Powered by Deep Web Technologies
Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Optical Fibers Optics and Photonics  

E-Print Network [OSTI]

Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

Palffy-Muhoray, Peter

2

Ultrafast optics For optics and photonics course,  

E-Print Network [OSTI]

ultrafast and ultrashort generally describe pulses of widths in the nanosecond to femtosecond, or shorterUltrafast optics For optics and photonics course, Spring 2012 By :Alireza Moheghi Ultrafast optics, regimes. · Interest in ultrashort optical pulses began with the invention of the laser, · Ultrashort

Palffy-Muhoray, Peter

3

The College of Optics & Photonics The College of Optics and Photonics  

E-Print Network [OSTI]

CREOL The College of Optics & Photonics The College of Optics and Photonics #12;CREOL The College of Optics & Photonics CREOLThe College of Optics and Photonics Industrial Affiliates Day 2010 #12;CREOL The College of Optics & Photonics Prof. William T. Rhodes Department of Comp & Elect Engrng & Comp Science

Van Stryland, Eric

4

University of Central Florida College of Optics & Photonics Optics  

E-Print Network [OSTI]

University of Central Florida College of Optics & Photonics Optics Spring 2010 OSE-6432: Principles of guided wave optics; electro -optics, acousto-optics and optoelectronics. Location: CREOL-A-214 or by Appointment Reference Materials: 1. Class Notes. 2. "Fundamentals of Optical Waveguides", K. Okamoto, Academic

Van Stryland, Eric

5

Photonic integrated circuits for optical logic applications  

E-Print Network [OSTI]

The optical logic unit cell is the photonic analog to transistor-transistor logic in electronic devices. Active devices such as InP-based semiconductor optical amplifiers (SOA) emitting at 1550 nm are vertically integrated ...

Williams, Ryan Daniel

2007-01-01T23:59:59.000Z

6

Electro-Optic Modulation of Single Photons  

E-Print Network [OSTI]

We use the Stokes photon of a biphoton pair to set the time origin for electro-optic modulation of the wave function of the anti-Stokes photon thereby allowing arbitrary phase and amplitude modulation. We demonstrate conditional single-photon wave functions composed of several pulses, or instead, having gaussian or exponential shapes.

Pavel Kolchin; Chinmay Belthangady; Shengwang Du; G. Y. Yin; S. E. Harris

2008-08-02T23:59:59.000Z

7

National Central University Department of Optics and Photonics  

E-Print Network [OSTI]

National Central University Department of Optics and Photonics Rapid Constructions of Circular of Optics and Photonics, National Central University, Taiwan. 2. Institute of Nuclear Energy Research, Taiwan. #12;National Central University Department of Optics and Photonics 2 Outline · Interpolation

Arizona, University of

8

The College of Optics & Photonics Industrial Affiliates Day  

E-Print Network [OSTI]

CREOL The College of Optics & Photonics Industrial Affiliates Day 2011 Symposium on FAR IR & THZ Photonics CREOLThe College of Optics and Photonics #12;CREOL The College of Optics & Photonics Studentofthe characterization Dimitrios Mandridis Graduate Student CREOL,TheCollegeofOptics Photonics 2:05Walktothe

Van Stryland, Eric

9

The College of Optics & Photonics 1 Industrial Affiliates Day  

E-Print Network [OSTI]

3/7/14 1 CREOL The College of Optics & Photonics 1 Industrial Affiliates Day 2014 Symposium Advances in Optics & Photonics CREOLThe College of Optics and Photonics CREOL The College of Optics & Photonics 2 MJ Soileau V.P. for Research & Commercialization Professor of Optics, ECE & Physics Founder

Van Stryland, Eric

10

Transformation Optics with Photonic Band Gap Media  

E-Print Network [OSTI]

We introduce a class of optical media based on adiabatically modulated, dielectric-only, and potentially extremely low-loss, photonic crystals. The media we describe represent a generalization of the eikonal limit of transformation optics (TO). The foundation of the concept is the possibility to fit frequency isosurfaces in the k-space of photonic crystals with elliptic surfaces, allowing them to mimic the dispersion relation of light in anisotropic effective media. Photonic crystal cloaks and other TO devices operating at visible wavelengths can be constructed from optically transparent substances like glasses, whose attenuation coefficient can be as small as 10 dB/km, suggesting the TO design methodology can be applied to the development of optical devices not limited by the losses inherent to metal-based, passive metamaterials.

Urzhumov, Yaroslav A

2010-01-01T23:59:59.000Z

11

PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Photonic RF Waveform Synthesis,  

E-Print Network [OSTI]

PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Photonic RF Waveform, Shijun Xiao Funding from ARO, DARPA, and NSF #12;PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER performance (spectral engineering, dispersion compensation) #12;PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL

Purdue University

12

Optics (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-ray Science Division) The mission of the

13

Disordered Optical Modes for Photon Management  

E-Print Network [OSTI]

Wave transport in disordered systems is a vast research topic, ranging from electrons in semiconductors, to light in random dielectrics, to cold atoms in laser speckles. In optics, light transport is conveyed by random electromagnetic modes and the wave can be localized about a point or extended throughout the system, depending on disorder strength, structural correlations and dimensionality of the system. Light localization phenomena are more dominantly present in two-dimensional systems than in three-dimensional ones and their optical modes can be tailored to a greater extent. Here, we show that it is possible to make use of the properties of lower-dimensional disordered structures to obtain photon management in three-dimensional space. More particularly, we argue that two-dimensional disorder and wave interferences can be exploited to improve the performance of light absorbers or emitters. Our findings have direct applications for enhancing the absorption efficiency of third-generation solar cells in a rel...

Vynck, Kevin; Riboli, Francesco; Wiersma, Diederik S

2012-01-01T23:59:59.000Z

14

Pancharatnam Phase and Photon Polarization Optics  

E-Print Network [OSTI]

Parallel transport of a vector around a closed curve on the surface of a sphere leads to a direction holonomy which can be related with a geometric phase that is equal to the solid angle subtended by the closed curve. Since Pancharatnam phase is half of the solid angle subtended by the polarization cycle on the Poincare sphere, quantum parallel transport law takes recourse o spin-half wave function to obtain this result. A critique is offered on this factor of half anomaly in the geometric phase, and a natural resolution using Riemann sphere polarization representation is suggested. It is argued that spin angular momentum of photon is fundamental in polarization optics, and new insights are gained based on the hypothesis that two helicity states correspond to two distinct species of photon. This approach leads to the concept of a physical Poincare sphere: nonlinearity and jumps in the Pancharatnam phase find a simple physical explanation while novel features pertaining to the discrete and pulsating sphere are predicted. Paired photon spin zero structure of unpolarized light is also discussed. An outline of possible experimental tests is presented.

S. C. Tiwari

2006-02-04T23:59:59.000Z

15

Linear-optics manipulations of photon-loss codes  

E-Print Network [OSTI]

We discuss codes for protecting logical qubits carried by optical fields from the effects of amplitude damping, i.e. linear photon loss. We demonstrate that the correctability condition for one-photon loss imposes limitations on the range of manipulations than can be implemented with passive linear-optics networks.

Konrad Banaszek; Wojciech Wasilewski

2007-02-09T23:59:59.000Z

16

Glenn D. Boreman College of Optics & Photonics/CREOL  

E-Print Network [OSTI]

Glenn D. Boreman College of Optics & Photonics/CREOL University of Central Florida Orlando, FL Glenn D. Boreman is Trustee Chair Professor of Optics at University of Central Florida, CREOL. He received a BS in optics from the University of Rochester, and a PhD in optics from the University

Zanibbi, Richard

17

Use of a photonic crystal for optical amplifier gain control  

DOE Patents [OSTI]

An optical amplifier having a uniform gain profile uses a photonic crystal to tune the density-of-states of a gain medium so as to modify the light emission rate between atomic states. The density-of-states of the gain medium is tuned by selecting the size, shape, dielectric constant, and spacing of a plurality of microcavity defects in the photonic crystal. The optical amplifier is particularly useful for the regeneration of DWDM signals in long optical fibers.

Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); El-Kady, Ihab (Albuquerque, NM)

2006-07-18T23:59:59.000Z

18

CREOL, The College of Optics and Photonics Industrial Affiliates Day April 9, 2010  

E-Print Network [OSTI]

CREOL, The College of Optics and Photonics Industrial Affiliates Day ­ April 9, 2010 "Optics, The College of Optics and Photonics ­Overview Bahaa Saleh Dean & Director, CREOL, The College of Optics and Photonics 9:25 "Fundamental Limits for Optical Devices" David Miller Director, Solid State and Photonics Lab

Van Stryland, Eric

19

An optical surface resonance may render photonic crystals ineffective  

E-Print Network [OSTI]

In this work we identify and study the presence of extremely intense surface resonances that frustrate the coupling of photons into a photonic crystal over crucial energy ranges. The practical utility of photonic crystals demands the capability to exchange photons with the external medium, therefore, it is essential to understand the cause of these surface resonances and a route to their elimination. We demonstrate that by modifying the surface geometry it is possible to tune the optical response or eliminate the resonances to enable full exploitation of the photonic crystal.

F. Garca-Santamara; Erik C. Nelson; P. V. Braun

2007-06-28T23:59:59.000Z

20

Spring 2012 LC Optics and Photonics: CPHY-64495/74495  

E-Print Network [OSTI]

Spring 2012 LC Optics and Photonics: CPHY-64495/74495 Lecture times: M, W, F 9:55 ­ 10:50 Room: Cunningham Hall 00011 also LCI 108 (teaching lab) Text: class notes Guenther, Modern Optics (recommended) Electronic Resources: http://mpalffy.lci.kent.edu/optics Instructor: Peter Palffy-Muhoray LCM Rm. 201C 672

Palffy-Muhoray, Peter

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Spring 2014 LC Optics and Photonics: CPHY-64495/74495  

E-Print Network [OSTI]

Spring 2014 LC Optics and Photonics: CPHY-64495/74495 Lecture times: T,Th,F 11:00 ­ 12:15 Room: LCI 107C also LCI 108 (teaching lab) Text: class notes Guenther, Modern Optics (recommended) Electronic Resources: http://mpalffy.lci.kent.edu/optics Instructor: Peter Palffy-Muhoray LCM Rm. 201C 672-2604 mpalffy

Palffy-Muhoray, Peter

22

Liquid Crystal Optics and Photonics CPHY Assignment 2.  

E-Print Network [OSTI]

Liquid Crystal Optics and Photonics CPHY 74495 Assignment 2. P. Pal¤y-Muhoray Jan. 24, 2014 Due: Feb 4, 2014 1. Read pages 25 - 37 of the text (Guenther, Modern Optics). 2. Read Ch 2., Review of Electricity and Magnetism (http://mpal¤y.lci.kent.edu/optics) 3. Red light with wavelength = 632:8nm

Palffy-Muhoray, Peter

23

Electro-optical Modulation in Graphene Integrated Photonic Crystal Nanocavities  

E-Print Network [OSTI]

We demonstrate high-contrast electro-optic modulation in a graphene integrated photonic crystal nanocavity, providing a modulation depth of more than 10 dB at telecom wavelengths. This work shows the feasibility of ...

Gan, Xuetao

24

Optical bistability with a repulsive optical force in coupled silicon photonic crystal membranes  

E-Print Network [OSTI]

We demonstrate actuation of a silicon photonic crystal membrane with a repulsive optical gradient force. The extent of the static actuation is extracted by examining the optical bistability as a combination of the ...

Hui, Pui-Chuen

2013-01-01T23:59:59.000Z

25

Optical diode based on the chirality of guided photons  

E-Print Network [OSTI]

Photons are nonchiral particles: their handedness can be both left and right. However, when light is transversely confined, it can locally exhibit a transverse spin whose orientation is fixed by the propagation direction of the photons. Confined photons thus have chiral character. Here, we employ this to demonstrate nonreciprocal transmission of light at the single-photon level through a silica nanofibre in two experimental schemes. We either use an ensemble of spin-polarised atoms that is weakly coupled to the nanofibre-guided mode or a single spin-polarised atom strongly coupled to the nanofibre via a whispering-gallery-mode resonator. We simultaneously achieve high optical isolation and high forward transmission. Both are controlled by the internal atomic state. The resulting optical diode is the first example of a new class of nonreciprocal nanophotonic devices which exploit the chirality of confined photons and which are, in principle, suitable for quantum information processing and future quantum optica...

Sayrin, C; Mitsch, R; Albrecht, B; O'Shea, D; Schneeweiss, P; Volz, J; Rauschenbeutel, A

2015-01-01T23:59:59.000Z

26

Magneto-optical oxide thin films and integrated nonreciprocal photonic devices  

E-Print Network [OSTI]

Nonreciprocal photonic devices including optical isolators and optical circulators are indispensible components in present day optical communication systems. Although highly desired by the fast development of silicon ...

Bi, Lei, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

27

University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Nanoscale Optofluidics for  

E-Print Network [OSTI]

University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Nanoscale;University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Background Microfluidics Single molecule analysis Integrated optics Singleparticle Optofluidics Optofluidics: combination

Lee, Herbie

28

Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals  

SciTech Connect (OSTI)

In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-optical rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.

Hamidi, S. M. [Laser and Plasma Research Institute, G. C., Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of)

2012-01-15T23:59:59.000Z

29

Photonic crystal ring resonator based optical filters for photonic integrated circuits  

SciTech Connect (OSTI)

In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 ?m 11.4 ?m which is highly suitable of photonic integrated circuits.

Robinson, S., E-mail: mail2robinson@gmail.com [Department of Electronics and Communication Engineering, Mount Zion College of Engineering and Technology, Pudukkottai-622507, Tamil Nadu (India)

2014-10-15T23:59:59.000Z

30

Interfacing microwave qubits and optical photons via spin ensembles  

E-Print Network [OSTI]

A protocol is discussed which allows one to realize a transducer for single photons between the optical and the microwave frequency range. The transducer is a spin ensemble, where the individual emitters possess both an optical and a magnetic-dipole transition. Reversible frequency conversion is realized by combining optical photon storage, by means of EIT, with the controlled switching of the coupling between the magnetic-dipole transition and a superconducting qubit, which is realized by means of a microwave cavity. The efficiency is quantified by the global fidelity for transferring coherently a qubit excitation between a single optical photon and the superconducting qubit. We test various strategies and show that the total efficiency is essentially limited by the optical quantum memory: It can exceed 80% for ensembles of NV centers and approaches 99% for cold atomic ensembles, assuming state-of-the-art experimental parameters. This protocol allows one to bridge the gap between the optical and the microwave regime so to efficiently combine superconducting and optical components in quantum networks.

Susanne Blum; Christopher O'Brien; Nikolai Lauk; Pavel Bushev; Michael Fleischhauer; Giovanna Morigi

2015-01-23T23:59:59.000Z

31

Silicon Photonics for Low- Energy Optical Communications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShift EndSidneyChemistry »Photonics for

32

COLLEGE OF OPTICS AND PHOTONICS: CREOL & FPCE Industrial Affiliates Day Friday April 1, 2005  

E-Print Network [OSTI]

COLLEGE OF OPTICS AND PHOTONICS: CREOL & FPCE Industrial Affiliates Day ­ Friday April 1, 2005 "Optics & Photonics ­ Envisioning the Future" ­ Projecting Today's Research Into Tomorrow's Applications:45 "Optics & Photonics in Manufacturing..." Dr. Bruce Craig VP and General Manager, Laser Division, Newport

Van Stryland, Eric

33

CREOL & FPCE, THE COLLEGE OF OPTICS AND PHOTONICS Industrial Affiliates Day April 13, 2007  

E-Print Network [OSTI]

CREOL & FPCE, THE COLLEGE OF OPTICS AND PHOTONICS Industrial Affiliates Day ­ April 13, 2007 Theme Dean, College of Optics and Photonics 9:05 "High power lasers, some applications, and their future of Optics & Photonics 9:40 "Attosecond Science and Technology" Dr. Paul Corkum Program Leader, Atomic

Van Stryland, Eric

34

All-Optical Switch and Transistor Gated by One Stored Photon  

E-Print Network [OSTI]

The realization of an all-optical transistor, in which one gate photon controls a source light beam, is a long-standing goal in optics. By stopping a light pulse in an atomic ensemble contained inside an optical ...

Chen, Wenlan

35

Multipoint photonic doppler velocimetry using optical lens elements  

SciTech Connect (OSTI)

A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

Frogget, Brent Copely; Romero, Vincent Todd

2014-04-29T23:59:59.000Z

36

February 2002 I Optics & Photonics News 59 1047-6938/02/02/0059/5-$0015.00 Optical Society of America  

E-Print Network [OSTI]

February 2002 I Optics & Photonics News 59 1047-6938/02/02/0059/5-$0015.00 © Optical Society of America O ne of the goals of modern non- linear optics is the development of the ultimate fast, all-optical circuits created in nonlinear bulk media without any fabricated optical waveguide can be achieved

37

All-optical routing of single photons with multiple input and output ports by interferences  

E-Print Network [OSTI]

We propose a waveguide-cavity coupled system to achieve the routing of photons by the phases of other photons. Our router has four input ports and four output ports. The transport of the coherent-state photons injected through any input port can be controlled by the phases of the coherent-state photons injected through other input ports. This control can be achieved when the mean numbers of the routed and control photons are small enough and require no additional control fields. Therefore, the all-optical routing of photons can be achieved at the single-photon level.

Wei-Bin Yan; Bao Liu; Ling Zhou; Heng Fan

2014-09-23T23:59:59.000Z

38

A scalable silicon photonic chip-scale optical switch for high performance computing systems  

E-Print Network [OSTI]

A scalable silicon photonic chip-scale optical switch for high performance computing systems-scale optical switch for scalable interconnect network in high performance computing systems. The proposed

Yoo, S. J. Ben

39

Thermal and Optical Characterization of Photonic Integrated Circuits by Thermoreflectance Microscopy  

E-Print Network [OSTI]

We report high resolution, non-invasive, thermal and optical characterization of semiconductor optical amplifiers (SOAs) and SOA-based photonic integrated circuits (PICs) using thermoreflectance microscopy. Chip-scale ...

Hudgings, Janice A.

40

Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion  

E-Print Network [OSTI]

We report on Kerr nonlinearity and dispersive optical bistability of a Fabry-Perot optical resonator due to the displacement of ultracold atoms trapped within. In the driven resonator, such collective motion is induced by optical forces acting upon up to $10^5$ $^{87}$Rb atoms prepared in the lowest band of a one-dimensional intracavity optical lattice. The longevity of atomic motional coherence allows for strongly nonlinear optics at extremely low cavity photon numbers, as demonstrated by the observation of both branches of optical bistability at photon numbers below unity.

Subhadeep Gupta; Kevin L. Moore; Kater W. Murch; Dan M. Stamper-Kurn

2007-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Measurement Of Transverse Instability Thresholds In Low And high Emittance optics At The Photon Factory Storage Ring  

E-Print Network [OSTI]

Measurement Of Transverse Instability Thresholds In Low And high Emittance optics At The Photon Factory Storage Ring

Sakanaka, S; Kamiya, Yu; Katoh, M; Kobayakawa, H

1990-01-01T23:59:59.000Z

42

Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions  

E-Print Network [OSTI]

-materials, single photon emitters,2 wireless optical broadcasting links,3 bio-sensors,4 and light capture in solar

43

Search for Photon-Photon Elastic Scattering in the X-ray Region  

E-Print Network [OSTI]

We report the first results of a search for real photon-photon scattering using X rays. A novel system is developed to split and collide X-ray pulses by applying interferometric techniques. A total of $6.5\\times10^{5}$ pulses (each containing about $10^{11}$ photons) from an X-ray Free-Electron Laser are injected into the system. No scattered events are observed, and an upper limit of $1.7\\times 10^{-24}$ ${\\rm m^{2}}$ (95% C.L.) is obtained on the photon-photon elastic scattering cross section at 6.5 keV.

T. Inada; T. Yamaji; S. Adachi; T. Namba; S. Asai; T. Kobayashi; K. Tamasaku; Y. Tanaka; Y. Inubushi; K. Sawada; M. Yabashi; T. Ishikawa

2014-04-18T23:59:59.000Z

44

Probing the BCS-BEC crossover with photons in a nonlinear optical fiber  

E-Print Network [OSTI]

We propose a scheme where strongly correlated photons generated inside a hollow-core one-dimensional fiber filled with two cold atomic species can be used to simulate the BCS-BEC crossover. We first show how stationary light-matter excitations (polaritons) in the system can realize an optically tunable two component Bose-Hubbard model, and then analyze the optical parameters regime necessary to generate an effective Fermi-Hubbard model of photons exhibiting Cooper pairing. The characteristic correlated phases of the system can be efficiently observed due to the {\\it in situ} accessibility of the photon correlations with standard optical technology.

Mingxia Huo; Changsuk Noh; B. M. Rodrguez-Lara; Dimitris G. Angelakis

2011-06-24T23:59:59.000Z

45

Quantum optics and cavity QED with quantum dots in photonic crystals  

E-Print Network [OSTI]

This chapter will primarily focus on the studies of quantum optics with semiconductor, epitaxially grown quantum dots embedded in photonic crystal cavities. We will start by giving brief introductions into photonic crystals and quantum dots, then proceed with the introduction to cavity quantum electrodynamics (QED) effects, with a particular emphasis on the demonstration of these effects on the quantum dot-photonic crystal platform. Finally, we will focus on the applications of such cavity QED effects.

Jelena Vuckovic

2014-02-11T23:59:59.000Z

46

Materials and devices for optical switching and modulation of photonic integrated circuits  

E-Print Network [OSTI]

The drive towards photonic integrated circuits (PIC) necessitates the development of new devices and materials capable of achieving miniaturization and integration on a CMOS compatible platform. Optical switching: fast ...

Seneviratne, Dilan Anuradha

2007-01-01T23:59:59.000Z

47

Quantum nonlinear optics with single photons enabled by strongly interacting atoms  

E-Print Network [OSTI]

The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional ...

Firstenberg, Ofer

48

Coupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting diodes  

E-Print Network [OSTI]

trade-offs in electrically pumped photonic-crystal-based light-emitting diodes. A finite- toelectronic devices, such as light-emitting diodes LEDs and lasers. It has been suggested that a thin slabCoupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting

Dutton, Robert W.

49

Linear optics schemes for entanglement distribution with realistic single-photon sources  

E-Print Network [OSTI]

We study the operation of linear optics schemes for entanglement distribution based on nonlocal photon subtraction when input states, produced by imperfect single-photon sources, exhibit both vacuum and multiphoton contributions. Two models for realistic photon statistics with radically different properties of the multiphoton "tail" are considered. The first model assumes occasional emission of double photons and linear attenuation, while the second one is motivated by heralded sources utilizing spontaneous parametric down-conversion. We find conditions for the photon statistics that guarantee generation of entanglement in the relevant qubit subspaces and compare it with classicality criteria. We also quantify the amount of entanglement that can be produced with imperfect single-photon sources, optimized over setup parameters, using as a measure entanglement of formation. Finally, we discuss verification of the generated entanglement by testing Bell's inequalities. The analysis is carried out for two schemes. The first one is the well-established one-photon scheme, which produces a photon in a delocalized superposition state between two nodes, each of them fed with one single photon at the input. As the second scheme, we introduce and analyze a linear-optics analog of the robust scheme based on interfering two Stokes photons emitted by atomic ensembles, which does not require phase stability between the nodes.

Miko?aj Lasota; Czes?aw Radzewicz; Konrad Banaszek; Rob Thew

2014-09-24T23:59:59.000Z

50

Three-photon-absorption resonance for all-optical atomic clocks Sergei Zibrov,1,2,3,4  

E-Print Network [OSTI]

Three-photon-absorption resonance for all-optical atomic clocks Sergei Zibrov,1,2,3,4 Irina, driving atoms coherently from state c to b , fol- lowed by a one-photon absorption from field P, which January 2005; published 7 July 2005 We report an experimental study of an all-optical three-photon-absorption

Walsworth, Ronald L.

51

Optic Ataxia: From Balint's Syndrome to the Parietal Reach Region  

E-Print Network [OSTI]

Neuron Review Optic Ataxia: From Balint's Syndrome to the Parietal Reach Region Richard A. Andersen@vis.caltech.edu http://dx.doi.org/10.1016/j.neuron.2014.02.025 Optic ataxia is a high-order deficit in reaching's syndrome that also includes attentional and gaze disorders. Aspects of optic ataxia are misreaching

Andersen, Richard

52

Practical quantum repeaters with linear optics and double-photon guns  

E-Print Network [OSTI]

We show how to create practical, efficient, quantum repeaters, employing double-photon guns, for long-distance optical quantum communication. The guns create polarization-entangled photon pairs on demand. One such source might be a semiconducter quantum dot, which has the distinct advantage over parametric down-conversion that the probability of creating a photon pair is close to one, while the probability of creating multiple pairs vanishes. The swapping and purifying components are implemented by polarizing beam splitters and probabilistic optical CNOT gates.

Pieter Kok; Colin P. Williams; Jonathan P. Dowling

2002-03-27T23:59:59.000Z

53

Low Loss Liquid Crystal Photonic Bandgap Fiber in the Near-Infrared Region  

E-Print Network [OSTI]

Low Loss Liquid Crystal Photonic Bandgap Fiber in the Near-Infrared Region Lara SCOLARI1 , Lei WEI1 in the spectral range of 1­2 mm. We achieve in the middle of the near-infrared transmission bandgap the lowest Keywords: photonic bandgap fiber, liquid crystals, absorption loss, all-in-fiber devices, tunability, near-infrared

Wu, Shin-Tson

54

Improving noise threshold for optical quantum computing with the EPR photon source  

E-Print Network [OSTI]

We show that the noise threshold for optical quantum computing can be significantly improved by using the EPR-type of photon source. In this implementation, the detector efficiency $\\eta_{d}$ is required to be larger than 50%, and the source efficiency $\\eta_{s}$ can be an arbitrarily small positive number. This threshold compares favorably with the implementation using the single-photon source, where one requires the combined efficiency $\\eta_{d}\\eta_{s}>2/3$. We discuss several physical setups for realization of the required EPR photon source, including the photon emitter from a single-atom cavity.

Z. -H. Wei; Y. -J. Han; C. H. OH; L. -M. Duan

2009-12-08T23:59:59.000Z

55

Optical characterization of active Photon Cages R. Artinyan1,  

E-Print Network [OSTI]

family of 3D photonic hollow resonators which theoretically allow tight confinement of light in a fluid between this localized field and the environment (i.e. a potential volume of nano-particles). In this work with nano-emitters. For this, PbS quantum dot emitters in a PDMS host matrix have been introduced in photon

Boyer, Edmond

56

Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices  

E-Print Network [OSTI]

Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical ...

Bi, Lei

57

Optical tuning of silicon photonic structures with nematic liquid crystal claddings  

E-Print Network [OSTI]

Optical tuning of silicon photonic structures with nematic liquid crystal claddings Joanna 185555); published June 3, 2013 An analysis of and experimental demonstration of active optical tuning-power irradiation by polarized light, the reorientation of the nematic, the resulting index change, and phase shift

Fainman, Yeshaiahu

58

Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers  

E-Print Network [OSTI]

Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers Stefania the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers models for the preparation and collection of either single-mode or multi-mode PDC light (defined by

Hart, Gus

59

University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu New light pipes for single-  

E-Print Network [OSTI]

University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu New light of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Acknowledgments Sergei Kühn Dongliang Sandoghdar (ETH Zurich) #12;University of California, Santa Cruz, Applied Optics Grouphttp

Lee, Herbie

60

Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals  

SciTech Connect (OSTI)

This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

Mario Agio

2002-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Derivation of Ray Optics Equations in Photonic Crystals Via a Semiclassical Limit  

E-Print Network [OSTI]

In this work we present a novel approach to the ray optics limit: we rewrite the dynamical Maxwell equations in Schr\\"odinger form and prove Egorov-type theorems, a robust semiclassical technique. We implement this scheme for periodic light conductors, photonic crystals, thereby making the quantum-light analogy between semiclassics for the Bloch electron and ray optics in photonic crystals rigorous. Our main results, Theorems 3.3 and 4.1, give a ray optics limit for quadratic observables and, among others, apply to local averages of energy density, the Poynting vector and the Maxwell stress tensor. Ours is the first rigorous derivation of ray optics equations which include all sub-leading order terms, some of which are also new to the physics literature. While the ray optics limit we prove initially (Theorem 3.3) applies to photonic crystals of any topological class, we also consider the ray optics limit for real electromagnetic fields propagating in non-gyrotropic photonic crystals. Such an extension is non-trivial, because the ray optic limit for real fields is necessarily a multiband problem.

Giuseppe De Nittis; Max Lein

2015-02-25T23:59:59.000Z

62

Optical surface resonance may render photonic crystals ineffective Florencio Garca-Santamara,* Erik C. Nelson, and Paul V. Braun  

E-Print Network [OSTI]

Optical surface resonance may render photonic crystals ineffective Florencio Garca crystals and render them ineffective. This surface resonance is dem- onstrated for two different 3D

Braun, Paul

63

Improving noise threshold for optical quantum computing with the EPR photon source  

SciTech Connect (OSTI)

We show that the noise threshold for optical quantum computing obtained by Varnava et al. [Phys. Rev. Lett. 100, 060502 (2008)] can be significantly improved by replacing the single-photon source with the Einstein-Podolsky-Rosen (EPR) type of photon source. In this implementation, for an EPR source that emits either nothing (a vacuum state) or a perfect EPR state with probability {eta}{sub s}, the detector efficiency {eta}{sub d} is required to be larger than 50% and the source efficiency {eta}{sub s} can be an arbitrarily small positive number. We also present the error threshold for a more general noise model including additional photon absorption and show that the threshold still compares favorably with the previous results. We discuss several physical setups for realization of the required EPR photon source, including a photon emitter in a single-atom cavity.

Wei, Z.-H. [Centre for Quantum Technologies, National University of Singapore, Singapore 117542 (Singapore); Department of Physics and MCTP, University of Michigan, Ann Arbor, Michigan 48109 (United States); Han, Y.-J.; Duan, L.-M. [Department of Physics and MCTP, University of Michigan, Ann Arbor, Michigan 48109 (United States); Oh, C. H. [Centre for Quantum Technologies, National University of Singapore, Singapore 117542 (Singapore)

2010-06-15T23:59:59.000Z

64

Photonic Crystal Slot Waveguide Optical Absorption Spectrometer for Highly sensitive  

E-Print Network [OSTI]

months -Remote Monitoring of BTEX hydrocarbons in water needed -Real-time detection and identification of BTEX hydrocarbons in water needed Sample collection after-the-fact. -Continuous monitoring of water pollutants in water #12;What is Photonic Crystal? Periodic electromagnetic media comparable to wavelength

Texas at Austin, University of

65

All-optical switching and multistability in photonic structures with liquid crystal defects  

E-Print Network [OSTI]

We demonstrate that one-dimensional photonic crystals with pure nematic liquid-crystal defects can operate as all-optical switching devices based on optical orientational nonlinearities of liquid crystals. We show that such a periodic structure is responsible for a modulated threshold of the optical Fr\\'eedericksz transition in the spectral domain, and this leads to all-optical switching and light-induced multistability. This effect has no quasi-statics electric field analogue, and it results from nonlinear coupling between light and a defect mode.

Andrey E. Miroshnichenko; Etienne Brasselet; Yuri S. Kivshar

2007-12-24T23:59:59.000Z

66

Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies  

E-Print Network [OSTI]

Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct, wideband link between optical and microwave photons for microwave photonics and quantum optomechanics.

Semere Ayalew Tadesse; Mo Li

2014-10-04T23:59:59.000Z

67

Nanostructured Optical Photonic Crystal Biosensor for HIV Viral Load Measurement  

E-Print Network [OSTI]

Detecting and quantifying biomarkers and viruses in biological samples have broad applications in early disease diagnosis and treatment monitoring. We have demonstrated a label-free optical sensing mechanism using ...

Shafiee, Hadi

68

Characterization of the bistable wideband optical filter on the basis of nonlinear 2D photonic crystal  

SciTech Connect (OSTI)

In our work, we investigated the wideband optical filter on the basis of nonlinear photonic crystal. The all-optical flip-flop using ultra-short pulses with duration lower than 200 fs is obtained in such filters. Here we pay special attention to the stability problem of the nonlinear element. To investigate this problem, the temporal response demonstrating the flip-flop have been computed within the certain range of the wavelengths as well as at different input power.

Guryev, I. V., E-mail: guryev@ieee.org; Sukhoivanov, I. A., E-mail: guryev@ieee.org; Andrade Lucio, J. A., E-mail: guryev@ieee.org; Manzano, O. Ibarra, E-mail: guryev@ieee.org; Rodriguez, E. Vargaz, E-mail: guryev@ieee.org; Gonzales, D. Claudio, E-mail: guryev@ieee.org; Chavez, R. I. Mata, E-mail: guryev@ieee.org; Gurieva, N. S., E-mail: guryev@ieee.org [University of Guanajuato, Engineering division (Mexico)

2014-05-15T23:59:59.000Z

69

Two-photon optical pumping of NH/sub 3/ in a multipass cell  

SciTech Connect (OSTI)

A multipass cell was used in optical pumping of ammonia molecules by CO/sub 2/ laser radiation. Several new lasing lines were observed in the case of two-photon optical pumping of the NH/sub 3/ molecule at wavelengths in the range 16--35 ..mu... The output power of the various lines was in the range 10--50 kW. The divergence of the resultant radiation was diffraction-limited. A theoretical study was made of the two-photon pumping process. A stable (on the frequency scale) maximum was found in the gain profile of the output radiation. It was concluded that it should be possible to increase the energy and extend the emission spectrum of an ammonia laser pumped by double-photon absorption.

Bobrovskii, A.N.; Kiselev, V.P.; Kozhevnikov, A.V.; Likhanskii, V.V.; Mishchenko, V.A.; Myl'nikov, G.D.

1983-11-01T23:59:59.000Z

70

Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical  

E-Print Network [OSTI]

Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric of Bath, Bath, BA2 7AY, UK *Corresponding author: lwk1@hw.ac.uk Abstract: We demonstrate methane sensing with a methane:nitrogen mixture, and Fourier transform spectroscopy was used to measure transmission spectra

71

Optical properties of two-dimensional metamaterial photonic crystals  

SciTech Connect (OSTI)

In the present work, we theoretically study a 2D photonic crystal (PC) comprised by double negative (DNG) metamaterial cylinders, showing that such a system presents a superior light-matter interaction when compared with their single negative (SNG) plasmonic PC counterparts, suggesting a route to enhance the performance of sensors and photovoltaic cells. On the other hand, we have observed that depending on the frequency, the mode symmetry resembles either the case of SNG electric (SNG-E) or SNG magnetic (SNG-M) PC, suggesting that either the electric or magnetic character of the DNG metamaterial dominates in each case.

Meja-Salazar, J. R. [Departamento de Fsica, Universidad del Valle, AA 25360, Cali, Colombia and Instituto de Fsica, UNICAMP, Campinas-SP 13083-859 (Brazil)

2013-12-14T23:59:59.000Z

72

Nonlinear photonic structures for all-optical Tal Ellenbogen*  

E-Print Network [OSTI]

pattern in the transverse direction. Stoichiometric lithium tantalite structures were tested by second. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions switching and frequency conversion in lithium niobate waveguide arrays," Opt. Lett. 30, 177-179 (2005). 12

Arie, Ady

73

Dynamically Reconfigurable Photonic Resources for Optically Connected Data Center Networks  

E-Print Network [OSTI]

with traffic demands will either be prohibitively costly, overly complex, or result in unsustainable energy. Optical multicasting and subnet formation is demonstrated between four ports at up to 80 Gb/s per port performance requirements demanded by modern data centers. Moreover, application heterogeneity and multitenancy

Bergman, Keren

74

Optically imprinted reconfigurable photonic elements in a VO{sub 2} nanocomposite  

SciTech Connect (OSTI)

We investigate the optical and thermal hysteresis of single-domain vanadium dioxide nanocrystals fabricated by ion beam synthesis in a fused silica matrix. The nanocrystals exhibit a giant hysteresis, which permits to optically generate a long-time stable supercooled metallic phase persistent down to practically room temperature. Spatial patterns of supercooled and insulating nanocrystals feature a large dielectric contrast, in particular, for telecom wavelengths. We utilize this contrast to optically imprint reconfigurable photonic elements comprising diffraction gratings as well as on- and off-axis zone plates. The structures allow for highly repetitive (>10{sup 4}) cycling through the phase transition without structural damage.

