Sample records for regional optics photonics

  1. Optical Fibers Optics and Photonics

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

  2. Ultrafast optics For optics and photonics course,

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    ultrafast and ultrashort generally describe pulses of widths in the nanosecond to femtosecond, or shorterUltrafast optics For optics and photonics course, Spring 2012 By :Alireza Moheghi Ultrafast optics, regimes. · Interest in ultrashort optical pulses began with the invention of the laser, · Ultrashort

  3. The College of Optics & Photonics The College of Optics and Photonics

    E-Print Network [OSTI]

    Van Stryland, Eric

    CREOL The College of Optics & Photonics The College of Optics and Photonics #12;CREOL The College of Optics & Photonics CREOLThe College of Optics and Photonics Industrial Affiliates Day 2010 #12;CREOL The College of Optics & Photonics Prof. William T. Rhodes Department of Comp & Elect Engrng & Comp Science

  4. Photonics Technicians Precision Optics Technicians

    E-Print Network [OSTI]

    Van Stryland, Eric

    enrollment · Photonics Infusion: in Enabled Technologies One or two photonics courses for technician

  5. University of Central Florida College of Optics & Photonics Optics

    E-Print Network [OSTI]

    Van Stryland, Eric

    University of Central Florida College of Optics & Photonics Optics Spring 2010 OSE-6432: Principles of guided wave optics; electro -optics, acousto-optics and optoelectronics. Location: CREOL-A-214 or by Appointment Reference Materials: 1. Class Notes. 2. "Fundamentals of Optical Waveguides", K. Okamoto, Academic

  6. EAM Seminars C: Engineering of Photonic and Optical Materials

    E-Print Network [OSTI]

    Sanderson, Yasmine

    EAM Seminars C: Engineering of Photonic and Optical Materials 15.02.2011 EAM Seminar Photonic and Optical Materials Prof. Dr. Hartmut Bartelt, IPHT Jena 04.11.2010 EAM Seminar Photonic and Optical Materials 02.09.2010 EAM Seminar Photonic and Optical Materials 01.07.2010 EAM Seminar Photonic and Optical

  7. Photonic integrated circuits for optical logic applications

    E-Print Network [OSTI]

    Williams, Ryan Daniel

    2007-01-01T23:59:59.000Z

    The optical logic unit cell is the photonic analog to transistor-transistor logic in electronic devices. Active devices such as InP-based semiconductor optical amplifiers (SOA) emitting at 1550 nm are vertically integrated ...

  8. The College of Optics & Photonics Industrial Affiliates Day

    E-Print Network [OSTI]

    Van Stryland, Eric

    CREOL The College of Optics & Photonics Industrial Affiliates Day 2011 Symposium on FAR IR & THZ Photonics CREOLThe College of Optics and Photonics #12;CREOL The College of Optics & Photonics Studentofthe characterization Dimitrios Mandridis Graduate Student CREOL,TheCollegeofOptics Photonics 2:05Walktothe

  9. The College of Optics & Photonics 1 Industrial Affiliates Day

    E-Print Network [OSTI]

    Van Stryland, Eric

    3/7/14 1 CREOL The College of Optics & Photonics 1 Industrial Affiliates Day 2014 Symposium Advances in Optics & Photonics CREOLThe College of Optics and Photonics CREOL The College of Optics & Photonics 2 MJ Soileau V.P. for Research & Commercialization Professor of Optics, ECE & Physics Founder

  10. Transformation Optics with Photonic Band Gap Media

    E-Print Network [OSTI]

    Urzhumov, Yaroslav A

    2010-01-01T23:59:59.000Z

    We introduce a class of optical media based on adiabatically modulated, dielectric-only, and potentially extremely low-loss, photonic crystals. The media we describe represent a generalization of the eikonal limit of transformation optics (TO). The foundation of the concept is the possibility to fit frequency isosurfaces in the k-space of photonic crystals with elliptic surfaces, allowing them to mimic the dispersion relation of light in anisotropic effective media. Photonic crystal cloaks and other TO devices operating at visible wavelengths can be constructed from optically transparent substances like glasses, whose attenuation coefficient can be as small as 10 dB/km, suggesting the TO design methodology can be applied to the development of optical devices not limited by the losses inherent to metal-based, passive metamaterials.

  11. Optics (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optics Group (X-ray Science Division) The mission of the Optics Group is to facilitate the efficient and productive use and operation of APS beamline-based research facilities. In...

  12. Photon pair generation in birefringent optical fibers

    E-Print Network [OSTI]

    Brian J. Smith; P. Mahou; Offir Cohen; J. S. Lundeen; I. A. Walmsley

    2010-02-09T23:59:59.000Z

    We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entangled) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.

  13. PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Photonic RF Waveform Synthesis,

    E-Print Network [OSTI]

    Purdue University

    PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Photonic RF Waveform, Shijun Xiao Funding from ARO, DARPA, and NSF #12;PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER performance (spectral engineering, dispersion compensation) #12;PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL

  14. Analysis of Enhanced Two-Photon Absorption in Tapered Optical Fibers

    E-Print Network [OSTI]

    Hao You; S. M. Hendrickson; J. D. Franson

    2008-09-30T23:59:59.000Z

    We analyze the rate of two-photon absorption in tapered optical fibers with diameters less than the wavelength of the incident light. The rate of two-photon absorption is shown to be enhanced due to the small mode volume of the tapered fiber and the relatively large overlap of the evanescent field with an atomic vapor that surrounds the tapered region. The two-photon absorption rate is optimized as a function of the diameter of the tapered region.

  15. Disordered Optical Modes for Photon Management

    E-Print Network [OSTI]

    Vynck, Kevin; Riboli, Francesco; Wiersma, Diederik S

    2012-01-01T23:59:59.000Z

    Wave transport in disordered systems is a vast research topic, ranging from electrons in semiconductors, to light in random dielectrics, to cold atoms in laser speckles. In optics, light transport is conveyed by random electromagnetic modes and the wave can be localized about a point or extended throughout the system, depending on disorder strength, structural correlations and dimensionality of the system. Light localization phenomena are more dominantly present in two-dimensional systems than in three-dimensional ones and their optical modes can be tailored to a greater extent. Here, we show that it is possible to make use of the properties of lower-dimensional disordered structures to obtain photon management in three-dimensional space. More particularly, we argue that two-dimensional disorder and wave interferences can be exploited to improve the performance of light absorbers or emitters. Our findings have direct applications for enhancing the absorption efficiency of third-generation solar cells in a rel...

  16. Pancharatnam Phase and Photon Polarization Optics

    E-Print Network [OSTI]

    S. C. Tiwari

    2006-02-04T23:59:59.000Z

    Parallel transport of a vector around a closed curve on the surface of a sphere leads to a direction holonomy which can be related with a geometric phase that is equal to the solid angle subtended by the closed curve. Since Pancharatnam phase is half of the solid angle subtended by the polarization cycle on the Poincare sphere, quantum parallel transport law takes recourse o spin-half wave function to obtain this result. A critique is offered on this factor of half anomaly in the geometric phase, and a natural resolution using Riemann sphere polarization representation is suggested. It is argued that spin angular momentum of photon is fundamental in polarization optics, and new insights are gained based on the hypothesis that two helicity states correspond to two distinct species of photon. This approach leads to the concept of a physical Poincare sphere: nonlinearity and jumps in the Pancharatnam phase find a simple physical explanation while novel features pertaining to the discrete and pulsating sphere are predicted. Paired photon spin zero structure of unpolarized light is also discussed. An outline of possible experimental tests is presented.

  17. COLLEGE OF OPTICS AND PHOTONICS: CREOL & FPCE Industrial Affiliates Day Friday April 1, 2005

    E-Print Network [OSTI]

    Van Stryland, Eric

    COLLEGE OF OPTICS AND PHOTONICS: CREOL & FPCE Industrial Affiliates Day ­ Friday April 1, 2005 "Optics & Photonics ­ Envisioning the Future" ­ Projecting Today's Research Into Tomorrow's Applications:45 "Optics & Photonics in Manufacturing..." Dr. Bruce Craig VP and General Manager, Laser Division, Newport

  18. Linear-optics manipulations of photon-loss codes

    E-Print Network [OSTI]

    Konrad Banaszek; Wojciech Wasilewski

    2007-02-09T23:59:59.000Z

    We discuss codes for protecting logical qubits carried by optical fields from the effects of amplitude damping, i.e. linear photon loss. We demonstrate that the correctability condition for one-photon loss imposes limitations on the range of manipulations than can be implemented with passive linear-optics networks.

  19. Glenn D. Boreman College of Optics & Photonics/CREOL

    E-Print Network [OSTI]

    Zanibbi, Richard

    Glenn D. Boreman College of Optics & Photonics/CREOL University of Central Florida Orlando, FL Glenn D. Boreman is Trustee Chair Professor of Optics at University of Central Florida, CREOL. He received a BS in optics from the University of Rochester, and a PhD in optics from the University

  20. Use of a photonic crystal for optical amplifier gain control

    DOE Patents [OSTI]

    Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); El-Kady, Ihab (Albuquerque, NM)

    2006-07-18T23:59:59.000Z

    An optical amplifier having a uniform gain profile uses a photonic crystal to tune the density-of-states of a gain medium so as to modify the light emission rate between atomic states. The density-of-states of the gain medium is tuned by selecting the size, shape, dielectric constant, and spacing of a plurality of microcavity defects in the photonic crystal. The optical amplifier is particularly useful for the regeneration of DWDM signals in long optical fibers.

  1. CREOL, The College of Optics and Photonics Industrial Affiliates Day April 9, 2010

    E-Print Network [OSTI]

    Van Stryland, Eric

    CREOL, The College of Optics and Photonics Industrial Affiliates Day ­ April 9, 2010 "Optics, The College of Optics and Photonics ­Overview Bahaa Saleh Dean & Director, CREOL, The College of Optics and Photonics 9:25 "Fundamental Limits for Optical Devices" David Miller Director, Solid State and Photonics Lab

  2. Thermo-optic photonic crystal light modulator Mark T. Tinkera

    E-Print Network [OSTI]

    Lee, Jeong-Bong

    Thermo-optic photonic crystal light modulator Mark T. Tinkera and Jeong-Bong Lee Department be capable of driving substantial changes in the refractive index through the thermo-optic effect. Since the thermo-optic coefficient of silicon is approximately 2.4 10-4 K-1 over this temperature range

  3. Spring 2012 LC Optics and Photonics: CPHY-64495/74495

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    Spring 2012 LC Optics and Photonics: CPHY-64495/74495 Lecture times: M, W, F 9:55 ­ 10:50 Room: Cunningham Hall 00011 also LCI 108 (teaching lab) Text: class notes Guenther, Modern Optics (recommended) Electronic Resources: http://mpalffy.lci.kent.edu/optics Instructor: Peter Palffy-Muhoray LCM Rm. 201C 672

  4. Spring 2014 LC Optics and Photonics: CPHY-64495/74495

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    Spring 2014 LC Optics and Photonics: CPHY-64495/74495 Lecture times: T,Th,F 11:00 ­ 12:15 Room: LCI 107C also LCI 108 (teaching lab) Text: class notes Guenther, Modern Optics (recommended) Electronic Resources: http://mpalffy.lci.kent.edu/optics Instructor: Peter Palffy-Muhoray LCM Rm. 201C 672-2604 mpalffy

  5. Liquid Crystal Optics and Photonics CPHY Assignment 2.

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    Liquid Crystal Optics and Photonics CPHY 74495 Assignment 2. P. Pal¤y-Muhoray Jan. 24, 2014 Due: Feb 4, 2014 1. Read pages 25 - 37 of the text (Guenther, Modern Optics). 2. Read Ch 2., Review of Electricity and Magnetism (http://mpal¤y.lci.kent.edu/optics) 3. Red light with wavelength = 632:8nm

  6. An optical surface resonance may render photonic crystals ineffective

    E-Print Network [OSTI]

    F. García-Santamaría; Erik C. Nelson; P. V. Braun

    2007-06-28T23:59:59.000Z

    In this work we identify and study the presence of extremely intense surface resonances that frustrate the coupling of photons into a photonic crystal over crucial energy ranges. The practical utility of photonic crystals demands the capability to exchange photons with the external medium, therefore, it is essential to understand the cause of these surface resonances and a route to their elimination. We demonstrate that by modifying the surface geometry it is possible to tune the optical response or eliminate the resonances to enable full exploitation of the photonic crystal.

  7. Electro-optical Modulation in Graphene Integrated Photonic Crystal Nanocavities

    E-Print Network [OSTI]

    Gan, Xuetao

    We demonstrate high-contrast electro-optic modulation in a graphene integrated photonic crystal nanocavity, providing a modulation depth of more than 10 dB at telecom wavelengths. This work shows the feasibility of ...

  8. Ultrafast Optical Switching Using Photonic Molecules in Photonic Crystal Waveguides

    E-Print Network [OSTI]

    Zhao, Yanhui; Qiu, Kangsheng; Gao, Yunan; Xu, Xiulai

    2015-01-01T23:59:59.000Z

    We study the coupling between photonic molecules and waveguides in photonic crystal slab structures using finite-difference time-domain method and coupled mode theory. In a photonic molecule with two cavities, the coupling of cavity modes results in two super-modes with symmetric and anti-symmetric field distributions. When two super-modes are excited simultaneously, the energy of electric field oscillates between the two cavities. To excite and probe the energy oscillation, we integrate photonic molecule with two photonic crystal waveguides. In coupled structure, we find that the quality factors of two super-modes might be different because of different field distributions of super-modes. After optimizing the radii of air holes between two cavities of photonic molecule, nearly equal quality factors of two super-modes are achieved, and coupling strengths between the waveguide modes and two super-modes are almost the same. In this case, complete energy oscillations between two cavities can be obtained with a p...

  9. Optical bistability with a repulsive optical force in coupled silicon photonic crystal membranes

    E-Print Network [OSTI]

    Hui, Pui-Chuen

    2013-01-01T23:59:59.000Z

    We demonstrate actuation of a silicon photonic crystal membrane with a repulsive optical gradient force. The extent of the static actuation is extracted by examining the optical bistability as a combination of the ...

  10. Magneto-optical oxide thin films and integrated nonreciprocal photonic devices

    E-Print Network [OSTI]

    Bi, Lei, Ph.D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Nonreciprocal photonic devices including optical isolators and optical circulators are indispensible components in present day optical communication systems. Although highly desired by the fast development of silicon ...

  11. 34 | OPN Optics & Photonics News www.osa-opn.org OPTICAL CONSTRUCTION

    E-Print Network [OSTI]

    34 | OPN Optics & Photonics News www.osa-opn.org OPTICAL CONSTRUCTION Optical Pipeline: Trapping light heats a surface of absorbing particle nonuniformly, gas molecules rebound off the surface-propagating vortex beams. Optical vortices create a ring-shaped transverse intensity distribution, and the particles

  12. Silicon Photonics for Low- Energy Optical Communications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in MZ configuration, travelling wave carrier depletion MZ modulator, and thermo-optic MZ switch). Number Title US 7,616,850 Wavelength-tunable Optical Ring Resonators...

  13. University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Nanoscale Optofluidics for

    E-Print Network [OSTI]

    Lee, Herbie

    University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Nanoscale;University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Background Microfluidics Single molecule analysis Integrated optics Singleparticle Optofluidics Optofluidics: combination

  14. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    SciTech Connect (OSTI)

    Robinson, S., E-mail: mail2robinson@gmail.com [Department of Electronics and Communication Engineering, Mount Zion College of Engineering and Technology, Pudukkottai-622507, Tamil Nadu (India)

    2014-10-15T23:59:59.000Z

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 ?m × 11.4 ?m which is highly suitable of photonic integrated circuits.

  15. Thermo-optically tunable silicon photonic crystal light modulator

    E-Print Network [OSTI]

    Lee, Jeong-Bong

    Thermo-optically tunable silicon photonic crystal light modulator Yonghao Cui,* Ke Liu, Duncan L (Doc. ID 130726); published October 21, 2010 We designed, fabricated, and characterized a thermo frequency in a silicon-based line defect PhC. The cutoff frequency is shifted because of the thermo

  16. CREOL & FPCE, THE COLLEGE OF OPTICS AND PHOTONICS Industrial Affiliates Day April 13, 2007

    E-Print Network [OSTI]

    Van Stryland, Eric

    CREOL & FPCE, THE COLLEGE OF OPTICS AND PHOTONICS Industrial Affiliates Day ­ April 13, 2007 Theme Dean, College of Optics and Photonics 9:05 "High power lasers, some applications, and their future of Optics & Photonics 9:40 "Attosecond Science and Technology" Dr. Paul Corkum Program Leader, Atomic

  17. All-Optical Switch and Transistor Gated by One Stored Photon

    E-Print Network [OSTI]

    Chen, Wenlan

    The realization of an all-optical transistor, in which one “gate” photon controls a “source” light beam, is a long-standing goal in optics. By stopping a light pulse in an atomic ensemble contained inside an optical ...

  18. February 2002 I Optics & Photonics News 59 1047-6938/02/02/0059/5-$0015.00 Optical Society of America

    E-Print Network [OSTI]

    February 2002 I Optics & Photonics News 59 1047-6938/02/02/0059/5-$0015.00 © Optical Society of America O ne of the goals of modern non- linear optics is the development of the ultimate fast, all-optical circuits created in nonlinear bulk media without any fabricated optical waveguide can be achieved

  19. Multipoint photonic doppler velocimetry using optical lens elements

    DOE Patents [OSTI]

    Frogget, Brent Copely; Romero, Vincent Todd

    2014-04-29T23:59:59.000Z

    A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

  20. Photon production by charged particles in narrow optical fibers

    E-Print Network [OSTI]

    X. Artru; C. Ray

    2006-10-11T23:59:59.000Z

    A charged particle passing through or by an optical fiber induces emission of light guided by the fiber. The formula giving the spontaneous emission amplitude are given in the general case when the particle trajectory is not parallel to the fiber axis. At small angle, the photon yield grows like the inverse power of the angle and in the parallel limiting case the fiber Cherenkov effect studied by Bogdankevich and Bolotovskii is recovered. Possible application to beam diagnostics are discussed, as well as resonance effects when the particle trajectory or the fiber is bent periodically.

  1. All-optical routing of single photons with multiple input and output ports by interferences

    E-Print Network [OSTI]

    Wei-Bin Yan; Bao Liu; Ling Zhou; Heng Fan

    2014-09-23T23:59:59.000Z

    We propose a waveguide-cavity coupled system to achieve the routing of photons by the phases of other photons. Our router has four input ports and four output ports. The transport of the coherent-state photons injected through any input port can be controlled by the phases of the coherent-state photons injected through other input ports. This control can be achieved when the mean numbers of the routed and control photons are small enough and require no additional control fields. Therefore, the all-optical routing of photons can be achieved at the single-photon level.

  2. Thermal and Optical Characterization of Photonic Integrated Circuits by Thermoreflectance Microscopy

    E-Print Network [OSTI]

    Hudgings, Janice A.

    We report high resolution, non-invasive, thermal and optical characterization of semiconductor optical amplifiers (SOAs) and SOA-based photonic integrated circuits (PICs) using thermoreflectance microscopy. Chip-scale ...

  3. A scalable silicon photonic chip-scale optical switch for high performance computing systems

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    A scalable silicon photonic chip-scale optical switch for high performance computing systems-scale optical switch for scalable interconnect network in high performance computing systems. The proposed

  4. Exploiting the Quantum Zeno effect to beat photon loss in linear optical quantum information processors

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    to the loss of photons caused by the inter- action between the fiber and the electromagnetic field. By frequently monitoring the presence of the photon through a quantum non-demolition (QND) measurement), and the processing is accomplished by sending the photon through a system of linear optical elements and using

  5. Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals

    E-Print Network [OSTI]

    John, Sajeev

    a significant part of silicon solar cell cost. Thin film technology is a promising way to avoid these costCoupled optical and electrical modeling of solar cell based on conical pore silicon photonic://jap.aip.org/authors #12;Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic

  6. Novel fiber optic polarimetric torsion sensor based on polarization-maintaining photonic crystal fiber

    E-Print Network [OSTI]

    Wai, Ping-kong Alexander

    Novel fiber optic polarimetric torsion sensor based on polarization- maintaining photonic crystal other engineering applications. Compared with conventional torsion sensors, the fiber optic torsion sensors have the distinct advantages of all-fiber-optical sensing. The fiber optic torsion sensors based

  7. All-optical signal processing at 10?GHz using a photonic crystal molecule

    SciTech Connect (OSTI)

    Combrié, Sylvain; Lehoucq, Gaëlle; Junay, Alexandra; De Rossi, Alfredo, E-mail: alfredo.derossi@thalesgroup.com [Thales Research and Technology, 1 Avenue A. Fresnel, 91767 Palaiseau (France); Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano [Department of Engineering, Università di Ferrara, v. Saragat 1, 44122 Ferrara (Italy)] [Department of Engineering, Università di Ferrara, v. Saragat 1, 44122 Ferrara (Italy); Ménager, Loic [Thales Systèmes Aeroportés, 2 Av. Gay Lussac, 78851 Elancourt (France)] [Thales Systèmes Aeroportés, 2 Av. Gay Lussac, 78851 Elancourt (France); Peter Reithmaier, Johann [Institute of Nanostructure Technologies and Analytics, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)] [Institute of Nanostructure Technologies and Analytics, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2013-11-04T23:59:59.000Z

    We report on 10?GHz operation of an all-optical gate based on an Indium Phosphide Photonic Crystal Molecule. Wavelength conversion and all-optical mixing of microwave signals are demonstrated using the 2 mW output of a mode locked diode laser. The spectral separation of the optical pump and signal is crucial in suppressing optical cross-talk.

  8. Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion

    E-Print Network [OSTI]

    Subhadeep Gupta; Kevin L. Moore; Kater W. Murch; Dan M. Stamper-Kurn

    2007-09-05T23:59:59.000Z

    We report on Kerr nonlinearity and dispersive optical bistability of a Fabry-Perot optical resonator due to the displacement of ultracold atoms trapped within. In the driven resonator, such collective motion is induced by optical forces acting upon up to $10^5$ $^{87}$Rb atoms prepared in the lowest band of a one-dimensional intracavity optical lattice. The longevity of atomic motional coherence allows for strongly nonlinear optics at extremely low cavity photon numbers, as demonstrated by the observation of both branches of optical bistability at photon numbers below unity.

  9. Measurement Of Transverse Instability Thresholds In Low And high Emittance optics At The Photon Factory Storage Ring

    E-Print Network [OSTI]

    Sakanaka, S; Kamiya, Yu; Katoh, M; Kobayakawa, H

    1990-01-01T23:59:59.000Z

    Measurement Of Transverse Instability Thresholds In Low And high Emittance optics At The Photon Factory Storage Ring

  10. Optic Ataxia: From Balint's Syndrome to the Parietal Reach Region

    E-Print Network [OSTI]

    Andersen, Richard

    Neuron Review Optic Ataxia: From Balint's Syndrome to the Parietal Reach Region Richard A. Andersen@vis.caltech.edu http://dx.doi.org/10.1016/j.neuron.2014.02.025 Optic ataxia is a high-order deficit in reaching's syndrome that also includes attentional and gaze disorders. Aspects of optic ataxia are misreaching

  11. Ico-photonics-delphi2009.org Fibre-optic interferometric pressure sensor based on

    E-Print Network [OSTI]

    Vlachos, Kyriakos G.

    Ico-photonics-delphi2009.org Fibre-optic interferometric pressure sensor based on droplet pressure sensor, PDMS-based Fabry-Perot cavity A range of single-mode fibre-optic based on reflective Fabry­Perot interferometric sensors ", Optical Fiber Technology, 23, p.227- 237, 2006. [2] Florian Schneider , Jan Draheim

  12. Probing the BCS-BEC crossover with photons in a nonlinear optical fiber

    E-Print Network [OSTI]

    Mingxia Huo; Changsuk Noh; B. M. Rodríguez-Lara; Dimitris G. Angelakis

    2011-06-24T23:59:59.000Z

    We propose a scheme where strongly correlated photons generated inside a hollow-core one-dimensional fiber filled with two cold atomic species can be used to simulate the BCS-BEC crossover. We first show how stationary light-matter excitations (polaritons) in the system can realize an optically tunable two component Bose-Hubbard model, and then analyze the optical parameters regime necessary to generate an effective Fermi-Hubbard model of photons exhibiting Cooper pairing. The characteristic correlated phases of the system can be efficiently observed due to the {\\it in situ} accessibility of the photon correlations with standard optical technology.

  13. Quantum optics and cavity QED with quantum dots in photonic crystals

    E-Print Network [OSTI]

    Jelena Vuckovic

    2014-02-11T23:59:59.000Z

    This chapter will primarily focus on the studies of quantum optics with semiconductor, epitaxially grown quantum dots embedded in photonic crystal cavities. We will start by giving brief introductions into photonic crystals and quantum dots, then proceed with the introduction to cavity quantum electrodynamics (QED) effects, with a particular emphasis on the demonstration of these effects on the quantum dot-photonic crystal platform. Finally, we will focus on the applications of such cavity QED effects.

  14. Efficiency limits for linear optical processing of single photons and single-rail qubits

    E-Print Network [OSTI]

    Dominic W. Berry; A. I. Lvovsky; Barry C. Sanders

    2006-05-03T23:59:59.000Z

    We analyze the problem of increasing the efficiency of single-photon sources or single-rail photonic qubits via linear optical processing and destructive conditional measurements. In contrast to previous work we allow for the use of coherent states and do not limit to photon-counting measurements. We conjecture that it is not possible to increase the efficiency, prove this conjecture for several important special cases, and provide extensive numerical results for the general case.

  15. Bidirectional and tunable single-photons multi-channel quantum router between microwave and optical light

    E-Print Network [OSTI]

    Peng-Cheng Ma; Jian-Qi Zhang; Mang Feng; Zhi-Ming Zhang

    2014-10-16T23:59:59.000Z

    Routing of photon play a key role in optical communication and quantum networks. Although the quantum routing of signals has been investigated in various systems both in theory and experiment. However, no current theory can route quantum signals between microwave and optical light. Here, we propose an experimentally accessible tunable multi-channel quantum routing proposal using photon-phonon translation in a hybrid opto-electromechanical system. It is the first demonstration that the single-photon of optical frequency can be routed into three different output ports by adjusting microwave power. More important, the two output signals can be selected according to microwave power. Meanwhile, we also demonstrate the vacuum and thermal noise will be insignificant for the optical performance of the single-photon router at temperature of the order of 20 mK. Our proposal may have paved a new avenue towards multi-channel router and quantum network.

  16. Strain-tuning of periodic optical devices : tunable gratings and photonic crystals

    E-Print Network [OSTI]

    Wong, Chee Wei, 1975-

    2003-01-01T23:59:59.000Z

    The advancement of micro- and nano-scale optical devices has heralded micromirrors, semiconductor micro- and nano-lasers, and photonic crystals, among many. Broadly defined with the field of microphotonics and microelect ...

  17. Coupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting diodes

    E-Print Network [OSTI]

    Dutton, Robert W.

    trade-offs in electrically pumped photonic-crystal-based light-emitting diodes. A finite- toelectronic devices, such as light-emitting diodes LEDs and lasers. It has been suggested that a thin slabCoupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting

  18. Fabrication and testing of nano-optical structures for advanced photonics and quantum information processing applications 

    E-Print Network [OSTI]

    Khan, Mughees Mahmood

    2009-05-15T23:59:59.000Z

    -based metal nanostructures offer the promise of scalable devices. This is because the small optical mode volumes of such structures give the large atom-photon coupling needed to interface solid-state quantum bits (qubits) to photons. The main focus...

  19. Linear optics schemes for entanglement distribution with realistic single-photon sources

    E-Print Network [OSTI]

    Miko?aj Lasota; Czes?aw Radzewicz; Konrad Banaszek; Rob Thew

    2014-09-24T23:59:59.000Z

    We study the operation of linear optics schemes for entanglement distribution based on nonlocal photon subtraction when input states, produced by imperfect single-photon sources, exhibit both vacuum and multiphoton contributions. Two models for realistic photon statistics with radically different properties of the multiphoton "tail" are considered. The first model assumes occasional emission of double photons and linear attenuation, while the second one is motivated by heralded sources utilizing spontaneous parametric down-conversion. We find conditions for the photon statistics that guarantee generation of entanglement in the relevant qubit subspaces and compare it with classicality criteria. We also quantify the amount of entanglement that can be produced with imperfect single-photon sources, optimized over setup parameters, using as a measure entanglement of formation. Finally, we discuss verification of the generated entanglement by testing Bell's inequalities. The analysis is carried out for two schemes. The first one is the well-established one-photon scheme, which produces a photon in a delocalized superposition state between two nodes, each of them fed with one single photon at the input. As the second scheme, we introduce and analyze a linear-optics analog of the robust scheme based on interfering two Stokes photons emitted by atomic ensembles, which does not require phase stability between the nodes.

  20. Tailored photon-pair generation in optical fibers

    E-Print Network [OSTI]

    Offir Cohen; Jeff S. Lundeen; Brian J. Smith; Graciana Puentes; Peter J. Mosley; Ian A. Walmsley

    2009-04-14T23:59:59.000Z

    We experimentally control the spectral structure of photon pairs created via spontaneous four-wave mixing in microstructured fibers. By fabricating fibers with designed dispersion, one can manipulate the photons' wavelengths, joint spectrum, and, thus, entanglement. As an example, we produce photon-pairs with no spectral correlations, allowing direct heralding of single photons in pure-state wave packets without filtering. We achieve an experimental purity of $85.9\\pm1.6%$, while theoretical analysis and preliminary tests suggest 94.5% purity is possible with a much longer fiber.

  1. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured

  2. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

    E-Print Network [OSTI]

    Bi, Lei

    Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical ...

  3. University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu New light pipes for single-

    E-Print Network [OSTI]

    Lee, Herbie

    University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu New light of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Acknowledgments Sergei Kühn Dongliang Sandoghdar (ETH Zurich) #12;University of California, Santa Cruz, Applied Optics Grouphttp

  4. Photon statistics and the optical Stark effect T. Altevogt, H. Puff, and R. Zimmermann

    E-Print Network [OSTI]

    Zimmermann, Roland

    classically 6,7 . One feature neglected in this semiclas- sical approach is the dependence of the energy shiftPhoton statistics and the optical Stark effect T. Altevogt, H. Puff, and R. Zimmermann Max November 1996 We theoretically describe a pump-probe scheme for detecting the optical Stark effect on two

  5. Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers

    E-Print Network [OSTI]

    Hart, Gus

    Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers Stefania the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers models for the preparation and collection of either single-mode or multi-mode PDC light (defined by

  6. Optical characterization of active Photon Cages R. Artinyan1,

    E-Print Network [OSTI]

    Boyer, Edmond

    family of 3D photonic hollow resonators which theoretically allow tight confinement of light in a fluid between this localized field and the environment (i.e. a potential volume of nano-particles). In this work with nano-emitters. For this, PbS quantum dot emitters in a PDMS host matrix have been introduced in photon

  7. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 1, JANUARY 2003 81 Tunable Microfluidic Optical-Fiber Devices Based on

    E-Print Network [OSTI]

    Rogers, John A.

    IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 1, JANUARY 2003 81 Tunable Microfluidic Optical-Fiber, micropumps, optical-fiber de- vices, optical waveguide components. I. INTRODUCTION TUNABLE optical-fiber the transmission characteristics of optical fiber are more recent [1]­[3]. These techniques increase the range

  8. Derivation of Ray Optics Equations in Photonic Crystals Via a Semiclassical Limit

    E-Print Network [OSTI]

    Giuseppe De Nittis; Max Lein

    2015-02-25T23:59:59.000Z

    In this work we present a novel approach to the ray optics limit: we rewrite the dynamical Maxwell equations in Schr\\"odinger form and prove Egorov-type theorems, a robust semiclassical technique. We implement this scheme for periodic light conductors, photonic crystals, thereby making the quantum-light analogy between semiclassics for the Bloch electron and ray optics in photonic crystals rigorous. Our main results, Theorems 3.3 and 4.1, give a ray optics limit for quadratic observables and, among others, apply to local averages of energy density, the Poynting vector and the Maxwell stress tensor. Ours is the first rigorous derivation of ray optics equations which include all sub-leading order terms, some of which are also new to the physics literature. While the ray optics limit we prove initially (Theorem 3.3) applies to photonic crystals of any topological class, we also consider the ray optics limit for real electromagnetic fields propagating in non-gyrotropic photonic crystals. Such an extension is non-trivial, because the ray optic limit for real fields is necessarily a multiband problem.

  9. Fine structure of coupled optical modes in photonic molecules

    SciTech Connect (OSTI)

    Rakovich, Y.P.; Donegan, J.F.; Gerlach, M.; Bradley, A.L. [Semiconductor Photonics Group, Department of Physics, Trinity College, Dublin 2 (Ireland); Connolly, T.M.; Boland, J.J. [Department of Chemistry, Trinity College, Dublin 2 (Ireland); Gaponik, N. [Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg (Germany); Rogach, A. [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians Universitaet Muenchen, 80799 Munich (Germany)

    2004-11-01T23:59:59.000Z

    We report on the coherent coupling of whispering gallery modes (WGM) in a photonic molecule formed from two melamine-formaldehyde spherical microcavities with a thin shell of CdTe nanocrystals. Utilizing a microporous polymer structure to orient the photonic molecule, we have excited the photonic molecule both on and off axis. This controllable geometry has allowed the observation of an off-axis fine structure that consists of very sharp peaks resulting from the removal of the WGM degeneracy with respect to the azimuthal quantum number m. The mode splittings are in very good agreement with theory.

  10. Optical surface resonance may render photonic crystals ineffective Florencio Garca-Santamara,* Erik C. Nelson, and Paul V. Braun

    E-Print Network [OSTI]

    Braun, Paul

    Optical surface resonance may render photonic crystals ineffective Florencio García crystals and render them ineffective. This surface resonance is dem- onstrated for two different 3D

  11. Optically and Electrically Tunable Dirac Points and Zitterbewegung in Graphene-Based Photonic Superlattices

    E-Print Network [OSTI]

    Deng, Hanying; Malomed, Boris A; Chen, Xianfeng; Panoiu, Nicolae C

    2015-01-01T23:59:59.000Z

    We demonstrate that graphene-based photonic superlattices provide a versatile platform for electrical and all-optical control of photonic beams with deep-subwavelength accuracy. Specifically, by inserting graphene sheets into periodic metallo-dielectric structures one can design optical superlattices that posses photonic Dirac points (DPs) at frequencies at which the spatial average of the permittivity of the superlattice, $\\bar{ \\varepsilon}$, vanishes. Similar to the well-known zero-$\\bar{n}$ bandgaps, we show that these zero-$\\bar{\\varepsilon}$ DPs are highly robust against structural disorder. We also show that, by tuning the graphene permittivity via the optical Kerr effect or electrical doping, one can induce a spectral variation of the DP exceeding \\SI{30}{\

  12. 286 OPTICS LETTERS / Vol. 26, No. 5 / March 1, 2001 Quantitative analysis of bending efficiency in photonic-crystal

    E-Print Network [OSTI]

    -loss optical waveguide bend is a key component for building future integrated photonic circuits. A conventional, Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 S. G. Johnson and J. D designed line defect in a photonic- crystal structure, a guiding band can be created within the photonic

  13. Optical properties of photonic crystal heterostructure cavity lasers

    E-Print Network [OSTI]

    Choquette, Kent

    ; (230.5298) Photonic crystals. References and links 1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D," J. Opt. Soc. Am. B 22, 2581­2595 (2005). 11. F. Bordas, M. J. Steel, C. Seassal, and A. Rahamani

  14. Photonic Crystal Slot Waveguide Optical Absorption Spectrometer for Highly sensitive

    E-Print Network [OSTI]

    Texas at Austin, University of

    months -Remote Monitoring of BTEX hydrocarbons in water needed -Real-time detection and identification of BTEX hydrocarbons in water needed · Sample collection after-the-fact. -Continuous monitoring of water pollutants in water #12;What is Photonic Crystal? · Periodic electromagnetic media comparable to wavelength

  15. Detection and characterization of optical inhomogeneities with diffuse photon density

    E-Print Network [OSTI]

    Yodh, Arjun G.

    : a signal-to-noise analysis D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh Diffusing photons provide. O'Leary, and A. G. Yodh were with the Department of Physics, and D. A. Boas, M. A. O'Leary, and B

  16. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies

    E-Print Network [OSTI]

    Semere Ayalew Tadesse; Mo Li

    2014-10-04T23:59:59.000Z

    Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct, wideband link between optical and microwave photons for microwave photonics and quantum optomechanics.

