Sample records for regional test centers

  1. Regional Test Centers (RTCs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead5"Redline"Method over thehas

  2. Sandia National Laboratories: Photovoltaic Regional Testing Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration, Modeling, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Photovoltaic Systems Evaluation...

  3. Sandia National Laboratories: Photovoltaic Regional Testing Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The Vermont RTC...

  4. Establishment of Small Wind Turbine Regional Test Centers (Presentation)

    SciTech Connect (OSTI)

    Sinclair, K.

    2011-09-16T23:59:59.000Z

    This presentation offers an overview of the Regional Test Centers project for Small Wind Turbine testing and certification.

  5. NREL: Wind Research - Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6 DecemberWind

  6. Sandia Energy - Photovoltaic (PV) Regional Test Center (RTC) Website Goes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshoreLive Photovoltaic (PV) Regional

  7. Establishment of Small Wind Regional Test Centers: Preprint

    SciTech Connect (OSTI)

    Jimenez, T.; Forsyth, T.; Huskey, A.; Mendoza, I.; Sinclair, K.; Smith, J.

    2011-03-01T23:59:59.000Z

    The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to a small number of U.S. Department of Energy (DOE) subsidized tests conducted at the National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. Within the past few years, the DOE, National Renewable Energy Lab (NREL), and some states have worked with the North American SWT industry to create a SWT certification infrastructure. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. The American Wind Energy Association (AWEA) released the AWEA Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 - 2009) in December 2009. The Small Wind Certification Council (SWCC), a North American certification body, began accepting applications for certification to the AWEA standard in February 2010. To reduce certification testing costs, DOE/NREL is providing financial and technical assistance for an initial round of tests at four SWT test sites which were selected via a competitive solicitation. The four organizations selected are Windward Engineering (Utah), The Alternative Energy Institute at West Texas A&M (Texas), a consortium consisting of Kansas State University and Colby Community College (Kansas), and Intertek (New York). Each organization will test two small wind turbines as part of their respective subcontract with DOE/NREL. The testing results will be made publically available. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification.

  8. Sandia Energy - SunShot Grand Challenge: Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectson the

  9. Sandia Energy » Photovoltaic Regional Testing Center (PV RTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategic PetroleumCrudeSandianWin

  10. Milestone for Regional Test Center in Vermont | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 AcquisitionO 231.1BDomestic

  11. Regional Test Centers Breaking Down Barriers to Solar Energy Deployment |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric,RM ExitPropertySeptemberof EnergyCaptured

  12. Sandia Energy - Photovoltaic Regional Testing Center (PV RTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshoreLive Photovoltaic (PV)

  13. Sandia Energy - Solar Regional Test Center in Vermont Achieves Milestone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting andSolar

  14. Northwest Regional Technology Center

    E-Print Network [OSTI]

    Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

  15. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers (Presentation)

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-06-01T23:59:59.000Z

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of interrow shading, and their ability to be deployed at a greater ground-coverage ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from interrow shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of interrow shading mismatch is at a maximum.

  16. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-07-01T23:59:59.000Z

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.

  17. Presentation of Regional SDSN Center

    E-Print Network [OSTI]

    Garulli, Andrea

    ;Conference topics: Pollution in the Mediterranean sea Climate change Improving the management Energy#12;Presentation of UN SDSN and MED SDSN Regional SDSN Center for the Mediterranean Region #12;UN for the Mediterranean Basin Why a Mediterranean Network? Shared history Shared environment Shared future MED

  18. Sandia National Laboratories: Vermont Photovoltaic Regional Test...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  19. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to SPT for modifications and re-testing. A 4-12" cased well at the Rocky Mountain Oilfield Testing Center (RMOTC) in Casper Wyoming was selected. The well conditions were:...

  20. WINDExchange: About Regional Resource Centers

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAboutDeployment Activities Printable

  1. Regional Resource Centers for Innovation Brochure (Revised)

    SciTech Connect (OSTI)

    Wogsland, J.

    2000-09-14T23:59:59.000Z

    This brochure describes OIT's Regional Resource Centers for Innovation (RCIs), which provide the Innovation and Invention program grantees and other small business energy innovators commercialization assistance.

  2. Superfund record of decision (EPA Region 2): Federal Aviation Administration Technical Center (Area B Navy Fire Test Facility), Atlantic County, Atlantic City International Airport, NJ, September 20, 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This decision document presents the selected remedial action for Area B, the Navy Fire Test Facility, at the FAA Technical Center, Atlantic City Internatioal Airport, New Jersey. The selected remedy for Area B includes: Installation of additional monitoring wells; Continued ground water and surface water monitoring; Installation and operation of air sparging wells, vapor extraction wells and monitoring probes; On-site vapor treatment (if necessary); and Five year reviews.

  3. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOUNTAIN OILFIELD TESTING CENTER MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field...

  4. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JANUARY 27, 1998 Report No. RMOTC97PT22 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETRO-PLUG BENTONITE PLUGGING Prepared for: INDUSTRY PUBLICATION Prepared by:...

  5. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FEBRUARY 19, 1997 FC9532 95EC1 ROCKY MOUNTAIN OILFIELD TESTING CENTER AJUST A PUMP TEST Rosemond Manufacturing, Inc. (RMI) Prepared for: INDUSTRY PUBLICATION Prepared by:...

  6. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OILWELL POWER CONTROLLER JULY 26, 1994 FC9501 94PT1 ROCKY MOUNTAIN OILFIELD TESTING CENTER RMOTC TEST RESULTS OF OILWELL POWER CONTROLLER July 26,1994 MICHAEL R. TYLER FIELD...

  7. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82601 1994 RMOTC ('107) 261-5000, ext. 5060 RESULTS OF THE V-GER LUBRICATOR SYSTEM TEST AT THE ROCKY MOUNTAIN OILFIELD TESTING CENTER (RMOTC) Michael Tyler, Marvin Hendricks,...

  8. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FC9510 95PT4 ROCKY MOUNTAIN OILFIELD TESTING CENTER D-JAX PUMP-OFF CONTROLLER PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field...

  9. Southern Regional Center for Lightweight Innovative Design

    SciTech Connect (OSTI)

    None

    2012-08-24T23:59:59.000Z

    The Southern Regional Center for Lightweight Innovative Design (SRCLID) has developed an experimentally validated cradle-to-grave modeling and simulation effort to optimize automotive components in order to decrease weight and cost, yet increase performance and safety in crash scenarios. In summary, the three major objectives of this project are accomplished: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios. In this final report, we divided the content into two parts: the first part contains the development of building blocks for the project, including materials and process models, process-structure-property (PSP) relationship, and experimental validation capabilities; the second part presents the demonstration task for Mg front-end work associated with USAMP projects.

  10. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IN-SITU H 2 S BIOREMEDIATION JULY 11, 1994 FC9509 95PT3 Rocky Mountain Oilfield Testing Center 907 North Poplar, Suite 100, Casper, WY 82601 (307) 261-5000, ext. 5060; FAX (307)...

  11. WINDExchange: Wind Energy Regional Resource Centers

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout PrintableEducation Printable

  12. Discovery ~ Learning~ Engagement Purdue Center for Regional Development

    E-Print Network [OSTI]

    A Year in Review 2007 PCRD Purdue Center for Regional Development 2007 Annual Report #12;2 #12;3 PCRD

  13. Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production and Regional Economic Growth

    E-Print Network [OSTI]

    Johnson, Eric E.

    Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production@nmsu.edu #12;Arrowhead Center: Coal Production and Regional Economic Growth i Disclaimer This report States Government or any agency thereof. #12;Arrowhead Center: Coal Production and Regional Economic

  14. Northwest Region Clean Energy Application Center

    SciTech Connect (OSTI)

    Sjoding, David

    2013-09-30T23:59:59.000Z

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  15. National Carbon Capture Center Launches Post-Combustion Test Center |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy Sutley About Us Nancy

  16. Recovery Act: Regional Technology Training Centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting MicroscopyJune 2011Recovery Act: Regional

  17. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    Oregon State University Sun Grant Western Regional Center Hybrid Poplar as a Regional Ethanol is to couple hybrid poplar production with end-use ethanol production. Dr. Swanson, working in collaboration with industrial partners, will analyze feedstock taken from selected hybrid poplar clones to develop ethanol yield

  18. National Carbon Capture Center Launches Post-Combustion Test Center |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuaryUpcoming EventsNafeesaNat i

  19. Nuclear Detection and Sensor Testing Center | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Sensor Testing Center, which offers dedicated facilities for the testing of radiation detection capabilities using enriched and highly enriched uranium. In addition to...

  20. Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OILFIELD TESTING OILFIELD TESTING CENTER CENTER 2 2 HISTORY OF TEAPOT DOME Mark Milliken 3 3 TEAPOT DOME LOCATION 4 4 Salt Creek 670 MMBBLS 722 BCF Teapot Dome 27 MMBBLS 57 BCF N P...

  1. Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments

    E-Print Network [OSTI]

    Keinan, Alon

    Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments Equine Tests Equine Tests Acid Fast Stain (for bacteria) M-F 1-2 days 1 4 hours for equine. For more information, see Equine Cushing's Tests or AppendixC. For Equine only

  2. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13T23:59:59.000Z

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  3. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10T23:59:59.000Z

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  4. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    biomass into various products. This approach will diversify the value of forest biomass. Progress to DateOregon State University Sun Grant Western Regional Center A Forest Residue-Based Pyrolysis to produce much-needed biofuels, supply valuable bioproducts, utilize waste streams and create jobs in rural

  5. Wind Technology Testing Center Acquires New Blade Fatigue Test System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWasteWho WillWind Program News

  6. ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electrical power. 1 MICROTURBINE-GENERATOR SYSTEM: There are several manufacturers of gas microturbine-generators. The system that was tested was a Capstone Turbine Corporation...

  7. Wind Technology Testing Center Acquires New Blade Fatigue Test...

    Broader source: Energy.gov (indexed) [DOE]

    the American Recovery and Reinvestment Act, the WTTC is one of the largest blade test facilities in the world, testing some of the longest blades made today for the...

  8. Review of Multi-Person Exposure Calls to a Regional Poison Control Center

    E-Print Network [OSTI]

    Morgan, Brent W; Skinner, Carl G; Kleiman, Richard J; Geller, Robert J; Chang, Arthur S

    2010-01-01T23:59:59.000Z

    Exposure Calls to a Regional Poison Control Center Brent W.Medicine and the Georgia Poison Center, Atlanta, GA †of Pediatrics and the Georgia Poison Center, Atlanta, GA

  9. Consumer Query Health Profile Saint Alphonsus Regional Medical Center

    E-Print Network [OSTI]

    Barrash, Warren

    Consumer Query Health Profile Saint Alphonsus Regional Medical Center Query resulted in 570 BSU Classified and Non-Classified employees that participated in the Fall 2004 Health Risk Appraisal. Non.2% 9.6% 7.7% 9.0% Heart Disease 2.3% 2.3% 2.6% 3.1% No Primary Care Physician 33.0% 31.8% 30.0% 24

  10. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAVITY PUMPS Cameron Elastomer Technology MARCH 23, 1998 FC956396PT17 RMOTC Test Report Number 96PT17 Improved Elastomer Compound for Progressive Cavity Pumps Cameron...

  11. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHEMICAL & MICROBIAL PARAFFIN CONTROL PROJECT DECEMBER 17, 1997 FC9544 96PT12 RMOTC Test Report Paraffin Control Project BDM OklahomaNIPER 220 N. Virginia Bartlesville, OK 4003...

  12. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOW COST REFRACTURING JANUARY 23, 1998 FC955096PT14 RMOTC Test Report Number 96PT14 Low Cost Refracturing Rock Creek Enterprises 980 Rock Creek Road Buffalo, Wyoming 82834 (307)...

  13. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0697DT15 RMOTC Test Report Rotary Steerable Stabilizer Smith Drilling and Completions 16740 Hardy Street P. 0. Box 60068 Houston, Texas, 77205-0068 281-443-3370 Leo Giangiacorno,...

  14. CHP REGIONAL APPLICATION CENTERS: ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin [ORNL

    2010-08-01T23:59:59.000Z

    Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This represents the first systematic attempt at RAC program measurement in a manner consistent with approaches used for other efforts funded by DOE's Industrial Technologies Program (ITP). In addition, data on CHP installations and associated effects were collected for the same years from a state-by-state database maintained for DOE by ICF international. A report documenting the findings of that study was produced in September, 2009. The purpose of the current report is to present the findings from a new study of RAC activities and accomplishments which examined what the Centers did in FY 2009, the last year in which they concentrated exclusively on CHP technologies. This study focused on identifying and describing RAC activities and was not designed to measure how those efforts influenced CHP installations or other outcomes.

  15. Injury Secondary to Antiretroviral Agents: A Retrospective Analysis of a Regional Poison Center Database

    E-Print Network [OSTI]

    Wheatley, Matthew A; Shah, Bijal B; Morgan, Brent W; Houry, Debra; Kazzi, Ziad N

    2011-01-01T23:59:59.000Z

    Analysis of a Regional Poison Center Database Matthew A.the United States. In 2009 poison centers received 2,479,355underscoring the role of poison centers in intentional and

  16. Limits on supersymmetric dark matter from EGRET observations of the Galactic center region

    SciTech Connect (OSTI)

    Hooper, Dan [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin, 53706 (United States); Dingus, Brenda L. [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin, 53706 (United States); Los Alamos National Lab, Mississippi H803 P-23, Los Alamos, New Mexico 87545 (United States)

    2004-12-01T23:59:59.000Z

    In most supersymmetic models, neutralino dark matter particles are predicted to accumulate in the Galactic center and annihilate generating, among other products, gamma rays. The Energetic Gamma Ray Experiment Telescope has made observations in this region, and is sensitive to gamma rays from 30 MeV to {approx}30 GeV. We have used an improved point source analysis including an energy dependent point spread function and an unbinned maximum likelihood technique, which has allowed us to lower the limits on gamma ray flux from the Galactic center by more than 1 order of magnitude. We find that the present Energetic Gamma Ray Experiment Telescope data can limit many supersymmetric models if the density of the Galactic dark matter halo is cuspy or spiked toward the Galactic center. We also discuss the ability of the Gamma ray Large Area Space Telescope to test these models.

  17. Limits on Supersymmetric Dark Matter From EGRET Observations of the Galactic Center Region

    E-Print Network [OSTI]

    Dan Hooper; Brenda Dingus

    2002-10-29T23:59:59.000Z

    In most supersymmetic models, neutralino dark matter particles are predicted to accumulate in the Galactic center and annihilate generating, among other products, gamma rays. The EGRET experiment has made observations in this region, and is sensitive to gamma rays from 30 MeV to $\\sim$30 GeV. We have used an improved point source analysis including an energy dependent point spread function and an unbinned maximum likelihood technique, which has allowed us to significantly lower the limits on gamma ray flux from the Galactic center. We find that the present EGRET data can limit many supersymmetric models if the density of the Galactic dark matter halo is cuspy or spiked toward the Galactic center. We also discuss the ability of GLAST to test these models.

  18. Limits on Supersymmetric Dark Matter From EGRET Observations of the Galactic Center Region

    E-Print Network [OSTI]

    Hooper, D; Hooper, Dan; Dingus, Brenda

    2002-01-01T23:59:59.000Z

    In most supersymmetic models, neutralino dark matter particles are predicted to accumulate in the Galactic center and annihilate generating, among other products, gamma rays. The EGRET experiment has made observations in this region, and is sensitive to gamma rays from 30 MeV to $\\sim$30 GeV. We have used an improved point source analysis including an energy dependent point spread function and an unbinned maximum likelihood technique, which has allowed us to significantly lower the limits on gamma ray flux from the Galactic center. We find that the present EGRET data can limit many supersymmetric models if the density of the Galactic dark matter halo is cuspy or spiked toward the Galactic center. We also discuss the ability of GLAST to test these models.

  19. regional clean energy application centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Centers (RACs), promote and assist in transforming the market for CHP, waste heat to power, and district energy technologies and concepts throughout the United...

  20. MENA-GTZ EERE Regional Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDL Ambiente Ltd

  1. Southern Regional Center for Lightweight Innovative Design (SRCLID) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideos Solid-State LightingSouthDepartment of Energy 2

  2. Southern Regional Center for Lightweight Innovative Design (SRCLID) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideos Solid-State LightingSouthDepartment of Energy

  3. Data Center Energy Benchmarking: Part 4 - Case Study on aComputer-testing Center (No. 21)

    SciTech Connect (OSTI)

    Xu, Tengfang; Greenberg, Steve

    2007-08-01T23:59:59.000Z

    The data center in this study had a total floor area of 8,580 square feet (ft{sup 2}) with one-foot raised-floors. It was a rack lab with 440 racks, and was located in a 208,240 ft{sup 2} multi-story office building in San Jose, California. Since the data center was used only for testing equipment, it was not configured as a critical facility in terms of electrical and cooling supply. It did not have a dedicated chiller system but served by the main building chiller plant and make-up air system. Additionally, it was served by a single electrical supply with no provision for backup power. The data center operated on a 24 hour per day, year-round cycle, and users had all hour full access to the data center facility. The study found that data center computer load accounted for 23% of the overall building electrical load, while the total power consumption attributable to the data center including allocated cooling load and lighting was 30% of the total facility load. The density of installed computer loads (rack load) in the data center was 63 W/ft{sup 2}. Power consumption density for all data center allocated load (including cooling and lighting) was 84 W/ft{sup 2}, approximately 12 times the average overall power density in rest of the building (non-data center portion). For the data center, 75% of the overall electric power was the rack critical loads, 11% of the power was consumed by chillers, 9% by CRAH units, 1% by lighting system, and about 4% of the power was consumed by pumps. The ratio of HVAC to IT power demand in the data center in this study was approximately 0.32. General recommendations for improving overall data center energy efficiency include improving the lighting control, airflow optimization, and control of mechanical systems serving the data center in actual operation. This includes chilled water system, airflow management and control in data centers. Additional specific recommendations or considerations to improve energy efficiency are provided in this report.