Jostmeier, Thorben; Betz, Markus [Experimentelle Physik 2, TU Dortmund University, Otto-Hahn-Strae 4, 44227 Dortmund (Germany); Zimmer, Johannes; Krenner, Hubert J. [Lehrstuhl fr Experimentalphysik 1 and Augsburg Centre for Innovative Technologies (ACIT), Universitt Augsburg, Universittstr. 1, 86159 Augsburg (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Mnchen (Germany); Karl, Helmut [Lehrstuhl fr Experimentalphysik IV, Universitt Augsburg, Universittstr. 1, 86159 Augsburg (Germany)

2014-08-18T23:59:59.000Z

75

Broadband CMOS-Compatible Silicon Photonic Electro-Optic Switch for Photonic Networks-on-Chip  

E-Print Network [OSTI]

-on-chip (NoCs) offer an attractive solution for bandwidth scalability with reduced power consumption reconfiguration [1]. Electro-optic control of these broadband switches enables a more scalable and energy signal between the through port and the drop port is accomplished with the detuning of the right cavity

Bergman, Keren

76

Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector  

SciTech Connect (OSTI)

The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime.

Heath, Robert M., E-mail: r.heath.1@research.gla.ac.uk; Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H. [School of Engineering, University of Glasgow, Glasgow G12 8LT, Scotland (United Kingdom); Webster, Mark G. [Department of Statistics, University of Leeds, Leeds LS2 9JT (United Kingdom); San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Warburton, Richard J. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

2014-02-10T23:59:59.000Z

77

Role of photonic angular momentum states in nonreciprocal diffraction from magneto-optical cylinder arrays  

SciTech Connect (OSTI)

Optical eigenstates in a concentrically symmetric resonator are photonic angular momentum states (PAMSs) with quantized optical orbital angular momentums (OAMs). Nonreciprocal optical phenomena can be obtained if we lift the degeneracy of PAMSs. In this article, we provide a comprehensive study of nonreciprocal optical diffraction of various orders from a magneto-optical cylinder array. We show that nonreciprocal diffraction can be obtained only for these nonzero orders. Role of PAMSs, the excitation of which is sensitive to the directions of incidence, applied magnetic field, and arrangement of the cylinders, are studied. Some interesting phenomena such as a dispersionless quasi-omnidirectional nonreciprocal diffraction and spikes associated with high-OAM PAMSs are present and discussed.

Guo, Tian-Jing; Wu, Li-Ting; Yang, Mu; Guo, Rui-Peng; Cui, Hai-Xu; Chen, Jing, E-mail: jchen4@nankai.edu.cn [MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071 (China)

2014-07-15T23:59:59.000Z

78

Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation  

SciTech Connect (OSTI)

Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogenvacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laserfiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

2014-02-24T23:59:59.000Z

79

Photonic Molecules and Spectral Engineering  

E-Print Network [OSTI]

This chapter reviews the fundamental optical properties and applications of photonic molecules (PMs) photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable ...

Boriskina, Svetlana V.

2010-01-01T23:59:59.000Z

80

Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique  

E-Print Network [OSTI]

We demonstrate that thousands of periodic nano-craters are fabricated on a subwavelength-diameter tapered optical fiber, an optical nanofiber, by irradiating with just a single femtosecond laser pulse. A key aspect of the fabrication is that the nanofiber itself acts as a cylindrical lens and focuses the femtosecond laser beam on its shadow surface. We also demonstrate that such periodic structures on the nanofiber, act as a 1-D photonic crystal (PhC). Such PhC structures on the nanofiber will strongly enhance the field confinement in such a tapered fiber-based system and may open new avenues in nanophotonics and quantum information technology.

Nayak, K P

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique  

E-Print Network [OSTI]

We demonstrate that thousands of periodic nano-craters are fabricated on a subwavelength-diameter tapered optical fiber, an optical nanofiber, by irradiating with just a single femtosecond laser pulse. A key aspect of the fabrication is that the nanofiber itself acts as a cylindrical lens and focuses the femtosecond laser beam on its shadow surface. We also demonstrate that such periodic structures on the nanofiber, act as a 1-D photonic crystal (PhC). Such PhC structures on the nanofiber will strongly enhance the field confinement in such a tapered fiber-based system and may open new avenues in nanophotonics and quantum information technology.

K. P. Nayak; K. Hakuta

2012-10-29T23:59:59.000Z

82

Linear optical quantum metrology with single photons --- Exploiting spontaneously generated entanglement to beat the shotnoise limit  

E-Print Network [OSTI]

Quantum number-path entanglement is a resource for super-sensitive quantum metrology and in particular provides for sub-shotnoise or even Heisenberg-limited sensitivity. However, such number-path entanglement has thought to have been resource intensive to create in the first place --- typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feed-forward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multi-photon walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer --- fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection --- is capable of significantly beating the shotnoise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

Keith R. Motes; Jonathan P. Olson; Evan J. Rabeaux; Jonathan P. Dowling; S. Jay Olson; Peter P. Rohde

2015-01-06T23:59:59.000Z

83

ICT publications of Prof. David N. Nikogosyan, made in UCC Two-photon absorption in optical materials  

E-Print Network [OSTI]

-period fiber grating inscription under high- intensity 352 nm femtosecond irradiation: three-photon absorptionICT publications of Prof. David N. Nikogosyan, made in UCC Two-photon absorption in optical.G. Kryukov, E.M. Dianov: Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation. Opt. Lett

Nikogosyan, David N.

84

Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance  

E-Print Network [OSTI]

Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic demonstrate total absorption in graphene in the near-infrared and visible wavelength ranges by means of the photonic crystal resonance. We discuss the general theory and conditions for absorption enhancement

Fan, Shanhui

85

Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor  

E-Print Network [OSTI]

Nonlinear optical effects can be enhanced in tapered optical fibers with diameters less than the wavelength of the propagating light. Here we report on the observation of two-photon absorption using tapered fibers in rubidium vapor at power levels of less than 150 nW. Transit-time broadening produces two-photon absorption spectra with sharp peaks that are very different from conventional line shapes.

S. M. Hendrickson; M. M. Lai; T. B. Pittman; J. D. Franson

2010-07-12T23:59:59.000Z

86

High-performance GaAs/AlGaAs optical phase modulators for microwave photonic integrated circuits  

SciTech Connect (OSTI)

A high-performance high-speed optical phase modulator for photonic integrated circuit (PIC) use is described. Integration of these optical phase modulators into a real system (compass) is also discussed. The optical phase modulators are based on depletion-edge translation and have experimentally provided optical phase shifts in excess of 60{degrees}/V{center_dot}mm with approximately 4 dB/cm loss while simultaneously demonstrating bandwidths in excess of 10 GHz.

Hietala, V.M.; Kravitz, S.H.; Armendariz, M.G.; Vawter, G.A.; Carson, R.F.

1994-03-01T23:59:59.000Z

87

Presented as SPIE Optics+Photonics 2007 Coastal Ocean Remote Sensing Conf. paper 6680-33 Aug. 27, San Diego, CA 1 Submerged turbulence detection with optical satellites  

E-Print Network [OSTI]

Presented as SPIE Optics+Photonics 2007 Coastal Ocean Remote Sensing Conf. paper 6680-33 Aug. 27. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum

Wang, Deli

88

Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers  

E-Print Network [OSTI]

We investigate the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers as a function of the pump beam diameter, crystal length and walk-off. We outline two different theoretical models for the preparation and collection of either single-mode or multi-mode PDC light (defined by, for instance, multi-mode fibers or apertures, corresponding to bucket detection). Moreover, we define the mode-matching collection efficiency, important for realizing a single-photon source based on PDC output into a well-defined single spatial mode. We also define a multimode collection efficiency that is useful for single-photon detector calibration applications.

Stefania Castelletto; Ivo Pietro Degiovanni; Alan Migdall; Valentina Schettini; Michael Ware

2004-08-03T23:59:59.000Z

89

Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers  

E-Print Network [OSTI]

We investigate the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers as a function of the pump beam diameter, crystal length and walk-off. We outline two different theoretical models for the preparation and collection of either single-mode or multi-mode PDC light (defined by, for instance, multi-mode fibers or apertures, corresponding to bucket detection). Moreover, we define the mode-matching collection efficiency, important for realizing a single-photon source based on PDC output into a well-defined single spatial mode. We also define a multimode collection efficiency that is useful for single-photon detector calibration applications.

Castelletto, S; Migdal, A; Schettini, V; Ware, M; Castelletto, Stefania; Degiovanni, Ivo Pietro; Migdall, Alan; Schettini, Valentina; Ware, Michael

2004-01-01T23:59:59.000Z

90

Study on photonic angular momentum states in coaxial magneto-optical waveguides  

SciTech Connect (OSTI)

By rigorously solving Maxwell's equations, we develop a full-wave electromagnetic theory for the study of photonic angular momentum states (PAMSs) in coaxial magneto-optical (MO) waveguides. Paying attention to a metal-MO-metal coaxial configuration, we show that the dispersion curves of the originally degenerated PAMSs experience a splitting, which are determined by the off-diagonal permittivity tensor element of the MO medium. We emphasize that this broken degeneracy in dispersion relation is accompanied by modified distributions of field component and transverse energy flux. A qualitative analysis about the connection between the split dispersion behavior and the field distribution is provided. Potential applications are discussed.

Yang, Mu; Wu, Li-Ting; Guo, Tian-Jing; Guo, Rui-Peng; Cui, Hai-Xu; Cao, Xue-Wei; Chen, Jing, E-mail: jchen4@nankai.edu.cn [MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071 (China)

2014-10-21T23:59:59.000Z

91

Trends in Optics | Features | Jan 2014 | Photonics Spectra http://www.photonics.com/Article.aspx?PID=5&VID=116&IID=738&AID=55732[27/02/2014 09:05:10  

E-Print Network [OSTI]

Trends in Optics | Features | Jan 2014 | Photonics Spectra http://www.photonics.com/Article.aspx?PID Spectra http://www.photonics.com/Article.aspx?PID=5&VID=116&IID=738&AID=55732[27/02/2014 09:05:10] >ISSUE

Zheludev, Nikolay

92

Optical bistability in a one-dimensional photonic crystal resonator using a reverse-biased pn-junction  

E-Print Network [OSTI]

Optical bistability provides a simple way to control light with light. We demonstrate low-power thermo-optical bistability caused by the Joule heating mechanism in a one-dimensional photonic crystal (PC) nanobeam resonator with a moderate quality factor (Q ~ 8900) with an embedded reverse-biased pn-junction. We show that the photocurrent induced by the linear absorption in this compact resonator considerably reduces the threshold optical power. The proposed approach substantially relaxes the requirements on the input optical power for achieving optical bistability and provides a reliable way to stabilize the bistable features of the device.

Sodagar, Majid; Eftekhar, Ali A; Adibi, Ali

2014-01-01T23:59:59.000Z

93

Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime  

SciTech Connect (OSTI)

This dissertation describes several projects to realize low-cost and high-quality three-dimensional (3D) microfabrication using non-photolithographic techniques for layer-by-layer photonic crystals. Low-cost, efficient 3D microfabrication is a demanding technique not only for 3D photonic crystals but also for all other scientific areas, since it may create new functionalities beyond the limit of planar structures. However, a novel 3D microfabrication technique for photonic crystals implies the development of a complete set of sub-techniques for basic layer-by-layer stacking, inter-layer alignment, and material conversion. One of the conventional soft lithographic techniques, called microtransfer molding ({mu}TM), was developed by the Whitesides group in 1996. Although {mu}TM technique potentially has a number of advantages to overcome the limit of conventional photolithographic techniques in building up 3D microstructures, it has not been studied intensively after its demonstration. This is mainly because of technical challenges in the nature of layer-by-layer fabrication, such as the demand of very high yield in fabrication. After two years of study on conventional {mu}TM, We have developed an advanced microtransfer molding technique, called two-polymer microtransfer molding (2P-{mu}TM) that shows an extremely high yield in layer-by-layer microfabrication sufficient to produce highly layered microstructures. The use of two different photo-curable prepolymers, a filler and an adhesive, allows for fabrication of layered microstructures without thin films between layers. The capabilities of 2P-{mu}TM are demonstrated by the fabrication of a wide-area 12-layer microstructure with high structural fidelity. Second, we also had to develop an alignment technique. We studied the 1st-order diffracted moire fringes of transparent multilayered structures comprised of irregularly deformed periodic patterns. By a comparison study of the diffracted moire fringe pattern and detailed microscopy of the structure, we show that the diffracted moire fringe can be used as a nondestructive tool to analyze the alignment of multilayered structures. We demonstrate the alignment method for the case of layer-by-layer microstructures using soft lithography. The alignment method yields high contrast of fringes even when the materials being aligned have very weak contrasts. The imaging method of diffracted moire fringes is a versatile visual tool for the microfabrication of transparent deformable microstructures in layer-by-layer fashion. Third, we developed several methods to convert a polymer template to dielectric or metallic structures, for instance, metallic infiltration using electrodeposition, metallic coating using sputter deposition, dielectric infiltration using titania nano-slurry, and dielectric coating using atomic layer deposition of Titania. By several different developed techniques, high quality photonic crystals have been successfully fabricated; however, I will focus on a line of techniques to reach metallic photonic crystals in this dissertation since they are completely characterized at this moment. In addition to the attempts for photonic crystal fabrication, our non-photolithographic technique is applied for other photonic applications such as small optical waveguides whose diameter is comparable to the wavelength of guided light. Although, as guiding medium, polymers have tremendous potential because of their enormous variation in optical, chemical and mechanical properties, their application for optical waveguides is limited in conventional photolithography. By 2P-{mu}TM, we achieve low cost, high yield, high fidelity, and tailorable fabrication of small waveguides. Embedded semiconductor quantum-dots and grating couplers are used for efficient internal and external light source, respectively.

Jae-Hwang Lee

2006-08-09T23:59:59.000Z

94

Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region  

E-Print Network [OSTI]

Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region Burton H.boss@maine.edu ABSTRACT The optical structure and variability of the Lombok Straits region is poorly understood, but available remotely sensed ocean color indicates that there is a strong optical response and signal

Boss, Emmanuel S.

95

Supercontinuum Generation in Photonic Crystal Fibers Possessing High Birefringence and Large Optical Nonlinearity  

E-Print Network [OSTI]

This paper presents the design of an index guided highly birefringent photonic crystal fiber which promises to yield very large birefringence ~3.33 X 10^(-2) at 1550 nm and ~1.75 X 10^(-2) at 1064 nm as well as large effective nonlinearity ~80 W^(-1)km^(-1). Optical supercontinuum generation in the proposed fiber using a 1064 nm pump source with peak power of 1kW has been also presented. Finite difference time domain method (FDTD) has been employed to examine the optical properties such as fiber birefringence, mode field, V-parameter, walk-off and optical nonlinearity, while the Split-step Fourier method is used to solve the nonlinear Schrodinger equation felicitating the study of supercontinuum generation. Simulation results indicate that horizontal input pulse yields superior continuum in comparison to that of the vertically polarized input. However, the broadening of the continuum is about 1450 nm in case of horizontally polarized input light whereas it is approximately 2350 nm for vertically polarized.

Sharma, Mohit; Konar, S

2015-01-01T23:59:59.000Z

96

Transition between Tamm-like and Shockley-like surface states in optically induced photonic superlattices  

SciTech Connect (OSTI)

We study the formation of Shockley-like surface states and their transition into Tamm-like surface states in an optically induced semi-infinite photonic superlattice. While perfect Shockley-like states appear only when the induced superlattice with alternating strong and weak bonds is terminated properly with an unperturbed surface, deformed Shockley-like surface states often appear in the so-called inverted band gap when the surface perturbation is nonzero. Furthermore, transitions between linear Tamm-like, Shockley-like, and nonlinear Tamm-like surface states are also observed by fine tuning the surface perturbation. Using coupled-mode theory, we confirm the existence of these linear and nonlinear surface states in a finite array of N identical single-mode waveguides coupled with alternating strong and weak bonds.

Malkova, Natalia [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States); National Institute of Standards and Technology and Joint Quantum Institute, University of Maryland, Gaithersburg, Maryland 20899 (United States); Hromada, Ivan; Wang Xiaosheng [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States); Bryant, Garnett [National Institute of Standards and Technology and Joint Quantum Institute, University of Maryland, Gaithersburg, Maryland 20899 (United States); Chen Zhigang [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States); Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China)

2009-10-15T23:59:59.000Z

97

Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy  

SciTech Connect (OSTI)

We imaged coplanar poled electro optic (EO) polymer films on transparent substrates with a multiple-photon microscope in reflection and correlated the second-harmonic light intensity with the results of Pockels coefficient (r{sub 33}) measurements. This allowed us to make quantitative measurements of poled polymer films on non-transparent substrates like silicon, which are not accessible with traditional Pockels coefficient measurement techniques. Phase modulators consisting of silicon waveguide devices with EO polymer claddings with a known Pockels coefficient (from V{sub ?} measurements) were used to validate the correlation between the second-harmonic signal and r{sub 33}. This also allowed us to locally map the r{sub 33} coefficient in the poled area.

Himmelhuber, R., E-mail: rolandh@optics.arizona.edu; Mehravar, S. S.; Herrera, O. D.; Demir, V.; Kieu, K.; Norwood, R. A.; Peyghambarian, N. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Luo, J. [Soluxra LLC, Seattle, Washington 98195 (United States); Jen, A. K.-Y. [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States)

2014-04-21T23:59:59.000Z

98

High Efficiency Optical MEMS by the Integration of Photonic Lattices with Surface MEMS  

SciTech Connect (OSTI)

This report outlines our work on the integration of high efficiency photonic lattice structures with MEMS (MicroElectroMechanical Systems). The simplest of these structures were based on 1-D mirror structures. These were integrated into a variety of devices, movable mirrors, switchable cavities and finally into Bragg fiber structures which enable the control of light in at least 2 dimensions. Of these devices, the most complex were the Bragg fibers. Bragg fibers consist of hollow tubes in which light is guided in a low index media (air) and confined by surrounding Bragg mirror stacks. In this work, structures with internal diameters from 5 to 30 microns have been fabricated and much larger structures should also be possible. We have demonstrated the fabrication of these structures with short wavelength band edges ranging from 400 to 1600nm. There may be potential applications for such structures in the fields of integrated optics and BioMEMS. We have also looked at the possibility of waveguiding in 3 dimensions by integrating defects into 3-dimensional photonic lattice structures. Eventually it may be possible to tune such structures by mechanically modulating the defects.

FLEMING, JAMES G.; LIN, SHAWN-YU; MANI, SEETHAMBAL S.; RODGERS, M. STEVEN; DAGEL, DARYL J.

2002-11-01T23:59:59.000Z

99

Molecular dynamics simulations of coherent optical photon emission from shock waves in Evan J. Reed,1,2,  

E-Print Network [OSTI]

Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals, 013904 2006 . In this work, we present analysis and molecular dynamics simulations of shock waves subject to a shock wave or solitonlike propagating excitation E. J. Reed et al., Phys. Rev. Lett. 96

Soljaèiæ, Marin

100

High-Speed Electro-Optic Modulator Integrated with Graphene-Boron Nitride Heterostructure and Photonic Crystal Nanocavity  

E-Print Network [OSTI]

Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and inter-chip communications. Silicon-based EO modulators show sufficient figures of merits regarding device footprint, speed, power consumption and modulation depth. However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties. Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modul...

Gao, Yuanda; Gan, Xuetao; Li, Luozhou; Peng, Cheng; Meric, Inanc; Wang, Lei; Szep, Attila; Walker, Dennis; Hone, James; Englund, Dirk

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Block copolymer photonic crystals : towards self-assembled active optical elements  

E-Print Network [OSTI]

Block copolymers have proven to be a unique materials platform for easily fabricated large-area photonic crystals. While the basic concept of block copolymer based photonic band gap materials has been well demonstrated, ...

Yoon, Jongseung

2006-01-01T23:59:59.000Z

102

Ultrafast optical parametric processes in photonic crystal fibers: fundamentals and applications  

E-Print Network [OSTI]

of ultrafast optical pulses . . . . . . . . .copropagating ultrafast optical pulses, Appl. Phys. Lett.Additionally, the ultrafast pump pulses can experience

Gu, Chenji

2012-01-01T23:59:59.000Z

103

Evaluation of Al{sub 2}O{sub 3}:C optically stimulated luminescence (OSL) dosimeters for passive dosimetry of high-energy photon and electron beams in radiotherapy  

SciTech Connect (OSTI)

This article investigates the performance of Al{sub 2}O{sub 3}:C optically stimulated luminescence dosimeters (OSLDs) for application in radiotherapy. Central-axis depth dose curves and optically stimulated luminescence (OSL) responses were obtained in a water phantom for 6 and 18 MV photons, and for 6, 9, 12, 16, and 20 MeV electron beams from a Varian 21EX linear accelerator. Single OSL measurements could be repeated with a precision of 0.7% (one standard deviation) and the differences between absorbed doses measured with OSLDs and an ionization chamber were within {+-}1% for photon beams. Similar results were obtained for electron beams in the low-gradient region after correction for a 1.9% photon-to-electron bias. The distance-to-agreement values were of the order of 0.5-1.0 mm for electrons in high dose gradient regions. Additional investigations also demonstrated that the OSL response dependence on dose rate, field size, and irradiation temperature is less than 1% in the conditions of the present study. Regarding the beam energy/quality dependence, the relative response of the OSLD for 18 MV was (0.51{+-}0.48)% of the response for the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam was in average 1.9% higher, but this result requires further confirmation. The relative response did not seem to vary with electron energy at d{sub max} within the experimental uncertainties (0.5% in average) and, therefore, a fixed correction factor of 1.9% eliminated the energy dependence in our experimental conditions.

Yukihara, E. G.; Mardirossian, G.; Mirzasadeghi, M.; Guduru, S.; Ahmad, S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Department of Radiation Oncology, Mount Sinai Comprehensive Cancer Center, Miami Beach, Florida 33140 (United States); Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 825 Northeast 10th Street, OUPB 1430, Oklahoma City, Oklahoma 73104 (United States); Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 825 Northeast 10th Street, OUPB 1430, Oklahoma City, Oklahoma 73104 (United States)

2008-01-15T23:59:59.000Z

104

Coupled optical and electronic simulations of electrically pumped photonic-crystal-based LEDs  

E-Print Network [OSTI]

to investigate design tradeoffs in electrically pumped photonic crystal light emitting diodes. A finite. Keywords: Photonic crystal light emitting diode, electrically pumped device 1. INTRODUCTION Recently optoelectronic devices, such as light emitting diodes (LEDs) and lasers. It has been suggested that a thin slab

Dutton, Robert W.

105

Optical beam induced current measurements based on two-photon absorption process in 4H-SiC bipolar diodes  

SciTech Connect (OSTI)

Using a pulsed green laser with a wavelength of 532?nm, a duration pulse of ?1?ns, and a mean power varying between 1 and 100?mW, induced photocurrents have been measured in 4H-SiC bipolar diodes. Considering the photon energy (2.33?eV) and the bandgap of 4H-SiC (3.2?eV), the generation of electron-hole pair by the conventional single photon absorption process should be negligible. The intensity of the measured photocurrents depends quadratically on the power beam intensity. This clearly shows that they are generated using two-photon absorption process. As in conventional OBIC (Optical Beam Induced Current), the measurements give an image of the electric field distribution in the structure under test, and the minority carrier lifetime can be extracted from the decrease of the photocurrent at the edge of the structure. The extracted minority carrier lifetime of 210?ns is consistent with results obtained in case of single photon absorption.

Hamad, H.; Raynaud, C.; Bevilacqua, P.; Tournier, D.; Planson, D. [Ampre Laboratory - UMR 5005, 21, Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Vergne, B. [Franco-Allemand Institute of Saint-Louis ISL, 5, Rue du Gnral Cassagnou, 68300 Saint-Louis (France)

2014-02-24T23:59:59.000Z

106

Coherent-feedback-induced photon blockade and optical bistability by an optomechanical controller  

E-Print Network [OSTI]

It is well-known that some nonlinear phenomena such as strong photon blockade are hard to be observed in optomechanical system with current experimental technology. Here, we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers and enhances quantum nonlinearity from the controller to the controlled cavity, which makes it possible to observe strong nonlinear effects in either linear cavity or optomechanical cavity. More interestingly, we find that the strong photon blockade under single-photon optomechanical weak coupling condition could be observed in the quantum regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomenon. We hope that our work can give new perspectives in engineering nonlinear quantum phenomena.

Yu-Long Liu; Zhong-Peng Liu; Jing Zhang; Yu-xi Liu

2014-07-11T23:59:59.000Z

107

MTL ANNUAL RESEARCH REPORT 2014 Photonics 99 Photonics, Optoelectronics  

E-Print Network [OSTI]

MTL ANNUAL RESEARCH REPORT 2014 Photonics 99 Photonics, Optoelectronics Generating Optical Orbital................................................................................................................................................118 Optoelectronics Based on Monolayer WSe2 p-n Diodes

Reif, Rafael

108

Generation of nonclassical states of light via photon blockade in optical nanocavities  

SciTech Connect (OSTI)

The generation of nonclassical states of light via photon blockade with time-modulated input is analyzed. We show that improved single-photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternative method, where the system is driven via a continuous-wave laser and the frequency of the dipole is controlled (e.g., electrically) at very fast time scales is presented.

Faraon, Andrei; Majumdar, Arka; Vuckovic, Jelena [E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States)

2010-03-15T23:59:59.000Z

109

Tunable micro-cavities in photonic band-gap yarns and optical fibers  

E-Print Network [OSTI]

The vision behind this work is the fabrication of high performance innovative fiber-based optical components over kilometer length-scales. The optical properties of these fibers derive from their multilayer dielectric ...

Benoit, Gilles, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

110

Angular distribution of Ly resonant photons emergent from optically thick , Ishani Roy2  

E-Print Network [OSTI]

at high redshifts as well as optical afterglow of gamma ray bursts (Haiman et al. 2000; Fardal et al. 2001

Shu, Chi-Wang

111

Nonimaging Optical Gain in Luminescent Concentration through Photonic Control of Emission Etendue  

E-Print Network [OSTI]

that maximize radiative transfer by optimally transforming the incident optical etendue, that is, by converting concentrators based on reflective, refractive, or diffractive optics operate most effectively for collimated but have so far been unable to exploit the power of nonimaging optics to further increase

Rogers, John A.

112

Phase-matched emission from an optically thin medium following one-photon pulse excitation: Energy considerations  

SciTech Connect (OSTI)

Scully and coworkers [M. O. Scully, E. S. Fry, C. H. R. Oii, and K. Wodkiewicz, Phys. Rev. Lett. 96, 010501 (2006)] demonstrated that there is directional, phase-matched emission following the excitation of an ensemble of atoms by a single-photon pulse. While the phase-matched emission intensity is proportional to the the number of atoms, for optically thin samples the total energy emitted in the phase-matched direction is much less than that radiated in other directions. Moreover, even for optically thin samples, it is necessary to take into account effects related to cooperative decay if energy is to be conserved in the overall emission process. An analytic calculation is presented to show explicitly how cooperative decay reduces the incoherent emission and restores energy conservation in this low-density limit.

Berman, P. R.; Le Goueet, J.-L. [Michigan Center for Theoretical Physics and Physics Department, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040 (United States); Laboratoire Aime Cotton, CNRS UPR3321, Universite Paris Sud, Batiment 505, Campus Universitaire, F-91405 Orsay (France)

2011-03-15T23:59:59.000Z

113

Beam-helicity asymmetry in associated electroproduction of real photons $ep \\to e??N$ in the $?$-resonance region  

E-Print Network [OSTI]

The beam-helicity asymmetry in associated electroproduction of real photons, $ep\\to e\\gamma \\pi N$, in the $\\Delta$(1232)-resonance region is measured using the longitudinally polarized HERA positron beam and an unpolarized hydrogen target. Azimuthal Fourier amplitudes of this asymmetry are extracted separately for two channels, $ep\\to e\\gamma \\pi^0 p$ and $ep\\to e\\gamma \\pi^+ n$, from a data set collected with a recoil detector. All asymmetry amplitudes are found to be consistent with zero.

The HERMES Collaboration; A. Airapetian; N. Akopov; E. C. Aschenauer; W. Augustyniak; R. Avakian; A. Avetissian; E. Avetisyan; H. P. Blok; H. Bttcher; A. Borissov; J. Bowles; I. Brodski; V. Bryzgalov; J. Burns; G. P. Capitani; E. Cisbani; G. Ciullo; M. Contalbrigo; P. F. Dalpiaz; W. Deconinck; R. De Leo; E. De Sanctis; M. Diefenthaler; P. Di Nezza; M. Dren; M. Ehrenfried; G. Elbakian; F. Ellinghaus; E. Etzelmller; R. Fabbri; S. Frullani; G. Gapienko; V. Gapienko; J. Garay Garca; F. Garibaldi; G. Gavrilov; V. Gharibyan; F. Giordano; S. Gliske; M. Hartig; D. Hasch; Y. Holler; I. Hristova; A. Ivanilov; H. E. Jackson; S. Joosten; R. Kaiser; G. Karyan; T. Keri; E. Kinney; A. Kisselev; V. Korotkov; V. Kozlov; P. Kravchenko; V. G. Krivokhijine; L. Lagamba; L. Lapiks; I. Lehmann; P. Lenisa; W. Lorenzon; X. -G. Lu; B. -Q. Ma; D. Mahon; N. C. R. Makins; S. I. Manaenkov; Y. Mao; B. Marianski; H. Marukyan; C. A. Miller; Y. Miyachi; A. Movsisyan; V. Muccifora; M. Murray; A. Mussgiller; Y. Naryshkin; A. Nass; M. Negodaev; W. -D. Nowak; L. L. Pappalardo; R. Perez-Benito; A. Petrosyan; P. E. Reimer; A. R. Reolon; C. Riedl; K. Rith; G. Rosner; A. Rostomyan; J. Rubin; D. Ryckbosch; Y. Salomatin; A. Schfer; G. Schnell; B. Seitz; T. -A. Shibata; M. Stahl; M. Statera; E. Steffens; J. J. M. Steijger; J. Stewart; F. Stinzing; S. Taroian; A. Terkulov; R. Truty; A. Trzcinski; M. Tytgat; Y. Van Haarlem; C. Van Hulse; V. Vikhrov; I. Vilardi; S. Wang; S. Yaschenko; Z. Ye; S. Yen; V. Zagrebelnyy; B. Zihlmann; P. Zupranski

2014-02-11T23:59:59.000Z

114

E-Print Network 3.0 - applied optical metrology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Sciences Summary: Research - Quantum Optics Applied Optics & Photonics - Optoelectronics - Optical Communications - Medical... Optics Engineering - Optical System Design...

115

All-Optical Switching Using the Quantum Zeno Effect and Two-Photon Absorption  

E-Print Network [OSTI]

We have previously shown that the quantum Zeno effect can be used to implement quantum logic gates for quantum computing applications, where the Zeno effect was produced using a strong two-photon absorbing medium. Here we show that the Zeno effect can also be used to implement classical logic gates whose inputs and outputs are high-intensity fields (coherent states). The operation of the devices can be understood using a quasi-static analysis, and their switching times are calculated using a dynamic approach. The two-photon absorption coefficient of rubidium vapor is shown to allow operation of these devices at relatively low power levels.

B. C. Jacobs; J. D. Franson

2009-05-08T23:59:59.000Z

116

Large-Scale Photonic Integration for Advanced All-Optical Routing Functions  

E-Print Network [OSTI]

's electronic routers. This translates into potential energy savings through reduced power consumption. As part than 200 functional elements and operates at 40 Gbps per port. ©2010 Optical Society of America OCIS-channel monolithic tunable optical router (MOTOR) chip operating at 40 Gbps per port. This multi

Coldren, Larry A.

117

Photonic-powered cable assembly  

DOE Patents [OSTI]

A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

2013-01-22T23:59:59.000Z

118

Photonic-powered cable assembly  

DOE Patents [OSTI]

A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

2014-06-24T23:59:59.000Z

119

Photon-number entangled states generated in Kerr media with optical parametric pumping  

SciTech Connect (OSTI)

Two nonlinear Kerr oscillators mutually coupled by parametric pumping are studied as a source of states entangled in photon numbers. Temporal evolution of entanglement quantified by negativity shows the effects of sudden death and birth of entanglement. Entanglement is preserved even in asymptotic states under certain conditions. The role of reservoirs at finite temperature in entanglement evolution is elucidated. Relation between generation of entangled states and violation of Cauchy-Schwartz inequality for oscillator intensities is found.

Kowalewska-Kudlaszyk, A.; Leonski, W.; Perina, Jan Jr. [Nonlinear Optics Division, Department of Physics, Adam Mickiewicz University, Umultowska 85, PL-61-614 Poznan (Poland)

2011-05-15T23:59:59.000Z

120

Nanoscale optical positioning of single quantum dots for bright, pure, and on-demand single-photon emission  

E-Print Network [OSTI]

Self-assembled, epitaxially-grown InAs/GaAs quantum dots are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of quantum dots, presenting a challenge in creating devices that exploit the strong interaction of single quantum dots with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single quantum dots with respect to alignment features with an average (minimum) position uncertainty efficiency (48 % +/- 5 % into a 0.4 numerical aperture lens, close to the theoretically predicted value of 50 %), low multiphoton prob...

Sapienza, Luca; Badolato, Antonio; Srinivasan, Kartik

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials  

E-Print Network [OSTI]

to be flexible and stretch-tuneable without issues of bowing or collapse4,17. They also benefit from a high refractive index contrast due to the metal wires which exhibit negative permittivity below the metals plasma frequency, widening the band gap20,21. Gold... .-H., Kim, Y.-S., Constant, K. & Ho, K.-M. Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission. Adv. Mater. 19, 791794 (2007). 8. Rinne, S. A., Garcia-Santamaria, F. & Braun, P. V. Embedded cavities...

Ibbotson, Lindsey A.; Demetriadou, Angela; Stephen, Croxall; Hess, Ortwin; Baumberg, Jeremy J.

2015-02-09T23:59:59.000Z

122

Entanglement of a Photon and an Optical Lattice Spin Wave Y. O. Dudin,1  

E-Print Network [OSTI]

ground level. Storage of coherent light for 240 ms in an atomic Mott insulator was recently demonstrated in an atomic cloud cooled in a one-dimensional optical lattice. After a programmable storage time, we convert the spin-wave excitation into an idler field, and demonstrate violation of Bell's inequality for storage

Kuzmich, Alex

123

Broadband optical coupling between microstructured fibers and photonic band gap circuits: Two-dimensional paradigms  

E-Print Network [OSTI]

simple two-dimensional design models. We demonstrate an effective large- bandwidth small-footprint beam platform for integrated optics. Unlike conventional paradigms such as silicon on insulator SOI waveguides that guide light on a chip by total internal reflection index guiding , PBG-based microcircuits can guide

John, Sajeev

124

Which optical processes are suitable to make probabilistic single photon sources for quantum cryptography?  

E-Print Network [OSTI]

Single photon sources to be used in quantum cryptography must show higher order antibunching (HOA). HOA is reported by us in several many wave mixing processes. In the present work we have investigated the possibility of observing HOA in multiwave mixing processes in general. The generalized Hamiltonian is solved for several particular cases in Heisenberg picture and possibility of observing HOA is investigated with the help of criterion of Pathak and Garcia. Several particular cases of the generalized Hamiltonian are solved with the help of short time approximation technique and HOA is reported for pump modes of different multiwave mixing processes. It is also found that HOA can not be observed for the signal and stokes modes in of the cases studied here.

Amit Verma; Anirban Pathak

2009-09-02T23:59:59.000Z

125

NON-LINEAR OPTICS IN SEMICONDUCTORS POST DOCTORAL POSITION, PHOTONICS GROUP,  

E-Print Network [OSTI]

covering most of the infrared region of the spectrum. Harnessing nonlinear interactions is imperative for these devices. In contrast to lithium niobate, compound semiconductors such as GaAs-based compounds exhibit for lithium niobate. GaAs compounds also have high damage threshold and a mature fabrication technology

126

2076 OPTICS LETTERS / Vol. 27, No. 23 / December 1, 2002 Ultrasensitive and high-dynamic-range two-photon absorption  

E-Print Network [OSTI]

-photon absorption near 1.5 mm in several devices, including silicon avalanche1 and nonavalanche2 pho- todiodes, InGaAsP-photon absorption in a GaAs photomultiplier tube Jeffrey M. Roth and T. E. Murphy MIT Lincoln Laboratory, Lexington, 2002 We demonstrate improved efficiency and dynamic range for two-photon absorption at 1.5 mm

Murphy, Thomas E.

