National Library of Energy BETA

Sample records for regional optics photonics

  1. SPIE Optics + Photonics 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPIE Optics + Photonics 2011 August 21-25, 2011 San Diego Convention Center San Diego

  2. Optics of globular photonic crystals

    SciTech Connect (OSTI)

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  3. Silicon Photonics for Low- Energy Optical Communications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photonics for Low- Energy Optical Communications To support the needs of next generation of optical communications, researchers have developed a Sandia Silicon Photonics platform that leverages the semiconductor and nanotechnology capabilities of Sandia's Microsystems and Engineering Sciences Applications (MESA) complex to reduce the power dissipation of interconnects within digital systems. Improving Interconnection Performance As integrated circuit chips now incorporate over a billion

  4. Optical trapping apparatus, methods and applications using photonic crystal resonators

    DOE Patents [OSTI]

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  5. Optical amplification enhancement in photonic crystals

    SciTech Connect (OSTI)

    Sapienza, R.; Leonetti, M.; Froufe-Perez, L. S.; Galisteo-Lopez, J. F.; Lopez, C.; Conti, C.

    2011-02-15

    Improving and controlling the efficiency of a gain medium is one of the most challenging problems of laser research. By measuring the gain length in an opal-based photonic crystal doped with laser dye, we demonstrate that optical amplification is more than twenty-fold enhanced along the {Gamma}-K symmetry directions of the face-centered-cubic photonic crystal. These results are theoretically explained by directional variations of the density of states, providing a quantitative connection between density of the states and light amplification.

  6. Optical isolation via unidirectional resonant photon tunneling

    SciTech Connect (OSTI)

    Moccia, Massimo; Castaldi, Giuseppe; Galdi, Vincenzo; Al, Andrea; Engheta, Nader

    2014-01-28

    We show that tri-layer structures combining epsilon-negative and magneto-optical material layers can exhibit unidirectional resonant photon tunneling phenomena that can discriminate between circularly polarized (CP) waves of given handedness impinging from opposite directions, or between CP waves with different handedness impinging from the same direction. This physical principle, which can also be interpreted in terms of a Fabry-Perot-type resonance, may be utilized to design compact optical isolators for CP waves. Within this framework, we derive simple analytical conditions and design formulae, and quantitatively assess the isolation performance, also taking into account the unavoidable imperfections and nonidealities.

  7. Use of a photonic crystal for optical amplifier gain control

    DOE Patents [OSTI]

    Lin, Shawn-Yu; Fleming, James G.; El-Kady, Ihab

    2006-07-18

    An optical amplifier having a uniform gain profile uses a photonic crystal to tune the density-of-states of a gain medium so as to modify the light emission rate between atomic states. The density-of-states of the gain medium is tuned by selecting the size, shape, dielectric constant, and spacing of a plurality of microcavity defects in the photonic crystal. The optical amplifier is particularly useful for the regeneration of DWDM signals in long optical fibers.

  8. Passive thermo-optic feedback for robust athermal photonic systems

    DOE Patents [OSTI]

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  9. Suppressing spectral diffusion of emitted photons with optical pulses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fotso, H. F.; Feiguin, A. E.; Awschalom, D. D.; Dobrovitski, V. V.

    2016-01-22

    In many quantum architectures the solid-state qubits, such as quantum dots or color centers, are interfaced via emitted photons. However, the frequency of photons emitted by solid-state systems exhibits slow uncontrollable fluctuations over time (spectral diffusion), creating a serious problem for implementation of the photon-mediated protocols. Here we show that a sequence of optical pulses applied to the solid-state emitter can stabilize the emission line at the desired frequency. We demonstrate efficiency, robustness, and feasibility of the method analytically and numerically. Taking nitrogen-vacancy center in diamond as an example, we show that only several pulses, with the width of 1more » ns, separated by few ns (which is not difficult to achieve) can suppress spectral diffusion. As a result, our method provides a simple and robust way to greatly improve the efficiency of photon-mediated entanglement and/or coupling to photonic cavities for solid-state qubits.« less

  10. Multipoint photonic doppler velocimetry using optical lens elements

    DOE Patents [OSTI]

    Frogget, Brent Copely; Romero, Vincent Todd

    2014-04-29

    A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

  11. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    DOE Patents [OSTI]

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  12. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    SciTech Connect (OSTI)

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wang, Yi E-mail: ywangwnlo@mail.hust.edu.cn; Wu, Ying E-mail: ywangwnlo@mail.hust.edu.cn

    2015-11-30

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (Q{sub L}) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  13. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    SciTech Connect (OSTI)

    Mario Agio

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

  14. Emergence of Artificial Photons in an Optical Lattice

    SciTech Connect (OSTI)

    Tewari, Sumanta; Scarola, V. W.; Sarma, S. Das; Senthil, T.

    2006-11-17

    We establish the theoretical feasibility of direct analog simulation of the compact U(1) lattice gauge theories in optical lattices with dipolar bosons. We discuss the realizability of the topological Coulomb phase in extended Bose-Hubbard models in several optical lattice geometries. We predict the testable signatures of this emergent phase in noise correlation measurements, thus suggesting the possible emergence of artificial light in optical lattices.

  15. A versatile optical junction using photonic band-gap guidance and self collimation

    SciTech Connect (OSTI)

    Gupta, Man Mohan; Medhekar, Sarang

    2014-09-29

    We show that it is possible to design two photonic crystal (PC) structures such that an optical beam of desired wavelength gets guided within the line defect of the first structure (photonic band gap guidance) and the same beam gets guided in the second structure by self-collimation. Using two dimensional simulation of a design made of the combination of these two structures, we propose an optical junction that allows for crossing of two optical signals of same wavelength and same polarization with very low crosstalk. Moreover, the junction can be operated at number of frequencies in a wide range. Crossing of multiple beams with very low cross talk is also possible. The proposed junction should be important in future integrated photonic circuits.

  16. Superconducting nanowire single-photon detectors integrated with optical nano-antennae

    SciTech Connect (OSTI)

    Hu, X.; Dauler, E.; Molnar, R.; Berggren, K. K.

    2010-12-20

    Optical nano-antennae have been integrated with semiconductor lasers to intensify light at the nanoscale and photodiodes to enhance photocurrent. In quantum optics, plasmonic metal structures have been used to enhance nonclassical light emission from single quantum dots. Absorption and detection of single photons from free space could also be enhanced by nanometallic antennae, but this has not previously been demonstrated. Here, we use nano-optical transmission effects in a one-dimensional gold structure, combined with optical cavity resonance, to form optical nano-antennae, which are further used to couple single photons from free space into a 80-nm-wide superconducting nanowire. This antenna-assisted coupling enables a superconducting nanowire single-photon detector with 47% device efficiency at the wavelength of 1550 nm and 9-?m-by-9-?m active area while maintaining a reset time of only 5 ns. We demonstrate nanoscale antenna-like structures to achieve exceptional efficiency and speed in single-photon detection.

  17. Breakthroughs in photonics 2013: X-ray optics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Soufli, Regina

    2014-04-01

    Here, this review discusses the latest advances in extreme ultraviolet/X-ray optics development, which are motivated by the availability and demands of new X-ray sources and scientific and industrial applications. Among the breakthroughs highlighted are the following: i) fabrication, metrology, and mounting technologies for large-area optical substrates with improved figure, roughness, and focusing properties; ii) multilayer coatings with especially optimized layer properties, achieving improved reflectance, stability, and out-of-band suppression; and iii) nanodiffractive optics with improved efficiency and resolution.

  18. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    SciTech Connect (OSTI)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  19. Optical properties of two-dimensional metamaterial photonic crystals

    SciTech Connect (OSTI)

    Meja-Salazar, J. R.

    2013-12-14

    In the present work, we theoretically study a 2D photonic crystal (PC) comprised by double negative (DNG) metamaterial cylinders, showing that such a system presents a superior light-matter interaction when compared with their single negative (SNG) plasmonic PC counterparts, suggesting a route to enhance the performance of sensors and photovoltaic cells. On the other hand, we have observed that depending on the frequency, the mode symmetry resembles either the case of SNG electric (SNG-E) or SNG magnetic (SNG-M) PC, suggesting that either the electric or magnetic character of the DNG metamaterial dominates in each case.

  20. Magneto-optical properties of biogenic photonic crystals in algae

    SciTech Connect (OSTI)

    Iwasaka, M.; Mizukawa, Y.

    2014-05-07

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0?T and 5?T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering from a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4?T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror.

  1. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    SciTech Connect (OSTI)

    Heath, Robert M. Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H.; Webster, Mark G.; San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H.; Warburton, Richard J.

    2014-02-10

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime.

  2. Bistable moving optical solitons in resonant photonic crystals

    SciTech Connect (OSTI)

    Vlasov, R. A.; Lemeza, A. M.

    2011-08-15

    We consider some new aspects of the formation of moving optical solitons in a medium of Bragg-type resonant grating doped with two-level atoms. For generality, account is taken of the local-field effect assisted by a sufficiently high density of resonant atoms. It is established analytically that there exists a family of soliton solutions to the two-wave Maxwell-Bloch system of equations, with these solitons exhibiting bistable properties. The existence of bistable solitons and their properties are confirmed by numerical simulations.

  3. An optical analog of the Borrmann effect in photonic crystals

    SciTech Connect (OSTI)

    Bogdanova, M. V. Lozovik, Yu. E.; Eiderman, S. L.

    2010-04-15

    Numerical simulation using the layered Korringa-Kohn-Rostoker (LKKR) method is applied to calculate the reflection and absorption spectra of an s-polarized electromagnetic wave incident on a faced-centered cubic photonic crystal (PC) with opal structure whose sites are occupied by two-layer metal-dielectric spheres. The reflection and absorption coefficients of the PC are analyzed as a function of the angle of incidence of the electromagnetic wave on the crystal surface. A range of wavelengths {lambda} and angles of inclination {theta} to the normal is found in which the absorption experiences a sharp change under small variations of the above parameters. The appearance of peaks in the absorption spectrum of the PC is analyzed, and the spectrum is compared with the behavior of the reduced density of states. By the finite difference time domain (FDTD) method applied to the Maxwell equations, the spatial distribution of the energy density of electromagnetic field inside each of five layers of the PC is obtained at angles of incidence of 23{sup o} and 30{sup o} for a wave-length of 455 nm. It is demonstrated that the sharp maxima of the density of electromagnetic-field energy that are localized on the surfaces of absorbing metal spheres correspond to the absorption maximum. At the same time, at the absorption minimum, the maxima of the field energy density in each of the five layers are localized mainly between the lattice sites of the PC. An analogy between this phenomenon and the Borrmann effect, which is known in X-ray spectroscopy of ordinary crystals, is analyzed.

  4. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    SciTech Connect (OSTI)

    Fedotov, I. V.; Doronina-Amitonova, L. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Anokhin, K. V.; Kilin, S. Ya.; Sakoda, K.; Zheltikov, A. M.

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  5. Tunability of multichannel optical filter based on magnetized one-dimensional plasma photonic crystal

    SciTech Connect (OSTI)

    Jamshidi-Ghaleh, K. Karami-Garehgeshlagi, F.; Mazloom, A. A.

    2015-10-15

    A one dimensional plasma photonic crystal (1DPPC) structure was proposed to design a tunable compressing/broadening multi-channel optical filter with external controllability. The 1DPPC with arrangement of (AP){sup n}D(PA){sup n}, where A and D are the dielectric materials, P is a magnetized plasma layer and n is the number of the periodicity, was proposed. The well-known transfer matrix method was employed for analysis. In linear transmittance spectrum, n − 1 defect modes were appeared inside the photonic band gap. The results were shown that by increasing the applied magnetic field intensity and its direction, a red-shift and blue-shift were, respectively, observed in defect mode frequencies. On the other hand, the modes were compressed and broadened with increasing the intensity and the direction of the applied magnetic field, respectively. Externally controllable defect modes can be useful in designing a multichannel tunable optical filter.

