluated different remediation alternatives

  7. Using Animal Manure and Wastewater for Crops and Pastures: Know and Take Credit for your N, P, and K

    E-Print Network [OSTI]

    Mukhtar, Saqib

    2000-09-12T23:59:59.000Z

    Animal manure and wastewater are often applied to crops and pastures. Farmers and producers who use this effluent should calculate the amount of nitrogen, phosphorus and potassium it contains so that they do not overapply these nutrients when also...

  8. Design report on the test system used to assess treatment of trench water from Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Kent, T.E.; Taylor, P.A.

    1992-09-01T23:59:59.000Z

    New liquid waste streams will be generated as a consequence of closure activities at Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). It is proposed that these waste streams be treated for removal of contaminants by adding them to the ORNL wastewater treatment facilities. Previous bench-scale treatability studies indicate that ORNL treatment operations will adequately remove the contaminants, although additional study is required to characterize the secondary waste materials produced as a result of the treatment. A larger scale treatment system was constructed to produce secondary wastes in the quantities necessary for characterization and US Environmental protection Agency toxicity characteristic leaching procedure (TCLP) testing. The test system is designed to simulate the operation of the ORNL process waste treatment facilities and to treat a mixture of ORNL process wastewater and WAG 6 wastewater at a combined flow rate of 0.5 L/min. The system is designed to produce the necessary quantities of waste sludges and spent carbon for characterization studies and TCLP testing.

  9. The Relative Effectiveness of pH Control and Heat Treatment for

    E-Print Network [OSTI]

    containinghighconcentrationsoforganics,suchasmunicipal solid waste, industrial wastewater, and agricultural waste, may simultaneously provide economic and environmental benefits. Using nonsterile substrates (such as wastewaters) will likely

  10. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01T23:59:59.000Z

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  11. Direct measurement and characterization of active photosynthesis zones inside biofuel producing and wastewater remediating microalgal biofilms

    SciTech Connect (OSTI)

    Bernstein, Hans C.; Kesaano, Maureen; Moll, Karen; Smith, Terence; Gerlach, Robin; Carlson, Ross; Miller, Charles D.; Peyton, Brent; Cooksey, Keith; Gardner, Robert D.; Sims, Ronald C.

    2014-03-30T23:59:59.000Z

    Abstract: Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize renewable resources, such as light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation applications, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for physiological analyses are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and biofuel precursor molecule production using a novel rotating algal biofilm reactor (RABR) operated at field- and laboratory-scales for wastewater remediation and biofuel production, respectively. Clear differences in oxygenic-photosynthesis, respiration and biofuel-precursor capacities were observed between the two systems and different conditions based on light and nitrogen availability. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to prior planktonic studies. Physiological characterizations of these microalgal biofilms identify potential areas for future process optimization.

  12. Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi)

    Broader source: Energy.gov [DOE]

    The Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations...

  13. Achieving very low mercury levels in refinery wastewater by membrane filtration.

    SciTech Connect (OSTI)

    Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W. (Center for Nanoscale Materials); ( ES)

    2012-05-15T23:59:59.000Z

    Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (<1.3 ng/L) in an oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

  14. Solid-Liquid Separation of Animal Manure and Wastewater

    E-Print Network [OSTI]

    Mukhtar, Saqib; Sweeten, John M.; Auvermann, Brent W.

    1999-10-19T23:59:59.000Z

    such as ferric chloride (FeCL 3 ), alum (Al 2 (SO 4 ) 3 ) and lime (Ca(OH) 2 ). These chemical treatments may work well for manure with fine particles, such as poultry and swine manure. Laboratory studies have found that ferric chloride and alum are effective... coagulants that help manure solids to gravity settle by sedimentation. A polymer used with ferric chloride or alum produces dense flocs and helps remove solids by the process of screening. Performance and economics of separators Each kind of separator works...

  15. City in Colorado Fueling Vehicles with Gas Produced from Wastewater

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock &EnergyDepartment ofTreatment Facility

  16. SITN Regional Outreach Map

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Region States in Region Awardee(s) Location of Awardee(s) Contact(s) Northeast (Photovoltaics) CT * ME * MA * NH NY * RI * VT Hudson Valley Community College Troy, NY Richard...

  17. Ultracompact HII Regions

    E-Print Network [OSTI]

    Stan Kurtz; Jose Franco

    2001-11-20T23:59:59.000Z

    We review some recent observational results on the properties of ultracompact HII regions, in particular the presence of extended continuum emission surrounding ultracompact sources and the discovery of a new class of so-called ``Hypercompact'' HII regions. In addition, we discuss recent attempts to probe the density structure within UC HII regions using the technique of spectral index analysis.