127

Optical power of semiconductor lasers with a low-dimensional active region  

SciTech Connect (OSTI)

A comprehensive analytical model for the operating characteristics of semiconductor lasers with a low-dimensional active region is developed. Particular emphasis is given to the effect of capture delay of both electrons and holes from a bulk optical confinement region into a quantum-confined active region and an extended set of rate equations is used. We derive a closed-form expression for the internal quantum efficiency as an explicit function of the injection current and parameters of a laser structure. Due to either electron or hole capture delay, the internal efficiency decreases with increasing injection current above the lasing threshold thus causing sublinearity of the light-current characteristic of a laser.

Asryan, Levon V., E-mail: asryan@vt.edu [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Sokolova, Zinaida N., E-mail: zina.sokolova@mail.ioffe.ru [Ioffe Physico-Technical Institute, St. Petersburg 194021 (Russian Federation)

2014-01-14T23:59:59.000Z

128

Photonic crystal light source  

DOE Patents [OSTI]

A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

2004-07-27T23:59:59.000Z

129

2070 OPTICS LETTERS / Vol. 29, No. 17 / September 1, 2004 400-photon-per-pulse ultrashort pulse autocorrelation  

E-Print Network [OSTI]

-photon absorption in silicon avalanche photodiodes,3 GaAs photomultiplier tubes,4 and InGaAsP laser diodes.5

Purdue University

131

TOWARDS CIGS SOLAR CELLS WITH REDUCED FILM THICKNESS: A STUDY OF OPTICAL PROPERTIES AND OF PHOTONIC STRUCTURES FOR LIGHT TRAPPING  

E-Print Network [OSTI]

. The electro-optical simulations are performed using Silvaco International, Inc. ATLAS software package

132

Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for $0 Optical Depth of the Universe to High Energy Gamma-Rays  

E-Print Network [OSTI]

We calculate the intergalactic photon density as a function of both energy and redshift for 0 gamma-rays in intergalactic space owing to interactions with low energy photons and the 2.7 K cosmic background radiation. We calculate the optical depth of the universe, tau, for gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at redshifts from ~0 to 5. We also give an analytic fit with numerical coefficients for approximating $\\tau(E_{\\gamma}, z)$. As an example of the application of our results, we calculate the absorbed spectrum of the blazar PKS 2155-304 at z = 0.117 and compare it with the spectrum observed by the H.E.S.S. air Cherenkov gamma-ray telescope array.

F. W. Stecker; M. A. Malkan; S. T. Scully

2006-05-25T23:59:59.000Z

133

Deterministic photon-emitter coupling in chiral photonic circuits  

E-Print Network [OSTI]

The ability to engineer photon emission and photon scattering is at the heart of modern photonics applications ranging from light harvesting, through novel compact light sources, to quantum-information processing based on single photons. Nanophotonic waveguides are particularly well suited for such applications since they confine photon propagation to a 1D geometry thereby increasing the interaction between light and matter. Adding chiral functionalities to nanophotonic waveguides lead to new opportunities enabling integrated and robust quantum-photonic devices or the observation of novel topological photonic states. In a regular waveguide, a quantum emitter radiates photons in either of two directions, and photon emission and absorption are reverse processes. This symmetry is violated in nanophotonic structures where a non-transversal local electric field implies that both photon emission and scattering may become directional. Here we experimentally demonstrate that the internal state of a quantum emitter determines the chirality of single-photon emission in a specially engineered photonic-crystal waveguide. Single-photon emission into the waveguide with a directionality of more than 90\\% is observed under conditions where practically all emitted photons are coupled to the waveguide. Such deterministic and highly directional photon emission enables on-chip optical diodes, circulators operating at the single-photon level, and deterministic quantum gates. Based on our experimental demonstration, we propose an experimentally achievable and fully scalable deterministic photon-photon CNOT gate, which so far has been missing in photonic quantum-information processing where most gates are probabilistic.

Immo Sllner; Sahand Mahmoodian; Sofie Lindskov Hansen; Leonardo Midolo; Alisa Javadi; Gabija Kiransk?; Tommaso Pregnolato; Haitham El-Ella; Eun Hye Lee; Jin Dong Song; Sren Stobbe; Peter Lodahl

2015-01-12T23:59:59.000Z

134

SPIE Optics + Photonics 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446Smalln n u a lF ATTACHMENT

135

Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices  

DOE Patents [OSTI]

Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

2012-10-02T23:59:59.000Z

136

Adaptive algorithms for QCSE optical modulators Excitonic optical absorption at near band gap photon energies in III-V compound semiconductor  

E-Print Network [OSTI]

. Typically, such designs make use of simple rectangular potential wells in the AlGaAs/GaAs or InP/InGaAsP1 Adaptive algorithms for QCSE optical modulators Excitonic optical absorption at near band gap of the quantum well, the excitonic optical absorption strength and energy can be manipulated. This quantum

Levi, Anthony F. J.

137

September 1, 2001 / Vol. 26, No. 17 / OPTICS LETTERS 1335 Perturbation Monte Carlo methods to solve inverse photon  

E-Print Network [OSTI]

September 1, 2001 / Vol. 26, No. 17 / OPTICS LETTERS 1335 Perturbation Monte Carlo methods to solve with respect to perturbations in background tissue optical properties. We then feed this derivative information to a nonlinear optimization algorithm to determine the optical properties of the tissue heterogeneity under

Boas, David

138

Bell tests with photon-entanglement: LHV models and critical efficiencies at the light of Wigner-PDC optics  

E-Print Network [OSTI]

Within the Wigner-PDC picture of photon entanglement, detection "errors" are not independent (though they may look, on average), nor can they be controlled by means of a technological improvement on the detectors. Those two elements make possible the interpretation of experimental evidence without the need to exclude local realism: for that reason, we propose the abandonment of the usual (photon, particle-based) description of (PDC-generated) light states, in favour of an also quantum, but field-theoretical description (QED), a description that finds a one-to-one equivalent in the Wigner-PDC approach we have advocated in recent posts.

Rodriguez, David

2011-01-01T23:59:59.000Z

139

Bell tests with photon-entanglement: LHV models and critical efficiencies at the light of Wigner-PDC optics  

E-Print Network [OSTI]

Within the Wigner-PDC picture of photon entanglement, detection "errors" are not independent (though they may look, on average), nor can they be controlled by means of a technological improvement on the detectors. Those two elements make possible the interpretation of experimental evidence without the need to exclude local realism: for that reason, we propose the abandonment of the usual (photon, particle-based) description of (PDC-generated) light states, in favour of an also quantum, but field-theoretical description (QED), a description that finds a one-to-one equivalent in the Wigner-PDC approach we have advocated in recent posts.

David Rodriguez

2011-12-15T23:59:59.000Z

140

Optical characterisation of 2D macroporous silicon photonic crystals with bandgaps around 3.5 and 1.3 lm  

E-Print Network [OSTI]

.3 lm J. Schilling a,*, A. Birner a,1 , F. Muller a , R.B. Wehrspohn a , R. Hillebrand a , U. Gosele was successfully downscaled from a pitch of 1.5 to 0.5 lm. Re¯ection measurements performed at these structures around k 1:3 lm. ? 2001 Elsevier Science B.V. All rights reserved. Keywords: Photonic crystal

Van Driel, Henry M.

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Photon-photon collisions  

SciTech Connect (OSTI)

Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

Brodsky, S.J.

1988-07-01T23:59:59.000Z

142

High-index-contrast electromechanical optical switches  

E-Print Network [OSTI]

System developers are looking to replace protocol-dependent, bandwidth-limited optical networks with intelligent optically-transparent integrated photonic networks. Several electromechanical optical switches are explored ...

Bryant, Reginald (Reginald Eugene), 1978-

2011-01-01T23:59:59.000Z

143

Optics in data center network architecture  

E-Print Network [OSTI]

Chapter 2 Reducing Cabling Complexity with Optics . . . . .Advances in Information Optics and Photonics. SPIE, 2008. [c-Through: Part-time Optics in Data Centers, in Proceedings

Farrington, Nathan

2012-01-01T23:59:59.000Z

144

Hidden Photons from the Sun  

E-Print Network [OSTI]

A brief account of the phenomenon of photon oscillations into sub-eV mass hidden photons is given and used to estimate the flux and properties of these hypothetical particles from the Sun. A new generation of dedicated helioscopes, the Solar Hidden Photon Search (SHIPS) in the Hamburg Observatory amongst them, will cover a vast region of parameter space.

Davide Cadamuro; Javier Redondo

2010-10-22T23:59:59.000Z

145

Ion photon emission microscope  

DOE Patents [OSTI]

An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

Doyle, Barney L. (Albuquerque, NM)

2003-04-22T23:59:59.000Z

146

BBGKY kinetic approach for an e{sup -}e{sup +}{gamma} plasma created from the vacuum in a strong laser-generated electric field: The one-photon annihilation channel  

SciTech Connect (OSTI)

In the present work a closed system of kinetic equations is obtained from the truncation of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the description of the vacuum creation of an electron-positron plasma and secondary photons due to a strong laser field. This truncation is performed in the Markovian approximation for the one-photon annihilation channel which is accessible due to the presence of the strong external field. Estimates of the photon production rate are obtained for different domains of laser field parameters (frequency {nu} and field strength E). A huge quantity of optical photons of the quasiclassical laser field is necessary to satisfy the conservation laws of the energy and momentum of the constituents (e{sup -}, e{sup +} and {gamma}) in this channel. Since the number of these optical photons corresponds to the order of perturbation theory, a vanishingly small photon production rate results for the optical region and strongly subcritical fields E<region {nu} < or approx. m the required number of laser photons is small and the production rate of photons from the one-photon annihilation process becomes accessible to observations for subcritical fields E < or approx. E{sub c}. In the infrared region the photon distribution has a 1/k spectrum typical for flicker noise.

Blaschke, D. B. [Institute for Theoretical Physics, University of Wroclaw, 50-204 Wroclaw (Poland); Bogoliubov Laboratory for Theoretical Physics, Joint Institute for Nuclear Research, RU - 141980 Dubna (Russian Federation); Dmitriev, V. V.; Smolyansky, S. A. [Department of Physics, Saratov State University, RU - 410026 Saratov (Russian Federation); Roepke, G. [Institut fuer Physik, University of Rostock, D - 18051 Rostock (Germany)

2011-10-15T23:59:59.000Z

147

Preserving photon qubits in an unknown quantum state with Knill Dynamical Decoupling - Towards an all optical quantum memory  

E-Print Network [OSTI]

The implementation of polarization-based quantum communication is limited by signal loss and decoherence caused by the birefringence of a single-mode fiber. We investigate the Knill dynamical decoupling scheme, implemented using half-wave plates, to minimize decoherence and show that a fidelity greater than $99\\%$ can be achieved in absence of rotation error and fidelity greater than $96\\%$ can be achieved in presence of rotation error. Such a scheme can be used to preserve any quantum state with high fidelity and has potential application for constructing all optical quantum delay line, quantum memory, and quantum repeater.

Manish K. Gupta; Erik J. Navarro; Todd A. Moulder; Jason D. Mueller; Ashkan Balouchi; Katherine L. Brown; Hwang Lee; Jonathan P. Dowling

2014-12-19T23:59:59.000Z

148

Ferroelectric domain building blocks for photonic and nonlinear optical microstructures in LiNbO{sub 3}  

SciTech Connect (OSTI)

The ability to manipulate the size and depth of poling inhibited domains, which are produced by UV laser irradiation of the +z face of lithium niobate crystals followed by electric field poling, is demonstrated. It is shown that complex domain structures, much wider than the irradiating laser spot, can be obtained by partially overlapping the subsequent UV laser irradiated tracks. The result of this stitching process is one uniform domain without any remaining trace of its constituent components thus increasing dramatically the utility of this method for the fabrication of surface microstructures as well as periodic and aperiodic domain lattices for nonlinear optical and surface acoustic wave applications. Finally, the impact of multi exposure on the domain characteristics is also investigated indicating that some control over the domain depth can be attained.

Zisis, G.; Ying, C. Y. J.; Mailis, S. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Soergel, E. [Institute of Physics, University of Bonn, Wegelerstrasse 8, 53115 Bonn (Germany)

2014-03-28T23:59:59.000Z

149

THE STRUCTURE OF THE X-RAY AND OPTICAL EMITTING REGIONS OF THE LENSED QUASAR Q 2237+0305  

SciTech Connect (OSTI)

We use gravitational microlensing to determine the size of the X-ray and optical emission regions of the quadruple lens system Q 2237+0305. The optical half-light radius, log(R{sub 1/2,V}/cm) = 16.41 {+-} 0.18 (at {lambda}{sub rest} = 2018 A), is significantly larger than the observed soft, log(R{sub 1/2,soft}/cm)=15.76{sup +0.41}{sub -0.34} (1.1-3.5 keV in the rest frame), and hard, log(R{sub 1/2,hard}/cm)=15.46{sup +0.34}{sub -0.29} (3.5-21.5 keV in the rest frame), band X-ray emission. There is weak evidence that the hard component is more compact than the soft, with log(R{sub 1/2,soft}/R{sub 1/2,hard}){approx_equal}0.30{sup +0.53}{sub -0.45}. This wavelength-dependent structure agrees with recent results found in other lens systems using microlensing techniques, and favors geometries in which the corona is concentrated near the inner edge of the accretion disk. While the available measurements are limited, the size of the X-ray emission region appears to be roughly proportional to the mass of the central black hole.

Mosquera, A. M.; Kochanek, C. S.; Blackburne, J. A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Chen, B.; Dai, X. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Chartas, G. [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States)

2013-05-20T23:59:59.000Z

150

Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region  

SciTech Connect (OSTI)

When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ?{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ?{sub peak} increases with the emission angle but its position, ?{sub peak}, is constant. Copper directional emissivity measurements as well as emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p?=?1.

Echniz, T. [Departamento de Fsica de la Materia Condensada, Facultad de Ciencia y Tecnologa, UPV/EHU, Sarriena s/n, Leioa 48940 (Spain); Prez-Sez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J. [Departamento de Fsica de la Materia Condensada, Facultad de Ciencia y Tecnologa, UPV/EHU, Sarriena s/n, Leioa 48940 (Spain); Instituto de Sntesis y Estudio de Materiales, Universidad del Pas Vasco, Apdo. 644, Bilbao 48080 (Spain)

2014-09-07T23:59:59.000Z

151

Supersonic metal plasma impact on a surface: An optical investigation of the pre-surface region  

SciTech Connect (OSTI)

Aluminum plasma, produced in high vacuum by a pulsed, filtered cathodic arc plasma source, was directed onto a wall where if formed a coating. The accompanying ?optical flare? known from the literature was visually observed, photographed, and spectroscopically investigated with appropriately high temporal (1 ?s) and spatial (100 ?m) resolution. Consistent with other observations using different techniques, it was found that the impact of the fully ionized plasma produces metal neutrals as well as desorbed gases, both of which interact with the incoming plasma. Most effectively are charge exchange collisions between doubly charged aluminum and neutral aluminum, which lead to a reduction of the flow of doubly charged before they reach the wall, and a reduction of neutrals as the move away from the surface. Those plasma-wall interactions are relevant for coating processes as well as for interpreting the plasma properties such as ion charge state distributions.

Fusion Science Group, AFRD; Plasma Applications Group, AFRD; Ni, Pavel A.; Anders, Andre

2009-12-15T23:59:59.000Z

152

Optical Packet Switching -1 Optical Networks  

E-Print Network [OSTI]

Optical Packet Switching - 1 Optical Networks: from fiber transmission to photonic switching Optical Packet Switching Fabio Neri and Marco Mellia TLC Networks Group ­ Electronics Department e.mellia@polito.it ­ tel. 011 564 4173 #12;Optical Packet Switching - 2 · This work is licensed under the Creative Commons

Mellia, Marco

153

Heterogeneous lithium niobate photonics on silicon substrates  

E-Print Network [OSTI]

Heterogeneous lithium niobate photonics on silicon substrates Payam Rabiei,1,* Jichi Ma,1 Saeed-confined lithium niobate photonic devices and circuits on silicon substrates is reported based on wafer bonding high- performance lithium niobate microring optical resonators and Mach- Zehnder optical modulators

Fathpour, Sasan

154

Designing of Metallic Photonic Structures and Applications  

SciTech Connect (OSTI)

In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters is essential to achieve the maximum output result.

Yong-Sung Kim

2006-08-09T23:59:59.000Z

155

Field Quantization, Photons and Non-Hermitean Modes  

E-Print Network [OSTI]

Field quantization in three dimensional unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes in both the cavity and external regions. The cavity non-Hermitean modes (NHM) are treated using the paraxial and monochromaticity approximations. The NHM bi-orthogonality relationships are used in a standard canonical quantization procedure based on introducing generalised coordinates and momenta for the electromagnetic (EM) field. The quantum EM field is equivalent to a set of quantum harmonic oscillators (QHO), associated with either the cavity or the external region NHM. This confirms the validity of the photon model in unstable optical systems, though the annihilation and creation operators for each QHO are not Hermitean adjoints. The quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which is sum of independent QHO Hamiltonians for each NHM, but the external field Hamiltonian also includes a coupling term responsible for external NHM photon exchange processes. Cavity energy gain and loss processes is associated with the non-commutativity of cavity and external region operators, given in terms of surface integrals involving cavity and external region NHM functions on the cavity-external region boundary. The spontaneous decay of a two-level atom inside an unstable cavity is treated using the essential states approach and the rotating wave approximation. Atomic transitions leading to cavity NHM photon absorption have a different coupling constant to those leading to photon emission, a feature resulting from the use of NHM functions. Under certain conditions the decay rate is enhanced by the Petermann factor.

S. A. Brown; B. J. Dalton

2001-09-10T23:59:59.000Z

156

Photon collider at TESLA  

E-Print Network [OSTI]

High energy photon colliders (gamma-gamma, gamma-electron) based on backward Compton scattering of laser light is a very natural addition to e+e- linear colliders. In this report we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case the gamma-gamma luminosity luminosity in the high energy part of spectrum can reach (1/3)L_{e+e-}. Typical cross sections of interesting processes in gamma-gamma collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in gamma-gamma collisions will be more than that in e+e- collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ``an optical storage ring (optical trap)'' with diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based at TESLA, its possible parameters and existing problems.

Valery Telnov

2001-03-06T23:59:59.000Z

157

Quantum Enabled Security (QES) for Optical Communications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

integrated with optical communications to provide a strong, innate, security foundation at the photonic layer for optical fiber networks. July 10, 2013 Quantum Enabled...

158

Two-Photon Emission from Semiconductors  

E-Print Network [OSTI]

We report the first experimental observations of two-photon emission from semiconductors, to the best of our knowledge, and develop a corresponding theory for the room-temperature process. Spontaneous two-photon emission is demonstrated in optically-pumped bulk GaAs and in electrically-driven GaInP/AlGaInP quantum wells. Singly-stimulated two-photon emission measurements demonstrate the theoretically predicted two-photon optical gain in semiconductors - a necessary ingredient for any realizations of future two-photon semiconductor lasers. Photon-coincidence experiment validates the simultaneity of the electrically-driven GaInP/AlGaInP two-photon emission, limited only by detector's temporal resolution.

Alex Hayat; Pavel Ginzburg; Meir Orenstein

2007-10-25T23:59:59.000Z

159

The Sun in Hidden Photons  

E-Print Network [OSTI]

We present some aspects and first results of the emission of sub-eV mass hidden photons from the Sun. The contribution from a resonant region below the photosphere can be quite significant, raising previous estimates. This is relevant for the Telescope for Hidden Photon Search, TSHIPS I, currently targeting at meV-mass hidden photons with O(10^-6) kinetic mixing with the photon. These particles could account for the large effective number of neutrinos pointed at by the cosmic microwave background and other large-scale structure probes, and are motivated in some scenarios of string theory.

Javier Redondo

2012-02-22T23:59:59.000Z

160

Anomalous phenomena and spectral tailoring in photonic crystals  

E-Print Network [OSTI]

Photonic crystals are recently discovered meta-materials whose optical properties arise from periodic refractive index variations. In this thesis I examine various aspects of photonic crystals including a self-assembled ...

Ghebrebrhan, Michael

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear photonics  

SciTech Connect (OSTI)

With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

2012-07-09T23:59:59.000Z

162

Spontaneous Photon Emission in Cavities  

E-Print Network [OSTI]

We investigate spontaneous photon emission processes of two-level atoms in parabolic and ellipsoidal cavities thereby taking into account the full multimode scenario. In particular, we calculate the excitation probabilities of the atoms and the energy density of the resulting few-photon electromagnetic radiation field by using semiclassical methods for the description of the multimode scenario. Based on this approach photon path representations are developed for relevant transition probability amplitudes which are valid in the optical frequency regime where the dipole and the rotating-wave approximations apply. Comparisons with numerical results demonstrate the quality of these semiclassical results even in cases in which the wave length of a spontaneously emitted photon becomes comparable or even larger than characteristic length scales of the cavity. This is the dynamical regime in which diffraction effects become important so that geometric optical considerations are typically not applicable.

Gernot Alber; Nils Trautmann

2014-12-04T23:59:59.000Z

163

Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene  

E-Print Network [OSTI]

Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here...

Maysonnave, J; Wang, F; Maero, S; Berger, C; de Heer, W; Norris, T B; De Vaulchier, L A; Dhillon, S; Tignon, J; Ferreira, R; Mangeney, J

2015-01-01T23:59:59.000Z

164

Controlling the quantum state of a single photon emitted from a single polariton  

SciTech Connect (OSTI)

We investigate in detail the optimal conditions for a high fidelity transfer from a single-polariton state to a single-photon state and subsequent homodyne detection of the single photon. We assume that, using various possible techniques, the single polariton has initially been stored as a spin-wave grating in a cloud of cold atoms inside a low-finesse cavity. This state is then transferred to a single-photon optical pulse using an auxiliary beam. We optimize the retrieval efficiency and determine the mode of the local oscillator that maximizes the homodyne efficiency of such a photon. We find that both efficiencies can have values close to one in a large region of experimental parameters.

Stanojevic, Jovica; Parigi, Valentina; Bimbard, Erwan; Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Grangier, Philippe [Laboratoire Charles Fabry, Institut d'Optique, CNRS, Universite Paris-Sud, Campus Polytechnique, RD 128, FR-91127 Palaiseau cedex (France)

2011-11-15T23:59:59.000Z

165

Measurement of photon correlations with multipixel photon counters  

E-Print Network [OSTI]

Development of reliable photon number resolving detectors (PNRD), devices which are capable to distinguish 1,2,3.. photons, is of a great importance for quantum optics and its applications. A new class of affordable PNRD is based on multipixel photon counters (MPPC). Here we review results of experiments on using MPPCs for direct characterization of squeezed vacuum (SV) states, generated via parametric downconversion (PDC). We use MPPCs to measure the second order normalized intensity correlation function (g^(2)) and directly detect the two-mode squeezing of SV states. We also present a method of calibration of crosstalk probability in MPPCs based on g^(2) measurements of coherent states.

Dmitry Kalashnikov; Leonid A. Krivitsky

2014-08-01T23:59:59.000Z

166

Electromagnetically induced transparency in a five-level {Lambda} system dominated by two-photon resonant transitions  

SciTech Connect (OSTI)

We study the steady optical response of a five-level atomic system in the parametric region where resonant two-photon transitions are much stronger than far-detuned single-photon transitions. We find that the concurrent absorption of two weak probe fields can be well suppressed in a narrow spectral region to attain electromagnetically induced transparency (EIT) via quantum destructive interference between different two-photon transition pathways. To gain a deeper insight into relevant physics, we adiabatically reduce this five-level system with trivial single-photon transitions into a three-level system with vanishing single-photon transitions by deriving an effective Hamiltonian. The two systems have almost the same two-photon absorption spectra exhibiting typical EIT features but are a little different in fine details. This means that most characteristics of two-photon quantum destructive interference are reserved after the adiabatic elimination approximation. In addition, we verify by numerical calculations that the two-photon EIT spectra are insensitive to the dipole-dipole interaction of cold Rydberg atoms when the uppermost level has a high principle quantum number.

Yan Dong [College of Physics, Jilin University, Changchun 130012 (China); School of Science, Changchun University, Changchun 130022 (China); Gao Jinwei; Bao Qianqian; Yang Hong; Wang Heng; Wu Jinhui [College of Physics, Jilin University, Changchun 130012 (China)

2011-03-15T23:59:59.000Z

167

FY 2006 Infrared Photonics Final Report  

SciTech Connect (OSTI)

Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrologyall specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

2006-12-28T23:59:59.000Z

168

Engineered Quantum Dot Single Photon Sources  

E-Print Network [OSTI]

Fast, high efficiency, and low error single photon sources are required for implementation of a number of quantum information processing applications. The fastest triggered single photon sources to date have been demonstrated using epitaxially grown semiconductor quantum dots (QDs), which can be conveniently integrated with optical microcavities. Recent advances in QD technology, including demonstrations of high temperature and telecommunications wavelength single photon emission, have made QD single photon sources more practical. Here we discuss the applications of single photon sources and their various requirements, before reviewing the progress made on a quantum dot platform in meeting these requirements.

Sonia Buckley; Kelley Rivoire; Jelena Vuckovic

2012-10-03T23:59:59.000Z

169

Measurement of g-factors of ground and excited optical states of Er3+ in YLiF4 and LuLiF4 in zero dc magnetic field by photon echo method  

E-Print Network [OSTI]

New scheme of definition of g-factors as ground as excited optical states of a paramagnetic ion in zero external constant magnetic field has been proposed and experimentally realized in optical systems in which Zeeman Effect is manifested. A pulse of a weak magnetic field leads to occurrence of relative phase shifts of the excited dipoles and, as consequence, to modulation of a photon echo waveform if magnetic pulse (MP) overlaps in time with echo-pulse. The modulation periods of the waveform depend on polarization of the laser light, which excites the photon echo. The values of these periods for {\\sigma}- and {\\pi}- laser light polarization have been measured and then the g-factors of the ground 4I15/2 and excited 4F9/2 states of the Er3+ ion in the LuLiF4 and the YLiF4 matrices have been determined. Values of the g-factors have been compared with the known literary data.

Lisin, V N; Samartsev, V V

2014-01-01T23:59:59.000Z

170

Optical imaging of Rydberg atoms .  

E-Print Network [OSTI]

??We present an experiment exploring electromagnetically induced transparency (EIT) in Rydberg atoms in order to observe optical nonlinearities at the single photon level. ??Rb atoms (more)

Mazurenko, Anton

2012-01-01T23:59:59.000Z

171

AN INTRODUCTION TO QUANTUM OPTICS...  

E-Print Network [OSTI]

AN INTRODUCTION TO QUANTUM OPTICS... ...the light as you've never seen before... Optics:http://science.howstuffworks.com/laser5.htm #12;5 DEFINITION Quantum Optics: "Quantum optics is a field in quantum physics, dealing OPTICS OPERATORS Light is described in terms of field operators for creation and annihilation of photons

Palffy-Muhoray, Peter

172

Method for Creating Photonic Band Gap Materials - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a photonic band gap. These microstructures have the potential to change the way optoelectronic devices, such as photodiodes, LEDs, and integrated optical circuit elements, are...

173

Methods and systems for Raman and optical cross-interrogation in flow-through silicon membranes  

DOE Patents [OSTI]

Cross-interrogating photonic detection systems and methods are shown. A flow through photonic crystal membrane with a surface enhanced Raman scattering (SERS) substrate is provided with pores which are distributed along multiple regions. The pores of one region have walls to which a first type of target specific anchor can be attached, while pores of another region have walls to which a second type of target specific anchor can be attached. An optical arrangement out-of-plane to the SERS substrate is also provided for enhanced sensitivity and identification of target organisms.

Bond, Tiziana C.; Letant, Sonia E.

2014-09-09T23:59:59.000Z

174

High index contrast platform for silicon photonics  

E-Print Network [OSTI]

This thesis focuses on silicon-based high index contrast (HIC) photonics. In addition to mature fiber optics or low index contrast (LIC) platform, which is often referred to as Planar Lightwave Cirrcuit (PLC) or Silica ...

Akiyama, Shoji, 1972-

2004-01-01T23:59:59.000Z

175

E-Print Network 3.0 - anisotropic optical properties Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties Page: << < 1 2 3 4 5 > >> 1 University of Central Florida College of Optics & Photonics Optics Summary: homogenous anisotropic media Index ellipsoid Optical...

176

E-Print Network 3.0 - advanced optical measurements Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results for: advanced optical measurements Page: << < 1 2 3 4 5 > >> 1 The College of Optics & Photonics Industrial Affiliates Day Summary: ) to optimize optical properties...

177

A photonic cluster state machine gun  

E-Print Network [OSTI]

We present a method to convert certain single photon sources into devices capable of emitting large strings of photonic cluster state in a controlled and pulsed "on demand" manner. Such sources would greatly reduce the resources required to achieve linear optical quantum computation. Standard spin errors, such as dephasing, are shown to affect only 1 or 2 of the emitted photons at a time. This allows for the use of standard fault tolerance techniques, and shows that the photonic machine gun can be fired for arbitrarily long times. Using realistic parameters for current quantum dot sources, we conclude high entangled-photon emission rates are achievable, with Pauli-error rates per photon of less than 0.2%. For quantum dot sources the method has the added advantage of alleviating the problematic issues of obtaining identical photons from independent, non-identical quantum dots, and of exciton dephasing.

Netanel H. Lindner; Terry Rudolph

2009-08-23T23:59:59.000Z

178

Optical Quantum Computing  

E-Print Network [OSTI]

In 2001 all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single photon sources, linear optical elements, and single photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high efficiency single photon detectors, and low-loss interfacing of these components.

Jeremy L. O'Brien

2008-03-11T23:59:59.000Z

179

Nonlinear interaction between two heralded single photons  

E-Print Network [OSTI]

Harnessing nonlinearities strong enough to allow two single photons to interact with one another is not only a fascinating challenge but is central to numerous advanced applications in quantum information science. Currently, all known approaches are extremely challenging although a few have led to experimental realisations with attenuated classical laser light. This has included cross-phase modulation with weak classical light in atomic ensembles and optical fibres, converting incident laser light into a non-classical stream of photon or Rydberg blockades as well as all-optical switches with attenuated classical light in various atomic systems. Here we report the observation of a nonlinear parametric interaction between two true single photons. Single photons are initially generated by heralding one photon from each of two independent spontaneous parametric downconversion sources. The two heralded single photons are subsequently combined in a nonlinear waveguide where they are converted into a single photon with a higher energy. Our approach highlights the potential for quantum nonlinear optics with integrated devices, and as the photons are at telecom wavelengths, it is well adapted to applications in quantum communication.

T. Guerreiro; A. Martin; B. Sanguinetti; J. S. Pelc; C. Langrock; M. M. Fejer; N. Gisin; H. Zbinden; N. Sangouard; R. T. Thew

2014-03-09T23:59:59.000Z

180

Optical XOR gate  

DOE Patents [OSTI]

An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

Vawter, G. Allen

2013-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Self-frequency summing in quantum dot photonic crystal nanocavity lasers  

SciTech Connect (OSTI)

We demonstrate self-frequency summing in photonic crystal nanocavity lasers with quantum dot gain. Two dipole modes and a hexapole mode, supported in the cavity, simultaneously showed lasing oscillation in the near infrared wavelength region under optical carrier injection. Meanwhile, within the same laser cavity, the internally generated three laser fields are up-converted to exhibit sharp visible emission lines via intra-cavity nonlinear frequency summing (and doubling) processes. This self-frequency summing process in active nanocavities will pave the way for developing nanoscale nonlinear optical light sources.

Ota, Yasutomo; Watanabe, Katsuyuki [Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)] [Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Iwamoto, Satoshi; Arakawa, Yasuhiko [Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan) [Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

2013-12-09T23:59:59.000Z

182

Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system  

E-Print Network [OSTI]

We study dynamics of the interaction between two weak light beams mediated by a strongly coupled quantum dot-photonic crystal cavity system. First, we perform all optical switching of a weak continuous-wave signal with a pulsed control beam, and then perform switching between two pulsed beams (40ps pulses) at the single photon level. Our results show that the quantum dot-nanocavity system creates strong, controllable interactions at the single photon level.

Dirk Englund; Arka Majumdar; Michal Bajcsy; Andrei Faraon; Pierre Petroff; Jelena vuckovic

2011-07-14T23:59:59.000Z

183

SWIFT ULTRAVIOLET/OPTICAL TELESCOPE IMAGING OF STAR-FORMING REGIONS IN M81 AND HOLMBERG IX  

SciTech Connect (OSTI)

We present Swift UV/Optical Telescope (UVOT) imaging of the galaxies M81 and Holmberg IX. We combine UVOT imaging in three near-ultraviolet (NUV) filters (uvw2: 1928 A; uvm2: 2246 A; uvw1: 2600 A) with ground-based optical imaging from the Sloan Digital Sky Survey to constrain the stellar populations of both galaxies. Our analysis consists of three different methods. First, we use the NUV imaging to identify UV star-forming knots and then perform spectral energy distribution (SED) modeling on the UV/optical photometry of these sources. Second, we measure surface brightness profiles of the disk of M81 in the NUV and optical. Lastly, we use SED fitting of individual pixels to map the properties of the two galaxies. In agreement with earlier studies, we find evidence for a burst in star formation in both galaxies starting {approx}200 Myr ago coincident with the suggested time of an M81-M82 interaction. In line with theories of its origin as a tidal dwarf, we find that the luminosity-weighted age of Holmberg IX is a few hundred million years. Both galaxies are best fit by a Milky Way dust extinction law with a prominent 2175 A bump. In addition, we describe a stacked median filter technique for modeling the diffuse background light within a galaxy and a Markov chain method for cleaning segment maps generated by SExtractor.

Hoversten, E. A.; Gronwall, C.; Siegel, M. H. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Vanden Berk, D. E. [Physics Department, St. Vincent College, Latrobe, PA 15650 (United States); Basu-Zych, A. R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Breeveld, A. A.; Kuin, N. P. M.; Page, M. J. [Mullard Space Science Laboratory/UCL, Holbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Brown, P. J. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Roming, P. W. A. [Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States)

2011-06-15T23:59:59.000Z

184

E-Print Network 3.0 - active optical waveguides Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

first hybrid nanowire photonic Summary: between 365 and 494 nm ( see earlier story on optics.org). Nanowires light up photonic crystal waveguides... 1 3Nanowires light up...

185

E-Print Network 3.0 - all-dielectric optical elements Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demonstrated. - All dielectric feature provides front-end survivability - The use of optics provides unique... AllAll--Dielectric PhotonicDielectric Photonic--AssistedAssisted...

186

800 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 10, MAY 15, 2008 One-Level Simplification Method for All-Optical  

E-Print Network [OSTI]

system where two successive values differ by only one digit) to a 4-bit binary coded decimal (BCD code to binary coded decimal converter is successfully developed for the first time by using-optical 1LSM, we numerically demonstrate the successful operation of a 4-bit gray code (bi- nary numeral

Park, Namkyoo

187

Photonic switching devices based on semiconductor nanostructures  

E-Print Network [OSTI]

Focusing and guiding light into semiconductor nanostructures can deliver revolutionary concepts for photonic devices, which offer a practical pathway towards next-generation power-efficient optical networks. In this review, we consider the prospects for photonic switches using semiconductor quantum dots (QDs) and photonic cavities which possess unique properties based on their low dimensionality. The optical nonlinearity of such photonic switches is theoretically analyzed by introducing the concept of a field enhancement factor. This approach reveals drastic improvement in both power-density and speed, which is able to overcome the limitations that have beset conventional photonic switches for decades. In addition, the overall power consumption is reduced due to the atom-like nature of QDs as well as the nano-scale footprint of photonic cavities. Based on this theoretical perspective, the current state-of-the-art of QD/cavity switches is reviewed in terms of various optical nonlinearity phenomena which have been utilized to demonstrate photonic switching. Emerging techniques, enabled by cavity nonlinear effects such as wavelength tuning, Purcell-factor tuning and plasmonic effects are also discussed.

Chao-Yuan Jin; Osamu Wada

2014-02-26T23:59:59.000Z

188

Photon Calorimeter  

DOE Patents [OSTI]

A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

Chow, Tze-Show (Hayward, CA)

1989-01-01T23:59:59.000Z

189

Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography  

SciTech Connect (OSTI)

The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6 through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

2014-07-07T23:59:59.000Z

190

Light trapping in thin film solar cells using textured photonic crystal  

DOE Patents [OSTI]

A solar cell includes a photoactive region that receives light. A photonic crystal is coupled to the photoactive region, wherein the photonic crystal comprises a distributed Bragg reflector (DBR) for trapping the light.