  6. Optically enhanced photon recycling in mechanically stacked multijunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steiner, Myles A.; Geisz, John F.; Ward, J. Scott; Garcia, Ivan; Friedman, Daniel J.; King, Richard R.; Chiu, Philip T.; France, Ryan M.; Duda, Anna; Olavarria, Waldo J.; et al

    2015-11-09

    Multijunction solar cells can be fabricated by mechanically bonding together component cells that are grown separately. Here, we present four-junction four-terminal mechanical stacks composed of GaInP/GaAs tandems grown on GaAs substrates and GaInAsP/GaInAs tandems grown on InP substrates. The component cells were bonded together with a low-index transparent epoxy that acts as an angularly selective reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the subbandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and, thus, higher subcell voltage, compared with GaAs subcells without the epoxy reflector.more » The best cells demonstrate 38.8 ± 1.0% efficiency under the global spectrum at 1000 W/m2 and ~ 42% under the direct spectrum at ~100 suns. As a result, eliminating the series resistance is the key challenge for further improving the concentrator cells.« less

  7. Optically enhanced photon recycling in mechanically stacked multijunction solar cells

    SciTech Connect (OSTI)

    Steiner, Myles A.; Geisz, John F.; Ward, J. Scott; Garcia, Ivan; Friedman, Daniel J.; King, Richard R.; Chiu, Philip T.; France, Ryan M.; Duda, Anna; Olavarria, Waldo J.; Young, Michelle; Kurtz, Sarah R.

    2015-11-09

    Multijunction solar cells can be fabricated by mechanically bonding together component cells that are grown separately. Here, we present four-junction four-terminal mechanical stacks composed of GaInP/GaAs tandems grown on GaAs substrates and GaInAsP/GaInAs tandems grown on InP substrates. The component cells were bonded together with a low-index transparent epoxy that acts as an angularly selective reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the subbandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and, thus, higher subcell voltage, compared with GaAs subcells without the epoxy reflector. The best cells demonstrate 38.8 ± 1.0% efficiency under the global spectrum at 1000 W/m2 and ~ 42% under the direct spectrum at ~100 suns. As a result, eliminating the series resistance is the key challenge for further improving the concentrator cells.

  8. High optical efficiency and photon noise limited sensitivity of microwave kinetic inductance detectors using phase readout

    SciTech Connect (OSTI)

    Janssen, R. M. J. Endo, A.; Baselmans, J. J. A.; Ferrari, L.; Yates, S. J. C.; Baryshev, A. M.; Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen ; Klapwijk, T. M.; Physics Department, Moscow State Pedagogical University, Moscow 119991

    2013-11-11

    We demonstrate photon noise limited performance in both phase and amplitude readout in microwave kinetic inductance detectors (MKIDs) consisting of NbTiN and Al, down to 100 fW of optical power. We simulate the far field beam pattern of the lens-antenna system used to couple radiation into the MKID and derive an aperture efficiency of 75%. This is close to the theoretical maximum of 80% for a single-moded detector. The beam patterns are verified by a detailed analysis of the optical coupling within our measurement setup.

  9. Channel-capacity gain in entanglement-assisted communication protocols based exclusively on linear optics, single-photon inputs, and coincidence photon counting

    SciTech Connect (OSTI)

    Lougovski, P.; Uskov, D. B.

    2015-08-04

    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In this study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.

  10. Channel-capacity gain in entanglement-assisted communication protocols based exclusively on linear optics, single-photon inputs, and coincidence photon counting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lougovski, P.; Uskov, D. B.

    2015-08-04

    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less

  11. Elastic photon scattering from sup 4 He in the. Delta. (1232) region

    SciTech Connect (OSTI)

    Austin, E.J.

    1988-01-01

    We have measured the differential cross section at laboratory angles 24{degree}, 30{degree}, 45{degree}, and 60{degree} for the reaction {sup 4}He({gamma},{gamma}){sup 4}He at an average lab energy of 320 MeV. This work was performed at the MIT Bates Linear Accelerator using a bremsstrahlung photon beam produced by a 330 MeV electron beam. The scattered photons were detected with a new, high resolution (1.68% FWHM at 330 MeV) NaI(Tl) total absorption scintillation counter. The data were summed over a nine MeV interval below the endpoint of the elastically scattered photon spectrum. Cosmic ray background was rejected by a plastic scintillator veto shield that surrounded the detector and the energy resolution was sufficient to exclude photons from {pi}{sup 0} decay and inelastic scattering from the region of interest. The results were compared with the predictions of the {Delta}-hole calculations of Koch, Moniz, and Ohtsuka and were found to be in excellent agreement. This measurement is the first unambiguous test of the {Delta}-hole formalism for this reaction near the peak of the {Delta} resonance.

  12. Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime

    SciTech Connect (OSTI)

    Jae-Hwang Lee

    2006-08-09

    detailed microscopy of the structure, we show that the diffracted moire fringe can be used as a nondestructive tool to analyze the alignment of multilayered structures. We demonstrate the alignment method for the case of layer-by-layer microstructures using soft lithography. The alignment method yields high contrast of fringes even when the materials being aligned have very weak contrasts. The imaging method of diffracted moire fringes is a versatile visual tool for the microfabrication of transparent deformable microstructures in layer-by-layer fashion. Third, we developed several methods to convert a polymer template to dielectric or metallic structures, for instance, metallic infiltration using electrodeposition, metallic coating using sputter deposition, dielectric infiltration using titania nano-slurry, and dielectric coating using atomic layer deposition of Titania. By several different developed techniques, high quality photonic crystals have been successfully fabricated; however, I will focus on a line of techniques to reach metallic photonic crystals in this dissertation since they are completely characterized at this moment. In addition to the attempts for photonic crystal fabrication, our non-photolithographic technique is applied for other photonic applications such as small optical waveguides whose diameter is comparable to the wavelength of guided light. Although, as guiding medium, polymers have tremendous potential because of their enormous variation in optical, chemical and mechanical properties, their application for optical waveguides is limited in conventional photolithography. By 2P-{mu}TM, we achieve low cost, high yield, high fidelity, and tailorable fabrication of small waveguides. Embedded semiconductor quantum-dots and grating couplers are used for efficient internal and external light source, respectively.

  13. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes : synthesis and optical and electrical properties.

    SciTech Connect (OSTI)

    Yang, Z.; Gao, S.; Li, W.; Vlasko-Vlasov, V.; Welp, U.; Kwok, W.-K.; Xu, T.

    2011-04-01

    Photovoltaic (PV) schemes often encounter a pair of fundamentally opposing requirements on the thickness of semiconductor layer: a thicker PV semiconductor layer provides enhanced optical density, but inevitably increases the charge transport path length. An effective approach to solve this dilemma is to enhance the interface area between the terminal electrode, i.e., transparent conducting oxide (TCO) and the semiconductor layer. As such, we report a facile, template-assisted, and solution chemistry-based synthesis of 3-dimensional inverse opal fluorinated tin oxide (IO-FTO) electrodes. Synergistically, the photonic crystal structure possessed in the IO-FTO exhibits strong light trapping capability. Furthermore, the electrical properties of the IO-FTO electrodes are studied by Hall effect and sheet resistance measurement. Using atomic layer deposition method, an ultrathin TiO{sub 2} layer is coated on all surfaces of the IO-FTO electrodes. Cyclic voltammetry study indicates that the resulting TiO{sub 2}-coated IO-FTO shows excellent potentials as electrodes for electrolyte-based photoelectrochemical solar cells.

  14. Multi-Region Surface Plasmon Resonance Fiber-Optic Sensors for...

    Office of Scientific and Technical Information (OSTI)

    Sensors for Monitoring High-Consequence Systems. Citation Details In-Document Search Title: Multi-Region Surface Plasmon Resonance Fiber-Optic Sensors for Monitoring ...

  15. Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide

    SciTech Connect (OSTI)

    Singh, A.; Huisman, S. R.; Ctistis, G. Mosk, A. P.; Pinkse, P. W. H.; Korterik, J. P.; Herek, J. L.

    2015-01-21

    We have measured the photonic bandstructure of GaAs photonic-crystal waveguides with high resolution in energy as well as in momentum using near-field scanning optical microscopy. Intriguingly, we observe additional bands that are not predicted by eigenmode solvers, as was recently demonstrated by Huisman et al. [Phys. Rev. B 86, 155154 (2012)]. We study the presence of these additional bands by performing measurements of these bands while varying the incident light power, revealing a non-linear power dependence. Here, we demonstrate experimentally and theoretically that the observed additional bands are caused by a waveguide-specific near-field tip effect not previously reported, which can significantly phase-modulate the detected field.

  16. Non-degenerate two-photon absorption

    Office of Scientific and Technical Information (OSTI)

    Optical Systems (CUDOS), Institute of Photonics and Optical Science, School of Physics, ... and B. J. Eggleton, "Nonlinear silicon photonics analyzed with the moment method," J. Opt. ...

  17. Photonic Systems | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photonic Systems Photonic Systems Ames Laboratory physicists were the first to design and demonstrate the existence of photonic band gap crystals, a discovery that led to the development of the rapidly expanding field of photonic crystals. Photonic crystals are expected to have revolutionary applications in optical communication and other areas of light technology. Image Photonic Cube For additional information on Photonic Systems, please visit https://www.ameslab.gov/dmse/fwp/photonic-s

  18. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  19. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  20. Optical properties of GaAs 2D hexagonal and cubic photonic crystal

    SciTech Connect (OSTI)

    Arab, F. Assali, A.; Grain, R.; Kanouni, F.

    2015-03-30

    In this paper we present our theoretical study of 2D hexagonal and cubic rods GaAs in air, with plan wave expansion (PWE) and finite difference time domain (FDTD) by using BandSOLVE and FullWAVE of Rsoft photonic CAD package. In order to investigate the effect of symmetry and radius, we performed calculations of the band structures for both TM and TE polarization, contour and electromagnetic propagation and transmission spectra. Our calculations show that the hexagonal structure gives a largest band gaps compare to cubic one for a same filling factor.

  1. Photonic Power Delivery Through Optical Fiber Using Very High Power Laser Diode Arrays

    SciTech Connect (OSTI)

    Heino, Matthew; Saethre, Robert

    1999-05-01

    Described is a system that will provide isolated electric power for a circuit that drives the core reset of a pulsed power modulator. This can be accomplished by coupling light from a number of diode laser bars to bundles of 200 um multimode optical fibers. This is then coupled to photo-voltaic power converters that will deliver 16 V 29mA of electricity from 1 watt of optical power. Spot size at the bundle face is a Gausian ellipse with a major axis of 1.4 mm radius and a minor axis of four bundles of 12 fibers generating a total of 24 W of electrical power. Various schemes are used to maximize coupling into the optical filber while limiting the number of optical components, and comparing components such as fresnel and aspheric lenses and lens ducts for effectiveness and cost. This will provide a completely isolated low power source for high voltage, high current environments where tradional isolation techniques yield inadequate isolation or prove too cumbersome.

  2. Thermo-optically tuned photonic resonators with concurrent electrical connection and thermal isolation

    DOE Patents [OSTI]

    Lentine, Anthony L.; Kekatpure, Rohan Deodatta; Zortman, William A.; Savignon, Daniel J.

    2016-06-14

    A photonic resonator system is designed to use thermal tuning to adjust the resonant wavelength of each resonator in the system, with a separate tuning circuit associated with each resonator so that individual adjustments may be made. The common electrical ground connection between the tuning circuits is particularly formed to provide thermal isolation between adjacent resonators by including a capacitor along each return path to ground, where the presence of the capacitor's dielectric material provides the thermal isolation. The use of capacitively coupling necessarily requires the use of an AC current as an input to the heater element (conductor/resistor) of each resonator, where the RMS value of the AC signal is indicative of the amount of heat that is generated along the element and the degree of wavelength tuning that is obtained.

  3. Nonlinear optical response of semiconductor-nanocrystals-embedded photonic band gap structure

    SciTech Connect (OSTI)

    Liao, Chen; Zhang, Huichao; Tang, Luping; Zhou, Zhiqiang; Lv, Changgui; Cui, Yiping; Zhang, Jiayu

    2014-04-28

    Colloidal CdSe/ZnS core/shell nanocrystals (NCs), which were dispersed in SiO{sub 2} sol, were utilized to fabricate a SiO{sub 2}:NCs/TiO{sub 2} all-dielectric photonic band gap (PBG) structure. The third-order nonlinear refractive index (n{sub 2}) of the PBG structure was nearly triple of that of the SiO{sub 2}:NCs film due to the local field enhancement in the PBG structure. The photoinduced change in refractive index (Δn) could shift the PBG band edge, so the PBG structure would show significant transmission modification, whose transmission change was ∼17 folds of that of the SiO{sub 2}:NCs film. Under excitation of a 30 GW/cm{sup 2} femtosecond laser beam, a transmission decrease of 80% was realized.