  17. Quantum networking of microwave photons using optical fibers

    E-Print Network [OSTI]

    B. D. Clader

    2014-07-17T23:59:59.000Z

    We describe an adiabatic state transfer mechanism that allows for high-fidelity transfer of a microwave quantum state from one cavity to another through an optical fiber. The conversion from microwave frequency to optical frequency is enabled by an optomechanical transducer. The transfer process utilizes a combined dark state of the mechanical oscillator and fiber modes, making it robust against both mechanical and fiber loss. We anticipate this scheme being an enabling component of a hybrid quantum computing architecture consisting of superconducting qubits with optical interconnects.

  18. Nanostructured Optical Photonic Crystal Biosensor for HIV Viral Load Measurement

    E-Print Network [OSTI]

    Shafiee, Hadi

    Detecting and quantifying biomarkers and viruses in biological samples have broad applications in early disease diagnosis and treatment monitoring. We have demonstrated a label-free optical sensing mechanism using ...

  19. Optical-fiber source of polarization-entangled photon pairs in the 1550nm telecom band

    E-Print Network [OSTI]

    Xiaoying Li; Paul L. Voss; Jay E. Sharping; Prem Kumar

    2004-08-12T23:59:59.000Z

    We present a fiber based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1550nm band of standard fiber-optic telecommunications. Polarization entanglement is created by pumping a nonlinear-fiber Sagnac interferometer with two time-delayed orthogonally-polarized pump pulses and subsequently removing the time distinguishability by passing the parametrically scattered signal-idler photon pairs through a piece of birefringent fiber. Coincidence detection of the signal-idler photons yields biphoton interference with visibility greater than 90%, while no interference is observed in direct detection of either the signal or the idler photons. All four Bell states can be prepared with our setup and we demonstrate violations of CHSH form of Bell's inequalities by up to 10 standard deviations of measurement uncertainty.

  20. Title: Crystallization of strongly interacting photons in a nonlinear optical fiber Time: 2/20/2009 (Fri.) 3:40 PM~4:40 PM

    E-Print Network [OSTI]

    Wu, Yih-Min

    Title: Crystallization of strongly interacting photons in a nonlinear optical fiber Time: 2 massive particles, optical photons can also interact with each other in a nonlinear medium. In practice of a strongly correlated quantum gas of photons using one-dimensional optical systems with tight field

  1. Optically imprinted reconfigurable photonic elements in a VO{sub 2} nanocomposite

    SciTech Connect (OSTI)

    Jostmeier, Thorben; Betz, Markus [Experimentelle Physik 2, TU Dortmund University, Otto-Hahn-Straße 4, 44227 Dortmund (Germany); Zimmer, Johannes; Krenner, Hubert J. [Lehrstuhl für Experimentalphysik 1 and Augsburg Centre for Innovative Technologies (ACIT), Universität Augsburg, Universitätstr. 1, 86159 Augsburg (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); Karl, Helmut [Lehrstuhl für Experimentalphysik IV, Universität Augsburg, Universitätstr. 1, 86159 Augsburg (Germany)

    2014-08-18T23:59:59.000Z

    We investigate the optical and thermal hysteresis of single-domain vanadium dioxide nanocrystals fabricated by ion beam synthesis in a fused silica matrix. The nanocrystals exhibit a giant hysteresis, which permits to optically generate a long-time stable supercooled metallic phase persistent down to practically room temperature. Spatial patterns of supercooled and insulating nanocrystals feature a large dielectric contrast, in particular, for telecom wavelengths. We utilize this contrast to optically imprint reconfigurable photonic elements comprising diffraction gratings as well as on- and off-axis zone plates. The structures allow for highly repetitive (>10{sup 4}) cycling through the phase transition without structural damage.

  2. Optical properties of two-dimensional metamaterial photonic crystals

    SciTech Connect (OSTI)

    Mejía-Salazar, J. R. [Departamento de Física, Universidad del Valle, AA 25360, Cali, Colombia and Instituto de Física, UNICAMP, Campinas-SP 13083-859 (Brazil)

    2013-12-14T23:59:59.000Z

    In the present work, we theoretically study a 2D photonic crystal (PC) comprised by double negative (DNG) metamaterial cylinders, showing that such a system presents a superior light-matter interaction when compared with their single negative (SNG) plasmonic PC counterparts, suggesting a route to enhance the performance of sensors and photovoltaic cells. On the other hand, we have observed that depending on the frequency, the mode symmetry resembles either the case of SNG electric (SNG-E) or SNG magnetic (SNG-M) PC, suggesting that either the electric or magnetic character of the DNG metamaterial dominates in each case.

  3. Nonlinear photonic structures for all-optical Tal Ellenbogen*

    E-Print Network [OSTI]

    Arie, Ady

    pattern in the transverse direction. Stoichiometric lithium tantalite structures were tested by second. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions switching and frequency conversion in lithium niobate waveguide arrays," Opt. Lett. 30, 177-179 (2005). 12

  4. National Central University, Taiwan Department of Optics and Photonics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , we investigated the optical properties of hybrid nanocomposited thin films made of PMMA polymer and applications of hybrid organic/ inorganic semiconductor quantum dots in thin films Hung-Ju LIN Dissertation couches minces nanocomposites de polymère PMMA contenant différentes concentrations de boites quantiques

  5. Tuning the optical forces on- and off-resonance in microspherical photonics

    E-Print Network [OSTI]

    Li, Yangcheng; Jofre, Ana; Astratov, Vasily N

    2015-01-01T23:59:59.000Z

    Light pressure effect has been discovered long ago and has been used as an optical method to manipulate microand nanoparticles. It is usually considered as a nonresonant effect determined by the transfer of the momentum of light. However, recently we have observed that large polystyrene microspheres of 15-20 {\\mu}m diameters supporting high quality whispering gallery resonances can be optically propelled in water at an extraordinary high velocity along tapered fibers under resonant conditions. In this work we compare on- and off-resonant optical forces in microspherical photonics by controlling the detuning between the laser emission line and whispering gallery resonances. Our approach involves manipulation with microspheres using conventional optical tweezers and their advanced spectroscopic characterization in fiber-integrated setups. We demonstrate dramatic difference in the optical forces exerted on microspheres in the on-resonant and off-resonant cases. This method can be used to study spectral propertie...

  6. Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity

    E-Print Network [OSTI]

    Chan, Jasper; Camacho, Ryan; Painter, Oskar

    2008-01-01T23:59:59.000Z

    Design of a doubly-clamped beam structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which patterning of a nanoscale-cross-section beam can result in strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths ((\\lambda_{c})^3). By placing two identical nanobeams within the near field of each other, strong optomechanical coupling can be realized for differential motion between the beams. Current designs for thin film silicon nitride beams at a wavelength of 1.5 microns indicate that such structures can simultaneously realize an optical Q-factor of 7x10^6, motional mass m~40 picograms, mechanical mode frequency ~170 MHz, and an optomechanical coupling factor (g_{OM}=d\\omega_{c}/dx = \\omega_{c}/L_{OM}) with effective length L_{OM} ~ \\lambda = 1.5 microns.

  7. High-performance single-photon generation with commercial-grade optical fiber

    E-Print Network [OSTI]

    Christoph Söller; Offir Cohen; Brian J. Smith; Ian A. Walmsley; Christine Silberhorn

    2012-02-14T23:59:59.000Z

    High-quality quantum sources are of paramount importance for the implementation of quantum technologies. We present here a heralded single-photon source based on commercial-grade polarization-maintaining optical fiber. The heralded photons exhibit a purity of at least 0.84 and an unprecedented heralding efficiency into single-mode fiber of 85%. The birefringent phase-matching condition of the underlying four-wave mixing process can be controlled mechanically to optimize the wavelength tuning needed for interfacing multiple sources, as are required for large-scale entanglement generation.

  8. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    SciTech Connect (OSTI)

    Heath, Robert M., E-mail: r.heath.1@research.gla.ac.uk; Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H. [School of Engineering, University of Glasgow, Glasgow G12 8LT, Scotland (United Kingdom); Webster, Mark G. [Department of Statistics, University of Leeds, Leeds LS2 9JT (United Kingdom); San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Warburton, Richard J. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2014-02-10T23:59:59.000Z

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime.

  9. Photon emission and absorption of a single ion coupled to an optical fiber-cavity

    E-Print Network [OSTI]

    M. Steiner; H. M. Meyer; J. Reichel; M. Köhl

    2014-07-22T23:59:59.000Z

    We present a light-matter interface which consists of a single $^{174}$Yb$^+$ ion coupled to an optical fiber-cavity. We observe that photons at 935 nm are mainly emitted into the cavity mode and that correlations between the polarization of the photon and the spin state of the ion are preserved despite the intrinsic coupling into a single-mode fiber. Complementary, when a faint coherent light field is injected into the cavity mode we find enhanced and polarization dependent absorption by the ion.

  10. Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core

    E-Print Network [OSTI]

    Tank, David

    Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core Fritjof Helmchen, David W. Tank, and Winfried Denk Multiphoton excitation through optical fibers of applications efficient MPE through optical fibers is desirable. For example, single-mode fibers SMFs can

  11. arXiv:quant-ph/0104054v58Jun2004 Entanglement Concentration of Individual Photon Pairs via Linear Optical Logic

    E-Print Network [OSTI]

    Texas at Austin. University of

    Optical Logic Chuanwei Zhang Department of Physics and Center for Nonlinear Dynamics, The University polarization-entangled state of individual photon pairs. The scheme uses only simple linear optical elements and may be feasible within current optical technology. PACS numbers: 03.67.-a, 03.65.Bz, 42.50.-p, 89.70+c

  12. Photonic Molecules and Spectral Engineering

    E-Print Network [OSTI]

    Boriskina, Svetlana V.

    2010-01-01T23:59:59.000Z

    This chapter reviews the fundamental optical properties and applications of photonic molecules (PMs) – photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable ...

  13. 14 Optics & Photonics News December 2004 (Background image) Each fiber in the spectrometric fabric is a photodetector sensitive to external illumination at a particular wavelength

    E-Print Network [OSTI]

    Huang, Yanyi

    14 Optics & Photonics News December 2004 (Background image) Each fiber in the spectrometric fabric Koshel Optics in 2004 Tell us what you think: http://www.osa-opn.org/survey.cfm #12;Fiber Optics Low and Anders Bjarklev In recent years, a new class of optical fiber that operates by the photonic bandgap (PBG

  14. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    SciTech Connect (OSTI)

    Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

    2014-02-24T23:59:59.000Z

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  15. Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique

    E-Print Network [OSTI]

    K. P. Nayak; K. Hakuta

    2012-10-29T23:59:59.000Z

    We demonstrate that thousands of periodic nano-craters are fabricated on a subwavelength-diameter tapered optical fiber, an optical nanofiber, by irradiating with just a single femtosecond laser pulse. A key aspect of the fabrication is that the nanofiber itself acts as a cylindrical lens and focuses the femtosecond laser beam on its shadow surface. We also demonstrate that such periodic structures on the nanofiber, act as a 1-D photonic crystal (PhC). Such PhC structures on the nanofiber will strongly enhance the field confinement in such a tapered fiber-based system and may open new avenues in nanophotonics and quantum information technology.

  16. High-Sensitivity Two-Photon Spectroscopy in a Dark Optical Trap, based on Electron Shelving

    E-Print Network [OSTI]

    Khaykovich, B; Baluschev, S; Fathi, D; Davidson, N E

    1999-01-01T23:59:59.000Z

    We propose a new spectroscopic method for measuring weak transitions in cold and trapped atoms, which exploits the long interaction times and tight confinement offered by dark optical traps together with an electron shelving technique to achieve extremely high sensitivity. We demonstrate our scheme by measuring a 5S_{1/2}-> 5D_{5/2} two-photon transition in cold Rb atoms trapped in a new single-beam dark optical trap, using an extremely weak probe laser power of 25 micro-Watt. We were able to measure transitions with as small excitation rate as 0.09 sec^(-1).

  17. Optical pulse dynamics for quantum-dot logic operations in a photonic-crystal waveguide

    SciTech Connect (OSTI)

    Ma, Xun; John, Sajeev [Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7 Canada (Canada)

    2011-11-15T23:59:59.000Z

    We numerically demonstrate all-optical logic operations with quantum dots (QDs) embedded in a bimodal photonic-crystal waveguide using Maxwell-Bloch equations in a slowly varying envelope approximation (SVEA). The two-level QD excitation level is controlled by one or more femtojoule optical driving pulses passing through the waveguide. Specific logic operations depend on the relative pulse strengths and their detunings from an inhomogeneouslly broadened (about 1% for QD transitions centered at 1.5 {mu}m) QD transition. This excitation controlled two-level medium then determines passage of subsequent probe optical pulses. Envelope equations for electromagnetic waves in the linear dispersion and cutoff waveguide modes are derived to simplify solution of the coupled Maxwell-Bloch equations in the waveguide. These determine the quantum mechanical evolution of the QD excitation and its polarization, driven by classical electromagnetic (EM) pulses near a sharp discontinuity in the EM density of states of the bimodal waveguide. Different configurations of the driving pulses lead to distinctive relations between driving pulse strength and probe pulse passage, representing all-optical logic and, or, and not operations. Simulation results demonstrate that such operations can be done on picosecond time scales and within a waveguide length of about 10 {mu}m in a photonic-band-gap (PBG) optical microchip.

  18. Thermomechanical Actuator-Based Three-Axis Optical Scanner for High-Speed Two-Photon Endomicroscope Imaging

    E-Print Network [OSTI]

    Chen, Shih-Chi

    This paper presents the design and characterization of a three-axis thermomechanical actuator-based endoscopic scanner for obtaining ex vivo two-photon images. The scanner consisted of two sub-systems: 1) an optical system ...

  19. Quantum Optical Coherence: Applications in Photon Switching, Control of Spontaneous Emission and Atom Localization 

    E-Print Network [OSTI]

    Yang, Shuai

    2013-12-12T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The combined cavity-cold atoms system . . . . . . . . . . . . . . . . 9 2.3 Controllable optical bistability . . . . . . . . . . . . . . . . . . . . . . 15 2...-cold-atoms system . . . . . . . . 9 2.2 The cavity photon numbers as a function of the input pump along the cavity axis. For (a) ? (c), the parameters are N = 4.8 × 104, U˜0 = 0.25, ?˜c = 1.2 × 103, ?˜ = 0.4 × 103, and (a) ?˜? = 0, (b) ?˜? = 0.1, (c) ?˜? = 0...

  20. Quantum Optical Coherence: Applications in Photon Switching, Control of Spontaneous Emission and Atom Localization

    E-Print Network [OSTI]

    Yang, Shuai

    2013-12-12T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The combined cavity-cold atoms system . . . . . . . . . . . . . . . . 9 2.3 Controllable optical bistability . . . . . . . . . . . . . . . . . . . . . . 15 2...-cold-atoms system . . . . . . . . 9 2.2 The cavity photon numbers as a function of the input pump along the cavity axis. For (a) ? (c), the parameters are N = 4.8 × 104, U˜0 = 0.25, ?˜c = 1.2 × 103, ?˜ = 0.4 × 103, and (a) ?˜? = 0, (b) ?˜? = 0.1, (c) ?˜? = 0...

  1. September 1, 2000 / Vol. 25, No. 17 / OPTICS LETTERS 1297 Demonstration of highly efficient waveguiding in a photonic

    E-Print Network [OSTI]

    is essential for building future large-scale optical integrated circuits. Photonic crystal waveguides offer Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 S. G. Johnson and J. D. Joannopoulos Department of light.1 If the line defect is properly designed, the resulting guiding mode falls within a photonic

  2. Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor

    E-Print Network [OSTI]

    S. M. Hendrickson; M. M. Lai; T. B. Pittman; J. D. Franson

    2010-07-12T23:59:59.000Z

    Nonlinear optical effects can be enhanced in tapered optical fibers with diameters less than the wavelength of the propagating light. Here we report on the observation of two-photon absorption using tapered fibers in rubidium vapor at power levels of less than 150 nW. Transit-time broadening produces two-photon absorption spectra with sharp peaks that are very different from conventional line shapes.

  3. 217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector

    E-Print Network [OSTI]

    Guo-Liang Shentu; Qi-Chao Sun; Xiao Jiang; Xiao-Dong Wang; Jason S. Pelc; M. M. Fejer; Qiang Zhang; Jian-Wei Pan

    2013-08-05T23:59:59.000Z

    We demonstrate a photon-counting optical time-domain reflectometry with 42.19 dB dynamic range using an ultra-low noise up-conversion single photon detector. By employing the long wave pump technique and a volume Bragg grating, we reduce the noise of our up-conversion single photon detector, and achieve a noise equivalent power of -139.7 dBm/sqrt(Hz). We perform the OTDR experiments using a fiber of length 216.95 km, and show that our system can identify defects along the entire fiber length with a distance resolution better than 10 cm in a measurement time of 13 minutes.

  4. Presented as SPIE Optics+Photonics 2007 Coastal Ocean Remote Sensing Conf. paper 6680-33 Aug. 27, San Diego, CA 1 Submerged turbulence detection with optical satellites

    E-Print Network [OSTI]

    Wang, Deli

    Presented as SPIE Optics+Photonics 2007 Coastal Ocean Remote Sensing Conf. paper 6680-33 Aug. 27. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum

  5. Photon storage in Lambda-type optically dense atomic media. III. Effects of inhomogeneous broadening

    E-Print Network [OSTI]

    Alexey V. Gorshkov; Axel Andre; Mikhail D. Lukin; Anders S. Sorensen

    2007-09-08T23:59:59.000Z

    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)] and in the two preceding papers [Gorshkov et al., Phys. Rev. A 76, 033804 (2007); 76, 033805 (2007)], we used a universal physical picture to optimize and demonstrate equivalence between a wide range of techniques for storage and retrieval of photon wave packets in homogeneously broadened Lambda-type atomic media, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo-based techniques. In the present paper, we generalize this treatment to include inhomogeneous broadening. In particular, we consider the case of Doppler-broadened atoms and assume that there is a negligible difference between the Doppler shifts of the two optical transitions. In this situation, we show that, at high enough optical depth, all atoms contribute coherently to the storage process as if the medium were homogeneously broadened. We also discuss the effects of inhomogeneous broadening in solid state samples. In this context, we discuss the advantages and limitations of reversing the inhomogeneous broadening during the storage time, as well as suggest a way for achieving high efficiencies with a nonreversible inhomogeneous profile.

  6. Photonic quantum transport in a nonlinear optical fiber This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Jensen, Grant J.

    Photonic quantum transport in a nonlinear optical fiber This article has been downloaded from in a nonlinear optical fiber M. Hafezi1(a) , D. E. Chang2 , V. Gritsev1,3 , E. A. Demler1 and M. D. Lukin1 1 in a hollow-core optical fiber. We show that when the interaction between photons is effectively repulsive

  7. Transmission of O-band wavelength-division-multiplexed heralded photons over a noise-corrupted optical fiber channel

    E-Print Network [OSTI]

    Mao Tong Liu; Han Chuen Lim

    2013-12-15T23:59:59.000Z

    We transmitted O-band heralded photons over 10 km of optical fiber in a proof-of-concept experiment demonstrating the feasibility of using heralded photons to improve the noise tolerance of quantum key distribution. In our experiment, the optical fiber channel was corrupted by noise photons to the extent that if we had used an attenuated laser as the photon source, a photon signal-to-noise ratio of 10.0%, would have prevented the effective generation of secure keys. Using a photon heralding scheme, the photon signal-to-noise ratio in our experiment was shown to be > 7.8. This corresponds to a quantum bit-error rate of < 5.7%, which is good enough for distilling secure keys. In addition, we showed that it is possible to incorporate wavelength-division-multiplexing into the photon heralding scheme to improve overall key rate. We discussed and clarified the prospects and limitations of the photon heralding scheme for noise-tolerant quantum key distribution.

  8. TOWARDS CIGS SOLAR CELLS WITH REDUCED FILM THICKNESS: A STUDY OF OPTICAL PROPERTIES AND OF PHOTONIC STRUCTURES FOR LIGHT TRAPPING

    E-Print Network [OSTI]

    TOWARDS CIGS SOLAR CELLS WITH REDUCED FILM THICKNESS: A STUDY OF OPTICAL PROPERTIES AND OF PHOTONIC ABSTRACT: In view of large-scale exploitation of CuIn1-xGaxSe2 (CIGS) solar cells for photovoltaic energy. In this work we perform a full study of optical properties of CIGS solar cells grown by a hybrid sputtering

  9. Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region Burton H.boss@maine.edu ABSTRACT The optical structure and variability of the Lombok Straits region is poorly understood, but available remotely sensed ocean color indicates that there is a strong optical response and signal

  10. Analysis of a distributed fiber-optic temperature sensor using single-photon detectors

    E-Print Network [OSTI]

    Shellee D. Dyer; Michael G. Tanner; Burm Baek; Robert H. Hadfield; Sae Woo Nam

    2011-11-17T23:59:59.000Z

    We demonstrate a high-accuracy distributed fiber-optic temperature sensor using superconducting nanowire single-photon detectors and single-photon counting techniques. Our demonstration uses inexpensive single-mode fiber at standard telecommunications wavelengths as the sensing fiber, which enables extremely low-loss experiments and compatibility with existing fiber networks. We show that the uncertainty of the temperature measurement decreases with longer integration periods, but is ultimately limited by the calibration uncertainty. Temperature uncertainty on the order of 3 K is possible with spatial resolution of the order of 1 cm and integration period as small as 60 seconds. Also, we show that the measurement is subject to systematic uncertainties, such as polarization fading, which can be reduced with a polarization diversity receiver.

  11. Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers

    E-Print Network [OSTI]

    Stefania Castelletto; Ivo Pietro Degiovanni; Alan Migdall; Valentina Schettini; Michael Ware

    2004-08-03T23:59:59.000Z

    We investigate the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers as a function of the pump beam diameter, crystal length and walk-off. We outline two different theoretical models for the preparation and collection of either single-mode or multi-mode PDC light (defined by, for instance, multi-mode fibers or apertures, corresponding to bucket detection). Moreover, we define the mode-matching collection efficiency, important for realizing a single-photon source based on PDC output into a well-defined single spatial mode. We also define a multimode collection efficiency that is useful for single-photon detector calibration applications.

  12. Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers

    E-Print Network [OSTI]

    Castelletto, S; Migdal, A; Schettini, V; Ware, M; Castelletto, Stefania; Degiovanni, Ivo Pietro; Migdall, Alan; Schettini, Valentina; Ware, Michael

    2004-01-01T23:59:59.000Z

    We investigate the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers as a function of the pump beam diameter, crystal length and walk-off. We outline two different theoretical models for the preparation and collection of either single-mode or multi-mode PDC light (defined by, for instance, multi-mode fibers or apertures, corresponding to bucket detection). Moreover, we define the mode-matching collection efficiency, important for realizing a single-photon source based on PDC output into a well-defined single spatial mode. We also define a multimode collection efficiency that is useful for single-photon detector calibration applications.

  13. Resonantly-enhanced axion-photon regeneration

    SciTech Connect (OSTI)

    Mueller, Guido; Sikivie, Pierre; Tanner, David B. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Bibber, Karl van [Naval Postgraduate School, Monterey, CA 93943 (United States)

    2010-08-30T23:59:59.000Z

    A resonantly-enhanced photon-regeneration experiment to search for the axion or axion-like particles is discussed. Photons enter a strong magnetic field and some are converted to axions; the axions can pass through an opaque wall and some may convert back to photons in a second high-field region. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon regeneration magnet. The optics for this experiment are discussed, with emphasis on the alignment of the two cavities.

  14. Trends in Optics | Features | Jan 2014 | Photonics Spectra http://www.photonics.com/Article.aspx?PID=5&VID=116&IID=738&AID=55732[27/02/2014 09:05:10

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Trends in Optics | Features | Jan 2014 | Photonics Spectra http://www.photonics.com/Article.aspx?PID Spectra http://www.photonics.com/Article.aspx?PID=5&VID=116&IID=738&AID=55732[27/02/2014 09:05:10] >ISSUE

  15. Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system

    E-Print Network [OSTI]

    Shigehito Miki; Masanori Takeda; Mikio Fujiwara; Masahide Sasaki; Zhen Wang

    2010-02-28T23:59:59.000Z

    We developed superconducting nanowire single-photon detectors with an optical cavity (OC-SNSPDs) for multichannel systems. For efficient coupling, the devices were installed in compact fiber-coupled packages after their substrate thickness was reduced from 400 to 45 $\\mu$m. The measured detection efficiency (DE) measurement at different substrate thicknesses and the estimation of optical coupling efficiency indicated that ~98% of the input light beam could be radiated on a 15x15 $\\mu m^2$ nanowire area from behind the substrate. The DEs of a NbN OC-SNSPD system were observed to be 9.5% and 25% at 1550 nm and 1310 nm, respectively (dark-count rate: 100 c/s).

  16. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    E-Print Network [OSTI]

    Erhan Saglamyurek; Jeongwan Jin; Varun B. Verma; Matthew D. Shaw; Francesco Marsili; Sae Woo Nam; Daniel Oblak; Wolfgang Tittel

    2015-01-13T23:59:59.000Z

    The realization of a future quantum Internet requires processing and storing quantum information at local nodes, and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory has been reported. Here we demonstrate the storage and faithful recall of the state of a 1532 nm wavelength photon, entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20 meter-long silicate fibre using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality. Furthermore, it facilitates novel tests of light-matter interaction and collective atomic effects in unconventional materials.

  17. Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime

    SciTech Connect (OSTI)

    Jae-Hwang Lee

    2006-08-09T23:59:59.000Z

    This dissertation describes several projects to realize low-cost and high-quality three-dimensional (3D) microfabrication using non-photolithographic techniques for layer-by-layer photonic crystals. Low-cost, efficient 3D microfabrication is a demanding technique not only for 3D photonic crystals but also for all other scientific areas, since it may create new functionalities beyond the limit of planar structures. However, a novel 3D microfabrication technique for photonic crystals implies the development of a complete set of sub-techniques for basic layer-by-layer stacking, inter-layer alignment, and material conversion. One of the conventional soft lithographic techniques, called microtransfer molding ({mu}TM), was developed by the Whitesides group in 1996. Although {mu}TM technique potentially has a number of advantages to overcome the limit of conventional photolithographic techniques in building up 3D microstructures, it has not been studied intensively after its demonstration. This is mainly because of technical challenges in the nature of layer-by-layer fabrication, such as the demand of very high yield in fabrication. After two years of study on conventional {mu}TM, We have developed an advanced microtransfer molding technique, called two-polymer microtransfer molding (2P-{mu}TM) that shows an extremely high yield in layer-by-layer microfabrication sufficient to produce highly layered microstructures. The use of two different photo-curable prepolymers, a filler and an adhesive, allows for fabrication of layered microstructures without thin films between layers. The capabilities of 2P-{mu}TM are demonstrated by the fabrication of a wide-area 12-layer microstructure with high structural fidelity. Second, we also had to develop an alignment technique. We studied the 1st-order diffracted moire fringes of transparent multilayered structures comprised of irregularly deformed periodic patterns. By a comparison study of the diffracted moire fringe pattern and detailed microscopy of the structure, we show that the diffracted moire fringe can be used as a nondestructive tool to analyze the alignment of multilayered structures. We demonstrate the alignment method for the case of layer-by-layer microstructures using soft lithography. The alignment method yields high contrast of fringes even when the materials being aligned have very weak contrasts. The imaging method of diffracted moire fringes is a versatile visual tool for the microfabrication of transparent deformable microstructures in layer-by-layer fashion. Third, we developed several methods to convert a polymer template to dielectric or metallic structures, for instance, metallic infiltration using electrodeposition, metallic coating using sputter deposition, dielectric infiltration using titania nano-slurry, and dielectric coating using atomic layer deposition of Titania. By several different developed techniques, high quality photonic crystals have been successfully fabricated; however, I will focus on a line of techniques to reach metallic photonic crystals in this dissertation since they are completely characterized at this moment. In addition to the attempts for photonic crystal fabrication, our non-photolithographic technique is applied for other photonic applications such as small optical waveguides whose diameter is comparable to the wavelength of guided light. Although, as guiding medium, polymers have tremendous potential because of their enormous variation in optical, chemical and mechanical properties, their application for optical waveguides is limited in conventional photolithography. By 2P-{mu}TM, we achieve low cost, high yield, high fidelity, and tailorable fabrication of small waveguides. Embedded semiconductor quantum-dots and grating couplers are used for efficient internal and external light source, respectively.

  18. Supercontinuum Generation in Photonic Crystal Fibers Possessing High Birefringence and Large Optical Nonlinearity

    E-Print Network [OSTI]

    Sharma, Mohit; Konar, S

    2015-01-01T23:59:59.000Z

    This paper presents the design of an index guided highly birefringent photonic crystal fiber which promises to yield very large birefringence ~3.33 X 10^(-2) at 1550 nm and ~1.75 X 10^(-2) at 1064 nm as well as large effective nonlinearity ~80 W^(-1)km^(-1). Optical supercontinuum generation in the proposed fiber using a 1064 nm pump source with peak power of 1kW has been also presented. Finite difference time domain method (FDTD) has been employed to examine the optical properties such as fiber birefringence, mode field, V-parameter, walk-off and optical nonlinearity, while the Split-step Fourier method is used to solve the nonlinear Schrodinger equation felicitating the study of supercontinuum generation. Simulation results indicate that horizontal input pulse yields superior continuum in comparison to that of the vertically polarized input. However, the broadening of the continuum is about 1450 nm in case of horizontally polarized input light whereas it is approximately 2350 nm for vertically polarized.

  19. Molecular dynamics simulations of coherent optical photon emission from shock waves in Evan J. Reed,1,2,

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals, 013904 2006 . In this work, we present analysis and molecular dynamics simulations of shock waves subject to a shock wave or solitonlike propagating excitation E. J. Reed et al., Phys. Rev. Lett. 96

  20. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 1, JANUARY 1, 2010 21 Silicon-Based Thermo-Optically Tunable

    E-Print Network [OSTI]

    Lee, Jeong-Bong

    IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 1, JANUARY 1, 2010 21 Silicon-Based ThermoFarlane, and Jeong-Bong Lee Abstract--We report an extremely compact (30 m 7 m) silicon-based 2-D thermo in silicon due to thermo-optic effect which results in change of the focal length of the PhC lens. The device

  1. Transition between Tamm-like and Shockley-like surface states in optically induced photonic superlattices

    SciTech Connect (OSTI)

    Malkova, Natalia [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States); National Institute of Standards and Technology and Joint Quantum Institute, University of Maryland, Gaithersburg, Maryland 20899 (United States); Hromada, Ivan; Wang Xiaosheng [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States); Bryant, Garnett [National Institute of Standards and Technology and Joint Quantum Institute, University of Maryland, Gaithersburg, Maryland 20899 (United States); Chen Zhigang [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States); Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China)

    2009-10-15T23:59:59.000Z

    We study the formation of Shockley-like surface states and their transition into Tamm-like surface states in an optically induced semi-infinite photonic superlattice. While perfect Shockley-like states appear only when the induced superlattice with alternating strong and weak bonds is terminated properly with an unperturbed surface, deformed Shockley-like surface states often appear in the so-called inverted band gap when the surface perturbation is nonzero. Furthermore, transitions between linear Tamm-like, Shockley-like, and nonlinear Tamm-like surface states are also observed by fine tuning the surface perturbation. Using coupled-mode theory, we confirm the existence of these linear and nonlinear surface states in a finite array of N identical single-mode waveguides coupled with alternating strong and weak bonds.

  2. Transfer of optical signals around bends in two-dimensional linear photonic networks

    E-Print Network [OSTI]

    Georgios M. Nikolopoulos

    2014-11-13T23:59:59.000Z

    The ability to navigate light signals in two-dimensional networks of waveguide arrays is a prerequisite for the development of all-optical integrated circuits for information processing and networking. In this article, we present a theoretical analysis of bending losses in linear photonic lattices with engineered couplings, and discuss possible ways for their minimization. In contrast to previous work in the field, the lattices under consideration operate in the linear regime, in the sense that discrete solitons cannot exist. The present results suggest that the functionality of linear waveguide networks can be extended to operations that go beyond the recently demonstrated point-to-point transfer of signals, such as blocking, routing, logic functions, etc.

  3. Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy

    SciTech Connect (OSTI)

    Himmelhuber, R., E-mail: rolandh@optics.arizona.edu; Mehravar, S. S.; Herrera, O. D.; Demir, V.; Kieu, K.; Norwood, R. A.; Peyghambarian, N. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Luo, J. [Soluxra LLC, Seattle, Washington 98195 (United States); Jen, A. K.-Y. [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-04-21T23:59:59.000Z

    We imaged coplanar poled electro optic (EO) polymer films on transparent substrates with a multiple-photon microscope in reflection and correlated the second-harmonic light intensity with the results of Pockels coefficient (r{sub 33}) measurements. This allowed us to make quantitative measurements of poled polymer films on non-transparent substrates like silicon, which are not accessible with traditional Pockels coefficient measurement techniques. Phase modulators consisting of silicon waveguide devices with EO polymer claddings with a known Pockels coefficient (from V{sub ?} measurements) were used to validate the correlation between the second-harmonic signal and r{sub 33}. This also allowed us to locally map the r{sub 33} coefficient in the poled area.

  4. High Efficiency Optical MEMS by the Integration of Photonic Lattices with Surface MEMS

    SciTech Connect (OSTI)

    FLEMING, JAMES G.; LIN, SHAWN-YU; MANI, SEETHAMBAL S.; RODGERS, M. STEVEN; DAGEL, DARYL J.

    2002-11-01T23:59:59.000Z

    This report outlines our work on the integration of high efficiency photonic lattice structures with MEMS (MicroElectroMechanical Systems). The simplest of these structures were based on 1-D mirror structures. These were integrated into a variety of devices, movable mirrors, switchable cavities and finally into Bragg fiber structures which enable the control of light in at least 2 dimensions. Of these devices, the most complex were the Bragg fibers. Bragg fibers consist of hollow tubes in which light is guided in a low index media (air) and confined by surrounding Bragg mirror stacks. In this work, structures with internal diameters from 5 to 30 microns have been fabricated and much larger structures should also be possible. We have demonstrated the fabrication of these structures with short wavelength band edges ranging from 400 to 1600nm. There may be potential applications for such structures in the fields of integrated optics and BioMEMS. We have also looked at the possibility of waveguiding in 3 dimensions by integrating defects into 3-dimensional photonic lattice structures. Eventually it may be possible to tune such structures by mechanically modulating the defects.

  5. 3D optical tomography in the presence of void regions

    E-Print Network [OSTI]

    Lorenzo, Jorge Ripoll

    reconstruction scheme for optical tomography based on the equation of radiative transfer," Med. Phys. 26 1698 and F. W¨ubbeling, Mathematical Methods in Image Reconstruction (SIAM, Philadel- phia, 2001). 15. J. Sch

  6. Block copolymer photonic crystals : towards self-assembled active optical elements

    E-Print Network [OSTI]

    Yoon, Jongseung

    2006-01-01T23:59:59.000Z

    Block copolymers have proven to be a unique materials platform for easily fabricated large-area photonic crystals. While the basic concept of block copolymer based photonic band gap materials has been well demonstrated, ...

  7. Optical studies of photonic crystals and high index-contrast microphotonic circuits

    E-Print Network [OSTI]

    Rakich, Peter Thomas

    2006-01-01T23:59:59.000Z

    Both high index-contrast (HIC) photonic crystals and HIC microphotonic circuits are presented in this thesis. Studies of macro-scale 2D photonic crystal meta-materials are first described. Through comparison of experimental ...

  8. Efficient superconducting-nanowire single-photon detectors and their applications in quantum optics

    E-Print Network [OSTI]

    Hu, Xiaolong, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Superconducting-nanowire single-photon detectors (SNSPDs) are an emerging technology for infrared photon counting and detection. Their advantages include good device efficiency, fast operating speed, low dark-count rate, ...

  9. Ultrafast optical parametric processes in photonic crystal fibers: fundamentals and applications

    E-Print Network [OSTI]

    Gu, Chenji

    2012-01-01T23:59:59.000Z

    of ultrafast optical pulses . . . . . . . . .copropagating ultrafast optical pulses”, Appl. Phys. Lett.Additionally, the ultrafast pump pulses can experience

  10. Ultra-broadband photon pair preparation by spontaneous four wave mixing in dispersion-engineered optical fiber

    E-Print Network [OSTI]

    Karina Garay-Palmett; Alfred B. U'Ren; Raúl Rangel-Rojo; Rodger Evans; Santiago Camacho-López

    2008-10-08T23:59:59.000Z

    We present a study of the spectral properties of photon pairs generated through the process of spontaneous four wave mixing (SFWM) in single mode fiber. Our analysis assumes narrowband pumps, which are allowed to be frequency-degenerate or non-degenerate. Based on this analysis, we derive conditions on the pump frequencies and on the fiber dispersion parameters which guarantee the generation of ultra-broadband photon pairs. Such photon pairs are characterized by: i) a very large degree of entanglement, and ii) a very high degree of temporal synchronization between the signal and idler photons. Through a numerical exercise, we find that the use of photonic crystal fiber (PCF) facilitates the fulfilment of the conditions for ultra-broadband photon pair generation; in particular, the spectral region in which emission occurs can be adjusted to particular needs through an appropriate choice of the PCF parameters. In addition, we present a novel quantum interference effect, resulting from indistinguishable pathways to the same outcome, which can occur when pumping a SFWM source with multiple spectral lines.