Yi, Yasha (Somerville, MA); Kimerling, Lionel C. (Concord, MA); Duan, Xiaoman (Amesbury, MA); Zeng, Lirong (Cambridge, MA)

2009-01-27T23:59:59.000Z

191

Heavy photon search experiment at JLAB  

SciTech Connect (OSTI)

The Heavy Photon Search (HPS) experiment in Hall-B at Jefferson Lab will search for new heavy vector boson(s), aka 'heavy photons', in the mass range of 20 MeV/c{sup 2} to 1000 MeV/c{sup 2} using the scattering of high energy, high intensity electron beams off a high Z target. The proposed measurements will cover the region of parameter space favored by the muon g-2 anomaly, and will explore a significant region of parameter space, not only at large couplings (??/? > 10{sup ?7}), but also in the regions of small couplings, down to ??/??10{sup ?10}. The excellent vertexing capability of the Si-tracker uniquely enables HPS to cover the small coupling region. Also, HPS will search for heavy photons in an alternative to the e{sup +}e{sup ?} decay mode, in the heavy photon's decay to ?{sup +}??.

Stepanyan, S. [Jefferson Lab, Newport News, VA (United States); Collaboration: HPS Collaboration

2013-11-07T23:59:59.000Z

192

Optical Quadratic Measure Eigenmodes  

E-Print Network [OSTI]

We report a mathematically rigorous technique which facilitates the optimization of various optical properties of electromagnetic fields. The technique exploits the linearity of electromagnetic fields along with the quadratic nature of their interaction with matter. In this manner we may decompose the respective fields into optical quadratic measure eigenmodes (QME). Key applications include the optimization of the size of a focused spot, the transmission through photonic devices, and the structured illumination of photonic and plasmonic structures. We verify the validity of the QME approach through a particular experimental realization where the size of a focused optical field is minimized using a superposition of Bessel beams.

Michael Mazilu; Joerg Baumgartl; Sebastian Kosmeier; Kishan Dholakia

2010-07-13T23:59:59.000Z

193

Localized Photonic jets from flat 3D dielectric cuboids in the reflection mode  

E-Print Network [OSTI]

A photonic jet (terajet at THz frequencies) commonly denotes a specific spatially localized region in the near-field at the front side of a dielectric particle with diameter comparable with wavelength illuminated with a plane wave from its backside (i.e., the jet emerges from the shadow surface of a dielectric particle). In this paper the formation of photonic is demonstrated using the recently proposed 3D dielectric cuboids working in reflection mode when the specific spatially localized region is localized towards the direction of incidence wavefront. The results of simulations based on Finite Integration Technique are discussed. All dimensions are given in wavelength units so that all results can be scaled any frequency of interest including optical frequencies, simplifying the fabrication process compared with spherical dielectrics. The results here presented may be of interest for novel applications including microscopy techniques and sensors.

Minin, I V; Pacheco-Pena, V; Beruete, M

2015-01-01T23:59:59.000Z

194

Efficient photon number detection with silicon avalanche photodiodes  

E-Print Network [OSTI]

We demonstrate an efficient photon number detector for visible wavelengths using a silicon avalanche photodiode. Under subnanosecond gating, the device is able to resolve up to four photons in an incident optical pulse. The detection efficiency at 600 nm is measured to be 73.8%, corresponding to an avalanche probability of 91.1% of the absorbed photons, with a dark count probability below 1.1x10^{-6} per gate. With this performance and operation close to room temperature, fast-gated silicon avalanche photodiodes are ideal for optical quantum information processing that requires single-shot photon number detection.

O. Thomas; Z. L. Yuan; J. F. Dynes; A. W. Sharpe; A. J. Shields

2010-07-21T23:59:59.000Z

195

Light-shift modulated photon-echo  

E-Print Network [OSTI]

We show that the AC-Stark shift (light-shift) is a powerful and versatile tool to control the emission of a photon-echo in the context of optical storage. As a proof-of-principle, we demonstrate that the photon-echo efficiency can be fully modulated by applying light-shift control pulses in an erbium doped solid. The control of the echo emission is attributed to the spatial gradient induced by the light-shift beam.

Chanelire, Thierry

2015-01-01T23:59:59.000Z

196

Light-shift modulated photon-echo  

E-Print Network [OSTI]

We show that the AC-Stark shift (light-shift) is a powerful and versatile tool to control the emission of a photon-echo in the context of optical storage. As a proof-of-principle, we demonstrate that the photon-echo efficiency can be fully modulated by applying light-shift control pulses in an erbium doped solid. The control of the echo emission is attributed to the spatial gradient induced by the light-shift beam.

Thierry Chanelire; Gabriel Htet

2015-02-24T23:59:59.000Z

197

Atmospheric optical calibration system  

DOE Patents [OSTI]

An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

Hulstrom, R.L.; Cannon, T.W.

1988-10-25T23:59:59.000Z

198

Counterintuitive temporal shape of single photons  

E-Print Network [OSTI]

We prepare heralded single photons from a photon pair source based on non-degenerate four-wave mixing in a cold atomic ensemble via a cascade decay scheme. Their statistics shows strong antibunching with g(2)(0) < 0.03, indicating a near single photon character. In an optical homodyne experiment, we directly measure the temporal envelope of these photons and find, depending on the heralding scheme, an exponentially decaying or rising profile. The rising envelope will be useful for efficient interaction between single photons and microscopic systems like single atoms and molecules. At the same time, their observation illustrates the breakdown of a realistic interpretation of the heralding process in terms of defining an initial condition of a physical system.

Gurpreet Kaur Gulati; Bharath Srivathsan; Brenda Chng; Alessandro Cer; Dzmitry Matsukevich; Christian Kurtsiefer

2014-02-24T23:59:59.000Z

199

Hybrid photonic entanglement: Realization, characterization and applications  

E-Print Network [OSTI]

We show that the quantum disentanglement eraser implemented on a two-photon system from parametric down-conversion is a general method to create hybrid photonic entanglement, namely the entanglement between different degrees of freedom of the photon pair. To demonstrate this, we generate and characterize a source with tunable degree of hybrid entanglement between two qubits, one encoded in the transverse momentum and position of a photon, and the other in the polarization of its partner. In addition, we show that a simple extension of our setup enables the generation of two-photon qubit-qudit hybrid entangled states. Finally, we discuss the advantages that this type of entanglement can bring for an optical quantum network.

Leonardo Neves; Gustavo Lima; Aldo Delgado; Carlos Saavedra

2009-06-24T23:59:59.000Z

200

Near-Infrared Adaptive Optics Imaging of the Central Regions of Nearby Sc Galaxies: I. M33  

E-Print Network [OSTI]

Near-infrared images obtained with the Canada-France-Hawaii Telescope (CFHT) Adaptive Optics Bonnette (AOB) are used to investigate the stellar content within 18 arcsec of the center of the Local Group spiral galaxy M33. AGB stars with near-infrared spectral-energy distributions similar to those of giants in the solar neighborhood and Baade's Window are detected over most of the field. The bolometric luminosity function (LF) of these stars has a discontinuity near M_{bol} = -5.25, and comparisons with evolutionary tracks suggest that most of the AGB stars formed in a burst of star formation 1 - 3 Gyr in the past. The images are also used to investigate the integrated near-infrared photometric properties of the nucleus and the central light concentration. The nucleus is bluer than the central light concentration, in agreement with previous studies at visible wavelengths. The CO index of the central light concentration 0.5 arcsec from the galaxy center is 0.05, which corresponds to [Fe/H] = -1.2 for simple stellar systems. Hence, the central light concentration could not have formed from the chemically-enriched material that dominates the present-day inner disk of M33.

T. J. Davidge

1999-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Antireflection and Enhanced Absorption in Tapered Silicon Photonic Crystals  

E-Print Network [OSTI]

as applying this structure for solar energy conversion. (a) (b) (c) Figure 1 (a) SEM picture and photograph Optical Society of America OCIS codes: (050.5298) Photonic crystals; (160.4760) Optical properties ; (220 studied as the building blocks to realize functional devices for optical networking, image display, bio

Coldren, Larry A.

202

Di-photon and photon + b/c production cross sections at Ecm = 1.96- TeV  

SciTech Connect (OSTI)

Measurements of the di-photon cross section have been made in the central region and are found to be in good agreement with NLO QCD predictions. The cross section of events containing a photon and additional heavy flavor jet have also been measured, as well as the ratio of photon + b to photon + c. The statistically limited sample shows good agreement with Leading Order predictions.

Gajjar, Anant; /Liverpool U.

2005-05-01T23:59:59.000Z

203

Optical reference geometry of the Kerr-Newman spacetimes  

E-Print Network [OSTI]

Properties of the optical reference geometry related to Kerr-Newman black-hole and naked-singularity spacetimes are illustrated using embedding diagrams of their equatorial plane. Among all inertial forces defined in the framework of the optical geometry, just the centrifugal force plays a fundamental role in connection to the embedding diagrams because it changes sign at the turning points of the diagrams. The limits of embeddability are given, and it is established which of the photon circular orbits hosted the by Kerr-Newman spacetimes appear in the embeddable regions. Some typical embedding diagrams are constructed, and the Kerr-Newman backgrounds are classified according to the number of embeddable regions of the optical geometry as well as the number of their turning points. Embedding diagrams are closely related to the notion of the radius of gyration which is useful for analyzing fluid rotating in strong gravitational fields.

Zden?k Stuchlk; Stanislav Hledk; Josef Jur?

2008-03-17T23:59:59.000Z

204

Light scattering by radiation fields: the optical medium analogy  

E-Print Network [OSTI]

The optical medium analogy of a radiation field generated by either an exact gravitational plane wave or an exact electromagnetic wave in the framework of general relativity is developed. The equivalent medium of the associated background field is inhomogeneous and anisotropic in the former case, whereas it is inhomogeneous but isotropic in the latter. The features of light scattering are investigated by assuming the interaction region to be sandwiched between two flat spacetime regions, where light rays propagate along straight lines. Standard tools of ordinary wave optics are used to study the deflection of photon paths due to the interaction with the radiation fields, allowing for a comparison between the optical properties of the equivalent media associated with the different background fields.

Donato Bini; Pierluigi Fortini; Andrea Geralico; Maria Haney; Antonello Ortolan

2014-08-23T23:59:59.000Z

205

E-Print Network 3.0 - air-guiding photonic bandgap Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Physics, Ultrafast Optics Group Collection: Engineering ; Physics 31 16:332:592 Optoelectronics II Contemporary Topics in OptoelectronicsPhotonics Summary: bands and bandgaps...

206

E-Print Network 3.0 - advanced photon source Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculus Fundamentals of Light Sources... 4 Applications of Quantum Physics Optoelectronic Devices Applied Advanced Optics Photonics... . At Algonquin College, courses are...

207

OPTICAL CONSTANTS OF NH{sub 3} AND NH{sub 3}:N{sub 2} AMORPHOUS ICES IN THE NEAR-INFRARED AND MID-INFRARED REGIONS  

SciTech Connect (OSTI)

Ammonia ice has been detected on different astrophysical media ranging from interstellar medium (ISM) particles to the surface of various icy bodies of our solar system, where nitrogen is also present. We have carried out a detailed study of amorphous NH{sub 3} ice and NH{sub 3}:N{sub 2} ice mixtures, based on infrared (IR) spectra in the mid-IR (MIR) and near-IR (NIR) regions, supported by theoretical quantum chemical calculations. Spectra of varying ice thicknesses were obtained and optical constants were calculated for amorphous NH{sub 3} at 15 K and 30 K and for a NH{sub 3}:N{sub 2} mixture at 15 K over a 500-7000 cm{sup 1} spectral range. These spectra have improved accuracy over previous data, where available. Moreover, we also obtained absolute values for the band strengths of the more prominent IR features in both spectral regions. Our results indicate that the estimated NH{sub 3} concentration in ISM ices should be scaled upward by ?30%.

Zanchet, Alexandre; Rodrguez-Lazcano, Yamilet; Glvez, scar; Herrero, Vctor J.; Escribano, Rafael; Mat, Beln, E-mail: belen.mate@csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain)

2013-11-01T23:59:59.000Z

208

Application of an all-solid-state diode-laser-based sensor for carbon monoxide detection by optical absorption in the 4.4 ? 4.8 m spectral region  

E-Print Network [OSTI]

APPLICATION OF AN ALL-SOLID-STATE DIODE-LASER-BASED SENSOR FOR CARBON MONOXIDE DETECTION BY OPTICAL ABSORPTION IN THE 4.4 ? 4.8 ?m SPECTRAL REGION A Dissertation by RODOLFO BARRON JIMENEZ Submitted to the Office of Graduate... FOR CARBON MONOXIDE DETECTION BY OPTICAL ABSORPTION IN THE 4.4 ? 4.8 ?m SPECTRAL REGION A Dissertation by RODOLFO BARRON JIMENEZ Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Rodolfo, Barron Jimenez

2005-02-17T23:59:59.000Z

209

Entanglement formation and violation of Bell's inequality with a semiconductor single photon source  

E-Print Network [OSTI]

We report the generation of polarization-entangled photons, using a quantum dot single photon source, linear optics and photodetectors. Two photons created independently are observed to violate Bell's inequality. The density matrix describing the polarization state of the postselected photon pairs is also reconstructed, and agrees well with a simple model predicting the quality of entanglement from the known parameters of the single photon source. Our scheme provides a method to generate no more than one entangled photon pair per cycle, a feature useful to enhance quantum cryptography protocols using entangled photons.

David Fattal; Kyo Inoue; Jelena Vuckovic; Charles Santori; Glenn S. Solomon; Yoshihisa Yamamoto

2003-05-09T23:59:59.000Z

210

Bio-inspired optical components  

E-Print Network [OSTI]

Guiding electro-magnetic radiation is fundamental to optics. Lenses, mirrors, and photonic crystals all accomplish this task by different routes. Understanding the interaction of light with materials is fundamental to ...

Walish, Joseph John

2008-01-01T23:59:59.000Z

211

Stochastic Physical Optics & Bell's correlation  

E-Print Network [OSTI]

With the use of classical statistical argumentation similar to the one used in e.g. statistical optics, it is demonstrated that in entanglement of photons, a classical realist explanation cannot be excluded by the CHSH measure in experiment.

J. F. Geurdes

2012-03-19T23:59:59.000Z

212

Optomechanical microwave sensor at the sub-photon level  

E-Print Network [OSTI]

Due to their low energy content microwave signals at the single-photon level are extremely challenging to measure. Guided by recent progress in single-photon optomechanics and hybrid optomechanical systems, we propose a multimode optomechanical transducer that can detect intensities significantly below the single-photon level via adiabatic transfer of the microwave signal to the optical frequency domain where the measurement is then performed. The influence of intrinsic quantum and thermal fluctuations is also discussed.

Keye Zhang; Francesco Bariani; Ying Dong; Weiping Zhang; Pierre Meystre

2014-09-30T23:59:59.000Z

213

Fast quantum dot single photon source triggered at telecommunications wavelength  

E-Print Network [OSTI]

We demonstrate a quantum dot single photon source at 900 nm triggered at 300 MHz by a continuous wave telecommunications wavelength laser followed by an electro-optic modulator. The quantum dot is excited by on-chip-generated second harmonic radiation, resonantly enhanced by a GaAs photonic crystal cavity surrounding the InAs quantum dot. Our result suggests a path toward the realization of telecommunications-wavelength-compatible quantum dot single photon sources with speeds exceeding 1 GHz.

Kelley Rivoire; Sonia Buckley; Arka Majumdar; Hyochul Kim; Pierre Petroff; Jelena Vuckovic

2010-12-20T23:59:59.000Z

214

Iron abundance in HII regions  

E-Print Network [OSTI]

Optical CCD spectra are used to determine the Fe abundances at several positions inside seven bright Galactic HII regions. The observed [FeIII] line ratios are compared with the predictions of different sets of collision strengths and transition probabilities for this ion to select the atomic data providing the best fit to the observations. The values found for the Fe++ and Fe+ abundances, along with ionization correction factors for the contribution of Fe3+, obtained from available grids of photoionized models, imply that the Fe/O ratio in the ionized gas is between 2% and 30% of solar. The Fe abundances derived for each area are correlated both with the degree of ionization and the colour excess. A possible explanation is suggested, namely the presence of a population of small grains, probably originating from the fragmentation of larger grains. These small grains would release Fe atoms into the gas after the absorption of energetic photons; the small grains surviving this destruction process would be swept out of the ionized region by the action of radiation pressure or stellar winds. An indication of a further and more efficient destruction agent is given by the high Fe abundance derived for a position sampling the optical jet H399 in M20, where dust destruction due to shock waves has presumably taken place.

M. Rodriguez

2002-03-22T23:59:59.000Z

215

Hybrid approaches to quantum information using ions, atoms and photons  

E-Print Network [OSTI]

This thesis presents two hybrid systems for quantum information processing - one joining cold ions and cold atoms and another coupling linear chains of atomic ions with photons via an optical resonator. The first experimental ...

Cetina, Marko, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

216

Novel advancements in nanofabrication for photonic crystal applications  

E-Print Network [OSTI]

The progress of large-area 2D- and 3D-photonic crystals (PCs) at optical and near infra-red frequencies has been limited by fabrication challenges. Periodic nanostructures must be patterned in high-index and crystalline ...

Cheong, Lin Lee

2013-01-01T23:59:59.000Z

217

Spinons and Holons with Polarized Photons in a Nonlinear Waveguide  

E-Print Network [OSTI]

We show that the spin-charge separation predicted for correlated fermions in one dimension, could be observed using polarized photons propagating in a nonlinear optical waveguide. Using coherent control techniques and employing a cold atom ensemble interacting with the photons, large nonlinearities in the single photon level can be achieved. We show that the latter can allow for the simulation of a strongly interacting gas, which is made of stationary dark-state polaritons of two species and then shown to form a Luttinger liquid of effective fermions for the right regime of interactions. The system can be tuned optically to the relevant regime where the spin-charge separation is expected to occur. The characteristic features of the separation as demonstrated in the different spin and charge densities and velocities can be efficiently detected via optical measurements of the emitted photons with current optical technologies.

Ming-Xia Huo; Dimitris G. Angelakis; Leong Chuan Kwek

2012-07-20T23:59:59.000Z

218

The Importance of Photonics Technology | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Global Research. I would like to further highlight the importance of Photonics and Optics by pointing to a recent report written by the US National Academies with the help of...

219

Optical amplifier-powered quantum optical amplification  

E-Print Network [OSTI]

I show that an optical amplifier, when combined with photon subtraction, can be used for quantum state amplification, adding noise at a level below the standard minimum. The device could be used to significantly decrease the probability of incorrectly identifying coherent states chosen from a finite set.

John Jeffers

2011-05-16T23:59:59.000Z

220

Department of Electrical Engineering and Computer Science Photonics Education  

E-Print Network [OSTI]

Department of Electrical Engineering and Computer Science Photonics Education Current & Future Education Expectations in Optics & Photonics Barry L. Shoop, Ph.D., P.E. Professor of Electrical Engineering of Electrical Engineering and Computer Science Education & Training Purpose of Education Education in ancient

Van Stryland, Eric

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The mystery of spectral breaks: Lyman continuum absorption by photon-photon pair production in the Fermi GeV spectra of bright blazars  

E-Print Network [OSTI]

We reanalyze Fermi/LAT gamma-ray spectra of bright blazars with a higher photon statistics than in previous works and with new Pass 7 data representation. In the spectra of the brightest blazar 3C 454.3 and possibly of 4C +21.35 we detect breaks at 5 GeV (in the rest frame) associated with the photon-photon pair production absorption by He II Lyman continuum (LyC). We also detect confident breaks at 20 GeV associated with hydrogen LyC both in the individual spectra and in the stacked redshift-corrected spectrum of several bright blazars. The detected breaks in the stacked spectra univocally prove that they are associated with atomic ultraviolet emission features of the quasar broad-line region (BLR). The dominance of the absorption by hydrogen Ly complex over He II, rather small detected optical depth, and the break energy consistent with the head-on collisions with LyC photons imply that the gamma-ray emission site is located within the BLR, but most of the BLR emission comes from a flat disk-like structure ...

Stern, Boris E

2014-01-01T23:59:59.000Z

222

Photon position measure  

E-Print Network [OSTI]

The positive operator valued measure (POVM) for a photon counting array detector is derived and found to equal photon flux density integrated over pixel area and measurement time. Since photon flux density equals number density multiplied by the speed of light, this justifies theoretically the observation that a photon counting array provides a coarse grained measurement of photon position. The POVM obtained here can be written as a set of projectors onto a basis of localized states, consistent with the description of photon position in a recent quantum imaging proposal [M. Tsang, Phys. Rev. Lett. \\textbf{102}, 253601 (2009)]. The wave function that describes a photon counting experiment is the projection of the photon state vector onto this localized basis. Collapse is to the electromagnetic vacuum and not to a localized state, thus violating the text book rules of quantum mechanics but compatible with the theory of generalized observables and the nonlocalizability of an incoming photon.

Margaret Hawton

2010-07-03T23:59:59.000Z

223

Photon position measure  

E-Print Network [OSTI]

The positive operator valued measure (POVM) for a photon counting array detector is derived and found to equal photon flux density integrated over pixel area and measurement time. Since photon flux density equals number density multiplied by the speed of light, this justifies theoretically the observation that a photon counting array provides a coarse grained measurement of photon position. The POVM obtained here can be written as a set of projectors onto a basis of localized states, consistent with the description of photon position in a recent quantum imaging proposal [M. Tsang, Phys. Rev. Lett. \\textbf{102}, 253601 (2009)]. The wave function that describes a photon counting experiment is the projection of the photon state vector onto this localized basis. Collapse is to the electromagnetic vacuum and not to a localized state, thus violating the text book rules of quantum mechanics but compatible with the theory of generalized observables and the nonlocalizability of an incoming photon.

Hawton, Margaret

2010-01-01T23:59:59.000Z

224

Single Photon Source Using Laser Pulses and Two-Photon Absorption  

E-Print Network [OSTI]

We have previously shown that two-photon absorption (TPA) and the quantum Zeno effect can be used to make deterministic quantum logic devices from an otherwise linear optical system. Here we show that this type of quantum Zeno gate can be used with additional two-photon absorbing media and weak laser pulses to make a heralded single photon source. A source of this kind is expected to have a number of practical advantages that make it well suited for large scale quantum information processing applications.

B. C. Jacobs; T. B. Pittman; J. D. Franson

2006-03-17T23:59:59.000Z

225

Photonic spin Hall effect in topological insulators  

E-Print Network [OSTI]

In this paper we theoretically investigate the photonic spin Hall effect (SHE) of a Gaussian beam reflected from the interface between air and topological insulators (TIs). The photonic SHE is attributed to spin-orbit coupling and manifests itself as in-plane and transverse spin-dependent splitting. We reveal that the spin-orbit coupling effect in TIs can be routed by adjusting the axion angle variations. Unlike the transverse spin-dependent splitting, we find that the in-plane one is sensitive to the axion angle. It is shown that the polarization structure in magneto-optical Kerr effect is significantly altered due to the spin-dependent splitting in photonic SHE. We theoretically propose a weak measurement method to determine the strength of axion coupling by probing the in-plane splitting of photonic SHE.

Zhou, Xinxing; Ling, Xiaohui; Chen, Shizhen; Luo, Hailu; Wen, Shuangchun

2013-01-01T23:59:59.000Z

226

Electrically driven photonic crystal nanocavity devices  

E-Print Network [OSTI]

Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elusive due to the complexities associated with current injection into cavities. A fabrication procedure for electrically pumping photonic crystal membrane devices using a lateral p-i-n junction has been developed and is described in this work. We have demonstrated electrically pumped lasing in our junctions with a threshold of 181 nA at 50K - the lowest threshold ever demonstrated in an electrically pumped laser. At room temperature we find that our devices behave as single-mode light-emitting diodes (LEDs), which when directly modulated, have an ultrafast electrical response up to 10 GHz corresponding to less than 1 fJ/bit energy operation - the lowest for any optical transmitter. In addition, we have demonstrated electrical pumping of photonic crystal nanobeam LEDs...

Shambat, Gary; Petykiewicz, Jan; Mayer, Marie A; Majumdar, Arka; Sarmiento, Tomas; Harris, James; Haller, Eugene E; Vuckovic, Jelena

2012-01-01T23:59:59.000Z

227

Asymmetric Architecture for Heralded Single Photon Sources  

E-Print Network [OSTI]

Single photon source represent a fundamental building block for optical implementations of quantum information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution quantum measurement. In this paper we investigate the performance of a multiplexed system based on asymmetric configuration of multiple heralded single photon sources. {To compare the effectiveness of different designs we introduce a single-photon source performance index that is based on the value of single photon probability required to achieve a guaranteed signal to noise ratio.} The performance and scalability comparison with both currently existing multiple-source architectures and faint laser configurations reveals an advantage the proposed scheme offers in realistic scenarios. This analysis also provides insights on the potential of using such architectures for integrated implementation.

Luca Mazzarella; Francesco Ticozzi; Alexander V. Sergienko; Giuseppe Vallone; Paolo Villoresi

2013-02-15T23:59:59.000Z

228

Constraining solar hidden photons using HPGe detector  

E-Print Network [OSTI]

In this Letter we report on the results of our search for photons from a U(1) gauge factor in the hidden sector of the full theory. With our experimental setup we observe the single spectrum in a HPGe detector arising as a result of the photoelectric-like absorption of hidden photons emitted from the Sun on germanium atoms inside the detector. The main ingredient of the theory used in our analysis, a severely constrained kinetic mixing from the two U(1) gauge factors and massive hidden photons, entails both photon into hidden state oscillations and a minuscule coupling of hidden photons to visible matter, of which the latter our experimental setup has been designed to observe. On a theoretical side, full account was taken of the effects of refraction and damping of photons while propagating in Sun's interior as well as in the detector. We exclude hidden photons with kinetic couplings chi > (2.2 x 10^{-13}- 3 x 10^{-7}) in the mass region 0.2 eV < m_gamma' < 30 keV. Our constraints on the mixing parameter chi in the mass region from 20 eV up to 15 keV prove even slightly better then those obtained recently by using data from the CAST experiment, albeit still somewhat weaker than those obtained from solar and HB stars lifetime arguments.

R. Horvat; D. Kekez; M. Krcmar; Z. Krecak; A. Ljubicic

2013-03-25T23:59:59.000Z

229

Deep near-infrared adaptive optics observations of a young embedded cluster at the edge of the RCW 41 HII region  

E-Print Network [OSTI]

We investigate the star formation activity in a young star forming cluster embedded at the edge of the RCW 41 HII region. As a complementary goal, we aim at demonstrating the gain provided by Wide-Field Adaptive Optics instruments to study young clusters. We used deep, JHKs images from the newly commissioned Gemini-GeMS/GSAOI instrument, complemented with Spitzer IRAC observations, in order to study the photometric properties of the young stellar cluster. GeMS is an AO instrument, delivering almost diffraction limited images over a field of 2' across. The exquisite angular resolution allows us to reach a limiting magnitude of J = 22 for 98% completeness. The combination of the IRAC photometry with our JHKs catalog is used to build color-color diagrams, and select Young Stellar Objects (YSOs) candidates. We detect the presence of 80 Young Stellar Object (YSO) candidates. Those YSOs are used to infer the cluster age, which is found to be in the range 1 to 5 Myr. We find that 1/3 of the YSOs are in a range betwe...

Neichel, B; Plana, H; Zavagno, A; Bernard, A; Fusco, T

2015-01-01T23:59:59.000Z

230

Reduction of quantum noise in transmittance estimation using photon-correlated beams  

E-Print Network [OSTI]

Reduction of quantum noise in transmittance estimation using photon-correlated beams Majeed M-number squeezed light. We consider the use of two photon-correlated beams (generated, for example, by spontaneous parametric downconversion) to measure the optical transmittance of an object. The photons of each beam obey

Hayat, Majeed M.

231

Microwave Photon Counter Based on Josephson Junctions Y.-F. Chen,1,* D. Hover,1  

E-Print Network [OSTI]

Microwave Photon Counter Based on Josephson Junctions Y.-F. Chen,1,* D. Hover,1 S. Sendelbach,1 L on the current-biased Josephson junction. The junction is tuned to absorb single microwave photons from optical photon counters, it is natural to consider the Josephson junction--a nonlinear, nondissipative

Saffman, Mark

232

Enhanced Two-Photon Absorption Using Entangled States and Small Mode Volumes  

E-Print Network [OSTI]

We calculate the rate of two-photon absorption for frequency entangled photons in a tapered optical fiber whose diameter is comparable to the wavelength of the light. The confinement of the electric field in the transverse direction increases the intensity associated with a single photon, while the two-photon absorption rate is further enhanced by the fact that the sum of the frequencies of the two photons is on resonance with the upper atomic state, even though each photon has a relatively broad linewidth. As a result, the photons are effectively confined in all three dimensions and the two-photon absorption rate for frequency-entangled photons in a tapered fiber was found to be comparable to that for unentangled photons in a microcavity with a small mode volume.

Hao You; S. M. Hendrickson; J. D. Franson

2009-07-13T23:59:59.000Z

233

High energy photon-photon collisions  

SciTech Connect (OSTI)

The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

Brodsky, S.J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

1994-07-01T23:59:59.000Z

234

Composite Photon Theory Versus Elementary Photon Theory  

E-Print Network [OSTI]

The purpose of this paper is to show that the composite photon theory measures up well against the Standard Model's elementary photon theory. This is done by comparing the two theories area by area. Although the predictions of quantum electrodynamics are in excellent agreement with experiment (as in the anomalous magnetic moment of the electron), there are some problems, such as the difficulty in describing the electromagnetic field with the four-component vector potential because the photon has only two polarization states. In most areas the two theories give similar results, so it is impossible to rule out the composite photon theory. Pryce's arguments in 1938 against a composite photon theory are shown to be invalid or irrelevant. Recently, it has been realized that in the composite theory the antiphoton does not interact with matter because it is formed of a neutrino and an antineutrino with the wrong helicity. This leads to experimental tests that can determine which theory is correct.

Walton A. Perkins

2015-03-02T23:59:59.000Z

235

Large Photocathode Photodetectors Using Photon Amplification and Phase-Space Compression  

E-Print Network [OSTI]

We describe a simple technique to both amplify incident photons and compress their angular x area phase space. These Optical Compressor Amplifier Tubes (OCA Tube) use techniques analogous to image intensifiers, using vacuum photocathodes to detect photons as converted to photoelectrons, amplify the photons via photoelectron bombardment of fast scintillators, and compress the optical phase space onto optical fibers, so that small, high gain photodetectors, like miniature PMT or SiPM, can be used to detect photons from large areas, at comparatively low cost. The properties of and benefits of OCA tubes are described.

Carrio, Alex; Greener, Kevin; McGuiness, Sean; Podrasky, Victor; Sullivan, John; Winn, David R; Bilki, Burak; Onel, Yasar

2014-01-01T23:59:59.000Z

236

Nonlinear interferometry approach to photonic sequential logic  

E-Print Network [OSTI]

Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.

Hideo Mabuchi

2011-08-08T23:59:59.000Z

237

Electronics and photonics: two sciences in the benefit of solar energy conversion  

E-Print Network [OSTI]

This paper gives a personal global point of view on two sciences: electronics and photonics towards plasmonics and solar energy conversion. The new research directions in these two sciences are pointed out by comparison and in the perspective of future new solar devices. A parallel and the equivalence between electronics and photonics are presented. Starting from electron in electronics, photon, solitons and plasmons in photonics, electrical cables - optical fibers, plasmonic wave guides, electrical circuits - optical circuits, electrical transistors - optical transistors, plasmonster, electrical generators - pulsed lasers and spasers, photonics gets step by step all the tools already existing in electronics. Solar energy could be converted in many ways, the most known is the conversion in electricity. Today we need that the energy is in form of electricity because most of the apparatus that we use are based on electricity: informatics, motors, etc. However, the progress in photonics with optical circuits, op...

Girtan, M

2012-01-01T23:59:59.000Z

238

Photonic Crystal Fibers Advances in Fiber Optics  

E-Print Network [OSTI]

susceptible to electromagnetic interference (EMI) from signals on neighbouring lines. From a speed perspective

La Rosa, Andres H.

239

Photon Physics in ALICE  

E-Print Network [OSTI]

We give an overview of photon physics which will be studied by the ALICE experiment in proton-proton and heavy ion collisions at LHC. We compare properties of ALICE photon detectors and estimate their ability to measure neutral meson and direct photon spectra as well as gamma-hadron and gamma-jet correlations in pp and Pb+Pb collisions.

D. Peressounko; Y. Kharlov; for the ALICE collaboration

2009-07-16T23:59:59.000Z

240

X-Ray Entangled Photon Production in Collisions of Laser Beams with Relativistic Ions  

E-Print Network [OSTI]

A method is suggested to produce, with the help of colliding laser photons with bunches of relativistic ions having two energy levels, both intense beams of monochromatic polarized X-ray fluorescence photons and significant number of X-ray entangled photons, via double Doppler transformation. Nonlinear susceptibility of the ions, the cross section and the rate of production of such photons at RHIC are estimated. Such beams of X-ray photons can be detected and applied to solve various problems, in a manner similar to the usage of optical photons.

K. A. Ispirian; M. K. Ispiryan

2010-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Photon wave function  

E-Print Network [OSTI]

Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.

Iwo Bialynicki-Birula

2005-08-26T23:59:59.000Z

242

Electrically-driven optical antennas  

E-Print Network [OSTI]

Unlike radiowave antennas, optical nanoantennas so far cannot be fed by electrical generators. Instead, they are driven by light or via optically active materials in their proximity. Here, we demonstrate direct electrical driving of an optical nanoantenna featuring an atomic-scale feed gap. Upon applying a voltage, quantum tunneling of electrons across the feed gap creates broadband quantum shot noise. Its optical frequency components are efficiently converted into photons by the antenna. We demonstrate that the properties of the emitted photons are fully controlled by the antenna architecture, and that the antenna improves the quantum efficiency by up to two orders of magnitude with respect to a non-resonant reference system. Our work represents a new paradigm for interfacing electrons and photons at the nanometer scale, e.g. for on-chip wireless data communication, electrically driven single- and multiphoton sources, as well as for background-free linear and nonlinear spectroscopy and sensing with nanometer...

Kern, Johannes; Prangsma, Jord C; Emmerling, Monika; Kamp, Martin; Hecht, Bert

2015-01-01T23:59:59.000Z

243

Magnetic field role on the structure and optical response of photonic crystals based on ferrofluids containing Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} nanoparticles  

SciTech Connect (OSTI)

Ferrofluids based on magnetic Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} ferrite nanoparticles were prepared by co-precipitation method from aqueous salt solutions of Co (II), ZnSO{sub 4}, and Fe (III) in an alkaline medium. Ferrofluids placed in an external magnetic field show properties that make them interesting as magneto-controllable soft photonic crystals. Morphological and structural characterizations of the samples were obtained from Scanning Electron Microscopy and Transmission Electron Microscopy studies. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature. Herein, the Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} samples showed superparamagnetic behavior, according to hysteresis loop results. Taking in mind that the Co-Zn ferrite hysteresis loop is very small, our magnetic nanoparticles can be considered soft magnetic material with interesting technological applications. In addition, by using the plane-wave expansion method, we studied the photonic band structure of 2D photonic crystals made of ferrofluids with the same nanoparticles. Previous experimental results show that a magnetic field applied perpendicular to the ferrofluid plane agglomerates the magnetic nanoparticles in parallel rods to form a hexagonal 2D photonic crystal. We calculated the photonic band structure of photonic crystals by means of the effective refractive index of the magnetic fluid, basing the study on the Maxwell-Garnett theory, finding that the photonic band structure does not present any band gaps under the action of applied magnetic field strengths used in our experimental conditions.

Lpez, J., E-mail: javier.lopez@correounivalle.edu.co; Gonzlez, Luz E.; Quionez, M. F.; Gmez, M. E.; Porras-Montenegro, N.; Zambrano, G. [Departamento de Fsica, Universidad del Valle, A.A. 25360, Cali (Colombia)

2014-05-21T23:59:59.000Z

244

Dynamic Phase Filtering with Integrated Optical Ring Resonators  

E-Print Network [OSTI]

can then help extract complex spectral information. Broadband photonic RF phase shifting for beam steering of a phased array antenna is also shown using dynamically tunable integrated optical ring resonators. Finally all-optical pulse compression...