  4. Data Center Energy Benchmarking: Part 3 - Case Study on an ITEquipment-testing Center (No. 20)

    SciTech Connect (OSTI)

    Xu, Tengfang; Greenberg, Steve

    2007-07-01T23:59:59.000Z

    The data center in this study had a total floor area of 3,024 square feet (ft{sup 2}) with one-foot raised-floors. It was a rack lab with 147 racks, and was located in a 96,000 ft{sup 2} multi-story office building in San Jose, California. Since the data center was used only for testing equipment, it was not configured as a critical facility in terms of electrical and cooling supply. It did not have a dedicated chiller system but was served by the main building chiller plant and make-up air system. Additionally it was served by only a single electrical supply with no provision for backup power in the event of a power outage. The Data Center operated on a 24 hour per day, year-round cycle, and users had full-hour access to the data center facility. The study found that data center computer load accounted for 15% of the overall building electrical load, while the total power consumption attributable to the data center including allocated cooling load and lighting was 22% of the total facility load. The density of installed computer loads (rack load) in the data center was 61 W/ft{sup 2}. Power consumption density for all data center allocated load (including cooling and lighting) was 88 W/ft{sup 2}, approximately eight times the average overall power density in rest of the building (non-data center portion). The building and its data center cooling system was provided with various energy optimizing systems that included the following: (1) Varying chilled water flow rate through variable speed drives on the primary pumps. (2) No energy losses due to nonexistence of UPS or standby generators. (3) Minimized under-floor obstruction that affects the delivery efficiency of supply air. (4) Elimination of dehumidification/humidification within the CRAH units. For the data center, 70% of the overall electric power was the rack critical loads, 14% of the power was consumed by chillers, 12% by CRAH units, 2% by lighting system, and about 2% of the power was consumed by chilled water pumps. General recommendations for improving overall data center energy efficiency include improving the lighting control, airflow optimization, control of mechanical systems serving the data center in actual operation.. This includes chilled water system, airflow management and control in the data center. Additional specific recommendations or considerations to improve energy efficiency are provided in this report.

  5. regional clean energy application centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development of NovelHigh( (Improving theA Low

  6. University of Pittsburgh Test Center Registration Form Exams are by appointment only. Test center hours vary. Please call 412-624-6134 to schedule. Valid ID must

    E-Print Network [OSTI]

    Sibille, Etienne

    University of Pittsburgh Test Center Registration Form Exams are by appointment only. Test center hours vary. Please call 412-624-6134 to schedule. Valid ID must be presented at the time of the exam. Mail completed form and Test Center fee to address below. Once payment is received you

  7. Regional Test Centers for Solar Technologies | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    goal to increase the penetration of large-scale solar energy systems to enable solar-generated power to account for 15% to 18% of America's electricity generation by...

  8. Blayr Barnard Regional Director at Indiana Small Business Development Center

    E-Print Network [OSTI]

    gifted person who has great energy and enthusiasm for her work. She is very intelligent and with her Business Development Center "In my travels to conduct on-site training for the WebCATS CRM database, engagement and big picture vision. She gets it. She has a very good grasp of technology and I'm sure her

  9. Southwest Region University Transportation Center Annual Report 2009

    E-Print Network [OSTI]

    Canal. The strategic imperatives of climate change impacts must become understood and then integrated-regions must be developed to support future transportation planning and policy. Some metrics defining "green SWUTC capacities to find and educate the best students available for conceptualizing, building

  10. Northwest Regional Technology Center, March 2013 Page 1 of 2 Around The Region In Homeland Security

    E-Print Network [OSTI]

    to homeland security in the region, and this issue highlights Puget Sound Regional Blue Force Tracking Puget Sound Regional Blue Force Tracking Initiative The Puget Sound Regional Blue Force Tracking (BFTS the Puget Sound Area Maritime Security Committee Area of Responsibility. As part of the Initiative

  11. Electromagnetic pulse (EMP) survey of the FEMA Region X Federal Regional Center, Bothell, Washington

    SciTech Connect (OSTI)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1991-11-01T23:59:59.000Z

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities against the effects of high-altitude electromagnetic pulses (HEMPS). This report refers to the FEMA Federal Regional Center (FRC) in Bothell, Washington. It is highly probably that there will be a heavy dependence upon high-frequency (hf) radio communications for long-haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, the FNARS facilities must take measures to protect against the effects of HEMP that are likely to be created in a nuclear confrontation. The equipment under stress has already been designed and built so that little opportunity exists for equipment design changes that could raise the threshold levels at which malfunctions occur. The solution must then be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. If is the intent of this report to define the particular hardening measures that will minimize the susceptibility of the network components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only, and disregards any condition in which radiation effects may be a factor. This report identifies the systems in the facility considered critical for emergency option. To identify the critical systems in the facility and the EMP coupling paths into these systems, an EMP survey of the facility was conducted. Results of the survey are presented along with recommendations for tailored retrofit hardening measures to be implemented to protect the facility from EMP.

  12. Data Center Energy Benchmarking: Part 4 - Case Study on a Computer-testing Center (No. 21)

    E-Print Network [OSTI]

    Xu, Tengfang; Greenberg, Steve

    2007-01-01T23:59:59.000Z

    pumps. The cooling system inside the data center includedThe building and its data center cooling system was providedthan the data center, including total cooling systems. For

  13. Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center

    SciTech Connect (OSTI)

    Giangiacomo, L.A. [Fluor Daniel NPOSR, Inc., Casper, WY (United States). Rocky Mountain Oilfield Testing Center

    1998-12-31T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

  14. Request for Proposals Michigan State University Center for Regional Food Systems

    E-Print Network [OSTI]

    Request for Proposals Michigan State University Center for Regional Food Systems Building Shared Measurement Systems for Advancing the Michigan Good Food Charter Project Description The Michigan Good Food Charter (Charter) sets forth

  15. Establishing a Testing Center for Ocean Energy Technologies in...

    Broader source: Energy.gov (indexed) [DOE]

    and scaled devices in both laboratory and open water settings. To facilitate testing wave energy conversion devices, OSU developed and built a mobile ocean testing platform...

  16. Northwest Regional Technology Center, May 2013 Page 1 of 2 Around The Region In Homeland Security

    E-Print Network [OSTI]

    by the Pacific Northwest National Laboratory (PNNL), to support regional preparedness, resiliency, response Events Next-Generation Communications Inoperability Virtual Workshop PNNL hosted a Next including Lync, LiveWall and Twitter. The purpose of the workshop, organized by PNNL's Jon Barr, Jessica

  17. Northwest Regional Technology Center, April 2014 Page 1 of 2 Around The Region In Homeland Security

    E-Print Network [OSTI]

    by the Pacific Northwest National Laboratory (PNNL), to support regional preparedness, resiliency, response priorities, interests and goals. This article is the first in a series about the IAB. PNNL: This year marks partnerships and projects that we're working on. PNNL: Who makes up the IAB? JH: What we are is a voluntary

  18. Northwest Regional Technology Center, November 2012 Page 1 of 2 Around The Region In Homeland Security

    E-Print Network [OSTI]

    , operated by the Pacific Northwest National Laboratory (PNNL), to support regional preparedness, resiliency Responders to effectively counter a potential threat to our Nation. PNNL, in collaboration with DHS S. To better determine the requirements and needs of First Responders in a daily operational context, PNNL held

  19. Northwest Regional Technology Center, July 2014 Page 1 of 2 Around The Region In Homeland Security

    E-Print Network [OSTI]

    by the Pacific Northwest National Laboratory (PNNL), to support regional preparedness, resiliency, response for the Seattle (WA) Fire Department. This article is the last in a three-part series about the IAB. PNNL: How. PNNL: What are the next major steps or objectives the IAB would like to achieve in 2014 or beyond? JH

  20. Northwest Regional Technology Center, May 2014 Page 1 of 2 Around The Region In Homeland Security

    E-Print Network [OSTI]

    by the Pacific Northwest National Laboratory (PNNL), to support regional preparedness, resiliency, response Department. This article is the second in a three-part series about the IAB. PNNL: Do you think the nation in grant programs. PNNL: What can the first responder community do today to help prepare themselves? JH

  1. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  2. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  3. Uranium Enrichment Standards of the Y-12 Nuclear Detection and Sensor Testing Center

    SciTech Connect (OSTI)

    Cantrell, J.

    2012-05-23T23:59:59.000Z

    The Y-12 National Security Complex has recently fabricated and characterized a new series of metallic uranium standards for use in the Nuclear Detection and Sensor Testing Center (NDSTC). Ten uranium metal disks with enrichments varying from 0.2 to 93.2% {sup 235}U were designed to provide researchers access to a wide variety of measurement scenarios in a single testing venue. Special care was taken in the selection of the enrichments in order to closely bracket the definitions of reactor fuel at 4% {sup 235}U and that of highly enriched uranium (HEU) at 20% {sup 235}U. Each standard is well characterized using analytical chemistry as well as a series of gamma-ray spectrometry measurements. Gamma-ray spectra of these standards are being archived in a reference library for use by customers of the NDSTC. A software database tool has been created that allows for easier access and comparison of various spectra. Information provided through the database includes: raw count data (including background spectra), regions of interest (ROIs), and full width half maximum calculations. Input is being sought from the user community on future needs including enhancements to the spectral database and additional Uranium standards, shielding configurations and detector types. A related presentation are planned for the INMM 53rd Annual Meeting (Hull, et al.), which describe new uranium chemical compound standards and testing opportunities at Y-12 Nuclear Detection and Sensor Testing Center (NDSTC).

  4. Annex IV Environmental Webinar: Marine Renewable Energy Test Centers and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americas |AnchorageAnna Garcia

  5. Rocky Mountain Oilfield Testing Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:Rockwall County, Texas:

  6. Northwest Regional Technology Center, November 2013 Page 1 of 2 Around The Region In Homeland Security

    E-Print Network [OSTI]

    Nuclear Detection Office (DNDO) held its Small Vessel Standoff Detection Federal, State, Local and Tribal test platforms fitted with various sealed sources simulated vessels bearing radioactive threats. Agency potential threats. The Small Vessel Preventive Radiation and Nuclear Detection Project has demonstrated

  7. Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and MMS Improving Processing of Permits and Lease Sales * BLM Regional Task Forces on Drilling Applications NEP Steps Underway 7 7 * DOE Promoting Improved Exploration Technology -...

  8. Nuclear Detection and Sensor Testing Center | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinks to

  9. NETL Center Completes Site Acceptance Test for IGCC Dynamic Simulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIR Analysis Damian Hazen, NESEACO21,

  10. Alternative Fuels Data Center: Test Your Alternative Fuel IQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuelsConversionsTelework to someone

  11. Subtask 1: Total systems analysis, assembly and testing | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ... StrengtheningLabSubmitting

  12. Data Center Energy Benchmarking: Part 4 - Case Study on a Computer-testing Center (No. 21)

    E-Print Network [OSTI]

    Xu, Tengfang; Greenberg, Steve

    2007-01-01T23:59:59.000Z

    in terms of electrical and cooling supply. It did not have aterms of electrical and cooling supply. The data center didon average supply and return temperatures, cooling load

  13. Test of Public Address System in CEBAF Center at 12:30 p.m. on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test of Public Address System in CEBAF Center at 12:30 p.m. on Saturday, March 7; Live Calls Will be Put on Hold If you are in a CEBAF Center conference room, office or other space...

  14. Microsoft Word - ROCKY MOUNTAIN OILFIELD TESTING CENTER - STWA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy STWA : Viscosity Reduction Test An assessment of an in-line viscosity reduction device Naval Petroleum Reserve No. 3, Teapot Dome Field, Wyoming Final Report for October 19,...

  15. Eye-centered encoding of visual space in scene-selective regions

    E-Print Network [OSTI]

    Epstein, Russell A.

    occipital sulcus (TOS) might instead possess RFs defined in head-, body-, or world-centered reference frames prediction, the PPA and TOS exhibited position­response curves that moved with the fixation point rather than the PPA/TOS and other visually responsive regions, the results emphasize the critical involvement

  16. X-Ray Observations of the Sagittarius D HII Region toward the Galactic Center with Suzaku

    E-Print Network [OSTI]

    Makoto Sawada; Masahiro Tsujimoto; Katsuji Koyama; Casey J. Law; Takeshi Go Tsuru; Yoshiaki Hyodo

    2008-05-14T23:59:59.000Z

    We present a Suzaku X-ray study of the Sagittarius D (Sgr D) HII region in the Galactic center region. Two 18'x18' images by the X-ray Imaging Spectrometer (XIS) encompass the entire Sgr D complex. Thanks to the low background, XIS discovered two diffuse sources with low surface brightness and obtained their high signal-to-noise ratio spectra. One is associated with the core of the Sgr D HII region, arising from the young stellar cluster. The other is a new object in the vicinity of the region. We also present 3.5 cm and 6.0 cm radio continuum maps of the new source using the 100 m Green Bank Telescope. We conclude that the source is a new supernova remnant (SNR; G1.2--0.0) based on: (1) the 0.9+/-0.2 keV thermal X-ray spectrum with emission lines from highly ionized atoms; (2) the diffuse nature with an apparent extent of ~10 pc at the Galactic center distance inferred from the X-ray absorption (~8.5x10^{22} cm^{-2}); and (3) the nonthermal radio continuum spectral index (~-0.5). Our discovery of an SNR in the Sgr D HII region leads to a revision of the view of this system, which had been considered to be a thermal HII region and its environment.

  17. Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments

    E-Print Network [OSTI]

    Keinan, Alon

    container; 2) slide mailer 1) Refrigerate. Ship in insulated container with ice pack. 2) Not required *May container 1-3) Refrigerate. Ship in insulated container with ice pack For more information, see Appendix in insulated container with ice pack. For more information, see Canine Adrenal & Pituitary Function Tests

  18. Data Center Energy Benchmarking: Part 4 - Case Study on a Computer-testing Center (No. 21)

    E-Print Network [OSTI]

    Xu, Tengfang; Greenberg, Steve

    2007-01-01T23:59:59.000Z

    and 2) lower data center lighting power density in DC 21. InLighting Average Power Consumption (kW) % Power Consumption Table 3 shows the power densitylighting) was 84 W/ft 2 , approximately 12 times the average overall power density

  19. Page 1 of 8 2012 MSU Center for Biofilm Engineering Testing Surface Disinfectants

    E-Print Network [OSTI]

    Dyer, Bill

    Center for Biofilm Engineering As an example of the recognition that concurrent controls are importantPage 1 of 8 © 2012 MSU Center for Biofilm Engineering Testing Surface Disinfectants This series The importance of concurrent control carriers in laboratory tests of surface disinfectants [Key Words: efficacy

  20. National Poverty Center Working Paper Series The Black-White Test Score Gap

    E-Print Network [OSTI]

    Shyy, Wei

    National Poverty Center Working Paper Series #05-09 June 2005 The Black-White Test Score Gap This paper is available online at the National Poverty Center Working Paper Series index at: http of the author(s) and do not necessarily reflect the view of the National Poverty Center or any sponsoring agency

  1. Control Systems Security Test Center - FY 2004 Program Summary

    SciTech Connect (OSTI)

    Robert E. Polk; Alen M. Snyder

    2005-04-01T23:59:59.000Z

    In May 2004, the US-CERT Control Systems Security Center (CSSC) was established at Idaho National Laboratory to execute assessment activities to reduce the vulnerability of the nation’s critical infrastructure control systems to terrorist attack. The CSSC implements a program to accomplish the five goals presented in the US-CERT National Strategy for Control Systems Security. This report summarizes the first year funding of startup activities and program achievements that took place in FY 2004 and early FY 2005. This document was prepared for the US-CERT Control Systems Security Center of the National Cyber Security Division of the Department of Homeland Security (DHS). DHS has been tasked under the Homeland Security Act of 2002 to coordinate the overall national effort to enhance the protection of the national critical infrastructure. Homeland Security Presidential Directive HSPD-7 directs federal departments to identify and prioritize the critical infrastructure and protect it from terrorist attack. The US-CERT National Strategy for Control Systems Security was prepared by the National Cyber Security Division to address the control system security component addressed in the National Strategy to Secure Cyberspace and the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The US-CERT National Strategy for Control Systems Security identified five high-level strategic goals for improving cyber security of control systems.

  2. FEMP case study: Regional super ESPC saves energy and dollars at NASA Johnson Space Center

    SciTech Connect (OSTI)

    Pitchford, P.; Dominick, J.

    1999-10-05T23:59:59.000Z

    This case study describes the new energy-efficient equipment being installed at NASA Johnson Space Center in Houston, Texas, to save nearly $2 million per year in energy and utility costs. The work is being done under a delivery order by Honeywell, Inc., as part of a US Department of Energy ``super'' regional energy savings performance contract, or Super ESPC. These are streamlined contracts that allow Federal agencies to contract with competitively selected energy service companies in their region for a variety of energy- and water-efficient products and services. The service companies pay up-front capital costs and are reimbursed with part of the agency's utility cost savings. In this work, NASA Johnson Space Center will get new energy-efficient lighting and compressed-air systems, water-conserving fixtures, and improved controls.

