Powered by Deep Web Technologies
Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

2

Energy Programs | Collaborators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is Partnershipsn e r g y

3

Collaborating With Utilities on Residential Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Collaborating With Utilities on Residential Energy Efficiency, Call Slides and Discussion Summary, June 12, 2014. Call Slides and Discussion Summary More Documents & Publications...

4

Texas Energy Code Compliance Collaborative  

E-Print Network [OSTI]

Conference, San Antonio, Texas Dec. 16-18 7 Source: ACEEE Building Energy Codes Program 2010 ESL-KT-13-12-29 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Residential (Single Family Residences And Duplexes...CATEE 2013 December 18, 2013 ESL-KT-13-12-29 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 ? Member-based, non-profit organization ? The newest Regional Energy Efficiency Organization (REEO) ? Founded...

Herbert, C.

2013-01-01T23:59:59.000Z

5

Gulf of Mexico Regional Collaborative Final Report  

SciTech Connect (OSTI)

This report presents the results of the Gulf of Mexico Regional Collaborative (GoMRC), a year-long project funded by NASA. The GoMRC project was organized around end user outreach activities, a science applications team, and a team for information technology (IT) development. Key outcomes are summarized below for each of these areas. End User Outreach ? Successfully engaged federal and state end users in project planning and feedback ? With end user input, defined needs and system functional requirements ? Conducted demonstration to End User Advisory Committee on July 9, 2007 and presented at Gulf of Mexico Alliance (GOMA) meeting of Habitat Identification committee ? Conducted significant engagement of other end user groups, such as the National Estuary Programs (NEP), in the Fall of 2007 ? Established partnership with SERVIR and Harmful Algal Blooms Observing System (HABSOS) programs and initiated plan to extend HABs monitoring and prediction capabilities to the southern Gulf. ? Established a science and technology working group with Mexican institutions centered in the State of Veracruz. Key team members include the Federal Commission for the Protection Against Sanitary Risks (COFEPRIS), the Ecological Institute (INECOL) a unit of the National Council for science and technology (CONACYT), the Veracruz Aquarium (NOAA’s first international Coastal Ecology Learning Center) and the State of Veracruz. The Mexican Navy (critical to coastal studies in the Southern Gulf) and other national and regional entities have also been engaged. ? Training on use of SERVIR portal planned for Fall 2007 in Veracruz, Mexico Science Applications ? Worked with regional scientists to produce conceptual models of submerged aquatic vegetation (SAV) ecosystems ? Built a logical framework and tool for ontological modeling of SAV and HABs ? Created online guidance for SAV restoration planning ? Created model runs which link potential future land use trends, runoff and SAV viability ? Analyzed SAV cover change at five other bays in the Gulf of Mexico to demonstrate extensibility of the analytical tools ? Initiated development of a conceptual model for understanding the causes and effects of HABs in the Gulf of Mexico IT Tool Development ? Established a website with the GoMRC web-based tools at www.gomrc.org ? Completed development of an ArcGIS-based decision support tool for SAV restoration prioritization decisions, and demonstrated its use in Mobile Bay ? Developed a web-based application, called Conceptual Model Explorer (CME), that enables non-GIS users to employ the prioritization model for SAV restoration ? Created CME tool enabling scientists to view existing, and create new, ecosystem conceptual models which can be used to document cause-effect relationships within coastal ecosystems, and offer guidance on management solutions. ? Adapted the science-driven advanced web search engine, Noesis, to focus on an initial set of coastal and marine resource issues, including SAV and HABs ? Incorporated map visualization tools with initial data layers related to coastal wetlands and SAVs

Judd, Kathleen S.; Judd, Chaeli; Engel-Cox, Jill A.; Gulbransen, Thomas; Anderson, Michael G.; Woodruff, Dana L.; Thom, Ronald M.; Guzy, Michael; hardin, danny; Estes, Maury

2007-12-01T23:59:59.000Z

6

PA Regional Nanotechnology Conference Collaborating in Today's Economy  

E-Print Network [OSTI]

4/23/2009 Present PA Regional Nanotechnology Conference Collaborating in Today's Economy May 27's future economy and workforce will be affected by new initiatives such as development and implementation

Gilchrist, James F.

7

Bridging Research Interactions Through Collaborative Development Grants in Energy  

Broader source: Energy.gov [DOE]

The DOE Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program funds collaborative research teams to significantly lower the cost of solar energy systems...

8

Government and Industry A Force for Collaboration at the Energy...  

Broader source: Energy.gov (indexed) [DOE]

Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

9

Project SEEBECK Saving Energy Effectively By Engaging in Collaborative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Project SEEBECK Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge Project SEEBECK Saving Energy Effectively By Engaging in Collaborative...

10

Power and Energy Engineering Workforce Collaborative  

E-Print Network [OSTI]

-line career service began Sep. 2007 ­ To help address emerging engineering workforce challenges ­ As a service ­ Registrations: 325 students from about 80 institutions, 100 employers (engineering services, manufacturing1 Power and Energy Engineering Workforce Collaborative NERC Webinar July 8, 2008 #12;22 Overview

11

Collaborative Partners | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:EnergyServices » Outreach » Outreach

12

Energy-Efficient GPGPU Architectures via Collaborative Compilation and Memristive  

E-Print Network [OSTI]

Energy-Efficient GPGPU Architectures via Collaborative Compilation and Memristive Memory that exploit data-parallelism ­the most energy-efficient form of parallelism. Unfortunately, technology scaling

Liebling, Michael

13

International Collaboration on Offshore Wind Energy Under IEA Annex XXIII  

SciTech Connect (OSTI)

This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

Musial, W.; Butterfield, S.; Lemming, J.

2005-11-01T23:59:59.000Z

14

EUCI Tribal and Indian Country Energy Development: Collaborating...  

Office of Environmental Management (EM)

The conference will focus on the fundamental concepts on how to network and collaborate in renewable energy such as solar, wind, biomass, and natural gas in Indian Country...

15

Energy-Optimal Collaborative GPS Localization with Short Range Communication  

E-Print Network [OSTI]

accuracy. In this paper, we show that the collaboration among proxy devices is helpful to energy-efficiently campuses. Next, we contemplate what is the best method for selfish mobile users to collaborate for energy-efficient localization, and suggest an energy-efficient and/or user fairness localization framework. Next, we develop

Cai, Ying

16

Collaboration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous Materials | Center forClimateCollaboration

17

Collaboration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic Feedstock -Import CostsCollaboration

18

Regional Energy Baseline  

E-Print Network [OSTI]

ESL-TR-11-09-02 REGIONAL ENERGY BASELINE (1960 ~ 2009) 0 100 200 300 400 500 600 700 800 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 To tal En erg y U se pe r C ap ita (M MB tu) Year Total Energy... Use per Capita (1960-2009) US SEEC 12-States TX Hyojin Kim Juan-Carlos Baltazar, Ph.D. Jeff S. Haberl, Ph.D., P.E. September 2011 ENERGY SYSTEMS LABORATORY Texas Engineering Experiment Station Texas A&M University...

Kim, H.; Baltazar, J.C.; Haberl, J.

19

Building Energy Codes Collaborative Technical Assistance for...  

Energy Savers [EERE]

State Energy Officials - 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes Project Reducing Energy Demand in Buildings Through State Energy Codes...

20

Energy-Efficient Collaborative Sensing with Mobile Phones  

E-Print Network [OSTI]

, which can be used to show energy savings that can potentially be achieved by using collaborative sensing energy consumption (measured by the Monsoon power monitor) and location (collected from the Google Map. There is a large space for energy savings on a mobile phone. In this work, we study how to minimize sensing energy

Tang, Jian "Neil"

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Property:Collaborating Organizations | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,InformationInformation PelletsParticipantChallengesCollaborating

22

Collaborative Broker for Distributed Energy Resources Joo Carlos Ferreira1  

E-Print Network [OSTI]

to the Electric Vehicles (EVs), the Microgeneration (MG) and the open Electrical Markets (EM). This upcoming Resources, Data Mining, Energy Broker, Collaborative Approach, Electric Vehicles, Energy Market, Smart Grids the Electric Vehicles (EVs), the Microgeneration (MG) and Smart Grids (SG), where there will be a large number

da Silva, Alberto Rodrigues

23

Enabling Energy-Aware Collaborative Mobile Data Offloading for Smartphones  

E-Print Network [OSTI]

consumption. Lee et al. [13] evaluate the energy saving of offloading through a trace-driven simulation smartphones in three cities of US and Europe, we found that the number of open- accessible WiFi access pointsEnabling Energy-Aware Collaborative Mobile Data Offloading for Smartphones Aaron Yi Ding, Bo Han

Srinivasan, Aravind

24

Tribal Renewable Energy Solutions and Partnerships: Collaborating...  

Office of Environmental Management (EM)

Program: Chris Tuttle, U.S. Department of Agriculture Renewable Energy and Transmission Potential in Indian Country Analysis: Robert Hegner, ICF International Wind Development:...

25

Mid-Atlantic Regional Wind Energy Institute  

SciTech Connect (OSTI)

As the Department of Energy stated in its 20% Wind Energy by 2030 report, there will need to be enhanced outreach efforts on a national, state, regional, and local level to communicate wind development opportunities, benefits and challenges to a diverse set of stakeholders. To help address this need, PennFuture was awarded funding to create the Mid-Atlantic Regional Wind Energy Institute to provide general education and outreach on wind energy development across Maryland, Virginia, Delaware, Pennsylvania and West Virginia. Over the course of the two-year grant period, PennFuture used its expertise on wind energy policy and development in Pennsylvania and expanded it to other states in the Mid-Atlantic region. PennFuture accomplished this through reaching out and establishing connections with policy makers, local environmental groups, health and economic development organizations, and educational institutions and wind energy developers throughout the Mid-Atlantic region. PennFuture conducted two regional wind educational forums that brought together wind industry representatives and public interest organizations from across the region to discuss and address wind development in the Mid-Atlantic region. PennFuture developed the agenda and speakers in collaboration with experts on the ground in each state to help determine the critical issue to wind energy in each location. The sessions focused on topics ranging from the basics of wind development; model ordinance and tax issues; anti-wind arguments and counter points; wildlife issues and coalition building. In addition to in-person events, PennFuture held three webinars on (1) Generating Jobs with Wind Energy; (2) Reviving American Manufacturing with Wind Power; and (3) Wind and Transmission. PennFuture also created a web page for the institute (http://www.midatlanticwind.org) that contains an online database of fact sheets, research reports, sample advocacy letters, top anti-wind claims and information on how to address them, wind and wildlife materials and sample model ordinances. Video and presentations from each in-person meeting and webinar recordings are also available on the site. At the end of the two-year period, PennFuture has accomplished its goal of giving a unified voice and presence to wind energy advocates in the Mid-Atlantic region. We educated a broad range of stakeholders on the benefits of wind energy and gave them the tools to help make a difference in their states. We grew a database of over 500 contacts and hope to continue the discussion and work around the importance of wind energy in the region.