Adams, Donald Benjamin

2011-10-21T23:59:59.000Z

245

Development of procedures for refurbishing x-ray optics at the Advanced Light Source  

E-Print Network [OSTI]

and Setting of Bendable Optics for Diffraction- Limitedof Soft X-Rays, Abstract to SPIE Optics and Photonics 2012,Metrology for X-Ray and EUV Optics IV (San Diego, August 12-

Yashchuk, Valeriy V.

2013-01-01T23:59:59.000Z

246

Logic Synthesis for Integrated Optics Christopher Condrat  

E-Print Network [OSTI]

Logic Synthesis for Integrated Optics Christopher Condrat chris@g6net.com Priyank Kalla kalla, Salt Lake City, UT, USA ABSTRACT As silicon photonics technology matures, optical devices methods for synthesizing optical devices for large-scale designs. We present design and synthesis method

Kalla, Priyank

247

A Search for $?'_c$ Production in Photon-Photon Fusion at LEP  

E-Print Network [OSTI]

A search for the production of the $\\eta'_c$ meson, the first radial excitation of the ground state of charmonium $\\eta_c$(2980), in the photon-photon fusion reaction at LEP has been performed using the data collected by the DELPHI detector during 1992-1996. No evidence of $\\eta'_c$ production is found in the mass region 3520--3800 MeV/c^2. An upper limit for the ratio of the two-photon widths of the $\\eta'_c$ and $\\eta_c$ is obtained.

P. Abreu

1998-10-14T23:59:59.000Z

248

Projection imaging of photon beams by the Cerenkov effect  

SciTech Connect (OSTI)

Purpose: A novel technique for beam profiling of megavoltage photon beams was investigated for the first time by capturing images of the induced Cerenkov emission in water, as a potential surrogate for the imparted dose in irradiated media. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire 2D projection images of Cerenkov emission from a 4 Multiplication-Sign 4 cm{sup 2} 6 MV linear accelerator (LINAC) x-ray photon beam operating at a dose rate of 400 MU/min incident on a water tank with transparent walls. The ICCD acquisition was gated to the LINAC sync pulse to reduce background light artifacts, and the measurement quality was investigated by evaluating the signal to noise ratio and measurement repeatability as a function of delivered dose. Monte Carlo simulations were used to derive a calibration factor for differences between the optical images and deposited dose arising from the anisotropic angular dependence of Cerenkov emission. Finally, Cerenkov-based beam profiles were compared to a percent depth dose (PDD) and lateral dose profile at a depth of d{sub max} from a reference dose distribution generated from the clinical Varian ECLIPSE treatment planning system (TPS). Results: The signal to noise ratio was found to be 20 at a delivered dose of 66.6 cGy, and proportional to the square root of the delivered dose as expected from Poisson photon counting statistics. A 2.1% mean standard deviation and 5.6% maximum variation in successive measurements were observed, and the Monte Carlo derived calibration factor resulted in Cerenkov emission images which were directly correlated to deposited dose, with some spatial issues. The dose difference between the TPS and PDD predicted by Cerenkov measurements was within 20% in the buildup region with a distance to agreement (DTA) of 1.5-2 mm and {+-}3% at depths beyond d{sub max}. In the lateral profile, the dose difference at the beam penumbra was within {+-}13% with a DTA of 0-2 mm, {+-}5% in the central beam region, and 2%-3% in the beam umbra. Conclusions: The results from this initial study demonstrate the first documented use of Cerenkov emission imaging to profile x-ray photon LINAC beams in water. The proposed modality has several potential advantages over alternative methods, and upon future refinement may prove to be a robust and novel dosimetry method.

Glaser, Adam K.; Davis, Scott C.; McClatchy, David M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

2013-01-15T23:59:59.000Z

249

Photonically Engineered Incandescent Emitter  

DOE Patents [OSTI]

A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

2005-03-22T23:59:59.000Z

250

Optical remote monitoring of CH/sub 4/ gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1. 33-. mu. m region  

SciTech Connect (OSTI)

Purely optical remote monitoring of low-level CH/sub 4/ gas is realized for the first time by the method employing a 2-km long-distance, low-loss silica optical fiber link and a compact absorption cell in conjunction with a high radiant InGaAsP light-emitting diode (LED) at 1.33 ..mu..m. Based on the present experiment, the detection limit of CH/sub 4/ in air was confirmed to be approximately 2000 ppm, i.e., 4% of the lower explosion limit of CH/sub 4/. This result supports the conclusion that the fully optical remote sensing system incorporating ultralow loss optical fiber networks and near infrared LEDs or laser diodes can be extensively used for the detection and surveillance of various inflammable and/or explosive gases in industrial and mining complexes as well as in residential areas.

Chan, K.; Ito, H.; Inaba, H.

1983-10-01T23:59:59.000Z

251

Quantum limits to estimation of photon deformation  

E-Print Network [OSTI]

We address potential deviations of radiation field from the bosonic behaviour and employ local quantum estimation theory to evaluate the ultimate bounds to precision in the estimation of these deviations using quantum-limited measurements on optical signals. We consider different classes of boson deformation and found that intensity measurement on coherent or thermal states would be suitable for their detection making, at least in principle, tests of boson deformation feasible with current quantum optical technology. On the other hand, we found that the quantum signal-to-noise ratio (QSNR) is vanishing with the deformation itself for all the considered classes of deformations and probe signals, thus making any estimation procedure of photon deformation inherently inefficient. A partial way out is provided by the polynomial dependence of the QSNR on the average number of photon, which suggests that, in principle, it would be possible to detect deformation by intensity measurements on high-energy thermal states.

Giovanni De Cillis; Matteo G. A. Paris

2014-07-08T23:59:59.000Z

252

Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires  

SciTech Connect (OSTI)

Metallic nanowires show excellent Plasmon absorption which is tunable based on its aspect ratio and alloying nature. We prepared Cu and CuNi metallic nanowires and studied its optical and nonlinear optical behavior. Optical properties of nanowires are theoretically explained using Gans theory. Nonlinear optical behavior is studied using a single beam open aperture z-scan method with the use of 5?ns Nd: YAG laser. Optical limiting is found to arise from two-photon absorption.

Udayabhaskar, R.; Karthikeyan, B., E-mail: bkarthik@nitt.edu [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Ollakkan, Muhamed Shafi [Light and Matter Physics Group, Raman Research Institute, Bangalore 560 080 (India)] [Light and Matter Physics Group, Raman Research Institute, Bangalore 560 080 (India)

2014-01-06T23:59:59.000Z

253

X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

Henke, B.L.; Gullikson, E.M.; Davis, J.C.

254

Experimental demonstration of photonic quantum ratchet  

E-Print Network [OSTI]

We created a potential for light with a phase mirror and then experimentally realized a photonic quantum ratchet in an all-optical system, in which ratchet effects can be observed with the naked eye up to more than 22 steps, and quantum resonance can be demonstrated. Our method also provides a new means to simulate quantum particles with classical light, and it can be applied to investigate many other quantum phenomena.

Chi Zhang; Chuan-Feng Li; Guang-Can Guo

2012-09-10T23:59:59.000Z

255

Experimental demonstration of photonic quantum ratchet  

E-Print Network [OSTI]

We create a potential for light with a phase mirror and then experimentally realize a photonic quantum ratchet in an all-optical system. In our experiment, quantum ratchet effects can be observed by the naked eye so that it will be more easy to understand. Our method also provides a new means to simulate quantum particles by classical light, and it can be applied to investigate many other quantum phenomena.

Zhang, Chi; Guo, Guang-Can

2011-01-01T23:59:59.000Z

256

High energy photon emission  

E-Print Network [OSTI]

photons, neutrons, charged particles, and fission fragments were used to study the reaction 160 + 238 U at a projectile energy of 50 MeV/u. Inverse slope values of the photon spectra were extracted for inclusive data and data of higher multiplicities...

Jabs, Harry

1997-01-01T23:59:59.000Z

257

Photon beam position monitor  

DOE Patents [OSTI]

A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

Kuzay, T.M.; Shu, D.

1995-02-07T23:59:59.000Z

258

Sub-Rayleigh quantum imaging using single-photon sources  

SciTech Connect (OSTI)

We propose a technique capable of imaging a distinct physical object with sub-Rayleigh resolution in an ordinary far-field imaging setup using single-photon sources and linear optical tools only. We exemplify our method for the case of a rectangular aperture and two or four single-photon emitters obtaining a resolution enhanced by a factor of 2 or 4, respectively.

Thiel, C.; Zanthier, J. von [Institut fuer Optik, Information und Photonik, Universitaet Erlangen-Nuernberg, 91058 Erlangen (Germany); Bastin, T. [Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liege, 4000 Liege (Belgium); Agarwal, G. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States)

2009-07-15T23:59:59.000Z

259

Local tuning of photonic crystal cavities using chalcogenide glasses  

E-Print Network [OSTI]

We demonstrate a method to locally change the refractive index in planar optical devices by photodarkening of a thin chalcogenide glass layer deposited on top of the device. The method is used to tune the resonance of GaAs-based photonic crystal cavities by up to 3 nm at 940 nm, with only 5% deterioration in cavity quality factor. The method has broad applications for postproduction tuning of photonic devices.

Andrei Faraon; Dirk Englund; Douglas Bulla; Barry Luther-Davies; Benjamin J. Eggleton; Nick Stoltz; Pierre Petroff; Jelena Vuckovic

2007-11-09T23:59:59.000Z

260

Photonic quantum technologies  

E-Print Network [OSTI]

The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics.

Jeremy L. O'Brien; Akira Furusawa; Jelena Vu?kovi?

2010-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Modular Quantum Memories Using Passive Linear Optics and Coherent Feedback  

E-Print Network [OSTI]

Modular Quantum Memories Using Passive Linear Optics and Coherent Feedback Hendra I. Nurdin photon pulsed optical field has a conceptually simple modular realization using only passive linear optics and coherent feedback. We exploit the idea that two decaying optical cavities can be coupled

262

Giant electro-optic effect using polarizable dark states  

E-Print Network [OSTI]

The electro-optic effect, where the refractive index of a medium is modified by an electric field, is of central importance in non-linear optics, laser technology, quantum optics and optical communications. In general, electro-optic coefficients are very weak and a medium with a giant electro-optic coefficient would have profound implications for non-linear optics, especially at the single photon level, enabling single photon entanglement and switching. Here we propose and demonstrate a giant electro-optic effect based on polarizable dark states. We demonstrate phase modulation of the light field in the dark state medium and measure an electro-optic coefficient that is more than 12 orders of magnitude larger than in other gases. This enormous Kerr non-linearity also creates the potential for precision electrometry and photon entanglement.

A. K. Mohapatra; M. G. Bason; B. Butscher; K. J. Weatherill; C. S. Adams

2008-08-19T23:59:59.000Z

263

An elementary optical gate for expanding entanglement web  

E-Print Network [OSTI]

We introduce an elementary optical gate for expanding polarization entangled W states, in which every pair of photons are entangled alike. The gate is composed of a pair of 50:50 beamsplitters and ancillary photons in the two-photon Fock state. By seeding one of the photons in an $n$-photon W state into this gate, we obtain an $(n+2)$-photon W state after post-selection. This gate gives a better efficiency and a simpler implementation than previous proposals for $\\rm W$-state preparation.

Toshiyuki Tashima; Sahin Kaya Ozdemir; Takashi Yamamoto; Masato Koashi; Nobuyuki Imoto

2008-03-13T23:59:59.000Z

264

Laser photon merging in an electromagnetic field inhomogeneity  

E-Print Network [OSTI]

We study the effect of laser photon merging, or equivalently high harmonic generation, in the quantum vacuum subject to inhomogeneous electromagnetic fields. Such a process is facilitated by the effective nonlinear couplings arising from charged particle-antiparticle fluctuations in the quantum vacuum subject to strong electromagnetic fields. We derive explicit results for general kinematic and polarization configurations involving optical photons. Concentrating on merged photons in reflected channels which are preferable in experiments for reasons of noise suppression, we demonstrate that photon merging is typically dominated by the competing nonlinear process of quantum reflection, though appropriate polarization and signal filtering could specifically search for the merging process. As a byproduct, we devise a novel systematic expansion of the photon polarization tensor in plane wave fields.

Holger Gies; Felix Karbstein; Rashid Shaisultanov

2014-08-13T23:59:59.000Z

265

Transformation of a single photon field into bunches of pulses  

E-Print Network [OSTI]

We propose a method to transform a single photon field into bunches of pulses with controllable timing and number of pulses in a bunch. This method is based on transmission of a photon through an optically thick single-line absorber vibrated with a frequency appreciably exceeding the width of the absorption line. The spectrum of the quasi-monochromatic incoming photon is 'seen' by the vibrated absorber as a comb of equidistant spectral components separated by the vibration frequency. Tuning the absorber in resonance with m-th spectral component transforms the output radiation into bunches of pulses with m pulses in each bunch. We experimentally demonstrated the proposed technique with single 14.4 keV photons and produced for the first time gamma-photonic time-bin qudits with dimension d=2m.

R. N. Shakhmuratov; F. G. Vagizov; V. A. Antonov; Y. V. Radeonychev; O. Kocharovskaya

2014-12-16T23:59:59.000Z

266

The SMARTS Multi-epoch Optical Spectroscopy Atlas (SAMOSA): Using Emission Line Variability to Probe the Location of the Blazar Gamma-emitting Region  

E-Print Network [OSTI]

We present multi-epoch optical spectroscopy of seven southern Fermi-monitored blazars from 2008 - 2013 using the Small and Medium Aperture Research Telescope System (SMARTS), with supplemental spectroscopy and polarization data from the Steward Observatory. We find that the emission lines are much less variable than the continuum; 4 of 7 blazars had no detectable emission line variability over the 5 years. This is consistent with photoionization primarily by an accretion disk, allowing us to use the lines as a probe of disk activity. Comparing optical emission line flux with Fermi $\\gamma$-ray flux and optical polarized flux, we investigate whether relativistic jet variability is related to the accretion flow. In general, we see no such dependence, suggesting the jet variability is likely caused by internal processes like turbulence or shock acceleration rather than a variable accretion rate. However, three sources showed statistically significant emission line flares in close temporal proximity to very large...

Isler, Jedidah C; Bailyn, C; Smith, P S; Coppi, P; Brady, M; Macpherson, E; Hasan, I; Buxton, M

2015-01-01T23:59:59.000Z

267

Optical coherence tomography based on intensity correlations of quasi-thermal light  

E-Print Network [OSTI]

We show theoretically that the longitudinal resolution of conventional optical coherence tomography can be improved by a factor of radic2 when a two-photon (as opposed to a single-photon) sensitive detector is used, and ...

Zerom, Petros

268

Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength  

E-Print Network [OSTI]

We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780~nm and 1551~nm by spontaneous parametric down-conversion and distributed the two photons at 1551~nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 $\\pm$ 0.07 which clearly shows the recovery of entanglement.

Yoshiaki Tsujimoto; Yukihiro Sugiura; Makoto Ando; Daisuke Katsuse; Rikizo Ikuta; Takashi Yamamoto; Masato Koashi; Nobuyuki Imoto

2015-03-10T23:59:59.000Z

269

Shaping the spectrum of downconverted photons through optimized custom poling  

E-Print Network [OSTI]

We present a scheme for engineering the joint spectrum of photons created via spontaneous parametric down conversion. Our method relies on customizing the poling configuration of a quasi-phase-matched crystal. We use simulated annealing to find an optimized poling configuration which allows almost arbitrary shaping of the crystal's phase-matching function. This has direct application in the creation of pure single photons---currently one of the most important goals of single-photon quantum optics. We describe the general algorithm and provide code, written in C++, that outputs an optimized poling configuration given specific experimental parameters.

Annamaria Dosseva; Lukasz Cincio; Agata M. Branczyk

2014-10-28T23:59:59.000Z

270

EK 131/132 Photonics Engineering with light Photonics is used in advanced technology as well as everyday familiar objects. This 6 week freshman  

E-Print Network [OSTI]

EK 131/132 Photonics Engineering with light Photonics is used in advanced technology as well: golden rule, follower, non-inverting amplifier, inverting amplifier Optoelectronics: Band gap, Optical: Using breadboards, oscilloscope, voltmeter, function generator, using op-amps, reading C and R, Reading

271

arXiv:quant-ph/0311099v217Nov2003 Coupling Efficiencies in Single Photon On-Demand Sources  

E-Print Network [OSTI]

, 13 rely on optical parametric downconversion (PDC), because it produces photons two at a time suppressing the probability of multi-photon generation.13 Most PDC based schemes (including ours) require that the PDC output be collected into a single spatial mode defined by an optical fiber. In order for these PDC

Hart, Gus

272

Heralded single photon absorption by a single atom  

E-Print Network [OSTI]

The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21, 22], and designing an optical system that covers a large fraction of the full solid angle [23, 24, 25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.

Nicolas Piro; Felix Rohde; Carsten Schuck; Marc Almendros; Jan Huwer; Joyee Ghosh; Albrecht Haase; Markus Hennrich; Francois Dubin; Jrgen Eschner

2010-04-23T23:59:59.000Z

273

64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection  

E-Print Network [OSTI]

We present the characterization of two-dimensionally arranged 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection. NbTiN films deposited on thermally oxidized Si substrates enabled the high-yield production of high-quality SSPD pixels, and all 64 SSPD pixels showed uniform superconducting characteristics. Furthermore, all of the pixels showed single-photon sensitivity, and 60 of the 64 pixels showed a pulse generation probability higher than 90% after photon absorption. As a result of light irradiation from the single-mode optical fiber at different distances between the fiber tip and the active area, the variations of system detection efficiency in each pixel showed reasonable Gaussian distribution to represent the spatial distributions of photon flux intensity.

Miki, Shigehito; Wang, Zhen; Terai, Hirotaka

2014-01-01T23:59:59.000Z

274

Electronic and photonic power applications  

SciTech Connect (OSTI)

Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

Walko, R.J.; Ashley, C.S.; Brinker, C.J.; Reed, S.T.; Renschler, C.L. (Sandia National Labs., Albuquerque, NM (USA)); Shepodd, T.J. (Sandia National Labs., Livermore, CA (USA)); Ellefson, R.E.; Gill, J.T. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Leonard, L.E. (USDOE, Washington, DC (USA))

1990-01-01T23:59:59.000Z

275

Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides  

E-Print Network [OSTI]

-dielectric-contrast GaAs/AlxOy IIIV compound semiconductor structure. The photonic crystal is defined by a regularly of optical states will be modified and quantized by such a cavity. Typical semiconductor optical cavities measurements of a one- dimensional PBG air-bridge optical microcavity are pre- sented here. A schematic

Fan, Shanhui

276

Photon collider Higgs factories  

E-Print Network [OSTI]

The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

V. I. Telnov

2014-09-19T23:59:59.000Z

277

On-chip generation of indistinguishable photons using cavity quantum-electrodynamics  

E-Print Network [OSTI]

The on-chip generation of non-classical states of light is a key requirement for future optical quantum hardware. In solid-state cavity quantum electrodynamics (QED), such non-classical light can be generated from self-assembled quantum dots (QDs) strongly coupled to photonic crystal cavities. Their anharmonic strong light-matter interaction results in large optical nonlinearities at the single photon level, where the admission of a single photon into the cavity may enhance (photon-tunnelling) or diminish (photon-blockade) the probability for a second photon to enter the cavity. Here, we demonstrate that detuning the cavity and QD resonances enables the generation of high-fidelity non-classical light from strongly coupled systems. For specific detunings we show that not only the purity but also the probability of single photon generation increases significantly, making almost-perfect single photon generation by photon-blockade possible with current state-of-the-art samples. Finally, we show that photon-blockade under fully resonant excitation is a promising candidate for the generation of indistinguishable single photons due to a short cavity lifetime that suppresses phonon dephasing.

Kai Mller; Armand Rundquist; Kevin A. Fischer; Tomas Sarmiento; Konstantinos G. Lagoudakis; Yousif A. Kelaita; Carlos Snchez Muoz; Elena del Valle; Fabrice P. Laussy; Jelena Vu?kovi?

2014-08-25T23:59:59.000Z

278

Photonics Research and Development  

SciTech Connect (OSTI)

During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV??s Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home??s electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation??s energy consumption ?? by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve energy efficiency and lower costs for display and lighting applications (UNLV College of Engineering); (2) advancing green LED technology based on the Indium-Gallium-Nitride system (BU), thus improving conversion efficiencies; (3) employing unique state-of-the-art X-ray, electron and optical spectroscopies with microscopic techniques to learn more about the electronic structure of materials and contacts in LED devices (UNLV College of Science); (4) establishing a UNLV Display Lighting Laboratory staffed with a specialized team of academic researchers, students and industrial partners focused on identifying and implementing engineering solutions for lighting display-related problems; and (5) conducting research, development and demonstration for HSL essential to the resolution of technological barriers to commercialization.

Pookpanratana, Sujitra; Shlayan, Neveen; Venkat, Rama; Das, Bisjwajit; Boehm, Bob; Heske, Clemens; Fraser, Donald; Moustakas, Theodore

2010-01-15T23:59:59.000Z

279

Quantum Frequency Translation of Single-Photon States in Photonic Crystal Fiber  

E-Print Network [OSTI]

We experimentally demonstrate frequency translation of a nonclassical optical field via the Bragg scattering four-wave mixing process in a photonic crystal fiber (PCF). The high nonlinearity and the ability to control dispersion in PCF enable efficient translation between photon channels within the visible to-near-infrared spectral range, useful in quantum networks. Heralded single photons at 683 nm were translated to 659 nm with an efficiency of $28.6 \\pm 2.2$ percent. Second-order correlation measurements on the 683-nm and 659-nm fields yielded $g^{(2)}_{683}(0) = 0.21 \\pm 0.02$ and $g^{(2)}_{659}(0) = 0.19 \\pm 0.05$ respectively, showing the nonclassical nature of both fields.

H. J. McGuinness; M. G. Raymer; C. J. McKinstrie; S. Radic

2010-06-23T23:59:59.000Z

280

Photon Clusters in Thermal Radiation  

E-Print Network [OSTI]

Within the framework of Bose-Einstein statistics, it is shown that the blackbody radiation, in addition to single photons, contains photon clusters, or coalescent photons. The probability to find a k-photon cluster versus radiation frequency and temperature is found, as well as the statistics of clusters. Spectra of photon-cluster radiation are calculated as functions of blackbody temperature. The Planck's radiation law is derived based on the existence of photon clusters. The possibility of experimental observation of photon clusters in thermal radiation is discussed.

Aleksey Ilyin

2014-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A magneto-optic modulator with unit quantum effciency  

E-Print Network [OSTI]

We propose a device for the reversible and quiet conversion of microwave photons to optical sideband photons, that can reach 100% quantum effciency. The device is based on an erbium doped crystal placed in both an optical and microwave resonator. We show that effcient conversion can be achieved so long as the product of the optical and microwave cooperativity factors can be made large. We argue achieving this regime is feasible with current technology and we discuss a possible implementation.

Lewis A. Williamson; Yu-Hui Chen; Jevon J. Longdell

2014-10-23T23:59:59.000Z

282

Enhanced photoacoustic detection using photonic crystal substrate  

SciTech Connect (OSTI)

This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

Zhao, Yunfei; Liu, Kaiyang [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); McClelland, John [Ames Laboratory-USDOE, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 (United States); Lu, Meng, E-mail: menglu@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

2014-04-21T23:59:59.000Z

283

Enhancement of second harmonic generation in NaNO{sub 2}-infiltrated opal photonic crystal using structural light focusing  

SciTech Connect (OSTI)

Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO{sub 2}-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulations of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.

Zaytsev, Kirill I., E-mail: kirzay@gmail.com; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 105005, 2nd Baumanskaya str. 5, Moscow (Russian Federation)

2014-08-04T23:59:59.000Z

284

Packaging and qualification of single photon counting avalanche photodiode focal plane arrays  

E-Print Network [OSTI]

Avalanche Photodiode (APD) photon counting arrays are finding an increasing role in defense applications in laser radar and optical communications. As these system concepts mature, the need for reliable screening, test, ...

Verghese, Simon

285

Winter Term 2013/14 Master Photonics 1. Term Pertsch Bin Hasan Wyrowski Egorov Pertsch  

E-Print Network [OSTI]

Winter Term 2013/14 Master Photonics 1. Term Pertsch Bin Hasan Wyrowski Egorov Pertsch 8.00 - 9 102, Abb. - 1 - modern optics E Fundamentals of Thursday FridayMonday Tuesday Wednesday FlammBin Hasan

Knüpfer, Christian

286

Synthesis of Photoresponsive Dual NIR Two-Photon Absorptive [60]Fullerene Triads and Tetrads  

E-Print Network [OSTI]

Broadband nonlinear optical (NLO) organic nanostructures exhibiting both ultrafast photoresponse and a large cross-section of two-photon absorption throughout a wide NIR spectrum may make them suitable for use as nonlinear ...

Jeon, Seaho

287

Two photon luminescence from quantum dots using broad and narrowband ultrafast laser pulses  

E-Print Network [OSTI]

Nonlinear optical microscopy (NLOM) offers many advantages when imaging intact biological samples. By using ultrafast lasers in the near infrared and two photon excitation (TPE), signal production is limited to the focal volume and provides...

Balasubramanian, Haribhaskar

2009-05-15T23:59:59.000Z

288

45.4 / V. Chigrinov 45.4: Azo-Dye Alignment for Displays and Photonics  

E-Print Network [OSTI]

45.4 / V. Chigrinov 45.4: Azo-Dye Alignment for Displays and Photonics Vladimir Chigrinov and Hoi Incorporated, Japan Abstract Liquid crystal photo-alignment using azo-dyes for display and photonics surface are concerned. The azo-dye photoalignment of polymerized LC films used as optical elements

289

A WDM Silicon Photonic Transmitter based on Carrier-Injection Microring Modulators  

E-Print Network [OSTI]

A WDM Silicon Photonic Transmitter based on Carrier- Injection Microring Modulators Chin-Hui Chen1 photonic transmitter based on carrier-injection type microring modulators. Resonant wavelengths can be adjusted by both thermal heaters and bias tuning. OCIS codes: (200.4650) Optical interconnects; (250

Palermo, Sam

290

Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons  

E-Print Network [OSTI]

Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons ABSTRACT A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video

Tsien, Roger Y.

291

Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells  

E-Print Network [OSTI]

Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells photovoltaic solar cell. Optical simulations performed on a complete solar cell revealed that patterning to obtain ultrathin patterned solar cells. Keywords: Photonic crystals; Epitaxial crystalline silicon; Thin

Paris-Sud XI, Université de

292

Light harvesting by planar photonic crystal in solar cells: The case of amorphous silicon  

E-Print Network [OSTI]

Light harvesting by planar photonic crystal in solar cells: The case of amorphous silicon Guillaume on light management in silicon thin film solar cells, using photonic crystals (PhC) structures. We by means of optical simulations performed on realistic thin film solar cell stacks. Theoretically

Boyer, Edmond

293

Guided-mode based Faraday rotation spectroscopy within a photonic bandgap fiber  

E-Print Network [OSTI]

gaseous medium within a hollow-core photonic bandgap fiber (HC-PCF). This novel fiber-optic approach to Faraday Rotation Spectroscopy (FRS) demonstrates the detection of molecular oxygen at 762.309 nm with nano reference gas cells1 . For example, hollow-core photonic bandgap fibers (HC-PCF's) enable efficient

294

Design and analysis of photonic crystal coupled cavity arrays for quantum simulation  

E-Print Network [OSTI]

We performed an experimental study of coupled optical cavity arrays in a photonic crystal platform. We find that the coupling between the cavities is significantly larger than the fabrication-induced disorder in the cavity frequencies. Satisfying this condition is necessary for using such cavity arrays to generate strongly correlated photons, which has potential application to the quantum simulation of many-body systems.

Arka Majumdar; Armand Rundquist; Michal Bajcsy; Vaishno D. Dasika; Seth R. Bank; Jelena Vuckovic

2012-09-14T23:59:59.000Z

295

Photonic Crystal Cavities in Cubic Polytype Silicon Carbide Films  

E-Print Network [OSTI]

We present the design, fabrication, and characterization of high quality factor and small mode volume planar photonic crystal cavities from cubic (3C) thin films (thickness ~ 200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1250 - 1600 nm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.

Radulaski, Marina; Buckley, Sonia; Rundquist, Armand; Provine, J; Alassaad, Kassem; Ferro, Gabriel; Vu?kovi?, Jelena

2013-01-01T23:59:59.000Z

296

Novel Birefringent Frequency Discriminator for Microwave Photonic Links  

E-Print Network [OSTI]

NOVEL BIREFRINGENT FREQUENCY DISCRIMINATOR FOR MICROWAVE PHOTONIC LINKS A Dissertation by JAE HYUN KIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...-Division Multiplexing OPD Optical Path Length Different OVA Optical Vector Network Analyzer PBS Polarization Beam Splitter PM Phase Modulation PD Photodiode PDL Polarization Dependent Loss PLC Planar Lightwave Circuit QWP Quarter Wave Plate RAMZI Ring...

Kim, Jae Hyun

2013-04-22T23:59:59.000Z

297

Engineering integrated photonics for heralded quantum gates  

E-Print Network [OSTI]

Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate implementation of the optimal known gate design which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show that device performance is more sensitive to the small deviations in the coupler reflectivity, arising due to the tolerance values of the fabrication method, than phase variations in the circuit. The mode fidelity was also shown to be less sensitive to reflectivity and phase errors than process fidelity. Our best device achieves a fidelity of 0.931+/-0.001 with the ideal 4x4 unitary circuit and a process fidelity of 0.680+/-0.005 with the ideal computational-basis process.

T. Meany; D. N. Biggerstaff; M. A. Broome; A. Fedrizzi; M. Delanty; A. Gilchrist; G. D. Marshall; M. J. Steel; A. G. White; M. J. Withford

2015-02-11T23:59:59.000Z

298

Two-photon transitions in primordial hydrogen recombination  

E-Print Network [OSTI]

The subject of cosmological hydrogen recombination has received much attention recently because of its importance to predictions for and cosmological constraints from CMB observations. While the central role of the two-photon decay 2s->1s has been recognized for many decades, high-precision calculations require us to consider two-photon decays from the higher states ns,nd->1s (n>=3). Simple attempts to include these processes in recombination calculations have suffered from physical problems associated with sequences of one-photon decays, e.g. 3d->2p->1s, that technically also produce two photons. These correspond to resonances in the two-photon spectrum that are optically thick, necessitating a radiative transfer calculation. We derive the appropriate equations, develop a numerical code to solve them, and verify the results by finding agreement with analytic approximations to the radiative transfer equation. The related processes of Raman scattering and two-photon recombination are included using similar machinery. Our results show that early in recombination the two-photon decays act to speed up recombination, reducing the free electron abundance by 1.3% relative to the standard calculation at z=1300. However we find that some photons between Ly-alpha and Ly-beta are produced, mainly by 3d->1s two-photon decay and 2s->1s Raman scattering. At later times these photons redshift down to Ly-alpha, excite hydrogen atoms, and act to slow recombination. Thus the free electron abundance is increased by 1.3% relative to the standard calculation at z=900. The implied correction to the CMB power spectrum is neligible for the recently released WMAP and ACBAR data, but at Fisher matrix level will be 7 sigma for Planck. [ABRIDGED

Christopher M. Hirata

2008-05-20T23:59:59.000Z

299

Projection optics box  

DOE Patents [OSTI]

A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

Hale, Layton C. (Livermore, CA); Malsbury, Terry (Tracy, CA); Hudyma, Russell M. (San Ramon, CA); Parker, John M. (Tracy, CA)

2000-01-01T23:59:59.000Z

300

Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides  

E-Print Network [OSTI]

was deposited on one side of a free-standing Si3N4 membrane. Using focused ion- beam milling, wire waveguidesHighly Confined Photon Transport in Subwavelength Metallic Slot Waveguides J. A. Dionne,*, H. J and electronic components. Although optical interconnects exhibit a large bandwidth for signal transport, minimum

Atwater, Harry

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Large area 3D helical photonic crystals A. K. Rauba)  

E-Print Network [OSTI]

.1116/1.3640756] I. INTRODUCTION Chiral, coil-spring-like helical photonic crystal structures are useful for optical the helical lattice periodicity and coil pitch of the 3D PhC. This technique con- sists of a simple two

New Mexico, University of

302

Towards new states of matter with atoms and photons  

E-Print Network [OSTI]

Towards new states of matter with atoms and photons Jonas Larson Stockholm University and Universität zu Köln Aarhus "Cold atoms and beyond" 26/6-2014 #12;Motivation Optical lattices + control QED = coupling between few material (atomic) and few electromagnetic degrees of freedom. Cavity atom

303

Thermal-aware Synthesis of Integrated Photonic Ring Resonators  

E-Print Network [OSTI]

Thermal-aware Synthesis of Integrated Photonic Ring Resonators Christopher Condrat Calypto Design-chip optical-interconnect wavelength division multi- plexing (WDM) network architectures. Thermal interactions literature proposes active compensation for such refractive index variations (e.g. carrier-injection based

Kalla, Priyank

304

Conditions for two-photon interference with coherent pulses  

E-Print Network [OSTI]

We study the conditions for two-photon classical interference with coherent pulses. We find that the temporal overlap between optical pulses is not required for interference However, coherence within the same inputs is found to be essential for the interference.

Yong-Su Kim; Oliver Slattery; Paulina S. Kuo; Xiao Tang

2013-06-27T23:59:59.000Z

305

Proton emission induced by polarized photons  

E-Print Network [OSTI]

The proton emission induced by polarized photons is studied in the energy range above the giant resonance region and below the pion emission threshold. Results for the 12C, 16O and 40Ca nuclei are presented. The sensitivity of various observables to final state interaction, meson exchange currents and short range correlations is analyzed. We found relevant effects due to the virtual excitation of the $\\Delta$ resonance.

M. Anguiano; G. Co'; A. M. Lallena

2006-08-29T23:59:59.000Z

306

Single-Photon Absorption in Coupled Atom-Cavity Systems  

E-Print Network [OSTI]

We show how to capture a single photon of arbitrary temporal shape with one atom coupled to an optical cavity. Our model applies to Raman transitions in three-level atoms with one branch of the transition controlled by a (classical) laser pulse, and the other coupled to the cavity. Photons impinging on the cavity normally exhibit partial reflection, transmission, and/or absorption by the atom. Only a control pulse of suitable temporal shape ensures impedance matching throughout the pulse, which is necessary for complete state mapping from photon to atom. For most possible photon shapes, we derive an unambiguous analytic expression for the shape of this control pulse, and we discuss how this relates to a quantum memory.

Jerome Dilley; Peter Nisbet-Jones; Bruce W. Shore; Axel Kuhn

2012-03-01T23:59:59.000Z

307

Photonic Crystal Laser-Driven Accelerator Structures  

SciTech Connect (OSTI)

Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

Cowan, Benjamin M.

2007-08-22T23:59:59.000Z

308

In-plane emission of indistinguishable photons generated by an integrated quantum emitter  

SciTech Connect (OSTI)

We demonstrate the emission of indistinguishable photons along a semiconductor chip originating from carrier recombination in an InAs quantum dot. The emitter is integrated in the waveguiding region of a photonic crystal structure, allowing for on-chip light propagation. We perform a Hong-Ou-Mandel-type of experiment with photons collected from the exit of the waveguide, and we observe two-photon interference under continuous wave excitation. Our results pave the way for the integration of quantum emitters in advanced photonic quantum circuits.

Kalliakos, Sokratis, E-mail: sokratis.kalliakos@crl.toshiba.co.uk; Bennett, Anthony J.; Ward, Martin B.; Ellis, David J. P.; Skiba-Szymanska, Joanna; Shields, Andrew J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Brody, Yarden; Schwagmann, Andre [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

2014-06-02T23:59:59.000Z

309

Thermal photons as a quark-gluon plasma thermometer revisited  

E-Print Network [OSTI]

Photons are a penetrating probe of the hot medium formed in heavy-ion collisions, but they are emitted from all collision stages. At photon energies below 2-3 GeV, the measured photon spectra are approximately exponential and can be characterized by their inverse logarithmic slope, often called "effective temperature" $T_\\mathrm{eff}$. Modelling the evolution of the radiating medium hydrodynamically, we analyze the factors controlling the value of $T_\\mathrm{eff}$ and how it is related to the evolving true temperature $T$ of the fireball. We find that at RHIC and LHC energies most photons are emitted from fireball regions with $T{\\,\\sim\\,}T_\\mathrm{c}$ near the quark-hadron phase transition, but that their effective temperature is significantly enhanced by strong radial flow. Although a very hot, high pressure early collision stage is required for generating this radial flow, we demonstrate that the experimentally measured large effective photon temperatures $T_\\mathrm{eff}{\\,>\\,}T_\\mathrm{c}$, taken alone, do not prove that any electromagnetic radiation was actually emitted from regions with true temperatures well above $T_\\mathrm{c}$. We explore tools that can help to provide additional evidence for the relative weight of photon emission from the early quark-gluon and late hadronic phases. We find that the recently measured centrality dependence of the total thermal photon yield requires a larger contribution from late emission than presently encoded in our hydrodynamic model.