  11. Evaluation of Al{sub 2}O{sub 3}:C optically stimulated luminescence (OSL) dosimeters for passive dosimetry of high-energy photon and electron beams in radiotherapy

    SciTech Connect (OSTI)

    Yukihara, E. G.; Mardirossian, G.; Mirzasadeghi, M.; Guduru, S.; Ahmad, S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Department of Radiation Oncology, Mount Sinai Comprehensive Cancer Center, Miami Beach, Florida 33140 (United States); Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 825 Northeast 10th Street, OUPB 1430, Oklahoma City, Oklahoma 73104 (United States); Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 825 Northeast 10th Street, OUPB 1430, Oklahoma City, Oklahoma 73104 (United States)

    2008-01-15T23:59:59.000Z

    This article investigates the performance of Al{sub 2}O{sub 3}:C optically stimulated luminescence dosimeters (OSLDs) for application in radiotherapy. Central-axis depth dose curves and optically stimulated luminescence (OSL) responses were obtained in a water phantom for 6 and 18 MV photons, and for 6, 9, 12, 16, and 20 MeV electron beams from a Varian 21EX linear accelerator. Single OSL measurements could be repeated with a precision of 0.7% (one standard deviation) and the differences between absorbed doses measured with OSLDs and an ionization chamber were within {+-}1% for photon beams. Similar results were obtained for electron beams in the low-gradient region after correction for a 1.9% photon-to-electron bias. The distance-to-agreement values were of the order of 0.5-1.0 mm for electrons in high dose gradient regions. Additional investigations also demonstrated that the OSL response dependence on dose rate, field size, and irradiation temperature is less than 1% in the conditions of the present study. Regarding the beam energy/quality dependence, the relative response of the OSLD for 18 MV was (0.51{+-}0.48)% of the response for the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam was in average 1.9% higher, but this result requires further confirmation. The relative response did not seem to vary with electron energy at d{sub max} within the experimental uncertainties (0.5% in average) and, therefore, a fixed correction factor of 1.9% eliminated the energy dependence in our experimental conditions.

  12. Optical beam induced current measurements based on two-photon absorption process in 4H-SiC bipolar diodes

    SciTech Connect (OSTI)

    Hamad, H.; Raynaud, C.; Bevilacqua, P.; Tournier, D.; Planson, D. [Ampère Laboratory - UMR 5005, 21, Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Vergne, B. [Franco-Allemand Institute of Saint-Louis ISL, 5, Rue du Général Cassagnou, 68300 Saint-Louis (France)

    2014-02-24T23:59:59.000Z

    Using a pulsed green laser with a wavelength of 532?nm, a duration pulse of ?1?ns, and a mean power varying between 1 and 100?mW, induced photocurrents have been measured in 4H-SiC bipolar diodes. Considering the photon energy (2.33?eV) and the bandgap of 4H-SiC (3.2?eV), the generation of electron-hole pair by the conventional single photon absorption process should be negligible. The intensity of the measured photocurrents depends quadratically on the power beam intensity. This clearly shows that they are generated using two-photon absorption process. As in conventional OBIC (Optical Beam Induced Current), the measurements give an image of the electric field distribution in the structure under test, and the minority carrier lifetime can be extracted from the decrease of the photocurrent at the edge of the structure. The extracted minority carrier lifetime of 210?ns is consistent with results obtained in case of single photon absorption.

  13. Coupled optical and electronic simulations of electrically pumped photonic-crystal-based LEDs

    E-Print Network [OSTI]

    Dutton, Robert W.

    to investigate design tradeoffs in electrically pumped photonic crystal light emitting diodes. A finite. Keywords: Photonic crystal light emitting diode, electrically pumped device 1. INTRODUCTION Recently optoelectronic devices, such as light emitting diodes (LEDs) and lasers. It has been suggested that a thin slab

  14. Beam-helicity asymmetry in associated electroproduction of real photons $ep \\to e??N$ in the $?$-resonance region

    E-Print Network [OSTI]

    The HERMES Collaboration; A. Airapetian; N. Akopov; E. C. Aschenauer; W. Augustyniak; R. Avakian; A. Avetissian; E. Avetisyan; H. P. Blok; H. Böttcher; A. Borissov; J. Bowles; I. Brodski; V. Bryzgalov; J. Burns; G. P. Capitani; E. Cisbani; G. Ciullo; M. Contalbrigo; P. F. Dalpiaz; W. Deconinck; R. De Leo; E. De Sanctis; M. Diefenthaler; P. Di Nezza; M. Düren; M. Ehrenfried; G. Elbakian; F. Ellinghaus; E. Etzelmüller; R. Fabbri; S. Frullani; G. Gapienko; V. Gapienko; J. Garay García; F. Garibaldi; G. Gavrilov; V. Gharibyan; F. Giordano; S. Gliske; M. Hartig; D. Hasch; Y. Holler; I. Hristova; A. Ivanilov; H. E. Jackson; S. Joosten; R. Kaiser; G. Karyan; T. Keri; E. Kinney; A. Kisselev; V. Korotkov; V. Kozlov; P. Kravchenko; V. G. Krivokhijine; L. Lagamba; L. Lapikás; I. Lehmann; P. Lenisa; W. Lorenzon; X. -G. Lu; B. -Q. Ma; D. Mahon; N. C. R. Makins; S. I. Manaenkov; Y. Mao; B. Marianski; H. Marukyan; C. A. Miller; Y. Miyachi; A. Movsisyan; V. Muccifora; M. Murray; A. Mussgiller; Y. Naryshkin; A. Nass; M. Negodaev; W. -D. Nowak; L. L. Pappalardo; R. Perez-Benito; A. Petrosyan; P. E. Reimer; A. R. Reolon; C. Riedl; K. Rith; G. Rosner; A. Rostomyan; J. Rubin; D. Ryckbosch; Y. Salomatin; A. Schäfer; G. Schnell; B. Seitz; T. -A. Shibata; M. Stahl; M. Statera; E. Steffens; J. J. M. Steijger; J. Stewart; F. Stinzing; S. Taroian; A. Terkulov; R. Truty; A. Trzcinski; M. Tytgat; Y. Van Haarlem; C. Van Hulse; V. Vikhrov; I. Vilardi; S. Wang; S. Yaschenko; Z. Ye; S. Yen; V. Zagrebelnyy; B. Zihlmann; P. Zupranski

    2014-02-11T23:59:59.000Z

    The beam-helicity asymmetry in associated electroproduction of real photons, $ep\\to e\\gamma \\pi N$, in the $\\Delta$(1232)-resonance region is measured using the longitudinally polarized HERA positron beam and an unpolarized hydrogen target. Azimuthal Fourier amplitudes of this asymmetry are extracted separately for two channels, $ep\\to e\\gamma \\pi^0 p$ and $ep\\to e\\gamma \\pi^+ n$, from a data set collected with a recoil detector. All asymmetry amplitudes are found to be consistent with zero.

  15. Coherent-feedback-induced photon blockade and optical bistability by an optomechanical controller

    E-Print Network [OSTI]

    Yu-Long Liu; Zhong-Peng Liu; Jing Zhang; Yu-xi Liu

    2014-07-11T23:59:59.000Z

    It is well-known that some nonlinear phenomena such as strong photon blockade are hard to be observed in optomechanical system with current experimental technology. Here, we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers and enhances quantum nonlinearity from the controller to the controlled cavity, which makes it possible to observe strong nonlinear effects in either linear cavity or optomechanical cavity. More interestingly, we find that the strong photon blockade under single-photon optomechanical weak coupling condition could be observed in the quantum regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomenon. We hope that our work can give new perspectives in engineering nonlinear quantum phenomena.

  16. Photon storage in Lambda-type optically dense atomic media. IV. Optimal control using gradient ascent

    E-Print Network [OSTI]

    Alexey V. Gorshkov; Tommaso Calarco; Mikhail D. Lukin; Anders S. Sorensen

    2008-04-07T23:59:59.000Z

    We use the numerical gradient ascent method from optimal control theory to extend efficient photon storage in Lambda-type media to previously inaccessible regimes and to provide simple intuitive explanations for our optimization techniques. In particular, by using gradient ascent to shape classical control pulses used to mediate photon storage, we open up the possibility of high efficiency photon storage in the non-adiabatic limit, in which analytical solutions to the equations of motion do not exist. This control shaping technique enables an order-of-magnitude increase in the bandwidth of the memory. We also demonstrate that the often discussed connection between time reversal and optimality in photon storage follows naturally from gradient ascent. Finally, we discuss the optimization of controlled reversible inhomogeneous broadening.

  17. High-speed silicon electro-optic modulator for electronic photonic integrated circuits

    E-Print Network [OSTI]

    Gan, Fuwan

    2007-01-01T23:59:59.000Z

    The development of future electronic-photonic integrated circuits (EPIC) based on silicon technology critically depends on the availability of CMOS-compatible high-speed modulators that enable the interaction of electronic ...

  18. Tunable micro-cavities in photonic band-gap yarns and optical fibers

    E-Print Network [OSTI]

    Benoit, Gilles, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    The vision behind this work is the fabrication of high performance innovative fiber-based optical components over kilometer length-scales. The optical properties of these fibers derive from their multilayer dielectric ...

  19. Generation of nonclassical states of light via photon blockade in optical nanocavities

    SciTech Connect (OSTI)

    Faraon, Andrei; Majumdar, Arka; Vuckovic, Jelena [E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States)

    2010-03-15T23:59:59.000Z

    The generation of nonclassical states of light via photon blockade with time-modulated input is analyzed. We show that improved single-photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternative method, where the system is driven via a continuous-wave laser and the frequency of the dipole is controlled (e.g., electrically) at very fast time scales is presented.

  20. Nonimaging Optical Gain in Luminescent Concentration through Photonic Control of Emission Etendue

    E-Print Network [OSTI]

    Rogers, John A.

    that maximize radiative transfer by optimally transforming the incident optical etendue, that is, by converting concentrators based on reflective, refractive, or diffractive optics operate most effectively for collimated but have so far been unable to exploit the power of nonimaging optics to further increase

  1. Polarization State Dynamics of Single Photon Pulse Under Stochastic Polarization Mode Dispersion for Optical Fiber Quantum Channels

    E-Print Network [OSTI]

    Chang-hua Zhu; Chang-xing Pei; Dong-xiao Quan; Nan Chen; Yun-hui Yi

    2009-08-30T23:59:59.000Z

    We investigate the polarization state dynamics of single photon pulse for optical fiber quantum communication channels. On the basis of a birefringence vector model in which amplitude and direction are both stochastic variables, Jones vector is obtained by solving the frequency domain wave equation. The fidelity of output quantum state and degree of polarization of the pulse are also obtained from the density operators. It is shown that the fidelity of quantum state decreases quickly and tends to a stable value along optical fiber, and increases for larger mean fluctuation magnitude of the stochastic fiber birefringence. Degree of polarization is nearly constant for small mean fluctuation magnitude of the birefringence. The fidelity and degree of polarization vary in the same way for Gaussian and rectangular frequency spectrum envelope, while the value of Lorentzian spectrum is smaller.

  2. 'Optical spin mixing' and kinetics of nonlinear response in four-photon spectroscopy of thin ferromagnetic films

    SciTech Connect (OSTI)

    Voronov, Aleksandr V; Petnikova, V M; Rudenko, K V; Shuvalov, Vladimir V [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-12-31T23:59:59.000Z

    A semiclassical phenomenological model is developed which takes into account basic processes proceeding in experiments on picosecond nonlinear spectroscopy of thin ferromagnetic films. The results of numerical simulations of the evolution of the domain structure of Ni films upon spatially uniform biharmonic pumping (BP) and upon spatially nonuniform excitation in the case of degenerate four-photon spectroscopy (DFPS) are presented. It is shown that the destruction kinetics of the film magnetisation is much slower in the case of DFPS than upon BP. This is explained by the efficient suppression of 'optical spin mixing' (the domain-structure destruction due to the spatial migration of s electrons) by potential barriers formed upon spatially nonuniform excitation of stable domain walls. (nonlinear optical phenomena)

  3. Electric field sensor based on electro-optic polymer refilled silicon slot photonic crystal waveguide coupled with bowtie antenna

    E-Print Network [OSTI]

    Zhang, Xingyu; Xu, Xiaochuan; Wang, Shiyi; Zhan, Qiwen; Zou, Yi; Chakravarty, Swapnajit; Chen, Ray T

    2014-01-01T23:59:59.000Z

    We present the design of a compact and highly sensitive electric field sensor based on a bowtie antenna-coupled slot photonic crystal waveguide (PCW). An electro-optic (EO) polymer with a large EO coefficient, r33=100pm/V, is used to refill the PCW slot and air holes. Bowtie-shaped electrodes are used as both poling electrodes and as receiving antenna. The slow-light effect in the PCW is used to increase the effective in-device r33>1000pm/V. The slot PCW is designed for low-dispersion slow light propagation, maximum poling efficiency as well as optical mode confinement inside the EO polymer. The antenna is designed for operation at 10GHz.

  4. Photon storage in Lambda-type optically dense atomic media. II. Free-space model

    E-Print Network [OSTI]

    Alexey V. Gorshkov; Axel Andre; Mikhail D. Lukin; Anders S. Sorensen

    2007-09-08T23:59:59.000Z

    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we presented a universal physical picture for describing a wide range of techniques for storage and retrieval of photon wave packets in Lambda-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo based techniques. This universal picture produced an optimal control strategy for photon storage and retrieval applicable to all approaches and yielded identical maximum efficiencies for all of them. In the present paper, we present the full details of this analysis as well some of its extensions, including the discussion of the effects of non-degeneracy of the two lower levels of the Lambda system. The analysis in the present paper is based on the intuition obtained from the study of photon storage in the cavity model in the preceding paper [Gorshkov et al., Phys. Rev. A 76, 033804 (2007)].

  5. All-Optical Switching Using the Quantum Zeno Effect and Two-Photon Absorption

    E-Print Network [OSTI]

    B. C. Jacobs; J. D. Franson

    2009-05-08T23:59:59.000Z

    We have previously shown that the quantum Zeno effect can be used to implement quantum logic gates for quantum computing applications, where the Zeno effect was produced using a strong two-photon absorbing medium. Here we show that the Zeno effect can also be used to implement classical logic gates whose inputs and outputs are high-intensity fields (coherent states). The operation of the devices can be understood using a quasi-static analysis, and their switching times are calculated using a dynamic approach. The two-photon absorption coefficient of rubidium vapor is shown to allow operation of these devices at relatively low power levels.

  6. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24T23:59:59.000Z

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  7. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22T23:59:59.000Z

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  8. Photon storage in Lambda-type optically dense atomic media. I. Cavity model

    E-Print Network [OSTI]

    Alexey V. Gorshkov; Axel Andre; Mikhail D. Lukin; Anders S. Sorensen

    2007-09-08T23:59:59.000Z

    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we used a universal physical picture to optimize and demonstrate equivalence between a wide range of techniques for storage and retrieval of photon wave packets in Lambda-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo-based techniques. In the present paper, we perform the same analysis for the cavity model. In particular, we show that the retrieval efficiency is equal to C/(1+C) independent of the retrieval technique, where C is the cooperativity parameter. We also derive the optimal strategy for storage and, in particular, demonstrate that at any detuning one can store, with the optimal efficiency of C/(1+C), any smooth input mode satisfying T C gamma >> 1 and a certain class of resonant input modes satisfying T C gamma ~ 1, where T is the duration of the input mode and 2 gamma is the transition linewidth. In the two subsequent papers of the series, we present the full analysis of the free-space model and discuss the effects of inhomogeneous broadening on photon storage.

  9. Enhanced quantum dot optical down-conversion using asymmetric 2D photonic crystals

    E-Print Network [OSTI]

    Cunningham, Brian

    -performance crosslinked colloidal quantum-dot light-emitting diodes," Nat. Photonics 3(6), 341­345 (2009). 10. D. Englund. Medvedev, M. Kazes, S. H. Kan, and U. Banin, "Efficient near-infrared polymer nanocrystal light- emitting diodes," Science 295(5559), 1506­1508 (2002). 8. V. Wood, M. J. Panzer, J. L. Chen, M. S. Bradley, J. E

  10. Time-of-flight optical ranging system based on time-correlated single-photon counting

    E-Print Network [OSTI]

    Buller, Gerald S.

    applications in areas as diverse as precision compo- nent inspection, automated assembly, process con- trol high-power laser systems or the placement of retroreflecting spheres on the target. To overcome measurements3,4 and optical time- domain reflectometry in optical fibers.5 In a recent publication6 we

  11. Ultrafast optical parametric processes in photonic crystal fibers: fundamentals and applications

    E-Print Network [OSTI]

    Gu, Chenji

    2012-01-01T23:59:59.000Z

    New York, 2008). [73] A. Yariv and D. M. Pepper, “AmplifiedSeries, (1983). [70] A. Yariv, D. Fekete and D. M. Pepper, “Science 331, 889-892 [78] A. Yariv, “Phase conjugate optics

  12. Adaptive optics wavefront sensors based on photon-counting detector arrays

    E-Print Network [OSTI]

    Aull, Brian F.

    For adaptive optics systems, there is a growing demand for wavefront sensors that operate at higher frame rates and with more pixels while maintaining low readout noise. Lincoln Laboratory has been investigating Geiger-mode ...

  13. Photon-number entangled states generated in Kerr media with optical parametric pumping

    SciTech Connect (OSTI)

    Kowalewska-Kudlaszyk, A.; Leonski, W.; Perina, Jan Jr. [Nonlinear Optics Division, Department of Physics, Adam Mickiewicz University, Umultowska 85, PL-61-614 Poznan (Poland)

    2011-05-15T23:59:59.000Z

    Two nonlinear Kerr oscillators mutually coupled by parametric pumping are studied as a source of states entangled in photon numbers. Temporal evolution of entanglement quantified by negativity shows the effects of sudden death and birth of entanglement. Entanglement is preserved even in asymptotic states under certain conditions. The role of reservoirs at finite temperature in entanglement evolution is elucidated. Relation between generation of entangled states and violation of Cauchy-Schwartz inequality for oscillator intensities is found.

  14. Nanoscale optical positioning of single quantum dots for bright, pure, and on-demand single-photon emission

    E-Print Network [OSTI]

    Sapienza, Luca; Badolato, Antonio; Srinivasan, Kartik

    2015-01-01T23:59:59.000Z

    Self-assembled, epitaxially-grown InAs/GaAs quantum dots are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of quantum dots, presenting a challenge in creating devices that exploit the strong interaction of single quantum dots with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single quantum dots with respect to alignment features with an average (minimum) position uncertainty efficiency (48 % +/- 5 % into a 0.4 numerical aperture lens, close to the theoretically predicted value of 50 %), low multiphoton prob...

  15. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    E-Print Network [OSTI]

    Brasch, Victor; Geiselmann, Michael; Lihachev, Grigoriy; Pfeiffer, Martin H P; Gorodetsky, Michael L; Kippenberg, Tobias J

    2014-01-01T23:59:59.000Z

    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequen...

  16. Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials

    E-Print Network [OSTI]

    Ibbotson, Lindsey A.; Demetriadou, Angela; Stephen, Croxall; Hess, Ortwin; Baumberg, Jeremy J.

    2015-02-09T23:59:59.000Z

    to be flexible and stretch-tuneable without issues of bowing or collapse4,17. They also benefit from a high refractive index contrast due to the metal wires which exhibit negative permittivity below the metal’s plasma frequency, widening the band gap20,21. Gold... .-H., Kim, Y.-S., Constant, K. & Ho, K.-M. Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission. Adv. Mater. 19, 791–794 (2007). 8. Rinne, S. A., Garcia-Santamaria, F. & Braun, P. V. Embedded cavities...

  17. LIPSS results for photons coupling to light neutral scalar bosons

    SciTech Connect (OSTI)

    Andrei Afanasev; Oliver K. Baker; Kevin Beard; George Biallas; James Boyce; Minarni Minarni; Roopchan Ramdon; Michelle D. Shinn; Penny Slocum

    2008-06-01T23:59:59.000Z

    The LIPSS search for a light neutral scalar boson coupling to optical photons is reported. The search covers a region of parameter space of approximately 1.0 meV and coupling strength greater than 10^-6 GeV^-1. The LIPSS results show no evidence for scalar coupling in this region of parameter space.

  18. Entanglement of a Photon and an Optical Lattice Spin Wave Y. O. Dudin,1

    E-Print Network [OSTI]

    Kuzmich, Alex

    ground level. Storage of coherent light for 240 ms in an atomic Mott insulator was recently demonstrated in an atomic cloud cooled in a one-dimensional optical lattice. After a programmable storage time, we convert the spin-wave excitation into an idler field, and demonstrate violation of Bell's inequality for storage

  19. www.osa-opn.org22 | OPN Optics & Photonics News Researchers at the

    E-Print Network [OSTI]

    Wang, Deli

    of a photovoltaic system: collection optics, the photovoltaic array, switches, controllers, current inverters (which comprise approximately 75 percent of the market) and thin-film photovoltaic (TF-PV) cellsAs)--have histori- cally been very expensive. Incremental improvements in PV cell efficiency and the optimization

  20. Which optical processes are suitable to make probabilistic single photon sources for quantum cryptography?

    E-Print Network [OSTI]

    Amit Verma; Anirban Pathak

    2009-09-02T23:59:59.000Z

    Single photon sources to be used in quantum cryptography must show higher order antibunching (HOA). HOA is reported by us in several many wave mixing processes. In the present work we have investigated the possibility of observing HOA in multiwave mixing processes in general. The generalized Hamiltonian is solved for several particular cases in Heisenberg picture and possibility of observing HOA is investigated with the help of criterion of Pathak and Garcia. Several particular cases of the generalized Hamiltonian are solved with the help of short time approximation technique and HOA is reported for pump modes of different multiwave mixing processes. It is also found that HOA can not be observed for the signal and stokes modes in of the cases studied here.

  1. Momentum space design of high-Q photonic crystal optical cavities

    E-Print Network [OSTI]

    Painter, Oskar

    ­5758 (1999). 11. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal Microcavities," Science 256, 66­70 (1992). 2. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Quan. Elec. 27, 1332­ 1346 (1991). 3. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R

  2. NON-LINEAR OPTICS IN SEMICONDUCTORS POST DOCTORAL POSITION, PHOTONICS GROUP,

    E-Print Network [OSTI]

    covering most of the infrared region of the spectrum. Harnessing nonlinear interactions is imperative for these devices. In contrast to lithium niobate, compound semiconductors such as GaAs-based compounds exhibit for lithium niobate. GaAs compounds also have high damage threshold and a mature fabrication technology

  3. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

    2004-07-27T23:59:59.000Z

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  4. Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: Diffraction-induced splitting, selective compression, and focusing of pulses

    SciTech Connect (OSTI)

    Skorynin, A. A., E-mail: skoraleks@ya.ru; Bushuev, V. A.; Mantsyzov, B. I., E-mail: mantsyzov@phys.msu.ru [Moscow State University (Russian Federation)

    2012-07-15T23:59:59.000Z

    A theory for the dynamical Bragg diffraction of a spatially confined laser pulse in a linear photonic crystal with a significant modulation of the refractive index in the Laue geometry has been developed. The diffraction-induced splitting of a spatially confined pulse into the Borrmann and anti-Borrmann pulses localized in different regions of the photonic crystal and characterized by different dispersion laws is predicted. The selective compression or focusing of one of these pulses with the simultaneous broadening or defocusing of the other pulse is shown to be possible.

  5. Resonantly Enhanced Axion-Photon Regeneration

    SciTech Connect (OSTI)

    Sikivie, P. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Theoretical Physics Division, CERN, CH-1211 Geneva 23 (Switzerland); Tanner, D. B. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Bibber, Karl van [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2007-04-27T23:59:59.000Z

    Photon-regeneration experiments which search for the axion, or axionlike particles, may be resonantly enhanced by employing matched Fabry-Perot optical cavities encompassing both the axion production and conversion magnetic field regions. Compared to a simple photon-regeneration experiment, which uses the laser in a single-pass geometry, this technique can result in a gain in rate of order F{sup 2}, where F is the finesse of the cavities. This gain could feasibly be 10{sup (10-12)}, corresponding to an improvement in sensitivity in the axion-photon coupling g{sub a{gamma}}{sub {gamma}} of order F{sup 1/2}{approx}10{sup (2.5-3)}, permitting a practical purely laboratory search to probe axion-photon couplings not previously excluded by stellar evolution limits or solar axion searches.

  6. Resonantly Enhanced Axion-Photon Regeneration

    E-Print Network [OSTI]

    P. Sikivie; D. B. Tanner; Karl van Bibber

    2007-01-23T23:59:59.000Z

    We point out that photon regeneration-experiments that search for the axion, or axion-like particles, may be resonantly enhanced by employing matched Fabry-Perot optical cavities encompassing both the axion production and conversion magnetic field regions. Compared to a simple photon regeneration experiment, which uses the laser in a single-pass geometry, this technique can result in a gain in rate of order ${\\cal F}^2$, where ${\\cal F}$ is the finesse of the cavities. This gain could feasibly be $10^{(10-12)}$, corresponding to an improvement in sensitivity in the axion-photon coupling, $g_{a\\gamma\\gamma}$ , of order ${\\cal F}^{1/2} \\sim 10^{(2.5-3)}$, permitting a practical purely laboratory search to probe axion-photon couplings not previously excluded by stellar evolution limits, or solar axion searches.

  7. PHYSICAL REVIEW A 83, 033807 (2011) Atomic-resonance-enhanced nonlinear optical frequency conversion with entangled photon pairs

    E-Print Network [OSTI]

    Du, Shengwang

    2011-01-01T23:59:59.000Z

    -time correlation. Meanwhile, SFG and TPA can also work as fast quantum correlators to measure ultra-short time approach is to make biphotons with ultra-short temporal correlation length using broadband d coupling laser, two paired photons with wide spectrum are converted into a single monochromatic photon

  8. Photon-counting Brillouin optical time-domain reflectometry based on up-conversion detector and fiber Fabry-Perot scanning interferometer

    E-Print Network [OSTI]

    Haiyun Xia; Mingjia Shangguan; Guoliang Shentu; Chong Wang; Jiawei Qiu; Xiuxiu Xia; Chao Chen; Mingyang Zheng; Xiuping Xie; Qiang Zhang; Xiankang Dou; Jianwei Pan

    2015-04-06T23:59:59.000Z

    A direct-detection Brillouin optical time-domain reflectometry (BOTDR) is proposed and demonstrated by using an up-conversion single-photon detector and a fiber Fabry-Perot scanning interferometer (FFP-SI). Taking advantage of high signal-to-noise ratio of the detector and high spectrum resolution of the FFP-SI, the Brillouin spectrum along a polarization maintaining fiber (PMF) is recorded on a multiscaler with a small data size directly. In contrast with conventional BOTDR adopting coherent detection, photon-counting BOTDR is simpler in structure and easier in data processing. In the demonstration experiment, characteristic parameters of the Brillouin spectrum including its power, spectral width and frequency center are analyzed simultaneously along a 10 km PMF at different temperature and stain conditions.

  9. Photon-counting Brillouin optical time-domain reflectometry based on up-conversion detector and fiber Fabry-Perot scanning interferometer

    E-Print Network [OSTI]

    Xia, Haiyun; Shentu, Guoliang; Wang, Chong; Qiu, Jiawei; Xia, Xiuxiu; Chen, Chao; Zheng, Mingyang; Xie, Xiuping; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2015-01-01T23:59:59.000Z

    A direct-detection Brillouin optical time-domain reflectometry (BOTDR) is proposed and demonstrated by using an up-conversion single-photon detector and a fiber Fabry-Perot scanning interferometer (FFP-SI). Taking advantage of high signal-to-noise ratio of the detector and high spectrum resolution of the FFP-SI, the Brillouin spectrum along a polarization maintaining fiber (PMF) is recorded on a multiscaler with a small data size directly. In contrast with conventional BOTDR adopting coherent detection, photon-counting BOTDR is simpler in structure and easier in data processing. In the demonstration experiment, characteristic parameters of the Brillouin spectrum including its power, spectral width and frequency center are analyzed simultaneously along a 10 km PMF at different temperature and stain conditions.

  10. GaN directional couplers for integrated quantum photonics

    E-Print Network [OSTI]

    Yanfeng Zhang; Loyd McKnight; Erman Engin; Ian M. Watson; Martin J. Cryan; Erdan Gu; Mark G. Thompson; Stephane Calvez; Jeremy L. O'Brien; Martin D. Dawson

    2012-02-20T23:59:59.000Z

    Large cross-section GaN waveguides are proposed as a suitable architecture to achieve integrated quantum photonic circuits. Directional couplers with this geometry have been designed with aid of the beam propagation method and fabricated using inductively coupled plasma etching. Scanning electron microscopy inspection shows high quality facets for end coupling and a well defined gap between rib pairs in the coupling region. Optical characterization at 800 nm shows single-mode operation and coupling-length-dependent splitting ratios. Two photon interference of degenerate photon pairs has been observed in the directional coupler by measurement of the Hong-Ou-Mandel dip with 96% visibility.

  11. Deterministic photon-emitter coupling in chiral photonic circuits

    E-Print Network [OSTI]

    Immo Söllner; Sahand Mahmoodian; Sofie Lindskov Hansen; Leonardo Midolo; Alisa Javadi; Gabija Kiršansk?; Tommaso Pregnolato; Haitham El-Ella; Eun Hye Lee; Jin Dong Song; Søren Stobbe; Peter Lodahl

    2015-01-12T23:59:59.000Z

    The ability to engineer photon emission and photon scattering is at the heart of modern photonics applications ranging from light harvesting, through novel compact light sources, to quantum-information processing based on single photons. Nanophotonic waveguides are particularly well suited for such applications since they confine photon propagation to a 1D geometry thereby increasing the interaction between light and matter. Adding chiral functionalities to nanophotonic waveguides lead to new opportunities enabling integrated and robust quantum-photonic devices or the observation of novel topological photonic states. In a regular waveguide, a quantum emitter radiates photons in either of two directions, and photon emission and absorption are reverse processes. This symmetry is violated in nanophotonic structures where a non-transversal local electric field implies that both photon emission and scattering may become directional. Here we experimentally demonstrate that the internal state of a quantum emitter determines the chirality of single-photon emission in a specially engineered photonic-crystal waveguide. Single-photon emission into the waveguide with a directionality of more than 90\\% is observed under conditions where practically all emitted photons are coupled to the waveguide. Such deterministic and highly directional photon emission enables on-chip optical diodes, circulators operating at the single-photon level, and deterministic quantum gates. Based on our experimental demonstration, we propose an experimentally achievable and fully scalable deterministic photon-photon CNOT gate, which so far has been missing in photonic quantum-information processing where most gates are probabilistic.

  12. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    DOE Patents [OSTI]

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02T23:59:59.000Z

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  13. SPIE Optics + Photonics 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u a l r e p oConference: SPIDER:

  14. September 1, 2001 / Vol. 26, No. 17 / OPTICS LETTERS 1335 Perturbation Monte Carlo methods to solve inverse photon

    E-Print Network [OSTI]

    Boas, David

    September 1, 2001 / Vol. 26, No. 17 / OPTICS LETTERS 1335 Perturbation Monte Carlo methods to solve with respect to perturbations in background tissue optical properties. We then feed this derivative information to a nonlinear optimization algorithm to determine the optical properties of the tissue heterogeneity under

  15. 714 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 12, NO. 6, JUNE 2000 Skew and Jitter Removal Using Short Optical Pulses

    E-Print Network [OSTI]

    Miller, David A. B.

    , and retransmission of digital data. Index Terms--CMOS integrated circuits, optical intercon- nections, optical pulses, system design, and timing issues. Here, we define short pulse optical interconnects as those using-98-1-0002, and a subaward from the University of New Mexico. The authors are with the Departments of Applied Physics

  16. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 10, MAY 15, 2010 715 Optical Arbitrary Waveform Generation-Based

    E-Print Network [OSTI]

    Kolner, Brian H.

    -bit 40-Gb/s label in nonreturn-to-zero and return-to- zero on­off keying formats indicate Generation-Based Packet Generation and All-Optical Separation for Optical-Label Switching Tingting He--This letter introduces a versatile modulation-format transparent optical-label switching (OLS) transmitter

  17. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency generation

    E-Print Network [OSTI]

    Anne Amy-Klein; Andrei Goncharov; Mickael Guinet; Christophe Daussy; Olivier Lopez; Alexander Shelkovnikov; Christian Chardonnet

    2005-09-07T23:59:59.000Z

    We demonstrate a new simple technique to measure IR frequencies near 30 THz using a femtosecond (fs) laser optical comb and sum-frequency generation. The optical frequency is directly compared to the distance between two modes of the fs laser, and the resulting beat note is used to control this distance which depends only on the repetition rate fr of the fs laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured for the first time. This line is an attractive alternative to the usual saturated absorption OsO4 resonances used for the stabilization of CO2 lasers. First results demonstrate a fractional Allan deviation of 3.10-14 at 1 s.

  18. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency generation

    E-Print Network [OSTI]

    Amy-Klein, A; Guinet, M; Daussy, C; López, O; Shelkovnikov, A; Chardonnet, C; Amy-Klein, Anne; Goncharov, Andrei; Guinet, Mickael; Daussy, Christophe; Lopez, Olivier; Shelkovnikov, Alexander; Chardonnet, Christian

    2005-01-01T23:59:59.000Z

    We demonstrate a new simple technique to measure IR frequencies near 30 THz using a femtosecond (fs) laser optical comb and sum-frequency generation. The optical frequency is directly compared to the distance between two modes of the fs laser, and the resulting beat note is used to control this distance which depends only on the repetition rate fr of the fs laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured for the first time. This line is an attractive alternative to the usual saturated absorption OsO4 resonances used for the stabilization of CO2 lasers. First results demonstrate a fractional Allan deviation of 3.10-14 at 1 s.

  19. Photonic layered media

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  20. Large optical cavity AlGaAs injection lasers with multiple active regions

    SciTech Connect (OSTI)

    Katz, J.; Bar-Chaim, N.; Margalit, S.; Yariv, A.

    1980-08-01T23:59:59.000Z

    A new type of AlGaAs injection laser is described. The structure consists of alternating p- and n-type layers of GaAs and Al/sub x/ Ga/sub 1-x/As . The electrical mode of operation of the device is that of a Shockley diode (SCR). Optically the device operates as a large optical cavity. Single transverse mode operation was observed with optical cavities larger than 4 ..mu..m.

  1. Navy Prototype Optical Interferometer Imaging of Line Emission Regions of beta Lyrae Using Differential Phase Referencing

    E-Print Network [OSTI]

    H. R. Schmitt; T. A. Pauls; C. Tycner; J. T. Armstrong; R. T. Zavala; J. A. Benson; G. C. Gilbreath; R. B. Hindsley; D. J. Hutter; K. J. Johnston; A. M. Jorgensen; D. Mozurkewich

    2008-01-30T23:59:59.000Z

    We present the results of an experiment to image the interacting binary star beta Lyrae with data from the Navy Prototype Optical Interferometer (NPOI), using a differential phase technique to correct for the effects of the instrument and atmosphere on the interferometer phases. We take advantage of the fact that the visual primary of beta Lyrae and the visibility calibrator we used are both nearly unresolved and nearly centrally symmetric, and consequently have interferometric phases near zero. We used this property to detect and correct for the effects of the instrument and atmosphere on the phases of beta Lyrae and to obtain differential phases in the channel containing the Halpha emission line. Combining the Halpha-channel phases with information about the line strength, we recovered complex visibilities and imaged the Halpha emission using standard radio interferometry methods. We find that the results from our differential phase technique are consistent with those obtained from a more-standard analysis using squared visibilities (V^2's). Our images show the position of the Halpha emitting regions relative to the continuum photocenter as a function of orbital phase and indicate that the major axis of the orbit is oriented along p.a.=248.8+/-1.7 deg. The orbit is smaller than previously predicted, a discrepancy that can be alleviated if we assume that the system is at a larger distance from us, or that the contribution of the stellar continuum to the Halpha channel is larger than estimated. Finally, we also detected a differential phase signal in the channels containing HeI emission lines at 587.6 and 706.5nm, with orbital behavior different from that of the Halpha, indicating that it originates from a different part of this interacting system.