Courtney Lane

2011-12-20T23:59:59.000Z

26

USAID Regional Integrated Pest Management (IPM) Collaborative Research Support (CRSP)  

E-Print Network [OSTI]

of trainers (ToT), farmer field schools (FFS), and the development of IPM educational materials (extension/extension programs in Central Asia. This regional IPM project includes three components: (1) Improving the efficiency ecologically-based IPM information and materials into existing farmers training programs such as the training

27

Northeast Biofuels Collaborative | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) | OpenIncNobleNorrisElecEnergy Jump

28

Massachusetts Technology Collaborative - Renewable Energy Trust | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermal System, Valles Caldera, New MexicoEnergy

29

Advanced Collaborative Emissions Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuelseffort toACES is2 DOE1Study

30

Property:Collaborators | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddress JumpFloorAreaTotal JumpOid Jump

31

U.S. Department of Energy and SWAY Collaborate on Offshore Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project U.S. Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project October...

32

Working Groups Collaborate on U.S. Virgin Islands Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and Road Map Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and Road Map A diverse set...

33

U.S. Department of Energy and Masdar Collaborate In Testing Cutting...  

Office of Environmental Management (EM)

Collaborate In Testing Cutting-Edge Solar PV Coating Technologies U.S. Department of Energy and Masdar Collaborate In Testing Cutting-Edge Solar PV Coating Technologies February...

34

Regional Partnerships | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SRELRecyclingProjectsRegionalRegional

35

UNEP Collaborating Centre on Energy and Environment Renewable Energy Technologies  

E-Print Network [OSTI]

(solar, bio-mass, hydro, etc), available technologies and their costs, commercial viability and financing costs, taxes (local and import), subsidies and energy prices Technical Lack of access to the technology of valuation of social and environmental benefits Policy Unfavourable energy sector policies and unwieldy

36

Collaboration and Consensus Building in States to Support Energy Efficiency as a Resource  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on collaboration and consensus building in states to support energy efficiency as a resource.

37

Large Synoptic Survey Telescope: Dark Energy Science Collaboration  

E-Print Network [OSTI]

This white paper describes the LSST Dark Energy Science Collaboration (DESC), whose goal is the study of dark energy and related topics in fundamental physics with data from the Large Synoptic Survey Telescope (LSST). It provides an overview of dark energy science and describes the current and anticipated state of the field. It makes the case for the DESC by laying out a robust analytical framework for dark energy science that has been defined by its members and the comprehensive three-year work plan they have developed for implementing that framework. The analysis working groups cover five key probes of dark energy: weak lensing, large scale structure, galaxy clusters, Type Ia supernovae, and strong lensing. The computing working groups span cosmological simulations, galaxy catalogs, photon simulations and a systematic software and computational framework for LSST dark energy data analysis. The technical working groups make the connection between dark energy science and the LSST system. The working groups have close linkages, especially through the use of the photon simulations to study the impact of instrument design and survey strategy on analysis methodology and cosmological parameter estimation. The white paper describes several high priority tasks identified by each of the 16 working groups. Over the next three years these tasks will help prepare for LSST analysis, make synergistic connections with ongoing cosmological surveys and provide the dark energy community with state of the art analysis tools. Members of the community are invited to join the LSST DESC, according to the membership policies described in the white paper. Applications to sign up for associate membership may be made by submitting the Web form at http://www.slac.stanford.edu/exp/lsst/desc/signup.html with a short statement of the work they wish to pursue that is relevant to the LSST DESC.

LSST Dark Energy Science Collaboration

2012-11-01T23:59:59.000Z

38

Regional Systems Development for Geothermal Energy Resources...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii)....

39

The Conservation & Renewable Energy Collaboratory (CREC) is CTI's platform for collaboration with industry and  

E-Print Network [OSTI]

Purpose The Conservation & Renewable Energy Collaboratory (CREC) is CTI's platform for collaboration with industry and other partners on research and education related to renew- able energy Development & Training · Environmental Technology · Water Management Conservation & Renewable Energy

McGraw, Kevin J.

40

New England Energy Innovation Collaborative NEEIC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServicesNeuCo620572°,York:

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE/DOD Parasitic Energy Loss Collaboration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department DOE-STD-1171-2003Department ofDepartment of Energy2

42

DOE/DOD Parasitic Energy Loss Collaboration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department DOE-STD-1171-2003Department ofDepartment of Energy21

43

DOE/DOD Parasitic Energy Loss Collaboration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department DOE-STD-1171-2003Department ofDepartment of Energy210

44

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline RockCaldera2 2013Calhoun

45

EUCI Tribal and Indian Country Energy Development: Collaborating for Successful Transactions  

Broader source: Energy.gov [DOE]

Hosted by the Electric Utility Consultants, Inc. (EUCI), this conference will provide practical tips for mutually beneficial collaboration between tribes and utility companies. The conference will focus on the fundamental concepts on how to network and collaborate in renewable energy such as solar, wind, biomass, and natural gas in Indian Country.

46

AWEA Wind Energy Regional Summit: Northeast  

Office of Energy Efficiency and Renewable Energy (EERE)

The AWEA Wind Energy Northeast Regional Summit will connect you with New England-area wind energy professionals and offers the opportunity to discuss significant issues related to land-based and...

47

An Energy-Delay Tunable Task Allocation Strategy for Collaborative Applications in  

E-Print Network [OSTI]

with task allocations, thereby making the best trade-offs between energy savings and schedule lengths. Aside to meet their specific energy-delay trade-off needs imposed by applications. Further, we built--Collaborative applications, energy conservation, energy latency trade-off, heterogeneous embedded systems, task allocation. Ă?

Xie, Tao

48

A major boost to develop geothermal energy in India under NGRI-NTPC Ltd collaboration  

E-Print Network [OSTI]

A major boost to develop geothermal energy in India under NGRI-NTPC Ltd collaboration Exchange geothermal energy. The world over about 3000 MW equivalent of energy being generated using their geothermal Manager of Renewable Energy Development Group of NTPC Limited in the presence of Dr. V.P. Dimri(third from

Harinarayana, T.

49

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy.  

E-Print Network [OSTI]

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering operations. In 2007, the National Renewable Energy Laboratory (NREL) initi- ated the Gearbox Reliability that contribute to reduced gearbox reliability. In contrast to private investigations of these problems, GRC

50

DOE to Participate in Colombian Regional Energy Meeting Ahead...  

Office of Environmental Management (EM)

to Participate in Colombian Regional Energy Meeting Ahead of Energy and Climate Ministerial of the Americas DOE to Participate in Colombian Regional Energy Meeting Ahead of Energy...

51

Multilateral, regional and bilateral energy trade governance  

SciTech Connect (OSTI)

The current international energy trade governance system is fragmented and multi-layered. Streamlining it for greater legal cohesiveness and international political and economic cooperation would promote global energy security. The current article explores three levels of energy trade governance: multilateral, regional and bilateral. Most energy-rich countries are part of the multilateral trading system, which is institutionalized by the World Trade Organization (WTO). The article analyzes the multilateral energy trade governance system by focusing on the WTO and energy transportation issues. Regionally, the article focuses on five major regional agreements and their energy-related aspects and examines the various causes that explain the proliferation of regional trade agreements, their compatibility with WTO law, and then provides several examples of regional energy trade governance throughout the world. When it comes to bilateral energy trade governance, this article only addresses the European Union’s (EU) bilateral energy trade relations. The article explores ways in which gaps could be filled and overlaps eliminated whilst remaining true to the high-level normative framework, concentrating on those measures that would enhance EU energy security.

Leal-Arcas, Rafael; Grasso, Costantino; Rios, Juan Alemany (Queen Mary Univ. of London (United Kingdom))

2014-12-01T23:59:59.000Z

52

Renewable Energy Industry in South Africa: Opportunities for Partnership and Collaboration  

E-Print Network [OSTI]

Renewable Energy Industry in South Africa: Opportunities for Partnership and Collaboration Renewable Energy in South Africa September 23, 2013 11:30 a.m. ­ 12:30 p.m, Engineering East 303C@fau.edu FAU's Division of Research and Southeast National Marine Renewable Energy Center invite you

Fernandez, Eduardo

53

CRBcast: A Collaborative Rateless Scheme for Reliable and Energy-Efficient Broadcasting in Wireless Sensor  

E-Print Network [OSTI]

the effectiveness of CRBcast. We show that CRBcast can provide both reliability and energy efficiency. Simulation results indicate that CRBcast saves at least 72%o and 60% energy in comparison with flooding and PBcastCRBcast: A Collaborative Rateless Scheme for Reliable and Energy-Efficient Broadcasting in Wireless

Rahnavard, Nazanin

54

Regional Energy Efficiency Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LEDEISARegional Energy

55

SPEER: Building a Regional Energy Efficiency Partnership  

E-Print Network [OSTI]

SPEER: Building a Regional Energy Efficiency Partnership Clean Air Through Energy Efficiency Conference – San Antonio, TX Doug Lewin December 18, 2013 ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas... Dec. 16-18 SPEER • Member-based, non-profit organization • The Newest Regional Energy Efficiency Organization (REEO) • Founded in 2011 • 38 members from wide cross section of E.E. industries ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy...