  3. Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWasteWho WillWind Program NewsDepartment of

  4. Western Regional Center of the National Institute for Climatic Change Research

    SciTech Connect (OSTI)

    Hungate, Bruce A. [Northern Arizona Univ., Flagstaff, AZ (United States)

    2013-05-02T23:59:59.000Z

    The major goal of this project was fostering, integrating, synthesizing, and disseminating experimental, observational, and modeling research on predicted climate change in the western region of the U.S. and the impacts of that change on the structure, productivity, and climatic interactions of the region's natural and managed ecological systems. This was accomplished through administering a competitive grants program developed in collaboration with the other four regional centers of the NICCR. The activities supported included efforts to synthesize research on climate change in the western U.S. through meta-analysis studies, model comparisons, and data synthesis workshops. Results from this work were disseminated to the scientific and public media. This project also supported the development of the NICCR web site, hosted at NAU, which was used as the means to accept pre-proposal and proposal submissions for each funding cycle, and served as a clearing house for public outreach for results from NICCR-funded research

  5. EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

  6. U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)

    SciTech Connect (OSTI)

    Lipman, Tim; Kammen, Dan; McDonell, Vince; Samuelsen, Scott; Beyene, Asfaw; Ganji, Ahmad

    2013-09-30T23:59:59.000Z

    The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence and Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC) at San Diego State University and San Francisco State University. The center also worked with a wide range of affiliated groups and industry, government, NGO, and academic stakeholders to conduct a series of CHP education and outreach, project technical support, and related activities for the Pacific region. Key PCEAC tasks have included: - Preparing, organizing and conducting educational seminars on various aspects of CHP - Conducting state baseline assessments for CHP - Working with state energy offices to prepare state CHP action plans - Providing technical support services including CHP/district energy project feasibility screenings - Working with state agencies on CHP policy development - Developing additional CHP educational materials The primary specific services that PCEAC has offered include: - A CHP “information clearinghouse “ website: http://www.pacificcleanenergy.org - Site evaluations and potential projects screenings - Assessment of CHP status, potential, and key issues for each state - Information and training workshops - Policy and regulatory guidance documents and other interactions These services were generally offered at no cost to client groups based on the DOE funding and additional activities supported by the California Energy Commission, except for the in-kind staff resources needed to provide input data and support to PCEAC assessments at host sites. Through these efforts, the PCEAC reached thousands of end-users and directly worked with several dozen organizations and potential CHP “host sites” from 2009-2013. The major activities and outcomes of PCEAC project work are described.

  7. Volume 4 Issue 2 www.nasa.gov/centers/stennis February 2009 Stennis tests shuttle valves

    E-Print Network [OSTI]

    hydrogen tubing. The call went out to three centers to begin testing aspects of the valve. Engineers the Stennis team faced during the original construction, or during the crossover to successfully execute

  8. Small Wind Independent Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    This fact sheet describes the Small Wind Independent Testing at the NWTC and the Regional Test Centers project.

  9. NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

    E-Print Network [OSTI]

    cost. Researchers at the National Wind Technology Center (NWTC) at the National Renewable EnergyNREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms. Today's utility-scale wind turbine structures are more complex and their compo- nents more

  10. TESTING TRIGGERED STAR FORMATION IN SIX H II REGIONS

    SciTech Connect (OSTI)

    Dirienzo, William J.; Indebetouw, Remy [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Brogan, Crystal; Friesen, Rachel K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Cyganowski, Claudia J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Churchwell, Ed, E-mail: dirienzo@virginia.edu [Department of Astronomy, University of Wisconsin-Madison, 475 N Charter Street, Madison, WI 53706 (United States)

    2012-12-01T23:59:59.000Z

    We investigated six H II regions with infrared, bright rimmed bubble or cometary morphology, in search of quantitative evidence for triggered star formation, both collect and collapse and radiatively driven implosion (RDI). We identified and classified 458 young stellar objects (YSOs) in and around the H II regions. YSOs were determined by fitting a collection of radiative transfer model spectral energy distributions to infrared photometry for a large sample of point sources. We determined areas where there exist enhanced populations of relatively unevolved YSOs on the bright rims of these regions, suggesting that star formation has been triggered there. We further investigated the physical properties of the regions by using radio continuum emission as a proxy for ionizing flux powering the H II regions, and {sup 13}CO (1-0) observations to measure masses and gravitational stability of molecular clumps. We used an analytical model of collect and collapse triggered star formation, as well as a simulation of RDI, and thus we compare the observed properties of the molecular gas with those predicted in the triggering scenarios. Notably, those regions in our sample that show evidence of cometary, or 'blister', morphology are more likely to show evidence of triggering.

  11. Electric Power Research Institute, High-Sulfur Test Center report to the Steering Committee, July 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    Operation and testing continued this month at the High Sulfur Test Center on the Pilot Wet Scrubber, Mini-Pilot Wet Scrubber and the Spray Dryer Systems. The Pilot continued testing under the High Performance test block program and the Mini-Pilot continued testing under the Formate Forced Oxidation test block. The HSSD testing to investigate the effects that ambient temperature and humidity have on SO{sub 2} removal was completed. Dry alkaline injection testing was started to remove SO{sub 3} and HCl from flue gas which removes visible plumes. Construction upgrades and system shakedown continued on the Cold-Side Selective Catalytic Reduction (SCR) system in preparation for start-up. (VC)

  12. Electric Power Research Institute, High-Sulfur Test Center report to the Steering Committee, July 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Operation and testing continued this month at the High Sulfur Test Center on the Pilot Wet Scrubber, Mini-Pilot Wet Scrubber and the Spray Dryer Systems. The Pilot continued testing under the High Performance test block program and the Mini-Pilot continued testing under the Formate Forced Oxidation test block. The HSSD testing to investigate the effects that ambient temperature and humidity have on SO{sub 2} removal was completed. Dry alkaline injection testing was started to remove SO{sub 3} and HCl from flue gas which removes visible plumes. Construction upgrades and system shakedown continued on the Cold-Side Selective Catalytic Reduction (SCR) system in preparation for start-up. (VC)

  13. CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin [ORNL

    2009-10-01T23:59:59.000Z

    Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and related outcomes were obtained from an existing DOE-supported data base. The information provided on the individual RACs was summed to yield totals for all the Centers combined for each relevant item.

  14. Oilfield testing center aids industry in evaluating cutting-edge innovations

    SciTech Connect (OSTI)

    Duey, R.

    1996-01-01T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center at Teapot Dome keeps a producing field open for research and development. Using a producing oil field for research is the surest way to determine the success or failure of a new invention or technique. The field has 600 producing wells and 68 injection wells.

  15. Data Center Energy Benchmarking: Part 3 - Case Study on an IT Equipment-testing Center (No. 20)

    E-Print Network [OSTI]

    Xu, Tengfang; Greenberg, Steve

    2008-01-01T23:59:59.000Z

    pumps. The cooling system inside the data center includedThe building and its data center cooling system was providedThe building and its data center cooling system was provided

  16. MIDWESTERN REGIONAL CENTER OF THE DOE NATIONAL INSTITUTE FOR CLIMATIC CHANGE RESEARCH

    SciTech Connect (OSTI)

    Burton, Andrew J. [Michigan Technological University

    2014-02-28T23:59:59.000Z

    The goal of NICCR (National Institute for Climatic Change Research) was to mobilize university researchers, from all regions of the country, in support of the climatic change research objectives of DOE/BER. The NICCR Midwestern Regional Center (MRC) supported work in the following states: North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Minnesota, Iowa, Missouri, Wisconsin, Illinois, Michigan, Indiana, and Ohio. The MRC of NICCR was able to support nearly $8 million in climatic change research, including $6,671,303 for twenty projects solicited and selected by the MRC over five requests for proposals (RFPs) and $1,051,666 for the final year of ten projects from the discontinued DOE NIGEC (National Institute for Global Environmental Change) program. The projects selected and funded by the MRC resulted in 135 peer-reviewed publications and supported the training of 25 PhD students and 23 Masters students. Another 36 publications were generated by the final year of continuing NIGEC projects supported by the MRC. The projects funded by the MRC used a variety of approaches to answer questions relevant to the DOE’s climate change research program. These included experiments that manipulated temperature, moisture and other global change factors; studies that sought to understand how the distribution of species and ecosystems might change under future climates; studies that used measurements and modeling to examine current ecosystem fluxes of energy and mass and those that would exist under future conditions; and studies that synthesized existing data sets to improve our understanding of the effects of climatic change on terrestrial ecosystems. In all of these efforts, the MRC specifically sought to identify and quantify responses of terrestrial ecosystems that were not well understood or not well modeled by current efforts. The MRC also sought to better understand and model important feedbacks between terrestrial ecosystems, atmospheric chemistry, and regional and global climate systems. The broad variety of projects the MRC has supported gave us a unique opportunity to greatly improve our ability to predict the future health, composition and function of important agricultural and natural terrestrial ecosystems within the Midwestern Region.

  17. Suzaku X-Ray Spectroscopy of a Peculiar Hot Star in the Galactic Center Region

    E-Print Network [OSTI]

    Yoshiaki Hyodo; Masahiro Tsujimoto; Katsuji Koyama; Shogo Nishiyama; Tetsuya Nagata; Itsuki Sakon; Hiroshi Murakami; Hironori Matsumoto

    2007-12-03T23:59:59.000Z

    We present the results of a Suzaku study of a bright point-like source in the 6.7 keV intensity map of the Galactic center region. We detected an intense FeXXV 6.7 keV line with an equivalent width of ~1 keV as well as emission lines of highly ionized Ar and Ca from a spectrum obtained by the X-ray Imaging Spectrometer. The overall spectrum is described very well by a heavily absorbed (~2x10^{23}cm^{-2}) thin thermal plasma model with a temperature of 3.8+/-0.6 keV and a luminosity of ~3x10^{34} erg s^{-1} (2.0--8.0 keV) at 8 kpc. The absorption, temperature, luminosity, and the 6.7 keV line intensity were confirmed with the archived XMM-Newton data. The source has a very red (J-Ks=8.2 mag) infrared spectral energy distribution (SED), which was fitted by a blackbody emission of ~1000 K attenuated by a visual extinction of ~31 mag. The high plasma temperature and the large X-ray luminosity are consistent with a wind-wind colliding Wolf-Rayet binary. The similarity of the SED to those of the eponymous Quintuplet cluster members suggests that the source is a WC-type source.

  18. Challenges in defining a radiologic and hydrologic source term for underground nuclear test centers, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Smith, D.K.

    1995-06-01T23:59:59.000Z

    The compilation of a radionuclide inventory for long-lived radioactive contaminants residual from nuclear testing provides a partial measure of the radiologic source term at the Nevada Test Site. The radiologic source term also includes potentially mobile short-lived radionuclides excluded from the inventory. The radiologic source term for tritium is known with accuracy and is equivalent to the hydrologic source term within the saturated zone. Definition of the total hydrologic source term for fission and activation products that have high activities for decades following underground testing involves knowledge and assumptions which are presently unavailable. Systematic investigation of the behavior of fission products, activation products and actinides under saturated or Partially saturated conditions is imperative to define a representative total hydrologic source term. This is particularly important given the heterogeneous distribution of radionuclides within testing centers. Data quality objectives which emphasize a combination of measurements and credible estimates of the hydrologic source term are a priority for near-field investigations at the Nevada Test Site.

  19. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect (OSTI)

    Farnsworth, R.K.; Mishima, J.

    1988-12-01T23:59:59.000Z

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  20. Northwest Regional Technology Center, nwrtc@pnl.gov, (888) 347-6983 Department of Energy National Labs

    E-Print Network [OSTI]

    Northwest Regional Technology Center, nwrtc@pnl.gov, (888) 347-6983 Department of Energy National to partner with U.S. Department of Energy (DOE) national laboratories, specifically the Pacific Northwest National Laboratory and the Idaho National Laboratory, to help identify technology needs and requirements

  1. Superfund record of decision (EPA Region 2): FAA Technical Center, Operable Unit 4, Atlantic County, Atlantic City International Airport, NJ, Sptember 30, 1994

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This decision document presents the no further action decision for Area C, the Butler Aviation Fuel Spill Area; Area H, the Salvage Yard near the Sewage Treatment Plant; and Area M, Building 202, the Gelled Fuel Test Area at the FAA Technical Center, Atlantic City International Airport, New Jersey. The Federal Aviation Administration and the U.S. Environmental Protection Agency (EPA), Region 2 have determined that no remedial actions are necessary at Areas C, H and M to ensure protection of human health and the environment.

  2. Region wins $2.4 million for Advanced Manufacturing and Prototyping Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead5 IdleRegardingIndustrial Technologies|

  3. Regional Community Forestry Training Center for Asia and the Pacific | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:bJumpRedSeismic Imaging,Western

  4. The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to

    E-Print Network [OSTI]

    systems by testing a blade from one of Clipper Windpower's 2.5-megawatt wind turbines. Photo by DerekThe new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development

  5. Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNewPropaneEVsFacility

  6. Data Center Energy Benchmarking: Part 3 - Case Study on an IT Equipment-testing Center (No. 20)

    E-Print Network [OSTI]

    Xu, Tengfang; Greenberg, Steve

    2008-01-01T23:59:59.000Z

    in terms of electrical and cooling supply. It did not have aterms of electrical and cooling supply. The data center didsupply temperature to 50°F may provide sufficient sensible cooling

  7. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    None

    1997-10-01T23:59:59.000Z

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the underground testing areas on a regional scale. The groundwater flow model was used in conjunction with a particle-tracking code to define the pathlines followed by groundwater particles originating from 415 points associated with 253 nuclear test locations. Three of the most rapid pathlines were selected for transport simulations. These pathlines are associated with three nuclear test locations, each representing one of the three largest testing areas. These testing locations are: BOURBON on Yucca Flat, HOUSTON on Central Pahute Mesa, and TYBO on Western Pahute Mesa. One-dimensional stochastic tritium transport simulations were performed for the three pathlines using the Monte Carlo method with Latin hypercube sampling. For the BOURBON and TYBO pathlines, sources of tritium from other tests located along the same pathline were included in the simulations. Sensitivity analyses were also performed on the transport model to evaluate the uncertainties associated with the geologic model, the rates of groundwater flow, the tritium source, and the transport parameters. Tritium concentration predictions were found to be mostly sensitive to the regional geology in controlling the horizontal and vertical position of transport pathways. The simulated concentrations are also sensitive to matrix diffusion, an important mechanism governing the migration of tritium in fractured carbonate and volcanic rocks. Source term concentration uncertainty is most important near the test locations and decreases in importance as the travel distance increases. The uncertainty on groundwater flow rates is as important as that on matrix diffusion at downgradient locations. The risk assessment was performed to provide conservative and bounding estimates of the potential risks to human health and the environment from tritium in groundwater. Risk models were designed by coupling scenario-specific tritium intake with tritium dose models and cancer and genetic risk estimates using the Monte Carlo method. Estimated radiation doses received by individuals from chronic exposure to tritium, and the corre

  8. The impact of an alternative certification program on teacher retention in selected Texas public school districts as reported by personnel in Education Service Center, Region 20, Texas

    E-Print Network [OSTI]

    Goldhorn, Jeffery Lee

    2005-11-01T23:59:59.000Z

    The purpose of this study was to determine the impact of an alternative certification program on the retention of teachers in Region 20, Texas, as reported by Education Service Center, Region 20, Texas. Demographic variables were used to determine...

  9. LARGE SCALE REFRIGERATION PLANT FOR GROUND TESTING THE JAMES WEBB TELESCOPE AT NASA JOHNSON SPACE CENTER

    SciTech Connect (OSTI)

    P. Arnold, Lutz Decker, D. Howe, J. Urbin, Jonathan Homan, Carl Reis, J. Creel, V. Ganni, P. Knudsen, A. Sidi-Yekhlef

    2010-04-01T23:59:59.000Z

    The James Webb Telescope is the successor to the Hubble Telescope and will be placed in an orbit of 1.5 million km from earth. Before launch in 2014, the telescope will be tested in NASA Johnson Space Center's (JSC) space simulation chamber, Chamber A. The tests will be conducted at deep space conditions. Chamber A's helium cryo-panels are currently cooled down to 20 K by two Linde 3.5 kW helium refrigerators. The new 12.5 kW, 20-K helium coldbox described in this paper is part of the upgrade to the chamber systems for this large test program. The Linde coldbox will provide refrigeration in several operating modes where the temperature of the chamber is being controlled with a high accuracy due to the demanding NASA test requirements. The implementation of two parallel expansion turbine strings and the Ganni cycle—Floating Pressure process results in a highly efficient and flexible process that minimizes the electrical input power. This paper will describe the collaboration and execution of the coldbox project.

  10. Regional Super ESPC Saves Energy and Dollars at NASA's Johnson Space Center

    SciTech Connect (OSTI)

    Federal Energy Management Program

    2001-05-21T23:59:59.000Z

    This case study about energy saving performance contacts (ESPCs) presents an overview of how the NASA's Johnson Space Flight Center established an ESPC contract and the benefits derived from it. The Federal Energy Management Program instituted these special contracts to help federal agencies finance energy-saving projects at their facilities.

  11. Establishment and testing of a whole body counter for the Texas A&M Nuclear Science Center 

    E-Print Network [OSTI]

    Baca, Bernadette Doris

    1997-01-01T23:59:59.000Z

    The establishment and testing of a whole body counter would benefit the Texas A&M Nuclear Science Center (NSC) Health Physics staff and workers by allowing better assessment of a worker's internal exposure. Presently NSC ...

  12. Energy Performance Testing of Asetek's RackCDU System at NREL's High Performance Computing Data Center

    SciTech Connect (OSTI)

    Sickinger, D.; Van Geet, O.; Ravenscroft, C.

    2014-11-01T23:59:59.000Z

    In this study, we report on the first tests of Asetek's RackCDU direct-to-chip liquid cooling system for servers at NREL's ESIF data center. The system was simple to install on the existing servers and integrated directly into the data center's existing hydronics system. The focus of this study was to explore the total cooling energy savings and potential for waste-heat recovery of this warm-water liquid cooling system. RackCDU captured up to 64% of server heat into the liquid stream at an outlet temperature of 89 degrees F, and 48% at outlet temperatures approaching 100 degrees F. This system was designed to capture heat from the CPUs only, indicating a potential for increased heat capture if memory cooling was included. Reduced temperatures inside the servers caused all fans to reduce power to the lowest possible BIOS setting, indicating further energy savings potential if additional fan control is included. Preliminary studies manually reducing fan speed (and even removing fans) validated this potential savings but could not be optimized for these working servers. The Asetek direct-to-chip liquid cooling system has been in operation with users for 16 months with no necessary maintenance and no leaks.