  2. Bell tests with photon-entanglement: LHV models and critical efficiencies at the light of Wigner-PDC optics

    E-Print Network [OSTI]

    Rodriguez, David

    2011-01-01T23:59:59.000Z

    Within the Wigner-PDC picture of photon entanglement, detection "errors" are not independent (though they may look, on average), nor can they be controlled by means of a technological improvement on the detectors. Those two elements make possible the interpretation of experimental evidence without the need to exclude local realism: for that reason, we propose the abandonment of the usual (photon, particle-based) description of (PDC-generated) light states, in favour of an also quantum, but field-theoretical description (QED), a description that finds a one-to-one equivalent in the Wigner-PDC approach we have advocated in recent posts.

  3. Bell tests with photon-entanglement: LHV models and critical efficiencies at the light of Wigner-PDC optics

    E-Print Network [OSTI]

    David Rodriguez

    2011-12-15T23:59:59.000Z

    Within the Wigner-PDC picture of photon entanglement, detection "errors" are not independent (though they may look, on average), nor can they be controlled by means of a technological improvement on the detectors. Those two elements make possible the interpretation of experimental evidence without the need to exclude local realism: for that reason, we propose the abandonment of the usual (photon, particle-based) description of (PDC-generated) light states, in favour of an also quantum, but field-theoretical description (QED), a description that finds a one-to-one equivalent in the Wigner-PDC approach we have advocated in recent posts.

  4. 1214 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 14, NO. 8, AUGUST 2002 Optical Pump-Probe Measurements of the Latency of

    E-Print Network [OSTI]

    Miller, David A. B.

    -00-1-0024) through the University of New Mexico, and by DARPA/MARCO under the Interconnect Focus Center through of the Latency of Silicon CMOS Optical Interconnects Gordon A. Keeler, Student Member, IEEE, Diwakar Agarwal-integrated optoelectronic/silicon complementary metal­oxide­semicon- ductor (CMOS) chip designed for optical interconnection

  5. Optics in data center network architecture

    E-Print Network [OSTI]

    Farrington, Nathan

    2012-01-01T23:59:59.000Z

    Chapter 2 Reducing Cabling Complexity with Optics . . . . .Advances in Information Optics and Photonics. SPIE, 2008. [c-Through: Part-time Optics in Data Centers,” in Proceedings

  6. High-index-contrast electromechanical optical switches

    E-Print Network [OSTI]

    Bryant, Reginald (Reginald Eugene), 1978-

    2011-01-01T23:59:59.000Z

    System developers are looking to replace protocol-dependent, bandwidth-limited optical networks with intelligent optically-transparent integrated photonic networks. Several electromechanical optical switches are explored ...

  7. Charging a Battery-Powered Device with a Fiber-Optically Connected Photonic Power System for Achieving High-Voltage Isolation

    SciTech Connect (OSTI)

    Lizon, David C [Los Alamos National Laboratory; Gioria, Jack G [Los Alamos National Laboratory; Dale, Gregory E [Los Alamos National Laboratory; Snyder, Hans R [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    This paper describes the development and testing of a system to provide isolated power to the cathode-subsystem electronics of an x-ray tube. These components are located at the cathode potential of several hundred kilovolts, requiring a supply of power isolated from this high voltage. In this design a fiber-optically connected photonic power system (PPS) is used to recharge a lithium-ion battery pack, which will subsequently supply power to the cathode-subsystem electronics. The suitability of the commercially available JDSU PPS for this application is evaluated. The output of the ppe converter is characterized. The technical aspects of its use for charging a variety of Li-Ion batteries are discussed. Battery charge protection requirements and safety concerns are also addressed.

  8. Two-photon ionization of He as a nonlinear optical effect in the soft-x-ray region

    E-Print Network [OSTI]

    Ishikawa, Kenichi L.

    the obser- vation of multiphoton transitions between Zeeman sublevels of an atom in the radiofrequency, synchrotron radiation sources, free-electron lasers, and high-order harmonic sources, high-intensity pulses in short pulse duration down to sub-fs 6,7 and in high intensity. Using this type of radiation, two

  9. Photon-photon collisions

    SciTech Connect (OSTI)

    Brodsky, S.J.

    1988-07-01T23:59:59.000Z

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  10. Resonantly Enhanced Axion-Photon Regeneration P. Sikivie,1,2

    E-Print Network [OSTI]

    Tanner, David B.

    Resonantly Enhanced Axion-Photon Regeneration P. Sikivie,1,2 D. B. Tanner,1 and Karl van Bibber3 1 search for the axion, or axionlike particles, may be resonantly enhanced by employing matched Fabry-Perot optical cavities encompassing both the axion production and conversion magnetic field regions. Compared

  11. Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region

    SciTech Connect (OSTI)

    Echániz, T. [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, Leioa 48940 (Spain); Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J. [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, Leioa 48940 (Spain); Instituto de Síntesis y Estudio de Materiales, Universidad del País Vasco, Apdo. 644, Bilbao 48080 (Spain)

    2014-09-07T23:59:59.000Z

    When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ?{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ?{sub peak} increases with the emission angle but its position, ?{sub peak}, is constant. Copper directional emissivity measurements as well as emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p?=?1.

  12. A JOINT PROGRAM OF Photonics and

    E-Print Network [OSTI]

    placements can be in government agencies; laser, photonics and optics companies; or other private firms. Are you fascinated by display technologies, solar energy, laser technologies (such as surgery

  13. Ultraviolet and Optical Observations of OB Associations and Field Stars in the Southwest Region of the Large Magellanic Cloud

    E-Print Network [OSTI]

    Joel Wm. Parker; Dennis Zaritsky; Theodore P. Stecher; Jason Harris; Phil Massey

    2000-12-06T23:59:59.000Z

    Using photometry from the Ultraviolet Imaging Telescope (UIT) and photometry and spectroscopy from three ground-based optical datasets we have analyzed the stellar content of OB associations and field areas in and around the regions N 79, N 81, N 83, and N 94 in the LMC. We compare data for the OB association Lucke-Hodge 2 (LH 2) to determine how strongly the initial mass function (IMF) may depend on different photometric reductions and calibrations. We also correct for the background contribution of field stars, showing the importance of correcting for field star contamination in determinations of the IMF of star formation regions. It is possible that even in the case of an universal IMF, the variability of the density of background stars could be the dominant factor creating the differences between calculated IMFs for OB associations. We have also combined the UIT data with the Magellanic Cloud Photometric Survey to study the distribution of the candidate O-type stars in the field. We find a significant fraction, roughly half, of the candidate O-type stars are found in field regions, far from any obvious OB associations. These stars are greater than 2 arcmin (30 pc) from the boundaries of existing OB associations in the region, which is a distance greater than most O-type stars with typical dispersion velocities will travel in their lifetimes. The origin of these massive field stars (either as runaways, members of low-density star-forming regions, or examples of isolated massive star formation) will have to be determined by further observations and analysis.

  14. Navy Prototype Optical Interferometer Imaging of Line Emission Regions of beta Lyrae Using Differential Phase Referencing

    E-Print Network [OSTI]

    Schmitt, H R; Tycner, C; Armstrong, J T; Zavala, R T; Benson, J A; Gilbreath, G C; Hindsley, R B; Hutter, D J; Johnston, K J; Jorgensen, A M; Mozurkewich, D

    2008-01-01T23:59:59.000Z

    We present the results of an experiment to image the interacting binary star beta Lyrae with data from the Navy Prototype Optical Interferometer (NPOI), using a differential phase technique to correct for the effects of the instrument and atmosphere on the interferometer phases. We take advantage of the fact that the visual primary of beta Lyrae and the visibility calibrator we used are both nearly unresolved and nearly centrally symmetric, and consequently have interferometric phases near zero. We used this property to detect and correct for the effects of the instrument and atmosphere on the phases of beta Lyrae and to obtain differential phases in the channel containing the Halpha emission line. Combining the Halpha-channel phases with information about the line strength, we recovered complex visibilities and imaged the Halpha emission using standard radio interferometry methods. We find that the results from our differential phase technique are consistent with those obtained from a more-standard analysis ...

  15. Tracing Quasar Narrow-Line Regions Across Redshift: A Library of High S/N Optical Spectra

    E-Print Network [OSTI]

    Tammour, A; Richards, G T

    2015-01-01T23:59:59.000Z

    In a single optical spectrum, the quasar narrow-line region (NLR) reveals low density, photoionized gas in the host galaxy interstellar medium, while the immediate vicinity of the central engine generates the accretion disk continuum and broad emission lines. To isolate these two components, we construct a library of high S/N optical composite spectra created from the Sloan Digital Sky Survey (SDSS-DR7). We divide the sample into bins of continuum luminosity and Hbeta FWHM that are used to construct median composites at different redshift steps up to 0.75. We measure the luminosities of the narrow-emission lines [NeV]3427, [NeIII]3870, [OIII]5007, and [OII]3728 with ionization potentials (IPs) of 97, 40, 35, and 13.6 eV respectively. The high IP lines' luminosities show no evidence of increase with redshift consistent with no evolution in the AGN SED or the host galaxy ISM illuminated by the continuum. In contrast, we find that the [OII] line becomes stronger at higher redshifts, and we interpret this as a co...

  16. Ferroelectric domain building blocks for photonic and nonlinear optical microstructures in LiNbO{sub 3}

    SciTech Connect (OSTI)

    Zisis, G.; Ying, C. Y. J.; Mailis, S. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Soergel, E. [Institute of Physics, University of Bonn, Wegelerstrasse 8, 53115 Bonn (Germany)

    2014-03-28T23:59:59.000Z

    The ability to manipulate the size and depth of poling inhibited domains, which are produced by UV laser irradiation of the +z face of lithium niobate crystals followed by electric field poling, is demonstrated. It is shown that complex domain structures, much wider than the irradiating laser spot, can be obtained by partially overlapping the subsequent UV laser irradiated tracks. The result of this stitching process is one uniform domain without any remaining trace of its constituent components thus increasing dramatically the utility of this method for the fabrication of surface microstructures as well as periodic and aperiodic domain lattices for nonlinear optical and surface acoustic wave applications. Finally, the impact of multi exposure on the domain characteristics is also investigated indicating that some control over the domain depth can be attained.

  17. Mapping of two-photon luminescence amplification in zinc-oxide microstructures

    SciTech Connect (OSTI)

    Semin, S. V., E-mail: sv_semin@mail.ru; Sherstyuk, N. E.; Mishina, E. D. [Moscow State Technical University of Radio Engineering, Electronics and Automation (Russian Federation); Gherman, C.; Kulyuk, L. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Rasing, Th. [Radboud University Nijmegen, Institute for Molecules and Materials (Netherlands); Peng, L.-H. [National Taiwan University, Department of Electrical Engineering and Institute of Photonics and Optoelectronics (China)

    2012-03-15T23:59:59.000Z

    The mapping of two-photon excited luminescence in aggregations of free-standing zinc oxide microrods has been carried out at room temperature. Two-photon luminescence spectra in the excitonic region for individual microrods have been recorded. The luminescence intensity exhibits a power-law dependence on the optical pump power with the exponent n > 2. This fact, along with the existence of a threshold power above which the dependence in the exciton region deviates from a quadratic one, indicates the onset of light amplification in individual ZnO microrods and the conditions preceding laser oscillation.

  18. Adaptive Optics Discovery of Supernova 2004ip in the Nuclear Regions of the Luminous Infrared Galaxy IRAS 18293-3413

    E-Print Network [OSTI]

    S. Mattila; P. Vaisanen; D. Farrah; A. Efstathiou; W. P. S. Meikle; T. Dahlen; C. Fransson; P. Lira; P. Lundqvist; G. Ostlin; S. Ryder; J. Sollerman

    2007-02-28T23:59:59.000Z

    We report a supernova discovery in Ks-band images from the NAOS CONICA adaptive optics (AO) system on the ESO Very Large Telescope (VLT). The images were obtained as part of a near-infrared search for highly-obscured supernovae in the nuclear regions of luminous and ultraluminous infrared galaxies. SN 2004ip is located within a circumnuclear starburst at 1.4 arcsec (or 500 pc) projected distance from the K-band nucleus of the luminous infrared galaxy IRAS 18293-3413. The supernova luminosity and light curve are consistent with a core-collapse event suffering from a host galaxy extinction of up to about 40 magnitudes in V-band which is as expected for a circumnuclear starburst environment. This is the first supernova to be discovered making use of AO correction and demonstrates the potential of the current 8-meter class telescopes equipped with AO in discovering supernovae from the innermost nuclear regions of luminous and ultraluminous infrared galaxies.

  19. E-Print Network 3.0 - atom-photon pair laser Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantum communication and a first... pairs of counterpropagating laser beams for optical cooling. Fluorescence light is collected... photon 5 . This kind of atom-photon...

  20. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOE Patents [OSTI]

    Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.

    1995-06-13T23:59:59.000Z

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.

  1. Heterogeneous lithium niobate photonics on silicon substrates

    E-Print Network [OSTI]

    Fathpour, Sasan

    Heterogeneous lithium niobate photonics on silicon substrates Payam Rabiei,1,* Jichi Ma,1 Saeed-confined lithium niobate photonic devices and circuits on silicon substrates is reported based on wafer bonding high- performance lithium niobate microring optical resonators and Mach- Zehnder optical modulators

  2. OPTI 544. Foundations of Quantum Optics (3). Foundations of quantum optics, interaction of two-level atoms with light; basic elements of laser theory;

    E-Print Network [OSTI]

    Arizona, University of

    of optical coherence. Correlation functions. Hanbury Brown and Twiss interferometry. Photon antibunching. Two

  3. Photon collider at TESLA

    E-Print Network [OSTI]

    Valery Telnov

    2001-03-06T23:59:59.000Z

    High energy photon colliders (gamma-gamma, gamma-electron) based on backward Compton scattering of laser light is a very natural addition to e+e- linear colliders. In this report we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case the gamma-gamma luminosity luminosity in the high energy part of spectrum can reach (1/3)L_{e+e-}. Typical cross sections of interesting processes in gamma-gamma collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in gamma-gamma collisions will be more than that in e+e- collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ``an optical storage ring (optical trap)'' with diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based at TESLA, its possible parameters and existing problems.

  4. Quantum state fusion in photons

    E-Print Network [OSTI]

    Chiara Vitelli; Nicolò Spagnolo; Lorenzo Aparo; Fabio Sciarrino; Enrico Santamato; Lorenzo Marrucci

    2012-09-17T23:59:59.000Z

    Photons are the ideal carriers of quantum information for communication. Each photon can have a single qubit or even multiple qubits encoded in its internal quantum state, as defined by optical degrees of freedom such as polarization, wavelength, transverse modes, etc. Here, we propose and experimentally demonstrate a physical process, named "quantum state fusion", in which the two-dimensional quantum states (qubits) of two input photons are combined into a single output photon, within a four-dimensional quantum space. The inverse process is also proposed, in which the four-dimensional quantum state of a single photon is split into two photons, each carrying a qubit. Both processes can be iterated, and hence may be used to bridge multi-particle protocols of quantum information with the multi-degree-of-freedom ones, with possible applications in quantum communication networks.

  5. Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study

    E-Print Network [OSTI]

    Fan, Shanhui

    optical microscopy NSOM imaging to simultaneously obtain both the eigenfield distribution and the band

  6. Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene

    E-Print Network [OSTI]

    Maysonnave, J; Wang, F; Maero, S; Berger, C; de Heer, W; Norris, T B; De Vaulchier, L A; Dhillon, S; Tignon, J; Ferreira, R; Mangeney, J

    2015-01-01T23:59:59.000Z

    Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here...

  7. Detailed design of a resonantly enhanced axion-photon regeneration experiment

    SciTech Connect (OSTI)

    Mueller, Guido; Sikivie, Pierre; Tanner, D. B.; Bibber, Karl van [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Naval Postgraduate School, Monterey, California 93943 (United States)

    2009-10-01T23:59:59.000Z

    A resonantly enhanced photon-regeneration experiment to search for the axion or axionlike particles is described. This experiment is a shining light through walls study, where photons traveling through a strong magnetic field are (in part) converted to axions; the axions can pass through an opaque wall and convert (in part) back to photons in a second region of strong magnetic field. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon-regeneration magnet. Compared to simple single-pass photon regeneration, this technique would result in a gain of (F/{pi}){sup 2}, where F is the finesse of each cavity. This gain could feasibly be as high as 10{sup 10}, corresponding to an improvement in the sensitivity to the axion-photon coupling, g{sub a{gamma}}{sub {gamma}}, of order (F/{pi}){sup 1/2}{approx}300. This improvement would enable, for the first time, a purely laboratory experiment to probe axion-photon couplings at a level competitive with, or superior to, limits from stellar evolution or solar axion searches. This report gives a detailed discussion of the scheme for actively controlling the two Fabry-Perot cavities and the laser frequencies, and describes the heterodyne signal detection system, with limits ultimately imposed by shot noise.

  8. AN INTRODUCTION TO QUANTUM OPTICS...

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    AN INTRODUCTION TO QUANTUM OPTICS... ...the light as you've never seen before... Optics:http://science.howstuffworks.com/laser5.htm #12;5 DEFINITION Quantum Optics: "Quantum optics is a field in quantum physics, dealing OPTICS OPERATORS Light is described in terms of field operators for creation and annihilation of photons

  9. Coupled mode theory for photonic crystal cavity-waveguide interaction

    E-Print Network [OSTI]

    Vuckovic, Jelena

    nanocavity in a two-dimensional photonic crystal," Nature 425, 944­947 (2003) 16. A. Yariv. Optical in a two- dimensional photonic-crystal slab," App. Phys. Lett. 83, 407­409 (2003) 5. T. Asano et al. "A

  10. Enhancing quantum entanglement by photon addition and subtraction

    E-Print Network [OSTI]

    Navarrete-Benlloch, Carlos

    The non-Gaussian operations effected by adding or subtracting a photon on entangled optical beams emerging from a parametric down-conversion process have been suggested to enhance entanglement. Heralded photon addition or ...

  11. Anomalous phenomena and spectral tailoring in photonic crystals

    E-Print Network [OSTI]

    Ghebrebrhan, Michael

    2010-01-01T23:59:59.000Z

    Photonic crystals are recently discovered meta-materials whose optical properties arise from periodic refractive index variations. In this thesis I examine various aspects of photonic crystals including a self-assembled ...

  12. Two-Photon Emission from Semiconductors

    E-Print Network [OSTI]

    Alex Hayat; Pavel Ginzburg; Meir Orenstein

    2007-10-25T23:59:59.000Z

    We report the first experimental observations of two-photon emission from semiconductors, to the best of our knowledge, and develop a corresponding theory for the room-temperature process. Spontaneous two-photon emission is demonstrated in optically-pumped bulk GaAs and in electrically-driven GaInP/AlGaInP quantum wells. Singly-stimulated two-photon emission measurements demonstrate the theoretically predicted two-photon optical gain in semiconductors - a necessary ingredient for any realizations of future two-photon semiconductor lasers. Photon-coincidence experiment validates the simultaneity of the electrically-driven GaInP/AlGaInP two-photon emission, limited only by detector's temporal resolution.

  13. Electromagnetically induced transparency in a five-level {Lambda} system dominated by two-photon resonant transitions

    SciTech Connect (OSTI)

    Yan Dong [College of Physics, Jilin University, Changchun 130012 (China); School of Science, Changchun University, Changchun 130022 (China); Gao Jinwei; Bao Qianqian; Yang Hong; Wang Heng; Wu Jinhui [College of Physics, Jilin University, Changchun 130012 (China)

    2011-03-15T23:59:59.000Z

    We study the steady optical response of a five-level atomic system in the parametric region where resonant two-photon transitions are much stronger than far-detuned single-photon transitions. We find that the concurrent absorption of two weak probe fields can be well suppressed in a narrow spectral region to attain electromagnetically induced transparency (EIT) via quantum destructive interference between different two-photon transition pathways. To gain a deeper insight into relevant physics, we adiabatically reduce this five-level system with trivial single-photon transitions into a three-level system with vanishing single-photon transitions by deriving an effective Hamiltonian. The two systems have almost the same two-photon absorption spectra exhibiting typical EIT features but are a little different in fine details. This means that most characteristics of two-photon quantum destructive interference are reserved after the adiabatic elimination approximation. In addition, we verify by numerical calculations that the two-photon EIT spectra are insensitive to the dipole-dipole interaction of cold Rydberg atoms when the uppermost level has a high principle quantum number.

  14. Methods and systems for Raman and optical cross-interrogation in flow-through silicon membranes

    DOE Patents [OSTI]

    Bond, Tiziana C.; Letant, Sonia E.

    2014-09-09T23:59:59.000Z

    Cross-interrogating photonic detection systems and methods are shown. A flow through photonic crystal membrane with a surface enhanced Raman scattering (SERS) substrate is provided with pores which are distributed along multiple regions. The pores of one region have walls to which a first type of target specific anchor can be attached, while pores of another region have walls to which a second type of target specific anchor can be attached. An optical arrangement out-of-plane to the SERS substrate is also provided for enhanced sensitivity and identification of target organisms.

  15. FY 2006 Infrared Photonics Final Report

    SciTech Connect (OSTI)

    Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

    2006-12-28T23:59:59.000Z

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  16. Liquid-nitrogen cooled, free-running single-photon sensitive detector at telecommunication wavelengths

    E-Print Network [OSTI]

    M. Covi; B. Pressl; T. Günthner; K. Laiho; S. Krapick; C. Silberhorn; G. Weihs

    2015-02-10T23:59:59.000Z

    The measurement of light characteristics at the single- and few photon level plays a key role in many quantum optics applications. Often photodetection is preceded with the transmission of quantum light over long distances in optical fibers with their low loss window near 1550nm. Nonetheless, the detection of the photonic states at telecommunication wavelengths via avalanche photodetectors has long been facing severe restrictions. Only recently, demonstrations of the first free-running detector techniques in the telecommunication band have lifted the demand of synchronizing the signal with the detector. Moreover, moderate cooling is required to gain single-photon sensitivity with these detectors. Here we implement a liquid-nitrogen cooled negative-feedback avalanche diode (NFAD) at telecommunication wavelengths and investigate the properties of this highly flexible, free-running single-photon sensitive detector. Our realization of cooling provides a large range of stable operating temperatures and has advantages over the relatively bulky commercial refrigerators that have been used before. We determine the region of NFAD working parameters most suitable for single-photon sensitive detection enabling a direct plug-in of our detector to a true photon counting task.

  17. Measurement of photon correlations with multipixel photon counters

    E-Print Network [OSTI]

    Dmitry Kalashnikov; Leonid A. Krivitsky

    2014-08-01T23:59:59.000Z

    Development of reliable photon number resolving detectors (PNRD), devices which are capable to distinguish 1,2,3.. photons, is of a great importance for quantum optics and its applications. A new class of affordable PNRD is based on multipixel photon counters (MPPC). Here we review results of experiments on using MPPCs for direct characterization of squeezed vacuum (SV) states, generated via parametric downconversion (PDC). We use MPPCs to measure the second order normalized intensity correlation function (g^(2)) and directly detect the two-mode squeezing of SV states. We also present a method of calibration of crosstalk probability in MPPCs based on g^(2) measurements of coherent states.

  18. Nuclear photonics

    SciTech Connect (OSTI)

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

    2012-07-09T23:59:59.000Z

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  19. Engineered Quantum Dot Single Photon Sources

    E-Print Network [OSTI]

    Sonia Buckley; Kelley Rivoire; Jelena Vuckovic

    2012-10-03T23:59:59.000Z

    Fast, high efficiency, and low error single photon sources are required for implementation of a number of quantum information processing applications. The fastest triggered single photon sources to date have been demonstrated using epitaxially grown semiconductor quantum dots (QDs), which can be conveniently integrated with optical microcavities. Recent advances in QD technology, including demonstrations of high temperature and telecommunications wavelength single photon emission, have made QD single photon sources more practical. Here we discuss the applications of single photon sources and their various requirements, before reviewing the progress made on a quantum dot platform in meeting these requirements.

  20. angle lc optical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Websites Summary: Institute, Jeonju, Jeonbuk 561-844, Korea 3 College of Optics and Photonics, University of Central Florida An optically isotropic liquid crystal...

  1. Photon statistics dispersion in excitonic composites

    E-Print Network [OSTI]

    G. Ya. Slepyan; S. A. Maksimenko

    2006-05-22T23:59:59.000Z

    Linear media are predicted to exist whose relative permiability is an operator in the space of quantum states of light. Such media are characterized by a photon statistics--dependent refractive index. This indicates a new type of optical dispersion -- the photon statistics dispersion. Interaction of quantum light with such media modifies the photon number distribution and, in particular, the degree of coherence of light. An excitonic composite -- a collection of noninteracting quantum dots -- is considered as a realization of the medium with the photon statistics dispersion. Expressions are derived for generalized plane waves in an excitonic composite and input--output relations for a planar layer of the material. Transformation rules for different photon initial states are analyzed. Utilization of the photon statistics dispersion in potential quantum--optical devices is discussed.

  2. Radio Observations of the Hubble Deep Field South Region IV: Optical Properties of the Faint Radio Population

    E-Print Network [OSTI]

    M. T. Huynh; C. A. Jackson; R. P. Norris; A. Fernandez-Soto

    2008-03-31T23:59:59.000Z

    The Australia Telescope Hubble Deep Field-South (ATHDFS) survey of the Hubble Deep Field South reaches sensitivities of ~10 miceoJyJy at 1.4, 2.5, 5.2 and 8.7 GHz, making the ATHDFS one of the deepest surveys ever performed with the Australia Telescope Compact Array. Here we present the optical identifications of the ATHDFS radio sources using data from the literature. We find that ~66% of the radio sources have optical counterparts to I = 23.5 mag. Deep HST imaging of the area identifies a further 12% of radio sources. We present new spectroscopic observations for 98 of the radio sources, and supplement these spectroscopic redshifts with photometric ones calculated from 5-band optical imaging. The host galaxy colors and radio-to-optical ratios indicate that low luminosity (or "radio quiet") AGN make up a significant proportion of the sub-mJy radio population, a result which is in accordance with a number of other deep radio studies. The radio-to-optical ratios of the bright (S_1.4GHz > 1 mJy) sources is consistent with a bimodal distribution.

  3. High index contrast platform for silicon photonics

    E-Print Network [OSTI]

    Akiyama, Shoji, 1972-

    2004-01-01T23:59:59.000Z

    This thesis focuses on silicon-based high index contrast (HIC) photonics. In addition to mature fiber optics or low index contrast (LIC) platform, which is often referred to as Planar Lightwave Cirrcuit (PLC) or Silica ...

  4. CMOS photonic processor-memory networks

    E-Print Network [OSTI]

    Stojanovic, Vladimir Marko

    This paper presents a monolithically integrated dense WDM photonic network for manycore processors, optimized for loss and power footprint of optical components, which can achieve up to 10x better energy-efficiency and ...

  5. Optical XOR gate

    DOE Patents [OSTI]

    Vawter, G. Allen

    2013-11-12T23:59:59.000Z

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  6. Optical Quantum Computing

    E-Print Network [OSTI]

    Jeremy L. O'Brien

    2008-03-11T23:59:59.000Z

    In 2001 all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single photon sources, linear optical elements, and single photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high efficiency single photon detectors, and low-loss interfacing of these components.

  7. SWIFT ULTRAVIOLET/OPTICAL TELESCOPE IMAGING OF STAR-FORMING REGIONS IN M81 AND HOLMBERG IX

    SciTech Connect (OSTI)

    Hoversten, E. A.; Gronwall, C.; Siegel, M. H. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Vanden Berk, D. E. [Physics Department, St. Vincent College, Latrobe, PA 15650 (United States); Basu-Zych, A. R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Breeveld, A. A.; Kuin, N. P. M.; Page, M. J. [Mullard Space Science Laboratory/UCL, Holbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Brown, P. J. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Roming, P. W. A. [Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States)

    2011-06-15T23:59:59.000Z

    We present Swift UV/Optical Telescope (UVOT) imaging of the galaxies M81 and Holmberg IX. We combine UVOT imaging in three near-ultraviolet (NUV) filters (uvw2: 1928 A; uvm2: 2246 A; uvw1: 2600 A) with ground-based optical imaging from the Sloan Digital Sky Survey to constrain the stellar populations of both galaxies. Our analysis consists of three different methods. First, we use the NUV imaging to identify UV star-forming knots and then perform spectral energy distribution (SED) modeling on the UV/optical photometry of these sources. Second, we measure surface brightness profiles of the disk of M81 in the NUV and optical. Lastly, we use SED fitting of individual pixels to map the properties of the two galaxies. In agreement with earlier studies, we find evidence for a burst in star formation in both galaxies starting {approx}200 Myr ago coincident with the suggested time of an M81-M82 interaction. In line with theories of its origin as a tidal dwarf, we find that the luminosity-weighted age of Holmberg IX is a few hundred million years. Both galaxies are best fit by a Milky Way dust extinction law with a prominent 2175 A bump. In addition, we describe a stacked median filter technique for modeling the diffuse background light within a galaxy and a Markov chain method for cleaning segment maps generated by SExtractor.

  8. On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform

    E-Print Network [OSTI]

    Nobuyuki Matsuda; Peter Karkus; Hidetaka Nishi; Tai Tsuchizawa; William J. Munro; Hiroki Takesue; Koji Yamada

    2014-09-14T23:59:59.000Z

    We demonstrate the generation and demultiplexing of quantum correlated photons on a monolithic photonic chip composed of silicon and silica-based waveguides. Photon pairs generated in a nonlinear silicon waveguide are successfully separated into two optical channels of an arrayed-waveguide grating fabricated on a silica-based waveguide platform.

  9. FY 2005 Infrared Photonics Final Report

    SciTech Connect (OSTI)

    Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

    2005-12-01T23:59:59.000Z

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNL’s Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and waveguide couplers. Optical metrology tools were also developed to characterize optical waveguide structures and LWIR optical components.

  10. Resonant enhancement of high-order optical nonlinearities based on atomic coherence RID A-1272-2007 

    E-Print Network [OSTI]

    Zubairy, M. Suhail; Matsko, A. B.; Scully, Marlan O.

    2002-01-01T23:59:59.000Z

    . Assuming that all param- eters of the optical transitions are nearly the same and by using the expression `2/\\53c3g/4n3, we get d?5 3 8p Nl 2c g D 1 nV1nV2 , ~12! where N is the atomic density in the interaction volume, l is the optical... wavelength, c is the speed of light in the vacuum, and nV@1 is the average number of the photons of the cou- pling field in the interaction region. We assume here that the interaction and quantization volumes are the same. The minimum value of the photon...

  11. Superconducting single photon detectors integrated with diamond nanophotonic circuits

    E-Print Network [OSTI]

    Rath, Patrik; Ferrari, Simone; Sproll, Fabian; Lewes-Malandrakis, Georgia; Brink, Dietmar; Ilin, Konstantin; Siegel, Michael; Nebel, Christoph; Pernice, Wolfram

    2015-01-01T23:59:59.000Z

    Photonic quantum technologies promise to repeat the success of integrated nanophotonic circuits in non-classical applications. Using linear optical elements, quantum optical computations can be performed with integrated optical circuits and thus allow for overcoming existing limitations in terms of scalability. Besides passive optical devices for realizing photonic quantum gates, active elements such as single photon sources and single photon detectors are essential ingredients for future optical quantum circuits. Material systems which allow for the monolithic integration of all components are particularly attractive, including III-V semiconductors, silicon and also diamond. Here we demonstrate nanophotonic integrated circuits made from high quality polycrystalline diamond thin films in combination with on-chip single photon detectors. Using superconducting nanowires coupled evanescently to travelling waves we achieve high detection efficiencies up to 66 % combined with low dark count rates and timing resolu...

  12. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system

    E-Print Network [OSTI]

    Dirk Englund; Arka Majumdar; Michal Bajcsy; Andrei Faraon; Pierre Petroff; Jelena vuckovic

    2011-07-14T23:59:59.000Z

    We study dynamics of the interaction between two weak light beams mediated by a strongly coupled quantum dot-photonic crystal cavity system. First, we perform all optical switching of a weak continuous-wave signal with a pulsed control beam, and then perform switching between two pulsed beams (40ps pulses) at the single photon level. Our results show that the quantum dot-nanocavity system creates strong, controllable interactions at the single photon level.

  13. Agile optical frequency synthesis via parametric processes

    E-Print Network [OSTI]

    Kuo, Ping Piu

    2011-01-01T23:59:59.000Z

    5106 (1978). [48] A. Yariv and P. Yeh, Photonics: OpticalJ. O. White, B. Fischer and A. Yariv, “Exact solution of a

  14. Generalized multi-photon quantum interference

    E-Print Network [OSTI]

    Max Tillmann; Si-Hui Tan; Sarah E. Stoeckl; Barry C. Sanders; Hubert de Guise; René Heilmann; Stefan Nolte; Alexander Szameit; Philip Walther

    2015-02-12T23:59:59.000Z

    Non-classical interference of photons lies at the heart of optical quantum information processing. This effect is exploited in universal quantum gates as well as in purpose-built quantum computers that solve the BosonSampling problem. Although non-classical interference is often associated with perfectly indistinguishable photons this only represents the degenerate case, hard to achieve under realistic experimental conditions. Here we exploit tunable distinguishability to reveal the full spectrum of multi-photon non-classical interference. This we investigate in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis which decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.

  15. Optical Quadratic Measure Eigenmodes

    E-Print Network [OSTI]

    Michael Mazilu; Joerg Baumgartl; Sebastian Kosmeier; Kishan Dholakia

    2010-07-13T23:59:59.000Z

    We report a mathematically rigorous technique which facilitates the optimization of various optical properties of electromagnetic fields. The technique exploits the linearity of electromagnetic fields along with the quadratic nature of their interaction with matter. In this manner we may decompose the respective fields into optical quadratic measure eigenmodes (QME). Key applications include the optimization of the size of a focused spot, the transmission through photonic devices, and the structured illumination of photonic and plasmonic structures. We verify the validity of the QME approach through a particular experimental realization where the size of a focused optical field is minimized using a superposition of Bessel beams.

  16. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  17. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  18. advanced optical technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Technologies" to a scientist with outstanding contributions in the areas of optics, photonics and optical technologies. The prize money is 100,000 to be used for salary...

  19. Multispectral optical tweezers for molecular diagnostics of single biological cells

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Multispectral optical tweezers for molecular diagnostics of single biological cells Author, Townes Laser Institute, CREOL ­ The College of Optics and Photonics, Univ. of Central Florida (United States) ABSTRACT Optical trapping of single biological cells has become an established technique

  20. A. La Rosa Lecture Notes APPLIED OPTICS

    E-Print Network [OSTI]

    _______________________________________________________________________________ Rays and Optical beams Ref: A. Yariv and P. Yeh, "Photonics," Oxford University Press. Chapter 2. IA. La Rosa Lecture Notes APPLIED OPTICS. Ray Matrices I.A Special cases Case: Propagation through a thin lens Case: Propagation through

  1. Light trapping in thin film solar cells using textured photonic crystal

    DOE Patents [OSTI]

    Yi, Yasha (Somerville, MA); Kimerling, Lionel C. (Concord, MA); Duan, Xiaoman (Amesbury, MA); Zeng, Lirong (Cambridge, MA)

    2009-01-27T23:59:59.000Z

    A solar cell includes a photoactive region that receives light. A photonic crystal is coupled to the photoactive region, wherein the photonic crystal comprises a distributed Bragg reflector (DBR) for trapping the light.

  2. Localized Photonic jets from flat 3D dielectric cuboids in the reflection mode

    E-Print Network [OSTI]

    Minin, I V; Pacheco-Pena, V; Beruete, M

    2015-01-01T23:59:59.000Z

    A photonic jet (terajet at THz frequencies) commonly denotes a specific spatially localized region in the near-field at the front side of a dielectric particle with diameter comparable with wavelength illuminated with a plane wave from its backside (i.e., the jet emerges from the shadow surface of a dielectric particle). In this paper the formation of photonic is demonstrated using the recently proposed 3D dielectric cuboids working in reflection mode when the specific spatially localized region is localized towards the direction of incidence wavefront. The results of simulations based on Finite Integration Technique are discussed. All dimensions are given in wavelength units so that all results can be scaled any frequency of interest including optical frequencies, simplifying the fabrication process compared with spherical dielectrics. The results here presented may be of interest for novel applications including microscopy techniques and sensors.