  4. A possibility for using an APPLE undulator to generate a photon beam with transverse optical modes.

    SciTech Connect (OSTI)

    Sasaki, S.; McNulty, I.; Shimada, T.; JAEA

    2008-01-01

    We investigate use of an APPLE-type undulator for generating Laguerre-Gaussian (LG) and Hermite-Gaussian (HG) mode beams. We find that the second harmonic radiation in the circular mode corresponds to an LG beam with l=1, and the second harmonic in the linear mode corresponds to an HG beam with l=1. The combination of an APPLE undulator and conventional monochromator optics may provide an opportunity for a new type of experimental research in the synchrotron radiation community.

  5. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  6. Observations of regional and local variability in the optical properties of maritime clouds

    SciTech Connect (OSTI)

    White, A.B.

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  7. NIF & Photon Science Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management NIF & Photon Science Management The management team for the NIF & Photon Science Principal Directorate supports the directorate's key mission areas: Stockpile Stewardship, national security applications, NIF Discovery Science, laser-based directed energy and related laser and optical technologies, and advanced photon technologies. Directorate Programs Jeff Wisoff Principal Associate Director NIF & Photon Science Jeff Atherton Principal Deputy Principal Associate Director

  8. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    DOE Patents [OSTI]

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  9. Photonic layered media

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  10. Optical Society of America (OSA) Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in optics and photonics. Since 1916, OSA has worked to bring together scientists, engineers, educators, technicians and business leaders in the fields of optics and photonics. ...

  11. Photon-photon collisions

    SciTech Connect (OSTI)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  12. Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics (invited)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lentine, Anthony L.; DeRose, Christopher T.

    2016-02-12

    In this study, small silicon photonics micro-resonator modulators and filters hold the promise for multi-terabit per-second interconnects at energy consumptions well below 1 pJ/bit. To date, no products exist and little known commercial development is occurring using this technology. Why? In this talk, we review the many challenges that remain to be overcome in bringing this technology from the research labs to the field where they can overcome important commercial, industrial, and national security limitations of existing photonic technologies.

  13. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    SciTech Connect (OSTI)

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Gladstone, David J.

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  14. Photon-photon collisions

    SciTech Connect (OSTI)

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  15. Sandia National Laboratories: RF & Photonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RF & Photonics Sensors Sandia provides photonics technology based solutions (science, technology, microsystems, subsystems, prototyping and low volume production) for National Security customers Custom Solutions Optics Optical MEMS Sandia designs, develops, builds and delivers highly sensitive, reliable micro- and nano-scale optical solutions across electromechanical and biological domains for physical sensing and optical signal processing in national security applications. Sandia uses

  16. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect (OSTI)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, Niranjan; Reddy, Kishore; Kotamarthi, Veerabhadra R.; Newsom, Rob K.; Ouarda, Taha B.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  17. Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers

    SciTech Connect (OSTI)

    Im, Song-Jin; Husakou, Anton; Herrmann, Joachim

    2010-08-15

    We study the delivery of few-cycle soliton-like pulses at 800 nm with gigawatt power or microjoule energy through a hollow-core kagome-lattice photonic crystal fiber over 1 m with preserved temporal and spectral shape. We show that with optimized pressure of the argon filling, 5 fs input pulses are compressed up to 2.5 fs after 20 cm and restore their shape after 1 m propagation.

  18. Charging a Battery-Powered Device with a Fiber-Optically Connected Photonic Power System for Achieving High-Voltage Isolation

    SciTech Connect (OSTI)

    Lizon, David C; Gioria, Jack G; Dale, Gregory E; Snyder, Hans R

    2008-01-01

    This paper describes the development and testing of a system to provide isolated power to the cathode-subsystem electronics of an x-ray tube. These components are located at the cathode potential of several hundred kilovolts, requiring a supply of power isolated from this high voltage. In this design a fiber-optically connected photonic power system (PPS) is used to recharge a lithium-ion battery pack, which will subsequently supply power to the cathode-subsystem electronics. The suitability of the commercially available JDSU PPS for this application is evaluated. The output of the ppe converter is characterized. The technical aspects of its use for charging a variety of Li-Ion batteries are discussed. Battery charge protection requirements and safety concerns are also addressed.

  19. Two Photon Distribution Amplitudes

    SciTech Connect (OSTI)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-08-29

    The factorization of the amplitude of the process {gamma}*{gamma}{yields}{gamma}{gamma} in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q{sup 2} behaviour and obey new inhomogeneous evolution equations.

  20. Photon-photon collisions

    SciTech Connect (OSTI)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  1. Ion photon emission microscope

    DOE Patents [OSTI]

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  2. Knot Undulator to Generate Linearly Polarized Photons with Low...

    Office of Scientific and Technical Information (OSTI)

    Heat load on beamline optics is a serious problem to generate pure linearly polarized ... Language: English Subject: 43 PARTICLE ACCELERATORS; OPTICS; PERMANENT MAGNETS; PHOTONS; ...

  3. Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters

    SciTech Connect (OSTI)

    Poludniowski, Gavin G.; Evans, Philip M.

    2013-04-15

    Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii) suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size

  4. Silicon photonic heater-modulator

    DOE Patents [OSTI]

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  5. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent...

    Office of Scientific and Technical Information (OSTI)

    different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out...

  6. Methods and apparatus for cleaning objects in a chamber of an optical instrument by generating reactive ions using photon radiation

    SciTech Connect (OSTI)

    Klebanoff, Leonard E.; Delgado, Gildardo R.; Hollenshead, Jeromy T.; Umstadter, Karl R.; Starodub, Elena; Zhuang, Guorong V.

    2015-10-13

    An optical instrument, including a chamber, an object exposed to an interior of the chamber, a source of low-pressure gas, the gas comprising at least one of low-pressure molecular hydrogen gas, low-pressure molecular oxygen and a low-pressure noble gas, the source of low pressure gas being fluidly coupled to the chamber, a low voltage source electrically coupled between the object and a remaining portion of the instrument that is exposed to the interior of the chamber so as to maintain the object at a low voltage relative to the remaining portion, and an EUV/VUV light source adapted to direct EUV/VUV light through the low pressure gas in the chamber onto the object. In such a system, when the EUV/VUV light source is activated ions of the low-pressure gas are formed and directed to the object. The ions may be ions of Hydrogen, Oxygen or a noble gas.

  7. Modules and methods for all photonic computing

    DOE Patents [OSTI]

    Schultz, David R.; Ma, Chao Hung

    2001-01-01

    A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.

  8. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOE Patents [OSTI]

    Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.

    1995-06-13

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.

  9. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOE Patents [OSTI]

    Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.

    1995-01-01

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.

  10. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    DOE Patents [OSTI]

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  11. Optical emission from a small scale model electric arc furnace in 250-600 nm region

    SciTech Connect (OSTI)

    Maekinen, A.; Tikkala, H.; Aksela, H.; Niskanen, J.

    2013-04-15

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr{sub 2}O{sub 3}, Ni, SiO{sub 2}, Al{sub 2}O{sub 3}, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  12. Designing of Metallic Photonic Structures and Applications

    SciTech Connect (OSTI)

    Yong-Sung Kim

    2006-08-09

    In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters is essential to achieve the maximum output result.

  13. Properties of polycyclic aromatic hydrocarbons in the northwest photon dominated region of NGC 7023. II. Traditional PAH analysis using k-means as a visualization tool

    SciTech Connect (OSTI)

    Boersma, C.; Bregman, J.; Allamandola, L. J.

    2014-11-10

    Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer-IRS spectral map of the northwest photon dominated region (PDR) in NGC 7023 is analyzed using the 'traditional' approach in which the PAH bands and plateaus between 5.2-19.5 μm are isolated by subtracting the underlying continuum and removing H{sub 2} emission lines. The spectra are organized into seven spectroscopic bins by using k-means clustering. Each cluster corresponds to, and reveals, a morphological zone within NGC 7023. The zones self-organize parallel to the well-defined PDR front that coincides with an increase in intensity of the H{sub 2} emission lines. PAH band profiles and integrated strengths are measured, classified, and mapped. The morphological zones revealed by the k-means clustering provides deeper insight into the conditions that drive variations in band strength ratios and evolution of the PAH population that otherwise would be lost. For example, certain band-band relations are bifurcated, revealing two limiting cases; one associated with the PDR, the other with the diffuse medium. Traditionally, PAH band strength ratios are used to gain insight into the properties of the emitting PAH population, i.e., charge, size, structure, and composition. Insights inferred from this work are compared and contrasted to those from Boersma et al. (first paper in this series), where the PAH emission in NGC 7023 is decomposed exclusively using the PAH spectra and tools made available through the NASA Ames PAH IR Spectroscopic Database.

  14. Memory effect in silicon time-gated single-photon avalanche diodes

    SciTech Connect (OSTI)

    Dalla Mora, A.; Contini, D. Di Sieno, L.; Tosi, A.; Boso, G.; Villa, F.; Pifferi, A.

    2015-03-21

    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons.

  15. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photons fusion 2012 Photons & Fusion Newsletter August 2012 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science ...

  16. X-ray photonic microsystems for the manipulation of synchrotron...

    Office of Scientific and Technical Information (OSTI)

    (MEMS) when combined with micro-optics have found a wide range of photonics applications. ... for X-rays, a new generation of photonics microsystems for X-ray wavelengths will ...

  17. Photon generator

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  18. Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo Gallery The latest photos from NNSA headquarters and across the nuclear security enterprise. The latest photos from NNSA headquarters and across the nuclear security enterprise. Visit us on Flickr

    science Photon Science Along with its primary missions-global security, energy security, basic science, and national competitiveness-the NIF & Photon Science Directorate also pursues research and development projects to innovate and develop cutting-edge technologies in support of those

  19. Supersonic metal plasma impact on a surface: An optical investigation of the pre-surface region

    SciTech Connect (OSTI)

    Fusion Science Group, AFRD; Plasma Applications Group, AFRD; Ni, Pavel A.; Anders, Andre

    2009-12-15

    Aluminum plasma, produced in high vacuum by a pulsed, filtered cathodic arc plasma source, was directed onto a wall where if formed a coating. The accompanying ?optical flare? known from the literature was visually observed, photographed, and spectroscopically investigated with appropriately high temporal (1 ?s) and spatial (100 ?m) resolution. Consistent with other observations using different techniques, it was found that the impact of the fully ionized plasma produces metal neutrals as well as desorbed gases, both of which interact with the incoming plasma. Most effectively are charge exchange collisions between doubly charged aluminum and neutral aluminum, which lead to a reduction of the flow of doubly charged before they reach the wall, and a reduction of neutrals as the move away from the surface. Those plasma-wall interactions are relevant for coating processes as well as for interpreting the plasma properties such as ion charge state distributions.

  20. The mystery of spectral breaks: Lyman continuum absorption by photon-photon pair production in the Fermi GeV spectra of bright blazars

    SciTech Connect (OSTI)

    Stern, Boris E. [Institute for Nuclear Research, Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow 117312 (Russian Federation); Poutanen, Juri, E-mail: stern.boris@gmail.com, E-mail: juri.poutanen@utu.fi [Tuorla Observatory, University of Turku, Vislntie 20, FI-21500 Piikki (Finland)

    2014-10-10

    We re-analyze Fermi/LAT ?-ray spectra of bright blazars using the new Pass 7 version of the detector response files and detect breaks at ?5 GeV in the rest-frame spectra of 3C 454.3 and possibly also 4C +21.35, associated with the photon-photon pair production absorption by the He II Lyman continuum (LyC). We also detect significant breaks at ?20 GeV associated with hydrogen LyC in both the individual spectra and the stacked redshift-corrected spectrum of several bright blazars. The detected breaks in the stacked spectra univocally prove that they are associated with atomic ultraviolet emission features of the quasar broad-line region (BLR). The dominance of the absorption by the hydrogen Ly complex over He II, a small detected optical depth, and break energy consistent with head-on collisions with LyC photons imply that the ?-ray emission site is located within the BLR, but most of the BLR emission comes from a flat disk-like structure producing little opacity. Alternatively, the LyC emission region size might be larger than the BLR size measured from reverberation mapping, and/or the ?-ray emitting region is extended. These solutions would resolve the long-standing issue of how the multi-hundred GeV photons can escape from the emission zone without being absorbed by softer photons.