  13. Electric Power Research Institute, High Sulfur Test Center report to the Steering Committee, March 1994. [Monthly report

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    Operations and maintenance continued this month at the Electric Power Research Institute`s High Sulfur Test Center. The Suncor Limestone Reagent and Dewatering tests were completed on the Pilot unit this month. As this test block ended, the Pilot unit was modified for the High Velocity Scrubbing tests. This testing began on March 28, 1994 with test PHV-AN. As Phase II of the Mini-Pilot Clear Liquor Scrubbing test block was completed this month, the unit was taken off-line. Testing on the Cold-Side Selective Catalytic Reduction (SCR) unit continued this month as ammonia slip measurements were conducted. Catalyst material from the reactor was inspected and sampled during a scheduled outage this month in preparation for a low temperature test block.

  14. Off-center HII regions in power-law density distributions

    E-Print Network [OSTI]

    S. J. Arthur

    2007-05-05T23:59:59.000Z

    The expansion of ionization fronts in uniform and spherically symmetric power-law density distributions is a well-studied topic. However, in many situations, such as a star formed at the edge of a molecular cloud core, an offset power-law density distribution would be more appropriate. In this paper a few of the main issues of the formation and expansion of HII regions in such media are outlined and results are presented for the particular cases where the underlying power laws are 1/r^2 and 1/r^3. A simple criterion is developed for determining whether the initial photoionized region will be unbounded, which depends on the power-law exponent and the ratio of the equivalent Stroemgren radius produced by the star in a uniform medium to the stellar offset distance. In the expansion stage, the ionized volumes will eventually become unbounded unless pressure balance with the external medium is reached before the ionization front velocity becomes supersonic with respect to the ionized gas.

  15. Particle Acceleration in three dimensional Reconnection Regions: A New Test Particle Approach

    E-Print Network [OSTI]

    Rudiger Schopper; Guido T. Birk; Harald Lesch

    2001-06-29T23:59:59.000Z

    Magnetic Reconnection is an efficient and fast acceleration mechanism by means of direct electric field acceleration parallel to the magnetic field. Thus, acceleration of particles in reconnection regions is a very important topic in plasma astrophysics. This paper shows that the conventional analytical models and numerical test particle investigations can be misleading concerning the energy distribution of the accelerated particles, since they oversimplify the electric field structure by the assumption that the field is homogeneous. These investigations of the acceleration of charged test particles are extended by considering three-dimensional field configurations characterized by localized field-aligned electric fields. Moreover, effects of radiative losses are discussed. The comparison between homogeneous and inhomogeneous electric field acceleration in reconnection regions shows dramatic differences concerning both, the maximum particle energy and the form of the energy distribution.

  16. Testing and Development Progress for the Safe Affordable Fission Engine (SAFE) Testing Series in the High Power Propulsion Thermal Simulator (HPPTS) at Marshall Space Flight Center

    SciTech Connect (OSTI)

    Van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States); Poston, David; Kapernick, Rick; Reid, Bob [Los Alamos National Laboratory, University of California, US Department of Energy, PO Box 1663, MS J576, Los Alamos, New Mexico 87545 (United States); Salvail, Pat [ITT Research Institute, Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States); Ring, Peter [Advanced Methods and Materials, 510 Lawrence Expressway, Suite 203, Sunnyvale, California, 94086 (United States)

    2002-07-01T23:59:59.000Z

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 400 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core, Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans. (authors)

  17. WRF Test on IBM BG/L:Toward High Performance Application to Regional Climate Research

    SciTech Connect (OSTI)

    Chin, H S

    2008-09-25T23:59:59.000Z

    The effects of climate change will mostly be felt on local to regional scales (Solomon et al., 2007). To develop better forecast skill in regional climate change, an integrated multi-scale modeling capability (i.e., a pair of global and regional climate models) becomes crucially important in understanding and preparing for the impacts of climate change on the temporal and spatial scales that are critical to California's and nation's future environmental quality and economical prosperity. Accurate knowledge of detailed local impact on the water management system from climate change requires a resolution of 1km or so. To this end, a high performance computing platform at the petascale appears to be an essential tool in providing such local scale information to formulate high quality adaptation strategies for local and regional climate change. As a key component of this modeling system at LLNL, the Weather Research and Forecast (WRF) model is implemented and tested on the IBM BG/L machine. The objective of this study is to examine the scaling feature of WRF on BG/L for the optimal performance, and to assess the numerical accuracy of WRF solution on BG/L.

  18. Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead5 IdleRegardingIndustrial Technologies|3

  19. Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D *DepartmentTSDepartment3,

  20. Cooperative Monitoring Center Occasional Paper/11: Cooperative Environmental Monitoring in the Coastal Regions of India and Pakistan

    SciTech Connect (OSTI)

    Rajen, Gauray

    1999-06-01T23:59:59.000Z

    The cessation of hostilities between India and Pakistan is an immediate need and of global concern, as these countries have tested nuclear devices, and have the capability to deploy nuclear weapons and long-range ballistic missiles. Cooperative monitoring projects among neighboring countries in South Asia could build regional confidence, and, through gradual improvements in relations, reduce the threat of war and the proliferation of weapons of mass destruction. This paper discusses monitoring the trans-border movement of flow and sediment in the Indian and Pakistani coastal areas. Through such a project, India and Pakistan could initiate greater cooperation, and engender movement towards the resolution of the Sir Creek territorial dispute in their coastal region. The Joint Working Groups dialogue being conducted by India and Pakistan provides a mechanism for promoting such a project. The proposed project also falls within a regional framework of cooperation agreed to by several South Asian countries. This framework has been codified in the South Asian Seas Action Plan, developed by Bangladesh, India, Maldives, Pakistan and Sri Lanka. This framework provides a useful starting point for Indian and Pakistani cooperative monitoring in their trans-border coastal area. The project discussed in this paper involves computer modeling, the placement of in situ sensors for remote data acquisition, and the development of joint reports. Preliminary computer modeling studies are presented in the paper. These results illustrate the cross-flow connections between Indian and Pakistani coastal regions and strengthen the argument for cooperation. Technologies and actions similar to those suggested for the coastal project are likely to be applied in future arms control and treaty verification agreements. The project, therefore, serves as a demonstration of cooperative monitoring technologies. The project will also increase people-to-people contacts among Indian and Pakistani policy makers and scientists. In the perceptions of the general public, the project will crystallize the idea that the two countries share ecosystems and natural resources, and have a vested interest in increased collaboration.

  1. Establishing a Testing Center for Ocean Energy Technologies in the Pacific

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010

  2. 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2 NationalEnergyEnergyDepartment|

  3. DOE - Office of Legacy Management -- Amchitka Island Test Center - AK 01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona ArizonaWyomingAllegheny-Ludlum

  4. Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part I: Perfect Model Experiments

    E-Print Network [OSTI]

    Meng, Zhiyong

    Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part I the potential of using the ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation are assimilated. 1. Introduction The ensemble-based data assimilation method [en- semble Kalman filter (En

  5. Wind Technology Testing Center Earns A2LA Accreditation for Blade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the American Association for Laboratory Accreditation (A2LA) to test wind turbine blades to International Electrotechnical Commission (IEC) standards. The facility is...

  6. Since 1963, NASA White Sands Test Facility (WSTF) has been a center

    E-Print Network [OSTI]

    engines fired in more than 3.5 million firings. WSTF Tests Materials and Propulsion Systems Ignition rocket engine/system test stands, including six· vacuum cells Long-duration high-altitude simulation· Off, and· hydrogen manuals Ignition and thermal hazards of selected aerospace fuels· manual Liquid methane

  7. Regional Oxidant Model (ROM), Source code and test data (Version 2. 1). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The Regional Oxidant Model (ROM) is a three-dimensional photochemical Eulerian grid model designed to simulate ambient concentrations of ozone and related species. ROM is a 3-layer model with a horizontal resolution of approximately 19 km; each grid cell has dimensions of 1/6 degree latitude by 1/4 degree longitude. The typical horizontal extent of the modeling domain is 1000 km. The model is designed to simulate hourly regional concentrations of ozone during largely stagnant summertime conditions that are associated with elevated smog episodes. The model is designed so that its preprocessors run on a VAX and the core model runs on an IBM mainframe. A typical 3-day simulation of the core model for the northeastern U.S. uses 9.5 hours of CPU on an IBM 3090. A total of 19 computer tapes comprise the release of the ROM (Version 2.1). Six of the tapes were generated on an IBM, and 13 tapes were generated on a VAX. The tapes contain source code, sample runstreams, and test data for a 3-day simulation. Potential users of the ROM should be aware that the modeling system is complex and requires extensive computer resources. The services of engineers, meteorologists, or computer scientists experienced in photochemical grid modeling are required.

  8. Volume 1 Issue 4 www.nasa.gov/centers/stennis April 2006 SSC marks 40th anniversary of first engine test

    E-Print Network [OSTI]

    test On the morning of April 23, 1966, the south Mississippi silence was broken by an earth of the first rocket engine static test-firing on the A-2 Test Stand at what is now NASA's John C. Stennis Space Center. The S-II-T tested April 23, 1966, was a cluster of five J-2 engines, the second stage

  9. Stability Design for the Crane Columns of the Wind Technology Testing Center E. M. Hines1

    E-Print Network [OSTI]

    Hines, Eric

    to test wind turbine blades up to 90 m in length. The laboratory is enclosed by eleven steel trussed generation of wind turbine blades for off-shore wind farm development. Whereas the largest blades for land of power per turbine, offshore wind turbines are expected to reach power outputs as high as 10 MW

  10. Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center

    SciTech Connect (OSTI)

    Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

    1996-07-01T23:59:59.000Z

    In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

  11. Background Radiation Survey of the Radiological/Nuclear Countermeasures Test and Evaluation Center

    SciTech Connect (OSTI)

    Colin Okada

    2010-09-16T23:59:59.000Z

    In preparation for operations at the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC), the Department of Homeland Security Domestic Nuclear Detection Office (DHS/DNDO) requested that personnel from the Remote Sensing Laboratory (RSL) conduct a survey of the present radiological conditions at the facility. The measurements consist of the exposure rate from a high-pressure ion chamber (HPIC), high-resolution spectra from a high-purity germanium (HPGe) system in an in situ configuration, and low-resolution spectra from a sodium iodide (NaI) detector in a radiation detection backpack. Measurements with these systems were collected at discrete locations within the facility. Measurements were also collected by carrying the VECTOR backpack throughout the complex to generate a map of the entire area. The area was also to be surveyed with the Kiwi (an array of eight-2-inch x 4-inch x 16-inch NaI detectors) from the Aerial Measuring Systems; however, conflicts with test preparation activities at the site prevented this from being accomplished.

  12. Flow Test At Snake River Plain Region (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOE GTP)

  13. Fabrication and characterization of MCC (Materials Characterization Center) approved testing material: ATM-10 glass

    SciTech Connect (OSTI)

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-04-01T23:59:59.000Z

    The Materials Characterization Center ATM-10 glass represents a reference commercial high-level waste form similar to that which will be produced by the West Valley Nuclear Service Co. Inc., West Valley, New York. The target composition and acceptable range of composition were defined by the sponsor, West Valley Nuclear Service. The ATM-10 glass was produced in accordance with the Pacific Northwest Laboratory QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of the work. The method and procedure to be used in the fabrication and characterization of the ATM-10 glass were specified in two run plans for glass preparation and a characterization plan. All of the ATM-10 glass was produced in the form of bars 1.9 /times/ 1.9 /times/ 10 cm nominal size, and 93 g nominal mass. A total of 15 bars of ATM-10 glass weighing 1394 g was produced. The production bars were characterized to determine the mean composition, oxidation state, and microstructure of the ATM-10 product. Table A summarizes the characterization results. The ATM-10 glass meets all specifications. The elemental composition and oxidation state of the glass are within the specifications of the client. Visually, the ATM-10 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination revealed low (less than 2 wt %) concentractions of 3-..mu..m iron-chrome (suspected spinel) crystals and /approximately/0.5-..mu..m ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 5 to 250 ..mu..m, was observed in all samples. 4 refs., 10 figs., 21 tabs.

  14. Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II: Imperfect Model Experiments

    E-Print Network [OSTI]

    Meng, Zhiyong

    Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II In Part I of this two-part work, the feasibility of using an ensemble Kalman filter (EnKF) for mesoscale that using an ensemble Kalman filter (EnKF) in the context of a perfect model (i.e., both the truth

  15. Northwest Regional Technology Center, April 2011 Page 1 of 2 Around The R egion In Homeland S ecurity

    E-Print Network [OSTI]

    by the Pacific Northwest National Laboratory (PNNL), to support regional preparedness, resiliency, response activities related to homeland security in the region, and this issue highlights PNNL technologies for a biological incident A new guide to legal issues in disasters. PNNL Technologies Monitoring R adiation from J

  16. GIS Regional Spatial Data from the Great Basin Center for Geothermal Energy: Geochemical, Geodesic, Geologic, Geophysical, Geothermal, and Groundwater Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The center also makes its collections of spatial data available for direct download to the public. Data are in Lambert Conformable Conic Projection.

  17. In Situ Redox Manipulation Proof-of-Principle Test at the Fort Lewis Logistics Center: Final Report

    SciTech Connect (OSTI)

    VR Vermeul; MD Williams; JC Evans; JE Szecsody; BN Bjornstad; TL Liikala

    2000-10-25T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) conducted a proof-of-principle test at the Fort Lewis Logistics Center to determine the feasibility of using the In Situ Redox Manipulation (ISRM) technology for remediating groundwater contaminated with dissolved trichloroethylene (TCE). ISRM creates a permeable treatment zone in the subsurface to remediate redox-sensitive contaminants in groundwater. The permeable treatment zone is formed by injecting a chemical reducing agent (sodium dithionite with pH buffers) into the aquifer through a well to reduce the naturally occurring ferric iron in the sediments to ferrous iron. Once the reducing agent is injected and given sufficient time to react with aquifer sediments, residual chemicals and reaction products are withdrawn from the aquifer through the same well used for the injection. Redox-sensitive contaminants such as TCE, moving through the treatment zone under natural groundwater flow conditions, are destroyed. TCE is degraded via reductive dechlorination within the ISRM treatment zone to benign degradation products (i.e., acetylene, ethylene). Prior to the proof-of-principle field test, the ISRM technology was successfully demonstrated in laboratory experiments for the reductive dechlorination of dissolved TCE using sediments from the Fort Lewis site. The Logistics Center was placed on the National Priorities List in December 1989 because of TCE contamination in groundwater beneath the site. A Federal Facilities Agreement between the Army, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology became effective in January 1990, and a Record of Decision (ROD) was signed in September 1990. The major components of the ROD included installation of two pump-and-treat systems for the upper aquifer and further investigation of the lower aquifer and other potential sources of contamination. The pump-and-treat systems became operational in August 1995. Fort Lewis asked PNNL to provide technical support in accelerating Installation Restoration Program site remediation and significantly reducing site life-cycle costs at the Logistics Center. In support of this program, ISRM was selected as an innovative technology for bench and field-scale demonstration. Emplacement of the ISRM treatment zone was accomplished through a series of four separate dithionite injection tests conducted between November 10, 1998 and March 29,2000. An extensive program of chemical monitoring was also performed before, during, and after each injection to evaluate the performance of ISRM. Prior to emplacement of the ISRM treatment zone, the site was extensively characterized with respect to geologic, hydrologic, and geochemical properties. Sediment core samples collected for the characterization studies were analyzed in bench-scale column tests at PNNL to determine reducible iron content. These site-specific hydrogeologic and geochemical data were used to develop the emplacement design of the pilot-scale (i.e., single injection well) ISRM treatment zone. Performance data obtained from the proof-of-principle test indicate that field-scale reductive dechlorination of TCE using the ISRM technology is feasible. A treatment zone was created in the subsurface that reduced TCE concentrations as much as 92% on the downgradient side of the reduced zone, from a background concentration of approximately 140 ppb to approximately 11 ppb. The appearance of the principal degradation product, acetylene, also confirmed that TCE destruction was occurring. Analysis of sediment samples collected from post-test boreholes showed a high degree of iron reduction, which helped to confirm the effectiveness of the treatment zone emplacement. Another important goal of the testing program was to provide assurances that chemical treatment of the subsurface did not result in undesirable secondary effects, including formation of toxic TCE degradation products, mobilization of trace elements, and degradation of hydraulic performance. Results obtained from the Fort Lewis ISRM proof-of-principle test, which are c

  18. USING A DIFFERENTIAL EMISSION MEASURE AND DENSITY MEASUREMENTS IN AN ACTIVE REGION CORE TO TEST A STEADY HEATING MODEL

    SciTech Connect (OSTI)

    Winebarger, Amy R. [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Schmelz, Joan T. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Saar, Steve H.; Kashyap, Vinay L., E-mail: amy.r.winebarger@nasa.gov [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2011-10-10T23:59:59.000Z

    The frequency of heating events in the corona is an important constraint on the coronal heating mechanisms. Observations indicate that the intensities and velocities measured in active region cores are effectively steady, suggesting that heating events occur rapidly enough to keep high-temperature active region loops close to equilibrium. In this paper, we couple observations of active region (AR) 10955 made with the X-Ray Telescope and the EUV Imaging Spectrometer on board Hinode to test a simple steady heating model. First we calculate the differential emission measure (DEM) of the apex region of the loops in the active region core. We find the DEM to be broad and peaked around 3 MK. We then determine the densities in the corresponding footpoint regions. Using potential field extrapolations to approximate the loop lengths and the density-sensitive line ratios to infer the magnitude of the heating, we build a steady heating model for the active region core and find that we can match the general properties of the observed DEM for the temperature range of 6.3 < log T < 6.7. This model, for the first time, accounts for the base pressure, loop length, and distribution of apex temperatures of the core loops. We find that the density-sensitive spectral line intensities and the bulk of the hot emission in the active region core are consistent with steady heating. We also find, however, that the steady heating model cannot address the emission observed at lower temperatures. This emission may be due to foreground or background structures, or may indicate that the heating in the core is more complicated. Different heating scenarios must be tested to determine if they have the same level of agreement.