  3. Near-Infrared Adaptive Optics Imaging of the Central Regions of Nearby Sc Galaxies: I. M33

    E-Print Network [OSTI]

    T. J. Davidge

    1999-10-18T23:59:59.000Z

    Near-infrared images obtained with the Canada-France-Hawaii Telescope (CFHT) Adaptive Optics Bonnette (AOB) are used to investigate the stellar content within 18 arcsec of the center of the Local Group spiral galaxy M33. AGB stars with near-infrared spectral-energy distributions similar to those of giants in the solar neighborhood and Baade's Window are detected over most of the field. The bolometric luminosity function (LF) of these stars has a discontinuity near M_{bol} = -5.25, and comparisons with evolutionary tracks suggest that most of the AGB stars formed in a burst of star formation 1 - 3 Gyr in the past. The images are also used to investigate the integrated near-infrared photometric properties of the nucleus and the central light concentration. The nucleus is bluer than the central light concentration, in agreement with previous studies at visible wavelengths. The CO index of the central light concentration 0.5 arcsec from the galaxy center is 0.05, which corresponds to [Fe/H] = -1.2 for simple stellar systems. Hence, the central light concentration could not have formed from the chemically-enriched material that dominates the present-day inner disk of M33.

  4. Light scattering by radiation fields: the optical medium analogy

    E-Print Network [OSTI]

    Donato Bini; Pierluigi Fortini; Andrea Geralico; Maria Haney; Antonello Ortolan

    2014-08-23T23:59:59.000Z

    The optical medium analogy of a radiation field generated by either an exact gravitational plane wave or an exact electromagnetic wave in the framework of general relativity is developed. The equivalent medium of the associated background field is inhomogeneous and anisotropic in the former case, whereas it is inhomogeneous but isotropic in the latter. The features of light scattering are investigated by assuming the interaction region to be sandwiched between two flat spacetime regions, where light rays propagate along straight lines. Standard tools of ordinary wave optics are used to study the deflection of photon paths due to the interaction with the radiation fields, allowing for a comparison between the optical properties of the equivalent media associated with the different background fields.

  5. Optical reference geometry of the Kerr-Newman spacetimes

    E-Print Network [OSTI]

    Zden?k Stuchlík; Stanislav Hledík; Josef Jurá?

    2008-03-17T23:59:59.000Z

    Properties of the optical reference geometry related to Kerr-Newman black-hole and naked-singularity spacetimes are illustrated using embedding diagrams of their equatorial plane. Among all inertial forces defined in the framework of the optical geometry, just the centrifugal force plays a fundamental role in connection to the embedding diagrams because it changes sign at the turning points of the diagrams. The limits of embeddability are given, and it is established which of the photon circular orbits hosted the by Kerr-Newman spacetimes appear in the embeddable regions. Some typical embedding diagrams are constructed, and the Kerr-Newman backgrounds are classified according to the number of embeddable regions of the optical geometry as well as the number of their turning points. Embedding diagrams are closely related to the notion of the radius of gyration which is useful for analyzing fluid rotating in strong gravitational fields.

  6. advanced fiber-optic monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 1 Photonic Crystal Fibers Advances in Fiber Optics Physics Websites Summary: Photonic Crystal Fibers Advances in Fiber Optics Elliott L....

  7. Effect of Loss on Multiplexed Single-Photon Sources

    E-Print Network [OSTI]

    Damien Bonneau; Gabriel J. Mendoza; Jeremy L. O'Brien; Mark G. Thompson

    2015-04-29T23:59:59.000Z

    An on-demand single-photon source is a key requirement for scaling many optical quantum technologies. A promising approach to realize an on-demand single-photon source is to multiplex an array of heralded single-photon sources using an active optical switching network. However, the performance of multiplexed sources is degraded by photon loss in the optical components and the non-unit detection efficiency of the heralding detectors. We provide a theoretical description of a general multiplexed single-photon source with lossy components and derive expressions for the output probabilities of single-photon emission and multi-photon contamination. We apply these expressions to three specific multiplexing source architectures and consider their tradeoffs in design and performance. To assess the effect of lossy components on near- and long-term experimental goals, we simulate the multiplexed sources when used for many-photon state generation under various amounts of component loss. We find that with a multiplexed source composed of switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors, a single-photon source capable of efficiently producing 20-40 photon states with low multi-photon contamination is possible, offering the possibility of unlocking new classes of experiments and technologies.

  8. OPTICAL CONSTANTS OF NH{sub 3} AND NH{sub 3}:N{sub 2} AMORPHOUS ICES IN THE NEAR-INFRARED AND MID-INFRARED REGIONS

    SciTech Connect (OSTI)

    Zanchet, Alexandre; Rodríguez-Lazcano, Yamilet; Gálvez, Óscar; Herrero, Víctor J.; Escribano, Rafael; Maté, Belén, E-mail: belen.mate@csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain)

    2013-11-01T23:59:59.000Z

    Ammonia ice has been detected on different astrophysical media ranging from interstellar medium (ISM) particles to the surface of various icy bodies of our solar system, where nitrogen is also present. We have carried out a detailed study of amorphous NH{sub 3} ice and NH{sub 3}:N{sub 2} ice mixtures, based on infrared (IR) spectra in the mid-IR (MIR) and near-IR (NIR) regions, supported by theoretical quantum chemical calculations. Spectra of varying ice thicknesses were obtained and optical constants were calculated for amorphous NH{sub 3} at 15 K and 30 K and for a NH{sub 3}:N{sub 2} mixture at 15 K over a 500-7000 cm{sup –1} spectral range. These spectra have improved accuracy over previous data, where available. Moreover, we also obtained absolute values for the band strengths of the more prominent IR features in both spectral regions. Our results indicate that the estimated NH{sub 3} concentration in ISM ices should be scaled upward by ?30%.

  9. Heavy photon search experiment at JLAB

    SciTech Connect (OSTI)

    Stepanyan, S. [Jefferson Lab, Newport News, VA (United States); Collaboration: HPS Collaboration

    2013-11-07T23:59:59.000Z

    The Heavy Photon Search (HPS) experiment in Hall-B at Jefferson Lab will search for new heavy vector boson(s), aka 'heavy photons', in the mass range of 20 MeV/c{sup 2} to 1000 MeV/c{sup 2} using the scattering of high energy, high intensity electron beams off a high Z target. The proposed measurements will cover the region of parameter space favored by the muon g-2 anomaly, and will explore a significant region of parameter space, not only at large couplings (??/? > 10{sup ?7}), but also in the regions of small couplings, down to ??/??10{sup ?10}. The excellent vertexing capability of the Si-tracker uniquely enables HPS to cover the small coupling region. Also, HPS will search for heavy photons in an alternative to the e{sup +}e{sup ?} decay mode, in the heavy photon's decay to ?{sup +}??.

  10. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    SciTech Connect (OSTI)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07T23:59:59.000Z

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  11. Antireflection and Enhanced Absorption in Tapered Silicon Photonic Crystals

    E-Print Network [OSTI]

    Coldren, Larry A.

    as applying this structure for solar energy conversion. (a) (b) (c) Figure 1 (a) SEM picture and photograph Optical Society of America OCIS codes: (050.5298) Photonic crystals; (160.4760) Optical properties ; (220 studied as the building blocks to realize functional devices for optical networking, image display, bio

  12. Light-shift modulated photon-echo

    E-Print Network [OSTI]

    Chanelière, Thierry

    2015-01-01T23:59:59.000Z

    We show that the AC-Stark shift (light-shift) is a powerful and versatile tool to control the emission of a photon-echo in the context of optical storage. As a proof-of-principle, we demonstrate that the photon-echo efficiency can be fully modulated by applying light-shift control pulses in an erbium doped solid. The control of the echo emission is attributed to the spatial gradient induced by the light-shift beam.

  13. Light-shift modulated photon-echo

    E-Print Network [OSTI]

    Thierry Chanelière; Gabriel Hétet

    2015-02-24T23:59:59.000Z

    We show that the AC-Stark shift (light-shift) is a powerful and versatile tool to control the emission of a photon-echo in the context of optical storage. As a proof-of-principle, we demonstrate that the photon-echo efficiency can be fully modulated by applying light-shift control pulses in an erbium doped solid. The control of the echo emission is attributed to the spatial gradient induced by the light-shift beam.

  14. An all-optical table-top collider for testing $\\gamma\\gamma\\rightarrow\\gamma\\gamma$ scattering in the region of MeV

    E-Print Network [OSTI]

    Homma, Kensuke; Nakajima, Kazuhisa

    2015-01-01T23:59:59.000Z

    Photon-photon scatterings contain rich information on the two-photon coupling to a virtual $e^+e^-$ pair in QED and also the coupling to known resonance states in the context of QCD and the electroweak interaction. Moreover, discovering weakly-coupling resonance states over many orders of magnitude on the mass scale can provide us hints on something dark in the Universe. The perturbative QED calculations manifestly predict the maximized cross section at the MeV scale, however, any examples of real-photon - real-photon scattering have not been observed in that energy scale hitherto. Hence, we propose the direct measurement with the maximized cross-section at the center-of-mass energy of 1-2 MeV to establish the firm footing at the MeV scale. Given currently state-of-the-art high power lasers, the QED-based elastic scattering may be observed at a reasonable rate, if a photon-photon collider exploiting $\\gamma$-rays generated by the inverse Compton process with electrons delivered from laser-plasma accelerators ...

  15. Photon Calorimeter

    DOE Patents [OSTI]

    Chow, Tze-Show (Hayward, CA)

    1989-01-01T23:59:59.000Z

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  16. Design, Assembly, and Testing of a Photon Doppler Velocimetry Probe

    SciTech Connect (OSTI)

    Malone, Robert M; Cox, Brian C; Daykin, Edward P; DeVore, Douglas O; Esquibel, David L; Frayer, Daniel K; Frogget, Brent C; Gallegos, Cenobio H; Kaufman, Morris I; McGillivray, Kevin D; Romero, Vincent T; Briggs, Matthew E; Furlanetto, Michael R; Holtkamp, David B; Pazuchanics, Peter; Primas, Lori E; Shinas, Michael A

    2011-08-21T23:59:59.000Z

    A novel fiber-optic probe measures the velocity distribution of an imploding surface along many lines of sight. Reflected light from each spot on the moving surface is Doppler shifted with a small portion of this light propagating backwards through the launching fiber. The reflected light is mixed with a reference laser in a technique called photon Doppler velocimetry, providing continuous time records. Within the probe, a matrix array of 56 single-mode fibers sends light through an optical relay consisting of three types of lenses. Seven sets of these relay lenses are grouped into a close-packed array allowing the interrogation of seven regions of interest. A six-faceted prism with a hole drilled into its center directs the light beams to the different regions. Several types of relay lens systems have been evaluated, including doublets and molded aspheric singlets. The optical design minimizes beam diameters and also provides excellent imaging capabilities. One of the fiber matrix arrays can be replaced by an imaging coherent bundle. This close-packed array of seven relay systems provides up to 476 beam trajectories. The pyramid prism has its six facets polished at two different angles that will vary the density of surface point coverage. Fibers in the matrix arrays are angle polished at 8{sup o} to minimize back reflections. This causes the minimum beam waist to vary along different trajectories. Precision metrology on the direction cosine trajectories is measured to satisfy environmental requirements for vibration and temperature.

  17. Counterintuitive temporal shape of single photons

    E-Print Network [OSTI]

    Gurpreet Kaur Gulati; Bharath Srivathsan; Brenda Chng; Alessandro Cerè; Dzmitry Matsukevich; Christian Kurtsiefer

    2014-02-24T23:59:59.000Z

    We prepare heralded single photons from a photon pair source based on non-degenerate four-wave mixing in a cold atomic ensemble via a cascade decay scheme. Their statistics shows strong antibunching with g(2)(0) < 0.03, indicating a near single photon character. In an optical homodyne experiment, we directly measure the temporal envelope of these photons and find, depending on the heralding scheme, an exponentially decaying or rising profile. The rising envelope will be useful for efficient interaction between single photons and microscopic systems like single atoms and molecules. At the same time, their observation illustrates the breakdown of a realistic interpretation of the heralding process in terms of defining an initial condition of a physical system.

  18. Bio-inspired optical components

    E-Print Network [OSTI]

    Walish, Joseph John

    2008-01-01T23:59:59.000Z

    Guiding electro-magnetic radiation is fundamental to optics. Lenses, mirrors, and photonic crystals all accomplish this task by different routes. Understanding the interaction of light with materials is fundamental to ...

  19. Stochastic Physical Optics & Bell's correlation

    E-Print Network [OSTI]

    J. F. Geurdes

    2012-03-19T23:59:59.000Z

    With the use of classical statistical argumentation similar to the one used in e.g. statistical optics, it is demonstrated that in entanglement of photons, a classical realist explanation cannot be excluded by the CHSH measure in experiment.

  20. A low-loss photonic silica nanofiber for higher-order modes

    E-Print Network [OSTI]

    Ravets, S; Orozco, L A; Rolston, S L; Beadie, G; Fatemi, F K

    2013-01-01T23:59:59.000Z

    Optical nanofibers confine light to subwavelength scales, and are of interest for the design, integration, and interconnection of nanophotonic devices. Here we demonstrate high transmission (> 97%) of the first family of excited modes through a 350 nm radius fiber, by appropriate choice of the fiber and precise control of the taper geometry. We can design the nanofibers so that these modes propagate with most of their energy outside the waist region. We also present an optical setup for selectively launching these modes with less than 1% fundamental mode contamination. Our experimental results are in good agreement with simulations of the propagation. Multimode optical nanofibers expand the photonic toolbox, and may aid in the realization of a fully integrated nanoscale device for communication science, laser science or other sensing applications.

  1. all-solid photonic bandgap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V. Englich-059 Krakw, Poland ABSTRACT Microstructured optical fibers provide a unique environment for new compact gaseous medium within a hollow-core photonic bandgap fiber...

  2. Optical amplifier-powered quantum optical amplification

    E-Print Network [OSTI]

    John Jeffers

    2011-05-16T23:59:59.000Z

    I show that an optical amplifier, when combined with photon subtraction, can be used for quantum state amplification, adding noise at a level below the standard minimum. The device could be used to significantly decrease the probability of incorrectly identifying coherent states chosen from a finite set.

  3. Time evolution of negative binomial optical field in diffusion channel

    E-Print Network [OSTI]

    Liu Tang-Kun; Wu Pan-Pan; Shan Chuan-Jia; Liu Ji-Bing; Fan Hong-Yi

    2015-04-17T23:59:59.000Z

    We find time evolution law of negative binomial optical field in diffusion channel. We reveal that by adjusting the diffusion parameter, photon number can controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.

  4. Di-photon and photon + b/c production cross sections at Ecm = 1.96- TeV

    SciTech Connect (OSTI)

    Gajjar, Anant; /Liverpool U.

    2005-05-01T23:59:59.000Z

    Measurements of the di-photon cross section have been made in the central region and are found to be in good agreement with NLO QCD predictions. The cross section of events containing a photon and additional heavy flavor jet have also been measured, as well as the ratio of photon + b to photon + c. The statistically limited sample shows good agreement with Leading Order predictions.

  5. Optically Excited Entangled States in Organic Molecules Illuminate M. Harpham,,

    E-Print Network [OSTI]

    Mukamel, Shaul

    Optically Excited Entangled States in Organic Molecules Illuminate the Dark L. Upton,, M. Harpham ABSTRACT: We utilize quantum entangled photons to carry out nonlinear optical spectroscopy in organic as a result of entangled photon absorption in organic nonlinear optical molecules. Selectivity

  6. Physics at high energy photon photon colliders

    SciTech Connect (OSTI)

    Chanowitz, M.S.

    1994-06-01T23:59:59.000Z

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  7. Entanglement formation and violation of Bell's inequality with a semiconductor single photon source

    E-Print Network [OSTI]

    David Fattal; Kyo Inoue; Jelena Vuckovic; Charles Santori; Glenn S. Solomon; Yoshihisa Yamamoto

    2003-05-09T23:59:59.000Z

    We report the generation of polarization-entangled photons, using a quantum dot single photon source, linear optics and photodetectors. Two photons created independently are observed to violate Bell's inequality. The density matrix describing the polarization state of the postselected photon pairs is also reconstructed, and agrees well with a simple model predicting the quality of entanglement from the known parameters of the single photon source. Our scheme provides a method to generate no more than one entangled photon pair per cycle, a feature useful to enhance quantum cryptography protocols using entangled photons.

  8. Modular Optical PDV System

    SciTech Connect (OSTI)

    Araceli Rutkowski, David Esquibel

    2008-12-11T23:59:59.000Z

    A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

  9. A Diamond Nanowire Single Photon Antenna

    E-Print Network [OSTI]

    Tom Babinec; Birgit J. M. Hausmann; Mughees Khan; Yinan Zhang; Jero Maze; Philip R. Hemmer; Marko Loncar

    2009-10-28T23:59:59.000Z

    The development of a robust light source that emits one photon at a time is an outstanding challenge in quantum science and technology. Here, at the transition from many to single photon optical communication systems, fully quantum mechanical effects may be utilized to achieve new capabilities, most notably perfectly secure communication via quantum cryptography. Practical implementations place stringent requirements on the device properties, including stable photon generation, room temperature operation, and efficient extraction of many photons. Single photon light emitting devices based on fluorescent dye molecules, quantum dots, and carbon nanotube material systems have all been explored, but none have simultaneously demonstrated all criteria. Here, we describe the design, fabrication, and characterization of a bright source of single photons consisting of an individual Nitrogen-vacancy color center (NV center) in a diamond nanowire operating in ambient conditions. The nanowire plays a positive role in increasing the number of single photons collected from the NV center by an order of magnitude over devices based on bulk diamond crystals, and allows operation at an order of magnitude lower power levels. This result enables a new class of nanostructured diamond devices for room temperature photonic and quantum information processing applications, and will also impact fields as diverse as biological and chemical sensing, opto-mechanics, and scanning-probe microscopy.

  10. Plasmon-induced photonic switching in a metamaterial

    E-Print Network [OSTI]

    H. Xu; B. S. Ham

    2009-05-22T23:59:59.000Z

    Using light-induced localized surface plasmon interactions in a metamaterial, we present a plasmonic control of light absorption for photonic switching. We discuss that the present surface plasmon-induced photonic switching is comparable with coherence swapping in a tripod optical system based on electromagnetically induced transparency. This outcome opens a door to active controls of the surface plasmons in a metamaterial for potential applications of nano photonics.

  11. Fast quantum dot single photon source triggered at telecommunications wavelength

    E-Print Network [OSTI]

    Kelley Rivoire; Sonia Buckley; Arka Majumdar; Hyochul Kim; Pierre Petroff; Jelena Vuckovic

    2010-12-20T23:59:59.000Z

    We demonstrate a quantum dot single photon source at 900 nm triggered at 300 MHz by a continuous wave telecommunications wavelength laser followed by an electro-optic modulator. The quantum dot is excited by on-chip-generated second harmonic radiation, resonantly enhanced by a GaAs photonic crystal cavity surrounding the InAs quantum dot. Our result suggests a path toward the realization of telecommunications-wavelength-compatible quantum dot single photon sources with speeds exceeding 1 GHz.

  12. Spinons and Holons with Polarized Photons in a Nonlinear Waveguide

    E-Print Network [OSTI]

    Ming-Xia Huo; Dimitris G. Angelakis; Leong Chuan Kwek

    2012-07-20T23:59:59.000Z

    We show that the spin-charge separation predicted for correlated fermions in one dimension, could be observed using polarized photons propagating in a nonlinear optical waveguide. Using coherent control techniques and employing a cold atom ensemble interacting with the photons, large nonlinearities in the single photon level can be achieved. We show that the latter can allow for the simulation of a strongly interacting gas, which is made of stationary dark-state polaritons of two species and then shown to form a Luttinger liquid of effective fermions for the right regime of interactions. The system can be tuned optically to the relevant regime where the spin-charge separation is expected to occur. The characteristic features of the separation as demonstrated in the different spin and charge densities and velocities can be efficiently detected via optical measurements of the emitted photons with current optical technologies.

  13. Design-space exploration for CMOS photonic processor networks

    E-Print Network [OSTI]

    Stojanovic, Vladimir Marko

    Monolithically integrated dense WDM photonic network topologies optimized for loss and power footprint of optical components can achieve up to 4x better energy-efficiency and throughput than electrical interconnects in ...

  14. The Importance of Photonics Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Global Research. I would like to further highlight the importance of Photonics and Optics by pointing to a recent report written by the US National Academies with the help of...

  15. Photon correlation and scattering: introduction to the feature issue

    SciTech Connect (OSTI)

    Meyer, William V.; Smart, Anthony E.; Wegdam, Gerard H.; Brown, Robert G.W.; Dogariu, Aristide

    2006-04-01T23:59:59.000Z

    This special issue of Applied Optics contains research papers on photon correlation and scattering, many of which were presented at the OSA Topical Meeting that was held 16-18 August 2004.

  16. Novel advancements in nanofabrication for photonic crystal applications

    E-Print Network [OSTI]

    Cheong, Lin Lee

    2013-01-01T23:59:59.000Z

    The progress of large-area 2D- and 3D-photonic crystals (PCs) at optical and near infra-red frequencies has been limited by fabrication challenges. Periodic nanostructures must be patterned in high-index and crystalline ...

  17. Hybrid approaches to quantum information using ions, atoms and photons

    E-Print Network [OSTI]

    Cetina, Marko, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    This thesis presents two hybrid systems for quantum information processing - one joining cold ions and cold atoms and another coupling linear chains of atomic ions with photons via an optical resonator. The first experimental ...

  18. Attosecond timing jitter modelocked lasers and ultralow phase noise photonic microwave oscillators

    E-Print Network [OSTI]

    Li, Duo, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Photonic microwave oscillator based on optical frequency comb and ultrastable optical reference cavity represents the state-of-the-art solution to generate X-band microwaves of ultralow phase noise. Such high-quality ...

  19. Department of Electrical Engineering and Computer Science Photonics Education

    E-Print Network [OSTI]

    Van Stryland, Eric

    Department of Electrical Engineering and Computer Science Photonics Education Current & Future Education Expectations in Optics & Photonics Barry L. Shoop, Ph.D., P.E. Professor of Electrical Engineering Symposium 7 March 2014 #12;Department of Electrical Engineering and Computer Science 2 #12;Department

  20. Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

    E-Print Network [OSTI]

    Texas at Austin, University of

    Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane 1 Funded by Environmental. of Electrical and Computer Engineering, University of Texas, Austin #12;Motivation No other chip based optical Similar to: Doping of Semiconductor 3 #12;4 Photonic Crystal Bio-Chemical Sensors Loncar et al, Appl. Phys

  1. MIUR-Cofin 2002 project Si-based photonic crystals

    E-Print Network [OSTI]

    deposition techniques, lithography (electron-beam, X-ray and nanoimprint), wet and dry etching, sedimentation of the photonic band dispersion by variable-angle reflectance from the sample surface and by phase-sensitive Mach and in photonic cavities; · modelling of near-field optical microscopy. #12;Torino Politecnico - PECVD growth

  2. An all-silicon single-photon source by unconventional photon blockade

    E-Print Network [OSTI]

    Flayac, H; Savona, V

    2015-01-01T23:59:59.000Z

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We fin...

  3. Photonic Doppler Velocimetry Multiplexing Techniques: Evaluation of Photonic Techniques

    SciTech Connect (OSTI)

    Edward Daykin

    2012-05-24T23:59:59.000Z

    This poster reports progress related to photonic technologies. Specifically, the authors developed diagnostic system architecture for a Multiplexed Photonic Doppler Velocimetry (MPDV) that incorporates frequency and time-division multiplexing into existing PDV methodology to provide increased channel count. Current MPDV design increases number of data records per digitizer channel 8x, and also operates as a laser-safe (Class 3a) system. Further, they applied heterodyne interferometry to allow for direction-of-travel determination and enable high-velocity measurements (>10 km/s) via optical downshifting. They also leveraged commercially available, inexpensive and robust components originally developed for telecom applications. Proposed MPDV architectures employ only commercially available, fiber-coupled hardware.

  4. Universal Linear Optics

    E-Print Network [OSTI]

    Jacques Carolan; Chris Harrold; Chris Sparrow; Enrique Martín-López; Nicholas J. Russell; Joshua W. Silverstone; Peter J. Shadbolt; Nobuyuki Matsuda; Manabu Oguma; Mikitaka Itoh; Graham D. Marshall; Mark G. Thompson; Jonathan C. F. Matthews; Toshikazu Hashimoto; Jeremy L. O'Brien; Anthony Laing

    2015-05-05T23:59:59.000Z

    Linear optics underpins tests of fundamental quantum mechanics and computer science, as well as quantum technologies. Here we experimentally demonstrate the longstanding goal of a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons and their measurement with a 12 single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with average fidelity 0.999 $\\pm$ 0.001. Our system is capable of switching between these and any other linear optical protocol in seconds. These results point the way to applications across fundamental science and quantum technologies.

  5. Quantum teleportation on a photonic chip

    E-Print Network [OSTI]

    Benjamin J. Metcalf; Justin B. Spring; Peter C. Humphreys; Nicholas Thomas-peter; Marco Barbieri; W. Steven Kolthammer; Xian-min Jin; Nathan K. Langford; Dmytro Kundys; James C. Gates; Brian J. Smith; Peter G. R. Smith; Ian A. Walmsley

    2014-09-15T23:59:59.000Z

    Quantum teleportation is a fundamental concept in quantum physics which now finds important applications at the heart of quantum technology including quantum relays, quantum repeaters and linear optics quantum computing (LOQC). Photonic implementations have largely focussed on achieving long distance teleportation due to its suitability for decoherence-free communication. Teleportation also plays a vital role in the scalability of photonic quantum computing, for which large linear optical networks will likely require an integrated architecture. Here we report the first demonstration of quantum teleportation in which all key parts - entanglement preparation, Bell-state analysis and quantum state tomography - are performed on a reconfigurable integrated photonic chip. We also show that a novel element-wise characterisation method is critical to mitigate component errors, a key technique which will become increasingly important as integrated circuits reach higher complexities necessary for quantum enhanced operation.

  6. General recipe for designing photonic crystal cavities

    E-Print Network [OSTI]

    Vuckovic, Jelena

    . Yariv and P. Yeh, Optical Waves in Crystals (Wiley and Sons, 2003). 13. A. Badolato, K. Hennessy, M and links 1. S. Johnson, S. Fan, A. Mekis, and J. Joannopoulos, "Multipole-cancellation mechanism for high. Vuckovi´c, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED

  7. Lossless intensity modulation in integrated photonics

    E-Print Network [OSTI]

    Fan, Shanhui

    volume silicon mi- croring modulator," Opt. Express 18, 18235­18242 (2010). 12. A. Yariv, "Critical modulators," Nat. Photonics 4, 518­526 (2010). 2. A. Liu, R. Jones, L. Liao, D. Samara-Rubio1, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal

  8. Single Photon Source Using Laser Pulses and Two-Photon Absorption

    E-Print Network [OSTI]

    B. C. Jacobs; T. B. Pittman; J. D. Franson

    2006-03-17T23:59:59.000Z

    We have previously shown that two-photon absorption (TPA) and the quantum Zeno effect can be used to make deterministic quantum logic devices from an otherwise linear optical system. Here we show that this type of quantum Zeno gate can be used with additional two-photon absorbing media and weak laser pulses to make a heralded single photon source. A source of this kind is expected to have a number of practical advantages that make it well suited for large scale quantum information processing applications.

  9. Photonic spin Hall effect in topological insulators

    E-Print Network [OSTI]

    Zhou, Xinxing; Ling, Xiaohui; Chen, Shizhen; Luo, Hailu; Wen, Shuangchun

    2013-01-01T23:59:59.000Z

    In this paper we theoretically investigate the photonic spin Hall effect (SHE) of a Gaussian beam reflected from the interface between air and topological insulators (TIs). The photonic SHE is attributed to spin-orbit coupling and manifests itself as in-plane and transverse spin-dependent splitting. We reveal that the spin-orbit coupling effect in TIs can be routed by adjusting the axion angle variations. Unlike the transverse spin-dependent splitting, we find that the in-plane one is sensitive to the axion angle. It is shown that the polarization structure in magneto-optical Kerr effect is significantly altered due to the spin-dependent splitting in photonic SHE. We theoretically propose a weak measurement method to determine the strength of axion coupling by probing the in-plane splitting of photonic SHE.

  10. Electrically driven photonic crystal nanocavity devices

    E-Print Network [OSTI]

    Shambat, Gary; Petykiewicz, Jan; Mayer, Marie A; Majumdar, Arka; Sarmiento, Tomas; Harris, James; Haller, Eugene E; Vuckovic, Jelena

    2012-01-01T23:59:59.000Z

    Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elusive due to the complexities associated with current injection into cavities. A fabrication procedure for electrically pumping photonic crystal membrane devices using a lateral p-i-n junction has been developed and is described in this work. We have demonstrated electrically pumped lasing in our junctions with a threshold of 181 nA at 50K - the lowest threshold ever demonstrated in an electrically pumped laser. At room temperature we find that our devices behave as single-mode light-emitting diodes (LEDs), which when directly modulated, have an ultrafast electrical response up to 10 GHz corresponding to less than 1 fJ/bit energy operation - the lowest for any optical transmitter. In addition, we have demonstrated electrical pumping of photonic crystal nanobeam LEDs...

  11. Asymmetric Architecture for Heralded Single Photon Sources

    E-Print Network [OSTI]

    Luca Mazzarella; Francesco Ticozzi; Alexander V. Sergienko; Giuseppe Vallone; Paolo Villoresi

    2013-02-15T23:59:59.000Z

    Single photon source represent a fundamental building block for optical implementations of quantum information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution quantum measurement. In this paper we investigate the performance of a multiplexed system based on asymmetric configuration of multiple heralded single photon sources. {To compare the effectiveness of different designs we introduce a single-photon source performance index that is based on the value of single photon probability required to achieve a guaranteed signal to noise ratio.} The performance and scalability comparison with both currently existing multiple-source architectures and faint laser configurations reveals an advantage the proposed scheme offers in realistic scenarios. This analysis also provides insights on the potential of using such architectures for integrated implementation.

  12. Enhanced Two-Photon Absorption Using Entangled States and Small Mode Volumes

    E-Print Network [OSTI]

    Hao You; S. M. Hendrickson; J. D. Franson

    2009-07-13T23:59:59.000Z

    We calculate the rate of two-photon absorption for frequency entangled photons in a tapered optical fiber whose diameter is comparable to the wavelength of the light. The confinement of the electric field in the transverse direction increases the intensity associated with a single photon, while the two-photon absorption rate is further enhanced by the fact that the sum of the frequencies of the two photons is on resonance with the upper atomic state, even though each photon has a relatively broad linewidth. As a result, the photons are effectively confined in all three dimensions and the two-photon absorption rate for frequency-entangled photons in a tapered fiber was found to be comparable to that for unentangled photons in a microcavity with a small mode volume.

  13. Large Photocathode Photodetectors Using Photon Amplification and Phase-Space Compression

    E-Print Network [OSTI]

    Carrio, Alex; Greener, Kevin; McGuiness, Sean; Podrasky, Victor; Sullivan, John; Winn, David R; Bilki, Burak; Onel, Yasar

    2014-01-01T23:59:59.000Z

    We describe a simple technique to both amplify incident photons and compress their angular x area phase space. These Optical Compressor Amplifier Tubes (OCA Tube) use techniques analogous to image intensifiers, using vacuum photocathodes to detect photons as converted to photoelectrons, amplify the photons via photoelectron bombardment of fast scintillators, and compress the optical phase space onto optical fibers, so that small, high gain photodetectors, like miniature PMT or SiPM, can be used to detect photons from large areas, at comparatively low cost. The properties of and benefits of OCA tubes are described.

  14. Constraining solar hidden photons using HPGe detector

    E-Print Network [OSTI]

    R. Horvat; D. Kekez; M. Krcmar; Z. Krecak; A. Ljubicic

    2013-03-25T23:59:59.000Z

    In this Letter we report on the results of our search for photons from a U(1) gauge factor in the hidden sector of the full theory. With our experimental setup we observe the single spectrum in a HPGe detector arising as a result of the photoelectric-like absorption of hidden photons emitted from the Sun on germanium atoms inside the detector. The main ingredient of the theory used in our analysis, a severely constrained kinetic mixing from the two U(1) gauge factors and massive hidden photons, entails both photon into hidden state oscillations and a minuscule coupling of hidden photons to visible matter, of which the latter our experimental setup has been designed to observe. On a theoretical side, full account was taken of the effects of refraction and damping of photons while propagating in Sun's interior as well as in the detector. We exclude hidden photons with kinetic couplings chi > (2.2 x 10^{-13}- 3 x 10^{-7}) in the mass region 0.2 eV < m_gamma' < 30 keV. Our constraints on the mixing parameter chi in the mass region from 20 eV up to 15 keV prove even slightly better then those obtained recently by using data from the CAST experiment, albeit still somewhat weaker than those obtained from solar and HB stars lifetime arguments.

  15. Electronics and photonics: two sciences in the benefit of solar energy conversion

    E-Print Network [OSTI]

    Girtan, M

    2012-01-01T23:59:59.000Z

    This paper gives a personal global point of view on two sciences: electronics and photonics towards plasmonics and solar energy conversion. The new research directions in these two sciences are pointed out by comparison and in the perspective of future new solar devices. A parallel and the equivalence between electronics and photonics are presented. Starting from electron in electronics, photon, solitons and plasmons in photonics, electrical cables - optical fibers, plasmonic wave guides, electrical circuits - optical circuits, electrical transistors - optical transistors, plasmonster, electrical generators - pulsed lasers and spasers, photonics gets step by step all the tools already existing in electronics. Solar energy could be converted in many ways, the most known is the conversion in electricity. Today we need that the energy is in form of electricity because most of the apparatus that we use are based on electricity: informatics, motors, etc. However, the progress in photonics with optical circuits, op...

  16. Development of procedures for refurbishing x-ray optics at the Advanced Light Source

    E-Print Network [OSTI]

    Yashchuk, Valeriy V.

    2013-01-01T23:59:59.000Z

    and Setting of Bendable Optics for Diffraction- Limitedof Soft X-Rays,” Abstract to SPIE Optics and Photonics 2012,Metrology for X-Ray and EUV Optics IV (San Diego, August 12-

  17. Nonlinear interferometry approach to photonic sequential logic

    E-Print Network [OSTI]

    Hideo Mabuchi

    2011-08-08T23:59:59.000Z

    Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.

  18. Nonlinear interferometry approach to photonic sequential logic

    E-Print Network [OSTI]

    Mabuchi, Hideo

    2011-01-01T23:59:59.000Z

    Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.

  19. Dynamic Phase Filtering with Integrated Optical Ring Resonators

    E-Print Network [OSTI]

    Adams, Donald Benjamin

    2011-10-21T23:59:59.000Z

    can then help extract complex spectral information. Broadband photonic RF phase shifting for beam steering of a phased array antenna is also shown using dynamically tunable integrated optical ring resonators. Finally all-optical pulse compression...

  20. Logic Synthesis for Integrated Optics Christopher Condrat

    E-Print Network [OSTI]

    Kalla, Priyank

    Logic Synthesis for Integrated Optics Christopher Condrat chris@g6net.com Priyank Kalla kalla, Salt Lake City, UT, USA ABSTRACT As silicon photonics technology matures, optical devices methods for synthesizing optical devices for large-scale designs. We present design and synthesis method

  1. Single-Photon Molecular Cooling

    E-Print Network [OSTI]

    Edvardas Narevicius; S. Travis Bannerman; Mark G. Raizen

    2009-01-04T23:59:59.000Z

    We propose a general method to cool the translational motion of molecules. Our method is an extension of single photon atomic cooling which was successfully implemented in our laboratory. Requiring a single event of absorption followed by a spontaneous emission, this method circumvents the need for a cycling transition and can be applied to any paramagnetic or polar molecule. In our approach, trapped molecules would be captured near their classical turning points in an optical dipole or RF-trap following an irreversible transition process.

  2. THE ROAD TO AFFORDABLE, LARGE-SCALE Silicon Photonics

    E-Print Network [OSTI]

    Fischer, Baruch

    , chair of the U.S. National Photonics Initiative. Sarah Michaud 18 Global Optics: Mexico's INAOE Networking Opportunities at members- only events and through online resources 50 FREE Optics Info Scatterings 9 Communications: Temporal cloak, new hollow-core transmission rate. Patricia Daukantas

  3. Optics and Photonics CPHY 74495 Assignment 1.

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    an expression for the potential energy density and the kinetic energy density for each wave when the waves are far apart (b) Give an expression for the potential energy density and the kinetic energy density? (b) Give an expression for the energy density in the string. (c) Calculate the average energy density

  4. Silicon Photonics for Low- Energy Optical Communications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3 Outlook for Gulf ofMailing List Sign

  5. High energy photon-photon collisions

    SciTech Connect (OSTI)

    Brodsky, S.J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    1994-07-01T23:59:59.000Z

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  6. Waveguide, Photodetector, and Imaging Applications of Microspherical Photonics

    E-Print Network [OSTI]

    Allen, Kenneth W

    2015-01-01T23:59:59.000Z

    Dielectric microspheres with diameters on the order of several wavelengths of light have attracted increasing attention from the photonics community due to their ability to produce extraordinarily tightly focused beams termed photonic nanojets, to be used as microlenses for achieving optical super-resolution or to develop sensors based on whispering-gallery mode resonances. In this dissertation, we study the optical properties of more complicated structures formed by multiple spheres which can be assembled as linear chains, clusters or arrays, integrated with waveguides or embedded inside other materials to achieve new optical properties or device functionalities.