  1. Multicolor photonic crystal laser array

    DOE Patents [OSTI]

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  2. Structural characterization of thin film photonic crystals

    SciTech Connect (OSTI)

    Subramania, G.; Biswas, R.; Constant, K.; Sigalas, M. M.; Ho, K. M.

    2001-06-15

    We quantitatively analyze the structure of thin film inverse-opal photonic crystals composed of ordered arrays of air pores in a background of titania. Ordering of the sphere template and introduction of the titania background were performed simultaneously in the thin film photonic crystals. Nondestructive optical measurements of backfilling with high refractive index liquids, angle-resolved reflectivity, and optical spectroscopy were combined with band-structure calculations. The analysis reveals a thin film photonic crystal structure with a very high filling fraction (92{endash}94%) of air and a substantial compression along the c axis ({similar_to}22{endash}25%).

  3. FY 2005 Infrared Photonics Final Report

    SciTech Connect (OSTI)

    Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong; Schultz, John F.

    2005-12-01

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrologyall specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNLs Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and waveguide

  4. Photon antibunching

    SciTech Connect (OSTI)

    Paul, H.

    1982-10-01

    A review is given of recent theoretical studies devoted to the problem of generating radiation fields that exhibit the opposite of the well-known bunching of photons observed in light from thermal sources, the so-called antibunching effect. It is made clear that this phenomenon reflects the corpuscular nature of light and, hence, cannot be interpreted in terms of classical electrodynamics, needing, instead, the quantum-mechanical formalism for its description. It is shown in some detail that nonlinear interaction mechanisms like multiphoton absorption and parametric three-wave interaction are suited to change the photon statistical properties of incident (in most cases coherent) light such that the output field will be endowed with antibunching properties. Special emphasis is given to the problem of correctly specifying the dimensions of the mode volume occurring in the usual single-mode treatment of the field, which is, in fact, of great practical interest, since the magnitude of the antibunching effect is determined by the inverse average number of photons contained in that volume. In a later section it is pointed out that destructive interference with a coherent reference beam provides a means of (a) effectively enhancing photon antibunching that is already present in a high-intensity field, through reduction of the intensity, and (b) transforming phase fluctuations produced in a Kerr medium into antibunching-type intensity fluctuations. On the other hand, there exists a way of directly generating light with antibunching properties, the physical mechanism being resonance fluorescence from a single atom. The main features of this technique, both theoretical and experimental, are outlined, including a discussion of the first experimental results obtained a few years ago.

  5. Nonlinearity sensing via photon-statistics excitation spectroscopy

    SciTech Connect (OSTI)

    Assmann, Marc; Bayer, Manfred

    2011-11-15

    We propose photon-statistics excitation spectroscopy as an adequate tool to describe the optical response of a nonlinear system. To this end we suggest to use optical excitation with varying photon statistics as another spectroscopic degree of freedom to gather information about the system in question. The responses of several simple model systems to excitation beams with different photon statistics are discussed. Possible spectroscopic applications in terms of identifying lasing operation are pointed out.

  6. Methods and systems for Raman and optical cross-interrogation in flow-through silicon membranes

    DOE Patents [OSTI]

    Bond, Tiziana C.; Letant, Sonia E.

    2014-09-09

    Cross-interrogating photonic detection systems and methods are shown. A flow through photonic crystal membrane with a surface enhanced Raman scattering (SERS) substrate is provided with pores which are distributed along multiple regions. The pores of one region have walls to which a first type of target specific anchor can be attached, while pores of another region have walls to which a second type of target specific anchor can be attached. An optical arrangement out-of-plane to the SERS substrate is also provided for enhanced sensitivity and identification of target organisms.

  7. Photon Calorimeter

    DOE Patents [OSTI]

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  8. Photon calorimeter

    DOE Patents [OSTI]

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  9. Continuous Energy MC Neutron/Photon

    Energy Science and Technology Software Center (OSTI)

    1991-10-10

    VIM solves the three-dimensional steady-state multiplication eigenvalue or fixed source neutron or photon (VIM3.0) transport problem using continuous energy-dependent nuclear data. It was designed for the analysis of fast critical experiments. In VIM3.0, the photon interactions i.e., pair production, coherent and incoherent scattering, and photoelectric events, and photon heating are tallied by group, region, and isotope.

  10. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-03-01

    Here we demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneathmore » an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.« less

  11. Photonic Heterostructures with Properties of Ferroelectrics and Light Polarizers

    SciTech Connect (OSTI)

    Palto, S. P. Draginda, Yu. A.

    2010-11-15

    The optical and electro-optical properties of a new type of photonic heterostructure composed of alternating ferroelectric molecular layers and optically anisotropic layers of another material are considered. A numerical simulation of the real prototype of this heterostructure, which can be prepared by the Langmuir-Blodgett method from layers of a ferroelectric copolymer (polyvinylidene fluoride trifluoroethylene) and an azo dye with photoinduced optical anisotropy, has been performed. It is shown that this heterostructure has pronounced polarization optical properties and yields a significant change in the polarization state of light at the photonic band edges in the ranges of the maximum density of photon states. The latter property can be used to obtain an enhanced electro-optic effect at small spectral shifts of the photonic band (the latter can be provided by the piezoelectric effect in ferroelectric layers).

  12. Optical XOR gate

    DOE Patents [OSTI]

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  13. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    SciTech Connect (OSTI)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6 through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  14. Resonance formation in photon-photon collisions

    SciTech Connect (OSTI)

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  15. Photon Energy Services Photon | Open Energy Information

    Open Energy Info (EERE)

    the design and implementation of the solar PV system as well as the provision of maintenance. References: Photon Energy Services (Photon)1 This article is a stub. You can...

  16. Athermalization of resonant optical devices via thermo-mechanical feedback

    DOE Patents [OSTI]

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  17. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2013 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question....

  18. Improvement of lateral resolution of spectral domain optical coherence tomography images in out-of-focus regions with holographic data processing techniques

    SciTech Connect (OSTI)

    Moiseev, A A; Gelikonov, G V; Terpelov, D A; Shilyagin, P A; Gelikonov, V M

    2014-08-31

    An analogy between spectral-domain optical coherence tomography (SD OCT) data and broadband digital holography data is considered. Based on this analogy, a method for processing SD OCT data, which makes it possible to construct images with a lateral resolution in the whole investigated volume equal to the resolution in the in-focus region, is developed. Several issues concerning practical application of the proposed method are discussed. (laser biophotonics)

  19. Superconducting nanowire single photon detector on diamond

    SciTech Connect (OSTI)

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lon?ar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310?nm and 632?nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300?pm Root Mean Square surface roughness are obtained.

  20. Quantum Enabled Security (QES) for Optical Communications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory has developed Quantum Enabled Security (QES), a revolutionary new cybersecurity capability using quantum (single-photon) communications integrated with optical...

  1. Light trapping in thin film solar cells using textured photonic crystal

    DOE Patents [OSTI]

    Yi, Yasha; Kimerling, Lionel C.; Duan, Xiaoman; Zeng, Lirong

    2009-01-27

    A solar cell includes a photoactive region that receives light. A photonic crystal is coupled to the photoactive region, wherein the photonic crystal comprises a distributed Bragg reflector (DBR) for trapping the light.

  2. Photon-Photon Collisions -- Past and Future

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; /SLAC

    2005-12-02

    I give a brief review of the history of photon-photon physics and a survey of its potential at future electron-positron colliders. Exclusive hadron production processes in photon-photon and electron-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes. There are also important high energy {gamma}{gamma} and e{gamma} tests of quantum chromodynamics, including the production of jets in photon-photon collisions, deeply virtual Compton scattering on a photon target, and leading-twist single-spin asymmetries for a photon polarized normal to a production plane. Since photons couple directly to all fundamental fields carrying the electromagnetic current including leptons, quarks, W's and supersymmetric particles, high energy {gamma}{gamma} collisions will provide a comprehensive laboratory for Higgs production and exploring virtually every aspect of the Standard Model and its extensions. High energy back-scattered laser beams will thus greatly extend the range of physics of the International Linear Collider.

  3. XrayOpticsConstants

    Energy Science and Technology Software Center (OSTI)

    2005-06-20

    This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).

  4. Scalable optical quantum computer

    SciTech Connect (OSTI)

    Manykin, E A; Mel'nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre 'Kurchatov Institute', Moscow (Russian Federation)

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  5. Soft X-ray microscopy in the spectral region of 'carbon window' with the use of multilayer optics and a laser-plasma source

    SciTech Connect (OSTI)

    Artyukov, I. A. Vinogradov, A. V.; Bugayev, Ye. A.; Devizenko, A. Yu.; Kondratenko, V. V.; Kasyanov, Yu. S.

    2009-11-15

    This paper reports on the fabrication and testing of multilayer mirrors for X-ray optical systems operating in the 'carbon window' region (at wavelengths from 4.5 to 5.0 nm) and the results of their application in soft X-ray imaging of the internal structure of organic objects. The developed approaches to the fabrication and control of graded Co/C multilayer coatings have made it possible to create an X-ray multimirror system with a maximum known entrance aperture and throughput. The use of the developed high-spatial-resolution X-ray optics can significantly extend the field of practical application of soft X-ray absorption microscopy based on compact laser-plasma sources.

  6. Di-photon and photon + b/c production cross sections at Ecm = 1.96- TeV

    SciTech Connect (OSTI)

    Gajjar, Anant; /Liverpool U.

    2005-05-01

    Measurements of the di-photon cross section have been made in the central region and are found to be in good agreement with NLO QCD predictions. The cross section of events containing a photon and additional heavy flavor jet have also been measured, as well as the ratio of photon + b to photon + c. The statistically limited sample shows good agreement with Leading Order predictions.

  7. Coherence revivals in two-photon frequency combs

    SciTech Connect (OSTI)

    Torres-Company, Victor; Lancis, Jesus; Lajunen, Hanna; Friberg, Ari T.

    2011-09-15

    We describe and theoretically analyze the self-imaging Talbot effect of entangled photon pairs in the time domain. Rich phenomena are observed in coherence propagation along dispersive media of mode-locked two-photon states with frequency entanglement exhibiting a comblike correlation function. Our results can be used to remotely transfer frequency standards through optical fiber networks with two-photon light, avoiding the requirement of dispersion compensation.

  8. Photonic Doppler Velocimetry Multiplexing Techniques: Evaluation of Photonic Techniques

    SciTech Connect (OSTI)

    Edward Daykin

    2012-05-24

    This poster reports progress related to photonic technologies. Specifically, the authors developed diagnostic system architecture for a Multiplexed Photonic Doppler Velocimetry (MPDV) that incorporates frequency and time-division multiplexing into existing PDV methodology to provide increased channel count. Current MPDV design increases number of data records per digitizer channel 8x, and also operates as a laser-safe (Class 3a) system. Further, they applied heterodyne interferometry to allow for direction-of-travel determination and enable high-velocity measurements (>10 km/s) via optical downshifting. They also leveraged commercially available, inexpensive and robust components originally developed for telecom applications. Proposed MPDV architectures employ only commercially available, fiber-coupled hardware.

  9. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  10. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  11. Backconversion-limited optical parametric oscillators

    DOE Patents [OSTI]

    Alford, William J.; Smith, Arlee V.

    2000-11-14

    A more efficient class of optical parametric oscillators is made possible by introducing means for reducing signal losses due to backconversion of signal photons in the nonlinear optical medium.

  12. The Importance of Photonics Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Global Research. I would like to further highlight the importance of Photonics and Optics by pointing to a recent report written by the US National Academies with the help of...

  13. AE Photonics | Open Energy Information

    Open Energy Info (EERE)

    Photonics Jump to: navigation, search Name: AE Photonics Place: Germany Product: Germany-based PV system and component supplier References: AE Photonics1 This article is a stub....