  19. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)

  20. An internship in two market research studies: a Southwest Region Greenhouse Market Study and a local garden center market study

    E-Print Network [OSTI]

    Whisenant, Donna Kay

    1987-01-01T23:59:59.000Z

    potted plants, foliage plants, bedding plants and cut flowers. Market outlets were direct to the consumer, garden center, broker, mass merchant, retail florist and wholesale florist. 40. 9% sold their potted plants, 22. 7% sold bedding plants and 29. 5... GARDEN CENTER N BEDDING FOLIAGE 1 2. 3 1 23 3 68 POTTED PLTS 3 6. 8 18 40. 9 10 22. 7 1 2. 3 13 29. 5 20. 5 25. 0 11. 4 TABLE 2B: FREQUENCIES FOR MARKET UTILIZATION OF MASS MERCHANT, RETAIL FLORIST AND WHOLESALE FLORIST MASS MERCHANTRETAIL...

  1. Southern California Earthquake Center - SCEC1: Final Report Summary Alternative Earthquake Source Characterization for the Los Angeles Region

    SciTech Connect (OSTI)

    Foxall, B

    2003-02-26T23:59:59.000Z

    The objective my research has been to synthesize current understanding of the tectonics and faults of the Los Angeles Basin and surrounding region to quantify uncertainty in the characterization of earthquake sources used for geologically- and geodetically-based regional earthquake likelihood models. This work has focused on capturing epistemic uncertainty; i.e. uncertainty stemming from ignorance of the true characteristics of the active faults in the region and of the tectonic forces that drive them. In the present context, epistemic uncertainty has two components: First, the uncertainty in source geometrical and occurrence rate parameters deduced from the limited geological, geophysical and geodetic observations available; and second. uncertainties that result from fundamentally different interpretations of regional tectonic deformation and faulting. Characterization of the large number of active and potentially active faults that need to be included in estimating earthquake occurrence likelihoods for the Los Angeles region requires synthesis and evaluation of large amounts of data and numerous interpretations. This was accomplished primarily through a series of carefully facilitated workshops, smaller meetings involving key researchers, and email groups. The workshops and meetings were made possible by the unique logistical and financial resources available through SCEC, and proved to be extremely effective forums for the exchange and critical debate of data and interpretations that are essential in constructing fully representative source models. The main products from this work are a complete source model that characterizes all know or potentially active faults in the greater Los Angeles region. which includes the continental borderland as far south as San Diego, the Ventura Basin, and the Santa Barbara Channel. The model constitutes a series of maps and representative cross-sections that define alternative fault geometries, a table containing rault geometrical and slip-rate parameters, including full uncertainty distributions, and a set of logic trees that define alternative source characterizations, particularly for sets of fault systems having inter-dependent geometries and kinematics resulting from potential intersection and interaction in the sub-surface. All of these products exist in a form suitable for input to earthquake likelihood and seismic hazard analyses. In addition, moment-balanced Poissonian earthquake rates for the alternative multi-segment characterizations of each fault system have been estimated. Finally, this work has served an important integrative function in that the exchange and debate of data, results and ideas that it has engendered has helped to focus SCEC research over the past six years on to key issues in tectonic deformation and faulting.

  2. Testing the millisecond pulsar scenario of the Galactic center gamma-ray excess with very high energy gamma-rays

    E-Print Network [OSTI]

    Qiang Yuan; Kunihito Ioka

    2015-02-09T23:59:59.000Z

    The recent analyses of the Fermi Large Area Telescope data show an extended GeV $\\gamma$-ray excess on top of the expected diffuse background in the Galactic center region, which can be explained with annihilating dark matter or a population of millisecond pulsars (MSPs). We propose to observe the very high energy $\\gamma$-rays for distinguishing the MSP scenario from the dark matter scenario. The GeV $\\gamma$-ray MSPs should release most energy to the relativistic $e^{\\pm}$ wind, which will diffuse in the Galaxy and radiate TeV $\\gamma$-rays through inverse Compton scattering and bremsstrahlung processes. By calculating the spectrum and spatial distribution, we show that such emission is detectable with the next generation very high energy $\\gamma$-ray observatory, the Cherenkov Telescope Array (CTA), under reasonable model parameters. It is essential to search for the multi-wavelength counterparts to the GeV $\\gamma$-ray excess for solving this mystery in the high energy universe.

  3. Primordial 4He abundance: a determination based on the largest sample of HII regions with a methodology tested on model HII regions

    E-Print Network [OSTI]

    Izotov, Y I; Guseva, N G

    2013-01-01T23:59:59.000Z

    We verified the validity of the empirical method to derive the 4He abundance used in our previous papers by applying it to CLOUDY (v13.01) models. Using newly published HeI emissivities, for which we present convenient fits as well as the output CLOUDY case B hydrogen and HeI line intensities, we found that the empirical method is able to reproduce the input CLOUDY 4He abundance with an accuracy of better than 1%. The CLOUDY output data also allowed us to derive the non-recombination contribution to the intensities of the strongest Balmer hydrogen Halpha, Hbeta, Hgamma, and Hdelta emission lines and the ionisation correction factors for He. With these improvements we used our updated empirical method to derive the 4He abundances and to test corrections for several systematic effects in a sample of 1610 spectra of low-metallicity extragalactic HII regions, the largest sample used so far. From this sample we extracted a subsample of 111 HII regions with Hbeta equivalent width EW(Hbeta) > 150A, with excitation p...

  4. Sandia National Laboratories: validation test bed for smart-grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart-grid technologies Solar Regional Test Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National...

  5. Sandia National Laboratories: validation test bed for energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage systems Solar Regional Test Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar...

  6. Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor.

  7. Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications

    SciTech Connect (OSTI)

    Caskey, S.J. [Nevada Univ., Reno, NV (United States)

    1991-08-01T23:59:59.000Z

    Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region.

  8. Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J. [MSE Technology Applications, Inc., MT (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2007-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

  9. Testing Modified Newtonian dynamics through statistics of velocity dispersion profiles in the inner regions of elliptical galaxies

    E-Print Network [OSTI]

    Chae, Kyu-Hyun

    2015-01-01T23:59:59.000Z

    Modified Newtonian dynamics (MOND) provides a paradigm alternative to dark matter that has been successful in fitting and predicting the rich phenomenology of rotating disc galaxies. There have also been attempts to test MOND in dispersion-supported early-type galaxies, but it remains unclear whether MOND can fit the various empirical properties of early-type galaxies. As a way of rigorously testing MOND in elliptical galaxies we calculate the MOND-predicted velocity dispersion profiles (VDPs) in the inner regions of $\\sim 2000$ nearly round SDSS elliptical galaxies under a variety of assumptions on VD anisotropy, and then compare the predicted distribution of VDP slopes with the observed distribution in 11 ATLAS3d galaxies selected with essentially the same criteria. We find that the MOND model parameterised with an interpolating function that works well for rotating galaxies can also reproduce the observed distribution of VDP slopes based only on the observed stellar mass distribution without DM or any othe...

  10. Does the Walker Lane extend through the Nevada test site region

    SciTech Connect (OSTI)

    Fridrich, C.; O'Leary, D. (Geological Survey, Denver, CO (United States). Denver Federal Center)

    1993-04-01T23:59:59.000Z

    The southeastern terminus of the Walker Lane is poorly defined and poorly understood. Recent work in and around the Nevada Test Site (NTS) suggests the presence of a structural zone that may be an extension of the Walker Lane, and that may be continuous with the Las Vegas valley shear zone farther to the southeast. Unlike the Walker Lane, large through-going strike-slip faults have not been found in the NTS zone. Instead, the strike-slip faults present are few, are relatively short, commonly consist of diffuse fault zones, are interconnected poorly if at all, and largely appear to represent zones of accommodation between domains in which extension occurred at different times and to different degrees. However, the majority of these right-slip and left-slip faults are northwest-trending and northeast-trending, respectively, suggesting that plate motions may have played a role in the creation of these accommodation zones. An obstacle to understanding the NTS zone is that major ignimbrite sheets and calderas of the southwestern Nevada volcanic field (SNVF) formed in this zone at the height of late Tertiary tectonic activity, possibly burying much of the structural evidence. The NTS zone could represent an intersection of the Walker Lane with another major structural feature, a significant bend in the Walker Lane, or a transtensional tear that localized accommodation structures as well as the prominent late Miocene calderas of the SNVF. Ongoing field work is aimed at determining which of these and competing interpretations is best.

  11. Environmental Assessment for the construction and operation of the Three Rivers Solid Waste Authority regional waste management center at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This Environmental Assessment (EA) has been prepared by the US Department of Energy (DOE) to assess the potential environmental impacts associated with the construction and operation of a landfill and technology center for regionally-generated municipal solid waste at the Savannah River Site (SRS) near Aiken, South Carolina. The facility would serve the municipal solid waste disposal needs for SRS and at least nine of the surrounding counties who currently comprise the Three Rivers Solid Waste Authority (TRSWA). Additional counties could become included in the proposed action at some future date. Current Federal and state requirements do not afford individual counties and municipalities within the region encompassing SRS the ability to efficiently or economically operate modern waste management facilities. In addition, consolidation of regional municipal solid waste at one location would have the benefit of reducing the duplicity of environmental consequences associated with the construction and operation of county-level facilities. The option to seek a combined disposal and technology development facility based on a regionally-cooperative effort was selected as a viable alternative to the existing individual SRS or county disposal activities. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Part 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an environmental impact statement (EIS).

  12. Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    SciTech Connect (OSTI)

    Anderson, Brian; Kurihara, Masanori; White, Mark D.; Moridis, George J.; Wilson, Scott J.; Pooladi-Darvish, Mehran; Gaddipati, Manohar; Masuda, Yoshihiro; Collett, T. S.; Hunter, Robert B.; Narita, Hideo; Rose, Kelly K.; Boswell, Ray

    2011-02-02T23:59:59.000Z

    Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger’s Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group’s consensus value for the initial perme- ability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGHţHYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the pre- dicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3–3.9 ?C). This paper presents the approach and results of extrapolating regional forward production modeling from history-matching efforts on the results from a single well test.

  13. Environmental assessment, aircraft chemical warfare survivability test program, Naval Air Warfare Center, Aircraft Division, Patuxent River, Maryland

    SciTech Connect (OSTI)

    NONE

    1992-02-01T23:59:59.000Z

    The proposed project, the Aircraft Chemical Warfare Survivability Test Program at Patuxent River Naval Air Station, involves the testing and development of aircraft systems and operating procedures for use in an environment contaminated with chemical/biological warfare agents. The tests will be performed in accordance with a directive from the chief of Naval Operations to obtain and maintain the capability to operate in a chemically-contaminated environment. These tests will be performed under outdoor, warm-weather conditions on a dredge disposal area and adjacent runways to simulate the conditions under which a real-life threat would be encountered.

  14. test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U C L E A R E

  15. Characterization of the Femoral Neck Region’s Reponse to the Rat Hindlimb Unloading Model through Tomographic Scanning, Mechanical Testing and Estimated Strengths 

    E-Print Network [OSTI]

    Kupke, Joshua Scott

    2011-02-22T23:59:59.000Z

    quantitative computed tomography (pQCT), mechanical testing in two different loading conditions, and estimated strength indices. Adult male Sprague-Dawley rats (6-mo) were grouped into baseline (BL), ambulatory cage control (CC) and hindlimb unloaded (HU); HU...

  16. Testing the general relativistic ''no-hair'' theorems using the galactic center black hole SgrA*

    E-Print Network [OSTI]

    Clifford M. Will

    2007-12-29T23:59:59.000Z

    If a class of stars orbits the central black hole in our galaxy in short period (~ 0.1 year), high eccentricity (~ 0.9) orbits, they will experience precessions of their orbital planes induced by both relativistic frame-dragging and the quadrupolar gravity of the hole, at levels that could be as large as 10 microarcseconds per year, if the black hole is rotating faster than 1/2 of its maximum rotation rate. Astrometric observations of the orbits of at least two such stars can in principle lead to a determination of the angular momentum vector J of the black hole and its quadrupole moment Q_2. This could lead to a test of the general relativistic no-hair theorems, which demand that Q_2 = - J^2/M. Future high-precision adaptive infrared optics instruments make make such a fundamental test of the black-hole paradigm possible.

  17. Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part III: Comparison with 3DVAR in a Real-Data Case Study

    E-Print Network [OSTI]

    Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part III 8 May 2007) ABSTRACT The feasibility of using an ensemble Kalman filter (EnKF) for mesoscale application of an ensemble Kalman filter (EnKF; Evensen 1994) in the atmospheric sci- ences field (Houtekamer

  18. Tests of an Ensemble Kalman Filter for Mesoscale and Regional-scale Data Assimilation. Part IV: Comparison with 3DVar in a Month-long Experiment

    E-Print Network [OSTI]

    Tests of an Ensemble Kalman Filter for Mesoscale and Regional-scale Data Assimilation. Part IV@tamu.edu #12;2 Abstract In previous works in this series study, an ensemble Kalman filter (En System. #12;4 1. Introduction The Ensemble Kalman filter (EnKF) (Evensen 1994), which estimates

  19. Material Testing of Coated Alloys in a Syngas Combustion Environment Year 6 - Activity 1.13 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Swanson, Michael

    2011-09-01T23:59:59.000Z

    Modifications were made to the inlet of the existing Energy & Environmental Research Center (EERC) thermal oxidizer to accommodate side-by-side coupon holders for exposure testing. Two 5-day tests with over 200 hours of total exposure time were completed. The first week of testing was conducted in enriched air-blown mode, with coupon temperatures ranging from 128° to 272°F. Carbonyl sampling was conducted, but it was discovered after the fact that the methodology used was producing very low recoveries of iron and nickel carbonyl. Therefore, the data generated during this week of testing were not considered accurate. The second week of testing was conducted in oxygen-blown mode, with coupon temperatures ranging from 220° to 265°F. Two improved methods were used to measure carbonyl concentration during this week of testing. These methods produced results closer to equilibrium calculations. Since both weeks of testing mostly produced a product gas with approximately 15%–18% carbon monoxide, it was felt that actual carbonyl concentrations for Week 1 should be very similar to those measured during Week 2. The revised carbonyl sampling methodology used during the second week of testing greatly improved the recovery of iron and nickel carbonyl in the sample. Even though the sampling results obtained from the first week were inaccurate, the results from the second week can be used as an estimate for the periods during which the gasifier was operating under similar conditions and producing similar product gas compositions. Specifically, Test Periods 2 and 3 from the first week were similar to the conditions run during the second week. For a product gas containing roughly 15%–18% CO and a coupon temperature of approximately 220°–270°F, the nickel carbonyl concentration should be about 0.05–0.1 ppm and the iron carbonyl concentration should be about 0.1–0.4 ppm. After each week of testing the coupons were recovered from the coupon holder, weighed, and shipped back to Siemens for analysis.

  20. Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J.; Foote, M. [MSE Technology Applications, Inc., Montana (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2008-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations were tested at bench scale, 19-liter (L) [5-gallon (gal)] bucket scale, and 208-L (55-gal) drum scale. The testing performed by MSE will help ORNL select the right solidification materials and wasteform generation methods for the design of a new treatment facility. The results could also be used to help demonstrate that ORNL could meet the waste acceptance criteria for the ultimate disposal site for the waste-forms. The organics will be solidified as transuranic waste for disposal at the Waste Isolation Pilot Plant, and the aqueous waste stream will be grouted and disposed of at the Nevada Test Site as low-level waste if real waste testing indicates similar results to the surrogate testing. The objective of this work was to identify a sorbent capable of solidifying PUREX, Pubex, and Cleanex organic wastes individually and a composite of the three organic waste streams. The sorbent and surrogate combinations must also be compatible with processing equipment and maintain stability under a variety of conditions that could occur during storage/shipment of the solidified wastes. (authors)

  1. Testing Center, 585 Student Academic Services Building, 281 West Lane Avenue, Columbus, OH 43210-1132 testing.osu.edu | Fax: 614-292-7199 | Email: esue-testing@osu.edu | Phone: 614-292-2241

    E-Print Network [OSTI]

    . Elevators are located in the center of the building. For more parking options visit Campus Parc: http is still ongoing. Students must adhere to all policies set forth by the Code of Student Conduct, available online at: http://studentaffairs.osu.edu/pdfs/csc_12-31-07.pdf. Violations of the Code of Student

  2. II-Local Solution of a Spherical Homogeneous and Isotropic Universe Radially Decelerated towards the Expansion Center: Tests on Historic Data Sets

    E-Print Network [OSTI]

    Luciano Lorenzi

    1999-06-17T23:59:59.000Z

    The topic of the paper is the mathematical analysis of a radially decelerated Hubble expansion from the Bahcall & Soneira void center. Such analysis, in the hypothesis of local homogeneity and isotropy, gives a particular Hubble ratio dipole structure to the expansion equation, whose solution has been studied at different precision orders and successfully tested on a few historic data sets, by de Vaucouleurs (1965), by Sandage & Tammann (1975), and by Aaronson et al. (1982-86). The fittings of both the separate AA1 and AA2 samples show a good solution convergence as the analysis order increases, giving even coinciding solutions when applied to 308 nearby individual galaxies (308AA1) and to 10 clusters (148AA2), respectively.