Lewin, D.

2013-01-01T23:59:59.000Z

56

Sensitivity analysis of synergistic collaborative scenarios towards sustainable nuclear energy systems  

SciTech Connect (OSTI)

The paper presents results of the study on the role of collaboration among countries towards sustainable global nuclear energy systems. The study explores various market shares for nuclear fuel cycle services, possible scale of collaboration among countries and assesses benefits and issues relevant for collaboration between suppliers and users of nuclear fuel cycle services. The approach used in the study is based on a heterogeneous world model with grouping of the non-personified nuclear energy countries according to different nuclear fuel cycle policies. The methodology applied in the analysis allocates a fraction of future global nuclear energy generation to each of such country-groups as a function of time. The sensitivity studies performed show the impacts of the group shares on the scope of collaboration among countries and on the resulting possible reactor mix and nuclear fuel cycle infrastructure versus time. The study quantitatively demonstrates that the synergistic approach to nuclear fuel cycle has a significant potential for offering a win-win collaborative strategy to both, technology holders and technology users on their joint way to future sustainable nuclear energy systems. The study also highlights possible issues on such a collaborative way. (authors)

Fesenko, G.; Kuznetsov, V. [IAEA, Wagramer Strasse 5, P.O. Box 100, A-1400, Vienna (Austria); Poplavskaya, E. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

2013-07-01T23:59:59.000Z

57

Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation, search OpenEIOpen Energy InformationEnergy

58

Regions in Energy Market Models  

SciTech Connect (OSTI)

This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

Short, W.

2007-02-01T23:59:59.000Z

59

U.S. Power and Energy Engineering Workforce Collaborative Press Release  

E-Print Network [OSTI]

, reasonable and immediate actions to attract more young people to electric power engineering and to supportU.S. Power and Energy Engineering Workforce Collaborative Press Release April 21, 2009 Engineer to transform its energy system to make it greener and smarter. But a growing shortage of electric power

60

Towards a PowerPedia A collaborative energy encyclopedia  

E-Print Network [OSTI]

, the rather technical feed- back in pure numbers and intangible units of existing energy feedback systems. Introduction Residential electricity consumption accounts for one third of the total electrical energy produced energy can be obtained from the community and consumer web sites. Portable energy feedback systems

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Power in Collaboration: National Energy Literacy Virtual Meet-Up  

Broader source: Energy.gov [DOE]

The webinar will be a dynamic virtual conversation of ongoing efforts from across the country in utilizing the Department of Energy's Energy Literacy Framework to address one of our nation's...

62

Tribal Renewable Energy Solutions and Partnerships: Collaborating Through  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7Department of Energy Strategic Energythe

63

Regional Energy Deployment System (ReEDS)  

SciTech Connect (OSTI)

The Regional Energy Deployment System (ReEDS) is a deterministic optimization model of the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States into the future. The model, developed by the National Renewable Energy Laboratory's Strategic Energy Analysis Center, is designed to analyze the critical energy issues in the electric sector, especially with respect to potential energy policies, such as clean energy and renewable energy standards or carbon restrictions. ReEDS provides a detailed treatment of electricity-generating and electrical storage technologies and specifically addresses a variety of issues related to renewable energy technologies, including accessibility and cost of transmission, regional quality of renewable resources, seasonal and diurnal generation profiles, variability of wind and solar power, and the influence of variability on the reliability of the electrical grid. ReEDS addresses these issues through a highly discretized regional structure, explicit statistical treatment of the variability in wind and solar output over time, and consideration of ancillary services' requirements and costs.

Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A.

2011-12-01T23:59:59.000Z

64

Southeast Regional Clean Energy Policy Analysis (Revised)  

SciTech Connect (OSTI)

More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

McLaren, J.

2011-04-01T23:59:59.000Z

65

Regional analysis of energy facility siting  

SciTech Connect (OSTI)

This paper has examined some of the regional environmental parameters of energy facility siting, with emphasis on air quality impacts. An example of a siting optimization study was presented, and it was shown how difficult it presently is to specify an environmental objective function that is universally applicable. The importance of regional background effects was discussed, and long-range transport models were used to analyze the relative importance of local and long-range impacts.

Lipfert, F W; Meier, P M; Kleinman, L I

1980-01-01T23:59:59.000Z

66

Energy Innovation Hubs: A Home for Scientific Collaboration  

ScienceCinema (OSTI)

Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.

Chu, Steven

2013-05-29T23:59:59.000Z

67

Energy Innovation Hubs: A Home for Scientific Collaboration  

SciTech Connect (OSTI)

Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.

Chu, Steven

2012-01-01T23:59:59.000Z

68

Regional Standards Enforcement Policy | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |RebeccaRegional Standards Enforcement Policy Regional

69

EM Collaborates on Best Practices for Reviews | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement || Department of EnergyEnergyMembers of

70

Global Leaders Meet To Collaborate on Energy Efficiency Goals | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermal Technologies OfficeDepartmentGlenof

71

LEDS Collaboration in Action Workshop Accommodations | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLAC WorkshopEnergyInformation

72

May 29 Tribal Renewable Energy Webinar to Highlight Regional...  

Broader source: Energy.gov (indexed) [DOE]

9 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May...

73

Natural Resources Canada and DOE Announce Enhanced Energy Collaboration |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational ScienceEnergy - ThirdDepartment

74

Collaboration on Renewable Energy Standards, Testing, and Certification under the U.S. China Renewable Energy Partnership: Preprint  

SciTech Connect (OSTI)

During November 2009, the U.S. China Renewable Energy Partnership agreement was authorized in Beijing by Presidents Obama and Hu from the U.S. and China. One of the principle tasks under this new program is the collaboration of the U.S. and China on the topic of renewable energy standards, testing, and certification with an initial focus on solar PV and wind topics. This paper will describe and discuss the activities which have taken place under the bilateral collaboration to date.

Wallace, W.; Kurtz, S.; Lin, W.

2012-06-01T23:59:59.000Z

75

A Path to Successful Energy Retrofits: Early Collaboration through Integrated  

E-Print Network [OSTI]

and designers. It outlines the value of forming an integrated project delivery team and developing a complete process for designing an energy retrofit for a building. Instead, it focuses on the early design retrofits require integrated project delivery teams, this guide presents an integrated design process

76

LEDS Collaboration in Action Workshop Agenda | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLAC

77

LEDS Collaboration in Action Workshop Arrival Form | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLACInformation Arrival Form

78

LEDS Collaboration in Action Workshop Attendee List | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLACInformation Arrival

79

LEDS Collaboration in Action Workshop Biography | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLACInformation

80

LEDS Collaboration in Action Workshop Contact Us | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLACInformationJump to:

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

LEDS Collaboration in Action Workshop Links | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLACInformationJump to:ACDS

82

LEDS Collaboration in Action Workshop Location | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLACInformationJump to:ACDSACDS

83

LEDS Collaboration in Action Workshop Open Space Sessions | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLACInformationJump

84

LEDS Collaboration in Action Workshop Participant Pack | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute

85

LEDS Collaboration in Action Workshop Presentations | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi InstituteInformation Workshop

86

Energy Performance Contracting for Texas: The Collaborative Process  

E-Print Network [OSTI]

to the firm that can best achieve the results envisioned by the Owner. Two methods may be used for selecting providers of performance based projects. The Request for Qualifications (RFQ) method and the Request for Proposals (RFP) method. The subcommittee... requirements must be followed when selecting a provider by means of RFQ or RFP. Although it is not required it is highly recommended that school districts adopt the guidelines for developing contracts. EARS, M&V, and periodic energy savings reports...

Huff, H.; Matthews, J.

1998-01-01T23:59:59.000Z

87

EUCI Tribal and Indian Country Energy Development: Collaborating for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ Contract Document displaysFace

88

Collaborating With Utilities on Residential Energy Efficiency | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy

89

Building Energy Codes Collaborative Technical Assistance for States |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistance HeatingPowerDepartment of Energy

90

Advanced Collaborative Emissions Study (ACES) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuelseffort toACES is a

91

Advanced Collaborative Emissions Study (ACES) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuelseffort toACES is

92

Advanced Collaborative Emissions Study (ACES) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuelseffort toACES is2 DOE

93

Advanced Collaborative Emissions Study (ACES) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuelseffort toACES is2 DOE1 DOE

94

Advanced Collaborative Emissions Study (ACES) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuelseffort toACES is2 DOE1 DOE0

95

Engaging Stakeholders in Collaborative Energy Efficiency Planning and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004Department ofEnforcing

96

Gearbox Reliability Collaborative Debuts on the Web | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost SavingsEnergy GETEMGoldenGarfieldGasificationGearbox

97

Industry, academic collaborators push for energy solutions | Princeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO]Industry Group Learns AboutPlasma

98

Collaboration Leads to State-of-the-Art Energy Auditing Tool: Project Highlights (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the tablet-based simuwatt Audit tool, which uses NREL's advanced energy modeling framework and building energy audit processes, collaboration tools, in-app media, and private company concept3D's geometric capture software combined with real-time connections to large sets of standardized data to perform building energy audits faster than traditional methods. By integrating the NREL Building Component Library, utility rates, weather information, and energy conservation measures, the tool provides investment-grade audits that cost 75% less than traditional audits and stores the data in a consistent and reusable format.