  14. Design, Assembly, and Testing of a Photon Doppler Velocimetry Probe

    SciTech Connect (OSTI)

    Malone, Robert M; Cox, Brian C; Daykin, Edward P; DeVore, Douglas O; Esquibel, David L; Frayer, Daniel K; Frogget, Brent C; Gallegos, Cenobio H; Kaufman, Morris I; McGillivray, Kevin D; Romero, Vincent T; Briggs, Matthew E; Furlanetto, Michael R; Holtkamp, David B; Pazuchanics, Peter; Primas, Lori E; Shinas, Michael A

    2011-08-21

    A novel fiber-optic probe measures the velocity distribution of an imploding surface along many lines of sight. Reflected light from each spot on the moving surface is Doppler shifted with a small portion of this light propagating backwards through the launching fiber. The reflected light is mixed with a reference laser in a technique called photon Doppler velocimetry, providing continuous time records. Within the probe, a matrix array of 56 single-mode fibers sends light through an optical relay consisting of three types of lenses. Seven sets of these relay lenses are grouped into a close-packed array allowing the interrogation of seven regions of interest. A six-faceted prism with a hole drilled into its center directs the light beams to the different regions. Several types of relay lens systems have been evaluated, including doublets and molded aspheric singlets. The optical design minimizes beam diameters and also provides excellent imaging capabilities. One of the fiber matrix arrays can be replaced by an imaging coherent bundle. This close-packed array of seven relay systems provides up to 476 beam trajectories. The pyramid prism has its six facets polished at two different angles that will vary the density of surface point coverage. Fibers in the matrix arrays are angle polished at 8{sup o} to minimize back reflections. This causes the minimum beam waist to vary along different trajectories. Precision metrology on the direction cosine trajectories is measured to satisfy environmental requirements for vibration and temperature.

  15. Photonic Design for Photovoltaics

    SciTech Connect (OSTI)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  16. Integrated nonlinear photonics: Emerging applications and ongoing challenges - A mini review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hendrickson, Scott M.; Foster, Amy C.; Camacho, Ryan M.; Clader, B. David

    2014-11-26

    In this paper, we provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.

  17. Integrated nonlinear photonics. Emerging applications and ongoing challenges - A mini review

    SciTech Connect (OSTI)

    Hendrickson, Scott M.; Foster, Amy C.; Camacho, Ryan M.; Clader, B. David

    2014-11-26

    In this paper, we provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.

  18. Optical and magneto-optical studies of martensitic transformation...

    Office of Scientific and Technical Information (OSTI)

    Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. ...

  19. Yoctosecond Photon Pulses from Quark-Gluon Plasmas

    SciTech Connect (OSTI)

    Ipp, Andreas; Keitel, Christoph H.; Evers, Joerg

    2009-10-09

    Present ultrafast laser optics is at the frontier between atto- and zeptosecond photon pulses, giving rise to unprecedented applications. We show that high-energetic photon pulses down to the yoctosecond time scale can be produced in heavy-ion collisions. We focus on photons produced during the initial phase of the expanding quark-gluon plasma. We study how the time evolution and properties of the plasma may influence the duration and shape of the photon pulse. Prospects for achieving double-peak structures suitable for pump-probe experiments at the yoctosecond time scale are discussed.

  20. Lasing modes in polycrystalline and amorphous photonic structures

    SciTech Connect (OSTI)

    Yang, Jin-Kyu; Noh, Heeso; Liew, Seng Fatt; Rooks, Michael J.; Solomon, Glenn S.; Cao Hui

    2011-09-15

    We systematically studied the lasing characteristics in photonic polycrystalline and amorphous structures. 2D arrays of air holes were fabricated in a GaAs membrane. InAs quantum dots embedded in the membrane provide gain for lasing under optical pumping. The lasing modes are spatially localized, and blue shift as the structural order becomes short ranged. Our three-dimensional numerical simulations reveal that the out-of-plane leakage of the lasing mode dominates over the in-plane leakage. The lasing modes in a photonic polycrystalline move away from the center frequency of the photonic band gap to reduce the out-of-plane leakage. In a photonic amorphous structure, the short-range order improves optical confinement and enhances the quality factor of resonances. Understanding the behavior of photonic polycrystalline laser and amorphous laser opens the possibility of controlling lasing characteristic by varying the degree of structural order.

  1. Photonic crystal devices formed by a charged-particle beam

    DOE Patents [OSTI]

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  2. Photonically Engineered Incandescent Emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  3. Photonically engineered incandescent emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  4. Magnetic field role on the structure and optical response of photonic crystals based on ferrofluids containing Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} nanoparticles

    SciTech Connect (OSTI)

    Lpez, J. Gonzlez, Luz E.; Quionez, M. F.; Gmez, M. E.; Porras-Montenegro, N.; Zambrano, G.

    2014-05-21

    Ferrofluids based on magnetic Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} ferrite nanoparticles were prepared by co-precipitation method from aqueous salt solutions of Co (II), ZnSO{sub 4}, and Fe (III) in an alkaline medium. Ferrofluids placed in an external magnetic field show properties that make them interesting as magneto-controllable soft photonic crystals. Morphological and structural characterizations of the samples were obtained from Scanning Electron Microscopy and Transmission Electron Microscopy studies. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature. Herein, the Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} samples showed superparamagnetic behavior, according to hysteresis loop results. Taking in mind that the Co-Zn ferrite hysteresis loop is very small, our magnetic nanoparticles can be considered soft magnetic material with interesting technological applications. In addition, by using the plane-wave expansion method, we studied the photonic band structure of 2D photonic crystals made of ferrofluids with the same nanoparticles. Previous experimental results show that a magnetic field applied perpendicular to the ferrofluid plane agglomerates the magnetic nanoparticles in parallel rods to form a hexagonal 2D photonic crystal. We calculated the photonic band structure of photonic crystals by means of the effective refractive index of the magnetic fluid, basing the study on the Maxwell-Garnett theory, finding that the photonic band structure does not present any band gaps under the action of applied magnetic field strengths used in our experimental conditions.

  5. Photonics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > The Photonics Lab at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The Photonics Lab at GE Global Research Loucas Tsakalakos, the Photonics lab manager at GE Global Research, introduces photonics and shares the lab's work on innovative ways to use light. You Might Also Like

  6. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Photons & Fusion Newsletter May 2012 Reducing the Time to Grow Good Cryogenic Layers One of the most demanding aspects of preparing targets for NIF ignition experiments is...

  7. Overview | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Overview: Introduction APS Systems Map LINAC Booster Synchrotron Storage Ring Insertion Devices Experiment Hall LOMs & Beamlines Overview of the APS The Advanced Photon Source...

  8. Beamlines | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamlines Beamlines Home Beamlines Directory Research Techniques Sectors Directory Status and Schedule Safety and Training Beamlines The Advanced Photon Source consists of 34...

  9. Resonances in photon-photon scattering

    SciTech Connect (OSTI)

    Chanowitz, M.S.

    1988-06-01

    Selected topics in meson spectroscoy are reviewed as they are illuminated by photon-photon collisons. Subjects include the S*/f/sub 0/ (975) and delta/a/sub 0/ (980) as /ovr qq/qq candidates, the /iota///eta/ (1460) and theta/f/sub 2/ (1700) as glueball candidates, and the spin 1 X(1420) seen in tagged events which represents new physics whether its parity is positive, J/sup PC/ = 1/sup + +/, or negative with exotic J/sup PC/ = 1/sup /minus/+/. 57 refs., 2 figs., 1 tab.

  10. A micron resolution optical scanner for characterization of silicon detectors

    SciTech Connect (OSTI)

    Shukla, R. A.; Dugad, S. R. Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.; Garde, C. S.

    2014-02-15

    The emergence of high position resolution (?10 ?m) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 ?m at 1 ? ? level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 ?m) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  11. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  12. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  13. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science on NIF: Exploring the Physics of Star Formation Article on MOIRE Optics on Cover of Applied Optics Mode 1 Drive Asymmetry in NIF Inertial Confinement Fusion...

  14. Projection imaging of photon beams by the Cerenkov effect

    SciTech Connect (OSTI)

    Glaser, Adam K.; Davis, Scott C.; McClatchy, David M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2013-01-15

    Purpose: A novel technique for beam profiling of megavoltage photon beams was investigated for the first time by capturing images of the induced Cerenkov emission in water, as a potential surrogate for the imparted dose in irradiated media. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire 2D projection images of Cerenkov emission from a 4 Multiplication-Sign 4 cm{sup 2} 6 MV linear accelerator (LINAC) x-ray photon beam operating at a dose rate of 400 MU/min incident on a water tank with transparent walls. The ICCD acquisition was gated to the LINAC sync pulse to reduce background light artifacts, and the measurement quality was investigated by evaluating the signal to noise ratio and measurement repeatability as a function of delivered dose. Monte Carlo simulations were used to derive a calibration factor for differences between the optical images and deposited dose arising from the anisotropic angular dependence of Cerenkov emission. Finally, Cerenkov-based beam profiles were compared to a percent depth dose (PDD) and lateral dose profile at a depth of d{sub max} from a reference dose distribution generated from the clinical Varian ECLIPSE treatment planning system (TPS). Results: The signal to noise ratio was found to be 20 at a delivered dose of 66.6 cGy, and proportional to the square root of the delivered dose as expected from Poisson photon counting statistics. A 2.1% mean standard deviation and 5.6% maximum variation in successive measurements were observed, and the Monte Carlo derived calibration factor resulted in Cerenkov emission images which were directly correlated to deposited dose, with some spatial issues. The dose difference between the TPS and PDD predicted by Cerenkov measurements was within 20% in the buildup region with a distance to agreement (DTA) of 1.5-2 mm and {+-}3% at depths beyond d{sub max}. In the lateral profile, the dose difference at the beam penumbra was within {+-}13% with a DTA of 0-2 mm

  15. Sandia National Labs: PCNSC: Research: Optical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Sciences The focus of the Optical Sciences thrust is to understand and exploit the elegant interaction between light and matter. Our research portfolio encompasses the generation, transmission, manipulation, and detection of light and the development of optical materials with user defined characteristics. We emphasize innovative work in laser and optical materials development, nonlinear optics, spectroscopy, remote sensing, and photon-material interactions. In partnership with our DOE,

  16. Method for Creating Photonic Band Gap Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Creating Photonic Band Gap Materials Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Innovative microstructures that can direct light in a manner similar to the way semiconductors can influence electrons can be produced by creating what is termed a photonic band gap. These microstructures have the potential to change the way optoelectronic devices, such as photodiodes, LEDs, and integrated optical circuit elements, are designed and used. Ames Laboratory

  17. Electronic and photonic power applications

    SciTech Connect (OSTI)

    Walko, R.J.; Ashley, C.S.; Brinker, C.J.; Reed, S.T.; Renschler, C.L. ); Shepodd, T.J. ); Ellefson, R.E.; Gill, J.T. ); Leonard, L.E. )

    1990-01-01

    Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

  18. Photon detector system

    DOE Patents [OSTI]

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  19. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    news Photons & Fusion Newsletter - 2014 May ARC Beamlet Profiles NIF Petawatt Laser Is on ... An article in the Feb. 12 online issue of the journal Nature reports that fusion fuel ...

  20. Photonics Research and Development

    SciTech Connect (OSTI)

    Pookpanratana, Sujitra; Shlayan, Neveen; Venkat, Rama; Das, Bisjwajit; Boehm, Bob; Heske, Clemens; Fraser, Donald; Moustakas, Theodore

    2010-01-15

    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV’s Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home’s electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation’s energy consumption – by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately

  1. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source Parameters Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They

  2. Narrow-band optical transmission of metallic nanoslit arrays

    SciTech Connect (OSTI)

    Sun Zhijun; Yang Ying; Zuo Xiaoliu

    2012-10-22

    Metallic nanoslit arrays usually demonstrate wide transmission bands for transverse-magnetic-polarized incidence light. Here, we show that by introducing multi-dielectric layers underneath the metallic structure layer on the substrate, a narrow peak is formed, whose bandwidth can be down to a few nanometers. Three types of resonance modes in the region under the metal layer are identified responsible for the formation of the peak, i.e., a two-dimensional cavity resonance mode, which supports optical transmission, and two in-plane hybrid surface plasmon resonance modes locating on both sides of the peak that suppresses the transmission. Such structures can be applied in advanced photonic devices.