  3. EA-1090: Disbursement of $65 Million to the State of Texas for Construction of a Regional Medical Technology Center, Waxahachie, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to transfer $65 million of federal funds to the Texas National Research Laboratory Commission for construction of the Regional Medical...

  4. Test particle simulations of the effect of moving DLs on ion outflow in the auroral downward-current region

    E-Print Network [OSTI]

    California at Berkeley, University of

    and dynamic simulations. This configuration greatly changes the mechanism of the ion outflow in the downward ionosphere or from the ambipolar electric field formed by enhanced electron temperatures from. In auroral upward current regions, the ions can be accelerated by parallel electric fields (Ek). Other

  5. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data (provided by Centech) was not sufficient to facilitate a quantitative material balance. The total effluent volume was 7.5% higher than the processed-feed volume; therefore,...

  6. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management and operating contractor for the Department of Energy's Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming. NPR-3 lies along the southeastern portion...

  7. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management and operating contractor for the Department of Energy's Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming. As part of RMOTC's continuing mission to...

  8. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NPOSR), Inc., the Management and Operating Contractor for the DOE Naval Petroleum Oil Shale Reserves in Colorado, Utah and Wyoming. RMOTC's goal is to partner with the oil and...

  9. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Finite Conductivity," SPE Drilling Engineering, June, p. 127. Lee, K. and G. Smith. 1975. "Measured Properties of Bare and Insulated Antennas in Sand," IEEE...

  10. Superfund record of decision (EPA Region 3): Langley AFB/NASA Langley Center, Tabbs Creek Operable Unit, Hampton, VA, September 30, 1998

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    This Record of Decision (ROD) presents remedial action for the Tabbs Creek Operable Unit (OU) at the NASA Langley Research Center (LaRC) in Hampton, Virginia (the Site). This action addresses the principle threat at the OU by dredging and disposing contaminated sediment.

  11. Superfund record of decision (EPA Region 2): FAA Technical Center, Operable Unit 5, Atlantic County, Atlantic City International Airport, NJ, August 17, 1994

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    The decision document presents the no further action decision for Area I, the Former Incinerator Building location, and Area Q, the Fire Station Area, at the FAA Technical Center, Atlantic City International Airport, New Jersey. The Federal Aviation Administration and EPA have determined that no remedial actions are necessary at Areas I and Q to ensure protection of human health and the environment.

  12. Iowa Climate Change Briefing and Discussion -Monday February 16 The University of Iowa Center for Global and Regional Environmental Research and a variety of

    E-Print Network [OSTI]

    Debinski, Diane M.

    Iowa Climate Change Briefing and Discussion - Monday February 16 The University of Iowa Center to a climate change briefing and discussion to highlight the recent report of the Iowa Climate Change Advisory Council. The meeting will be an opportunity to learn more about climate change science its potential

  13. Model testing using Chernobyl data: III. Atmospheric resuspension of radionuclides in Ukrainian regions impacted by Chernobyl fallout

    SciTech Connect (OSTI)

    Garger, E.K. [Inst. of Radioecology, Kiev (Ukraine); Hoffman, F.O. [SENES Oak Ridge, Inc., TN (United States); Miller, C.W. [Centers for Disease Control and Prevention, Atlanta, GA (United States)

    1996-01-01T23:59:59.000Z

    The {open_quotes}Resuspension{close_quotes} scenario is designed to test models for atmospheric resuspension of radionuclides from contaminated soils. Resuspension can be a secondary source of contamination after a release has stopped, as well as a source of contamination for people and areas not exposed to the original release. The test scenario describes three exposure situations: (1) locations within the highly contaminated 30-km zone at Chernobyl, where exposures to resuspended material are probably dominated by local processes; (2) an urban area (Kiev) outside the 30-km zone, where local processes include extensive vehicular traffic; and (3) a location 40 to 60 km west of the Chernobyl reactor, where upwind sources of contamination are important. Input data include characteristics of the {sup 137}Cs ground contamination around specific sites, climatological data for the sites, characteristics of the terrain and topography, and locations of the sampling sites. Predictions are requested for average air concentrations of {sup 137}Cs at specified locations due to resuspension of Chernobyl fallout and for specified resuspension factors and rates. Test data (field measurements) are available for all endpoints. 9 refs., 4 figs., 11 tabs.

  14. RESULTS OF FIELD TESTING DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FIELD TESTING AT THE DEPARTMENT OF ENERGY, ROCKY MOUNTAIN OILFIELD TESTING CENTER May through September of 2011 RMOTC is an energy testing center that partners with industry to...

  15. Oncology Center

    SciTech Connect (OSTI)

    Kraft, Andrew S.

    2009-09-21T23:59:59.000Z

    Efforts by the Hollings Cancer Center to earn a designation as a National Cancer Center are outlined.

  16. Measurement of the 3He Spin Structure Functions in the Resonance Region: A Test of Quark-Hadron Duality on the Neutron

    SciTech Connect (OSTI)

    Patricia Solvignon

    2006-08-31T23:59:59.000Z

    One of the biggest challenges in the study of the nucleon structure is the understanding of the transition from partonic degrees of freedom to hadronic degrees of freedom. In 1970, Bloom and Gilman noticed that structure function data taken at SLAC in the resonance region average to the scaling curve of deep inelastic scattering (DIS). Early theoretical interpretations suggested that these two very different regimes can be linked under the condition that the quark-gluon and quark-quark interactions are suppressed. Substantial efforts are ongoing to investigate this phenomenon both experimentally and theoretically. Quark-hadron duality has been confirmed for the unpolarized structure function F{sub 2} of the proton and the deuteron using data from the experimental Hall C at Jefferson Lab (JLab). Indications of duality have been seen for the proton polarized structure function g{sub 1} and the virtual photon asymmetry A{sub 1} at JLab Hall B and HERMES. Because of the different resonance behavior, it is expected that the onset of duality for the neutron will happen at lower momentum transfer than for the proton. Now that precise spin structure data in the DIS region are available at large x, data in the resonance region are greatly needed in order to test duality in spin-dependent structure functions. The goal of experiment E01-012 was to provide such data on the neutron ({sup 3}He) in the moderate momentum transfer (Q{sup 2}) region, 1.0 < Q{sup 2} < 4.0 (GeV/c{sup 2}), where duality is expected to hold. The experiment ran successfully in early 2003 at Jefferson Lab in Hall B. It was an inclusive measurement of longitudinally polarized electrons scattering from a longitudinally or transversely polarized {sup 3}He target. Asymmetries and cross section differences were measured in order to extract the {sup 3}He spin structure function g{sub 1} and virtual photon asymmetry A{sub 1} in the resonance region. A test of quark-hadron duality has then been performed for the {sup 3}He and neutron structure functions. The study of spin duality for the neutron will provide a better understanding of the mechanism of the strong interaction. Moreover, if duality is well understood, our resonance data will bring information on the high x region where theoretical predictions for A{sub 1} are drastically different.

  17. Health assessment for Malta Rocket Test Site, Saratoga County, Malta, New York, Region 2. CERCLIS No. NYD980535124. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1989-06-30T23:59:59.000Z

    The Malta Rocket Fuel Test Station is listed by the USEPA on the National Priorities List. The General Electric Company tested operations at the site as a contractor to the U.S. Government. Beginning in December 1974, and continuing until December 1979, Exxon Nuclear Company, Inc. conducted operations at a building on the site. During the course of its operations, Exxon handled several hazardous chemicals including methylethyl ketone, acetone, tetrachloroethene, and toluene. Various site inspections, investigations and engineering studies have been conducted at the site. Ground water collected from monitoring wells on-site is contaminated with chloroform, carbon tetrachloride, and trichloroethene. In April 1985, sampling of ground water supplies serving the site demonstrated significant drinking-water contamination with concentrations of carbon tetrachloride up to 220 micro g/L, chloroform up to 25 micro g/L, PCBs up to 1.3 micro g/L, trichlorethene up to 120 micro g/L, and boron up to 140 micro g/L. The site has been the subject of several investigations, however, none have been comprehensive. The site should be the subject of a complete remedial investigation/feasibility study before a full health assessment can be prepared.

  18. Superfund Record of Decision (EPA Region 2): FAA (Federal Aviation Administration) Technical Center, Atlantic County, New Jersey (First remedial action), September 1989

    SciTech Connect (OSTI)

    Not Available

    1989-09-26T23:59:59.000Z

    The 5,000-acre multipurpose FAA Technical Center site is a Federal Facility eight miles northwest of Atlantic City, in Atlantic County, New Jersey. Atlantic City's municipal water supply is provided by nine ground-water supply wells located just north of the reservoir on FAA property as well as by water drawn directly from the reservoir. Land use in the site vicinity includes forested land and commercial and residential areas. There are 25 known areas of contamination at the FAA Technical Center. Further areas of contamination will be addressed in future Records of Decision. Soil and ground water at the site are contaminated with VOCs apparently attributable to the jet fuel farm. Subsurface jet fuel contamination is probably the result of leaking pipes, storage tanks, and spills associated with above-ground and underground storage tanks, associated valves, piping, and dry wells, or a truck loading stand. As an interim remedial measure, free product recovery pumps were installed in 1988-89 in three onsite wells to recover the hydrocarbon plume floating on the water table. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, toluene, and xylenes; and other organics including PAHs (naphthalene) and phenols.

  19. Tracing the general structure of Galactic molecular clouds using Planck data: I. The Perseus region as a test case

    E-Print Network [OSTI]

    Stanchev, Orlin; Kauffmann, Jens; Donkov, Sava; Shetty, Rahul; Körtgen, Bastian; Klessen, Ralf S

    2015-01-01T23:59:59.000Z

    We present an analysis of probability distribution functions (pdfs) of column density in different zones of the star-forming region Perseus and its diffuse environment based on the map of dust opacity at 353 GHz available from the Planck archive. The pdf shape can be fitted by a combination of a lognormal function and an extended power-law tail at high densities, in zones centred at the molecular cloud Perseus. A linear combination of several lognormals fits very well the pdf in rings surrounding the cloud or in zones of its diffuse neighbourhood. The slope of the mean density scaling law $\\langle\\rho\\rangle_L \\propto L^\\alpha$ is steep ($\\alpha=-1.93$) in the former case and rather shallow ($\\alpha=-0.77\\pm0.11$) in the rings delineated around the cloud. We interpret these findings as signatures of two distinct physical regimes: i) a gravoturbulent one which is characterized by nearly linear scaling of mass and practical lack of velocity scaling; and ii) a predominantly turbulent one which is best described ...

  20. Preliminary assessment report for Grubbs/Kyle Training Center, Smyrna/Rutherford County Regional Airport, Installation 47340, Smyrna, Tennessee. Installation Restoration Program

    SciTech Connect (OSTI)

    Dennis, C.; Stefano, J.

    1993-07-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Tennessee Army National Guard (TNARNG) property near Smyrna, Tennessee. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Grubbs/Kyle Training Center property, the requirement of the Department of Defense Installation Restoration Program.

  1. Dynamometer Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    This fact sheet describes the dynamometer and its testing capabilities at the National Wind Technology Center.

  2. International Pacific Research Center

    E-Print Network [OSTI]

    Wang, Yuqing

    International Pacific Research Center APRIL 2007­MARCH 2008 REPORT School of Ocean and Earth Center i Foreword ii iv Indo-Pacific Ocean Climate 1 Regional-Ocean Influences 13 Asian by the following broad research themes and goals of the IPRC Science Plan. Indo-Pacific Ocean Climate

  3. INTERNATIONAL PACIFIC RESEARCH CENTER

    E-Print Network [OSTI]

    Wang, Yuqing

    INTERNATIONAL PACIFIC RESEARCH CENTER APRIL 2005­MARCH 2006 REPORT SCHOOL OF OCEAN AND EARTH Center 1 The Year's Highlights 3 Indo-Pacific Ocean Climate 4 Regional-Ocean Influences 10 Asian Ocean Climate: To understand climate variations in the Pacific and Indian oceans on interannual

  4. INTERNATIONAL PACIFIC RESEARCH CENTER

    E-Print Network [OSTI]

    Wang, Yuqing

    INTERNATIONAL PACIFIC RESEARCH CENTER Annual Report April 2006 ­ March 2007 School of Ocean Research Center 1 2 The Year's Highlights 3 Research Accomplishments Indo-Pacific Ocean Climate 4 Regional-Ocean Ocean Climate: To understand climate variations in the Pacific and Indian oceans on inter- annual

  5. Superfund record of decision (EPA Region 2): FAA Technical Center, Atlantic County, Atlantic City International Airport, NJ. (Third remedial action), September 1992. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-09-30T23:59:59.000Z

    The 5,000-acre FAA Technical Center site is located 8 miles northwest of Atlantic City, Atlantic Count, New Jersey, within the Atlantic Coastal Plain. In 1942, a Naval Air Base, including most of the existing runways, was constructed over two-thirds of the property. Interest in the property was transferred to the Federal Aviation Administration (FAA) in 1958 for use as research and development facilities and for the 1979 construction of the existing Technical/Administration Building. From 1978 to 1985, transformers containing PCB oil were stored on a 25- by 75-foot concrete pad, referred to as Area G, located at the lumber yard near building 125 in the western portion of the property. Some transformers are known to have leaked, contaminating the concrete pad and surrounding soil. During 1989, the entire concrete pad and contaminated soil were collected, excavated, and disposed of in an approved TSCA cell of a landfill. The ROD addresses principal threats to human health or the environment associated with PCB releases from the Area G transformer storage location. Based on the results of subsequent sampling, it is believed that Area G no longer poses a threat to human health or the environment.

  6. ICE Cleaning Test Report.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TESTING CENTER Work Performed Under Rocky Mountain Oilfield Testing Center (RMOTC) CRADA No. 99-009 TABLE OF CONTENTS Abstract......

  7. For assistance, contact the Instructional Resource Center, irchelp@uconn.edu; (860)486-5052 Summary of Recommended Settings for Test Options

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    of Recommended Settings for Test Options Enter a "Display After" date for the start of the availability period Do for "Do not allow students to start Test if due date passed" Display Dates and Due Date: Rationale: This combination of settings will determine a start date for the test and enforce an end date. In addition

  8. Southern Regional Center for Lightweight Innovative Design

    SciTech Connect (OSTI)

    None

    2011-10-01T23:59:59.000Z

    The three major objectives of this Phase III project are: â?˘ To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; â?˘ To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and â?˘ To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios.

  9. Namur Center for Complex Systems

    E-Print Network [OSTI]

    2011-01-18T23:59:59.000Z

    Jan 3, 2011 ... ... trust-region method for solving bound-constrained non- ...... tion of state and simultaneous testing of phase stability, Fluid Phase Equilibr.

  10. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering and Experiments (505) 667-6407 Email Center Associate Director Becky Olinger Global Security - Emerging Threats (505) 664-0540 Email Los Alamos Collaboration for...

  11. Do-Not-Resuscitate Orders in Fatal Toxic Exposures: A Poison Center’s Review

    E-Print Network [OSTI]

    Weerasuriya, Dilani; Sheikh, Sophia; Morgan, Brent W

    2012-01-01T23:59:59.000Z

    in Fatal Toxic Exposures: A Poison Center’s Review DilaniAtlanta, Georgia Georgia Poison Control, Atlanta, GeorgiaISE) patient using the Regional Poison Control Center (RPCC)

  12. Davison Health Center Price List*

    E-Print Network [OSTI]

    Royer, Dana

    student account. Please see a Health Center representative for more information. Under the Affordable CareDavison Health Center Price List* Beginning Fall 2013, visits and most services to the Health Act, many of the immunizations and lab tests below are covered by insurance (sexual health testing

  13. operations center

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich57/%2A

  14. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat TransferStartupHe!Los Alamos

  15. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids1spectroscopies |Explosives

  16. EDA University Center Program Center for Industrial Research and Service

    E-Print Network [OSTI]

    Lin, Zhiqun

    line" well-being of the region coupled with technical assistance to the critical organizations and businesses of the region. The program provides sustainability assessments, technical assistance, these important trade centers saw nonfarm job increases of 2.5 percent despite population losses. Iowa

  17. PORTLAND STATE UNIVERSITY CENTER FOR TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    Bertini, Robert L.

    PORTLAND STATE UNIVERSITY CENTER FOR TRANSPORTATION STUDIES DEPARTMENT OF CIVIL & ENVIRONMENTAL Transportation System Performance Report December 27, 2005 #12;2Second Annual Portland Metropolitan Region Transportation System Performance Report Portland State University Center for Transportation Studies 2005

  18. PORTLAND STATE UNIVERSITY CENTER FOR TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    Bertini, Robert L.

    PORTLAND STATE UNIVERSITY CENTER FOR TRANSPORTATION STUDIES DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING SCHOOL OF URBAN STUDIES AND PLANNING First Annual Portland Metropolitan Region Transportation System Performance Report September 8, 2004 #12;2First Annual Portland Metropolitan Region Transportation

  19. T&D Conference, 15-16 December, 2004 Carnegie-Mellon University Testing the Effects of Inter-Regional Transfers of Real Energy on

    E-Print Network [OSTI]

    of the time. The demand for electricity continued to grow in the 1980s and 1990s, but transmission additions-Regional Transfers of Real Energy on the Performance of Electricity Markets by Timothy D. Mount, Applied Economics and Management Robert J. Thomas, Electrical and Computer Engineering Cornell University, Ithaca, New York 14853

  20. TEST STATION SALE OF PERFORMANCE TESTED BULLS

    E-Print Network [OSTI]

    Tennessee, University of

    in the test had to meet minimum performance requirements. Those were: CREEP NON-CREEP Adj 205 day wt. 560 520AS-B428 U T BULL TEST STATION SALE OF PERFORMANCE TESTED BULLS THURSDAY, MARCH 8, 2012 12:00 NOON IN GREENEVILLE AND KNOXVILLE LIVESTOCK CENTER http://animalscience.ag.utk.edu/ (For video) #12;UT BULL TEST

  1. University of Connecticut Health Center

    E-Print Network [OSTI]

    Oliver, Douglas L.