Chun Shen; Ulrich W. Heinz; Jean-Francois Paquet; Charles Gale

2014-03-28T23:59:59.000Z

310

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced electronPhotonPhoton

311

E-Print Network 3.0 - all-optical miniature atomic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instituut, Quantum Gases and Atom Optics Group Collection: Physics 5 Three-photon-absorption resonance for all-optical atomic clocks Sergei Zibrov,1,2,3,4 Summary:...

312

E-Print Network 3.0 - all- optical signal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 2 3 4 5 > >> 1 Dec 1, 2006 Gain in nanowires boosts on-chip photonics Summary: tell optics.org about a new method that, in theory, would allow the speed of optical signals... ,...

313

Phase-sensitive light : coherence theory and applications to optical imaging  

E-Print Network [OSTI]

Spontaneous parametric downconversion (SPDC) can produce pairs of entangled photons, i.e., a stream of biphotons. SPDC has been utilized in a number of optical imaging applications, such as optical coherence tomography, ...

Erkmen, Baris Ibrahim, 1980-

2008-01-01T23:59:59.000Z

314

Fabrication of optical-mode converters for efficient fiber-to-silicon-waveguide couplers  

E-Print Network [OSTI]

Optical-mode converters are needed to efficiently couple light from an optical fiber to a photonic circuit by matching and transforming the propagating modes. This work is based on a horizontally-tapered coupler, in which ...

Barreto, Ral E

2007-01-01T23:59:59.000Z

315

Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption  

E-Print Network [OSTI]

For dissipation-free photon-photon interaction at the single photon level, we analyze one-photon transition and two-photon transition induced by photon pairs in three-level atoms using two-photon wavefunctions. We show that the two-photon absorption can be substantially enhanced by adjusting the time correlation of photon pairs. We study two typical cases: Gaussian wavefunction and rectangular wavefunction. In the latter, we find that under special conditions one-photon transition is completely suppressed while the high probability of two-photon transition is maintained.

Toshihiro Nakanishi; Hirokazu Kobayashi; Kazuhiko Sugiyama; Masao Kitano

2009-06-01T23:59:59.000Z

316

Application of time-invariant linear filter approximation to parameterization of one- and two-dimensional surface metrology with high quality x-ray optics  

E-Print Network [OSTI]

tolerances, metrology of x-ray optics *Corresponding author:been submitted to SPIE Optics and Photonics 2013, ConferenceOP312: Advances in X-Ray/EUV Optics and Components VIII (San

Yashchuk, Valeriy V.

2014-01-01T23:59:59.000Z

317

Two-photon interference with continuous-wave multi-mode coherent light  

E-Print Network [OSTI]

We report two-photon interference with continuous-wave multi-mode coherent light. We show that the two-photon interference, in terms of the detection time difference, reveals two-photon beating fringes with the visibility $V = 0.5$. While scanning the optical delay of the interferometer, Hong-Ou-Mandel dips or peaks are measured depending on the chosen detection time difference. The HOM dips/peaks are repeated when the optical delay and the first-order coherence revival period of the multi-mode coherent light are the same.

Yong-Su Kim; Oliver Slattery; Paulina S. Kuo; Xiao Tang

2013-09-12T23:59:59.000Z

318

An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity  

E-Print Network [OSTI]

We have demonstrated efficient production of triggered single photons by coupling a single semiconductor quantum dot to a three-dimensionally confined optical mode in a micropost microcavity. The efficiency of emitting single photons into a single-mode travelling wave is approximately 38%, which is nearly two orders of magnitude higher than for a quantum dot in bulk semiconductor material. At the same time, the probability of having more than one photon in a given pulse is reduced by a factor of seven as compared to light with Poissonian photon statistics.

Matthew Pelton; Charles Santori; Jelena Vuckovic; Bingyang Zhang; Glenn S. Solomon; Jocelyn Plant; Yoshihisa Yamamoto

2002-08-08T23:59:59.000Z

319

Transversely stable soliton trains in photonic lattices  

SciTech Connect (OSTI)

We report the existence of transversely stable soliton trains in optics. These stable soliton trains are found in two-dimensional square photonic lattices when they bifurcate from X-symmetry points with saddle-shaped diffraction inside the first Bloch band and their amplitudes are above a certain threshold. We also show that soliton trains with low amplitudes or bifurcated from edges of the first Bloch band ({Gamma} and M points) still suffer transverse instability. These results are obtained in the continuous lattice model and are further corroborated by the discrete model.

Yang Jianke [Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05401 (United States)

2011-09-15T23:59:59.000Z

320

Advanced Photon Source Upgrade Project  

ScienceCinema (OSTI)

Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

2013-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Two-photon wave mechanics  

E-Print Network [OSTI]

The position-representation wave function for multi-photon states and its equation of motion are introduced. A major strength of the theory is that it describes the complete evolution (including polarization and entanglement) of multi-photon states propagating through inhomogeneous media. As a demonstration of the two-photon wave function's use, we show how two photons in an orbital-angular-momentum entangled state decohere upon propagation through a turbulent atmosphere.

Brian J. Smith; M. G. Raymer

2007-02-21T23:59:59.000Z

322

Photonic Science & Engineering  

E-Print Network [OSTI]

3321 Engineering Dynamics (3) EGN 3211 Engineering Analysis (3) STA 3032 Probability / Statistics (3Photonic Science & Engineering 2014-2015 Suggested Plan* www.creol.ucf.edu undergrad for Engineers I (4) PHY 3101 Physics for Engineers III (3) MAC 2311C** Calculus I (4) MAC 2312** Calculus II (4

Wu, Shin-Tson

323

Optically pumped quantum-dot Cd(Zn)Se/ZnSe laser and microchip converter for yellow-green spectral region  

SciTech Connect (OSTI)

The room temperature laser generation in the yellow-green ({lambda} = 558.5-566.7 nm) spectral range has been demonstrated under optical pumping by a pulsed nitrogen laser of Cd(Zn)Se/ZnSe quantum dot heterostructures. The maximum achieved laser wavelength was as high as {lambda} = 566.7 nm at a laser cavity length of 945 {mu}m. High values of both the output pulsed power (up to 50 W) and the external differential quantum efficiency ({approx}60%) were obtained at a cavity length of 435 {mu}m. Both a high quality of the laser heterostructure and a low lasing threshold ({approx}2 kW cm{sup -2}) make it possible to use a pulsed InGaN laser diode as a pump source. A laser microchip converter based on this heterostructure has demonstrated a maximum output pulse power of {approx}90 mW at {lambda} = 560 nm. The microchip converter was placed in a standard TO-18 (5.6 mm in diameter) laser diode package. (semiconductor lasers. physics and technology)

Lutsenko, E V; Voinilovich, A G; Rzheutskii, N V; Pavlovskii, V N; Yablonskii, G P; Sorokin, S V; Gronin, S V; Sedova, I V; Kop'ev, Petr S; Ivanov, Sergei V; Alanzi, M; Hamidalddin, A; Alyamani, A

2013-05-31T23:59:59.000Z

324

Deterministic source of a train of indistinguishable single-photon pulses with single-atom-cavity system  

E-Print Network [OSTI]

We present a mechanism to produce indistinguishable single-photon pulses on demand from an optical cavity. The sequences of two laser pulses generate, at the two Raman transitions of a four-level atom, the same cavity-mode photons without repumping of the atom between photon generations. Photons are emitted from the cavity with near-unit efficiency in well-defined temporal modes of identical shapes controlled by the laser fields. The second order correlation function reveals the single-photon nature of the proposed source. A realistic setup for the experimental implementation is presented.

A. Gogyan; S. Gurin; H. -R. Jauslin; Yu. Malakyan

2010-05-01T23:59:59.000Z

325

Magneto-tunable one-dimensional graphene-based photonic crystal  

SciTech Connect (OSTI)

We investigate the effect of a perpendicular static magnetic field on the optical bandgap of a one-dimensional (1D) graphene-dielectric photonic crystal in order to examine the possibility of reaching a rich tunable photonic bandgap. The solution of the wave equation in the presence of the anisotropic Hall situation suggests two decoupled circularly polarized wave each exhibiting different degrees of bandgap tunability. It is also numerically demonstrated that applying different values of field intensity lead to perceptible changes in photonic bandgap of such a structure. Finally, the effect of opening a finite electronic gap in the spectrum of graphene on the optical dispersion solution of such a 1D photonic crystal is reported. It is shown that increasing the value of the electronic gap results in the shrinkage of the associated photonic bandgaps.

Jahani, D., E-mail: dariush110@gmail.com; Soltani-Vala, A., E-mail: asoltani@tabrizu.ac.ir; Barvestani, J.; Hajian, H. [Department of Solid State Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

2014-04-21T23:59:59.000Z

326

Transpiration purged optical probe  

DOE Patents [OSTI]

An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

2004-01-06T23:59:59.000Z

327

Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals  

SciTech Connect (OSTI)

Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

Henry Hao-Chuan Kang

2004-12-19T23:59:59.000Z

328

Multiple intrinsically identical single photon emitters in the solid-state  

E-Print Network [OSTI]

Emitters of indistinguishable single photons are crucial for the growing field of quantum technologies. To realize scalability and increase the complexity of quantum optics technologies, multiple independent yet identical single photon emitters are also required. However typical solid-state single photon sources are inherently dissimilar, necessitating the use of electrical feedback or optical cavities to improve spectral overlap between distinct emitters. Here, we demonstrate bright silicon-vacancy (SiV-) centres in low-strain bulk diamond which intrinsically show spectral overlap of up to 91% and near transform-limited excitation linewidths. Our results have impact upon the application of single photon sources for quantum optics and cryptography, and the production of next generation fluorophores for bio-imaging.

Lachlan J. Rogers; Kay D. Jahnke; T. Teraji; Luca Marseglia; Christoph. Mller; Boris Naydenov; Hardy Schauffert; C. Kranz; Junichi Isoya; Liam P. McGuinness; Fedor Jelezko

2014-06-05T23:59:59.000Z

329

Experimental Implementation of a Quantum Optical State Comparison Amplifier  

E-Print Network [OSTI]

Quantum optical amplification that beats the noise addition limit for deterministic amplifiers has been realized experimentally using several different nondeterministic protocols. These schemes either require single-photon sources, or operate by noise addition and photon subtraction. Here we present an experimental demonstration of a protocol that allows nondeterministic amplification of known sets of coherent states with high gain and high fidelity. The experimental system employs the two mature quantum optical technologies of state comparison and photon subtraction and does not rely on elaborate quantum resources such as single-photon sources. The use of coherent states rather than single photons allows for an increased rate of amplification and a less complex photon source. Furthermore it means that the amplification is not restricted to low amplitude states. With respect to the two key parameters, fidelity and amplified state production rate, we demonstrate, without the use of quantum resources, significant improvements over previous experimental implementations.

Ross J. Donaldson; Robert J. Collins; Electra Eleftheriadou; Stephen M. Barnett; John Jeffers; Gerald S. Buller

2014-04-16T23:59:59.000Z

330

On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique  

SciTech Connect (OSTI)

The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

Chattopadhyay, P.; Karim, B.; Guha Roy, S. [Department of Electronic Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009 (India)

2013-12-28T23:59:59.000Z

331

Quantum noise in optical interferometers  

SciTech Connect (OSTI)

We study the photon counting noise in optical interferometers used for gravitational wave detection. In order to reduce quantum noise, a squeezed vacuum is injected into the usually unused input port. It is investigated under which conditions the gravitational wave signal may be amplified without increasing counting noise concurrently. Such a possibility was suggested as a consequence of the entanglement of the two output ports of a beam splitter. We find that amplification without concurrent increase of noise is not possible for reasonable squeezing parameters. Photon distributions for various beam splitter angles and squeezing parameters are calculated.

Voronov, Volodymyr G.; Weyrauch, Michael [Faculty of Physics, Taras Shevchenko National University of Kyiv, 03022 Kyiv (Ukraine); Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig (Germany)

2010-05-15T23:59:59.000Z

332

Optical set-reset latch  

DOE Patents [OSTI]

An optical set-reset (SR) latch is formed from a first electroabsorption modulator (EAM), a second EAM and a waveguide photodetector (PD) which are arranged in an optical and electrical feedback loop which controls the transmission of light through the first EAM to latch the first EAM in a light-transmissive state in response to a Set light input. A second waveguide PD controls the transmission of light through the second EAM and is used to switch the first EAM to a light-absorptive state in response to a Reset light input provided to the second waveguide PD. The optical SR latch, which may be formed on a III-V compound semiconductor substrate (e.g. an InP or a GaAs substrate) as a photonic integrated circuit (PIC), stores a bit of optical information and has an optical output for the logic state of that bit of information.

Skogen, Erik J.

2013-01-29T23:59:59.000Z

333

Input-output Analysis of Quantum Finite-level Systems in Response to Single Photon States  

E-Print Network [OSTI]

Single photon states, which carry quantum information and coherently interact with quantum systems, are vital to the realization of all-optical quantum networks and quantum memory. In this paper we derive the conditions that enable an exact analysis of the response of passive quantum finite-level systems under the weak driving of single photon input. We show that when a class of finite level systems is driven by single photon inputs, expressions for the output states may be derived exactly using linear systems transfer functions. This removes the need for physical approximations such as weak excitation limit in the analysis of quantum nonlinear systems under single photon driving. We apply this theory to the analysis of a single photon switch. The input-output relations are consistent with the existing results in the study of few photon transport through finite-level systems.

Yu Pan; Guofeng Zhang; Matthew R. James

2015-01-01T23:59:59.000Z

334

Photon Physics and Plasma Research, WILGA 2012; EuCARD Sessions  

E-Print Network [OSTI]

Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD European Coordination for Accelerator Research and Development. This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments ...

Romaniuk, R S

2012-01-01T23:59:59.000Z

335

Strain-tunable Photonic Band Gap Microcavity Waveguides in Silicon at 1.55 m  

E-Print Network [OSTI]

+ , Sang-Gook Kim+ * Columbia University, New York, NY 10027 + Massachusetts Institute of Technology for reconfiguration of the optical characteristics based on user-demand, but also for compensation against external the Optical Response of Photonic Bandgap Structures, edited by Philippe M. Fauchet, Paul V. Braun, Proceedings

336

Technical Digest of the 7th Asia-PacificMicrowave Photonics  

E-Print Network [OSTI]

be easily combined with ultra-broadband fiber-optic links. Requirement of output current and/or output power-wave Photonics IEICE Technical Group on Terahertz Application Systems #12;In this paper, we propose new electro-optic of the metamaterial structures, strong electric fields can be induced by irradiating a wireless millimetre- wave

Choi, Woo-Young

337

Quasiprobability methods for multimode conditional optical gates  

E-Print Network [OSTI]

We present a method for computing the action of conditional linear optical transformations, conditioned on photon counting, for arbitrary signal states. The method is based on the Q-function, a quasi probability distribution for anti normally ordered moments. We treat an arbitrary number of signal and ancilla modes. The ancilla modes are prepared in an arbitrary product number state. We construct the conditional, non unitary, signal transformations for an arbitrary photon number count on each of the ancilla modes.

G. J. Milburn

2006-12-05T23:59:59.000Z

338

PHYSICAL REVIEW A 86, 053834 (2012) Axiomatic geometrical optics, Abraham-Minkowski controversy,  

E-Print Network [OSTI]

of linear waves of arbitrary nature. B. Field-theoretical approach Before photon properties canPHYSICAL REVIEW A 86, 053834 (2012) Axiomatic geometrical optics, Abraham-Minkowski controversy optics within the field-theoretical approach, the classical concept of a photon (and, more generally, any

339

Thermally induced photon splitting  

E-Print Network [OSTI]

We calculate thermal corrections to the non-linear QED effective action for low-energy photon interactions in a background electromagnetic field. The high-temperature expansion shows that at $T \\gg m$ the vacuum contribution is exactly cancelled to all orders in the external field except for a non-trivial two-point function contribution. The high-temperature expansion derived reveals a remarkable cancellation of infrared sensitive contributions. As a result photon-splitting in the presence of a magnetic field is suppressed in the presence of an electron-positron QED-plasma at very high temperatures. In a cold and dense plasma a similar suppression takes place. At the same time Compton scattering dominates for weak fields and the suppression is rarely important in physical situations.

Per Elmfors; Bo-Sture Skagerstam

1998-02-23T23:59:59.000Z

340

Spatial solitons in two-photon photorefractive media  

SciTech Connect (OSTI)

We provide a theory for spatial solitons due to the two-photon photorefractive effect based on the Castro-Camus model [Opt. Lett. 28, 1129 (2003)]. We present the evolution equation of one-dimensional spatial solitons in two-photon photorefractive media. In steady state and under appropriate external bias conditions, we obtain the dark and bright soliton solutions of the optical wave evolution equation, and also discuss the self-deflection of the bright solitons theoretically by taking into account the diffusion effect.

Hou Chunfeng; Pei Yanbo; Zhou Zhongxiang; Sun Xiudong [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China)

2005-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Nonlocal Pancharatnam Phase in Two-Photon Interferometry  

E-Print Network [OSTI]

We propose a polarised intensity interferometry experiment, which measures the nonlocal Pancharatnam phase acquired by a pair of Hanbury Brown-Twiss photons. The setup involves two polarised thermal sources illuminating two polarised detectors. Varying the relative polarisation angle of the detectors introduces a two photon geometric phase. Local measurements at either detector do not reveal the effects of the phase, which is an optical analog of the multiparticle Aharonov-Bohm effect. The geometric phase sheds light on the three slit experiment and suggests ways of tuning entanglement.

Poonam Mehta; Joseph Samuel; Supurna Sinha

2010-09-03T23:59:59.000Z

342

Nanotechnology and Quasicrystals: From self assembly to photonic applications  

E-Print Network [OSTI]

After providing a concise overview on quasicrystals and their discovery more than a quarter of a century ago, I consider the unexpected interplay between nanotechnology and quasiperiodic crystals. Of particular relevance are efforts to fabricate artificial functional micro- or nanostructures, as well as efforts to control the self-assembly of nanostructures, where current knowledge about the possibility of having long-range order without periodicity can provide significant advantages. I discuss examples of systems ranging from artificial metamaterials for photonic applications, through self-assembled soft matter, to surface waves and optically-induced nonlinear photonic quasicrystals.

Ron Lifshitz

2008-10-28T23:59:59.000Z

343

Optical gating of perylene bisimide fluorescence using dithienylcyclopentene photochromic switches  

SciTech Connect (OSTI)

The emission of millions of fluorescence photons from a chromophore is controlled by the absorption of a few tens of photons in a photochromic molecule. The parameters that determine the efficiency of this process are investigated, providing insights for the development of an all-optical gate.

Prs, Martti; Khler, Jrgen, E-mail: juergen.koehler@uni-bayreuth.de [Experimental Physics IV, University of Bayreuth, 95440 Bayreuth (Germany)] [Experimental Physics IV, University of Bayreuth, 95440 Bayreuth (Germany); Grf, Katja; Bauer, Peter; Thelakkat, Mukundan [Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth (Germany)] [Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth (Germany)

2013-11-25T23:59:59.000Z

344

Comments on photonic shells  

E-Print Network [OSTI]

We investigate in detail the special case of an infinitely thin static cylindrical shell composed of counter-rotating photons on circular geodetical paths separating two distinct parts of Minkowski spacetimes--one inside and the other outside the shell--and compare it to a static disk shell formed by null particles counter-rotating on circular geodesics within the shell located between two sections of flat spacetime. One might ask whether the two cases are not, in fact, merely one.

M. Zofka

2004-03-05T23:59:59.000Z

345

Polarization observables from the photoproduction of omega-mesons using linearly polarized photons  

SciTech Connect (OSTI)

We report on the photon beam asymmetry, {Sigma}, of the {omega} meson decaying into {pi}{sup +}, {pi}{sup -}, {pi}{sup 0} using a beam of linearly polarized photons in the photon energy region of E{sub {gamma}} = 1.9 GeV. These preliminary results are from the summer 2005 g8b dataset, which were collected with the CLAS detector in Hall B of Jefferson Lab.

D. Martinez, P.L. Cole, CLAS Collaboration

2012-04-01T23:59:59.000Z

346

To Photon Concept and to Physics of Quantum Absorption Process  

E-Print Network [OSTI]

The status of the photon in the modern physics was analysed. Within the frames of the Standard Model of particle physics the photon is considered to be the genuine elementary particle, being to be the messenger of the electromagnetic interaction to which are subject charged particles. In contrast, the experts in quantum electodynamics (in particular, in quantum optics) insist, that the description of an photon to be the particle is impossible. The given viewpoint was carefully analysed and its falseness was proved. The expression for a photon wave function is presented. So, the status of the photon in quantum electodynamics was restored. The physics of a quantum absorption process is analysed. It is argued in accordance with Dirac guess, that the photon revival takes place by its absorption. Being to be a soliton, it seems to be keeping safe after an energy absorption in a pinned state, possessing the only by spin. It is shown, that the time of the transfer of absorbing systems in an excited state is finite and moreover, that it can govern the stationary signal registered. The given result is significant for the all stationary spectroscopy, in which at present the transfer of absorbing systems in an excited state is considered to be instantaneous.

Dmitri Yerchuck; Yauhen Yerchak; Alla Dovlatova; Vyacheslav Stelmakh; Felix Borovik

2014-06-03T23:59:59.000Z

347

A picogram and nanometer scale photonic crystal opto-mechanical cavity  

E-Print Network [OSTI]

We describe the design, fabrication, and measurement of a cavity opto-mechanical system consisting of two nanobeams of silicon nitride in the near-field of each other, forming a so-called "zipper" cavity. A photonic crystal patterning is applied to the nanobeams to localize optical and mechanical energy to the same cubic-micron-scale volume. The picrogram-scale mass of the structure, along with the strong per-photon optical gradient force, results in a giant optical spring effect. In addition, a novel damping regime is explored in which the small heat capacity of the zipper cavity results in blue-detuned opto-mechanical damping.

Eichenfield, M; Chan, J; Vahala, K J; Painter, O

2008-01-01T23:59:59.000Z

348

Interfacing Superconducting Qubits and Telecom Photons via a Rare-Earth Doped Crystal  

E-Print Network [OSTI]

We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of $\\pi$-pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare earth doped crystals, we make use of a special transfer protocol using staggered $\\pi$-pulses. We predict total transfer efficiencies on the order of 90%.

Christopher O'Brien; Nikolai Lauk; Susanne Blum; Giovanna Morigi; Michael Fleischhauer

2014-07-25T23:59:59.000Z

349

Advanced silicon photonic modulators  

E-Print Network [OSTI]

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

350

Resonantly pumped optical pumping injection cavity lasers  

E-Print Network [OSTI]

An optical parametric oscillator is tuned to the resonance wavelength of the etalon in an optical pumping injection cavity (OPIC) laser with a type-II "W" active region, thereby minimizing the threshold pump intensity and ...

Santilli, Michael Robert; McAlpine, T. C.; Greene, K. R.; Olafsen, L. J.; Bewley, W. W.; Felix, C. L.; Vurgaftman, I.; Meyer, J. R.; Lee, H.; Martinelli, R. U.

2004-11-01T23:59:59.000Z

351

Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas  

SciTech Connect (OSTI)

Optical pumping of an optically thick atomic vapor typically requires a quenching buffer gas, such as N{sub 2}, to prevent radiation trapping of unpolarized photons which would depolarize the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4.5 times higher polarization of K than direct optical pumping of K in the absence of N{sub 2}. Such spin-exchange polarization transfer from optically thin species is useful in a variety of areas, including spin-polarized nuclear scattering targets and electron beams, quantum-nondemolition spin measurements, and ultrasensitive magnetometry.

Romalis, M. V. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

2010-12-10T23:59:59.000Z

352

Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion  

E-Print Network [OSTI]

The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum information and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 {\\mu}m to visible wavelengths for detection would be integral to linear optical quantum computation due to the challenges of detection in the near-infrared. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce the triggered single-photon emission of a semiconductor quantum dot at 1.3 {\\mu}m to 710 nm with a total detection (internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm signal maintains the quantum character of the 1.3 {\\mu}m signal, yielding a photon anti-bunched second-order intensity correlation, g^(2)(t), that shows the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.

Matthew T. Rakher; Lijun Ma; Oliver Slattery; Xiao Tang; Kartik Srinivasan

2011-08-19T23:59:59.000Z

353

Photonics.com Spectra Home Technology World Innovative Products Business World Presstime Bulletin Article Abstracts Microscopy Focus | June 2007  

E-Print Network [OSTI]

-Optical Science and Email Article Printer Friendly Save Article Enter search term Entire SiteExplore Photonics microscopy offers the highest resolution possible for this search, but the technique has difficulty imaging

Rogers, John A.

354

D H Saxon. EPS Aachen, July 2003 1 Prompt photon production with  

E-Print Network [OSTI]

D H Saxon. EPS Aachen, July 2003 1 Prompt photon production with associated jets at HERA D H Saxon) with comparison to NLO calculations Both based on full data set 1996-2000 > 100 pb-1 #12;D H Saxon. EPS Aachen. EPS Aachen, July 2003 3 Kinematic region Prompt photon + jet ZEUS photoprod'n (old) -1.5

355

PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator  

E-Print Network [OSTI]

-Optics, Technical Digest (CD) (Optical Society of America, 2007), CMG1. 7. G. Gunn, "CMOS photonicsTM - SOI learns 2-4, (2002), 802-805 11. SILVACO International, 4701 Patrick Henry Drive, Bldg. 1, Santa Clara, CA

Lipson, Michal

356

Nonlocal Modulation of Entangled Photons  

E-Print Network [OSTI]

We consider ramifications of the use of high speed light modulators to questions of correlation and measurement of time-energy entangled photons. Using phase modulators, we find that temporal modulation of one photon of an entangled pair, as measured by correlation in the frequency domain, may be negated or enhanced by modulation of the second photon. Using amplitude modulators we describe a Fourier technique for measurement of biphoton wave functions with slow detectors.

S. E. Harris

2008-08-06T23:59:59.000Z

357

Entangling photons via the double quantum Zeno effect  

SciTech Connect (OSTI)

We propose a scheme for entangling two photons via the quantum Zeno effect, which describes the inhibition of quantum evolution by frequent measurements and is based on the difference between summing amplitudes and probabilities. For a given error probability P{sub error}, our scheme requires that the one-photon loss rate {xi}{sub 1{gamma}} and the two-photon absorption rate {xi}{sub 2{gamma}} in some medium satisfy {xi}{sub 1{gamma}}/{xi}{sub 2{gamma}}=2P{sub error}{sup 2}/{pi}{sup 2}, which is significantly improved compared to previous approaches. Again based on the quantum Zeno effect, as well as coherent excitations, we present a possibility to fulfill this requirement in an otherwise linear optics setup.

Brinke, Nicolai ten; Osterloh, Andreas; Schuetzhold, Ralf [Fakultaet fuer Physik, Universitaet Duisburg-Essen, Lotharstrasse 1, D-47057 Duisburg (Germany)

2011-08-15T23:59:59.000Z

358

Suitability versus fidelity for rating single-photon guns  

E-Print Network [OSTI]

The creation of specified quantum states is important for most, if not all, applications in quantum computation and communication. The quality of the state preparation is therefore an essential ingredient in any assessment of a quantum-state gun. We show that the fidelity, under the standard definitions is not sufficient to assess quantum sources, and we propose a new measure of suitability that necessarily depends on the application for the source. We consider the performance of single-photon guns in the context of quantum key distribution (QKD) and linear optical quantum computation. Single-photon sources for QKD need radically different properties than sources for quantum computing. Furthermore, the suitability for single-photon guns is discussed explicitly in terms of experimentally accessible criteria.

George M. Hockney; Pieter Kok; Jonathan P. Dowling

2003-04-01T23:59:59.000Z

359

Laser photon merging in proton-laser collisions  

E-Print Network [OSTI]

The quantum electrodynamical vacuum polarization effects arising in the collision of a high-energy proton beam and a strong, linearly polarized laser field are investigated. The probability that laser photons merge into one photon by interacting with the proton`s electromagnetic field is calculated taking into account the laser field exactly. Asymptotics of the probability are then derived according to different experimental setups suitable for detecting perturbative and nonperturbative vacuum polarization effects. The experimentally most feasible setup involves the use of a strong optical laser field. It is shown that in this case measurements of the polarization of the outgoing photon and and of its angular distribution provide promising tools to detect these effects for the first time.

A. Di Piazza; K. Z. Hatsagortsyan; C. H. Keitel

2009-06-30T23:59:59.000Z

360

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministrationPhotometric Variations asPhoton Source

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministrationPhotometric Variations asPhoton

362

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced electronPhoton Source

363

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced electronPhoton

364

Photons & Fusion Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced2 Photons & Fusion

365

Photons & Fusion Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced2 Photons & FusionJuly

366

Photons & Fusion Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced2 Photons &

367

Method of photon spectral analysis  

DOE Patents [OSTI]

A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.

Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.

1993-04-27T23:59:59.000Z

368

Method of photon spectral analysis  

DOE Patents [OSTI]

A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.

Gehrke, Robert J. (Idaho Falls, ID); Putnam, Marie H. (Idaho Falls, ID); Killian, E. Wayne (Idaho Falls, ID); Helmer, Richard G. (Idaho Falls, ID); Kynaston, Ronnie L. (Blackfoot, ID); Goodwin, Scott G. (Idaho Falls, ID); Johnson, Larry O. (Pocatello, ID)

1993-01-01T23:59:59.000Z

369

Energy and System Size Dependence of Photon Production at Forward Rapidities at RHIC  

E-Print Network [OSTI]

The energy and system size dependence of pseudorapidity ($\\eta$) and multiplicity distributions of photons are measured in the region -2.3 $\\leq$ $\\eta$ $\\leq$ -3.7 for Cu + Cu collisions at $\\sqrt{s_{NN}}$ = 200 and 62.4 GeV. Photon multiplicity measurements at forward rapidity have been carried out using a Photon Multiplicity Detector (PMD) in the STAR experiment. Photons are found to follow longitudinal scaling for Cu + Cu collisions for 0-10% centrality. A Comparison of pseudorapidity distributions with HIIJING model is also presented.

Monika Sharma; Sunil Dogra; Neeraj Gupta

2007-04-24T23:59:59.000Z

370

Optical reference geometry and inertial forces in Kerr-de Sitter spacetimes  

E-Print Network [OSTI]

Optical reference geometry and related concept of inertial forces are investigated in Kerr-de Sitter spacetimes. Properties of the inertial forces are summarized and their typical behaviour is illustrated. The intuitive 'Newtonian' application of the forces in the relativistic dynamics is demonstrated in the case of the test particle circular motion, static equilibrium positions and perfect fluid toroidal configurations. Features of the optical geometry are illustrated by the embedding diagrams of its equatorial plane. The embedding diagrams do not cover whole the stationary regions of the spacetimes, therefore the limits of embeddability are established. A shape of the embedding diagrams is related to the behaviour of the centrifugal force and it is characterized by the number of turning points of the diagrams. Discussion of the number of embeddable photon circular orbits is also included and the typical embedding diagrams are constructed. The Kerr-de Sitter spacetimes are classified according to the properties of the inertial forces and embedding diagrams.

Jiri Kovar; Zdenek Stuchlik

2007-01-03T23:59:59.000Z

371

An optical cavity with a strongly focused mode  

SciTech Connect (OSTI)

Atom-photon interfaces are one of the building blocks of the future quantum information protocols. Accomplishing a strong interaction between the atom and the photons can be successfully done by high finesse and small mode volume cavities. However, this method requires sophisticated dielectric coatings and stabilization of the cavity against even small vibrations and small line width of those cavities impose higher input photon numbers if spontaneously emitted photons are to be used, which make it seem hard to scale up such atom-light interfaces to form quantum networks. An alternative method is to use a nearly concentric cavity, which has a strongly focused optical mode.

Durak, Kadir; Victor, Leong Xu Heng; Huan, Nguyen Chi; Maslennikov, Gleb; Kurtsiefer, Christian [NUS, Center for Quantum Technologies/Physics Dept, 3 Science Drive 2, 117543 (Singapore); Straupe, Stanislav [NUS, Center for Quantum Technologies/Physics Dept, 3 Science Drive 2, 117543, Singapore and Faculty of Physics, Moscow State University (Russian Federation)

2013-12-16T23:59:59.000Z

372

Photonic quantum walk in a single beam with twisted light  

E-Print Network [OSTI]

Inspired by the classical phenomenon of random walk, the concept of quantum walk has emerged recently as a powerful platform for the dynamical simulation of complex quantum systems, entanglement production and universal quantum computation. Such a wide perspective motivates a renewing search for efficient, scalable and stable implementations of this quantum process. Photonic approaches have hitherto mainly focused on multi-path schemes, requiring interferometric stability and a number of optical elements that scales quadratically with the number of steps. Here we report the experimental realization of a quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous indistinguishable photons. The whole process develops in a single light beam, with no need of interferometers, and requires optical resources scaling linearly with the number of steps. Our demonstration introduces a novel versatile photonic platform for implementing quantum simulations, based on exploiting the transverse modes of a single light beam as quantum degrees of freedom.

Filippo Cardano; Francesco Massa; Ebrahim Karimi; Sergei Slussarenko; Domenico Paparo; Corrado de Lisio; Fabio Sciarrino; Enrico Santamato; Lorenzo Marrucci

2014-03-19T23:59:59.000Z

373

Method and apparatus for optical phase error correction  

DOE Patents [OSTI]

The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

DeRose, Christopher; Bender, Daniel A.

2014-09-02T23:59:59.000Z

374

Amplitude and phase modulation of time-energy entangled two-photon states  

E-Print Network [OSTI]

We experimentally demonstrate amplitude and phase modulation of a time-energy entangled two-photon wave function. The entangled photons are produced by spontaneous parametric down-conversion, spectrally dispersed in an prism compressor, modulated in amplitude and/or phase, and detected in coincidence by sum-frequency generation. First, we present a Fourier optical analysis of the optical setup yielding an analytic expression for the resulting field distribution at the exit plane of the shaping apparatus. We then introduce amplitude and/or phase shaping and present results which can only be obtained through a combination of the two. Specifically, we use a shaper-based interferometer to measure the two-photon interference of an almost bandwidth-limited two-photon wave function.

F. Zh; M. Halder; T. Feurer

2009-01-22T23:59:59.000Z

375

Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center  

SciTech Connect (OSTI)

A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5??0.6)% and (10.4??0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Mnchow, Asmus v.; Burchardt, Daniel; Hermelbracht, Juliane; Tashima, Toshiyuki [Fakultt fr Physik, Ludwig-Maximilians-Universitt Mnchen, 80799 Mnchen (Germany); Schell, Andreas W.; Benson, Oliver [Institut fr Physik, Humboldt-Universitt zu Berlin, 12489 Berlin (Germany); Meinhardt, Thomas; Krueger, Anke [Institut fr Organische Chemie, Universitt Wrzburg, 97074 Wrzburg (Germany); Wilhelm Conrad Roentgen Research Center for Complex Materials Systems, Universitt Wrzburg, 97074 Wrzburg (Germany); Stiebeiner, Ariane; Rauschenbeutel, Arno [Atominstitut, Technische Universitt Wien, 1020 Wien (Austria); Weinfurter, Harald; Weber, Markus, E-mail: markusweber@lmu.de [Fakultt fr Physik, Ludwig-Maximilians-Universitt Mnchen, 80799 Mnchen (Germany); Max-Planck-Institut fr Quantenoptik, 85748 Garching (Germany)

2014-01-20T23:59:59.000Z

376

Design of photonic crystal microcavities for cavity QED  

E-Print Network [OSTI]

We discuss the optimization of optical microcavity designs based on 2D photonic crystals for the purpose of strong coupling between the cavity field and a single neutral atom trapped within a hole. We present numerical predictions for the quality factors and mode volumes of localized defect modes as a function of geometric parameters, and discuss some experimental challenges related to the coupling of a defect cavity to gas-phase atoms.