Not Available

2013-03-01T23:59:59.000Z

99

SITN Regional Outreach Map | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving LoanDepartment of Energy SGSITN Regional

100

Indonesia Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana WindIndonesia Geothermal Region

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Common challenge, collaborative response: a roadmap for US-China cooperation on energy and climate change  

SciTech Connect (OSTI)

This Report which was produced in partnership between Asia Society's Center on U.S.-China Relations and Pew Center on Global Climate Change, in collaboration with The Brookings Institution, Council on Foreign Relations, National Committee on U.S.-China Relations, and Environmental Defense Fund presents both a vision and a concrete Roadmap for such Sino-U.S. collaboration. With input from scores of experts and other stakeholders from the worlds of science, business, civil society, policy, and politics in both China and the United States, the Report, or 'Roadmap', explores the climate and energy challenges facing both nations and recommends a concrete program for sustained, high-level, bilateral engagement and on-the-ground action. The Report recommends that, as a first step in forging this new partnership, the leaders of the two countries should convene a leaders summit as soon as practically possible following the inauguration of Barack Obama to launch a 'U.S.-China Partnership on Energy and Climate Change'. This presidential summit should outline a major plan of joint-action and empower relevant officials in each country to take the necessary actions to ensure its implementation. Priority areas of collaboration include: deploying low-emissions coal technologies; improving energy efficiency and conservation; developing an advanced electric grid; promoting renewable energy; and quantifying emissions and financing low-carbon technologies. 5 figs., 1 tab., 2 apps.

NONE

2009-01-15T23:59:59.000Z

102

Wind energy resources atlas. Volume 1. Northwest region  

SciTech Connect (OSTI)

Information is presented concering regional wind energy resource assessment; regional features; and state features for Idaho, Montana, Oregon, Washington, and Wyoming.

Elliott, D.L.; Barchet, W.R.

1980-04-01T23:59:59.000Z

103

Federally Funded Programs Related to Building Energy Use: Overlaps, Challenges, and Opportunities for Collaboration  

SciTech Connect (OSTI)

As energy efficiency in buildings continues to move from discreet technology development to an integrated systems approach, the need to understand and integrate complementary goals and targets becomes more pronounced. Whether within Department of Energy’s (DOE) Building Technologies Program (BTP), across the Office of Energy Efficiency and Renewable Energy (EERE), or throughout DOE and the Federal government, mutual gains and collaboration synergies exist that are not easily achieved because of organizational and time constraints. There also cases where federal agencies may be addressing similar issues, but with different (and sometimes conflicting) outcomes in mind. This report conducts a comprehensive inventory across all EERE and other relevant Federal agencies of potential activities with synergistic benefits. A taxonomy of activities with potential interdependencies is presented. The report identifies a number of federal program objectives, products, and plans related to building energy efficiency and characterizes the current structure and interactions related to these plans and programs. Areas where overlap occurs are identified as are the challenges of addressing issues related to overlapping goals and programs. Based on the input gathered from various sources, including 20 separate interviews with federal agency staff and contractor staff supporting buildings programs, this study identifies a number of synergistic opportunities and makes recommends a number of areas where further collaboration could be beneficial.

Cort, Katherine A.; Butner, Ryan S.; Hostick, Donna J.

2010-10-01T23:59:59.000Z

104

Holocene Magmatic Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel JumpHoard, Wisconsin:Holiday59. It isRegion Jump to:

105

Regional Networks for Energy Efficiency | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LEDEISARegional EnergyRegional

106

A Collaborative Support System for the Review of Building Energy Data in the LoanSTAR Monitoring and Analysis Project  

E-Print Network [OSTI]

-driven review process. Utilization of these facilities to provide a computer-supported collaborative environment for the review of building energy analysis data is feasible. This paper addresses the requirements such a system must meet, and proposes a design...

Willis, D.; Haberl, J.

107

Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy  

SciTech Connect (OSTI)

The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

2011-10-01T23:59:59.000Z

108

Lake Region Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lake Region Electric Cooperative (LREC) offers a variety of rebates for residential customers to improve the energy efficiency of homes. Rebates are available for Energy Star refrigerators and...

109

Making the Connection: Beneficial Collaboration Between Army...  

Broader source: Energy.gov (indexed) [DOE]

Connection: Beneficial Collaboration Between Army Installations and Energy Utility Companies Making the Connection: Beneficial Collaboration Between Army Installations and...

110

Status of China's Energy Efficiency Standards and Labels for Appliances and International Collaboration  

SciTech Connect (OSTI)

China first adopted minimum energy performance standards (MEPS) in 1989. Today, there are standards for a wide range of domestic, commercial and selected industrial equipment. In 1999, China launched a voluntary endorsement label, which has grown to cover over 40 products including water-saving products (See Figure 1). Further, in 2005, China started a mandatory energy information label (also referred to as the 'Energy Label'). Today, the Energy Label is applied to four products including: air conditioners; household refrigerators; clothes washers; and unitary air conditioners (See Figure 2). MEPS and the voluntary endorsement labeling specifications have been updated and revised in order to reflect technology improvements to those products in the market. These programs have had an important impact in reducing energy consumption of appliances in China. Indeed, China has built up a strong infrastructure to develop and implement product standards. Historically, however, the government's primary focus has been on the technical requirements for efficiency performance. Less attention has been paid to monitoring and enforcement with a minimal commitment of resources and little expansion of administrative capacity in this area. Thus, market compliance with both mandatory standards and labeling programs has been questionable and actual energy savings may have been undermined as a result. The establishment of a regularized monitoring system for tracking compliance with the mandatory standard and energy information label in China is a major area for program improvement. Over the years, the Collaborative Labeling and Appliance Standards Program (CLASP) has partnered with several Chinese institutions to promote energy-efficient products in China. CLASP, together with its implementing partner Lawrence Berkeley National Laboratory (LBNL), has assisted China in developing and updating the above-mentioned standards and labeling programs. Because of the increasing need for the development of a monitoring system to track compliance with standards and labeling, CLASP, with support from Japan's Ministry of Economy, Trade and Industry (METI), has expanded its ongoing collaboration with the China National Institute of Standards (CNIS) to include enforcement and monitoring. CNIS has already begun working on the issue of compliance. CNIS has conducted modest sample testing in 2006 for refrigerators, freezers and room air-conditioners, and repeated the same task in 2007 with a similar sample size for three products (refrigerators, freezers, air-conditioners and clothes washers). And, CNIS, with technical support from LBNL, has analyzed the data collected through testing. At the same time, parallel effort has also been paid to look at the potential impact of the label to 2020. In conjunction with CNIS, CLASP technical experts reviewed the standards development timeline of the four products currently subject to the mandatory energy information label. CLASP, with the support of METI/IEEJ, collaborated with CNIS to develop the efficiency grades, providing: technical input to the process; comment and advice on particular technical issues; as well as evaluation of the results. In addition, in order to effectively evaluate the impact of the label on China's market, CLASP further provided assistance to CNIS to collect data on both the efficiency distribution and product volume distribution of refrigerators on the market. This short report summarizes the status of Standards and Labeling program, current enforcement and monitoring mechanism in China, and states the importance of international collaborations.

Zhou, Nan

2008-03-01T23:59:59.000Z

111

Regionalized Global Energy Scenarios Meeting Stringent Climate Targets  

E-Print Network [OSTI]

and Energy efficiency improvements) · Per capita income increases · Industrialized regions GDP from 20 by IIASA. (Ecological and Energy efficiency improvements) · Per capita income increases #12;Energy demand improvements) · Per capita income increases · Industrialized regions GDP from 20,000 USD/yr to 50,000 USD

112

DC High School Science Bowl Regionals | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DC High School Science Bowl Regionals DC High School Science Bowl Regionals February 22, 2014 1:15PM to 8:15PM EST Department of Energy headquarters - 1000 Independence Ave SW,...

113

U.S. Department of Energy to Host Regional Energy Efficiency...  

Office of Environmental Management (EM)

Host Regional Energy Efficiency Conference in Istanbul, Turkey on June 3-4 U.S. Department of Energy to Host Regional Energy Efficiency Conference in Istanbul, Turkey on June 3-4...

114

Southeast Regional Clean Energy Policy Analysis  

Office of Energy Efficiency and Renewable Energy (EERE)

This report covers the states that largely fall into the Southeastern Reliability Corporation (SERC) region: Alabama, Arkansas, Georgia, Louisiana, Kentucky, Missouri, Mississippi, North Carolina, South Carolina, and Tennessee.

115

regional clean energy application centers | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Energy Application Centers (CEACs), formerly called the Combined Heat and Power (CHP) Regional Application Centers (RACs), promote and assist in transforming the market for...

116

Gainesville Regional Utilities- Business Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Gainesville Regional Utilities (GRU) offers an incentive to business customers for upgrading to energy efficient equipment at eligible facilities. Incentives are available for ductwork, insulation,...

117

Lake Region Electric Cooperative- Commercial Energy Efficiency Grant Program  

Broader source: Energy.gov [DOE]

Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for new and existing...

118

Energy Department Announces First Regional Gasoline Reserve to...  

Office of Environmental Management (EM)

Ernest Moniz today announced the creation of the first federal regional refined petroleum product reserve containing gasoline. Based on the Energy Department's lessons...

119

Passive Housing for an Aggressive Region | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

describes the Capital region and the mission of bringing passive houses to the area. A passive house meets rigorous, voluntary energy efficiency standards and requires little...

120

Lake Region Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: EnergyPocotopaug, Connecticut: Energy Resources JumpElectric

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lake Region Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: EnergyPocotopaug, Connecticut: Energy Resources

122

Philippines Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) |Facility | Open Energy0) Techniques (0)

123

THE MAGNETIC ENERGY-HELICITY DIAGRAM OF SOLAR ACTIVE REGIONS  

SciTech Connect (OSTI)

Using a recently proposed nonlinear force-free method designed for single-vector magnetograms of solar active regions, we calculate the instantaneous free magnetic energy and relative magnetic helicity budgets in 162 vector magnetograms corresponding to 42 different active regions. We find a statistically robust, monotonic correlation between the free magnetic energy and the relative magnetic helicity in the studied regions. This correlation implies that magnetic helicity, in addition to free magnetic energy, may be an essential ingredient for major solar eruptions. Eruptive active regions appear well segregated from non-eruptive ones in both free energy and relative helicity with major (at least M-class) flares occurring in active regions with free energy and relative helicity exceeding 4 Multiplication-Sign 10{sup 31} erg and 2 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The helicity threshold agrees well with estimates of the helicity contents of typical coronal mass ejections.