  3. Microcavity Polaritonics: Optically-Steering Interacting Quantum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bio: Prof. Jeremy J. Baumberg FRS, directs a UK Nano-Photonics Centre at the University of Cambridge and has extensive experience in developing optical materials structured on the ...

  4. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Study of 'Native' Laser Damage Precursors Described in Optics Express In a paper in the Feb. 10 issue of Optics Express, LLNL researchers Nan Shen, Jeff Bude, and Christopher Carr ...

  5. Femtosecond optical clock

    SciTech Connect (OSTI)

    Bagaev, Sergei N; Denisov, Vladimir I; Zakharyash, Valerii F; Kashirsky, Aleksandr V; Klementyev, Vasilii M; Kuznetsov, Sergei A; Korel', I I; Pivtsov, V S

    2004-12-31

    New advances in the field of synthesis of optical frequencies and the development of a new generation of optical clocks are considered. The use of mode-locked femtosecond lasers and fibre emission-spectrum stretchers allows the synthesis of any frequencies (from radio-frequencies to the UV region) and drastically simplifies the structure of an optical clock. The schemes of femtosecond optical clock are presented and the application of tapered optical fibres in them is described. (optical metrology and quantum frequency standards)

  6. Photon detector configured to employ the Gunn effect and method of use

    DOE Patents [OSTI]

    Cich, Michael J

    2015-03-17

    Embodiments disclosed herein relate to photon detectors configured to employ the Gunn effect for detecting high-energy photons (e.g., x-rays and gamma rays) and methods of use. In an embodiment, a photon detector for detecting high-energy photons is disclosed. The photon detector includes a p-i-n semiconductor diode having a p-type semiconductor region, an n-type semiconductor region, and a compensated i-region disposed between the p-type semiconductor region and the n-type semiconductor region. The compensated i-region and has a width of about 100 .mu.m to about 400 .mu.m and is configured to exhibit the Gunn effect when the p-i-n semiconductor diode is forward biased a sufficient amount. The compensated i-region is doped to include a free carrier concentration of less than about 10.sup.10 cm.sup.-3.

  7. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment

    DOE Patents [OSTI]

    Pereverzev, Sergey

    2016-06-14

    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  8. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B. L.; Gullikson, E. M.; Davis, J. C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  9. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    DOE Patents [OSTI]

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  10. APS Organization Chart | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Organization Chart The Advanced Photon Source (APS) organization comprises three divisions and one project office. Advanced Photon Source Organization Photon Sciences Overview...

  11. Photonic surfaces for designable nonlinear power shaping

    SciTech Connect (OSTI)

    Biswas, Roshni Povinelli, Michelle L.

    2015-02-09

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest.

  12. Design of the First Infrared Beamline at the Siam Photon Laboratory

    SciTech Connect (OSTI)

    Pattanasiriwisawa, W.; Songsiriritthigul, P.; Dumas, P.

    2010-06-23

    This report presents the optical design and optical simulations for the first infrared beamline at the Siam Photon Laboratory. The beamline collects the edge radiation and bending magnet radiation, producing from the BM4 bending magnet of the 1.2 GeV storage ring of the Siam Photon Source. The optical design is optimized for the far- to mid-infrared spectral range (4000-100 cm{sup -1}) for microspectroscopic applications. The optical performance has been examined by computer simulations.

  13. Sunlight Photonics | Open Energy Information

    Open Energy Info (EERE)

    Photonics Place: South Plainfield, New Jersey Zip: 7080 Product: New Jersey-based stealth thin-film PV maker. References: Sunlight Photonics1 This article is a stub. You can help...

  14. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  15. Nanowire photonic crystal waveguides for single-atom trapping and strong light-matter interactions

    SciTech Connect (OSTI)

    Yu, S.-P.; Hood, J. D.; Muniz, J. A.; Martin, M. J.; Hung, C.-L.; Kimble, H. J.; Norte, Richard; Meenehan, Sen M.; Cohen, Justin D.; Painter, Oskar

    2014-03-17

    We present a comprehensive study of dispersion-engineered nanowire photonic crystal waveguides suitable for experiments in quantum optics and atomic physics with optically trapped atoms. Detailed design methodology and specifications are provided, as are the processing steps used to create silicon nitride waveguides of low optical loss in the near-IR. Measurements of the waveguide optical properties and power-handling capability are also presented.

  16. Two-photon spectroscopy of excitons with entangled photons

    SciTech Connect (OSTI)

    Schlawin, Frank, E-mail: Frank.Schlawin@physik.uni-freiburg.de [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States) [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Physikalisches Institut, Albert-Ludwigs-Universitt Freiburg, Hermann-Herder-Strae 3, 79108 Freiburg (Germany); Mukamel, Shaul, E-mail: smukamel@uci.edu [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)] [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)

    2013-12-28

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  17. Enhancement of second harmonic generation in NaNO{sub 2}-infiltrated opal photonic crystal using structural light focusing

    SciTech Connect (OSTI)

    Zaytsev, Kirill I. Yurchenko, Stanislav O.

    2014-08-04

    Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO{sub 2}-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulations of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.

  18. Transversely stable soliton trains in photonic lattices

    SciTech Connect (OSTI)

    Yang Jianke

    2011-09-15

    We report the existence of transversely stable soliton trains in optics. These stable soliton trains are found in two-dimensional square photonic lattices when they bifurcate from X-symmetry points with saddle-shaped diffraction inside the first Bloch band and their amplitudes are above a certain threshold. We also show that soliton trains with low amplitudes or bifurcated from edges of the first Bloch band ({Gamma} and M points) still suffer transverse instability. These results are obtained in the continuous lattice model and are further corroborated by the discrete model.

  19. Optical modulator including grapene

    DOE Patents [OSTI]

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  20. In-plane emission of indistinguishable photons generated by an integrated quantum emitter

    SciTech Connect (OSTI)

    Kalliakos, Sokratis Bennett, Anthony J.; Ward, Martin B.; Ellis, David J. P.; Skiba-Szymanska, Joanna; Shields, Andrew J.; Brody, Yarden; Schwagmann, Andre; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A.

    2014-06-02

    We demonstrate the emission of indistinguishable photons along a semiconductor chip originating from carrier recombination in an InAs quantum dot. The emitter is integrated in the waveguiding region of a photonic crystal structure, allowing for on-chip light propagation. We perform a Hong-Ou-Mandel-type of experiment with photons collected from the exit of the waveguide, and we observe two-photon interference under continuous wave excitation. Our results pave the way for the integration of quantum emitters in advanced photonic quantum circuits.

  1. Photon-counting solid-state photomultiplier

    SciTech Connect (OSTI)

    Petroff, M.D.; Stapelbroek, M.G.

    1989-02-01

    The Solid-State Photomultiplier is a silicon device capable of continuous detection of individual photons in the wave length range from 0.4 to 28 ..mu..m. Operated with an applied bias near 7 volts the device responds to the absorption of an incident photon with a submicrosecond-rise-time current pulse with a narrow amplitude distribution well above the electronic readout noise level. Optimal photon-counting performance occurs between 6 and 10 K and for count rates less than 10/sup 10/ counts/s per cm/sup 2/ of detector area. A 60% counting quantum efficiency has been demonstrated at 20 ..mu..m, and near 60% was observed in the visible light region. The underlying mechanism involves extremely fast internal charge amplification by impact ionization of impurity-band electrons and results in a pulse for each photoelectrically or thermally induced free carrier. The thermally induced dark pulse rate at 7 K is sufficiently low that background limited detector performance is obtained at a background of less than 10/sup 6/ photons/cm/sup 2/s.

  2. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 / december Photons & Fusion Newsletter December 2011 MIT Plasma Science Lab Develops NIF Diagnostics A typical NIF experiment is over in a few billionths of a second. Obtaining meaningful information about what occurs during this extremely brief time period, in and around a tiny target, has required the design and development of a new breed of detectors, cameras, and other diagnostic instruments, many of which have been created through partnerships with universities and national

  3. Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion

    SciTech Connect (OSTI)

    LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

    2003-03-01

    Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

  4. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    SciTech Connect (OSTI)

    Henry Hao-Chuan Kang

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  5. Projection optics box

    DOE Patents [OSTI]

    Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  6. High-speed photonic modulator designs

    SciTech Connect (OSTI)

    DeRose, Christopher; Zortman, William A

    2015-02-03

    An optical device includes a microdisk optical resonator element. The microdisk resonator element is formed on a substrate and has upper and lower portions respectively distal and proximal the substrate. An arcuate semiconductor contact region partially surrounds the microdisk resonator element. A first modulator electrode is centrally formed on the upper portion of the microdisk resonator element, and a second modulator electrode is formed on the arcuate contact region. A laminar semiconductor region smaller in thickness than the microdisk resonator element separates the arcuate contact region from the microdisk resonator element and is formed on the substrate so as to electrically connect the arcuate contact region to the lower portion of the microdisk resonator element.

  7. Photonic-band-gap effects in two-dimensional polycrystalline and amorphous structures

    SciTech Connect (OSTI)

    Yang, Jin-Kyu; Noh, Heeso; Liew, Seng-Fatt; Schreck, Carl; Guy, Mikhael I.; O'Hern, Corey S.; Cao, Hui

    2010-11-15

    We study numerically the density of optical states (DOS) in two-dimensional photonic structures with short-range positional order and observe a transition from polycrystalline to amorphous photonic systems. In polycrystals, photonic band gaps (PBGs) are formed within individual domains, which leads to a depletion of the DOS similar to that in periodic structures. In amorphous photonic media, the domain sizes are too small to form PBGs, thus the depletion of the DOS is weakened significantly. The critical domain size that separates the polycrystalline and amorphous regimes is determined by the attenuation length of Bragg scattering, which depends not only on the degree of positional order but also the refractive-index contrast of the photonic material. Even with relatively low-refractive-index contrast, we find that modest short-range positional order in photonic structures enhances light confinement via collective scattering and interference.

  8. Optical induction scheme for assembling nondiffracting aperiodic Vogel spirals

    SciTech Connect (OSTI)

    Diebel, Falko Rose, Patrick; Boguslawski, Martin; Denz, Cornelia

    2014-05-12

    We introduce an experimental approach to realize aperiodic photonic lattices based on multiplexing of nondiffracting Bessel beams. This holographic optical induction scheme takes advantage of the well localized Bessel beam as a basis to assemble two-dimensional photonic lattices. We present the realization of an optically induced two-dimensional golden-angle Vogel spiral lattice, which belongs to the family of deterministic aperiodic structures. With our technique, a very broad class of photonic refractive index landscapes now becomes accessible to optical induction, which could not be realized with established distributed holographic techniques.

  9. Optical Square-Wave Clock Generation Based on an All-Optical Flip-Flop

    SciTech Connect (OSTI)

    Kaplan, A.M.; Agrawal, G.P.; Maywar, D.N.

    2010-03-10

    We demonstrate optical square-wave clock generation based on an all-optical flip-flop. The bistable output power from a resonant-type semiconductor optical amplifier (SOA) is switched ON and OFF by modulating its input with its output via cross-gain modulation in a traveling-wave SOA. All active components are driven by dc currents, and the wavelength and clock frequency are selectable. A clock frequency of 3.5 MHz is demonstrated, limited by the time of flight between bulk optical components. Optical square-wave clock signals are promising for applications in photonic integrated circuits and all-optical signal processing.

  10. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety

  11. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety

  12. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety

  13. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety

  14. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety

  15. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety

  16. Media Center | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distributed to all APS users and others interested in the APS. Research Highlights Books Articles on Advanced Photon Source research and engineering highlights that are written...

  17. Lightwave Photonics | Open Energy Information

    Open Energy Info (EERE)

    Lightwave Photonics Place: Encinitas, California Zip: 92024 Product: California-based LED chip manufacturer startup. Coordinates: 33.045436, -117.292518 Show Map Loading...