    University of Connecticut Health Center John Dempsey Hospital (Patient Identification medically indicated as a part of my care. 2. My practitioner has told me the reasons why a transfusion in receiving a transfusion. I have been told that blood used at the UConn Health Center is tested for many

  2. 6, 1332313366, 2006 Regional pollution

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 13323­13366, 2006 Regional pollution potentials of major population centers M. G. Lawrence a Creative Commons License. Atmospheric Chemistry and Physics Discussions Regional pollution potentials. Lawrence (lawrence@mpch-mainz.mpg.de) 13323 #12;ACPD 6, 13323­13366, 2006 Regional pollution potentials

  3. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  4. Honda Transmission Technical Center

    High Performance Buildings Database

    Russells Point, OH The Honda Transmission Technical Center is located on the Honda of America Manufacturing Plant facility site in Russells Point, Ohio. This facility is used for product engineering and market quality testing and analysis of automatic transmissions. The building contains a large workshop area for ten cars, a future dynamometer, two laboratories, an open office area, three conference rooms, a break room, restrooms, and related support areas.

  5. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    SciTech Connect (OSTI)

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01T23:59:59.000Z

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate-vegetation interactions.

  6. LANSCE | Lujan Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental package, must be borne by the user. Lujan Center Call for Proposals >> Lujan Neutron Scattering Center Logo Lujan Center Mission The Lujan Center delivers science by...

  7. Regional companies eye growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired PowerRegional companies eye

  8. Carolinas Energy Career Center

    SciTech Connect (OSTI)

    Classens, Anver; Hooper, Dick; Johnson, Bruce

    2013-03-31T23:59:59.000Z

    Central Piedmont Community College (CPCC), located in Charlotte, North Carolina, established the Carolinas Energy Career Center (Center) - a comprehensive training entity to meet the dynamic needs of the Charlotte region's energy workforce. The Center provides training for high-demand careers in both conventional energy (fossil) and renewable energy (nuclear and solar technologies/energy efficiency). CPCC completed four tasks that will position the Center as a leading resource for energy career training in the Southeast: • Development and Pilot of a New Advanced Welding Curriculum, • Program Enhancement of Non-Destructive Examination (NDE) Technology, • Student Support through implementation of a model targeted toward Energy and STEM Careers to support student learning, • Project Management and Reporting. As a result of DOE funding support, CPCC achieved the following outcomes: • Increased capacity to serve and train students in emerging energy industry careers; • Developed new courses and curricula to support emerging energy industry careers; • Established new training/laboratory resources; • Generated a pool of highly qualified, technically skilled workers to support the growing energy industry sector.

  9. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Water Resources Research Center Annual Technical Report FY 2013 Water Resources Research Center of Agriculture and Life Sciences, the University of Arizona Water Resources Research Center (WRRC) has a mission to promote understanding of critical state and regional water management and policy issues through research

  10. Test Anxiety: Considerations for Educators/Students

    Broader source: Energy.gov [DOE]

    This document contains strategies for managing test anxiety, provided by the Building Performance Center.

  11. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Fluor Daniel (NPOSR), Inc., the Management and Operating Contractor for the Department of Energy Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR- CUW)....

  12. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Management and Operating Contractor for the Department of Energy Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). MANUFACTURER: Sperry-Sun...

  13. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NPOSR), Inc., the Management and Operating Contractor for the DOE Naval Petroleum Oil Shale Reserves in Colorado, Utah and Wyoming. Work was directed by RMOTC Project Manager,...

  14. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the real liquid interface. 2. The fluid level controller microphone is sensitive to noise and vibration around the wellhead. A problem was detected with opening the backside...

  15. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    form sulfides of iron and hydrogen. This process raises safety concerns with higher corrosion rates in production systems and the threat of poisonous hydrogen sulfide gas...

  16. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Management and Operating Contractor for the Department of Energy Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). MANUFACTURER: Albert...

  17. ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management and Operating Contractor for the Department of Energy Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). RMOTCs goal is to partner with...

  18. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  19. An all-optical table-top collider for testing $\\gamma\\gamma\\rightarrow\\gamma\\gamma$ scattering in the region of MeV

    E-Print Network [OSTI]

    Homma, Kensuke; Nakajima, Kazuhisa

    2015-01-01T23:59:59.000Z

    Photon-photon scatterings contain rich information on the two-photon coupling to a virtual $e^+e^-$ pair in QED and also the coupling to known resonance states in the context of QCD and the electroweak interaction. Moreover, discovering weakly-coupling resonance states over many orders of magnitude on the mass scale can provide us hints on something dark in the Universe. The perturbative QED calculations manifestly predict the maximized cross section at the MeV scale, however, any examples of real-photon - real-photon scattering have not been observed in that energy scale hitherto. Hence, we propose the direct measurement with the maximized cross-section at the center-of-mass energy of 1-2 MeV to establish the firm footing at the MeV scale. Given currently state-of-the-art high power lasers, the QED-based elastic scattering may be observed at a reasonable rate, if a photon-photon collider exploiting $\\gamma$-rays generated by the inverse Compton process with electrons delivered from laser-plasma accelerators ...

  20. Superfund record of decision (EPA Region 2): Federal Aviation Administration Technical Center (Area 29 - Fire Training and Area K - storage area near area 29), Altantic County, Atlantic City International Airport, NJ, September 20, 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This decision document presents the selected remedial action for Area 29, the Fire Training Area and Area K, a former drum and tank storage area located adjacent to Area 29 at the FAA Technical Center, Atlantic City International Airport, New Jersey. The selected remedy for Areas 29 and K address the principal threat by controlling the migration of and treating dissolved chemicals in ground water. Contaminated soils will be excavated and disposed of offsite.

  1. Superfund explanation of significant difference for the record of decision (EPA Region 2): FAA Technical Center, Area 20a, Salvage Yard Area, Atlantic City International Airport, NJ, June 18, 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The purpose of this Explanation of Significant Differences (ESD) is to explain modifications to the soil remedy selected in the Record of Decision (ROD), signed on September 28, 1990 (PB91-921425), for Area 20A, the Salvage Yard Area of the Federal Aviation Administration (FAA) Technical Center at Atlantic City International Airport, New Jersey. This ESD modifies the ROD to require landfilling of a substantial portion of PCB-contaminated soil instead of incineration of all PCB-contaminated soils.

  2. Regional Purchasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead5"Redline"

  3. Sensor test facilities and capabilities at the Nevada Test Site

    SciTech Connect (OSTI)

    Boyer, W.B.; Burke, L.J.; Gomez, B.J.; Livingston, L.; Nelson, D.S.; Smathers, D.C.

    1996-12-31T23:59:59.000Z

    Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of energy`s Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite (GPS) receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force`s Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

  4. Clean Energy Application Center

    SciTech Connect (OSTI)

    Freihaut, Jim

    2013-09-30T23:59:59.000Z

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive programs in New Jersey, Pennsylvania, Maryland and Delaware; (5) Developed and maintained a MACEAC website to provide technical information and regional CHP, WHR and DE case studies and site profiles for use by interested stakeholders in information transfer and policy discussions; (6) Provided Technical Assistance through feasibility studies and on site evaluations. The MACEAC completed 28 technical evaluations and 9 Level 1 CHP analyses ; and (7) the MACEAC provided Technical Education to the region through a series of 29 workshops and webinars, 37 technical presentations, 14 seminars and participation in 13 CHP conferences.

  5. Energy efficient data centers

    E-Print Network [OSTI]

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-01-01T23:59:59.000Z

    Report on Energy Efficient Data Centers - A Rocky MountainReport on Energy Efficient Data Centers - A Rocky MountainEnergy Efficient Data Centers Prepared by William Tschudi,

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Promotion and Information The Center for Alternative Fuels (Center) promotes alternative fuels as viable energy sources in the state. The Center must assess the...

  7. Panhandle Region Transportation Coordination Study

    E-Print Network [OSTI]

    Panhandle Regional Transportation Advisory Group

    drivers; shared office staff with PCS Schedule for out of county trips Amarillo MWF Notes on Service Provided Medicaid to Amarillo M-F; school trips M-F; Hereford Satellite Center; some trips to Hereford Senior Center and nursing homes Table 2............................................................................................................................ 2-5 Health and Human Services Organizations ................................................................................. 2-9 History of Regional Coordination of Public Transportation .................................................... 2...

  8. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Swanson, Michael; Henderson, Ann

    2012-04-01T23:59:59.000Z

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

  9. Colorado Regional Faults

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  10. The impact of the Texas Assessment of Knowledge and Skills (TAKS) on teacher stress and anxiety as reported by middle school classroom teachers in a selected school district in Education Service Center, Region 20, Texas

    E-Print Network [OSTI]

    Denning, Dayne Ralston

    2005-08-29T23:59:59.000Z

    , taking issue on decisions based on single test results (Baker, 2000; Tunks, 2001). Reviewing the history of high-stakes testing in public schools in Texas, Cruse and Twing (2000) report that in 1979 the Texas State Legislature required the Texas Education... , p r o m o t i o n a n d g r a d u a t i o n r e q u i r e m e n t s w i l l b e t i e d t o T A A S ( ? S t u d e n t a s s e s s m e n t , ? 1 9 9 8 ) a n d t h e TAKS. Baker (2000) states that teachers are under great...

  11. Regions for Select Spot Prices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired PowerRegional companiesRegions

  12. CAPITAL REGION

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6 (2-91)A (04-86)SnapshotCAOmemo.pdf t

  13. Annex IV Environmental Webinar: Marine Renewable Energy Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annex IV Environmental Webinar: Marine Renewable Energy Test Centers and Environmental Effects Research Annex IV Environmental Webinar: Marine Renewable Energy Test Centers and...

  14. Final Test Report for BioCOPE.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TESTING CENTER Work Performed Under Rocky Mountain Oilfield Testing Center (RMOTC) CRADA No. 2000-006 PROTECTED CRADA INFORMATION This product contains Protected CRADA...

  15. Rutgers Regional Report # Regional Report

    E-Print Network [OSTI]

    Garfunkel, Eric

    , population, income, and building permits over a 32-year period from 1969 to 2001 for the 31-county Tri counties of the Tri-State (Connecticut, New Jersey, and New York) Region have been divided for analytical the nation and the Tri-State Region. What has not been fully documented, however, is the apparent shift

  16. Agricultural Centers AGRICULTURAL CENTER PROGRAM OBJECTIVES

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    Agricultural Centers AGRICULTURAL CENTER PROGRAM OBJECTIVES: Conduct research related to the prevention of occu- pational disease and injury of agricultural workers and their families. Develop, implement, and evaluate educational and outreach programs for promoting health and safety for agricultural

  17. Energy Center Center for Coal Technology Research

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    Energy Center Center for Coal Technology Research http://www.purdue.edu/dp/energy/CCTR/ Consumption Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation, 500 Central Drive West Lafayette, IN 47907-2022 #12;INDIANA COAL REPORT 2009 Center for Coal

  18. Clinical Psychology Center Center Review Recommendation

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    Clinical Psychology Center Center Review Recommendation B. Review and Approval Process 2 to address issues of common interest. The purpose of the Clinical Psychology Center (CPC) is to serve as the primary clinical training site for graduate students; to provide high quality, affordable mental health

  19. CENTER REPORT Center for Environmental Policy

    E-Print Network [OSTI]

    Slatton, Clint

    CENTER REPORT ~ Center for Environmental Policy Department of Environmental Engineering Sciences of the Department of Environmental Engineering Sciences, the Center for Environmental Policy (CEP), was created interdisciplinary graduate education, research, and advocacy in energy and environmental policy and is an outgrowth

  20. Sandia National Laboratories: Regional Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Personnel Water Power in the News Geothermal Advanced Bit Development Geothermal Energy & Drilling Technology Hydrogen and Fuel Cells Program Materials & Components...

  1. Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd to libraryOpen EnergyInformation|Regions

  2. Transuranic (TRU) Waste Processing Center- Overview

    Broader source: Energy.gov [DOE]

    DOE established the TRU Waste Processing Center (TWPC) as a regional center for the management, treatment, packaging and shipment of DOE TRU waste legacy inventory. TWPC is also responsible for managing and treating Low Level and Mixed Low Level Waste generated at ORNL. TWPC is operated by Wastren Advantage, Inc. (WAI) under contract to the DOE's Oak Ridge Office.

  3. PORTLAND STATE UNIVERSITY CENTER FOR TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    Bertini, Robert L.

    PORTLAND STATE UNIVERSITY CENTER FOR TRANSPORTATION STUDIES DEPARTMENT OF CIVIL & ENVIRONMENTAL Transportation System Performance Report June, 2008 #12;2007 Portland Metropolitan Region Transportation System Performance Report Portland State University Center for Transportation Studies 2007 Table of Contents 12 29 36

  4. Video Center Administrator Guide

    E-Print Network [OSTI]

    Eisen, Michael

    LifeSize® Video Center Administrator Guide March 2011 LifeSize Video Center 2200 #12;LifeSize Video Center Adminstrator Guide 2 Administering LifeSize Video Center LifeSize Video Center is a network server that stores and streams video sent by LifeSize video communications systems enabled for recording. It can also

  5. Solar Technology Center

    SciTech Connect (OSTI)

    Boehm, Bob

    2011-04-27T23:59:59.000Z

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  6. area health education centers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    community health centers, each with several care delivery sites. Throughout the region, health care opportunities in health care. Location: The primary office is based in...

  7. Georgia Geriatric Education Center

    E-Print Network [OSTI]

    Arnold, Jonathan

    Georgia Geriatric Education Center © Photography courtesy of the U.S. Administration on Aging. Georgia Geriatric Education Center Latestresourcesandtrainingforbestpracticesingerontologyandgeriatrics. The Georgia Geriatric Education Center (GGEC) is a statewide effort designed to help you access the latest

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15Hybrid andBiofuel

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversionsAlternativeE85 Fueling

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformanceGrants The

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformanceGrants

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformanceGrantsCompressed

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) Emissions Study In October

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) Emissions Study In

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) Emissions Study

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) Emissions StudyPolicies for

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) Emissions

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHigh Occupancy

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHigh Occupancyand

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHigh

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHighAdvanced Vehicle

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHighAdvanced

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHighAdvancedPlug-In

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG)

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew England MEDIA

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew England MEDIAZero

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew England MEDIAZeroFuel

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew EnglandState

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewState Agency Electric

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewState Agency

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewState AgencyAlternative

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewState

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewStateMandatory Electric

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewStateMandatory

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewStateMandatoryVoluntary

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero Emission Truck and Bus

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero Emission Truck and

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero Emission Truck andZero

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero Emission Truck

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero Emission

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero EmissionZero Emission

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and ZeroResidential Electric

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and ZeroResidential ElectricVehicle

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and ZeroResidential

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and ZeroResidentialEmployer

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and ZeroResidentialEmployerPlug-In

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel Vehicle (AFV)

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel Vehicle

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel VehicleTax

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative FuelClean Vehicle

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative FuelClean

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative FuelCleanAlternative

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLow Emissions School

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLow Emissions

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLow

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLowAlternative Fuel

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLowAlternative

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend Tax Exemption The

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend Tax Exemption

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend Tax Exemptionand

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend Tax

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend TaxHeavy-Duty

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel BlendNeighborhood

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel BlendNeighborhoodNatural

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative Fuel and

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative Fuel

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative FuelProvision

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternativeFleet Vehicle

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternativeFleet

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissions Reductions Grants

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissions Reductions

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissions ReductionsLow

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissions

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP The Los Angeles

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP The Los

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP The

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP TheFuel

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP TheFuelBiofuels

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWPBiodiesel

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equipped with a fully

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equipped with a

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equipped with aBond

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equipped with

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equipped

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equippedTax Exemption

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equippedTax

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equippedTaxAlternative

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdle Reduction

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdle ReductionEthanol

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdle

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdleAlternative Fuel

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdleAlternative

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdleAlternativeVehicle

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-Efficient Tire Program

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-Efficient Tire

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-Efficient TireFleet Grants

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-Efficient TireFleet

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-Efficient

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-EfficientFuel-Efficient

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-EfficientFuel-Efficientand

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructure Evaluation The

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructure Evaluation

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructure EvaluationPlug-In

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructure

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructureNatural Gas Rate

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructureNatural Gas

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructureNatural

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructureNaturalHeavy-Duty

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los Angeles Department

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los Angeles

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los AngelesHigh

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los AngelesHighand

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The LosAlternative

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The LosAlternativeIdle

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP TheCommercial Vehicle Idle

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP TheCommercial Vehicle

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP TheCommercial

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP TheCommercialHeavy-Duty

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublic Utility Definition A

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublic Utility Definition

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublic Utility

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublic UtilityIdle Reduction

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublic UtilityIdle

  5. Dansk Gasteknisk Center a/s Dr. Neergaards Vej 5B 2970 Hrsholm Tlf. 2016 9600 Fax 4516 1199 www.dgc.dk dgc@dgc.dk Field test of hydrogen in the

    E-Print Network [OSTI]

    4516 1199 · www.dgc.dk · dgc@dgc.dk Field test of hydrogen in the natural gas grid EFP05 J.nr. 033001/33031-0053 Project Report August 2010 #12;Field test of hydrogen in the natural gas grid EFP05 J.nr. 033001/33031-0053 Henrik Iskov Danish Gas Technology Centre Hørsholm 2010 #12;Title : Field test of hydrogen in the natural

  6. Data Center Energy Efficiency

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) supports data center efficiency initiatives by encouraging Federal agencies to adopt best practices and construct energy-efficient data centers.