  7. Composite Photon Theory Versus Elementary Photon Theory

    E-Print Network [OSTI]

    Walton A. Perkins

    2015-03-02T23:59:59.000Z

    The purpose of this paper is to show that the composite photon theory measures up well against the Standard Model's elementary photon theory. This is done by comparing the two theories area by area. Although the predictions of quantum electrodynamics are in excellent agreement with experiment (as in the anomalous magnetic moment of the electron), there are some problems, such as the difficulty in describing the electromagnetic field with the four-component vector potential because the photon has only two polarization states. In most areas the two theories give similar results, so it is impossible to rule out the composite photon theory. Pryce's arguments in 1938 against a composite photon theory are shown to be invalid or irrelevant. Recently, it has been realized that in the composite theory the antiphoton does not interact with matter because it is formed of a neutrino and an antineutrino with the wrong helicity. This leads to experimental tests that can determine which theory is correct.

  8. Microwave to Optical Link Using an Optical Microresonator

    E-Print Network [OSTI]

    Jost, J D; Lecaplain, C; Brasch, V; Pfeiffer, M H P; Kippenberg, T J

    2014-01-01T23:59:59.000Z

    The ability to phase coherently link optical to radio frequencies with femtosecond modelocked lasers has enabled counting cycles of light and is the basis of optical clocks, absolute frequency synthesis, tests of fundamental physics, and improved spectroscopy. Using an optical microresonator frequency comb to establish a coherent link promises to greatly extend optical frequency synthesis and measurements to areas requiring compact form factor, on chip integration and repetition rates in the microwave regime, including coherent telecommunications, astrophysical spectrometer calibration or microwave photonics. Here we demonstrate for the first time a microwave to optical link using a microresonator. Using a temporal dissipative single soliton state in an ultra high Q crystalline microresonator an optical frequency comb is generated that is self-referenced, allowing to phase coherently link a 190 THZ optical carrier directly to a 14 GHz microwave frequency. Our work demonstrates that precision optical frequency...

  9. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B.L.; Gullikson, E.M.; Davis, J.C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  10. Modular Quantum Memories Using Passive Linear Optics and Coherent Feedback

    E-Print Network [OSTI]

    Modular Quantum Memories Using Passive Linear Optics and Coherent Feedback Hendra I. Nurdin photon pulsed optical field has a conceptually simple modular realization using only passive linear optics and coherent feedback. We exploit the idea that two decaying optical cavities can be coupled

  11. D. A. Cohen, Y. Chang, A. F. J. Levi, H. Fetterman, and I. Newberg: `Optically-controlled serially-fed phased array sensor' page

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    -fed phased array sensor' page IEEE Photonics Technol. Lett. 8, 1683-1685 (1996). 1 Optically Newberg Abstract A new type of RF-photonic sensor design which uses an optical serially-fed phased array. Fetterman, and I. Newberg: `Optically-controlled serially-fed phased array sensor' page IEEE Photonics

  12. Magnetic field role on the structure and optical response of photonic crystals based on ferrofluids containing Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} nanoparticles

    SciTech Connect (OSTI)

    López, J., E-mail: javier.lopez@correounivalle.edu.co; González, Luz E.; Quiñonez, M. F.; Gómez, M. E.; Porras-Montenegro, N.; Zambrano, G. [Departamento de Física, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2014-05-21T23:59:59.000Z

    Ferrofluids based on magnetic Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} ferrite nanoparticles were prepared by co-precipitation method from aqueous salt solutions of Co (II), ZnSO{sub 4}, and Fe (III) in an alkaline medium. Ferrofluids placed in an external magnetic field show properties that make them interesting as magneto-controllable soft photonic crystals. Morphological and structural characterizations of the samples were obtained from Scanning Electron Microscopy and Transmission Electron Microscopy studies. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature. Herein, the Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} samples showed superparamagnetic behavior, according to hysteresis loop results. Taking in mind that the Co-Zn ferrite hysteresis loop is very small, our magnetic nanoparticles can be considered soft magnetic material with interesting technological applications. In addition, by using the plane-wave expansion method, we studied the photonic band structure of 2D photonic crystals made of ferrofluids with the same nanoparticles. Previous experimental results show that a magnetic field applied perpendicular to the ferrofluid plane agglomerates the magnetic nanoparticles in parallel rods to form a hexagonal 2D photonic crystal. We calculated the photonic band structure of photonic crystals by means of the effective refractive index of the magnetic fluid, basing the study on the Maxwell-Garnett theory, finding that the photonic band structure does not present any band gaps under the action of applied magnetic field strengths used in our experimental conditions.

  13. Photon wave function

    E-Print Network [OSTI]

    Iwo Bialynicki-Birula

    2005-08-26T23:59:59.000Z

    Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.

  14. A. La Rosa Lecture Notes APPLIED OPTICS

    E-Print Network [OSTI]

    A. La Rosa Lecture Notes APPLIED OPTICS _______________________________________________________________________________ The variational principle and ray propagation The ray equation Propagation on a lenslike media: GRIN lenses Ref: A. Yariv and P. Yeh, "Photonics," Oxford University Press. Chapter 2. The ray equation obtained from

  15. Projection imaging of photon beams by the Cerenkov effect

    SciTech Connect (OSTI)

    Glaser, Adam K.; Davis, Scott C.; McClatchy, David M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2013-01-15T23:59:59.000Z

    Purpose: A novel technique for beam profiling of megavoltage photon beams was investigated for the first time by capturing images of the induced Cerenkov emission in water, as a potential surrogate for the imparted dose in irradiated media. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire 2D projection images of Cerenkov emission from a 4 Multiplication-Sign 4 cm{sup 2} 6 MV linear accelerator (LINAC) x-ray photon beam operating at a dose rate of 400 MU/min incident on a water tank with transparent walls. The ICCD acquisition was gated to the LINAC sync pulse to reduce background light artifacts, and the measurement quality was investigated by evaluating the signal to noise ratio and measurement repeatability as a function of delivered dose. Monte Carlo simulations were used to derive a calibration factor for differences between the optical images and deposited dose arising from the anisotropic angular dependence of Cerenkov emission. Finally, Cerenkov-based beam profiles were compared to a percent depth dose (PDD) and lateral dose profile at a depth of d{sub max} from a reference dose distribution generated from the clinical Varian ECLIPSE treatment planning system (TPS). Results: The signal to noise ratio was found to be 20 at a delivered dose of 66.6 cGy, and proportional to the square root of the delivered dose as expected from Poisson photon counting statistics. A 2.1% mean standard deviation and 5.6% maximum variation in successive measurements were observed, and the Monte Carlo derived calibration factor resulted in Cerenkov emission images which were directly correlated to deposited dose, with some spatial issues. The dose difference between the TPS and PDD predicted by Cerenkov measurements was within 20% in the buildup region with a distance to agreement (DTA) of 1.5-2 mm and {+-}3% at depths beyond d{sub max}. In the lateral profile, the dose difference at the beam penumbra was within {+-}13% with a DTA of 0-2 mm, {+-}5% in the central beam region, and 2%-3% in the beam umbra. Conclusions: The results from this initial study demonstrate the first documented use of Cerenkov emission imaging to profile x-ray photon LINAC beams in water. The proposed modality has several potential advantages over alternative methods, and upon future refinement may prove to be a robust and novel dosimetry method.

  16. A Search for $?'_c$ Production in Photon-Photon Fusion at LEP

    E-Print Network [OSTI]

    P. Abreu

    1998-10-14T23:59:59.000Z

    A search for the production of the $\\eta'_c$ meson, the first radial excitation of the ground state of charmonium $\\eta_c$(2980), in the photon-photon fusion reaction at LEP has been performed using the data collected by the DELPHI detector during 1992-1996. No evidence of $\\eta'_c$ production is found in the mass region 3520--3800 MeV/c^2. An upper limit for the ratio of the two-photon widths of the $\\eta'_c$ and $\\eta_c$ is obtained.

  17. Optical coherence tomography based on intensity correlations of quasi-thermal light

    E-Print Network [OSTI]

    Zerom, Petros

    We show theoretically that the longitudinal resolution of conventional optical coherence tomography can be improved by a factor of radic2 when a two-photon (as opposed to a single-photon) sensitive detector is used, and ...

  18. An elementary optical gate for expanding entanglement web

    E-Print Network [OSTI]

    Toshiyuki Tashima; Sahin Kaya Ozdemir; Takashi Yamamoto; Masato Koashi; Nobuyuki Imoto

    2008-03-13T23:59:59.000Z

    We introduce an elementary optical gate for expanding polarization entangled W states, in which every pair of photons are entangled alike. The gate is composed of a pair of 50:50 beamsplitters and ancillary photons in the two-photon Fock state. By seeding one of the photons in an $n$-photon W state into this gate, we obtain an $(n+2)$-photon W state after post-selection. This gate gives a better efficiency and a simpler implementation than previous proposals for $\\rm W$-state preparation.

  19. Alcohol CVD growth of single-walled carbon nanotubes and their optical properties Shigeo Maruyama, maruyama@photon.t.u-tokyo.ac.jp, Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo,

    E-Print Network [OSTI]

    Maruyama, Shigeo

    of single-walled carbon nanotubes and their optical properties 2007/02/24http://oasys2.confex.com/acs/232nm

  20. Quantum limits to estimation of photon deformation

    E-Print Network [OSTI]

    Giovanni De Cillis; Matteo G. A. Paris

    2014-07-08T23:59:59.000Z

    We address potential deviations of radiation field from the bosonic behaviour and employ local quantum estimation theory to evaluate the ultimate bounds to precision in the estimation of these deviations using quantum-limited measurements on optical signals. We consider different classes of boson deformation and found that intensity measurement on coherent or thermal states would be suitable for their detection making, at least in principle, tests of boson deformation feasible with current quantum optical technology. On the other hand, we found that the quantum signal-to-noise ratio (QSNR) is vanishing with the deformation itself for all the considered classes of deformations and probe signals, thus making any estimation procedure of photon deformation inherently inefficient. A partial way out is provided by the polynomial dependence of the QSNR on the average number of photon, which suggests that, in principle, it would be possible to detect deformation by intensity measurements on high-energy thermal states.

  1. Photonic quantum walk in a single beam with twisted light

    E-Print Network [OSTI]

    Cardano, Filippo; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Marrucci, Lorenzo

    2014-01-01T23:59:59.000Z

    Inspired by the classical phenomenon of random walk, the concept of quantum walk has emerged recently as a powerful platform for the dynamical simulation of complex quantum systems, entanglement production and universal quantum computation. Such a wide perspective motivates a renewing search for efficient, scalable and stable implementations of this quantum process. Photonic approaches have hitherto mainly focused on multi-path schemes, requiring interferometric stability and a number of optical elements that scales quadratically with the number of steps. Here we report the experimental realization of a quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous indistinguishable photons. The whole process develops in a single light beam, with no need of interferometers, and requires optical resources scaling linearly with the number of steps. Our demonstration introduces a novel versatile photonic platform for implementing quantum simulations, b...

  2. arXiv:quant-ph/0311099v217Nov2003 Coupling Efficiencies in Single Photon On-Demand Sources

    E-Print Network [OSTI]

    Hart, Gus

    , 13 rely on optical parametric downconversion (PDC), because it produces photons two at a time suppressing the probability of multi-photon generation.13 Most PDC based schemes (including ours) require that the PDC output be collected into a single spatial mode defined by an optical fiber. In order for these PDC

  3. Experimental demonstration of photonic quantum ratchet

    E-Print Network [OSTI]

    Chi Zhang; Chuan-Feng Li; Guang-Can Guo

    2012-09-10T23:59:59.000Z

    We created a potential for light with a phase mirror and then experimentally realized a photonic quantum ratchet in an all-optical system, in which ratchet effects can be observed with the naked eye up to more than 22 steps, and quantum resonance can be demonstrated. Our method also provides a new means to simulate quantum particles with classical light, and it can be applied to investigate many other quantum phenomena.

  4. Experimental demonstration of photonic quantum ratchet

    E-Print Network [OSTI]

    Zhang, Chi; Guo, Guang-Can

    2011-01-01T23:59:59.000Z

    We create a potential for light with a phase mirror and then experimentally realize a photonic quantum ratchet in an all-optical system. In our experiment, quantum ratchet effects can be observed by the naked eye so that it will be more easy to understand. Our method also provides a new means to simulate quantum particles by classical light, and it can be applied to investigate many other quantum phenomena.

  5. Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides

    E-Print Network [OSTI]

    Fan, Shanhui

    -dielectric-contrast GaAs/AlxOy III­V compound semiconductor structure. The photonic crystal is defined by a regularly of optical states will be modified and quantized by such a cavity. Typical semiconductor optical cavities measurements of a one- dimensional PBG air-bridge optical microcavity are pre- sented here. A schematic

  6. Breaking symmetries in ordered materials : spin polarized light transport in magnetized noncentrosymmetric 1D photonic crystals, and photonic gaps and fabrication of quasiperiodic structured materials from interference lithography

    E-Print Network [OSTI]

    Bita, Ion

    2006-01-01T23:59:59.000Z

    Effects of breaking various symmetries on optical properties in ordered materials have been studied. Photonic crystals lacking space-inversion and time-reversal symmetries were shown to display nonreciprocal dispersion ...

  7. Optimal Storage and Retrieval of Single-Photon Waveforms

    E-Print Network [OSTI]

    Shuyu Zhou; Shanchao Zhang; Chang Liu; J. F. Chen; Jianming Wen; M. M. T. Loy; G. K. L. Wong; Shengwang Du

    2012-07-11T23:59:59.000Z

    We report an experimental demonstration of optimal storage and retrieval of heralded single-photon wave packets using electromagnetically induced transparency (EIT) in cold atoms at a high optical depth. We obtain an optimal storage efficiency of (49+/-3)% for single-photon waveforms with a temporal likeness of 96%. Our result brings the EIT quantum light-matter interface close to practical quantum information applications.

  8. Local tuning of photonic crystal cavities using chalcogenide glasses

    E-Print Network [OSTI]

    Andrei Faraon; Dirk Englund; Douglas Bulla; Barry Luther-Davies; Benjamin J. Eggleton; Nick Stoltz; Pierre Petroff; Jelena Vuckovic

    2007-11-09T23:59:59.000Z

    We demonstrate a method to locally change the refractive index in planar optical devices by photodarkening of a thin chalcogenide glass layer deposited on top of the device. The method is used to tune the resonance of GaAs-based photonic crystal cavities by up to 3 nm at 940 nm, with only 5% deterioration in cavity quality factor. The method has broad applications for postproduction tuning of photonic devices.

  9. Photon trap for neutralization of negative ions beams

    E-Print Network [OSTI]

    Popov, S S; Ivanov, A A; Kotelnikov, I A

    2015-01-01T23:59:59.000Z

    For effectively neutralization of the powerful negative ions beams of hydrogen and deuterium the photon target is considered in long time. The attractiveness of the traditional approach (Fabry-Perot resonators) to their creation is limited to a number of stringent technical requirements and large economic costs. In this paper we propose a new concept of non-resonant photon trap (storage) for creation more technologically simple optical neutralizers.

  10. All-optical remote monitoring of propane gas using a 5-km-long, low-loss optical fiber link and an InGaP light-emitting diode in the 1. 68-. mu. m region

    SciTech Connect (OSTI)

    Chan, K.; Ito, H.; Inaba, H.

    1984-08-01T23:59:59.000Z

    We report the fully optical remote detection of low-level propane (C/sub 3/H/sub 8/) gas realized by the scheme based on a long distance, very low-loss silica optical fiber link connected to a compact absorption cell in conjunction with a high radiant InGaP light-emitting diode at 1.68 ..mu..m. For this application, the near-infrared absorption spectrum of propane was measured and studied to find very complicated bands around 1.69, 1.53, and 1.38 ..mu..m. This simple system, employing a 5-km-long silica optical fiber link, was demonstrated to be capable of achieving reproducibly the detection sensitivity less than 2.4 Torr for propane gas in air, i.e., about 14% of the lower explosion limit of propane density. This result verifies a large capability for major applications to various strategic points within the environment, such as industrial complexes as well as urban and residential areas, with considerably increased reliability and safety over the existing techniques.

  11. An all-silicon single-photon source by unconventional photon blockade

    E-Print Network [OSTI]

    H. Flayac; D. Gerace; V. Savona

    2015-03-10T23:59:59.000Z

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We finally propose a state-of-art implementation in a standard silicon-based photonic crystal integrated circuit that outperforms existing parametric devices either in input power or footprint area.

  12. On search for eV hidden sector photons in Super-Kamiokande and CAST experiments

    E-Print Network [OSTI]

    Sergei Gninenko; Javier Redondo

    2008-04-23T23:59:59.000Z

    If light hidden sector photons exist, they could be produced through kinetic mixing with solar photons in the eV energy range. We propose to search for this hypothetical hidden photon flux with the Super-Kamiokande and/or upgraded CAST detectors. The proposed experiments are sensitive to mixing strengths as small as 10^-9 for hidden photon masses in the sub eV region and, in the case of non-observation, would improve limits recently obtained from photon regeneration laser experiments in this mass region.

  13. EK 131/132 Photonics Engineering with light Photonics is used in advanced technology as well as everyday familiar objects. This 6 week freshman

    E-Print Network [OSTI]

    EK 131/132 Photonics ­ Engineering with light Photonics is used in advanced technology as well: golden rule, follower, non-inverting amplifier, inverting amplifier Optoelectronics: Band gap, Optical: Using breadboards, oscilloscope, voltmeter, function generator, using op-amps, reading C and R, Reading

  14. Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength

    E-Print Network [OSTI]

    Yoshiaki Tsujimoto; Yukihiro Sugiura; Makoto Ando; Daisuke Katsuse; Rikizo Ikuta; Takashi Yamamoto; Masato Koashi; Nobuyuki Imoto

    2015-03-10T23:59:59.000Z

    We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780~nm and 1551~nm by spontaneous parametric down-conversion and distributed the two photons at 1551~nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 $\\pm$ 0.07 which clearly shows the recovery of entanglement.

  15. Nano-optomechanical measurement in the photon counting regime

    E-Print Network [OSTI]

    de Lépinay, Laure Mercier; Rohr, Sven; Gloppe, Arnaud; Kuhn, Aurélien; Verlot, Pierre; Dupont-Ferrier, Eva; Besga, Benjamin; Arcizet, Olivier

    2015-01-01T23:59:59.000Z

    Optically measuring in the photon counting regime is a recurrent challenge in modern physics and a guarantee to develop weakly invasive probes. Here we investigate this idea on a hybrid nano-optomechanical system composed of a nanowire hybridized to a single Nitrogen-Vacancy (NV) defect. The vibrations of the nanoresonator grant a spatial degree of freedom to the quantum emitter and the photon emission event can now vary in space and time. We investigate how the nanomotion is encoded on the detected photon statistics and explore their spatio-temporal correlation properties. This allows a quantitative measurement of the vibrations of the nanomechanical oscillator at unprecedentedly low light intensities in the photon counting regime when less than one photon is detected per oscillation period, where standard detectors are dark-noise-limited. These results have implications for probing weakly interacting nanoresonators, for low temperature experiments and for investigating single moving markers.

  16. Spin Hall effect of photons in a static gravitational field

    SciTech Connect (OSTI)

    Gosselin, Pierre [Universite Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, UFR de Mathematiques, BP74, 38402 Saint Martin d'Heres, Cedex (France); Berard, Alain; Mohrbach, Herve [Universite Paul Verlaine, Institut de Physique, ICPMB1-FR CNRS 2843, Laboratoire de Physique Moleculaire et des Collisions, 1, boulevard Arago, 57078 Metz (France)

    2007-04-15T23:59:59.000Z

    Starting from a Hamiltonian description of the photon within the set of Bargmann-Wigner equations we derive new semiclassical equations of motion for the photon propagating in a static gravitational field. These equations which are obtained in the representation diagonalizing the Hamiltonian at the order ({Dirac_h}/2{pi}), present the first order corrections to the geometrical optics. The photon Hamiltonian shows a new kind of helicity-torsion coupling. However, even for a torsionless space-time, photons do not follow the usual null geodesic as a consequence of an anomalous velocity term. This term is responsible for the gravitational birefringence phenomenon: photons with distinct helicity follow different geodesics in a static gravitational field.

  17. Overcoming phonon-induced dephasing for indistinguishable photon sources

    E-Print Network [OSTI]

    Tom Close; Erik M. Gauger; Brendon W. Lovett

    2012-06-25T23:59:59.000Z

    Reliable single photon sources constitute the basis of schemes for quantum communication and measurement based quantum computing. Solid state single photon sources based on quantum dots are convenient and versatile but the electronic transitions that generate the photons are subject to interactions with lattice vibrations. Using a microscopic model of electron-phonon interactions and a quantum master equation, we here examine phonon-induced decoherence and assess its impact on the rate of production, and indistinguishability, of single photons emitted from an optically driven quantum dot system. We find that, above a certain threshold of desired indistinguishability, it is possible to mitigate the deleterious effects of phonons by exploiting a three-level Raman process for photon production.

  18. Laser photon merging in an electromagnetic field inhomogeneity

    E-Print Network [OSTI]

    Holger Gies; Felix Karbstein; Rashid Shaisultanov

    2014-08-13T23:59:59.000Z

    We study the effect of laser photon merging, or equivalently high harmonic generation, in the quantum vacuum subject to inhomogeneous electromagnetic fields. Such a process is facilitated by the effective nonlinear couplings arising from charged particle-antiparticle fluctuations in the quantum vacuum subject to strong electromagnetic fields. We derive explicit results for general kinematic and polarization configurations involving optical photons. Concentrating on merged photons in reflected channels which are preferable in experiments for reasons of noise suppression, we demonstrate that photon merging is typically dominated by the competing nonlinear process of quantum reflection, though appropriate polarization and signal filtering could specifically search for the merging process. As a byproduct, we devise a novel systematic expansion of the photon polarization tensor in plane wave fields.

  19. Shaping the spectrum of downconverted photons through optimized custom poling

    E-Print Network [OSTI]

    Annamaria Dosseva; Lukasz Cincio; Agata M. Branczyk

    2014-10-28T23:59:59.000Z

    We present a scheme for engineering the joint spectrum of photons created via spontaneous parametric down conversion. Our method relies on customizing the poling configuration of a quasi-phase-matched crystal. We use simulated annealing to find an optimized poling configuration which allows almost arbitrary shaping of the crystal's phase-matching function. This has direct application in the creation of pure single photons---currently one of the most important goals of single-photon quantum optics. We describe the general algorithm and provide code, written in C++, that outputs an optimized poling configuration given specific experimental parameters.

  20. An integrated quantum photonic sensor based on Hong-Ou-Mandel interference

    E-Print Network [OSTI]

    Sahar Basiri-Esfahani; Casey R. Myers; Ardalan Armin; Joshua Combes; Gerard J. Milburn

    2015-06-10T23:59:59.000Z

    Photonic-crystal-based integrated optical systems have been used for a broad range of sensing applications with great success. This has been motivated by several advantages such as high sensitivity, miniaturization, remote sensing, selectivity and stability. Many photonic crystal sensors have been proposed with various fabrication designs that result in improved optical properties. In parallel, integrated optical systems are being pursued as a platform for photonic quantum information processing using linear optics and Fock states. Here we propose a novel integrated Fock state optical sensor architecture that can be used for force, refractive index and possibly local temperature detection. In this scheme, two coupled cavities behave as an "effective beam splitter". The sensor works based on fourth order interference (the Hong-Ou-Mandel effect) and requires a sequence of single photon pulses and consequently has low pulse power. Changes in the parameter to be measured induce variations in the effective beam splitter reflectivity and result in changes to the visibility of interference. We demonstrate this generic scheme in coupled L3 photonic crystal cavities as an example and find that this system, which only relies on photon coincidence detection and does not need any spectral resolution, can estimate forces as small as $10^{-7}$ Newtons and can measure one part per million change in refractive index using a very low input power of $10^{-10}$W. Thus linear optical quantum photonic architectures can achieve comparable sensor performance to semiclassical devices.

  1. Photon transport in binary photonic lattices

    E-Print Network [OSTI]

    B. M. Rodríguez-Lara; H. Moya-Cessa

    2013-01-08T23:59:59.000Z

    We present a review on the mathematical methods used to theoretically study classical propagation and quantum transport in arrays of coupled photonic waveguides. We focus on analysing two types of binary photonic lattices where self-energies or couplings are alternated. For didactic reasons, we split the analysis in classical propagation and quantum transport but all methods can be implemented, mutatis mutandis, in any given case. On the classical side, we use coupled mode theory and present an operator approach to Floquet-Bloch theory in order to study the propagation of a classical electromagnetic field in two particular infinite binary lattices. On the quantum side, we study the transport of photons in equivalent finite and infinite binary lattices by couple mode theory and linear algebra methods involving orthogonal polynomials. Curiously the dynamics of finite size binary lattices can be expressed as roots and functions of Fibonacci polynomials.

  2. High energy photon emission

    E-Print Network [OSTI]

    Jabs, Harry

    1997-01-01T23:59:59.000Z

    photons, neutrons, charged particles, and fission fragments were used to study the reaction 160 + 238 U at a projectile energy of 50 MeV/u. Inverse slope values of the photon spectra were extracted for inclusive data and data of higher multiplicities...

  3. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07T23:59:59.000Z

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  4. Transient radiation effects in D.O.I. optical materials: Schott filter glass

    SciTech Connect (OSTI)

    Simmons-Potter, K.

    1998-07-01T23:59:59.000Z

    Department of Energy and Defense Programs systems are becoming increasingly reliant on the use of optical technologies that must perform under a range of ionizing radiation environments. In particular, the radiation response of materials under consideration for applications in direct optical initiation (D.O.I.) schemes must be well characterized. In this report, transient radiation effects observed in Schott filter glass S-7010 are characterized. Under gamma exposure with 2 MeV photons in a 20--30 nsec pulse, the authors observe strong initial induced fluorescence in the red region of the spectrum followed by significant induced absorption over the same spectral region. Peak induced absorption coefficients of 0.113 cm{sup {minus}1} and 0.088 cm{sup {minus}1} were calculated at 800 nm and 660 nm respectively.

  5. Enhancement of second harmonic generation in NaNO{sub 2}-infiltrated opal photonic crystal using structural light focusing

    SciTech Connect (OSTI)

    Zaytsev, Kirill I., E-mail: kirzay@gmail.com; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 105005, 2nd Baumanskaya str. 5, Moscow (Russian Federation)

    2014-08-04T23:59:59.000Z

    Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO{sub 2}-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulations of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.

  6. Photonic quantum technologies

    E-Print Network [OSTI]

    Jeremy L. O'Brien; Akira Furusawa; Jelena Vu?kovi?

    2010-03-20T23:59:59.000Z

    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics.

  7. Electronic and photonic power applications

    SciTech Connect (OSTI)

    Walko, R.J.; Ashley, C.S.; Brinker, C.J.; Reed, S.T.; Renschler, C.L. (Sandia National Labs., Albuquerque, NM (USA)); Shepodd, T.J. (Sandia National Labs., Livermore, CA (USA)); Ellefson, R.E.; Gill, J.T. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Leonard, L.E. (USDOE, Washington, DC (USA))

    1990-01-01T23:59:59.000Z

    Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

  8. On-chip generation of indistinguishable photons using cavity quantum-electrodynamics

    E-Print Network [OSTI]

    Kai Müller; Armand Rundquist; Kevin A. Fischer; Tomas Sarmiento; Konstantinos G. Lagoudakis; Yousif A. Kelaita; Carlos Sánchez Muñoz; Elena del Valle; Fabrice P. Laussy; Jelena Vu?kovi?

    2014-08-25T23:59:59.000Z

    The on-chip generation of non-classical states of light is a key requirement for future optical quantum hardware. In solid-state cavity quantum electrodynamics (QED), such non-classical light can be generated from self-assembled quantum dots (QDs) strongly coupled to photonic crystal cavities. Their anharmonic strong light-matter interaction results in large optical nonlinearities at the single photon level, where the admission of a single photon into the cavity may enhance (photon-tunnelling) or diminish (photon-blockade) the probability for a second photon to enter the cavity. Here, we demonstrate that detuning the cavity and QD resonances enables the generation of high-fidelity non-classical light from strongly coupled systems. For specific detunings we show that not only the purity but also the probability of single photon generation increases significantly, making almost-perfect single photon generation by photon-blockade possible with current state-of-the-art samples. Finally, we show that photon-blockade under fully resonant excitation is a promising candidate for the generation of indistinguishable single photons due to a short cavity lifetime that suppresses phonon dephasing.

  9. Projection optics box

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA); Malsbury, Terry (Tracy, CA); Hudyma, Russell M. (San Ramon, CA); Parker, John M. (Tracy, CA)

    2000-01-01T23:59:59.000Z

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  10. Huygens-Fresnel principle for N-photon states of light

    E-Print Network [OSTI]

    E. Brainis

    2010-11-29T23:59:59.000Z

    We show that the propagation of a N-photon field in space and time can be described by a generalized Huygens-Fresnel integral. Using two examples, we then demonstrate how familiar Fourier optics techniques applied to a N-photon wave function can be used to engineer the propagation of entanglement and to design the way the detection of one photon shapes the state of the others.

  11. Two photon luminescence from quantum dots using broad and narrowband ultrafast laser pulses

    E-Print Network [OSTI]

    Balasubramanian, Haribhaskar

    2009-05-15T23:59:59.000Z

    Nonlinear optical microscopy (NLOM) offers many advantages when imaging intact biological samples. By using ultrafast lasers in the near infrared and two photon excitation (TPE), signal production is limited to the focal volume and provides...

  12. Two photon luminescence from quantum dots using broad and narrowband ultrafast laser pulses 

    E-Print Network [OSTI]

    Balasubramanian, Haribhaskar

    2009-05-15T23:59:59.000Z

    Nonlinear optical microscopy (NLOM) offers many advantages when imaging intact biological samples. By using ultrafast lasers in the near infrared and two photon excitation (TPE), signal production is limited to the focal volume and provides...

  13. Two photon luminescence from quantum dots using broad and narrowband ultrafast laser pulses 

    E-Print Network [OSTI]

    Balasubramanian, Haribhaskar

    2008-10-10T23:59:59.000Z

    Nonlinear optical microscopy (NLOM) offers many advantages when imaging intact biological samples. By using ultrafast lasers in the near infrared and two photon excitation (TPE), signal production is limited to the focal volume and provides...

  14. Synthesis of Photoresponsive Dual NIR Two-Photon Absorptive [60]Fullerene Triads and Tetrads

    E-Print Network [OSTI]

    Jeon, Seaho

    Broadband nonlinear optical (NLO) organic nanostructures exhibiting both ultrafast photoresponse and a large cross-section of two-photon absorption throughout a wide NIR spectrum may make them suitable for use as nonlinear ...

  15. Superconducting nanowire single-photon detectors and sub-10-nm lithography

    E-Print Network [OSTI]

    Yang, Joel K. (Joel Kwang wei)

    2009-01-01T23:59:59.000Z

    Superconducting nanowire single-photon detectors (SNSPDs) are useful in applications such as free-space optical communications to achieve high-speed data transfer across vast distances with minimum transmission power. In ...

  16. Application of time-invariant linear filter approximation to parameterization of one- and two-dimensional surface metrology with high quality x-ray optics

    E-Print Network [OSTI]

    Yashchuk, Valeriy V.

    2014-01-01T23:59:59.000Z

    tolerances, metrology of x-ray optics *Corresponding author:been submitted to SPIE Optics and Photonics 2013, ConferenceOP312: Advances in X-Ray/EUV Optics and Components VIII (San

  17. Enhanced photoacoustic detection using photonic crystal substrate

    SciTech Connect (OSTI)

    Zhao, Yunfei; Liu, Kaiyang [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); McClelland, John [Ames Laboratory-USDOE, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 (United States); Lu, Meng, E-mail: menglu@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-04-21T23:59:59.000Z

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  18. Phase-sensitive light : coherence theory and applications to optical imaging

    E-Print Network [OSTI]

    Erkmen, Baris Ibrahim, 1980-

    2008-01-01T23:59:59.000Z

    Spontaneous parametric downconversion (SPDC) can produce pairs of entangled photons, i.e., a stream of biphotons. SPDC has been utilized in a number of optical imaging applications, such as optical coherence tomography, ...

  19. Linear and Nonlinear Optics in a System of Massless Dirac Fermions 

    E-Print Network [OSTI]

    Yao, Xianghan

    2014-08-10T23:59:59.000Z

    -entangled photons based on the parametric generation process in the third section of this dissertation. Unique properties of quantized electron states in a magnetized graphene and optical selection rules near the Dirac point give rise to a giant optical nonlinearity...

  20. Guided-mode based Faraday rotation spectroscopy within a photonic bandgap fiber

    E-Print Network [OSTI]

    gaseous medium within a hollow-core photonic bandgap fiber (HC-PCF). This novel fiber-optic approach to Faraday Rotation Spectroscopy (FRS) demonstrates the detection of molecular oxygen at 762.309 nm with nano reference gas cells1 . For example, hollow-core photonic bandgap fibers (HC-PCF's) enable efficient

  1. Design and analysis of photonic crystal coupled cavity arrays for quantum simulation

    E-Print Network [OSTI]

    Arka Majumdar; Armand Rundquist; Michal Bajcsy; Vaishno D. Dasika; Seth R. Bank; Jelena Vuckovic

    2012-09-14T23:59:59.000Z

    We performed an experimental study of coupled optical cavity arrays in a photonic crystal platform. We find that the coupling between the cavities is significantly larger than the fabrication-induced disorder in the cavity frequencies. Satisfying this condition is necessary for using such cavity arrays to generate strongly correlated photons, which has potential application to the quantum simulation of many-body systems.

  2. Accurate Multipole Analysis for Leaky Microcavities in Two-dimensional Photonic Crystals

    E-Print Network [OSTI]

    Lu, Ya Yan

    1 Accurate Multipole Analysis for Leaky Microcavities in Two-dimensional Photonic Crystals Shaojie Li and Ya Yan Lu Abstract--A multipole method is presented to analyze leaky microcavities in finite expansions. Index Terms--Optical cavities, photonic crystals, numerical methods, multipole method. I

  3. Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons ABSTRACT A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video

  4. Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells photovoltaic solar cell. Optical simulations performed on a complete solar cell revealed that patterning to obtain ultrathin patterned solar cells. Keywords: Photonic crystals; Epitaxial crystalline silicon; Thin

  5. Photon collider Higgs factories

    E-Print Network [OSTI]

    V. I. Telnov

    2014-09-19T23:59:59.000Z

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  6. Production and Detection of Very Light Spin-zero Bosons at Optical Frequencies

    SciTech Connect (OSTI)

    A. V. Afanasev; O. K. Baker; K. W. McFarlane; G. H. Biallas; J. R. Boyce; Michelle D. Shinn

    2006-07-06T23:59:59.000Z

    The PVLAS collaboration has observed rotation of the plane of polarization of light passing through a magnetic field in vacuum and have proposed that the effect is due to interaction of photons with very light spin-zero bosons. This would represent new physics beyond the Standard Model, and hence it is of high interest to test this hypothesis. We describe a proposed test of the PVLAS result, and ways of producing, detecting, and studying such bosons with light in the optical frequency range. Novel features include methods for measurements of boson mass, interaction strengths, and decay- or oscillation-lengths with techniques not available in the x-ray region.

  7. Nanowire photonic crystal waveguides for single-atom trapping and strong light-matter interactions

    SciTech Connect (OSTI)

    Yu, S.-P.; Hood, J. D.; Muniz, J. A.; Martin, M. J.; Hung, C.-L.; Kimble, H. J., E-mail: hjkimble@caltech.edu [Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125 (United States); Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States); Norte, Richard; Meenehan, Seán M.; Cohen, Justin D.; Painter, Oskar, E-mail: opainter@caltech.edu [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States); Thomas J. Watson, Sr., Laboratory of Applied Physics 128-95, California Institute of Technology, Pasadena, California 91125 (United States)

    2014-03-17T23:59:59.000Z

    We present a comprehensive study of dispersion-engineered nanowire photonic crystal waveguides suitable for experiments in quantum optics and atomic physics with optically trapped atoms. Detailed design methodology and specifications are provided, as are the processing steps used to create silicon nitride waveguides of low optical loss in the near-IR. Measurements of the waveguide optical properties and power-handling capability are also presented.