  18. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Library Related Links: APS Colloquium APS Podcasts APS Today More videos: Introduction to the APS Physics of the Blues Now Playing: Building the Advanced Photon Source This...

  19. APS Science | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science APS Science features articles on Advanced Photon Source research and engineering highlights that are written for the interested public as well as the synchrotron x-ray,...

  20. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archives APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Featured Videos: Introduction to the Advanced Photon...

  1. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archives APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Now Playing: The Advanced Photon Source More videos:...

  2. Two photon spectroscopy of UF6 in the near ultraviolet

    SciTech Connect (OSTI)

    Bernstein, E.R.; Kennedy, P.M.

    1981-03-01

    The two photon excited fluorescence excitation spectrum of UF6 was observed in the region 410 to 315 nm. The spectrum was virtually indistinguishable from the one photon absorption in this region. No vibronic structure was observed in absorption or dispersed emission. These data indicate a high density of u and g states for UF6 in this energy range and facile photochemical decomposition. Emission intensity was found to be proportional to laser power to the 3.0 to 3.6 power.

  3. Polarization observables from the photoproduction of omega-mesons using linearly polarized photons

    SciTech Connect (OSTI)

    D. Martinez, P.L. Cole, CLAS Collaboration

    2012-04-01

    We report on the photon beam asymmetry, {Sigma}, of the {omega} meson decaying into {pi}{sup +}, {pi}{sup -}, {pi}{sup 0} using a beam of linearly polarized photons in the photon energy region of E{sub {gamma}} = 1.9 GeV. These preliminary results are from the summer 2005 g8b dataset, which were collected with the CLAS detector in Hall B of Jefferson Lab.

  4. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOE Patents [OSTI]

    Cameron, S.M.; Bliss, D.E.; Kimmel, M.W.; Neal, D.R.

    1999-08-10

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media. 13 figs.

  5. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOE Patents [OSTI]

    Cameron, Stewart M.; Bliss, David E.; Kimmel, Mark W.; Neal, Daniel R.

    1999-01-01

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media.

  6. Polarization and spectral characteristics of the two-photon luminescence from colloidal gold nanoparticles excited by tunable laser radiation

    SciTech Connect (OSTI)

    Yashunin, D. A. Korytin, A. I.; Stepanov, A. N.

    2015-12-15

    We have experimentally studied two-photon luminescence from a colloidal solution of spherical gold nanoparticles by tuning the wavelength of the exciting radiation. The measured polarization and spectral characteristics of the two-photon luminescence signal show that the observed nonlinear optical response is determined by the dimers present in the solution with a concentration of a few percent of total nanoparticle number.

  7. Photonic polymer-blend structures and method for making

    DOE Patents [OSTI]

    Barnes, Michael D.

    2004-06-29

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  8. Final Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    final optics Final Optics Schematic layout of NIF's final optics assembly (FOA). The suite of optics for one beamline is on the right. The final optics assemblies (FOAs) are the last element of the main laser system and the first of the target area systems. Each FOA contains four integrated optics modules (IOMs) that incorporate beam conditioning, frequency conversion, focusing, diagnostic sampling, and debris shielding capabilities into a single compact assembly. These optics are shown in the

  9. Method of photon spectral analysis

    DOE Patents [OSTI]

    Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.

    1993-04-27

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.

  10. Method of photon spectral analysis

    DOE Patents [OSTI]

    Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.

    1993-01-01

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.

  11. The SIAM Photon Source

    SciTech Connect (OSTI)

    Pairsuwan, Weerapong

    2007-01-19

    A short history of the SIAM Photon Source in Thailand is described. The facility is based on the 1 GeV storage ring obtained from the SORTEC consortium in Japan. After a redesign to include insertion straight sections it produced the first light in December 2001 and the first beam line became operational in early 2002. Special difficulties appear when a synchrotron light facility is obtained by donation, which have mostly to do with the absence of human resource development that elsewhere is commonly accomplished during design and construction. Additional problems arise by the distance of a developing country like Thailand from the origin of technical parts of the donation. A donation does not provide time to generate local capabilities or include in the technical design locally obtainable parts. This makes future developments, repairs and maintenance more time consuming, difficult and expensive than it should be. In other cases, parts of components are proprietary or obsolete or both which requires redesign and engineering at a time when the replacement part should be available to prevent stoppage of operation.The build-up of a user community is very difficult, especially when the radiation spectrum is confined to the VUV regime. Most of scientific interest these days is focused on the x-ray regime. Due to its low beam energy, the SIAM storage ring did not produce useful x-ray intensities and we are therefore in the midst of an upgrade to produce harder radiation. The first step has been achieved with a 20% increase of energy to 1.2 GeV. This step shifts the critical photon energy of bending magnet radiation from 800 eV to 1.4 keV providing useful radiation up to 7 keV. A XAS-beam line has been completed in 2005 and experimentation is very active by now. The next step is to install a 6.4 T wavelength shifter by the end of 2006 resulting in a critical photon energy of 6.15 keV. Further upgrades are planed for the comming years.

  12. Optical set-reset latch

    DOE Patents [OSTI]

    Skogen, Erik J.

    2013-01-29

    An optical set-reset (SR) latch is formed from a first electroabsorption modulator (EAM), a second EAM and a waveguide photodetector (PD) which are arranged in an optical and electrical feedback loop which controls the transmission of light through the first EAM to latch the first EAM in a light-transmissive state in response to a Set light input. A second waveguide PD controls the transmission of light through the second EAM and is used to switch the first EAM to a light-absorptive state in response to a Reset light input provided to the second waveguide PD. The optical SR latch, which may be formed on a III-V compound semiconductor substrate (e.g. an InP or a GaAs substrate) as a photonic integrated circuit (PIC), stores a bit of optical information and has an optical output for the logic state of that bit of information.

  13. Sub-picosecond optical switching with a negative index metamaterial...

    Office of Scientific and Technical Information (OSTI)

    This has the potential for Tbs aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices. Authors: Dani, Keshav M 1 ; Upadhya, ...

  14. Transpiration purged optical probe

    DOE Patents [OSTI]

    2004-01-06

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  15. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F. Avraham; Barbour, Randall L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

  16. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F.A.; Barbour, R.L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.

  17. Photon detectors with gaseous amplification

    SciTech Connect (OSTI)

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  18. Photon enhanced thermionic emission

    DOE Patents [OSTI]

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  19. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOE Patents [OSTI]

    Bischel, William K. [Menlo Park, CA; Jacobs, Ralph R. [Livermore, CA; Prosnitz, Donald [Hamden, CT; Rhodes, Charles K. [Palo Alto, CA; Kelly, Patrick J. [Fort Lewis, WA

    1979-02-20

    Method and apparatus for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH.sub.3) or methyl fluoride (CH.sub.3 F) is optically pumped by a pair of CO.sub.2 lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level.

  20. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOE Patents [OSTI]

    Bischel, W.K.; Jacobs, R.R.; Prosnitz, D.P.; Rhodes, C.K.; Kelly, P.J.

    1979-02-20

    Method and apparatus are disclosed for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH[sub 3]) or methyl fluoride (CH[sub 3]F) is optically pumped by a pair of CO[sub 2] lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level. 3 figs.

  1. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    SciTech Connect (OSTI)

    Liebermeister, Lars Petersen, Fabian; Münchow, Asmus v.; Burchardt, Daniel; Hermelbracht, Juliane; Tashima, Toshiyuki; Schell, Andreas W.; Benson, Oliver; Meinhardt, Thomas; Krueger, Anke; Stiebeiner, Ariane; Rauschenbeutel, Arno; Weinfurter, Harald; Weber, Markus

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

  2. Advanced Solar Photonics | Open Energy Information

    Open Energy Info (EERE)

    Advanced Solar Photonics Place: Lake Mary, Florida Zip: 32746 Product: Florida-based thin film PV module manufacturer. References: Advanced Solar Photonics1 This article is...

  3. A highly conspicuous mineralized composite photonic architecture...

    Office of Scientific and Technical Information (OSTI)

    A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet Title: A highly conspicuous mineralized composite photonic ...

  4. Photonic Metamaterials, Nano- plasmonics and Superlens | MIT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nano-scale science and technology, meta- materials, nano-photonics and bio-technologies. ... Bulletin (Materials Research Society), Photonics Spectra, Materials Today, Physics Web, ...

  5. Higher-order photon correlations in pulsed photonic crystal nanolasers

    SciTech Connect (OSTI)

    Elvira, D.; Hachair, X.; Braive, R.; Beaudoin, G.; Robert-Philip, I.; Sagnes, I.; Abram, I.; Beveratos, A.; Verma, V. B.; Baek, B.; Nam, S. W.; Stevens, M. J.; Dauler, E. A.

    2011-12-15

    We report on the higher-order photon correlations of a high-{beta} nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single-photon detector we measured g{sup (n)}(0-vector) with n=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of photons at the lasing threshold.

  6. Electron Photon Interaction Cross Sections

    Energy Science and Technology Software Center (OSTI)

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text formatmore » that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).« less

  7. Quantum Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Quantum Optics HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRCQuantum Optics ...

  8. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    SciTech Connect (OSTI)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-05-15

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled.

  9. Multi-bit quantum random number generation by measuring positions of arrival photons

    SciTech Connect (OSTI)

    Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun

    2014-10-15

    We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.

  10. Summary of Lepton Photon 2011

    SciTech Connect (OSTI)

    Peskin, Michael E.; /SLAC

    2012-03-14

    In this lecture, I summarize developments presented at the Lepton Photon 2011 conference and give my perspective on the current situation in high-energy physics. I am grateful to the organizers of Lepton Photon 2011 for providing us a very pleasant and simulating week in Mumbai. This year's Lepton Photon conference has covered the full range of subjects that fall within the scope of high-energy physics, including connections to cosmology, nuclear physics, and atomic physics. The experiments that were discussed detect particles ranging in energy from radio frequencies to EeV.

  11. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  12. Photoluminescence of ZnO infiltrated into a three-dimensional photonic crystal

    SciTech Connect (OSTI)

    Gruzintsev, A. N. Emelchenko, G. A.; Masalov, V. M.

    2009-08-15

    The effect of the photonic band gap (stopband) of the photonic crystal, the synthesized SiO{sub 2} opal with embedded zinc oxide, on its luminescence in the violet spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra of the infiltrated opal depends on the diameter of the constituent nanoglobules, the volume fraction of zinc oxide, and on the signal's acceptance angle. It is found that, for the ZnO-opal nanocomposites, the emission intensity is decreased and the luminescence decay time is increased in the spatial directions, in which the photonic band gap coincides in spectral position with the luminescence peak of zinc oxide. The change in the decay time can be attributed to the change in the local density of photonic states in the photonic band gap.

  13. Apodized structures for the integration of defect sites into photonic lattices

    SciTech Connect (OSTI)

    Boguslawski, Martin Kelberer, Andreas; Rose, Patrick; Denz, Cornelia

    2014-09-15

    We introduce a versatile concept to optically induce photonic structures of local refractive index modulations as well as photonic lattices holding single defect sites. For a given structure, we develop a set of nondiffracting beams obtained by fractionalizing the corresponding spatial spectrum. By combining this set in a multiplexing procedure, we achieve an incoherent combination of all individual structures of the set resulting in a locally addressable refractive index manipulation. We exemplarily present experimental results for apodized, meaning locally confined index changes in a photorefractive crystal resembling a sixfold and a circular symmetric structure. By an additional multiplexing step, we furthermore create periodic photonic lattices featuring embedded defects.

  14. THE PHOTON UNDERPRODUCTION CRISIS

    SciTech Connect (OSTI)

    Kollmeier, Juna A.; Weinberg, David H.; McEwen, Joseph; Oppenheimer, Benjamin D.; Danforth, Charles; Haardt, Francesco; Katz, Neal; Fardal, Mark; Davé, Romeel; Madau, Piero; Ford, Amanda B.; Peeples, Molly S.

    2014-07-10

    We examine the statistics of the low-redshift Lyα forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Cosmic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate (Γ{sub HI}) required by our simulations to match the observed properties of the low-redshift Lyα forest is a factor of five larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch in Γ{sub HI} results in the mean flux decrement of the Lyα forest being overpredicted by at least a factor of two (a 10σ discrepancy with observations) and a column density distribution of Lyα forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies and quasars) must contribute considerably more than current observational estimates or our theoretical understanding of the low-redshift universe is in need of substantial revision.