  7. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase...

  8. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http:www.anl.govcnmgroupelectron-microscopy-cente...

  9. Danforth Center Tour | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplemental TechnologySummary of

  10. RESEARCH CENTERS National Security Education Center

    E-Print Network [OSTI]

    ) Leader Dan Thoma Program Administrator Debbie Wilke Institute for Multiscale Materials Studies (UCSB Security Center Leader Tom Terwilliger Program Administrator Josephine Olivas Information Science

  11. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruaryMetal nanoparticlesCenter Organization People

  12. Microsoft Word - STWA Test Report - FINAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3292012 - G. Hughes & J. BUELT ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS STWA, INC. VISCOSITY REDUCTION TECHNOLOGY Prepared for: Industry Publication Prepared by:...

  13. RMOTC to Test Oil Viscosity Reduction Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RMOTC to Test Oil Viscosity Reduction Technology The Rocky Mountain Oilfield Testing Center (RMOTC) announces that the "Teapot Dome" oil field in Wyoming is hosting a series of...

  14. Improving the Angular Resolution of EGRET and New Limits on Supersymmetric Dark Matter Near the Galactic Center

    E-Print Network [OSTI]

    Dan Hooper; Brenda Dingus

    2002-12-20T23:59:59.000Z

    Using the EGRET data and an improved point source analysis, including an energy dependent point spread function and an unbinned maximum likelihood technique, we have been able to place considerably lower limits on the gamma ray flux from the galactic center region. We also test this method on known sources, the Crab and Vela pulsars. In both cases, we find that our method improves the angular precision of EGRET data over the 3EG catalog. This new limit on gamma rays from the galactic center can be used to test models of annihilating supersymmetric dark matter and galactic halo profiles. We find that the present EGRET data can limit many supersymmetric models if the density of the galactic dark matter halo is cuspy or spiked toward the galactic center. We also discuss the ability of GLAST to test these models.

  15. Improving the Angular Resolution of EGRET and New Limits on Supersymmetric Dark Matter Near the Galactic Center

    E-Print Network [OSTI]

    Hooper, D; Hooper, Dan; Dingus, Brenda

    2002-01-01T23:59:59.000Z

    Using the EGRET data and an improved point source analysis, including an energy dependent point spread function and an unbinned maximum likelihood technique, we have been able to place considerably lower limits on the gamma ray flux from the galactic center region. We also test this method on known sources, the Crab and Vela pulsars. In both cases, we find that our method improves the angular precision of EGRET data over the 3EG catalog. This new limit on gamma rays from the galactic center can be used to test models of annihilating supersymmetric dark matter and galactic halo profiles. We find that the present EGRET data can limit many supersymmetric models if the density of the galactic dark matter halo is cuspy or spiked toward the galactic center. We also discuss the ability of GLAST to test these models.

  16. Photomultiplier Tube Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 Photomultiplier Tube Testing

  17. Reliability-Centered Maintenance

    Broader source: Energy.gov [DOE]

    Reliability-centered maintenance leverages the same practices and technologies of predictive maintenance.

  18. & Education CenterOregon

    E-Print Network [OSTI]

    Caughman, John

    Fourth Ave Building Art Building Science & Education CenterOregon Sustainability Center (planned Hall Lincoln Hall School of Business 5th Ave Cinema East Hall University Technology Services Honors Stratford Building Parkway Science Building 1 Helen Gordon Child Center Science Research & Teaching Center

  19. Northeast Solar Energy Research Center (NSERC)

    E-Print Network [OSTI]

    Ohta, Shigemi

    Northeast Solar Energy Research Center (NSERC) A multi-purpose research facility on the BNL campus-level current and voltage · High Sample Rates ­1 sec data (512 samples per cycle for PQ data) Solar Energy Testing #12;BNL is developing a new Northeast Solar Energy Research Center (NSERC) on its campus

  20. Wind Testing and Certification | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind plant levels. These testing facilities are geographically diverse, located in key wind energy regions, and possess unique testing capabilities that allow the Department of...

  1. Enhancing regional security agreements through cooperative monitoring

    SciTech Connect (OSTI)

    Pregenzer, A.L.

    1995-05-01T23:59:59.000Z

    This paper proposes that strengthening regional capabilities for formulating and implementing arms control and confidence-building measures is a tangible method of enhancing regional security. It discusses the importance of developing a regional infrastructure for arms control and confidence building and elucidates the role of technology in facilitating regional arms control and confidence-building agreements. In addition, it identifies numerous applications for regional cooperative monitoring in the areas of arms control, resource management, international commerce and disaster response. The Cooperative Monitoring Center at Sandia National Laboratories, whose aim is to help individual countries and regions acquire the tools they need to develop their own solutions to regional problems, is discussed briefly. The paper ends with recommendations for establishing regional cooperative monitoring centers.

  2. Center for Advanced Photophysics | About The Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteriesmetal-organic frameworks |A photo

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15 andTaxAnnual ElectricNaturalPropane

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15Hybrid andBiofuelElectric Vehicle

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15Hybrid andBiofuelElectric

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15Hybrid andBiofuelElectricClean

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversionsAlternativeE85 FuelingProhibition of the Sale

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew EnglandStateState Agency

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew EnglandStateStateNatural

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend TaxHeavy-DutyIdle

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los AngelesHighand Fuel

  12. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    in Poplar Steven Strauss, Oregon State University (2009-2011) OVERVIEW The production of bioplastics from

  13. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    to smog, acid rain, and other atmospheric pollutants. The multi-institutional team seeks to determine emissions of green house gases and those contributing to acid rain. Progress to Date Four institutions developed a protocol to investigate fatty acid differences attributable to temperature, as affected

  14. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    for ethanol production. Progress to Date The research team has determined the sugar content of three varieties of sorghum, and has successfully fermented sorghum juice to ethanol in the laboratory. Juice preservation sorghum juice that was harvested in October 2009 was fermented to ethanol at the laboratory scale using

  15. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    and Economic Analysis of Cellulosic Ethanol from Grass Straw in the Pacific Northwest Ganti Murthy, Oregon to cellulosic ethanol. This study will provide information on using Pacific Northwest biomass in a sustainable and pretreatment processes on ethanol yields in Pacific Northwest U.S.). Contact: Ganti Murthy, Biological

  16. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    for Use in Pacific Ethanol's Boardman, Oregon Cellulosic Ethanol Plant Russ Karow, Oregon State University OVERVIEW Pacific Ethanol, in Boardman, Oregon, is the recipient of a federal grant to establish a 1/10 th scale cellulosic ethanol pilot plant adjacent to their existing corn-based ethanol facility. This new

  17. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    and Cellulases in the Bioconversion of Lignocellulosic Feedstocks to Ethanol Christine Kelly, Oregon State to ethanol. The team will examine fungal heme peroxidases to discover new "accessory" enzymes that function of conversion of softwoods to ethanol. Progress to Date · Bioreactor runs and analyses: Dr. Kelly and her

  18. Regional Application Centers: US DOE's Program to Advance Comvined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at or near a buildingfacility * Uses multiple technologies and fuels CHP Technologies * Electric Generation Equipment - Gas Turbines - Backpressure Steam Turbines - Reciprocating...

  19. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    is a newly emerging crop that has considerable potential as a biofuels feedstock in the inland Pacific resistant mutant. The team was not able to select plants with a higher level of resistance in the second generation (F2) progeny of the different crosses. They are in the progress of making F2 populations between

  20. Southern Regional Center for Lightweight Innovative Design (SRCLID...

    Broader source: Energy.gov (indexed) [DOE]

    Materials Vision: Develop multiscale physics-based material models for design optimization of components and systems made of lightweight materials in automotive applications....

  1. Southern Regional Center for Lightweight Innovative Design (SRCLID...

    Broader source: Energy.gov (indexed) [DOE]

    and experimentally validate physics-based multiscale material models for design optimization of components, systems, and lightweight materials for applications critical to the...

  2. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    : A Renewable Energy Crop for Carbon Sequestration John Cushman, University of Nevada, Reno OVERVIEW The long-term goal of this research project is to optimize the use of halophytic microalgae as a biofuels crop. Halophytic algae are an ideal renewable energy resource because they can be grown on marginal lands

  3. Oregon State University Sun Grant Western Regional Center

    E-Print Network [OSTI]

    Tullos, Desiree

    agronomic practices to incorporate camelina into PNW crop production systems and assist the fledgling the optimum planting date and to assess planting methods for camelina across the PNW; 2) to identify best Dates and Methods Two planting methods ­ direct drilling and broadcast with packing ­ and six planting

  4. ZiaTest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's CrossedMaterials Center atZiaTest

  5. PNNL: News Center - Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center News Center Home News Releases 50th Anniversary Features Social Media Directory PNNL Leadership Our Experts Subscribe to E-Mail News Service RSS News Feeds Search News...

  6. INTERNATIONAL PACIFIC RESEARCH CENTER

    E-Print Network [OSTI]

    Wang, Yuqing

    INTERNATIONAL PACIFIC RESEARCH CENTER APRIL 2004­MARCH 2005 REPORT SCHOOL OF OCEAN AND EARTH RESEARCH HIGHLIGHTS Indo-Pacific Ocean Climate Pacific Research Center Design by: Susan Yamamoto Printed by: Hagadone Printing Company Photo: Waikiki

  7. CLINICAL & TRANSLATIONAL SCIENCE CENTER

    E-Print Network [OSTI]

    Carmichael, Owen

    UC DAVIS CLINICAL & TRANSLATIONAL SCIENCE CENTER CLINICAL & TRANSLATIONAL SCIENCE CENTER InspectionsInspections Clinical Research CoordinatorClinical Research Coordinator Training ProgramTraining Program Kitty LombardoKitty Lombardo Administrative DirectorAdministrative Director Clinical

  8. About Cost Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the university, fee-for-service contracts, as well as establishing CAMD as a cost center. We know that our users are reluctant to see CAMD become a cost center, however...

  9. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use of add here name of specific Lujan instruments at the Lujan Center at Los Alamos Neutron Science Center. Los Alamos National Laboratory is operated by Los Alamos National...

  10. Microsoft Word - STWA Test Report - May 2012 Test - REV2012.05...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5022012 - G. Hughes & W. Riesland ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS STWA, INC. VISCOSITY REDUCTION TECHNOLOGY Prepared for: Industry Publication Prepared...

  11. Nuclear Reaction Data Centers

    SciTech Connect (OSTI)

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01T23:59:59.000Z

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  12. Louisiana Transportation Research Center

    E-Print Network [OSTI]

    Harms, Kyle E.

    Louisiana Transportation Research Center LTRC www.ltrc.lsu.edu 2012-13 ANNUALREPORT #12;The Louisiana Transportation Research Center (LTRC) is a research, technology transfer, and training center administered jointly by the Louisiana Department of Transportation and Development (DOTD) and Louisiana State

  13. The DOE Information Center | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48H TreatmentEnergy TestTexasTheNation |TheTheThe

  14. Operations Center | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and EvaluationOperational ManagementCenter | National

  15. Operations Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and EvaluationOperational ManagementCenter |

  16. References: 1 NDT Resource Center (Accessed March 9, 2012)[Online]. Available at: http://www.ndt-ed.org/EducationResources/CommunityCollege/EddyCurrents/Introduction/IntroductiontoET.htm, 2 Calderwood, C & Nelligan, T. Eddy Current Testing. Olympus Corpor

    E-Print Network [OSTI]

    .org/EducationResources/CommunityCollege/EddyCurrents/Introduction/IntroductiontoET.htm, 2 Calderwood, C & Nelligan, T. Eddy Current Testing. Olympus Corporation,2011.[Online]. Available at: http://www.olympus-ims.com/en/eddycurrenttesting/ , 3 Santandrea. L., & Le Bihan, Y. Using COMSOL-Multiphysics in an Eddy Current Non

  17. Abel, Steven R; _pharmacy practice, _from R.L. Roudebush Veterans Administration Medical Center, _$46,921, _"IPA for Kimberly Adams, Douglas E; _mechanical engineering, _from CACI International Inc, _$93,500, _"Development and Testing of Innovative Health

    E-Print Network [OSTI]

    International Inc, _$93,500, _"Development and Testing of Innovative Health Management Tools for Damage Detection, Evaluation, and Repair of the CH-53K Composite Rotor Blades and Structures." _(a Discovery Park University School of Medicine, _$13,962, _"Joint PhD Program for Graduate Support - Henry Chen." Bullock

  18. Southern Energy Efficiency Center (SEEC)

    SciTech Connect (OSTI)

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30T23:59:59.000Z

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  19. Air Risk Information Support Center

    SciTech Connect (OSTI)

    Shoaf, C.R.; Guth, D.J. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31T23:59:59.000Z

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  20. Jefferson Lab technology, capabilities take center stage in constructi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    semi for its road test. Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator By James Schultz January...

  1. Service Center Evaluation Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work GroupService Center

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption AFVs are exempt from Nevada's emissions testing requirements. A new HEV is exempt from emissions inspection testing...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Illinois Environmental Protection Agency's Vehicle Emissions Testing Program website. (Reference 625 Illinois Compiled Statutes 513...

  4. Regional Energy Efficiency Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.JuneAs part of itsRefiningHydrogenRegional

  5. Midwest Clean Energy Application Center

    SciTech Connect (OSTI)

    Cuttica, John; Haefke, Cliff

    2013-12-31T23:59:59.000Z

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: ? Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. ? Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. ? Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  6. Relativistic Guiding Center Equations

    SciTech Connect (OSTI)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01T23:59:59.000Z

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  7. Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,Neutron Scattering

  8. ARM - News Center Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat fluxChinaNews : AMF Deployment, Shouxian,

  9. PNNL: News Center - Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162 Prepared

  10. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)

  11. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)Massachusetts Plug-In

  12. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)Massachusetts

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimental Vehicle Definition

  14. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimental Vehicle

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.

  16. Center of Innovation- Energy

    Broader source: Energy.gov [DOE]

    Jill Stuckey, Director, Center fof Innovation - Energy, presents on Georgia's workforce development opportunities for the Biomass/Clean Cities States Webinar.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    the Connecticut Center for Advanced Technology, developed the Connecticut Hydrogen and Fuel Cell Deployment Transportation Strategy: 2011-2050. The strategy includes a plan to...

  18. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31T23:59:59.000Z

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Technology Investment Funding The Commonwealth Energy Fund (CEF), administered through the Center for Innovative Technology, provides early-stage investment...

  20. UNCLASSIFIHED DEFENSE DOCUMENTATION CENTER

    E-Print Network [OSTI]

    Block, Marco

    UNCLASSIFIHED AD 463473 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION .... John Barton Head OR Analysis Group R. H. Krolick Manager Applied Science Laboratory Prepared for the .J

  1. ENERGY RESOURCES CENTER

    E-Print Network [OSTI]

    Sternberg, Virginia

    2012-01-01T23:59:59.000Z

    Information Network on Energy (WINE) is a group of peopleWINE has provided the Center with the names of people to contact for energy

  2. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent...

  3. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,Biofuels

  4. Building America Solution Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctober 2011 | DepartmentSolution

  5. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 MeetingEA #February 2,

  6. NREL: Education Center - Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNREL in the CommunityEducation

  7. Center for Integrated Nanotechnologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA SeriesNanocrystalNewsMPA-CINT Center for

  8. NREL: Education Center - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustryIssuePhotoEducation Center

  9. ARM - External Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYouQuality ProgramgovExternal Data Center

  10. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | Blandine Allocation ManagementCenter

  11. Game Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G FGalactic ScaleGame Center

  12. 1999 Commercial Buildings Characteristics--Census Region

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 1998

  13. Understanding Regional Economic Growth in India

    E-Print Network [OSTI]

    Understanding Regional Economic Growth in India Jeffrey D. Sachs, Nirupam Bajpai and Ananthi Ramiah Papers #12;Understanding Regional Economic Growth in India Jeffrey D. Sachs Center for International Development (CID) Harvard University Ananthi_Ramiah@harvard.edu This paper was prepared for the Asian Economic

  14. Data Centers Coming Soon Summer 2010

    E-Print Network [OSTI]

    1 Regional Data Centers CEDEN Partners Coming Soon ­ Summer 2010 The California Environmental Data Exchange Network (CEDEN) is a system designed to facilitate integration and sharing of data collected of the CEDEN network is to allow the exchange and integration of water and environmental data between groups

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    national and regional initiatives; and Assess and develop potential deployment strategies and infrastructure requirements for the commercialization of hydrogen fuel cell vehicles....

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Promotion and Infrastructure Development Any regional transportation planning organization containing a county with a population greater than one million must collaborate with...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Fleet Technical Assistance The Colorado Energy Office and the Regional Air Quality Council administer Refuel Colorado Fleets, a free energy coaching...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicles and Infrastructure Grant Program The Colorado Energy Office (CEO), the Regional Air Quality Council (RAQC), and the Colorado Department of Transportation...

  19. Arrillaga Sports Center Addition,

    E-Print Network [OSTI]

    Bogyo, Matthew

    Center Roble Gym Tresidder Union Dinkelspiel AuditoriumFaculty Club Kingscote Gardens Braun Music Center 530 Peterson (550) 610 570 560 CERAS Meyer Library School of Education Fire Truck Hse. Clock Tower Commons Encina Hall Bing Wing Herbert Hoover Mem. Bldg. Lou Henry Hoover Bldg. Hoover Tower Cummings Art

  20. Northwestern University Transportation Center

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Northwestern University Transportation Center 2011 Business Advisory Committee NUTC #12;#12;I have the pleasure of presenting our Business Advisory Committee members--a distinguished group of transportation industry lead- ers who have partnered with the Transportation Center in advancing the state of knowledge