  18. Sustainability Considerations forSustainability Considerations for Managing Nutrient Loads to theManaging Nutrient Loads to the

    E-Print Network [OSTI]

    of Variability and Reliability of Wastewater Treatment Performance Typical Biological Nutrient Removal (BNR), mg and Limits of Wastewater Treatment TechnologyWastewater Treatment Technology 99 1 Ignoring Considerations Wastewater Treatment Water Environment Research Foundation (WERF) "Nutrient Management: Regulatory Approaches

  19. Developing a Regional Recovery Framework

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01T23:59:59.000Z

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  20. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    Processing Industry Energy Efficiency Initiative, CaliforniaK. (2004). Bringing Energy Efficiency to the Water andAgricultural/Water End-Use Energy Efficiency Program. Lyco

  1. Physical-chemical characterization of sludge and granular materials from a vertical flow constructed wetland for municipal wastewater treatment

    E-Print Network [OSTI]

    Boyer, Edmond

    Physical-chemical characterization of sludge and granular materials from a vertical flow considered for phosphorus removal as well. In this article, sludge and granular materials sampled from analyses showed that phosphorus was predominantly captured in the sludge layer accumulated at the surface

  2. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    A byproduct of this process is biogas which contains 50– 70%Partners LLC 2007). This biogas can be used to generate heatmethane fermentation and biogas recovery (Green 1995).

  3. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    PG&E PID PIER PLC RTU SCADA SO 3 TSS U.S. UV VFD Pacific GasThe Fundamentals of SCADA. Benyahia, F. , M. Abdulkarim, A.53 Overview of SCADA

  4. Development of an electron beam irradiation design for use in the treatment of municipal biosolids and wastewater effluent

    E-Print Network [OSTI]

    Lazarine, Alexis Dawn

    2009-05-15T23:59:59.000Z

    depth-dose curves. In addition, a density perturbation study was performed to assess the variance in the dose deposition for different mass solids concentrations. To validate the MCNP5 code for this type of application, a benchmark study was performed...

  5. Long-Term Performance of Liter-Scale Microbial Fuel Cells Treating Primary Effluent Installed in a Municipal Wastewater Treatment

    E-Print Network [OSTI]

    , United States Veolia Water North America, Indianapolis, Indiana 46204, United States *S Supporting production and consumption indicated that the two MFCs could theoretically achieve a positive energy balance fluctuation, such as emptying the anode for 1-3 days or different HRTs. The preliminary analysis of energy

  6. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell

    E-Print Network [OSTI]

    -cathode microbial osmotic fuel cell Craig M. Werner a,n , Bruce E. Logan b , Pascal E. Saikaly a , Gary L. Amy Keywords: Forward osmosis Desalination Fouling Microbial osmotic fuel cell a b s t r a c t A microbial was compared to conventional microbial fuel cells containing a cation (CEM) or anion exchange membrane (AEM

  7. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    oil. Findings suggest that there are substantial opportunities to reduce energy consumption in the petroleum refining industry

  8. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    WWW.ENERGY.CA.GOV / PIER / RENEWABLE / BIOMASS / ANAEROBICwww.energy.ca.gov/research/renewable/biomass/anaerobic_2008). "Renewable Energy Research: Biomass - Anaerobic

  9. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    produce the greatest energy and demand savings. Aeration andand C.Y. Chang (2005). "Energy Demand in Sludge Dewatering."be modified to reduce energy demand during demand response

  10. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    50 Effluent Hydropower- Kilowatt Output as Function of HeadDepartment of Energy (2003). Hydropower Setting a Course forEnergy Commission). Hydropower: Hydropower turbines for low-

  11. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    best practices that could be applicable in improving the energy efficiency and demand responsebest practices that could be applied to form the basis for demand responsedemand response activities. The following case studies illustrate best practices

  12. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    This also produces waste heat that is used for process30 to 70% by recovering waste heat and using it for space

  13. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    best practices that could be applied to form the basis for demand responsebest practices that could be applicable in improving the energy efficiency and demand responsedemand response activities. The following case studies illustrate best practices

  14. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    sludge, and digested biosolids (Metcalf & Eddy Inc. 2003).hours. Processes such as biosolids thickening/dewatering and

  15. aerobic gammaproteobacterium congregibacter: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and electricity producing using MFCs in order to achieve both wastewater treatment and bioenergy). Aerobic wastewater treatment costs can be very high for these wastewaters, and...

  16. aerobic anoxygenic phototrophy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and electricity producing using MFCs in order to achieve both wastewater treatment and bioenergy). Aerobic wastewater treatment costs can be very high for these wastewaters, and...

  17. aerobic bacteriochlorophyll a-producing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and electricity producing using MFCs in order to achieve both wastewater treatment and bioenergy). Aerobic wastewater treatment costs can be very high for these wastewaters, and...

  18. aerober mikrobieller abbau: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and electricity producing using MFCs in order to achieve both wastewater treatment and bioenergy). Aerobic wastewater treatment costs can be very high for these wastewaters, and...

  19. CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional...

    Open Energy Info (EERE)

    CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework Jump to: navigation, search Name CDKN-CARICOM-A Regional Implementation Plan for...

  20. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect (OSTI)

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C. [East China University of Chemical Technology, Shanghai (China)

    2007-10-15T23:59:59.000Z

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.