  15. APS Podcasts | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Art Preservation and Connoisseurship August 14, 2007; mp3 - 1.88MB Franceska Casadio, Art Institute of Chicago: November 3, 2004 The Advanced Photon Source (videomp4) August...

  16. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  17. Photonic Systems | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photonic Systems Research Personnel Updates Publications Dramatic Efficiency Improvements for Organic Light Emitting Diodes Read More Standing Ribbons on Edge Leads to Transparent Triumph Read More Illuminating the Deep-Blue UV Read More Previous Pause Next Synthesis Since ~1990, the Ames Laboratory has conducted pioneering development and studies of 3D photonic crystals (PCs), developed forefront organic light-emitting diodes (OLEDs) and procedures for characterizing them, and conducted

  18. Ideal solar cell equation in the presence of photon recycling

    SciTech Connect (OSTI)

    Lan, Dongchen Green, Martin A.

    2014-11-07

    Previous derivations of the ideal solar cell equation based on Shockley's p-n junction diode theory implicitly assume negligible effects of photon recycling. This paper derives the equation in the presence of photon recycling that modifies the values of dark saturation and light-generated currents, using an approach applicable to arbitrary three-dimensional geometries with arbitrary doping profile and variable band gap. The work also corrects an error in previous work and proves the validity of the reciprocity theorem for charge collection in such a more general case with the previously neglected junction depletion region included.

  19. R. Tayloe, Indiana University Lepton-Photon '07 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lepton-Photon '07 1 Neutrino Oscillation Results from MiniBooNE Outline: - motivation, strategy - experiment - analysis - results - New: further investigations of low-energy region R. Tayloe, Indiana University R. Tayloe, Indiana University Lepton-Photon '07 2 The LSND Result ν e events vs energy The LSND experiment observed an excess ofν e events in beam ofν µ 87.9 ± 22.4 ± 6.0 (4σ) consistent withν µ →ν e oscillations. However, this result, with large ∆m 2 ,does

  20. 1993 CAT workshop on beamline optical designs

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following these presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.

  1. Optical microspectrometer

    DOE Patents [OSTI]

    Sweatt, William C.; Christenson, Todd R.

    2004-05-25

    An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.

  2. Use of chemical-mechanical polishing for fabricating photonic bandgap structures

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu; Hetherington, Dale L.; Smith, Bradley K.

    1999-01-01

    A method is disclosed for fabricating a two- or three-dimensional photonic bandgap structure (also termed a photonic crystal, photonic lattice, or photonic dielectric structure). The method uses microelectronic integrated circuit (IC) processes to fabricate the photonic bandgap structure directly upon a silicon substrate. One or more layers of arrayed elements used to form the structure are deposited and patterned, with chemical-mechanical polishing being used to planarize each layer for uniformity and a precise vertical tolerancing of the layer. The use of chemical-mechanical planarization allows the photonic bandgap structure to be formed over a large area with a layer uniformity of about two-percent. Air-gap photonic bandgap structures can also be formed by removing a spacer material separating the arrayed elements by selective etching. The method is useful for fabricating photonic bandgap structures including Fabry-Perot resonators and optical filters for use at wavelengths in the range of about 0.2-20 .mu.m.

  3. Fiber optic detector for immuno-testing

    DOE Patents [OSTI]

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1992-01-01

    A portable fiber optic detector that senses the presence of specific target chemicals in air or a gas by exchanging the target chemical for a fluoroescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  4. Optical properties of La{sub 2}CuO{sub 4} and La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites in UV-vis-NIR region synthesized by sol-gel process

    SciTech Connect (OSTI)

    Li Yifeng; Huang Jianfeng Cao Liyun; Wu Jianpeng; Fei Jie

    2012-02-15

    La{sub 2}CuO{sub 4} and La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites were prepared via a simple sol-gel process. The as-prepared La{sub 2}CuO{sub 4} and La{sub 2} {sub -x}Ca{sub x}CuO{sub 4} crystallites were characterized by X-ray diffraction, transmission electron microscope and UV-vis-NIR spectra. Results show that the grain size of La{sub 2}CuO{sub 4} crystallites increases with the increase of heat treatment temperature from 600 Degree-Sign C to 800 Degree-Sign C. Optical properties show that La{sub 2}CuO{sub 4} crystallites have broad absorption both in the UV-vis region and in the NIR region. The band gap of the as-prepared crystallites decreases from 1.367 eV to 1.284 eV with the increase of calcination temperature from 600 Degree-Sign C to 800 Degree-Sign C. In the series of La{sub 2-x}Ca{sub x}CuO{sub 4} compounds (x = 0.05, 0.08, 0.10, 0.12, 0.15 and 0.20), all of the samples exhibit an orthogonal crystal structure and the solubility limit of Ca{sup 2+} in La{sub 2}CuO{sub 4} is within the range of x = 0.12-0.15. In the whole UV-vis-NIR region, La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites exhibit a broad absorption and the corresponding band gap first increases and then decreases with increasing of Ca{sup 2+} content. - Highlights: Black-Right-Pointing-Pointer The optical band gap can be tuned by adjusting the grain size and Ca{sup 2+} content. Black-Right-Pointing-Pointer La{sub 2}CuO{sub 4} crystallites exhibit a broad absorption band both in the UV-vis region and in the NIR region. Black-Right-Pointing-Pointer The band gap increases from 1.284 eV to 1.319 eV with the decrease of heat treatment temperature. Black-Right-Pointing-Pointer In the whole UV-vis-NIR region, the La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites displayed a broad absorption. Black-Right-Pointing-Pointer The band gap of La{sub 2-x}Ca{sub x}CuO{sub 4} increases linearly with doping level when 0 {<=} x {<=} 0.12.

  5. Photonic Doppler velocimetry lens array probe incorporating stereo imaging

    SciTech Connect (OSTI)

    Malone, Robert M.; Kaufman, Morris I.

    2015-09-01

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  6. Integrated optical tamper sensor with planar waveguide

    DOE Patents [OSTI]

    Carson, Richard F.; Casalnuovo, Stephen A.

    1993-01-01

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  7. Integrated optical tamper sensor with planar waveguide

    DOE Patents [OSTI]

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  8. Bloch theory of entangled photon generation in nonlinear photonic crystals

    SciTech Connect (OSTI)

    Irvine, William T.M.; Dood, Michiel J.A. de; Bouwmeester, Dirk [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2005-10-15

    We present a quantum-mechanical description of parametric down conversion and phase matching of Bloch waves in nonlinear photonic crystals. We discuss the theory in one-dimensional Bragg structures giving a recipe for calculating the down-converted emission strength and direction. We exemplify the discussion by making explicit analytical predictions for the emission amplitude and direction from a one-dimensional structure that consists of alternating layers of Al{sub 0.4}Ga{sub 0.6}As and air. We show that the emission is suitable for the extraction of polarization-entangled photons.

  9. Passive thermo-optic feedback for robust athermal photonic systems...

    Office of Scientific and Technical Information (OSTI)

    NM (United States) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

  10. CRC handbook of laser science and technology. Volume 3. Optical materials, Part 1 - Nonlinear optical properties/radiation damage

    SciTech Connect (OSTI)

    Weber, M.J.

    1986-01-01

    This book examines the nonlinear optical properties of laser materials. The physical radiation effects on laser materials are also considered. Topics considered include: nonlinear optical properties; nonlinear and harmonic generation materials; two-photon absorption; nonlinear refractive index; stimulated Raman scattering; radiation damage; crystals; and glasses.

  11. Quantum photonics hybrid integration platform

    SciTech Connect (OSTI)

    Murray, E.; Floether, F. F.; Ellis, D. J. P.; Meany, T.; Bennett, A. J. Shields, A. J.; Lee, J. P.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  12. Optical probe

    DOE Patents [OSTI]

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  13. Atlas of solar hidden photon emission

    SciTech Connect (OSTI)

    Redondo, Javier

    2015-07-20

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.

  14. Optical keyboard

    DOE Patents [OSTI]

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  15. Apparatus for photon activation positron annihilation analysis

    DOE Patents [OSTI]

    Akers, Douglas W.

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  16. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    SciTech Connect (OSTI)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang; Dowling, Jonathan

    2005-09-15

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strong reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.

  17. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    SciTech Connect (OSTI)

    Contalbrigo, Marco

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to –25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  18. Optical ionization detector (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. ...

  19. Method and apparatus for optical phase error correction

    DOE Patents [OSTI]

    DeRose, Christopher; Bender, Daniel A.

    2014-09-02

    The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

  20. Optical Switch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seven wonders / optical switch Optical Switch A key component in the laser chain, an optical switch called a plasma electrode Pockels cell (PEPC), was invented and developed at LLNL. A Pockels cell rotates the polarization of a laser beam when a voltage is applied across an electro-optic crystal. Depending on the voltage applied, the Pockels cell either allows light to pass through or to reflect off a polarizer, creating an optical switch. For each of NIF's 192 beamlines, a PEPC allows the laser

  1. Photonic band gap of a graphene-embedded quarter-wave stack

    SciTech Connect (OSTI)

    Fan, Yuancheng; Wei, Zeyong; Li, Hongqiang; Chen, Hong; Soukoulis, Costas M

    2013-12-10

    Here, we present a mechanism for tailoring the photonic band structure of a quarter-wave stack without changing its physical periods by embedding conductive sheets. Graphene is utilized and studied as a realistic, two-dimensional conductive sheet. In a graphene-embedded quarter-wave stack, the synergic actions of Bragg scattering and graphene conductance contributions open photonic gaps at the center of the reduced Brillouin zone that are nonexistent in conventional quarter-wave stacks. Such photonic gaps show giant, loss-independent density of optical states at the fixed lower-gap edges, of even-multiple characteristic frequency of the quarter-wave stack. The conductive sheet-induced photonic gaps provide a platform for the enhancement of light-matter interactions.

  2. Coherent optical monolithic phased-array antenna steering system

    DOE Patents [OSTI]

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  3. Photonic crystal surface-emitting lasers

    DOE Patents [OSTI]

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  4. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results from this relatively new field of research, known as high-energy- density (hed) ... optical physics, radiation sources, radiative properties, and other areas of science. ...

  5. CNEEC - TRG2: Nanoscale Control over Photons and Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRG2: Nanoscale Control over Photons and Electrons TRG2 Leader: Mark Brongersma This group’s aim is to boost the efficiency of photovoltaic (PV) and photoelectrochemical (PEC) devices by engineering new materials at the nanoscale that offer excellent light absorption and subsequent charge extraction. The driving mechanism in conventional PV and photocatalytic devices is to convert sunlight into electrons and holes and to collect them in spatially distinct regions. Unfortunately, many of the

  6. Effect of window reflections on photonic Doppler velocimetry measurements

    SciTech Connect (OSTI)

    Ao, T.; Dolan, D. H.

    2011-02-15

    Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

  7. Microphotonic parabolic light directors fabricated by two-photon lithography

    SciTech Connect (OSTI)

    Atwater, Jackson H; Spinelli, P.; Kosten, Emily D; Parsons, J.; Van Lare, C; Van de Groep, J; Garcia de Abajo, J.; Polman, Albert; Atwater, Harry A.

    2011-01-01

    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 ?m high and 10 ?m in diameter exhibit strong beam directivity with a beam divergence of 5.6, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs.

  8. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agustsson, R.; Pogorelsky, I.; Arab, E.; Murokh, A.; O"Shea, B.; Ovodenko, A.; Rosenzweig, J.; Solovyov, V.; Tilton, R.

    2015-11-18

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO2 laser source, with 5 ps pulse length. Single-shot optical breakdowns were detectedmore » and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.« less

  9. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    SciTech Connect (OSTI)

    Agustsson, R.; Pogorelsky, I.; Arab, E.; Murokh, A.; O"Shea, B.; Ovodenko, A.; Rosenzweig, J.; Solovyov, V.; Tilton, R.

    2015-11-18

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO2 laser source, with 5 ps pulse length. Single-shot optical breakdowns were detected and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.

  10. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tasolamprou, Anna C.; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M.

    2015-05-19

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.