  8. Transpiration purged optical probe

    DOE Patents [OSTI]

    2004-01-06T23:59:59.000Z

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  9. Photonics Research and Development

    SciTech Connect (OSTI)

    Pookpanratana, Sujitra; Shlayan, Neveen; Venkat, Rama; Das, Bisjwajit; Boehm, Bob; Heske, Clemens; Fraser, Donald; Moustakas, Theodore

    2010-01-15T23:59:59.000Z

    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLVâ??s Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average homeâ??s electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nationâ??s energy consumption â?? by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve energy efficiency and lower costs for display and lighting applications (UNLV College of Engineering); (2) advancing green LED technology based on the Indium-Gallium-Nitride system (BU), thus improving conversion efficiencies; (3) employing unique state-of-the-art X-ray, electron and optical spectroscopies with microscopic techniques to learn more about the electronic structure of materials and contacts in LED devices (UNLV College of Science); (4) establishing a UNLV Display Lighting Laboratory staffed with a specialized team of academic researchers, students and industrial partners focused on identifying and implementing engineering solutions for lighting display-related problems; and (5) conducting research, development and demonstration for HSL essential to the resolution of technological barriers to commercialization.

  10. Currently, there is a substantial research and development effort directed toward optical signal processing and electronic signal processing for fiber-optic communications. Much of the work

    E-Print Network [OSTI]

    Wu, Shin-Tson

    signal processing and electronic signal processing for fiber-optic communications. Much of the work fiber-optic transmitters and receivers, and has lead to a renewed interest in coherent optical detection and Electronic Signal Processing for Fiber-Optic Communications IEEE Photonics Societ y Distinguished Lecture B y

  11. Optically pumped quantum-dot Cd(Zn)Se/ZnSe laser and microchip converter for yellow-green spectral region

    SciTech Connect (OSTI)

    Lutsenko, E V; Voinilovich, A G; Rzheutskii, N V; Pavlovskii, V N; Yablonskii, G P; Sorokin, S V; Gronin, S V; Sedova, I V; Kop'ev, Petr S; Ivanov, Sergei V; Alanzi, M; Hamidalddin, A; Alyamani, A

    2013-05-31T23:59:59.000Z

    The room temperature laser generation in the yellow-green ({lambda} = 558.5-566.7 nm) spectral range has been demonstrated under optical pumping by a pulsed nitrogen laser of Cd(Zn)Se/ZnSe quantum dot heterostructures. The maximum achieved laser wavelength was as high as {lambda} = 566.7 nm at a laser cavity length of 945 {mu}m. High values of both the output pulsed power (up to 50 W) and the external differential quantum efficiency ({approx}60%) were obtained at a cavity length of 435 {mu}m. Both a high quality of the laser heterostructure and a low lasing threshold ({approx}2 kW cm{sup -2}) make it possible to use a pulsed InGaN laser diode as a pump source. A laser microchip converter based on this heterostructure has demonstrated a maximum output pulse power of {approx}90 mW at {lambda} = 560 nm. The microchip converter was placed in a standard TO-18 (5.6 mm in diameter) laser diode package. (semiconductor lasers. physics and technology)

  12. Photon Storage Cavities

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01T23:59:59.000Z

    Sessler, "Analysis of Photon Storage Cavities for a Free-configuration of coupled storage cavity and PEL cavity. TheFig. 2. A ring resonator storage cavity coupled through a

  13. Posters | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Laser Tracker Principles of the 3D Laser Tracker Qty: 1 add to cart What is Optical Tooling What is Optical Tooling Qty: 1 add to cart Aligning Big Things to Small Tolerances...

  14. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect (OSTI)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S. [Department of Electronic Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009 (India)

    2013-12-28T23:59:59.000Z

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  15. Fabrication-tolerant high quality factor photonic crystal microcavities

    E-Print Network [OSTI]

    Painter, Oskar

    . Lee, A. Yariv, A. Scherer, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819­1824 (1999). 2. T. Yoshie, J. Vuckovi´c, A. Scherer, H. Chen, and D­4291 (2001). 3. Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds., (World Scientific

  16. Controlled Photonic Manipulation of Proteins and Other Nanomaterials

    E-Print Network [OSTI]

    Chen, Peng

    Controlled Photonic Manipulation of Proteins and Other Nanomaterials Yih-Fan Chen,,,§ Xavier Serey: The ability to controllably handle the smallest materials is a fundamental enabling technology for nanoscience force to manipulate dielectric materials smaller than about 100 nm. Recently, several near-field optical

  17. Photonic RF oscillator based on monolithic DFB lasers with

    E-Print Network [OSTI]

    Boyer, Edmond

    Photonic RF oscillator based on monolithic DFB lasers with frequency-shifted feedback L. Wang, M by using monolithic dual-wavelength DFB semiconductor lasers submitted to a frequency-shifted optical. Dashed line: Lorentzian fit. (a) Free running, RBW: 30 kHz, span: 50 MHz. (b) With feedback, RBW: 1Hz

  18. Two-photon transitions in primordial hydrogen recombination

    E-Print Network [OSTI]

    Christopher M. Hirata

    2008-05-20T23:59:59.000Z

    The subject of cosmological hydrogen recombination has received much attention recently because of its importance to predictions for and cosmological constraints from CMB observations. While the central role of the two-photon decay 2s->1s has been recognized for many decades, high-precision calculations require us to consider two-photon decays from the higher states ns,nd->1s (n>=3). Simple attempts to include these processes in recombination calculations have suffered from physical problems associated with sequences of one-photon decays, e.g. 3d->2p->1s, that technically also produce two photons. These correspond to resonances in the two-photon spectrum that are optically thick, necessitating a radiative transfer calculation. We derive the appropriate equations, develop a numerical code to solve them, and verify the results by finding agreement with analytic approximations to the radiative transfer equation. The related processes of Raman scattering and two-photon recombination are included using similar machinery. Our results show that early in recombination the two-photon decays act to speed up recombination, reducing the free electron abundance by 1.3% relative to the standard calculation at z=1300. However we find that some photons between Ly-alpha and Ly-beta are produced, mainly by 3d->1s two-photon decay and 2s->1s Raman scattering. At later times these photons redshift down to Ly-alpha, excite hydrogen atoms, and act to slow recombination. Thus the free electron abundance is increased by 1.3% relative to the standard calculation at z=900. The implied correction to the CMB power spectrum is neligible for the recently released WMAP and ACBAR data, but at Fisher matrix level will be 7 sigma for Planck. [ABRIDGED

  19. Engineering integrated photonics for heralded quantum gates

    E-Print Network [OSTI]

    T. Meany; D. N. Biggerstaff; M. A. Broome; A. Fedrizzi; M. Delanty; A. Gilchrist; G. D. Marshall; M. J. Steel; A. G. White; M. J. Withford

    2015-02-11T23:59:59.000Z

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate implementation of the optimal known gate design which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show that device performance is more sensitive to the small deviations in the coupler reflectivity, arising due to the tolerance values of the fabrication method, than phase variations in the circuit. The mode fidelity was also shown to be less sensitive to reflectivity and phase errors than process fidelity. Our best device achieves a fidelity of 0.931+/-0.001 with the ideal 4x4 unitary circuit and a process fidelity of 0.680+/-0.005 with the ideal computational-basis process.

  20. In-plane emission of indistinguishable photons generated by an integrated quantum emitter

    SciTech Connect (OSTI)

    Kalliakos, Sokratis, E-mail: sokratis.kalliakos@crl.toshiba.co.uk; Bennett, Anthony J.; Ward, Martin B.; Ellis, David J. P.; Skiba-Szymanska, Joanna; Shields, Andrew J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Brody, Yarden; Schwagmann, Andre [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-06-02T23:59:59.000Z

    We demonstrate the emission of indistinguishable photons along a semiconductor chip originating from carrier recombination in an InAs quantum dot. The emitter is integrated in the waveguiding region of a photonic crystal structure, allowing for on-chip light propagation. We perform a Hong-Ou-Mandel-type of experiment with photons collected from the exit of the waveguide, and we observe two-photon interference under continuous wave excitation. Our results pave the way for the integration of quantum emitters in advanced photonic quantum circuits.

  1. Photonic Quantum Networks formed from NV- Centers

    E-Print Network [OSTI]

    Kae Nemoto; M. Trupke; S. J. Devitt; B. Scharfenberger; K. Buczak; J. Schmiedmayer; W. J. Munro

    2014-12-18T23:59:59.000Z

    In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond (NV-). Each repeater node is built from simple modules comprising an optical cavity containing a single NV-, with one nuclear spin from 15N as quantum memory. The operation in the module only uses deterministic processes and interactions and achieves high fidelity (>99%) operation, and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead to the processes to be probabilistic but heralded. The most resource modest repeater architecture contains at least two modules at each node, and the repeater nodes are than connected by telecom wavelength entangled photon pairs. We discuss the performance of quantum repeaters starting from the minimum-resource strategy with several modules (~10) and then incorporating more resource-intense strategies step by step. Our architecture enables large-scale quantum information networks with existing technology.

  2. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect (OSTI)

    Cowan, Benjamin M.

    2007-08-22T23:59:59.000Z

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  3. Proton emission induced by polarized photons

    E-Print Network [OSTI]

    M. Anguiano; G. Co'; A. M. Lallena

    2006-08-29T23:59:59.000Z

    The proton emission induced by polarized photons is studied in the energy range above the giant resonance region and below the pion emission threshold. Results for the 12C, 16O and 40Ca nuclei are presented. The sensitivity of various observables to final state interaction, meson exchange currents and short range correlations is analyzed. We found relevant effects due to the virtual excitation of the $\\Delta$ resonance.

  4. Optical set-reset latch

    DOE Patents [OSTI]

    Skogen, Erik J.

    2013-01-29T23:59:59.000Z

    An optical set-reset (SR) latch is formed from a first electroabsorption modulator (EAM), a second EAM and a waveguide photodetector (PD) which are arranged in an optical and electrical feedback loop which controls the transmission of light through the first EAM to latch the first EAM in a light-transmissive state in response to a Set light input. A second waveguide PD controls the transmission of light through the second EAM and is used to switch the first EAM to a light-absorptive state in response to a Reset light input provided to the second waveguide PD. The optical SR latch, which may be formed on a III-V compound semiconductor substrate (e.g. an InP or a GaAs substrate) as a photonic integrated circuit (PIC), stores a bit of optical information and has an optical output for the logic state of that bit of information.

  5. A Single-Photon Server with Just One Atom

    E-Print Network [OSTI]

    Markus Hijlkema; Bernhard Weber; Holger P. Specht; Simon C. Webster; Axel Kuhn; Gerhard Rempe

    2007-02-05T23:59:59.000Z

    Neutral atoms are ideal objects for the deterministic processing of quantum information. Entanglement operations have been performed by photon exchange or controlled collisions. Atom-photon interfaces were realized with single atoms in free space or strongly coupled to an optical cavity. A long standing challenge with neutral atoms, however, is to overcome the limited observation time. Without exception, quantum effects appeared only after ensemble averaging. Here we report on a single-photon source with one-and-only-one atom quasi permanently coupled to a high-finesse cavity. Quasi permanent refers to our ability to keep the atom long enough to, first, quantify the photon-emission statistics and, second, guarantee the subsequent performance as a single-photon server delivering up to 300,000 photons for up to 30 seconds. This is achieved by a unique combination of single-photon generation and atom cooling. Our scheme brings truly deterministic protocols of quantum information science with light and matter within reach.

  6. An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity

    E-Print Network [OSTI]

    Matthew Pelton; Charles Santori; Jelena Vuckovic; Bingyang Zhang; Glenn S. Solomon; Jocelyn Plant; Yoshihisa Yamamoto

    2002-08-08T23:59:59.000Z

    We have demonstrated efficient production of triggered single photons by coupling a single semiconductor quantum dot to a three-dimensionally confined optical mode in a micropost microcavity. The efficiency of emitting single photons into a single-mode travelling wave is approximately 38%, which is nearly two orders of magnitude higher than for a quantum dot in bulk semiconductor material. At the same time, the probability of having more than one photon in a given pulse is reduced by a factor of seven as compared to light with Poissonian photon statistics.

  7. Optical modular arithmetic

    E-Print Network [OSTI]

    Dmitri S. Pavlichin; Hideo Mabuchi

    2014-07-23T23:59:59.000Z

    Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary "selector" vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a "weighted" readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.

  8. Manipulating time-bin qubits with fiber optics components

    E-Print Network [OSTI]

    Felix Bussieres; Yasaman Soudagar; Guido Berlin; Suzanne Lacroix; Nicolas Godbout

    2006-05-06T23:59:59.000Z

    We propose two experimental schemes to implement arbitrary unitary single qubit operations on single photons encoded in time-bin qubits. Both schemes require fiber optics components that are available with current technology.

  9. Tests of Complete Positivity in Fiber Optics

    E-Print Network [OSTI]

    F. Benatti; R. Floreanini

    2006-07-11T23:59:59.000Z

    We consider the propagation of polarized photons in optical fibers under the action of randomly generated noise. In such situation, the change in time of the photon polarization can be described by a quantum dynamical semigroup. We show that the hierarchy among the decay constants of the polarization density matrix elements as prescribed by complete positivity can be experimentally probed using standard laboratory set-ups.

  10. Quasiprobability methods for multimode conditional optical gates

    E-Print Network [OSTI]

    G. J. Milburn

    2006-12-05T23:59:59.000Z

    We present a method for computing the action of conditional linear optical transformations, conditioned on photon counting, for arbitrary signal states. The method is based on the Q-function, a quasi probability distribution for anti normally ordered moments. We treat an arbitrary number of signal and ancilla modes. The ancilla modes are prepared in an arbitrary product number state. We construct the conditional, non unitary, signal transformations for an arbitrary photon number count on each of the ancilla modes.

  11. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    SciTech Connect (OSTI)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. -J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, Steven J.; Horowitz, L.; Lamarque, J.-F.; Lee, Y. H.; Naik, Vaishali; Nagashima, T.; Shindell, Drew; Skeie, R. B.

    2013-05-17T23:59:59.000Z

    Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatiotemporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003–2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology.We extend the 2003–2009 reconstruction to the past up to 1979 using the 2003–2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosolclimate studies.

  12. Multiple intrinsically identical single photon emitters in the solid-state

    E-Print Network [OSTI]

    Lachlan J. Rogers; Kay D. Jahnke; T. Teraji; Luca Marseglia; Christoph. Müller; Boris Naydenov; Hardy Schauffert; C. Kranz; Junichi Isoya; Liam P. McGuinness; Fedor Jelezko

    2014-06-05T23:59:59.000Z

    Emitters of indistinguishable single photons are crucial for the growing field of quantum technologies. To realize scalability and increase the complexity of quantum optics technologies, multiple independent yet identical single photon emitters are also required. However typical solid-state single photon sources are inherently dissimilar, necessitating the use of electrical feedback or optical cavities to improve spectral overlap between distinct emitters. Here, we demonstrate bright silicon-vacancy (SiV-) centres in low-strain bulk diamond which intrinsically show spectral overlap of up to 91% and near transform-limited excitation linewidths. Our results have impact upon the application of single photon sources for quantum optics and cryptography, and the production of next generation fluorophores for bio-imaging.

  13. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    SciTech Connect (OSTI)

    Henry Hao-Chuan Kang

    2004-12-19T23:59:59.000Z

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  14. Optical gating of perylene bisimide fluorescence using dithienylcyclopentene photochromic switches

    SciTech Connect (OSTI)

    Pärs, Martti; Köhler, Jürgen, E-mail: juergen.koehler@uni-bayreuth.de [Experimental Physics IV, University of Bayreuth, 95440 Bayreuth (Germany)] [Experimental Physics IV, University of Bayreuth, 95440 Bayreuth (Germany); Gräf, Katja; Bauer, Peter; Thelakkat, Mukundan [Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth (Germany)] [Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth (Germany)

    2013-11-25T23:59:59.000Z

    The emission of millions of fluorescence photons from a chromophore is controlled by the absorption of a few tens of photons in a photochromic molecule. The parameters that determine the efficiency of this process are investigated, providing insights for the development of an all-optical gate.

  15. Fiber-Optic Sources of Quantum Entanglement

    E-Print Network [OSTI]

    P. Kumar; X. Li; M. Fiorentino; P. L. Voss; J. E. Sharping; G. A. Barbosa

    2002-09-20T23:59:59.000Z

    We present a fiber-based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1.5$\\mu$m band of standard telecommunication fiber. Quantum-correlated signal and idler photon pairs are produced when a nonlinear-fiber Sagnac interferometer is pumped in the anomalous-dispersion region of the fiber. Recently, we have demonstrated nonclassical properties of such photon pairs by using Geiger-mode InGaAs/InP avalanche photodiodes. Polarization entanglement in the photon pairs can be created by pumping the Sagnac interferometer with two orthogonally polarized pulses. In this case the parametrically scattered signal-idler photons yield biphoton interference with $>$90% visibility in coincidence detection, while no interference is observed in direct detection of either the signal or the idler photons.

  16. Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas

    SciTech Connect (OSTI)

    Romalis, M. V. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

    2010-12-10T23:59:59.000Z

    Optical pumping of an optically thick atomic vapor typically requires a quenching buffer gas, such as N{sub 2}, to prevent radiation trapping of unpolarized photons which would depolarize the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4.5 times higher polarization of K than direct optical pumping of K in the absence of N{sub 2}. Such spin-exchange polarization transfer from optically thin species is useful in a variety of areas, including spin-polarized nuclear scattering targets and electron beams, quantum-nondemolition spin measurements, and ultrasensitive magnetometry.

  17. Integrated optical tamper sensor with planar waveguide

    DOE Patents [OSTI]

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05T23:59:59.000Z

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  18. Integrated optical tamper sensor with planar waveguide

    DOE Patents [OSTI]

    Carson, Richard F. (Albuquerque, NM); Casalnuovo, Stephen A. (Albuquerque, NM)

    1993-01-01T23:59:59.000Z

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  19. Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption

    E-Print Network [OSTI]

    Toshihiro Nakanishi; Hirokazu Kobayashi; Kazuhiko Sugiyama; Masao Kitano

    2009-06-01T23:59:59.000Z

    For dissipation-free photon-photon interaction at the single photon level, we analyze one-photon transition and two-photon transition induced by photon pairs in three-level atoms using two-photon wavefunctions. We show that the two-photon absorption can be substantially enhanced by adjusting the time correlation of photon pairs. We study two typical cases: Gaussian wavefunction and rectangular wavefunction. In the latter, we find that under special conditions one-photon transition is completely suppressed while the high probability of two-photon transition is maintained.

  20. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll, TaxesSeparationsRelevant toPhotonPhoton

  1. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid NanosheetsStudying thePhotoinducedPhotonPhotonic2

  2. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid NanosheetsStudying thePhotoinducedPhotonPhotonic2July

  3. Method and apparatus for optical phase error correction

    DOE Patents [OSTI]

    DeRose, Christopher; Bender, Daniel A.

    2014-09-02T23:59:59.000Z

    The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

  4. Hybrid laser with CMOS photonics

    E-Print Network [OSTI]

    Chong, Johanna S

    2014-01-01T23:59:59.000Z

    In this thesis, an interesting approach for a photonic laser source is presented. By using integrated photonic resonators with an external gain medium, we are able to build a laser that offers a number of advantages including ...

  5. Active materials in photonic crystals

    E-Print Network [OSTI]

    Bermel, Peter (Peter A.)

    2007-01-01T23:59:59.000Z

    I analyze new phenomena arising from embedding active materials inside of photonic crystal structures. These structures strongly modify the photonic local density of states (LDOS), leading to quantitative and qualitative ...

  6. Measuring protein concentration with entangled photons

    E-Print Network [OSTI]

    Andrea Crespi; Mirko Lobino; Jonathan C. F. Matthews; Alberto Politi; Chris R. Neal; Roberta Ramponi; Roberto Osellame; Jeremy L. O'Brien

    2011-09-14T23:59:59.000Z

    Optical interferometry is amongst the most sensitive techniques for precision measurement. By increasing the light intensity a more precise measurement can usually be made. However, in some applications the sample is light sensitive. By using entangled states of light the same precision can be achieved with less exposure of the sample. This concept has been demonstrated in measurements of fixed, known optical components. Here we use two-photon entangled states to measure the concentration of the blood protein bovine serum albumin (BSA) in an aqueous buffer solution. We use an opto-fluidic device that couples a waveguide interferometer with a microfluidic channel. These results point the way to practical applications of quantum metrology to light sensitive samples.

  7. Interfacing Superconducting Qubits and Telecom Photons via a Rare-Earth Doped Crystal

    E-Print Network [OSTI]

    Christopher O'Brien; Nikolai Lauk; Susanne Blum; Giovanna Morigi; Michael Fleischhauer

    2014-07-25T23:59:59.000Z

    We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of $\\pi$-pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare earth doped crystals, we make use of a special transfer protocol using staggered $\\pi$-pulses. We predict total transfer efficiencies on the order of 90%.

  8. A picogram and nanometer scale photonic crystal opto-mechanical cavity

    E-Print Network [OSTI]

    Eichenfield, M; Chan, J; Vahala, K J; Painter, O

    2008-01-01T23:59:59.000Z

    We describe the design, fabrication, and measurement of a cavity opto-mechanical system consisting of two nanobeams of silicon nitride in the near-field of each other, forming a so-called "zipper" cavity. A photonic crystal patterning is applied to the nanobeams to localize optical and mechanical energy to the same cubic-micron-scale volume. The picrogram-scale mass of the structure, along with the strong per-photon optical gradient force, results in a giant optical spring effect. In addition, a novel damping regime is explored in which the small heat capacity of the zipper cavity results in blue-detuned opto-mechanical damping.

  9. Two-photon wave mechanics

    E-Print Network [OSTI]

    Brian J. Smith; M. G. Raymer

    2007-02-21T23:59:59.000Z

    The position-representation wave function for multi-photon states and its equation of motion are introduced. A major strength of the theory is that it describes the complete evolution (including polarization and entanglement) of multi-photon states propagating through inhomogeneous media. As a demonstration of the two-photon wave function's use, we show how two photons in an orbital-angular-momentum entangled state decohere upon propagation through a turbulent atmosphere.

  10. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19T23:59:59.000Z

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  11. Photon Physics and Plasma Research, WILGA 2012; EuCARD Sessions

    E-Print Network [OSTI]

    Romaniuk, R S

    2012-01-01T23:59:59.000Z

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments ...

  12. Input-output Analysis of Quantum Finite-level Systems in Response to Single Photon States

    E-Print Network [OSTI]

    Yu Pan; Guofeng Zhang; Matthew R. James

    2015-01-01T23:59:59.000Z

    Single photon states, which carry quantum information and coherently interact with quantum systems, are vital to the realization of all-optical quantum networks and quantum memory. In this paper we derive the conditions that enable an exact analysis of the response of passive quantum finite-level systems under the weak driving of single photon input. We show that when a class of finite level systems is driven by single photon inputs, expressions for the output states may be derived exactly using linear systems transfer functions. This removes the need for physical approximations such as weak excitation limit in the analysis of quantum nonlinear systems under single photon driving. We apply this theory to the analysis of a single photon switch. The input-output relations are consistent with the existing results in the study of few photon transport through finite-level systems.

  13. Optical reference geometry and inertial forces in Kerr-de Sitter spacetimes

    E-Print Network [OSTI]

    Jiri Kovar; Zdenek Stuchlik

    2007-01-03T23:59:59.000Z

    Optical reference geometry and related concept of inertial forces are investigated in Kerr-de Sitter spacetimes. Properties of the inertial forces are summarized and their typical behaviour is illustrated. The intuitive 'Newtonian' application of the forces in the relativistic dynamics is demonstrated in the case of the test particle circular motion, static equilibrium positions and perfect fluid toroidal configurations. Features of the optical geometry are illustrated by the embedding diagrams of its equatorial plane. The embedding diagrams do not cover whole the stationary regions of the spacetimes, therefore the limits of embeddability are established. A shape of the embedding diagrams is related to the behaviour of the centrifugal force and it is characterized by the number of turning points of the diagrams. Discussion of the number of embeddable photon circular orbits is also included and the typical embedding diagrams are constructed. The Kerr-de Sitter spacetimes are classified according to the properties of the inertial forces and embedding diagrams.

  14. Photonic Science & Engineering

    E-Print Network [OSTI]

    Wu, Shin-Tson

    3321 Engineering Dynamics (3) EGN 3211 Engineering Analysis (3) STA 3032 Probability / Statistics (3Photonic Science & Engineering 2014-2015 Suggested Plan* www.creol.ucf.edu undergrad for Engineers I (4) PHY 3101 Physics for Engineers III (3) MAC 2311C** Calculus I (4) MAC 2312** Calculus II (4

  15. Slow light enhanced photon echoes

    E-Print Network [OSTI]

    J. Hahn; B. S. Ham

    2009-09-28T23:59:59.000Z

    We report a slow light-enhanced photon echo method, whose retrieval efficiency is two orders of magnitude higher than that of conventional photon echoes. The enhanced photon echo efficiency is due to lengthened interaction time given by ultraslow group velocity.

  16. Jet energy scale setting with "photon+Jet" events at LHC energies. Event rates, Pt structure of jet

    E-Print Network [OSTI]

    D. V. Bandourin; V. F. Konoplianikov; N. B. Skachkov

    2000-12-15T23:59:59.000Z

    In this paper the study of "photon+Jet" events is continued, aimed at jet energy scale setting and hadron calorimeter calibration at LHC energies. The event number distribution over Pt and pseudorapidity eta in the barrel region of the photon is presented. The features of "photon+Jet" events in CMS detector |eta|<1.4 are exposed. Pt structure of the region in the eta-phi space inside and beyond jet is also shown.

  17. Manipulating Light Pulses via Dynamically Controlled Photonic Bandgap

    E-Print Network [OSTI]

    A. Andre; M. D. Lukin

    2002-05-13T23:59:59.000Z

    When a resonance associated with electromagnetically induced transparency (EIT) in an atomic ensemble is modulated by an off-resonant standing light wave, a band of frequencies can appear for which light propagation is forbidden. We show that dynamic control of such a bandgap can be used to coherently convert a propagating light pulse into a stationary excitation with non-vanishing photonic component. This can be accomplished with high efficiency and negligble noise even at a level of few-photon quantum fields thereby facilitating possible applications in quantum nonlinear optics and quantum information.

  18. The Nonlocal Pancharatnam Phase in Two-Photon Interferometry

    E-Print Network [OSTI]

    Poonam Mehta; Joseph Samuel; Supurna Sinha

    2010-09-03T23:59:59.000Z

    We propose a polarised intensity interferometry experiment, which measures the nonlocal Pancharatnam phase acquired by a pair of Hanbury Brown-Twiss photons. The setup involves two polarised thermal sources illuminating two polarised detectors. Varying the relative polarisation angle of the detectors introduces a two photon geometric phase. Local measurements at either detector do not reveal the effects of the phase, which is an optical analog of the multiparticle Aharonov-Bohm effect. The geometric phase sheds light on the three slit experiment and suggests ways of tuning entanglement.

  19. Nanotechnology and Quasicrystals: From self assembly to photonic applications

    E-Print Network [OSTI]

    Ron Lifshitz

    2008-10-28T23:59:59.000Z

    After providing a concise overview on quasicrystals and their discovery more than a quarter of a century ago, I consider the unexpected interplay between nanotechnology and quasiperiodic crystals. Of particular relevance are efforts to fabricate artificial functional micro- or nanostructures, as well as efforts to control the self-assembly of nanostructures, where current knowledge about the possibility of having long-range order without periodicity can provide significant advantages. I discuss examples of systems ranging from artificial metamaterials for photonic applications, through self-assembled soft matter, to surface waves and optically-induced nonlinear photonic quasicrystals.

  20. Qubit entanglement on a silicon photonic chip

    E-Print Network [OSTI]

    Joshua W. Silverstone; Raffaele Santagati; Damien Bonneau; Michael J. Strain; Marc Sorel; Jeremy L. O'Brien; Mark G. Thompson

    2014-11-21T23:59:59.000Z

    Entanglement--one of the most delicate phenomena in nature--is an essential resource for quantum information applications. Large entangled cluster states have been predicted to enable universal quantum computation, with the required single- qubit measurements readily implemented with photons. Useful large-scale systems must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip which integrates resonant-enhanced sources, filters, and reconfigurable optics to generate a path-entangled two-qubit state--the smallest non-trivial cluster state--and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing sources can be made highly indistinguishable, despite their nonlinear dynamics, and the first evidence that their frequency correlations are small, as predicted. We use quantum state tomography, and the strict Bell-CHSH inequality to quantify entanglement in the device, confirming its high performance. This work integrates essential components for building devices and systems to harness quantum entanglement on the large scale.

  1. Stimulated photon emission from the vacuum

    E-Print Network [OSTI]

    Felix Karbstein; Rashid Shaisultanov

    2015-06-04T23:59:59.000Z

    We study the effect of stimulated photon emission from the vacuum in strong space-time-dependent electromagnetic fields. We emphasize the viewpoint that the vacuum subjected to macroscopic electromagnetic fields with at least one nonzero electromagnetic field invariant, as, e.g., attainable by superimposing two laser beams, can represent a source term for outgoing photons. We believe that this view is particularly intuitive and allows for a straightforward and intuitive study of optical signatures of quantum vacuum nonlinearity in realistic experiments involving the collision of high-intensity laser pulses, and exemplify this view for the vacuum subjected to a strong standing electromagnetic wave as generated in the focal spot of two counterpropagating, linearly polarized, high-intensity laser pulses. Focusing on a comparably simple electromagnetic field profile, which should nevertheless capture the essential features of the electromagnetic fields generated in the focal spots of real high-intensity laser beams, we provide estimates for emission characteristics and the numbers of emitted photons attainable with present and near future high-intensity laser facilities.

  2. To Photon Concept and to Physics of Quantum Absorption Process

    E-Print Network [OSTI]

    Dmitri Yerchuck; Yauhen Yerchak; Alla Dovlatova; Vyacheslav Stelmakh; Felix Borovik

    2014-06-03T23:59:59.000Z

    The status of the photon in the modern physics was analysed. Within the frames of the Standard Model of particle physics the photon is considered to be the genuine elementary particle, being to be the messenger of the electromagnetic interaction to which are subject charged particles. In contrast, the experts in quantum electodynamics (in particular, in quantum optics) insist, that the description of an photon to be the particle is impossible. The given viewpoint was carefully analysed and its falseness was proved. The expression for a photon wave function is presented. So, the status of the photon in quantum electodynamics was restored. The physics of a quantum absorption process is analysed. It is argued in accordance with Dirac guess, that the photon revival takes place by its absorption. Being to be a soliton, it seems to be keeping safe after an energy absorption in a pinned state, possessing the only by spin. It is shown, that the time of the transfer of absorbing systems in an excited state is finite and moreover, that it can govern the stationary signal registered. The given result is significant for the all stationary spectroscopy, in which at present the transfer of absorbing systems in an excited state is considered to be instantaneous.

  3. Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide or a fiber

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide or a fiber Maksim of a plasmon by the Gaussian-like leaky core mode of a metal covered 1D photonic crystal waveguide or fiber 2006 Optical Society of America OCIS codes: (130.6010) Sensors, (240.6680) Surface plasmons, (230

  4. Single-Photon Detection, Kinetic Inductance, and Non-Equilibrium Dynamics in Niobium and Niobium Nitride Superconducting Nanowires

    E-Print Network [OSTI]

    Devoret, Michel H.

    Abstract Single-Photon Detection, Kinetic Inductance, and Non-Equilibrium Dynamics in Niobium and Niobium Nitride Superconducting Nanowires Anthony Joseph Annunziata 2010 This thesis is a study of superconducting niobium and niobium nitride nanowires used as single optical and near-infrared photon detectors

  5. Storage and retrieval of nonclassical photon pairs and conditional single photons generated by parametric down-conversion process

    E-Print Network [OSTI]

    K. Akiba; K. Kashiwagi; M. Arikawa; M. Kozuma

    2009-02-03T23:59:59.000Z

    Storage and retrieval of parametric down-conversion (PDC) photons are demonstrated with electromagnetically induced transparency (EIT). Extreme frequency filtering is performed for THz order of broadband PDC light and the frequency bandwidth of the light is reduced to MHz order. Storage and retrieval procedures are carried out for the frequency filtered PDC photons. Since the filtered bandwidth [full width at half-maximum (FWHM) = 9 MHz] is within the EIT window (FWHM = 12.6 MHz), the flux of the PDC light is successfully stored and retrieved. The nonclassicality of the retrieved light is confirmed by using photon counting method, where the classical inequality which is only satisfied for classical light fields is introduced. Since the PDC photons can be utilized for producing the single photon state conditionally, storage and retrieval procedures are also performed for the conditional single photons. Anti-correlation parameter used for checking the property of single photon state shows the value less than 1, which means the retrieved light is in a non-classical region.

  6. An optical cavity with a strongly focused mode

    SciTech Connect (OSTI)

    Durak, Kadir; Victor, Leong Xu Heng; Huan, Nguyen Chi; Maslennikov, Gleb; Kurtsiefer, Christian [NUS, Center for Quantum Technologies/Physics Dept, 3 Science Drive 2, 117543 (Singapore); Straupe, Stanislav [NUS, Center for Quantum Technologies/Physics Dept, 3 Science Drive 2, 117543, Singapore and Faculty of Physics, Moscow State University (Russian Federation)

    2013-12-16T23:59:59.000Z

    Atom-photon interfaces are one of the building blocks of the future quantum information protocols. Accomplishing a strong interaction between the atom and the photons can be successfully done by high finesse and small mode volume cavities. However, this method requires sophisticated dielectric coatings and stabilization of the cavity against even small vibrations and small line width of those cavities impose higher input photon numbers if spontaneously emitted photons are to be used, which make it seem hard to scale up such atom-light interfaces to form quantum networks. An alternative method is to use a nearly concentric cavity, which has a strongly focused optical mode.

  7. Deterministic and Robust Generation of Single Photons On a Chip with 99.5% Indistinguishability Using Rapid Adiabatic Passage

    E-Print Network [OSTI]

    Yu-Jia Wei; Yu-Ming He; Ming-Cheng Chen; Yi-Nan Hu; Yu He; Dian Wu; Christian Schneider; Martin Kamp; Sven Höfling; Chao-Yang Lu; Jian-Wei Pan

    2014-05-08T23:59:59.000Z

    We demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single InGaAs quantum dot using the method of rapid adiabatic passage. Comparative study is performed with transform-limited, negatively chirped and positively chirped pulses, identifying the last one to be the most robust against fluctuation of driving strength. The generated single photons are background free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. The single-photon source can be readily scaled up to multi-photon entanglement and used for quantum metrology, boson sampling and linear optical quantum computing.

  8. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 Photomultiplier TubePhoton

  9. Photonics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 PhotomultiplierPhotonicHome

  10. Nonlinear Optics in Doped Silica Glass Integrated Waveguide Structures

    E-Print Network [OSTI]

    Duchesne, David; Razzari, Luca; Morandotti, Roberto; Little, Brent; Chu, Sai T; Moss, David J

    2015-01-01T23:59:59.000Z

    Integrated photonic technologies are rapidly becoming an important and fundamental milestone for wideband optical telecommunications. Future optical networks have several critical requirements, including low energy consumption, high efficiency, greater bandwidth and flexibility, which must be addressed in a compact form factor.

  11. Matrix analysis of microring coupled-resonator optical waveguides

    E-Print Network [OSTI]

    Huang, Yanyi

    optics devices References and links 1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled," Opt. Lett. 27, 568­570 (2002). 5. S. Mookherjea and A. Yariv, "Kerr-stabilized super-resonant modes photonic crystals," Phys. Rev. Lett. 84, 2140­2143 (2000). 11. A. Yariv and P. Yeh, Optical waves

  12. Optical absorption and ionization of silicate glasses Leonid B. Glebov

    E-Print Network [OSTI]

    Glebov, Leon

    Optical absorption and ionization of silicate glasses Leonid B. Glebov School of Optics and hydroxyl), and induced (color centers) absorption of multicomponent silicate glasses in UV, visible-photon ionization was detected in alkaline-silicate glasses exposed to high-power laser radiation in nano

  13. Photonic polymer-blend structures and method for making

    DOE Patents [OSTI]

    Barnes, Michael D.