Jelena Vuckovic; Marko Loncar; Hideo Mabuchi; Axel Scherer

2002-08-15T23:59:59.000Z

377

Sufficient bound on the mode mismatch of single photons for scalability of the boson sampling computer  

E-Print Network [OSTI]

The boson sampler proposed by Aaronson and Arkhipov is a non-universal quantum computer, which can serve as evidence against the extended Church-Turing thesis. It samples the probability distribution at the output of linear unitary optical network, with indistinguishable single photons at the input. Four experimental groups have already tested their small-scale prototypes with up to four photons. The boson sampler with few dozens of single photons is believed to be hard to simulate on a classical computer. For scalability of a realistic boson sampler with current technology it is necessary to know the effect of the photon mode mismatch on its operation. Here a nondeterministic model of the boson sampler is analyzed, which employs partially indistinguishable single photons emitted by identical sources. A sufficient condition on the average mutual fidelity $ \\langle \\mathcal{F}\\rangle$ of the single photons is found, which guarantees that the realistic boson sampler outperforms the classical computer. Moreover, the boson sampler computer with partially indistinguishable single photons is scalable while being beyond the power of classical computers when the single photon mode mismatch $1-\\langle \\mathcal{F}\\rangle$ scales as $ \\mathcal{O}(N^{-3/2})$ with the total number of photons $N$.

Valery Shchesnovich

2014-12-02T23:59:59.000Z

378

Thermal photons as a quark-gluon plasma thermometer revisited  

E-Print Network [OSTI]

Photons are a penetrating probe of the hot medium formed in heavy-ion collisions, but they are emitted from all collision stages. At photon energies below 2-3 GeV, the measured photon spectra are approximately exponential and can be characterized by their inverse logarithmic slope, often called "effective temperature" T_eff. Modeling the evolution of the radiating medium hydrodynamically, we analyze the factors controlling the value of T_eff and how it is related to the evolving true temperature T of the fireball. We find that at RHIC and LHC energies most photons are emitted from fireball regions with T ~ T_c near the quark-hadron phase transition, but that their effective temperature is significantly enhanced by strong radial flow. Although a very hot, high pressure early collision stage is required for generating this radial flow, we demonstrate that the experimentally measured large effective photon temperatures T_eff > T_c do not prove that any electromagnetic radiation was actually emitted from regions ...

Shen, Chun; Paquet, Jean-Francois; Gale, Charles

2013-01-01T23:59:59.000Z

379

Fiber optic detector for immuno-testing  

DOE Patents [OSTI]

A portable fiber optic detector that senses the presence of specific target chemicals in air or a gas by exchanging the target chemical for a fluoroescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

Partin, Judy K. (Idaho Falls, ID); Ward, Thomas E. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

380

Collimator-free photon tomography  

DOE Patents [OSTI]

A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.

Dilmanian, F.A.; Barbour, R.L.

1998-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Collimator-free photon tomography  

DOE Patents [OSTI]

A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

Dilmanian, F. Avraham (Yaphank, NY); Barbour, Randall L. (Westbury, NY)

1998-10-06T23:59:59.000Z

382

Entangling two atoms in spatially separated cavities through both photon emission and absorption processes  

E-Print Network [OSTI]

We consider a system consisting of a $\\Lambda$-type atom and a V-type atom, which are individually trapped in two spatially separated cavities that are connected by an optical fibre. We show that an extremely entangled state of the two atoms can be deterministically generated through both photon emission of the $\\Lambda$-type atom and photon absorption of the V-type atom in an ideal situation. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity of the entangled state is also investigated. We find that the effect of photon leakage out of the fibre on the fidelity can be greatly diminished in some special cases. As regards the effect of spontaneous emission and photon loss from the cavities, we find that the present scheme with a fidelity higher than 0.98 may be realized under current experiment conditions.

Peng Peng; Fu-li Li

2006-12-29T23:59:59.000Z

383

Multi-bit quantum random number generation by measuring positions of arrival photons  

SciTech Connect (OSTI)

We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.

Yan, Qiurong, E-mail: yanqiurong@ncu.edu.cn [Department of Electronics Information Engineering, Nanchang University, Nanchang 330031 (China); State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119 (China); Zhao, Baosheng [State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119 (China); Liao, Qinghong; Zhou, Nanrun [Department of Electronics Information Engineering, Nanchang University, Nanchang 330031 (China)

2014-10-15T23:59:59.000Z

384

Photon enhanced thermionic emission  

DOE Patents [OSTI]

Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

2014-10-07T23:59:59.000Z

385

Strong non-linearity-induced correlations for counter-propagating photons scattering on a two-level emitter  

E-Print Network [OSTI]

We analytically treat the scattering of two counter-propagating photons on a two-level emitter embedded in an optical waveguide. We find that the non-linearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quantified via a reduction in coincident clicks in a Hong-Ou-Mandel measurement setup, analogous to a linear beam splitter. Changes to the spectra and phase of the scattered photons, however, would lead to reduced interference with other photons when implemented in a larger optical circuit. We introduce suitable fidelity measures which account for these changes, and find that high values can still be achieved even when accounting for all properties of the scattered photonic state.

Anders Nysteen; Dara P. S. McCutcheon; Jesper Mrk

2015-02-21T23:59:59.000Z

386

First Evidence of Near-Infrared Photonic Bandgap in Polymeric Rod-Connected Diamond Structure  

E-Print Network [OSTI]

We present the simulation, fabrication, and optical characterization of low-index polymeric rod-connected diamond (RCD) structures. Such complex three-dimensional photonic crystal structures are created via direct laser writing by two-photon polymerization. To our knowledge, this is the first measurement at near-infrared wavelengths, showing partial photonic bandgaps. We characterize structures in transmission and reflection using angular resolved Fourier image spectroscopy to visualize the band structure. Comparison of the numerical simulations of such structures with the experimentally measured data show good agreement for both P- and S-polarizations.

Chen, Lifeng; Zheng, Xu; Lin, Jia-De; Oulton, Ruth; Lopez-Garcia, Martin; Ho, Ying-Lung D; Rarity, John G

2015-01-01T23:59:59.000Z

387

A proposal for the implementation of quantum gates with photonic-crystal coupled cavity waveguides  

E-Print Network [OSTI]

Quantum computers require technologies that offer both sufficient control over coherent quantum phenomena and minimal spurious interactions with the environment. We show, that photons confined to photonic crystals, and in particular to highly efficient waveguides formed from linear chains of defects doped with atoms can generate strong non-linear interactions which allow to implement both single and two qubit quantum gates. The simplicity of the gate switching mechanism, the experimental feasibility of fabricating two dimensional photonic crystal structures and integrability of this device with optoelectronics offers new interesting possibilities for optical quantum information processing networks.

Dimitris G. Angelakis; Marcelo Franca Santos; Vassilis Yannopapas; Artur Ekert

2007-04-12T23:59:59.000Z

388

Quantum phase gate for optical qubits with cavity quantum optomechanics  

E-Print Network [OSTI]

We show that a cavity optomechanical system formed by a mechanical resonator simultaneously coupled to two modes of an optical cavity can be used for the implementation of quantum phase gate between optical qubits associated with the two intracavity modes. The scheme is realizable for sufficiently strong single-photon optomechanical coupling in the resolved sideband regime, and is robust against cavity losses.

Muhammad Asjad; Paolo Tombesi; David Vitali

2015-01-16T23:59:59.000Z

389

Optical absorption and ionization of silicate glasses Leonid B. Glebov  

E-Print Network [OSTI]

Optical absorption and ionization of silicate glasses Leonid B. Glebov School of Optics and hydroxyl), and induced (color centers) absorption of multicomponent silicate glasses in UV, visible-photon ionization was detected in alkaline-silicate glasses exposed to high-power laser radiation in nano

Glebov, Leon

390

Refined analysis of photon leptoproduction off spinless target  

E-Print Network [OSTI]

We calculate the differential cross section for real photon electroproduction off spinless hadron which sevres as a main probe of the hadrons structure via the concept of generalized parton distributions. Compared to previously available computations performed with twist-three power accuracy, we exactly accounted for all kinematical effects in hadron mass and momentum transfer which arise from leptonic helicity amplitudes. We performed numerical studies of these kinematical effects and demonstrated that in the valence quark region and rather low virtualities of the hard photon which sets the factorization scale, the available approximate results significantly overestimate the cross section rates in comparison to exact formulas.

Andrei V. Belitsky; Dieter Mueller

2008-09-17T23:59:59.000Z

391

Experimental characterisation of nonlocal photon fluids  

E-Print Network [OSTI]

Quantum gases of atoms and exciton-polaritons are nowadays a well established theoretical and experimental tool for fundamental studies of quantum many-body physics and suggest promising applications to quantum computing. Given their technological complexity, it is of paramount interest to devise other systems where such quantum many-body physics can be investigated at a lesser technological expense. Here we examine a relatively well-known system of laser light propagating through thermo-optical defocusing media: based on a hydrodynamical description of light as a quantum fluid of interacting photons, we propose such systems as a valid, room temperature alternative to atomic or exciton-polariton condensates for studies of many-body physics. First, we show that by using a technique traditionally used in oceanography, it is possible to perform a direct measurement of the single-particle part of the dispersion relation of the elementary excitations on top of the photon fluid and to detect its global flow. Then, ...

Vocke, David; Marino, Francesco; Wright, Ewan M; Carusotto, Iacopo; Faccio, Daniele

2015-01-01T23:59:59.000Z

392

New directions in photonics simulation: Lanczos recursion and finite-difference time-domain  

SciTech Connect (OSTI)

Computational Integrated Photonics (CIP) is the area of computational physics that treats the propagation of light in optical fibers and in integrated optical circuits. The purpose of integrated photonics simulation is to develop the computational tools that will support the design of photonic and optoelectronic integrated devices. CIP has, in general, two thrusts: (1) predictive models of photonic device behavior that can be used reliably to enhance significantly the speed with which designs axe optimized for development applications, and (2) to further our ability to describe the linear and nonlinear processes that occur - and can be exploited - in real photonic devices. Experimental integrated optics has been around for over a decade with much of the work during this period. centered on proof-of-principle devices that could be described using simple analytic and numerical models. Recent advances in material growths, photolithography, and device complexity have conspired to reduce significantly the number of devices that can be designed with simple models and to increase dramatically the interest in CIP. In the area of device design, CIP is viewed as critical to understanding device behavior and to optimization. In the area of propagation physics, CIP is an important tool in the study of nonlinear processes in integrated optical devices and fibers. In this talk I will discuss two of the new directions we have been investigating in CIP: Lanczos recursion and finite-difference time-domain.

Hawkins, R.J.; McLeod, R.R.; Kallman, J.S.; Ratowsky, R.P.; Feit, M.D.; Fleck, J.A. Jr.

1992-06-01T23:59:59.000Z

393

Efficient heralding of O-band passively spatial-multiplexed photons for noise-tolerant quantum key distribution  

E-Print Network [OSTI]

When implementing O-band quantum key distribution on optical fiber transmission lines carrying C-band data traffic, noise photons that arise from spontaneous Raman scattering or insufficient filtering of the classical data channels could cause the quantum bit-error rate to exceed the security threshold. In this case, a photon heralding scheme may be used to reject the uncorrelated noise photons in order to restore the quantum bit-error rate to a low level. However, the secure key rate would suffer unless one uses a heralded photon source with sufficiently high heralding rate and heralding efficiency. In this work we demonstrate a heralded photon source that has a heralding efficiency that is as high as 74.5%. One disadvantage of a typical heralded photon source is that the long deadtime of the heralding detector results in a significant drop in the heralding rate. To counter this problem, we propose a passively spatial-multiplexed configuration at the heralding arm. Using two heralding detectors in this configuration, we obtain an increase in the heralding rate by 37% and a corresponding increase in the heralded photon detection rate by 16%. We transmitted the O-band photons over 10 km of noisy optical fiber to observe the relation between quantum bit-error rate and noise-degraded second-order correlation function of the transmitted photons. The effects of afterpulsing when we shorten the deadtime of the heralding detectors are also observed and discussed.

Mao Tong Liu; Han Chuen Lim

2014-08-07T23:59:59.000Z

394

Stimulated emission of two photons in parametric amplification and its interpretation as multi-photon interference  

E-Print Network [OSTI]

Stimulated emission of two photons is observed experimentally in the parametric amplification process and is compared to a three-photon interference scheme. We find that the underlying physics of stimulated emission is simply the constructive interference due to photon indistinguishability. So the observed signal enhancement upon the input of photons is a result of multi-photon interference of the input photons and the otherwise spontaneously emitted photon from the amplifier.

F. W. Sun; B. H. Liu; Y. X. Gong; Y. F. Huang; Z. Y. Ou; G. C. Guo

2007-02-06T23:59:59.000Z

395

Manufacturing method of photonic crystal  

DOE Patents [OSTI]

A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

2013-01-29T23:59:59.000Z

396

Summary of Lepton Photon 2011  

SciTech Connect (OSTI)

In this lecture, I summarize developments presented at the Lepton Photon 2011 conference and give my perspective on the current situation in high-energy physics. I am grateful to the organizers of Lepton Photon 2011 for providing us a very pleasant and simulating week in Mumbai. This year's Lepton Photon conference has covered the full range of subjects that fall within the scope of high-energy physics, including connections to cosmology, nuclear physics, and atomic physics. The experiments that were discussed detect particles ranging in energy from radio frequencies to EeV.

Peskin, Michael E.; /SLAC

2012-03-14T23:59:59.000Z

397

Photon-photon gates in Bose-Einstein condensates  

E-Print Network [OSTI]

It has recently been shown that light can be stored in Bose-Einstein condensates for over a second. Here we propose a method for realizing a controlled phase gate between two stored photons. The photons are both stored in the ground state of the effective trapping potential inside the condensate. The collision-induced interaction is enhanced by adiabatically increasing the trapping frequency and by using a Feshbach resonance. A controlled phase shift of $\\pi$ can be achieved in one second.

Arnaud Rispe; Bing He; Christoph Simon

2010-09-30T23:59:59.000Z

398

Hybrid Photonic Hyper-Controlled-Not Gate with the Dipole Induced Transparency in Weak-Coupling Regime  

E-Print Network [OSTI]

We present a hybrid hyper-controlled-not (hyper-CNOT) gate for hyperparallel photonic quantum computing based on both the polarization and spatial-mode degrees of freedom (DOFs) of a two-photon system, which is identical to two CNOT gates operating at the same time on four photons in one DOF. This proposal is implemented with the optical reflection-transmission property of a diamond nitrogen-vacancy center embedded in a photonic crystal cavity coupled to two waveguides, which is suitable for the robust and flexible quantum information processing based on both the spatial-mode and polarization DOFs of photon systems in Purcell regime. With the hybrid hyper-CNOT gate, more quantum logic gate operations can be accomplished with less resources in a definite period of time, and the influence from photonic dissipation and environment noise can be suppressed.

Bao-Cang Ren; Fu-Guo Deng

2014-11-02T23:59:59.000Z

399

Narrow escape: how ionizing photons escape from disc galaxies  

E-Print Network [OSTI]

In this paper we calculate the escape fraction ($f_{\\rm esc}$) of ionizing photons from starburst galaxies. Using 2-D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the escape fraction of ionizing photons from the center of the disk along different angles through the superbubble and the gas disk. After convolving with the luminosity function of OB associations, we show that the ionizing photons escape within a cone of $\\sim 40 ^\\circ$, consistent with observations of nearby galaxies. The evolution of the escape fraction with time shows that it falls initially as cold gas is accumulated in a dense shell. After the shell crosses a few scale heights and fragments, the escape fraction through the polar regions rises again. The angle-averaged escape fraction cannot exceed $\\sim [1- \\cos (1 \\, {\\rm radian})] = 0.5$ from geometrical considerations (using the emission cone opening angle). We calculate the dependence of the time- and angl...

Roy, Arpita; Sharma, Prateek

2014-01-01T23:59:59.000Z

400

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group Members

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group

402

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day -

403

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day

404

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day0

405

OPTICAL CONSTANTS OF THIN FILMS FROM THE CHARACTERISTIC ELECTRON ENERGY LOSSES  

E-Print Network [OSTI]

114. OPTICAL CONSTANTS OF THIN FILMS FROM THE CHARACTERISTIC ELECTRON ENERGY LOSSES By R. E in the photon energy range from 5 to 30 eV. The optical constants of aluminum from 2 500 A to 6 500 A have been à une étude de l'oscillateur optique. Abstract. 2014 A method for obtaining the optical constants

Paris-Sud XI, Université de

406

Comparison of radiation-induced transmission degradation of borosilicate crown optical glass from four different manufacturers  

E-Print Network [OSTI]

glass. Our results show that whereas the glasses are optically similar before irradiation, they showComparison of radiation-induced transmission degradation of borosilicate crown optical glass from of Optics and Photonics/CREOL 4000 Central Florida Blvd. Orlando, FL 32816-2700, USA d SCK·CEN Belgian

Glebov, Leon

407

Optical Nanofibers for Manipulating and Probing Single-Atom Fluorescence  

E-Print Network [OSTI]

We demonstrate how optical nanofibers can be used to manipulate and probe single-atom fluorescence. We show that fluorescence photons from a very small number of atoms, average atom number of less than 0.1, around the nanofiber can readily be observed through single-mode optical fiber under resonant laser irradiation. We show also that optical nanofibers enable us to probe the van der Waals interaction between atoms and surface with high precision by observing the fluorescence excitation spectrum.

K. P. Nayak; P. N. Melentiev; M. Morinaga; Fam Le Kien; V. I. Balykin; K. Hakuta

2006-10-17T23:59:59.000Z

408

Optical Nanofibers for Manipulating and Probing Single-Atom Fluorescence  

E-Print Network [OSTI]

We demonstrate how optical nanofibers can be used to manipulate and probe single-atom fluorescence. We show that fluorescence photons from a very small number of atoms, average atom number of less than 0.1, around the nanofiber can readily be observed through single-mode optical fiber under resonant laser irradiation. We show also that optical nanofibers enable us to probe the van der Waals interaction between atoms and surface with high precision by observing the fluorescence excitation spectrum.

Nayak, K P; Morinaga, M; Le Kien, F; Balykin, V I; Hakuta, K; Kien, Fam Le

2006-01-01T23:59:59.000Z

409

MULTI-PHOTON POLYMERIZATION OF WAVEGUIDE STRUCTURES WITHIN 3D PHOTONIC CRYSTALS  

E-Print Network [OSTI]

MULTI-PHOTON POLYMERIZATION OF WAVEGUIDE STRUCTURES WITHIN 3D PHOTONIC CRYSTALS Wonmok Lee in the interior of 3D colloidal crystals via multi-photon polymerization.3 Multi-photon polymerization multi-photon polymerization systems, and selected two of which appear to have great promise for defined

Braun, Paul

410

Generalized binomial distribution in photon statistics  

E-Print Network [OSTI]

The photon-number distribution between two parts of a given volume is found for an arbitrary photon statistics. This problem is related to the interaction of a light beam with a macroscopic device, for example a diaphragm, that separates the photon flux into two parts with known probabilities. To solve this problem, a Generalized Binomial Distribution (GBD) is derived that is applicable to an arbitrary photon statistics satisfying probability convolution equations. It is shown that if photons obey Poisson statistics then the GBD is reduced to the ordinary binomial distribution, whereas in the case of Bose-Einstein statistics the GBD is reduced to the Polya distribution. In this case, the photon spatial distribution depends on the phase-space volume occupied by the photons. This result involves a photon bunching effect, or collective behavior of photons that sharply differs from the behavior of classical particles. It is shown that the photon bunching effect looks similar to the quantum interference effect.

Aleksey Ilyin

2014-11-20T23:59:59.000Z

411

Photon rockets and gravitational radiation  

E-Print Network [OSTI]

The absence of gravitational radiation in Kinnersley's ``photon rocket'' solution of Einstein's equations is clarified by studying the mathematically well-defined problem of point-like photon rockets in Minkowski space (i.e. massive particles emitting null fluid anisotro\\-pically and accelerating because of the recoil). We explicitly compute the (uniquely defined) {\\it linearized} retarded gravitational waves emitted by such objects, which are the coherent superposition of the gravitational waves generated by the motion of the massive point-like rocket and of those generated by the energy-momentum distribution of the photon fluid. In the special case (corresponding to Kinnersley's solution) where the anisotropy of the photon emission is purely dipolar we find that the gravitational wave amplitude generated by the energy-momentum of the photons exactly cancels the usual $1/r$ gravitational wave amplitude generated by the accelerated motion of the rocket. More general photon anisotropies would, however, generate genuine gravitational radiation at infinity. Our explicit calculations show the compatibility between the non-radiative character of Kinnersley's solution and the currently used gravitational wave generation formalisms based on post-Minkowskian perturbation theory.

T. Damour

1994-12-21T23:59:59.000Z

412

CREOLThe College of Optics & Photonics Industrial Affiliates Day  

E-Print Network [OSTI]

................................................................................. 4 · The Art of Innovation: Laser Technology for New Markets · HEL Joint Technology Office (JTO 9:20 The Art of Innovation ­ Laser Technology for new Markets Prof. Dr. Reinhart Poprawe, M.A. Fraunhofer-Institute for Laser Technology and Chair for Laser Technology RWTH-Aachen University 10:00 HEL

Van Stryland, Eric

413

Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots  

SciTech Connect (OSTI)

We report facile preparation of water dispersible CuS quantum dots (24 nm) and nanoparticles (511 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.

Mary, K. A. Ann; Unnikrishnan, N. V., E-mail: nvu100@yahoo.com [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

2014-07-01T23:59:59.000Z

414

BazookaSPECT: A Low-Cost Approach to High-Resolution, Single-Photon Imaging Using Columnar Scintillators and Image Intensifiers  

E-Print Network [OSTI]

-photon counting gamma-ray detector based on an image intensifier optically coupled to a low-cost CCD. Typically and allowing for a customizable imaging system. Operating in photon-counting mode, individual gamma-ray functioning as a gamma-ray microscope, (b) white-light microscope image of four 111 In oxine source beads, (c

Arizona, University of

415

One and two photon optogalvanic spectroscopy of argon and neon for the wavelength calibration in the near infrared  

E-Print Network [OSTI]

in the near infrared Zhen Tang *, Richard B. Miles Department of Mechanical and Aerospace Engineering The one photon and two photon optogalvanic spectra of argon and neon have been investigated in the near infrared region between 735 and 781 nm. About 35 transitions have been recorded by illuminating a hollow

Miles, Richard

416

Photonic Crystal Cavities in Cubic (3C) Polytype Silicon Carbide Films  

E-Print Network [OSTI]

We present the design, fabrication, and characterization of high quality factor and small mode volume planar photonic crystal cavities from cubic (3C) thin films (thickness ~ 200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1,250 - 1,600 nm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.

Marina Radulaski; Thomas M. Babinec; Sonia Buckley; Armand Rundquist; J Provine; Kassem Alassaad; Gabriel Ferro; Jelena Vu?kovi?

2013-11-30T23:59:59.000Z

417

Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening  

E-Print Network [OSTI]

We present a detailed analysis of a quantum memory for photons based on controlled and reversible inhomogeneous broadening (CRIB). The explicit solution of the equations of motion is obtained in the weak excitation regime, making it possible to gain insight into the dependence of the memory efficiency on the optical depth, and on the width and shape of the atomic spectral distributions. We also study a simplified memory protocol which does not require any optical control fields.

Nicolas Sangouard; Christoph Simon; Mikael Afzelius; Nicolas Gisin

2007-01-30T23:59:59.000Z

418

Sommersemester 2014 Master Photonics 2. Term Limpert/Nolte nn nn Gross Limpert/Nolte  

E-Print Network [OSTI]

Photonics electr. th. & applic. w. Zemax electro- simul.w. X-ray optics Imaging II course Laser 11.00 - 12 Laser E Laser L Design & L Laser Physics Physics Physics correct. of L Laser Physics - 2 - - 3 - optic.00 - 11.00 E ev. 2 w.i.t. ev. 2 w. ev. 2 w.i.t. L Physical ev. 2 weeks Förster German every 2 w. Laser E

Knüpfer, Christian

419

Integration of highly probabilistic sources into optical quantum architectures: perpetual quantum computation  

E-Print Network [OSTI]

In this paper we introduce a design for an optical topological cluster state computer constructed exclusively from a single quantum component. Unlike previous efforts we eliminate the need for on demand, high fidelity photon sources and detectors and replace them with the same device utilised to create photon/photon entanglement. This introduces highly probabilistic elements into the optical architecture while maintaining complete specificity of the structure and operation for a large scale computer. Photons in this system are continually recycled back into the preparation network, allowing for a arbitrarily deep 3D cluster to be prepared using a comparatively small number of photonic qubits and consequently the elimination of high frequency, deterministic photon sources.

Simon J. Devitt; Ashley M. Stephens; William J. Munro; Kae Nemoto

2011-02-02T23:59:59.000Z

420

Atlas of solar hidden photon emission  

E-Print Network [OSTI]

Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup \\`a la Sikivie. In this paper, we compute the flux of transversely polarised HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully io...

Redondo, Javier

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dark matter monopoles, vectors and photons  

E-Print Network [OSTI]

In a secluded dark sector which is coupled to the Standard Model via a Higgs portal interaction we arrange for the existence of 't Hooft-Polyakov magnetic monopoles and study their implications for cosmology. We point out that a dark sector which can accommodate stable monopoles will also contain massless dark photons gamma' as well as charged massive vector bosons W'. The dark matter in this scenario will be a combination of magnetically and electrically charged species under the unbroken U(1) subgroup of the dark sector. We estimate the cosmological production rate of monopoles and the rate of monopole-anti-monopole annihilation and conclude that monopoles with masses of few hundred TeV or greater, can produce sizeable contributions to the observed dark matter relic density. We scan over the parameter space and compute the relic density for monopoles and vector bosons. Turning to the dark photon radiation, we compute their contribution to the measured density of relativistic particles Neff and also apply observational constraints from the Bullet cluster and other large scale galaxies on long-range interactions for the self-interacting dark matter components made out of monopoles and out of dark vector bosons. At scales relevant for dwarf galaxies we identify regions on the parameter space where self-interacting monopole and vector dark mater components can aid solving the core-cusp and the too-big-to-fail problems.

Valentin V. Khoze; Gunnar Ro

2014-06-10T23:59:59.000Z

422

Atlas of solar hidden photon emission  

E-Print Network [OSTI]

Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup \\`a la Sikivie. In this paper, we compute the flux of transversely polarised HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0-1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.

Javier Redondo

2015-01-28T23:59:59.000Z

423

An integrated processor for photonic quantum states using a broadband light-matter interface  

E-Print Network [OSTI]

Faithful storage and coherent manipulation of quantum optical pulses are key for long distance quantum communications and quantum computing. Combining these functions in a light-matter interface that can be integrated on-chip with other photonic quantum technologies, e.g. sources of entangled photons, is an important step towards these applications. To date there have only been a few demonstrations of coherent pulse manipulation utilizing optical storage devices compatible with quantum states, and that only in atomic gas media (making integration difficult) and with limited capabilities. Here we describe how a broadband waveguide quantum memory based on the Atomic Frequency Comb (AFC) protocol can be used as a programmable processor for essentially arbitrary spectral and temporal manipulations of individual quantum optical pulses. Using weak coherent optical pulses at the few photon level, we experimentally demonstrate sequencing, time-to-frequency multiplexing and demultiplexing, splitting, interfering, temporal and spectral filtering, compressing and stretching as well as selective delaying. Our integrated light-matter interface offers high-rate, robust and easily configurable manipulation of quantum optical pulses and brings fully practical optical quantum devices one step closer to reality. Furthermore, as the AFC protocol is suitable for storage of intense light pulses, our processor may also find applications in classical communications.

Erhan Saglamyurek; Neil Sinclair; Joshua A. Slater; Khabat Heshami; Daniel Oblak; Wolfgang Tittel

2014-04-24T23:59:59.000Z

424

A hybrid electron and photon IMRT planning technique that lowers normal tissue integral patient dose using standard hardware  

SciTech Connect (OSTI)

Purpose: To present a mixed electron and photon IMRT planning technique using electron beams with an energy range of 6-22 MeV and standard hardware that minimizes integral dose to patients for targets as deep as 7.5 cm. Methods: Ten brain cases, two lung, a thyroid, an abdominal, and a parotid case were planned using two planning techniques: a photon-only IMRT (IMRT) versus a mixed modality treatment (E + IMRT) that includes an enface electron beam and a photon IMRT portion that ensures a uniform target coverage. The electron beam is delivered using a regular cutout placed in an electron cone. The electron energy was chosen to provide a good trade-off between minimizing integral dose and generating a uniform, deliverable plan. The authors choose electron energies that cover the deepest part of PTV with the 65%-70% isodose line. The normal tissue integral dose, the dose for ring structures around the PTV, and the volumes of the 75%, 50%, and 25% isosurfaces were used to compare the dose distributions generated by the two planning techniques. Results: The normal tissue integral dose was lowered by about 20% by the E + IMRT plans compared to the photon-only IMRT ones for most studied cases. With the exception of lungs, the dose reduction associated to the E + IMRT plans was more pronounced further away from the target. The average dose ratio delivered to the 0-2 cm and the 2-4 cm ring structures for brain patients for the two planning techniques were 89.6% and 70.8%, respectively. The enhanced dose sparing away from the target for the brain patients can also be observed in the ratio of the 75%, 50%, and 25% isodose line volumes for the two techniques, which decreases from 85.5% to 72.6% and further to 65.1%, respectively. For lungs, the lateral electron beams used in the E + IMRT plans were perpendicular to the mostly anterior/posterior photon beams, generating much more conformal plans. Conclusions: The authors proved that even using the existing electron delivery hardware, a mixed electron/photon planning technique (E + IMRT) can decrease the normal tissue integral dose compared to a photon-only IMRT plan. Different planning approaches can be enabled by the use of an electron beam directed toward organs at risk distal to the target, which are still spared due the rapid dose fall-off of the electron beam. Examples of such cases are the lateral electron beams in the thoracic region that do not irradiate the heart and contralateral lung, electron beams pointed toward kidneys in the abdominal region, or beams treating brain lesions pointed toward the brainstem or optical apparatus. For brain, electron vertex beams can also be used without irradiating the whole body. Since radiation retreatments become more and more common, minimizing the normal tissue integral dose and the dose delivered to tissues surrounding the target, as enabled by E + IMRT type techniques, should receive more attention.

Rosca, Florin [Department of Radiation Oncology, Massachusetts General Hospital, Danvers, Massachusetts 01923 (United States)

2012-06-15T23:59:59.000Z

425

Optical Expanders with Applications in Optical Computing  

E-Print Network [OSTI]

Optical Expanders with Applications in Optical Computing John H. Reif Akitoshi Yoshida July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec- trooptically expands an optical boolean pattern encoded in d bits into an optical

Reif, John H.

426

Extreme environmental testing of a rugged correlated photon source  

E-Print Network [OSTI]

Experiments in long distance quantum key distribution have motivated the development of ruggedised single photon sources, capable of producing useful correlations even when removed from the warm, nurturing environment found in most optics laboratories. As part of an ongoing pro- gramme to place such devices into low earth orbit (LEO), we have developed and built a number of rugged single photon sources based on spontaneous parametric downconversion. In order to evalu- ate device reliability, we have subjected our design to various thermal, mechanical and atmospheric stresses. Our results show that while such a device may tolerate launch into orbit, operation in orbit and casual mishandling by graduate students, it is probably unable to survive the forcible disassembly of a launch vehicle at the top of a ball of rapidly expanding and oxidising kerosene and liquid oxygen.

Grieve, James A; Ling, Alexander

2015-01-01T23:59:59.000Z

427

Large mode-volume, large beta, photonic crystal laser resonator  

SciTech Connect (OSTI)

We propose an optical resonator formed from the coupling of 13, L2 defects in a triangular-lattice photonic crystal slab. Using a tight-binding formalism, we optimized the coupled-defect cavity design to obtain a resonator with predicted single-mode operation, a mode volume five times that of an L2-cavity mode and a beta factor of 0.39. The results are confirmed using finite-difference time domain simulations. This resonator is very promising for use as a single mode photonic crystal vertical-cavity surface-emitting laser with high saturation output power compared to a laser consisting of one of the single-defect cavities.

Dezfouli, Mohsen Kamandar; Dignam, Marc M. [Department of Physics, Engineering Physics and Astronomy, Queens University, Kingston, ON K7L 3N6 (Canada)

2014-12-15T23:59:59.000Z

428

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

SciTech Connect (OSTI)

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

429

Single photon emission from site-controlled InGaN/GaN quantum dots  

SciTech Connect (OSTI)

Single photon emission was observed from site-controlled InGaN/GaN quantum dots. The single-photon nature of the emission was verified by the second-order correlation function up to 90?K, the highest temperature to date for site-controlled quantum dots. Micro-photoluminescence study on individual quantum dots showed linearly polarized single exciton emission with a lifetime of a few nanoseconds. The dimensions of these quantum dots were well controlled to the precision of state-of-the-art fabrication technologies, as reflected in the uniformity of their optical properties. The yield of optically active quantum dots was greater than 90%, among which 13%25% exhibited single photon emission at 10?K.

Zhang, Lei; Hill, Tyler A.; Deng, Hui, E-mail: dengh@umich.edu [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109 (United States)] [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109 (United States); Teng, Chu-Hsiang; Lee, Leung-Kway; Ku, Pei-Cheng, E-mail: peicheng@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)] [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)

2013-11-04T23:59:59.000Z

430

Towards High-Fidelity Quantum Computation and Simulation on a Programmable Photonic Integrated Circuit  

E-Print Network [OSTI]

We propose and analyze the design of a programmable photonic integrated circuit for high-fidelity quantum computation and simulation. We demonstrate that the reconfigurability of our design allows us to overcome two major impediments to quantum optics on a chip: it removes the need for a full fabrication cycle for each experiment and allows for compensation of fabrication errors using numerical optimization techniques. Under a pessimistic fabrication model for the silicon-on-insulator process, we demonstrate a dramatic fidelity improvement for the linear optics CNOT and CPHASE gates and, showing the scalability of this approach, the iterative phase estimation algorithm built from individually optimized gates. We also propose and simulate a novel experiment that the programmability of our system would enable: a statistically robust study of the evolution of entangled photons in disordered quantum walks. Overall, our results suggest that existing fabrication processes are sufficient to build a quantum photonic processor capable of high fidelity operation.

Jacob Mower; Nicholas C. Harris; Gregory R. Steinbrecher; Yoav Lahini; Dirk Englund

2014-12-16T23:59:59.000Z

431

Compact 2D nonlinear photonic crystal source of beamlike path entangled  

E-Print Network [OSTI]

the generation of entangled photons with controlled spatial, spectral and polarization properties. 2013 Optical, 43374341 (1995). 2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions4139 (1998). 12. N. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, "Hexagonally poled lithium

Arie, Ady

432

Laser-cooled atoms inside a hollow-core photonic-crystal fiber  

E-Print Network [OSTI]

We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We ...

Bajcsy, M.

433

Modeling and Simulation Environment for Photonic Interconnection Networks in High Performance Computing  

E-Print Network [OSTI]

at the scale of high performance computer clusters and warehouse scale data centers, system level simulations and results for rack scale photonic interconnection networks for high performance computing. Keywords: optical to the newsworthy power consumption [3], latency [4] and bandwidth challenges [5] of high performance computing (HPC

Bergman, Keren

434

Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells  

E-Print Network [OSTI]

Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells Emily, emphasizing the optical nature of the effect. 1 Introduction For ideal solar cells where all recombination. Despite this theoretical prediction, until recently even the highest efficiency solar cells were not close

Faraon, Andrei

435

PHYSICAL REVIEW A 86, 012328 (2012) Enhancing quantum entanglement by photon addition and subtraction  

E-Print Network [OSTI]

, at the heart of continuous-variable entanglement distillation. The use of such processes has recently been certain other continuous-variable quantum information tasks, such as quantum entanglement distillation [7 or subtraction. The effect of photon subtraction can be obtained by sending a small fraction of the optical beam

Cerf, Nicolas

2012-01-01T23:59:59.000Z

436

The role of plasma evolution and photon transport in optimizing future advanced lithography sources  

E-Print Network [OSTI]

, and reduced contamination and damage to the optical mirror collection system from plasma debris and energetic particles. The ideal target is to generate a source of maximum EUV radiation output and collection in the 13 and plasma, ioniza- tion, plasma radiation, and details of photon transport in these media. We studied

Harilal, S. S.