Tziotziou, Kostas; Georgoulis, Manolis K. [Research Center for Astronomy and Applied Mathematics (RCAAM), Academy of Athens, 4 Soranou Efesiou Street, Athens, GR-11527 (Greece); Raouafi, Nour-Eddine [Johns Hopkins University Applied Physics Laboratory (JHU/APL), 11100 Johns Hopkins Rd. Laurel, MD 20723-6099 (United States)

2012-11-01T23:59:59.000Z

124

Wind energy resource atlas. Volume 4. The Northeast region  

SciTech Connect (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled in this chapter into an overview and summary of the various features of the regional wind energy resource. An introduction and outline are provided for in the descriptions of the wind resource given for each state. Assessments for individual states are presented. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters.

Pickering, K.E.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-09-01T23:59:59.000Z

125

Energy Research in the Oldenburg Region  

E-Print Network [OSTI]

institutions and companies developing modern, efficient and climate friendly energy systems. Energy research the title"Intelligent Data Center"innovative highly dynamic system management solutions are developed.offis.de #12;Fraunhofer Institute for ManufacturingTechnology and Applied Materials Research A new project

126

Northwest Region Clean Energy Application Center  

SciTech Connect (OSTI)

The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

Sjoding, David

2013-09-30T23:59:59.000Z

127

Funded Collaborators | JCESR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours,FrequentlyFunded Collaborators In

128

Italy Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | OpenIssaquena County, Mississippi:

129

Australia Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: Texas Service Territory:and Ore Reserves (The

130

Austria Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: Texas Service Territory:and Ore

131

State & Regional Resources | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report: OAS-RA-14-01Awards |State & Regional

132

Regional assessment of aquifers for thermal-energy storage. Volume 2. Regions 7 through 12  

SciTech Connect (OSTI)

This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: Unglaciated Central Region; Glaciated Appalachians, Unglaciated Appalachians; Coastal Plain; Hawaii; and Alaska. (LCL)

Not Available

1981-06-01T23:59:59.000Z

133

Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6  

SciTech Connect (OSTI)

This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

Not Available

1981-06-01T23:59:59.000Z

134

New Zealand Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) Jump to: navigation, search EquivalentProjects (0)

135

Northern Rockies Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)References ↑ US CensusNortheastName}}} Province is situated in

136

Cascades Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm Jump to: navigation,Carsten

137

Alaska Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand and Water Jump

138

Germany Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation MexicoLLC Jump to: navigation,Germany

139

Regional Dynamics Model (REDYN) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge And Piedmont Provinces | Open EnergyDynamics Model

140

Cascades Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade Sierra Solutions CSS Jump to:

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Category:Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to: navigation,

142

Iceland Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to: navigation,

143

Idaho Batholith Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to:Information

144

Mid-Columbia Region Clean Energy Feasibility Assessment - Hanford...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Official Documents > Mid-Columbia Region Clean Energy Assessment Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review...

145

Pennsylvania Regional Infrastructure Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow Your EnergyTechnology toPaulStorage

146

Mid-Columbia Region Clean Energy Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3, 1999 http://www.eia.doe.govMicrowave93 -VA

147

Clean Energy Manufacturing Initiative Midwest Regional Summit:  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu IssuesCleanLightweighting

148

Mexico Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to: navigation,Metalysis JumpMetzger, Oregon:Buildings0)

149

China Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon842667°,Cheviot,3.Chimayo,China Geothermal

150

Southern Rockies Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551° LoadingSoutheastSRF JumpRElecEnergy

151

Turkey Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformationTulsa, Oklahoma: EnergyTunisia:TuoriTurkerlerJump

152

How Do I Use Renewable Energy in My Region?  

SciTech Connect (OSTI)

NREL can asses renewable energy resource information and integrate it with data using geographic information systems (GIS) and interface the data with key analytical models. Planners and energy developers use these integrated resource assessments to make decisions about the feasibility, cost-effectiveness, and risks of developing projects in specific locations and for regional planning.

Not Available

2005-11-01T23:59:59.000Z

153

Regional Tribal Renewable Energy Workshops Announced | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartmentEnergyFrequency | Department ofMay 14,DepartmentManyDOE'sTed

154

Energy Department Announces New Regional Approach to Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of EnergyStakeholdersEnergyDevelop

155

Energy Department Announces Regional Winners of University Clean Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of EnergyStakeholdersEnergyDevelopAnnouncement

156

Southwest Alaska Regional Geothermal Energy Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South ValleyDepartmentSouthwest

157

Energy Department Announces New Regional Approach to Wind Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Initiates New Outreach Efforts to Address a Changing Wind Industry This map shows wind potential capacity for turbine hub heights at 140 meters. Mapping the Frontier of New...

158

Making the Connection: Beneficial Collaboration Between Army...  

Broader source: Energy.gov (indexed) [DOE]

to reduce traditional energy usage * Tasks - Examine current collaboration - Identify problems and barriers to collaboration - Identify and assess options for improving...

159

Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach  

SciTech Connect (OSTI)

This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

2015-01-01T23:59:59.000Z

160

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge And Piedmont Provinces | Open EnergyDynamics

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research  

Broader source: Energy.gov [DOE]

Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

162

Regional Centre for Renewable Energy and Energy Efficiency Feed | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to:Co JumpRETScreenJam HomeReedy JumpEnergy

163

Energy Department Announces Regional Winners of University Clean Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. StevenSolar PowerHanford'sSystemsBusiness

164

Category:Clean Energy Economy Regions | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Status of casesCaliper Log

165

Non-Residential Energy Code National and Regional Codes  

E-Print Network [OSTI]

Non-Residential Energy Code Comparison National and Regional Codes David Baylon Mike Kennedy #12 2003 · ASHRAE 90.1 2001 & addenda · E-Benchmark Guidelines (NBI) #12;Approach · Comparison of the State;Approach (cont.) · Provisions compared ­ Lighting power ­ Lighting controls ­ Mechanical systems ­ Building

166

E-Gesture: A Collaborative Architecture for Energy-efficient Ges-ture Recognition with Hand-worn Sensor and Mobile Devices  

E-Print Network [OSTI]

E-Gesture: A Collaborative Architecture for Energy-efficient Ges- ture Recognition with Hand the design, imple- mentation, and evaluation of E-Gesture, an energy-efficient gesture recognition system, Experimentation, Measurement, Performance Keywords Energy Efficiency, Mobile Gesture Recognition, Closed- loop

167

Demo: E-Gesture A Collaborative Architecture for Energy-efficient Gesture Recognition with Hand-worn Sensor and Mobile Devices  

E-Print Network [OSTI]

of segmentation accuracy. Classification Architecture: In addition to energy-efficient ar- chitecture, weDemo: E-Gesture ­ A Collaborative Architecture for Energy-efficient Gesture Recognition with Hand architecture for energy- efficient gesture recognition on a hand-worn sensor device and an off

168

Implications of Regional Transmission Organization Design for Renewable Energy Technologies  

SciTech Connect (OSTI)

This report summarizes the development of Regional Transmission Organizations (RTOs) and assesses the potential implications of market rules for renewable energy technologies. The report focuses on scheduling provisions, as these have proved problematic in some cases for intermittent renewable energy technologies. Market rules of four RTOs-the Pennsylvania-Maryland-New Jersey ISO, the ERCOT ISO, the Midwest ISO and the New York ISO (NYISO)-were examined to determine the impact on intermittent renewable energy projects such as wind energy generators. Also, a more general look was taken at how biomass power may fare in RTOs, specifically whether these technologies can participate in ancillary service markets. Lastly, an assessment was made regarding the implications for renewable energy technologies of a Northeast-wide RTO that would combine the three existing Northeast ISOs (the aforementioned PJM and NYISOs, as well as ISO New England).

Porter, K.

2002-05-01T23:59:59.000Z

169

Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics  

SciTech Connect (OSTI)

This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

1993-12-01T23:59:59.000Z

170

Relationship of regional water quality to aquifer thermal energy storage  

SciTech Connect (OSTI)

Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

Allen, R.D.

1983-11-01T23:59:59.000Z

171

Consumer Attitudes About Renewable Energy: Trends and Regional Differences  

SciTech Connect (OSTI)

The data in this report are taken from Natural Marketing Institute's (NMI's) Lifestyles of Health and Sustainability Consumer Trends Database. Created in 2002, the syndicated consumer database contains responses from 2,000 to 4,000 nationally representative U.S. adults (meaning the demographics of the sample are consistent with U.S. Census findings) each year. NMI used the database to analyze consumer attitudes and behavior related to renewable energy and to update previously conducted related research. Specifically, this report will explore consumer awareness, concerns, perceived benefits, knowledge of purchase options, and usage of renewable energy as well as provide regional comparisons and trends over time.

Natural Marketing Institute, Harleysville, Pennsylvania

2011-04-01T23:59:59.000Z

172

Regional Test Centers Breaking Down Barriers to Solar Energy Deployment |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSiting Guidelines | Department ofRegional

173

Excitation energy dependence of fission in the mercury region  

E-Print Network [OSTI]

Background: Recent experiments on beta-delayed fission reported an asymmetric mass yield in the neutron-deficient nucleus 180Hg. Earlier experiments in the mass region A=190-200 close to the beta-stability line, using the (p,f) and (\\alpha,f) reactions, observed a more symmetric distribution of fission fragments. While the beta-delayed fission of 180Hg can be associated with relatively low excitation energy, this is not the case for light-ion reactions, which result in warm compound nuclei. Purpose: To elucidate the roles of proton and neutron numbers and excitation energy in determining symmetric and asymmetric fission yields, we compute and analyze the isentropic potential energy surfaces of 174,180,198Hg and 196,210Po. Methods: We use the finite-temperature superfluid nuclear density functional theory, for excitation energies up to E*=30MeV and zero angular momentum. For our theoretical framework, we consider the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Results: For 174,180Hg, we predict fission pathways consistent with asymmetric fission at low excitation energies, with the symmetric fission pathway opening very gradually as excitation energy is increased. For 198Hg and 196Po, we expect the nearly-symmetric fission channel to dominate. 210Po shows a preference for a slightly asymmetric pathway at low energies, and a preference for a symmetric pathway at high energies. Conclusions: Our self-consistent theory suggests that excitation energy weakly affects the fission pattern of the nuclei considered. The transition from the asymmetric fission in the proton-rich nuclei to a more symmetric fission in the heavier isotopes is governed by the shell structure of pre-scission configurations.