    2004-06-29T23:59:59.000Z

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  14. Laser photon merging in proton-laser collisions

    E-Print Network [OSTI]

    A. Di Piazza; K. Z. Hatsagortsyan; C. H. Keitel

    2009-06-30T23:59:59.000Z

    The quantum electrodynamical vacuum polarization effects arising in the collision of a high-energy proton beam and a strong, linearly polarized laser field are investigated. The probability that laser photons merge into one photon by interacting with the proton`s electromagnetic field is calculated taking into account the laser field exactly. Asymptotics of the probability are then derived according to different experimental setups suitable for detecting perturbative and nonperturbative vacuum polarization effects. The experimentally most feasible setup involves the use of a strong optical laser field. It is shown that in this case measurements of the polarization of the outgoing photon and and of its angular distribution provide promising tools to detect these effects for the first time.

  15. Amplitude and phase modulation of time-energy entangled two-photon states

    E-Print Network [OSTI]

    F. Zäh; M. Halder; T. Feurer

    2009-01-22T23:59:59.000Z

    We experimentally demonstrate amplitude and phase modulation of a time-energy entangled two-photon wave function. The entangled photons are produced by spontaneous parametric down-conversion, spectrally dispersed in an prism compressor, modulated in amplitude and/or phase, and detected in coincidence by sum-frequency generation. First, we present a Fourier optical analysis of the optical setup yielding an analytic expression for the resulting field distribution at the exit plane of the shaping apparatus. We then introduce amplitude and/or phase shaping and present results which can only be obtained through a combination of the two. Specifically, we use a shaper-based interferometer to measure the two-photon interference of an almost bandwidth-limited two-photon wave function.

  16. An integrated quantum photonic sensor based on Hong-Ou-Mandel interference

    E-Print Network [OSTI]

    Basiri-Esfahani, Sahar; Armin, Ardalan; Combes, Joshua; Milburn, Gerard J

    2015-01-01T23:59:59.000Z

    Photonic-crystal-based integrated optical systems have been used for a broad range of sensing applications with great success. This has been motivated by several advantages such as high sensitivity, miniaturization, remote sensing, selectivity and stability. Many photonic crystal sensors have been proposed with various fabrication designs that result in improved optical properties. Here we propose a novel multi-purpose sensor architecture that can be used for force, refractive index and possibly local temperature detection. In this scheme, two coupled cavities behave as an "effective beam splitter". The sensor works based on fourth order interference (the Hong-Ou-Mandel effect) and requires a sequence of single photon pulses and consequently has low pulse power. Changes in the parameter to be measured induce variations in the effective beam splitter reflectivity and result in changes to the visibility of interference. We demonstrate this generic scheme in coupled L3 photonic crystal cavities as an example and...

  17. Nonlinear Optics Quantum Computing with Circuit-QED

    E-Print Network [OSTI]

    Prabin Adhikari; Mohammad Hafezi; J. M. Taylor

    2012-11-20T23:59:59.000Z

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  18. Semiconductor Nanowire Optical Antenna Solar Absorbers

    E-Print Network [OSTI]

    Fan, Shanhui

    a clear, intuitive guidance for the design of efficient NW solar cells. The presented approach technology. KEYWORDS Solar cell, semiconductor nanowires, optical antennas, photon management, light trapping employing non-earth-abundant elements like indium (CuInGaSe or CIGS cells) or tellurium (CdTe cells

  19. Optical keyboard

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY); Feichtner, John D. (Fiddletown, CA); Phillips, Thomas E. (San Diego, CA)

    2001-01-01T23:59:59.000Z

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  20. Nano-manipulation of diamond-based single photon sources

    E-Print Network [OSTI]

    E. Ampem-Lassen; D. A. Simpson; B. C. Gibson; S. Trpkovski; F. M. Hossain; S. T. Huntington; K. Ganesan; L. C. L. Hollenberg; S. Prawer

    2009-05-18T23:59:59.000Z

    The ability to manipulate nano-particles at the nano-scale is critical for the development of active quantum systems. This paper presents a new technique to manipulate diamond nano-crystals at the nano-scale using a scanning electron microscope, nano-manipulator and custom tapered optical fibre probes. The manipulation of a ~ 300 nm diamond crystal, containing a single nitrogen-vacancy centre, onto the endface of an optical fibre is demonstrated. The emission properties of the single photon source post manipulation are in excellent agreement with those observed on the original substrate.

  1. Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency

    E-Print Network [OSTI]

    Li, Hao; You, Lixing; Yang, Xiaoyan; Zhang, Weijun; Liu, Xiaoyu; Chen, Sijing; Wang, Zhen; Xie, Xiaoming

    2015-01-01T23:59:59.000Z

    Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photonic crystals, which acted as optical cavities to enhance the optical absorption, with a sensitive-area diameter of 50 um. The fabricated multimode fiber coupled NbN SNSPDs exhibited a maximum system detection efficiency (DE) of up to 82% and a DE of 78% at a dark count rate of 100 Hz at 850-nm wavelength as well as a system jitter of 105 ps.

  2. Space qualified nanosatellite electronics platform for photon pair experiments

    E-Print Network [OSTI]

    Cheng, Cliff; Tan, Yue Chuan; Ling, Alexander

    2015-01-01T23:59:59.000Z

    We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a 10 x 10 x 10 cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using non-linear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors and liquid crystal based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.

  3. Space qualified nanosatellite electronics platform for photon pair experiments

    E-Print Network [OSTI]

    Cliff Cheng; Rakhitha Chandrasekara; Yue Chuan Tan; Alexander Ling

    2015-05-25T23:59:59.000Z

    We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a 10 x 10 x 10 cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using non-linear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors and liquid crystal based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.

  4. Design of photonic crystal microcavities for cavity QED

    E-Print Network [OSTI]

    Jelena Vuckovic; Marko Loncar; Hideo Mabuchi; Axel Scherer

    2002-08-15T23:59:59.000Z

    We discuss the optimization of optical microcavity designs based on 2D photonic crystals for the purpose of strong coupling between the cavity field and a single neutral atom trapped within a hole. We present numerical predictions for the quality factors and mode volumes of localized defect modes as a function of geometric parameters, and discuss some experimental challenges related to the coupling of a defect cavity to gas-phase atoms.

  5. Sufficient bound on the mode mismatch of single photons for scalability of the boson sampling computer

    E-Print Network [OSTI]

    Valery Shchesnovich

    2014-12-02T23:59:59.000Z

    The boson sampler proposed by Aaronson and Arkhipov is a non-universal quantum computer, which can serve as evidence against the extended Church-Turing thesis. It samples the probability distribution at the output of linear unitary optical network, with indistinguishable single photons at the input. Four experimental groups have already tested their small-scale prototypes with up to four photons. The boson sampler with few dozens of single photons is believed to be hard to simulate on a classical computer. For scalability of a realistic boson sampler with current technology it is necessary to know the effect of the photon mode mismatch on its operation. Here a nondeterministic model of the boson sampler is analyzed, which employs partially indistinguishable single photons emitted by identical sources. A sufficient condition on the average mutual fidelity $ \\langle \\mathcal{F}\\rangle$ of the single photons is found, which guarantees that the realistic boson sampler outperforms the classical computer. Moreover, the boson sampler computer with partially indistinguishable single photons is scalable while being beyond the power of classical computers when the single photon mode mismatch $1-\\langle \\mathcal{F}\\rangle$ scales as $ \\mathcal{O}(N^{-3/2})$ with the total number of photons $N$.

  6. Method of photon spectral analysis

    DOE Patents [OSTI]

    Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.

    1993-04-27T23:59:59.000Z

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.

  7. Method of photon spectral analysis

    DOE Patents [OSTI]

    Gehrke, Robert J. (Idaho Falls, ID); Putnam, Marie H. (Idaho Falls, ID); Killian, E. Wayne (Idaho Falls, ID); Helmer, Richard G. (Idaho Falls, ID); Kynaston, Ronnie L. (Blackfoot, ID); Goodwin, Scott G. (Idaho Falls, ID); Johnson, Larry O. (Pocatello, ID)

    1993-01-01T23:59:59.000Z

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.

  8. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Now Playing: The Advanced Photon Source More videos: Building...

  9. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Featured Videos: Introduction to the Advanced Photon Source...

  10. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Library Related Links: APS Colloquium APS Podcasts APS Today More videos: Introduction to the APS Physics of the Blues Now Playing: Building the Advanced Photon Source This...

  11. Deep and optically resolved imaging through scattering media by space-reversed propagation

    E-Print Network [OSTI]

    Peyré, Gabriel

    Deep and optically resolved imaging through scattering media by space-reversed propagation W to the objective working distance. By combining Laser Optical Feedback Imaging (LOFI) with Acoustic Photon Taging. © 2010 Optical Society of America OCIS Codes: (090.1995) , (170.0110), (170.1065), (180.1790), (290

  12. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid NanosheetsStudying thePhotoinduced electronPhoton

  13. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid NanosheetsStudying thePhotoinducedPhoton Source

  14. Coherent optical monolithic phased-array antenna steering system

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Kravitz, Stanley H. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  15. Strong non-linearity-induced correlations for counter-propagating photons scattering on a two-level emitter

    E-Print Network [OSTI]

    Anders Nysteen; Dara P. S. McCutcheon; Jesper Mørk

    2015-02-21T23:59:59.000Z

    We analytically treat the scattering of two counter-propagating photons on a two-level emitter embedded in an optical waveguide. We find that the non-linearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quantified via a reduction in coincident clicks in a Hong-Ou-Mandel measurement setup, analogous to a linear beam splitter. Changes to the spectra and phase of the scattered photons, however, would lead to reduced interference with other photons when implemented in a larger optical circuit. We introduce suitable fidelity measures which account for these changes, and find that high values can still be achieved even when accounting for all properties of the scattered photonic state.

  16. Generation, characterization and use of atom-resonant indistinguishable photon pairs

    E-Print Network [OSTI]

    Morgan W. Mitchell

    2015-02-26T23:59:59.000Z

    We describe the generation of atom-resonant indistinguishable photon pairs using nonlinear optical techniques, their spectral purification using atomic filters, characterization using multi-photon interference, and application to quantum-enhanced sensing with atoms. Using either type-I or type-II cavity-enhanced spontaneous parametric down-conversion, we generate pairs of photons in the resonant modes of optical cavities with linewidths comparable to the 6 MHz natural linewidth of the D$_1$ line of atomic rubidium. The cavities and pump lasers are tuned so that emission occurs in a mode or a pair of orthogonally-polarized modes that are resonant to the D$_1$ line, at 794.7 nm. The emission from these frequency-degenerate modes is separated from other cavity emission using ultra-narrow atomic frequency filters, either a Faraday anomalous dispersion optical filter (FADOF) with a 445MHz linewidth and 57 dB of out-of-band rejection or an induced dichroism filter with an 80 MHz linewidth and $\\ge$35dB out-of-band rejection. Using the type-I source, we demonstrate interference of photon pair amplitudes against a coherent state and a new method for full characterization of the temporal wave-function of narrow-band photon pairs. With the type-II source we demonstrate high-visibility super-resolving interference, a high-fidelity atom-tuned NooN state, and quantum enhanced sensing of atoms using indistinguishable photon pairs.

  17. Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots

    SciTech Connect (OSTI)

    Mary, K. A. Ann; Unnikrishnan, N. V., E-mail: nvu100@yahoo.com [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2014-07-01T23:59:59.000Z

    We report facile preparation of water dispersible CuS quantum dots (2–4 nm) and nanoparticles (5–11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.

  18. Cloaking a Sensor via Transformation Optics Allan Greenleaf

    E-Print Network [OSTI]

    Uhlmann, Gunther

    LM11852 REV IEW CO PY N O T FO R D ISTRIBU TIO N Cloaking a Sensor via Transformation Optics Allan. As one application, we describe how to use transformation optics to hide sensors in the cloaked region optics cloaking at positive frequency, besides rendering the cloaked region invisible to detection

  19. Hidden Laser Communications Through Matter -An application of meV-scale hidden photons-

    E-Print Network [OSTI]

    Joerg Jaeckel; Javier Redondo; Andreas Ringwald

    2009-03-30T23:59:59.000Z

    Currently, there are a number of light-shining-through-walls experiments searching for hidden photons -- light, sub-eV-scale, abelian gauge bosons beyond the standard model which mix kinetically with the standard photon. We show that in the case that one of these experiments finds evidence for hidden photons, laser communications through matter, using methods from free-space optics, can be realized in the very near future, with a channel capacity of more than 1 bit per second, for a distance up to the Earth's diamater.

  20. First Evidence of Near-Infrared Photonic Bandgap in Polymeric Rod-Connected Diamond Structure

    E-Print Network [OSTI]

    Chen, Lifeng; Zheng, Xu; Lin, Jia-De; Oulton, Ruth; Lopez-Garcia, Martin; Ho, Ying-Lung D; Rarity, John G

    2015-01-01T23:59:59.000Z

    We present the simulation, fabrication, and optical characterization of low-index polymeric rod-connected diamond (RCD) structures. Such complex three-dimensional photonic crystal structures are created via direct laser writing by two-photon polymerization. To our knowledge, this is the first measurement at near-infrared wavelengths, showing partial photonic bandgaps. We characterize structures in transmission and reflection using angular resolved Fourier image spectroscopy to visualize the band structure. Comparison of the numerical simulations of such structures with the experimentally measured data show good agreement for both P- and S-polarizations.

  1. Photon noise limited radiation detection with lens-antenna coupled Microwave Kinetic Inductance Detectors

    E-Print Network [OSTI]

    Yates, S J C; Endo, A; Janssen, R M J; Ferrari, L; Diener, P; Baryshev, A M

    2011-01-01T23:59:59.000Z

    Microwave Kinetic Inductance Detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here we demonstrate for the first time in the sub-mm band (0.1...2 mm) a photon noise limited performance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally we use the observed photon noise to measure the optical efficiency of detectors to be 0.8+-0.2.

  2. Efficient heralding of O-band passively spatial-multiplexed photons for noise-tolerant quantum key distribution

    E-Print Network [OSTI]

    Mao Tong Liu; Han Chuen Lim

    2014-08-07T23:59:59.000Z

    When implementing O-band quantum key distribution on optical fiber transmission lines carrying C-band data traffic, noise photons that arise from spontaneous Raman scattering or insufficient filtering of the classical data channels could cause the quantum bit-error rate to exceed the security threshold. In this case, a photon heralding scheme may be used to reject the uncorrelated noise photons in order to restore the quantum bit-error rate to a low level. However, the secure key rate would suffer unless one uses a heralded photon source with sufficiently high heralding rate and heralding efficiency. In this work we demonstrate a heralded photon source that has a heralding efficiency that is as high as 74.5%. One disadvantage of a typical heralded photon source is that the long deadtime of the heralding detector results in a significant drop in the heralding rate. To counter this problem, we propose a passively spatial-multiplexed configuration at the heralding arm. Using two heralding detectors in this configuration, we obtain an increase in the heralding rate by 37% and a corresponding increase in the heralded photon detection rate by 16%. We transmitted the O-band photons over 10 km of noisy optical fiber to observe the relation between quantum bit-error rate and noise-degraded second-order correlation function of the transmitted photons. The effects of afterpulsing when we shorten the deadtime of the heralding detectors are also observed and discussed.

  3. Active Temporal Multiplexing of Photons

    E-Print Network [OSTI]

    Gabriel J. Mendoza; Raffaele Santagati; Jack Munns; Elizabeth Hemsley; Mateusz Piekarek; Enrique Martin-Lopez; Graham D. Marshall; Damien Bonneau; Mark G. Thompson; Jeremy L. O'Brien

    2015-03-04T23:59:59.000Z

    Quantum information science promises powerful new technologies and fundamental scientific discoveries. Photonic qubits are appealing for their low noise properties-the cost is the non-deterministic nature of many processes, including photon generation and entanglement. Active multiplexing can increase the success probability of such processes above a required threshold, and spatial multiplexing of up to four heralded photon sources shows great promise. The cost is a proliferation of hardware. Temporal multiplexing-repeated use of the same hardware components-has been proposed as an alternative and is likely to be essential to greatly reduce resource complexity and system sizes. Requirements include the precise synchronization of a system of low-loss switches, delay lines, fast photon detectors, and feed-forward. Here we demonstrate multiplexing of 8 'bins'-four temporal and two spatial-from a heralded photon source. We show enhanced photon emission statistics, observing an increase in both the triggering and heralded photon rates. Despite its current limitations due to extrinsic sources of loss, this system points the way to harnessing temporal multiplexing in quantum technologies, from single-photon sources to large-scale computation.

  4. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F. Avraham (Yaphank, NY); Barbour, Randall L. (Westbury, NY)

    1998-10-06T23:59:59.000Z

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

  5. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F.A.; Barbour, R.L.

    1998-10-06T23:59:59.000Z

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.

  6. Rutgers Regional Report # Regional Report

    E-Print Network [OSTI]

    Garfunkel, Eric

    , population, income, and building permits over a 32-year period from 1969 to 2001 for the 31-county Tri counties of the Tri-State (Connecticut, New Jersey, and New York) Region have been divided for analytical the nation and the Tri-State Region. What has not been fully documented, however, is the apparent shift

  7. Photon enhanced thermionic emission

    DOE Patents [OSTI]

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07T23:59:59.000Z

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  8. Optical Expanders with Applications in Optical Computing

    E-Print Network [OSTI]

    Reif, John H.

    Optical Expanders with Applications in Optical Computing John H. Reif Akitoshi Yoshida July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec- trooptically expands an optical boolean pattern encoded in d bits into an optical

  9. Superconductor Photonics Masayoshi Tonouchi

    E-Print Network [OSTI]

    Tonouchi, Masayoshi

    Hz IB =5.19mA Pulse current ICO [500Hz, 3.5mA] FlowVoltageVf (µV) Time (ms) 0 1 2 3 Ico/onIco/off Pulse current and Optical response 0 10 20 30 0 50 100 150 200 Laser Power:7mW chopper:3kHz IB =5.19mA Pulse

  10. Narrow escape: how ionizing photons escape from disc galaxies

    E-Print Network [OSTI]

    Roy, Arpita; Sharma, Prateek

    2014-01-01T23:59:59.000Z

    In this paper we calculate the escape fraction ($f_{\\rm esc}$) of ionizing photons from starburst galaxies. Using 2-D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the escape fraction of ionizing photons from the center of the disk along different angles through the superbubble and the gas disk. After convolving with the luminosity function of OB associations, we show that the ionizing photons escape within a cone of $\\sim 40 ^\\circ$, consistent with observations of nearby galaxies. The evolution of the escape fraction with time shows that it falls initially as cold gas is accumulated in a dense shell. After the shell crosses a few scale heights and fragments, the escape fraction through the polar regions rises again. The angle-averaged escape fraction cannot exceed $\\sim [1- \\cos (1 \\, {\\rm radian})] = 0.5$ from geometrical considerations (using the emission cone opening angle). We calculate the dependence of the time- and angl...

  11. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    SciTech Connect (OSTI)

    Cameron, S.M.; Bliss, D.E.

    1997-02-01T23:59:59.000Z

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  12. Stimulated emission of two photons in parametric amplification and its interpretation as multi-photon interference

    E-Print Network [OSTI]

    F. W. Sun; B. H. Liu; Y. X. Gong; Y. F. Huang; Z. Y. Ou; G. C. Guo

    2007-02-06T23:59:59.000Z

    Stimulated emission of two photons is observed experimentally in the parametric amplification process and is compared to a three-photon interference scheme. We find that the underlying physics of stimulated emission is simply the constructive interference due to photon indistinguishability. So the observed signal enhancement upon the input of photons is a result of multi-photon interference of the input photons and the otherwise spontaneously emitted photon from the amplifier.

  13. Optical ionization detector

    DOE Patents [OSTI]

    Wuest, Craig R. (Danville, CA); Lowry, Mark E. (Castro Valley, CA)

    1994-01-01T23:59:59.000Z

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  14. Computation of topological charges of optical vortices via nondegenerate four-wave mixing

    SciTech Connect (OSTI)

    Jiang Wei; Chen Qunfeng; Zhang Yongsheng; Guo, G.-C. [Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 (China)

    2006-10-15T23:59:59.000Z

    In this paper, we report an experiment, which demonstrates computation of topological charges of two optical vortices via a nondegenerate four-wave-mixing process. We show that the output signal photon carries orbital angular momentum which equals to the subtraction of the orbital angular momenta of the probe light photon and the backward pump light photon. The {sup 85}Rb atoms are used as the nonlinear medium, which transfers the orbital angular momenta of lights.

  15. Industrial Affiliates Day 2006, April 21, 2006 ULTRAFAST NONLINEAR OPTICAL MICROSCOPY

    E-Print Network [OSTI]

    Van Stryland, Eric

    of studies, including photochemical reactions, molecular dynamics, micropharmacology and optical memory. History of Two-Photon Molecular Excitation 1905 First Conception: A. Einstein: Creation and Conversion for data storage. Combined with fluorescence microscopy, multiphoton excitation (MPE) provides 3D

  16. Nonlinear absorption and carrier dynamics in slab-coupled optical waveguide amplifiers

    E-Print Network [OSTI]

    Ippen, Erich P.

    Limitations imposed on the saturation energy of high-power slab-coupled optical waveguide amplifiers were studied for pulsed signal transmission. Loss due to the two-photon absorption and free-carrier absorption processes ...

  17. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    SciTech Connect (OSTI)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31T23:59:59.000Z

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  18. Photonic Crystal Cavities in Cubic (3C) Polytype Silicon Carbide Films

    E-Print Network [OSTI]

    Marina Radulaski; Thomas M. Babinec; Sonia Buckley; Armand Rundquist; J Provine; Kassem Alassaad; Gabriel Ferro; Jelena Vu?kovi?

    2013-11-30T23:59:59.000Z

    We present the design, fabrication, and characterization of high quality factor and small mode volume planar photonic crystal cavities from cubic (3C) thin films (thickness ~ 200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1,250 - 1,600 nm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.

  19. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening

    E-Print Network [OSTI]

    Nicolas Sangouard; Christoph Simon; Mikael Afzelius; Nicolas Gisin

    2007-01-30T23:59:59.000Z

    We present a detailed analysis of a quantum memory for photons based on controlled and reversible inhomogeneous broadening (CRIB). The explicit solution of the equations of motion is obtained in the weak excitation regime, making it possible to gain insight into the dependence of the memory efficiency on the optical depth, and on the width and shape of the atomic spectral distributions. We also study a simplified memory protocol which does not require any optical control fields.

  20. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening

    SciTech Connect (OSTI)

    Sangouard, Nicolas; Simon, Christoph; Afzelius, Mikael; Gisin, Nicolas [Group of Applied Physics-Optics, University of Geneva, Geneva (Switzerland)

    2007-03-15T23:59:59.000Z

    We present a detailed analysis of a quantum memory for photons based on controlled and reversible inhomogeneous broadening. The explicit solution of the equations of motion is obtained in the weak excitation regime, making it possible to gain insight into the dependence of the memory efficiency on the optical depth, and on the width and shape of the atomic spectral distributions. We also study a simplified memory protocol which does not require any optical control fields.

  1. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29T23:59:59.000Z

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  2. Photon-photon gates in Bose-Einstein condensates

    E-Print Network [OSTI]

    Arnaud Rispe; Bing He; Christoph Simon

    2010-09-30T23:59:59.000Z

    It has recently been shown that light can be stored in Bose-Einstein condensates for over a second. Here we propose a method for realizing a controlled phase gate between two stored photons. The photons are both stored in the ground state of the effective trapping potential inside the condensate. The collision-induced interaction is enhanced by adiabatically increasing the trapping frequency and by using a Feshbach resonance. A controlled phase shift of $\\pi$ can be achieved in one second.

  3. An integrated processor for photonic quantum states using a broadband light-matter interface

    E-Print Network [OSTI]

    Erhan Saglamyurek; Neil Sinclair; Joshua A. Slater; Khabat Heshami; Daniel Oblak; Wolfgang Tittel

    2014-04-24T23:59:59.000Z

    Faithful storage and coherent manipulation of quantum optical pulses are key for long distance quantum communications and quantum computing. Combining these functions in a light-matter interface that can be integrated on-chip with other photonic quantum technologies, e.g. sources of entangled photons, is an important step towards these applications. To date there have only been a few demonstrations of coherent pulse manipulation utilizing optical storage devices compatible with quantum states, and that only in atomic gas media (making integration difficult) and with limited capabilities. Here we describe how a broadband waveguide quantum memory based on the Atomic Frequency Comb (AFC) protocol can be used as a programmable processor for essentially arbitrary spectral and temporal manipulations of individual quantum optical pulses. Using weak coherent optical pulses at the few photon level, we experimentally demonstrate sequencing, time-to-frequency multiplexing and demultiplexing, splitting, interfering, temporal and spectral filtering, compressing and stretching as well as selective delaying. Our integrated light-matter interface offers high-rate, robust and easily configurable manipulation of quantum optical pulses and brings fully practical optical quantum devices one step closer to reality. Furthermore, as the AFC protocol is suitable for storage of intense light pulses, our processor may also find applications in classical communications.

  4. Optics and Photonics CPHY 74495 Assignment 1. SOLUTIONS

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    of the string? The impedance is Z = p T = p 0:9N 0:1kg=m = 0:3kg=s (1) (b) (4) Give an expression for the energy density in the string. The kinetic energy density is EK = 1 2 ( @y @t )2 (2) The potential energy density is EP = 1 2 T( @y @x )2 (3) The expression for the wave is y = yo cos(kx !t) (4) so that EK = 1 2 ( @y

  5. Liquid Crystal Optics and Photonics CPHY Assignment 1.

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    ) Give an expression for the potential energy density and the kinetic energy density for each wave when the waves are far apart (b) Give an expression for the potential energy density and the kinetic energy of the string? (b) Give an expression for the energy density in the string. (c) Calculate the average energy

  6. Optics and Photonics CPHY 74495 Assignment 1. SOLUTIONS

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    (29) (b) Give an expression for the potential energy density and the kinetic energy density? The impedance is Z = T = 0.9N × 0.1kg/m = 0.3kg/s (1) (b) Give an expression for the energy density in the string. The kinetic energy density is EK = 1 2 ( y t )2 (2) Th potential energy density is EP = 1 2 T( y

  7. An optical data receiver for integrated photonic interconnects

    E-Print Network [OSTI]

    Georgas, Michael S. (Michael Stephen)

    2009-01-01T23:59:59.000Z

    The throughput bounds of traditional interconnect networks in microprocessors are being pushed to their limits. In past single-core processors, the number of long global wires constituted only a small fraction of the total. ...

  8. Fiber optic coupled optical sensor

    DOE Patents [OSTI]

    Fleming, Kevin J. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  9. A hybrid electron and photon IMRT planning technique that lowers normal tissue integral patient dose using standard hardware

    SciTech Connect (OSTI)

    Rosca, Florin [Department of Radiation Oncology, Massachusetts General Hospital, Danvers, Massachusetts 01923 (United States)

    2012-06-15T23:59:59.000Z

    Purpose: To present a mixed electron and photon IMRT planning technique using electron beams with an energy range of 6-22 MeV and standard hardware that minimizes integral dose to patients for targets as deep as 7.5 cm. Methods: Ten brain cases, two lung, a thyroid, an abdominal, and a parotid case were planned using two planning techniques: a photon-only IMRT (IMRT) versus a mixed modality treatment (E + IMRT) that includes an enface electron beam and a photon IMRT portion that ensures a uniform target coverage. The electron beam is delivered using a regular cutout placed in an electron cone. The electron energy was chosen to provide a good trade-off between minimizing integral dose and generating a uniform, deliverable plan. The authors choose electron energies that cover the deepest part of PTV with the 65%-70% isodose line. The normal tissue integral dose, the dose for ring structures around the PTV, and the volumes of the 75%, 50%, and 25% isosurfaces were used to compare the dose distributions generated by the two planning techniques. Results: The normal tissue integral dose was lowered by about 20% by the E + IMRT plans compared to the photon-only IMRT ones for most studied cases. With the exception of lungs, the dose reduction associated to the E + IMRT plans was more pronounced further away from the target. The average dose ratio delivered to the 0-2 cm and the 2-4 cm ring structures for brain patients for the two planning techniques were 89.6% and 70.8%, respectively. The enhanced dose sparing away from the target for the brain patients can also be observed in the ratio of the 75%, 50%, and 25% isodose line volumes for the two techniques, which decreases from 85.5% to 72.6% and further to 65.1%, respectively. For lungs, the lateral electron beams used in the E + IMRT plans were perpendicular to the mostly anterior/posterior photon beams, generating much more conformal plans. Conclusions: The authors proved that even using the existing electron delivery hardware, a mixed electron/photon planning technique (E + IMRT) can decrease the normal tissue integral dose compared to a photon-only IMRT plan. Different planning approaches can be enabled by the use of an electron beam directed toward organs at risk distal to the target, which are still spared due the rapid dose fall-off of the electron beam. Examples of such cases are the lateral electron beams in the thoracic region that do not irradiate the heart and contralateral lung, electron beams pointed toward kidneys in the abdominal region, or beams treating brain lesions pointed toward the brainstem or optical apparatus. For brain, electron vertex beams can also be used without irradiating the whole body. Since radiation retreatments become more and more common, minimizing the normal tissue integral dose and the dose delivered to tissues surrounding the target, as enabled by E + IMRT type techniques, should receive more attention.

  10. Polarization manipulation in silicon photonics

    E-Print Network [OSTI]

    Su, Zhan, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Silicon photonics is moving fast toward industrialization. It satisfies the increasing demand for higher speed, larger bandwidth communication. Thus it has a wide range of applications including high-performance computing, ...

  11. Generalized binomial distribution in photon statistics

    E-Print Network [OSTI]

    Aleksey Ilyin

    2014-11-20T23:59:59.000Z

    The photon-number distribution between two parts of a given volume is found for an arbitrary photon statistics. This problem is related to the interaction of a light beam with a macroscopic device, for example a diaphragm, that separates the photon flux into two parts with known probabilities. To solve this problem, a Generalized Binomial Distribution (GBD) is derived that is applicable to an arbitrary photon statistics satisfying probability convolution equations. It is shown that if photons obey Poisson statistics then the GBD is reduced to the ordinary binomial distribution, whereas in the case of Bose-Einstein statistics the GBD is reduced to the Polya distribution. In this case, the photon spatial distribution depends on the phase-space volume occupied by the photons. This result involves a photon bunching effect, or collective behavior of photons that sharply differs from the behavior of classical particles. It is shown that the photon bunching effect looks similar to the quantum interference effect.

  12. Photon rockets and gravitational radiation

    E-Print Network [OSTI]

    T. Damour

    1994-12-21T23:59:59.000Z

    The absence of gravitational radiation in Kinnersley's ``photon rocket'' solution of Einstein's equations is clarified by studying the mathematically well-defined problem of point-like photon rockets in Minkowski space (i.e. massive particles emitting null fluid anisotro\\-pically and accelerating because of the recoil). We explicitly compute the (uniquely defined) {\\it linearized} retarded gravitational waves emitted by such objects, which are the coherent superposition of the gravitational waves generated by the motion of the massive point-like rocket and of those generated by the energy-momentum distribution of the photon fluid. In the special case (corresponding to Kinnersley's solution) where the anisotropy of the photon emission is purely dipolar we find that the gravitational wave amplitude generated by the energy-momentum of the photons exactly cancels the usual $1/r$ gravitational wave amplitude generated by the accelerated motion of the rocket. More general photon anisotropies would, however, generate genuine gravitational radiation at infinity. Our explicit calculations show the compatibility between the non-radiative character of Kinnersley's solution and the currently used gravitational wave generation formalisms based on post-Minkowskian perturbation theory.

  13. Covert Optical Communication

    E-Print Network [OSTI]

    Boulat A. Bash; Andrei H. Gheorghe; Monika Patel; Jonathan Habif; Dennis Goeckel; Don Towsley; Saikat Guha

    2014-09-10T23:59:59.000Z

    Encryption prevents unauthorized decoding, but does not ensure stealth---a security demand that a mere presence of a message be undetectable. We characterize the ultimate limit of covert communication that is secure against the most powerful physically-permissible adversary. We show that, although it is impossible over a pure-loss channel, covert communication is attainable in the presence of any excess noise, such as a $300$K thermal blackbody. In this case, $\\mathcal{O}(\\sqrt{n})$ bits can be transmitted reliably and covertly in $n$ optical modes using standard optical communication equipment. The all-powerful adversary may intercept all transmitted photons not received by the intended receiver, and employ arbitrary quantum memory and measurements. Conversely, we show that this square root scaling cannot be outperformed. We corroborate our theory in a proof-of-concept experiment. We believe that our findings will enable practical realizations of covert communication and sensing, both for point-to-point and networked scenarios.

  14. Optical Expanders with Applications in Optical Computing

    E-Print Network [OSTI]

    Reif, John H.

    Optical Expanders with Applications in Optical Computing John H. Reif \\Lambda Akitoshi Yoshida \\Lambda July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec­ trooptically expands an optical boolean pattern encoded in d bits

  15. Towards High-Fidelity Quantum Computation and Simulation on a Programmable Photonic Integrated Circuit

    E-Print Network [OSTI]

    Jacob Mower; Nicholas C. Harris; Gregory R. Steinbrecher; Yoav Lahini; Dirk Englund

    2014-12-16T23:59:59.000Z

    We propose and analyze the design of a programmable photonic integrated circuit for high-fidelity quantum computation and simulation. We demonstrate that the reconfigurability of our design allows us to overcome two major impediments to quantum optics on a chip: it removes the need for a full fabrication cycle for each experiment and allows for compensation of fabrication errors using numerical optimization techniques. Under a pessimistic fabrication model for the silicon-on-insulator process, we demonstrate a dramatic fidelity improvement for the linear optics CNOT and CPHASE gates and, showing the scalability of this approach, the iterative phase estimation algorithm built from individually optimized gates. We also propose and simulate a novel experiment that the programmability of our system would enable: a statistically robust study of the evolution of entangled photons in disordered quantum walks. Overall, our results suggest that existing fabrication processes are sufficient to build a quantum photonic processor capable of high fidelity operation.

  16. Single photon emission from site-controlled InGaN/GaN quantum dots

    SciTech Connect (OSTI)

    Zhang, Lei; Hill, Tyler A.; Deng, Hui, E-mail: dengh@umich.edu [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109 (United States)] [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109 (United States); Teng, Chu-Hsiang; Lee, Leung-Kway; Ku, Pei-Cheng, E-mail: peicheng@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)] [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)

    2013-11-04T23:59:59.000Z

    Single photon emission was observed from site-controlled InGaN/GaN quantum dots. The single-photon nature of the emission was verified by the second-order correlation function up to 90?K, the highest temperature to date for site-controlled quantum dots. Micro-photoluminescence study on individual quantum dots showed linearly polarized single exciton emission with a lifetime of a few nanoseconds. The dimensions of these quantum dots were well controlled to the precision of state-of-the-art fabrication technologies, as reflected in the uniformity of their optical properties. The yield of optically active quantum dots was greater than 90%, among which 13%–25% exhibited single photon emission at 10?K.

  17. PHYSICAL REVIEW A 86, 012328 (2012) Enhancing quantum entanglement by photon addition and subtraction

    E-Print Network [OSTI]

    Cerf, Nicolas

    2012-01-01T23:59:59.000Z

    , at the heart of continuous-variable entanglement distillation. The use of such processes has recently been certain other continuous-variable quantum information tasks, such as quantum entanglement distillation [7 or subtraction. The effect of photon subtraction can be obtained by sending a small fraction of the optical beam

  18. A Near-Infrared 64-pixel Superconducting Nanowire Single Photon Detector Array with Integrated Multiplexed Readout

    E-Print Network [OSTI]

    Allman, M S; Stevens, M; Gerrits, T; Horansky, R D; Lita, A E; Marsili, F; Beyer, A; Shaw, M D; Kumor, D; Mirin, R; Nam, S W

    2015-01-01T23:59:59.000Z

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.

  19. LASER & PHOTONICS www.lpr-journal.org Vol. 7 No. 5 September 2013

    E-Print Network [OSTI]

    Wang, Wei Hua

    LASER & PHOTONICS REVIEWS www.lpr-journal.org Vol. 7 No. 5 September 2013 4H-SiC: a new nonlinear material for midinfrared lasers Nonlinear optical (NLO) frequency conversion is commonly used for generating midinfrared (MIR) lasers that offer light sources for a variety of applications. However, the low

  20. Multipole-mode interface solitons in quadratic nonlinear photonic lattices Zhiyong Xu*

    E-Print Network [OSTI]

    Multipole-mode interface solitons in quadratic nonlinear photonic lattices Zhiyong Xu* Nonlinear multipole modes supported by an interface between two distinct optical lattices imprinted in two-dimensional nonlinear quadratic media. Such multipole-mode solitons feature out of phase between neighboring lobes