437

LASER & PHOTONICS www.lpr-journal.org Vol. 7 No. 5 September 2013  

E-Print Network [OSTI]

LASER & PHOTONICS REVIEWS www.lpr-journal.org Vol. 7 No. 5 September 2013 4H-SiC: a new nonlinear material for midinfrared lasers Nonlinear optical (NLO) frequency conversion is commonly used for generating midinfrared (MIR) lasers that offer light sources for a variety of applications. However, the low

Wang, Wei Hua

438

A Specific Multi-channel Photon-Counting Unit for Air-Pollution Measurement  

E-Print Network [OSTI]

A Specific Multi-channel Photon-Counting Unit for Air-Pollution Measurement Papageorgas P.1.g. confocal microscopy), air pollution optical measurements, laser sounding of the atmosphere for the in situ quantitative monitoring of up to five air pollutants simultaneously and one calibration channel

Athens, University of

439

A Near-Infrared 64-pixel Superconducting Nanowire Single Photon Detector Array with Integrated Multiplexed Readout  

E-Print Network [OSTI]

We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.

Allman, M S; Stevens, M; Gerrits, T; Horansky, R D; Lita, A E; Marsili, F; Beyer, A; Shaw, M D; Kumor, D; Mirin, R; Nam, S W

2015-01-01T23:59:59.000Z

440

Industrial Affiliates Day 2006, April 21, 2006 ULTRAFAST NONLINEAR OPTICAL MICROSCOPY  

E-Print Network [OSTI]

of studies, including photochemical reactions, molecular dynamics, micropharmacology and optical memory. History of Two-Photon Molecular Excitation 1905 First Conception: A. Einstein: Creation and Conversion for data storage. Combined with fluorescence microscopy, multiphoton excitation (MPE) provides 3D

Van Stryland, Eric

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

E-Print Network 3.0 - all-optical delay line Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: all-optical delay line Page: << < 1 2 3 4 5 > >> 1 1292 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL....

442

Nonlinear absorption and carrier dynamics in slab-coupled optical waveguide amplifiers  

E-Print Network [OSTI]

Limitations imposed on the saturation energy of high-power slab-coupled optical waveguide amplifiers were studied for pulsed signal transmission. Loss due to the two-photon absorption and free-carrier absorption processes ...

Ippen, Erich P.

443

Design and fabrication of micro- and nano- dielectric structures for imaging and focusing at optical frequencies  

E-Print Network [OSTI]

In this thesis work, design and fabrication of micro- and nano-photonic structures both in the diffraction regime and sub-wavelength regime have been investigated. In the diffraction regime, two types of optical systems ...

Takahashi, Satoshi, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

444

Partial angular coherence and the angular Schmidt spectrum of entangled two-photon fields  

SciTech Connect (OSTI)

We study partially coherent fields that have a coherent-mode representation in the orbital-angular-momentum-mode basis. For such fields, we introduce the concepts of the angular coherence function and the coherence angle. Such fields are naturally produced by the process of parametric down-conversion--a second-order nonlinear optical process in which a pump photon breaks up into two entangled photons, known as the signal and idler photons. We show that the angular coherence functions of the signal and idler fields are directly related to the angular Schmidt (spiral) spectrum of the down-converted two-photon field and thus that the angular Schmidt spectrum can be measured directly by measuring the angular coherence function of either the signal or the idler field, without requiring coincidence detection.

Jha, Anand Kumar; Boyd, Robert W. [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Agarwal, Girish S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

2011-12-15T23:59:59.000Z

445

Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design  

E-Print Network [OSTI]

Photonic innovation is becoming ever more important in the modern world. Optical systems are dominating shorter and shorter communications distances, LED's are rapidly emerging for a variety of applications, and solar cells show potential to be a mainstream technology in the energy space. The need for novel, energy-efficient photonic and optoelectronic devices will only increase. This work unites fundamental physics and a novel computational inverse design approach towards such innovation. The first half of the dissertation is devoted to the physics of high-efficiency solar cells. As solar cells approach fundamental efficiency limits, their internal physics transforms. Photonic considerations, instead of electronic ones, are the key to reaching the highest voltages and efficiencies. Proper photon management led to Alta Device's recent dramatic increase of the solar cell efficiency record to 28.3%. Moreover, approaching the Shockley-Queisser limit for any solar cell technology will require light extraction to ...

Miller, Owen D

2013-01-01T23:59:59.000Z

446

Photonic band gap of a graphene-embedded quarter-wave stack  

SciTech Connect (OSTI)

Here, we present a mechanism for tailoring the photonic band structure of a quarter-wave stack without changing its physical periods by embedding conductive sheets. Graphene is utilized and studied as a realistic, two-dimensional conductive sheet. In a graphene-embedded quarter-wave stack, the synergic actions of Bragg scattering and graphene conductance contributions open photonic gaps at the center of the reduced Brillouin zone that are nonexistent in conventional quarter-wave stacks. Such photonic gaps show giant, loss-independent density of optical states at the fixed lower-gap edges, of even-multiple characteristic frequency of the quarter-wave stack. The conductive sheet-induced photonic gaps provide a platform for the enhancement of light-matter interactions.

Fan, Yuancheng [Ames Laboratory; Wei, Zeyong [Tongji University; Li, Hongqiang [Tongji University; Chen, Hong [Tongji University; Soukoulis, Costas M [Ames Laboratory

2013-12-10T23:59:59.000Z

447

Experimental generation of tripartite telecom photons via an atomic ensemble and a nonlinear waveguide  

E-Print Network [OSTI]

Non-classical multi-photon and number states attracts many people because of their wide applications in fundamental quantum mechanics tests, quantum metrology and quantum computation, therefore it is a longstanding aim to generate such states experimentally. Here, we prepare photon triplets by using the spontaneously Raman scattering process in a hot atomic ensemble cascaded by the spontaneous parametric down conversion process in a periodical poled nonlinear waveguide, the strong temporal correlations of these three photons are observed. Our experiment represents the first combination of the different order nonlinear processes and different physical systems, showing the feasibility of such composite system in this research direction. In addition, the all photons in the prepared genuine triplet are in telecom band make them be suitable for long-distance quantum communication in optical fibre.

Dong-Sheng Ding; Wei Zhang; Shuai Shi; Zhi-Yuan Zhou; Yan Li; Bao-Sen Shi; Guang-Can Guo

2015-01-12T23:59:59.000Z

448

Quantum walks and quantum simulation of wavepacket dynamics with twisted photons  

E-Print Network [OSTI]

The "quantum walk" has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multi-path interferometric schemes in real space. Here, we report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we also simulated the quantum dynamics of Gaussian wavepackets, exploring the system dispersion relation in momentum space and the associated spin-orbit topological features. Our demonstration introduces a novel versatile photonic platform for quantum simulations.

Filippo Cardano; Francesco Massa; Hammam Qassim; Ebrahim Karimi; Sergei Slussarenko; Domenico Paparo; Corrado de Lisio; Fabio Sciarrino; Enrico Santamato; Robert W. Boyd; Lorenzo Marrucci

2014-07-21T23:59:59.000Z

449

Controlling the Spontaneous Emission Rate of Single Quantum Dots in a 2D Photonic Crystal  

E-Print Network [OSTI]

We observe large spontaneous emission rate modification of individual InAs Quantum Dots (QDs) in 2D a photonic crystal with a modified, high-Q single defect cavity. Compared to QDs in bulk semiconductor, QDs that are resonant with the cavity show an emission rate increase by up to a factor of 8. In contrast, off-resonant QDs indicate up to five-fold rate quenching as the local density of optical states (LDOS) is diminished in the photonic crystal. In both cases we demonstrate photon antibunching, showing that the structure represents an on-demand single photon source with pulse duration from 210 ps to 8 ns. We explain the suppression of QD emission rate using Finite Difference Time Domain (FDTD) simulations and find good agreement with experiment.

Dirk Englund; David Fattal; Edo Waks; Glenn Solomon; Bingyang Zhang; Toshihiro Nakaoka; Yasuhiko Arakawa; Yoshihisa Yamamoto; Jelena Vuckovic

2005-04-20T23:59:59.000Z

450

Apparatus for photon activation positron annihilation analysis  

DOE Patents [OSTI]

Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

Akers, Douglas W. (Idaho Falls, ID)

2007-06-12T23:59:59.000Z

451

Optical Burst Equalisation in Next Generation Access Networks B Cao and J E Mitchell  

E-Print Network [OSTI]

allowing standard receivers to be used, the detection system is simplified and the cost of the optical on the stimulated emission process. The photons of the incoming signal will interact with the carriers the photons in the incoming signal cause the stimulated emission, then the total gain of the with a large

Haddadi, Hamed

452

Conditional generation of arbitrary multimode entangled states of light with linear optics  

E-Print Network [OSTI]

We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available.

J. Fiurasek; S. Massar; N. J. Cerf

2003-04-01T23:59:59.000Z

453

Direct Photonic-Plasmonic Coupling and Routing in Single Nanowires  

SciTech Connect (OSTI)

Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs can be excited simply by contacting a silver nanowire with a SnO2 nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.

Yan, Rouxue; Pausauskie, Peter; Huang, Jiaxing; Yang, Piedong

2009-10-20T23:59:59.000Z

454

Optical ionization detector  

DOE Patents [OSTI]

An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

Wuest, C.R.; Lowry, M.E.

1994-03-29T23:59:59.000Z

455

Optical ionization detector  

DOE Patents [OSTI]

An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

Wuest, Craig R. (Danville, CA); Lowry, Mark E. (Castro Valley, CA)

1994-01-01T23:59:59.000Z

456

Polarization Observables From The Photoproduction Of Omega-Mesons Using Linearly Polarized Photons  

SciTech Connect (OSTI)

We report on the extraction of Polarization Observables Spin Density Matrix Elements (SDMEs), and Beam Asymmetry Sigma for omega meson photoproduction using a beam of linearly polarized photons in the photon energy region of Egamma = 1.3 to 1.7 GeV, by means of the angular distributions of the daughter pions from omega decay. These preliminary results are from the g8b dataset, which were collected with the CLAS detector in Hall B of Jefferson Lab.

Martinez, Danny [Idaho State University, Pocatello, ID (United States); Cole, Philip L. [Idaho State University, Pocatello, ID (United States)

2014-01-01T23:59:59.000Z

457

Rutgers Regional Report # Regional Report  

E-Print Network [OSTI]

, population, income, and building permits over a 32-year period from 1969 to 2001 for the 31-county Tri counties of the Tri-State (Connecticut, New Jersey, and New York) Region have been divided for analytical the nation and the Tri-State Region. What has not been fully documented, however, is the apparent shift

Garfunkel, Eric

458

Photons & Fusion Newsletter - 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced2 Photons &4 Photons

459

Fiber optic coupled optical sensor  

DOE Patents [OSTI]

A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

Fleming, Kevin J. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

460

Integrating fiber optic radiation dosimeter  

SciTech Connect (OSTI)

The purpose of this research effort was to determine the feasibility of forming a radiation sensor coupled to an optical fiber capable of measuring gamma photon, x-ray, and beta particle dose rates and integrated dose, and to construct a prototype dosimeter read-out system utilizing the fiber optic sensor. The key component of the prototype dosimeter system is a newly developed radiation sensitive storage phosphor. When this phosphor is excited by energetic radiation, a proportionate population of electron-hole pairs are created which become trapped at specific impurities within the phosphor. Trapped electrons can subsequently be stimulated optically with near-infrared at approximately 1 micrometer wavelength; the electrons can recombine with holes at luminescent centers to produce a luminescence which is directly proportional to the trapped electron population, and thus to the radiation exposure. By attaching the phosphor to the end of an optical fiber, it is possible to transmit both the IR optical stimulation and the characteristic phosphor luminescence through the fiber to and from the read-out instrument, which can be located far (e.g., kilometers) from the radiation field. This document reports on the specific design of the prototype system and its operating characteristics, including its sensitivity to various radiation dose rates and energies, its dynamic range, signal-to-noise ratio at various radiation intensities, and other system characteristics. Additionally, the radiation hardness of the phosphor and fiber are evaluated. 17 refs., 29 figs., 5 tabs.

Soltani, P.K.; Wrigley, C.Y.; Storti, G.M.; Creager, R.E.

1989-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nonlinear optics  

E-Print Network [OSTI]

Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

Bloembergen, Nicolaas

1996-01-01T23:59:59.000Z

462

Coherent control of single photon states  

E-Print Network [OSTI]

We define a class of multi-mode single photon states suitable for quantum information applications. We show how standard amplitude modulation techniques may be used to control the pulse shape of single photon states.

G. J. Milburn

2007-02-12T23:59:59.000Z

463

Photon tunnelling microscopy of polyethylene single crystals  

E-Print Network [OSTI]

Photon tunnelling microscopy of polyethylene single crystals Mohan Srinivasarao* and Richard S:photon tunnellingmicroscopy;single crystals; polyethylene) INTRODUCTION The study of morphology of polymers is an area

Srinivasarao, Mohan

464

Coupling light to superconductive photon counters  

E-Print Network [OSTI]

Superconductive nanowire single-photon detectors (SNSPDs) are an emerging, ultrasensitive photon counting technology which may enable fiber-based, long-haul quantum key distribution. Our group has successfully developed a ...

Hu, Xiaolong

2008-01-01T23:59:59.000Z

465

Photon management in thermal and solar photovoltaics  

E-Print Network [OSTI]

Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

Hu, Lu

2008-01-01T23:59:59.000Z

466

Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate  

E-Print Network [OSTI]

Superconducting nanowire single-photon detectors are an ideal match for integrated quantum photonic circuits due to their high detection efficiency for telecom wavelength photons. Quantum optical technology also requires single-photon detection with low dark count rate and high timing accuracy. Here we present very low noise superconducting nanowire single-photon detectors based on NbTiN thin films patterned directly on top of Si3N4 waveguides. We systematically investigate a large variety of detector designs and characterize their detection noise performance. Milli-Hz dark count rates are demonstrated over the entire operating range of the nanowire detectors which also feature low timing jitter. The ultra-low dark count rate, in combination with the high detection efficiency inherent to our traveling wave detector geometry, gives rise to a measured noise equivalent power at the 10^(-20) W/Hz^(1/2) level.

Carsten Schuck; Wolfram H. P. Pernice; Hong X. Tang

2013-06-02T23:59:59.000Z

467

Photonic microwave generation with high-power photodiodes  

E-Print Network [OSTI]

We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.

Fortier, Tara M; Hati, Archita; Nelson, Craig; Taylor, Jennifer A; Fu, Yang; Campbell, Joe; Diddams, Scott A

2013-01-01T23:59:59.000Z

468

An ion trap built with photonic crystal fibre technology  

E-Print Network [OSTI]

We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787(24) quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 um and 10 um.

F. Lindenfelser; B. Keitch; D. Kienzler; D. Bykov; P. Uebel; M. A. Schmidt; P. St. J. Russell; J. P. Home

2015-01-20T23:59:59.000Z

469

An ion trap built with photonic crystal fibre technology  

E-Print Network [OSTI]

We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787(24) quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 um and 10 um.

Lindenfelser, F; Kienzler, D; Bykov, D; Uebel, P; Schmidt, M A; Russell, P St J; Home, J P

2015-01-01T23:59:59.000Z

470

Reversing the Weak Quantum Measurement for a Photonic Qubit  

E-Print Network [OSTI]

We demonstrate the conditional reversal of a weak (partial-collapse) quantum measurement on a photonic qubit. The weak quantum measurement causes a nonunitary transformation of a qubit which is subsequently reversed to the original state after a successful reversing operation. Both the weak measurement and the reversal operation are implemented linear optically. The state recovery fidelity, determined by quantum process tomography, is shown to be over 94% for partial-collapse strength up to 0.9. We also experimentally study information gain due to the weak measurement and discuss the role of the reversing operation as an information erasure.

Yong-Su Kim; Young-Wook Cho; Young-Sik Ra; Yoon-Ho Kim

2009-03-18T23:59:59.000Z

471

Medium-induced multi-photon radiation  

E-Print Network [OSTI]

We study the spectrum of multi-photon radiation off a fast quark in medium in the BDMPS/ASW approach. We reproduce the medium-induced one-photon radiation spectrum in dipole approximation, and go on to calculate the two-photon radiation in the Moli\\`{e}re limit. We find that in this limit the LPM effect holds for medium-induced two-photon ladder emission.

Hao Ma; Carlos A. Salgado; Konrad Tywoniuk

2011-05-29T23:59:59.000Z

472

Photon Science for renewable energy  

E-Print Network [OSTI]

Photon Science for renewable energy at Light-Source Facilities of Today andTomorrow Lawrence revolution in renewable and carbon- neutral energy technologies. in these pages, we outline and illustrate is causing potentially catastrophic changes to our planet.The quest for renewable, nonpolluting sources

Knowles, David William

473

Monte Carlo photon benchmark problems  

SciTech Connect (OSTI)

Photon benchmark calculations have been performed to validate the MCNP Monte Carlo computer code. These are compared to both the COG Monte Carlo computer code and either experimental or analytic results. The calculated solutions indicate that the Monte Carlo method, and MCNP and COG in particular, can accurately model a wide range of physical problems.

Whalen, D.J.; Hollowell, D.E.; Hendricks, J.S.

1991-01-01T23:59:59.000Z

474

Better Randomness with Single Photons  

E-Print Network [OSTI]

Randomness is one of the most important resources in modern information science, since encryption founds upon the trust in random numbers. Since it is impossible to prove if an existing random bit string is truly random, it is relevant that they be generated in a trust worthy process. This requires specialized hardware for random numbers, for example a die or a tossed coin. But when all input parameters are known, their outcome might still be predicted. A quantum mechanical superposition allows for provably true random bit generation. In the past decade many quantum random number generators (QRNGs) were realized. A photonic implementation is described as a photon which impinges on a beam splitter, but such a protocol is rarely realized with non-classical light or anti-bunched single photons. Instead, laser sources or light emitting diodes are used. Here we analyze the difference in generating a true random bit string with a laser and with anti-bunched light. We show that a single photon source provides more r...

Oberreiter, Lukas

2014-01-01T23:59:59.000Z

475

Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging  

SciTech Connect (OSTI)

The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

Weiss, Paul

2014-01-20T23:59:59.000Z

476

A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions  

SciTech Connect (OSTI)

We demonstrate an approach to create a stable erbium-fiber-based frequency comb at communication band by directly locking the combs to two rubidium atomic transitions resonances (electromagnetically induced transparency absorption and two-photon absorption), respectively. This approach directly transfers the precision and stability of the atomic transitions to the comb. With its distinguishing feature of compactness by removing the conventional octave-spanning spectrum and f-to-2f beating facilities and the ability to directly control the comb's frequency at the atomic transition frequency, this stable optical comb can be widely used in optical communication, frequency standard, and optical spectroscopy and microscopy.

Hou, Dong; Wu, Jiutao; Zhang, Shuangyou; Ren, Quansheng; Zhang, Zhigang; Zhao, Jianye, E-mail: zhaojianye@pku.edu.cn [Department of Electronics, Peking University, Beijing, 100871 (China)

2014-03-17T23:59:59.000Z

477

Atoms, photons, and Information Andrew Silberfarb  

E-Print Network [OSTI]

Atoms, photons, and Information by Andrew Silberfarb B.S. California Institute of Technology, 1998 #12;Atoms, photons, and Information by Andrew Silberfarb ABSTRACT OF DISSERTATION Submitted in Partial Albuquerque, New Mexico March, 2006 #12;Atoms, photons, and Information by Andrew Silberfarb B.S. California

Deutsch, Ivan H.

478

Optical Expanders with Applications in Optical Computing  

E-Print Network [OSTI]

Optical Expanders with Applications in Optical Computing John H. Reif \\Lambda Akitoshi Yoshida \\Lambda July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec­ trooptically expands an optical boolean pattern encoded in d bits

Reif, John H.

479

Antenna-coupled Photon Emission from hexagonal Boron Nitride Tunnel Junctions  

E-Print Network [OSTI]

The ultrafast conversion of electrical to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor LEDs are limited by the spontaneous recombination rate of electron-hole pairs and the footprint of electrically-driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal (MIM) tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunneling time. Here we study the conversion of electron energy - localized in vertical gold-h-BN-gold tunnel junctions - into free space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size-mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelin...

Parzefall, Markus; Jain, Achint; Watanabe, Kenji; Taniguchi, Takashi; Novotny, Lukas

2015-01-01T23:59:59.000Z

480

Single-cycle nonlinear optics  

SciTech Connect (OSTI)

Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).

Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.

2008-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "regional optics photonics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Optical geometry across the horizon  

E-Print Network [OSTI]

In a companion paper (Jonsson and Westman, Class. Quantum Grav. 23 (2006) 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to a finite four-volume of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework.

Rickard Jonsson

2007-08-19T23:59:59.000Z

482

The ANTARES Optical Beacon System  

E-Print Network [OSTI]

ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of ...

Ageron, M; Albert, A; Ameli, F; Anghinolfi, M; Anton, G; Anvar, S; Ardellier-Desages, F; Aslanides, E; Aubert, J J; Auer, R; Barbarito, E; Basa, S; Battaglieri, M; Becherini, Y; Beltramelli, J; Bertin, V; Bigi, A; Billault, M; Blaes, R; De Botton, N R; Bouwhuis, M C; Bradbury, S M; Bruijn, R; Brunner, J; Burgio, G F; Busto, J; Cafagna, F; Caillat, L; Calzas, A; Capone, A; Caponetto, L; Carmona, E; Carr, J; Cartwright, S L; Castel, D; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, P; Chauchot, P; Chiarusi, T; Circella, M; Colnard, C; Compere, C; Coniglione, R; Cottini, N; Coyle, P; Cuneo, S; Cussatlegras, A S; Damy, G; Van Dantzig, R; De Bonis, G; De Marzo, C; De Vita, R; Dekeyser, I; Delagnes, E; Denans, D; Deschamps, A; Destelle, J J; Dinkespieler, B; Distefano, C; Donzaud, C; Drogou, J F; Druillole, F; Durand, D; Ernenwein, J P; Escoffier, S; Falchini, E; Favard, S; Fehr, F; Feinstein, F; Ferry, S; Fiorello, C; Flaminio, V; Fratini, K; Fuda, J L; Galeotti, S; Gallone, J M; Giacomelli, G; Girard, N; Gojak, C; Goret, P; Graf, K; Hallewell, G; Harakeh, M N; Hartmann, B; Heijboer, A; Heine, E; Hello, Y; Hernndez-Rey, J J; Hossl, J; Hoffman, C; Hogenbirk, J; Hubbard, John R; Jaquet, M; Jaspers, M; De Jong, M; Jouvenot, F; Kalantar-Nayestanaki, N; Kappes, A; Karg, T; Katz, U; Keller, P; Kok, E; Kok, H; Kooijman, P; Kopper, C; Korolkova, E V; Kouchner, A; Kretschmer, W; Kruijer, A; Kuch, S; Kudryavtsev, V A; Lagier, P; Lahmann, R; Lamanna, G; Lamare, P; Lambard, G; Languillat, J C; Laschinsky, H; Lavalle, J; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Lefvre, D; Legou, T; Lelaizant, G; Lim, G; Lo Presti, D; Lhner, H; Loucatos, Sotirios S; Louis, F; Lucarelli, F; Lyashuk, V; Marcelin, M; Margiotta, A; Masullo, R; Mazas, F; Mazure, A; McMillan, J E; Megna, R; Melissas, M; Migneco, E; Milovanovic, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Musumeci, M; Naumann-Godo, M; Naumann, C; Niess, V; Noble, T; Olivetto, C; Ostasch, R; Palanque-Delabrouille, Nathalie; Payre, P; Peek, H; Prez, A; Petta, C; Piattelli, P; Pillet, R; Pineau, J P; Poinsignon, J; Popa, V; Pradier, T; Racca, C; Randazzo, N; Van Randwijk, J; Real, D; Van Rens, B; Rethore, F; Rewiersma, P A M; Riccobene, G; Rigaud, V; Ripani, M; Roca, V; Roda, C; Rolin, J F; Rose, H J; Rostovtsev, A; Roux, J; Ruppi, M; Russo, G V; Rusydi, G; Salesa, F; Salomon, K; Sapienza, P; Schmitt, F; Schuller, J P; Shanidze, R; Sokalski, I A; Spona, T; Spurio, M; van der Steenhoven, G; Stolarczyk, T; Streeb, K; Sulak, L; Taiuti, M; Tamburini, C; Tao, C; Terreni, G; Thompson, L F; Urbano, F; Valdy, P; Valente, V; Vallage, B; Vaudaine, G; Venekamp, G; Verlaat, B; Vernin, P; De Vries-Uiterweerd, G; Van Wijk, R; Wijnker, G; De Witt-Huberts, P K A; Wobbe, G; De Wolf, E; Yao, A F; Zaborov, D; Zaccone, Henri; De Dios-Zornoza-Gomez, Juan; Ziga, J; al, et

2007-01-01T23:59:59.000Z

483

Center for Optoelectronics and Photonics PaderbornCenter for Optoelectronics and Photonics Paderborn GraduateGraduate ProgramProgram  

E-Print Network [OSTI]

Center for Optoelectronics and Photonics PaderbornCenter for Optoelectronics and Photonics in Optoelectronics and PhotonicsOptoelectronics and Photonics Waveguide-Coupled SiON-Microresonators(Project B3) Prof

Noé, Reinhold

484

The Complex Spherical 2+4 Spin Glass Model: application to optics  

E-Print Network [OSTI]

A disordered mean field model for multimode laser in open and irregular cavities is proposed and discussed within the replica analysis. The model includes the dynamics of the mode intensity and accounts also for the possible presence of a linear coupling between the modes, due, e.g., to the leakages from an open cavity. The complete phase diagram, in terms of disorder strength, source pumping and non-linearity, consists of four different optical regimes: incoherent fluorescence, standard mode locking, random lasing and the novel spontaneous phase locking. A replica symmetry breaking phase transition is predicted at the random lasing threshold. For a high enough strength of non-linearity, a whole region with nonvanishing complexity anticipates the transition, and the light modes in the disordered medium display typical discontinuous glassy behavior, i.e., the photonic glass has a multitude of metastable states that corresponds to different mode-locking processes in random lasers. The lasing regime is still pre...

Antenucci, Fabrizio; Leuzzi, Luca

2015-01-01T23:59:59.000Z

485

The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components  

SciTech Connect (OSTI)

A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.

Contalbrigo, M.; Baltzell, N.; Benmokhtar, F.; Barion, L.; Cisbani, E.; El Alaoui, A.; Hafidi, K.; Hoek, M.; Kubarovsky, V.; Lagamba, L.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Montgomery, R.; Movsisyan, A.; Musico, P.; Orecchini, D.; Orlandi, A.; Pappalardo, L.L.; Pereira, S.; Perrino, R.; Phillips, J.; Pisano, S.; Rossi, P.; Squerzanti, S.; Tomassini, S.; Turisini, M.; Viticchi, A.

2014-07-01T23:59:59.000Z

486

Integrated resonant micro-optical gyroscope and method of fabrication  

DOE Patents [OSTI]

An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.

Vawter, G. Allen (Albuquerque, NM); Zubrzycki, Walter J. (Sandia Park, NM); Guo, Junpeng (Albuquerque, NM); Sullivan, Charles T. (Albuquerque, NM)

2006-09-12T23:59:59.000Z

487

Optical spring effect in nanoelectromechanical systems  

SciTech Connect (OSTI)

In this Letter, we report a hybrid system consisting of nano-optical and nano-mechanical springs, in which the optical spring effect works to adjust the mechanical frequency of a nanoelectromechanical systems resonator. Nano-scale folded beams are fabricated as the mechanical springs and double-coupled one-dimensional photonic crystal cavities are used to pump the optical spring. The dynamic characteristics of this hybrid system are measured and analyzed at both low and high input optical powers. This study leads the physical phenomenon of optomechanics in complex nano-opto-electro-mechanical systems (NOEMS) and could benefit the future applications of NOEMS in chip-level communication and sensing.

Tian, Feng; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg; Du, Yu; Chau, Fook Siong [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, Singapore 117602 (Singapore)

2014-08-11T23:59:59.000Z

488

Position-dependent photon operators in the quantization of the electromagnetic field in dielectrics at local thermal equilibrium  

E-Print Network [OSTI]

It has very recently been suggested that asymmetric coupling of electromagnetic fields to thermal reservoirs under nonequilibrium conditions can produce unexpected oscillatory behavior in the local photon statistics in layered structures. Better understanding of the predicted phenomena could enable useful applications related to thermometry, noise filtering, and enhancing optical interactions. In this work we briefly review the field quantization and study the local steady state temperature distributions in optical cavities formed of lossless and lossy media to show that also local field temperatures exhibit oscillations that depend on position as well as the photon energy.

Mikko Partanen; Teppo Hyrynen; Jani Oksanen; Jukka Tulkki

2014-12-02T23:59:59.000Z

489

Hybrid photon detectors for the LHCb RICH  

E-Print Network [OSTI]

The LHCb Ring Imaging Cherenkov (RICH) counters use the pixel Hybrid Photon Detector (HPD) as a photo-sensitive device. Photo-electrons are produced in semi-transparent multi-alkali photo-cathode (S20) and are accelerated by a voltage of 20 kV onto a pixelated silicon anode. The anode is bump-bonded to the LHCBPIX1 pixel readout chip which amplifies and digitises the anode signals at the LHC speed of 40 MHz. Using a demagnification of five, the effective pixel size at the HPD window is 2.5 x 2.5 mm$^2$. Over the course of 18 months, 550 HPSs will undergo a quality-assurance programme to verify the specifications and to characterise the tubes. The tested parameters include the threshold and noise behaviour of the chip, the response to light emitting diode (LED) light, the demagnification of the electron optics, the leakage current and the depletion of the silicon sensor, the quality of the vacuum, the signal efficiency and the dark count rate. Results of tests of the first nine HPDs of the final design are pr...

Eisenhardt, Stephan

2006-01-01T23:59:59.000Z

490

Photonic MEMS for NIR in-situ  

SciTech Connect (OSTI)

We report on a novel sensing technique combining photonics and microelectromechanical systems (MEMS) for the detection and monitoring of gas emissions for critical environmental, medical, and industrial applications. We discuss how MEMS-tunable vertical-cavity surface-emitting lasers (VCSELs) can be exploited for in-situ detection and NIR spectroscopy of several gases, such as O{sub 2}, N{sub 2}O, CO{sub x}, CH{sub 4}, HF, HCl, etc., with estimated sensitivities between 0.1 and 20 ppm on footprints {approx}10{sup -3} mm{sup 3}. The VCSELs can be electrostatically tuned with a continuous wavelength shift up to 20 nm, allowing for unambiguous NIR signature determination. Selective concentration analysis in heterogeneous gas compositions is enabled, thus paving the way to an integrated optical platform for multiplexed gas identification by bandgap and device engineering. We will discuss here, in particular, our efforts on the development of a 760 nm AlGaAs based tunable VCSEL for O{sub 2} detection.

Bond, T C; Cole, G D; Goddard, L L; Behymer, E

2007-07-03T23:59:59.000Z

491

Single Atoms on an Optical Nanofiber  

E-Print Network [OSTI]

We show that single-atoms can be trapped on the surface of a subwavelength-diameter silica-fiber, an optical nanofiber, without any external field, and that single photons spontaneously emitted from the atoms can be readily detected through the single guided-mode of the nanofiber. A key point of the work is our finding that atom trapping sites are created on the nanofiber surface by irradiating the atom cloud around the nanofiber with a violet laser radiation.

Nayak, K P

2007-01-01T23:59:59.000Z

492

Single Atoms on an Optical Nanofiber  

E-Print Network [OSTI]

We show that single-atoms can be trapped on the surface of a subwavelength-diameter silica-fiber, an optical nanofiber, without any external field, and that single photons spontaneously emitted from the atoms can be readily detected through the single guided-mode of the nanofiber. A key point of the work is our finding that atom trapping sites are created on the nanofiber surface by irradiating the atom cloud around the nanofiber with a violet laser radiation.

K. P. Nayak; K. Hakuta

2007-09-18T23:59:59.000Z

493

Quantum key distribution with entangled photon sources  

E-Print Network [OSTI]

A parametric down-conversion (PDC) source can be used as either a triggered single photon source or an entangled photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. In this paper, we fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis independent source, we apply Koashi-Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144km open-air PDC experiment, we compare three implementations -- entanglement PDC QKD, triggering PDC QKD and coherent state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent state QKD. The coherent state QKD with decoy states is able to achieve highest key rate in the low and medium-loss regions. By applying Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70dB combined channel losses (35dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53dB channel losses.

Xiongfeng Ma; Chi-Hang Fred Fung; Hoi-Kwong Lo

2007-03-14T23:59:59.000Z

494

Emission of Microwave Photon Pairs by a Tunnel Junction  

E-Print Network [OSTI]

Generation and control of non-classical electromagnetic fields is of crucial importance for quantum information physics. While usual methods for the production of such fields rely on a non-linearity (of a crystal, a Josephson junction, etc.), a recent experiment performed on a normal conductor, a tunnel junction under microwave irradiation, has unveiled an alternative: the use of electron shot noise in a quantum conductor\\cite{PAN_squeezing}. Here we show that such a device can emit \\emph{pairs of microwave photons} of different frequencies with a rate as high as that of superconducting Josephson junctions\\cite{Flurin}. This results in intensity fluctuations of the photon field at two different frequencies being correlated below the photon shot noise,i.e. two-mode amplitude squeezing. Our experiment constitutes a fundamental step towards the understanding of electronic noise in terms of quantum optics, and shows that even a normal conductor could be used as a resource for quantum information processing.

Jean-Charles Forgues; Christian Lupien; Bertrand Reulet

2014-03-21T23:59:59.000Z

495

Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC  

SciTech Connect (OSTI)

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < {eta} < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 {+-} 0.1 and 1.2 {+-} 0.1 for {radical}s{sub NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of {eta} - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

STAR Collaboration; Abelev, Betty

2010-07-05T23:59:59.000Z

496

Optical memory  

DOE Patents [OSTI]

Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

Mao, Samuel S; Zhang, Yanfeng

2013-07-02T23:59:59.000Z

497

Optical coupler  

DOE Patents [OSTI]

In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.

Majewski, Stanislaw; Weisenberger, Andrew G.

2004-06-15T23:59:59.000Z

498

Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement  

SciTech Connect (OSTI)

We present here ultra-compact high-Q Fano resonance filters with displaced lattices between two coupled photonic crystal slabs, fabricated with crystalline silicon nanomembrane transfer printing and aligned e-beam lithography techniques. Theoretically, with the control of lattice displacement between two coupled photonic crystal slabs layers, optical filter Q factors can approach 211?000?000 for the design considered here. Experimentally, Q factors up to 80?000 have been demonstrated for a filter design with target Q factor of 130?000.

Shuai, Yichen; Zhao, Deyin; Singh Chadha, Arvinder; Zhou, Weidong, E-mail: wzhou@uta.edu [Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)] [Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Seo, Jung-Hun; Ma, Zhenqiang [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Yang, Hongjun [Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States) [Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Semerane, Inc., Arlington, Texas 76010 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)] [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

2013-12-09T23:59:59.000Z

499

Enhancement of photoluminescence and raman scattering in one-dimensional photonic crystals based on porous silicon  

SciTech Connect (OSTI)

In porous-silicon-based multilayered structures that exhibit the properties of one-dimensional photonic crystals, an increase in the photoluminescence and Raman scattering intensities is observed upon optical excitation at the wavelength 1.064 {mu}m. When the excitation wavelength falls within the edge of the photonic band gap of the structures, a multiple increase (by a factor larger than 400) in the efficiency of Raman scattering is detected. The effect is attributed to partial localization of excitation light and, correspondingly, to the much longer time of interaction of light with the material in the structures.

Gonchar, K. A., E-mail: k.a.gonchar@gmail.com [Moscow State University, Physics Faculty (Russian Federation); Musabek, G. K.; Taurbayev, T. I. [Al Farabi Kazakh National University, Physics Department (Kazakhstan); Timoshenko, V. Yu. [Moscow State University, Physics Faculty (Russian Federation)

2011-05-15T23:59:59.000Z

500

Generation of polarization entangled photons using type-II doubly periodically poled lithium niobate waveguides  

E-Print Network [OSTI]

In this paper, we address the issue of the generation of non-degenerate cross-polarization-entangled photon pairs using type-II periodically poled lithium niobate. We show that, by an appropriate engineering of the quasi-phase-matching grating, it is possible to simultaneously satisfy the conditions for two spontaneous parametric down-conversion processes, namely ordinary pump photon down-conversion to either extraordinary signal and ordinary idler paired photons, or to ordinary signal and extraordinary idle