J. D. McDonnell; W. Nazarewicz; J. A. Sheikh; A. Staszczak; M. Warda

2014-06-26T23:59:59.000Z

174

DOE and NRCan Agreement to Enhance Collaboration in Civilian...  

Energy Savers [EERE]

DOE and NRCan Agreement to Enhance Collaboration in Civilian Nuclear Energy Research and Development DOE and NRCan Agreement to Enhance Collaboration in Civilian Nuclear Energy...

175

Final Technical Report for "Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models"  

SciTech Connect (OSTI)

This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs, we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.

Robertson, A.W.; Ghil, M.; Kravtsov, K.; Smyth, P.J.

2011-04-08T23:59:59.000Z

176

Final Technical Report for "Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models"  

SciTech Connect (OSTI)

This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs, we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceansâ?? mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceansâ?? thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.

Kravtsov, S.; Robertson, A. W.; Ghil, M.; Smyth, P. J.

2011-04-08T23:59:59.000Z

177

Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State  

E-Print Network [OSTI]

To understand the physics of solar flares, including the local reorganisation of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We investigate the values of the free magnetic energy estimated from either the excess energy in extrapolated fields or the magnetic virial theorem. For four different active regions, we have reconstructed the nonlinear force-free field and the linear force-free field corresponding to the minimum-energy state. The free magnetic energies are then computed. From the energy budget and the observed magnetic activity in the active region, we conclude that the free energy above the minimum-energy state gives a better estimate and more insights into the flare process than the free energy above the potential field state.

S. Regnier; E. R. Priest

2008-05-12T23:59:59.000Z

178

File:LongValley Regional.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdfLongValley Regional.pdf Jump to:

179

Assessment of the National Wind Coordinating Collaborative: Addressing Environmental and Siting Issues Associated with Wind Energy Development  

SciTech Connect (OSTI)

The National Wind Coordinating Collaborative (NWCC) is a consensus-based stakeholder group comprised of representatives from the utility, wind industry, environmental, consumer, regulatory, power marketer, agricultural, tribal, economic development, and state and federal government sectors. The purpose of the NWCC is to support the development of an environmentally, economically, and politically sustainable commercial market for wind power (NWCC 2010). The NWCC has been funded by the U.S. Department of Energy (DOE) since its inception in 1994. In order to evaluate the impact of the work of the NWCC and how this work aligns with DOE’s strategic priorities, DOE tasked Pacific Northwest National Laboratory (PNNL) to conduct a series of informal interviews with a small sample of those involved with NWCC.

Van Cleve, Frances B.; States, Jennifer C.

2010-11-09T23:59:59.000Z

180

Collaboration Multidisciplinary  

E-Print Network [OSTI]

science and economy in the 21st century. History The and the talent that will continue to fuel innovation in Nanosystems To foster interdisciplinary collaboration.csqc.ucsb.edu Center for Stem Cell Biology and Engineering www.stemcell.ucsb.edu Institute for Collaborative

Bigelow, Stephen

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Collaborative Model for a Sustainable Management System for Energy at Small to Medium Industrial Enterprises  

E-Print Network [OSTI]

. Successful completion of this effort will result in accredited implementation of MSE 2000:2008, certification in plant efficiency and sustainable cost effective energy management. BUSINESS TO BUSINESS PARTNERSHIP Cook Composites and Polymers Co.... Implementation of an energy management system which complies with MSE 2000:2008 is mandatory for plant certification. Personnel from the Energy and Environmental Management Center from Georgia Tech developed MSE 2000:2008. As part of the Texas Pilot...

Imel, M.; Gromacki, M.; Magoon, D.

182

U.S. Department of Energy and SWAY Collaborate on Offshore Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy AmericanOffice

183

United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security  

Broader source: Energy.gov [DOE]

U.S. Secretary of Energy Ernest Moniz and Director General of the Russian Federation State Corporation “Rosatom” Sergey Kirienko today signed the Agreement between the Government of the United States of America and the Government of the Russian Federation on Cooperation in Nuclear- and Energy-Related Scientific Research and Development

184

Summer 2010 Collaborative Undergraduate Research in Energy REU Program University of Massachusetts Amherst  

E-Print Network [OSTI]

, photovoltaic cells Fuel cells, energy conversion devices, Batteries, energy storage devices Biofuels, biomass 3: Polymer Electrolyte Membranes for Use in Fuel Cells 3B: Characterizing Electrical Properties) 3A: Optimizing Polymers for Application in PEMs Bryan Coughlin (Polymer Science & Engineering) Topic

Mountziaris, T. J.

185

Collaboration and Consensus Building in States to Support Energy Efficiency as a Resource  

Broader source: Energy.gov [DOE]

Today’s webcast is part of a 7-part series that was initially created for five states. You can see them here who have a cooperative agreement and funding with DOE under the State Energy Program. These states are all developing policy and program frameworks to support a greater investment in cost-effective energy efficiency over the long term.

186

Government and Industry A Force for Collaboration at the Energy Roadmap  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoing Off theUpdate Workshop | Department

187

Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | DepartmentDeborahTanzimaJuly 30,Workforce

188

DOE and NRCan Agreement to Enhance Collaboration in Civilian Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAllianceDepartment of EnergyAbhai

189

United States-United Kingdom Collaboration on Fossil Energy R&D |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment ofEnergy, OfficeDepartment of Energy U.S.-UK

190

E-Print Network 3.0 - astrophysical energy region Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Field Summary: absorb- ing) region I 0( ) Free space I Ray s 0 s s1 Emergent intensity High Energy Astrophysics... High Energy Astrophysics: Radiation Field 36111...

191

$18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce  

Broader source: Energy.gov [DOE]

The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

192

Free Magnetic Energy and Flare Productivity of Active Regions , Changyi Tan2,3  

E-Print Network [OSTI]

Free Magnetic Energy and Flare Productivity of Active Regions Ju Jing1 , Changyi Tan2,3 , Yuan Yuan with which we are able to estimate the free magnetic energy stored in the active regions. The magnitude scaling correlation between the free magnetic energy and the soft X-ray flare index of active regions

193

Implementing Agreement - U.S.-UK Collaboration in Fossil Energy R&D |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy MediaRequirementstoDepartment of

194

US and Russia agree to collaborate on nuclear energy and security R&D |  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration go on moon walk atDetection Sensors |

195

U.S. Department of Energy and IBM to Collaborate in Advancing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmallU.S.10

196

Best Practices for Wind Energy Development in the Great Lakes Region  

SciTech Connect (OSTI)

This report offers a menu of 18 different, yet complementary, preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. Each best practice describes the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, academia, and federal, state and local government regulators. The practices were identified through a year-long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors. Optimally, a suite of these best practices would be applied in an appropriate combination to fit the conditions of a particular wind project or a set of wind projects within a given locality or region.

Pebbles, Victoria; Hummer, John; Haven, Celia

2011-07-19T23:59:59.000Z

197

U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)  

SciTech Connect (OSTI)

The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence and Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC) at San Diego State University and San Francisco State University. The center also worked with a wide range of affiliated groups and industry, government, NGO, and academic stakeholders to conduct a series of CHP education and outreach, project technical support, and related activities for the Pacific region. Key PCEAC tasks have included: - Preparing, organizing and conducting educational seminars on various aspects of CHP - Conducting state baseline assessments for CHP - Working with state energy offices to prepare state CHP action plans - Providing technical support services including CHP/district energy project feasibility screenings - Working with state agencies on CHP policy development - Developing additional CHP educational materials The primary specific services that PCEAC has offered include: - A CHP “information clearinghouse “ website: http://www.pacificcleanenergy.org - Site evaluations and potential projects screenings - Assessment of CHP status, potential, and key issues for each state - Information and training workshops - Policy and regulatory guidance documents and other interactions These services were generally offered at no cost to client groups based on the DOE funding and additional activities supported by the California Energy Commission, except for the in-kind staff resources needed to provide input data and support to PCEAC assessments at host sites. Through these efforts, the PCEAC reached thousands of end-users and directly worked with several dozen organizations and potential CHP “host sites” from 2009-2013. The major activities and outcomes of PCEAC project work are described.

Lipman, Tim; Kammen, Dan; McDonell, Vince; Samuelsen, Scott; Beyene, Asfaw; Ganji, Ahmad

2013-09-30T23:59:59.000Z

198

Universal Nuclear Energy Density Functional: Tools and Resources from the UNEDF SciDAC Collaboration  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

UNEDF supports the Low-Energy Nuclear Physics National HPC Initiative. There are approximately 3,000 known nuclei, most of them produced in the laboratory, with an additional 6,000 that could in principle still be created. An understanding of the properties of these elements is crucial for future energy and defense applications. The long-term vision of UNEF is to arrive at a comprehensive and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. It seeks to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties.

199

Government-University-Industrial Collaborations for Energy Efficiency and a Better Environment  

E-Print Network [OSTI]

professors... they will incorporate the lessons learned from their "real world" experiences, even if only subconsciously. In fact, academic courses at both graduate and undergraduate levels in the areas ofenergy, the environment, preventive maintenance... or are unduly intimidated by the corrosion problem. COMPUTERIZED PREVENTIVE MAINTENANCE- An effective preventive maintenance program can help a facility substantially reduce both energy and operating costs, and a computerized preventive maintenance system...

Phillips, W. C.

200

Government and Industry a Force for Collaboration at the Energy Roadmap Update Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: GuidanceNot Measurement SensitiveofEnergy Useand

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. Department of Energy and IBM to Collaborate in Advancing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor |OFFSHORE

202

U.S. Department of Energy and Masdar Collaborate In Testing Cutting-Edge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor |OFFSHOREParticle

203

Charting Collaborative Practices: Acknowledgements  

E-Print Network [OSTI]

Collaborative Practices: Acknowledgements Each issue ofCollaborative Practices: Acknowledgements Alisa Belanger and

Belanger, Alisa; Crumly, Allison

2009-01-01T23:59:59.000Z

204

EM Continues Progress in U.S. - U.K. Collaboration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement || Department ofFront row, left to right: John

205

ITP Distributed Energy: The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4InFindingIR-2003-Transmission &50 1955 1960 1965

206

NASA and DOE Collaborate on Dark Energy Research | U.S. DOE Office of  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The ErnestLouisMichael J.| U.S. DOE

207

Department of Energy, Shell Canada to Collaborate on CO2 Storage Project |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing WithDevelopmentReport and7DepartmentNuclearDepartment of

208

Implementation Study of Energy Conservation Recommendations in the Upper Midwest Region  

E-Print Network [OSTI]

The South Dakota State University (SDSU) Industrial Energy Optimization Program (IEOP) and Energy Analysis and Diagnostic Center (EADC) program perform energy audits for industrial companies in the Upper Midwest region of the United States. Each...

Heisinger, K. P.; Bassett, K.; Twedt, M. P.

209

Toward a national plan for the accelerated commercialization of solar energy: guidelines for regional planning  

SciTech Connect (OSTI)

This document provides data and guidelines for the development of regional programs for the accelerated commercialization of solar energy. It estimates the solar potential for individual regions based on the solar resources, competing costs of energy, and specific regional characteristics. It also points out the primary decision makers, technology distributors, and potential barriers that should be addressed by a commercialization program.

Miller, G.; Bennington, G.; Bohannon, M.; Gerstein, R.; Kannan, N.; Page, A.; Rebibo, K.; Shulman, M.; Swepak, P.; Taul, J.

1980-01-01T23:59:59.000Z

210

DOE West Kentucky Regional Science Bowl | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Technical College, 4810 Alben Barkley Dr, Paducah, KY 42001 DOE West Kentucky Regional Science Bowl Contact Regional Co-Coordinator - Buz Smith, DOE Public Affairs 270-441-6821...

211

THE LIMIT OF MAGNETIC-SHEAR ENERGY IN SOLAR ACTIVE REGIONS  

SciTech Connect (OSTI)

It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C., E-mail: ron.moore@nasa.gov [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2012-05-01T23:59:59.000Z

212

Energy Department Announces Regional Winners of University Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

their HSE technology, manufacturers could increase profits by approximately 35 per solar panel based on efficiency gains and silver cost savings. Western Region -- First Look...

213

Energy Department Announces Regional Winners of University Clean...  

Energy Savers [EERE]

design flexibility. One potential application for this innovation is in designing tanks to store natural gas more efficiently in motor vehicles. Western Midwest Region (run...

214

Collaborative Energy Conservation  

E-Print Network [OSTI]

-11pm (~10 hrs) DG consumption: ~30 L/day Transporting diesel is difficult #12;Objective Increase Power Availability #12;Objective Reduce Diesel Consumption Increase Power Availability #12;Objective Reduce Diesel Appliances: dryer, washer, heater, lab equipment No direct grid connection 3 diesel generators (DG) for 5

Toronto, University of

215

New Jersey Joins the Energy Department's Carbon Sequestration Regional  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy SecondWells |Energy ServicesInvestment

216

The Efficient Windows Collaborative  

SciTech Connect (OSTI)

The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

Petermann, Nils

2006-03-31T23:59:59.000Z

217

West KY Regional Middle School Science Bowl | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department ofEnergy Is Everywhere! Webinar: Energy IsWelcomeWendy CainKY

218

Wind energy resource atlas. Volume 3. Great Lakes Region  

SciTech Connect (OSTI)

The Great Lakes Region atlas assimilates six collections of wind resource data, one for the region and one for each of the five states that compose the Great Lakes region: Illinois, Indiana, Michigan, Ohio, Wisconsin. At the state level, features of the climate, topography, and wind resource are discussed in greater detail than in the regional discussion and the data locations on which the assessment is based are mapped. Variations over several time scales in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and of hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Paton, D.L.; Bass, A.; Smith, D.G.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

219

Reconstruction of the Free Energy in the Metastable Region using the Path Ensemble  

E-Print Network [OSTI]

Reconstruction of the Free Energy in the Metastable Region using the Path Ensemble Armando Ticona which we reconstruct the free energy as a function of the magnetic field, temperature and system size. From the reconstructed free energy, we obtain the free energy barrier that is associated

Heermann, Dieter W.

220

Analyzing the Regional Impact of a Fossil Energy Cap in China  

E-Print Network [OSTI]

energy products and an energy saving allowance trading market is the most cost- effective design, while in large welfare losses in some provinces. Capping fossil energy use at the national level is foundAnalyzing the Regional Impact of a Fossil Energy Cap in China Da Zhang, Valerie Karplus, Sebastian

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

State Technologies Advancement Collaborative  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

David S. Terry

2012-01-30T23:59:59.000Z

222

NREL: Energy Analysis - Regional Energy Deployment System (ReEDS) Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version EmailBookmarkRegional

223

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

Demonstrating solar energy and energy conservation retro-toilet, energy efficient conservation devices, passive solar

Case, C.W.

2012-01-01T23:59:59.000Z

224

Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image  

E-Print Network [OSTI]

Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image Segmentation, The Ohio State University, OH 43202, U.S. b Department of Mathematics, Harbin Institute of Technology convex segmenta- tion method and the split Bregman technique into the region-scalable fitting energy

Soatto, Stefano

225

Magnetic Energy Spectra in Solar Active Regions Valentyna Abramenko and Vasyl Yurchyshyn  

E-Print Network [OSTI]

Magnetic Energy Spectra in Solar Active Regions Valentyna Abramenko and Vasyl Yurchyshyn Big Bear productivity of solar active regions (ARs) and the power-law index, , of magnetic energy spectrum, E(k) k Solar Observatory, 40386 N. Shore Lane, Big Bear City, CA 92314 ABSTRACT Line-of-sight magnetograms

226

Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Commercial Buildings: A Collaborative Study by the United States and India  

E-Print Network [OSTI]

Administration (EIA), “Annual Energy Outlook 2012. ”Source: U.S. EIA Annual Energy Outlook 2012) Energy use of

Ghatikar, Girish

2014-01-01T23:59:59.000Z

227

Governance for Sustainable Development in the Arab Region | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon, Alabama: Energy ResourcesGoulds,Gove

228

DOE Regional Tribal Energy Project Development and Finance Workshops...  

Energy Savers [EERE]

with renewable energy project experts, get hands-on training on how to use technology resource assessment tools, and hear project case studies and lessons learned from other...

229

Join Us for the Clean Energy Manufacturing Initiative's Western Regional  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentatJeff ZientsP.EnergySummit |

230

Join a Regional Stakeholder Quadrennial Energy Review Meeting Near You |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentatJeff ZientsP.EnergySummit

231

National Strategy for the Arctic Region | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’s EMGeothermal energy inCreatedNational

232

Hadron Production Model Developments and Benchmarking in the 0.7 - 12 GeV Energy Region  

E-Print Network [OSTI]

Driven by the needs of the intensity frontier projects with their Megawatt beams, e.g., ESS, FAIR and Project X, and their experiments, the event generators of the MARS15 code have been recently improved. After thorough analysis and benchmarking against data, including the newest ones by the HARP collaboration, both the exclusive and inclusive particle production models were further developed in the crucial for the above projects - but difficult from a theoretical standpoint - projectile energy region of 0.7 to 12 GeV. At these energies, modelling of prompt particle production in nucleon-nucleon and pion-nucleon inelastic reactions is now based on a combination of phase-space and isobar models. Other reactions are still modeled in the framework of the Quark-Gluon String Model. Pion, kaon and strange particle production and propagation in nuclear media are improved. For the alternative inclusive mode, experimental data on large-angle (> 20 degrees) pion production in hadron-nucleus interactions are parameterized in a broad energy range using a two-source model. It is mixed-and-matched with the native MARS model that successfully describes low-angle pion production data. Predictions of both new models are - in most cases - in a good agreement with experimental data obtained at CERN, JINR, LANL, BNL and KEK.

N. V. Mokhov; K. K. Gudima; S. I. Striganov

2014-08-29T23:59:59.000Z

233

Wind energy resource atlas. Volume 2. The North Central Region  

SciTech Connect (OSTI)

The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

234

Wind energy resource atlas. Volume 7. The south central region  

SciTech Connect (OSTI)

This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-03-01T23:59:59.000Z

235

Interagency Collaboration to Address Environmental Impacts of...  

Energy Savers [EERE]

to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energy's National...

236

Equal Employment Opportunity: Collaborating for Mission Success  

National Nuclear Security Administration (NNSA)

2012 Equal Employment Opportunity: Collaborating for Mission Success U.S. DEPARTMENT OF ENERGY National Nuclear Security Administration 2012 EEO Report of Accomplishment 2012...

237

West KY Regional Middle School Science Bowl | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudgetFurnacesLES'

238

Tuesday Webcast for Industry: Regional Energy Efficiency Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7Department ofDepartment ofEngagingWebcast

239

National Clean Energy Business Plan Competition: 2014 Regional Winners |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’s EM programAFlying high 1NadyaDepartment

240

State and Regional policies that promote energy efficiency programs carried  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable EnergySouthwest4,Energy Providing Technicalout by

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Regional Super ESPC Saves Energy and Dollars at NASA Johnson Space Center  

Broader source: Energy.gov [DOE]

NASA will save approximately $43 million in facility operations costs over the next 23 years at the Johnson Space Flight Center (JSC) in Houston, Texas, thanks to the largest delivery order signed to date under a Regional Super Energy Savings Performance Contract (Super ESPC). The U. S. Department of Energy's Federal Energy Management Program (FEMP) instituted these special Regional Super ESPCs to streamline the financing process for Federal agencies.

242

KAir Battery Wins Southwest Regional Clean Energy Business Plan...  

Office of Environmental Management (EM)

start-ups over the course of the three days of the Rice Business Plan Competition. A panel of over one hundred judges, representing experts from energy, biomedical, and...

243

Cuyahoga Regional Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy Information

244

NREL/OAS-Regional EERE Training Workshop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator Jump to:Training Workshop

245

State and regional policies that promote energy efficiency programs carried  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview *Agency RecoveryOctoberDepartmentout by

246

Asia-Pacific Regional Climate Change Adaptation Assessment | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior, Ontario: Energy

247

BiBB Western Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuels LLCTravel

248

Scenarios of Building Energy Demand for China with a Detailed Regional Representation  

SciTech Connect (OSTI)

Building energy consumption currently accounts for 28% of China’s total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

2014-02-07T23:59:59.000Z

249

Collaboration is the Key Strategy for the Department of Energy Environmental Management Program's Headquarters and Field Offices  

SciTech Connect (OSTI)

This paper outlines the Office of Environmental Management (EM) Office of Deactivation and Decommissioning and Facility Engineering's (D and D/FE) program to developing and implementing innovative technologies and technical approaches, and providing technical assistance to the EM-complex. Utilizing a collaborative process, Headquarters staff, Field Federal Project Directors, and other personnel work hand-in-hand to develop a dual approach to meeting mission priorities. EM's DD/FE office approach to developing an investment portfolio of technology development and technical assistance is heavily focused on a collaborative approach of needs determinations from the field projects. Of importance is that 'Technology' is more than hardware application and development. It also encompasses processes, methods and practices for planning and for implementation of deactivation and decommissioning. Some activities through calendar year 2008 to implement this approach have been identified. More specific identification and selection of technologies for deployment will be decided during 2007. (authors)

Waisley, S.; Szilagyi, A. [Office of Deactivation and Decommissioning and Facility Engineering, U.S. Department of Energy, Germantown, MD (United States)

2007-07-01T23:59:59.000Z

250

Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Commercial Buildings: A Collaborative Study by the United States and India  

E-Print Network [OSTI]

and provide energy efficiency and building technologies toStudy on Energy Efficiency in Buildings. Pacific Grove,in improving energy efficiency in commercial buildings would

Ghatikar, Girish

2014-01-01T23:59:59.000Z

251

Environmental and Resource Economics Household Energy Demand in Urban China: Accounting for regional prices and rapid  

E-Print Network [OSTI]

Energy Demand in Urban China: Accounting for regional prices and rapid income change Article Type and changing demographics. We estimate income and price elasticities for these energy types using a two effects into account, we find that total energy is price-inelastic for all income groups. For individual

252

Northwest Energy Efficiency Alliance Request for Proposals for Evaluation of the Regional Technical Forum  

E-Print Network [OSTI]

Northwest Energy Efficiency Alliance Request for Proposals for Evaluation of the Regional Technical Energy Efficiency Alliance (NEEA) will issue a time-and-materials contract, not to exceed $75,000. NEEA governments, public interest groups and energy efficiency industry representatives that operate in the states

253

Field Document No.50 REGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIA  

E-Print Network [OSTI]

AND TOMORROW IN ASIA #12;This publication is printed by the FAO Regional Wood Energy Development Programme wood energy data, leading to best estimates of future consumption. It also tries to estimate development in other relevant sectors like agriculture and energy is also strongly recommended. The document

254

THE USE OF TRUST REGIONS IN KOHN-SHAM TOTAL ENERGY MINIMIZATION  

E-Print Network [OSTI]

-consistent and the Kohn-Sham (KS) total energy function associated with the system reaches the global minimum. It has longTHE USE OF TRUST REGIONS IN KOHN-SHAM TOTAL ENERGY MINIMIZATION CHAO YANG , JUAN C. MEZA , AND LIN system, is viewed in this paper as an optimization procedure that minimizes the Kohn- Sham total energy

Geddes, Cameron Guy Robinson

255

Coulee Region Bio Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric633211°, -105.4247166°Open EnergyCoulee

256

May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergyBioenergy16-11 HSSWork ForcePlanning

257

Secretary Bodman Meets with Regional Energy Ministers in Hungary |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1to Launch New Solar FacilityEfforts

258

Clean Energy Manufacturing Initiative: Regional and National Summit Series  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperior Energy5-1DenverbyDecember 2009,| Department

259

KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer Somers AboutEnergy JulyNowK BasinsK79491.pdf|

260

Smart Grid Regional and Energy Storage Demonstration Projects: Awards |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE) |SeniorItDepartmentManage theirAs

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE South Central Ohio Regional Science Bowl | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department of EnergyJanuary 4,andof Energy NewViable EGSDOE

262

USDA Regional Conservation Partnership Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment of Energy AtNoticeMotorThis8, 2015 5:00PM

263

Energy and Environment Partnership Programme for Mekong Region | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLowDiscussion- Q & A HomeDataEnergyEnergy

264

Regional variations of days of autonomy for solar energy applications  

SciTech Connect (OSTI)

A problem faced by designers of stand-alone solar installations is the sizing of the collector area and storage capacity. From a curve of the minimum possible insolation over any period of days for a given site, a functional relationship between the collector-area and storage-capacity that provides a 0% probability of not meeting load (PNML) can be derived. This permits evaluating the regional variations in days-of-autonomy required to provide 100% reliability. Such variations are shown for Texas based on recent insolation data.

Grindle, E. II; Vliet, G.C.

1999-07-01T23:59:59.000Z

265

Northwest Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest Basin and Range Geothermal Region Jump to:

266

San Diego Regional Clean Fuels Coalition | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsung Jump to:San ClementeRegional

267

Solar Atlas (PACA Region - France) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) Jump to: navigation, search Tool

268

SEEC- Regional Energy Baselines and Measurement and Verification Protocols  

E-Print Network [OSTI]

1965 1970 1975 1980 1985 1990 1995 2000 2005 T o ta l E n e rg y U s e p e r C a p it a ( 1 0 6 B tu ) Y e a r Tota l Ene rgy Use per Ca pita : U.S . vs. SE EC 12 - Sta tes (1 96 0 - 2006) S E E C 1 2 - S t a t e s US Hyojin Kim Jeff... the source, selected data codes, and term definitions. The stated deliverables for the SEEC Subtask 3.1 consists of four parts: ? Energy use per capita ranked by state for 2006 (latest year data available); ? Historical energy use per capita...

Kim, H.; Haberl, J. S.; Verdict, M.

269

North County Regional Resource Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City)Norristown,Braddock isStateCentral

270

LAC Regional Platform Workshop Agenda | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of TechnologyL-Shaped FlumeLAC

271

LAC Regional Platform Workshop General Information | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of TechnologyL-Shaped

272

LAC Regional Platform Workshop Links | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of TechnologyL-ShapedWorkshop

273

LAC Regional Platform Workshop Participant Package | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of

274

LAC Regional Platform Workshop Report | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLAC Workshop Announcement Agenda

275

LEDSGP/about/regional-platforms | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools <Platform

276

National Science Bowl Regional Roundup | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn

277

Regional Small Business Summit Material | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSiting Guidelines | Department of

278

MENA-GTZ EERE Regional Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyM Communications Smart GridMC

279

Central Nevada Seismic Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedarCAPSCentral High

280

Bayshore Regional Sewerage Authority (BRSA) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:Sector BiomassBayport

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal Literature Review At Cascades Region (Vice, 2010) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et Al., 1996) |

282

Geothermometry At Yellowstone Region (Fournier, 1979) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico -Information

283

Regional Greenhouse Gas Initiative Inc RGGI | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge And Piedmont Provinces | Open EnergyDynamicsRGGI

284

Papua New Guinea Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolar Jump to:PamukorenPanolaPanton,Paper

285

Category:Smart Grid Projects - Regional Demonstrations | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJumpInformation Manufacturing category.

286

Incubateur Regional Poitou Charentes IRPC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigationDesert PeakIncubator

287

Hierarchical multi-touch selection techniques for collaborative geospatial analysis  

E-Print Network [OSTI]

Hierarchical multi-touch selection techniques for collaborative geospatial analysis Thomas and military use. Keywords: Multi-touch, hierarchical selection, geospatial analysis, GIS, collaborative selection of complex regions-of-interest within a hierarchical geospatial environment, as well as methods

Wartell, Zachary

288

Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region  

SciTech Connect (OSTI)

This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

None

1980-07-01T23:59:59.000Z

289

Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region  

SciTech Connect (OSTI)

This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

None

1980-07-01T23:59:59.000Z

290

The New House of the Region of Hannover: Energy Efficiency in a Public Private Partnership  

E-Print Network [OSTI]

The “New House of the Region of Hannover“ is the first building in Germany that has been built according to the Standard „EnOB - Energieoptimiertes Bauen“ („Energy optimized building“) as defined by the German Ministry of Economics and Technology...

Plesser, S.; Fisch, M. N.

2007-01-01T23:59:59.000Z

291

Regional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST3 AÇORIANO ORIENTAL SEGUNDA-FEIRA, 5 DE MARÇO DE

292

regional clean energy application centers | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions3Images.APS-DPPA

293

2014 FIRST Robotics Smoky Mountain Regionals | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.Carbon Storage R&D ProjectEarth2014

294

Microsoft Word - PghRegionEnergy3.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWERFebruarySavebasedSAR.doc Microsoft Word

295

California Save Energy Now: State, Regional, and Local Delivery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPE OF131:770:9AprilofDepartment of

296

Cape Cod Regional Transit Authority | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannon (Various) Jump to:IICantuaCape Cod

297

Central African Regional Program for the Environment (CARPE) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedarCAPS JumpForestry

298

Central Nevada Seismic Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedarCAPSCentral High(Redirected

299

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy Ltd JumpSmoky

300

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy Ltd JumpSmokySnake River

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Milestone for Regional Test Center in Vermont | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 MasterAcquisitiTechnology | Department of EnergyMilestone

302

More Regional Science Bowl Winners | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department of EnergyDepartmentJuly 2013 MonthlyPage)

303

National Clean Energy Business Plan Competition: Six Regional Winners  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department U.S. Department of Energy OfficeWomenCleanAdvance

304

Americas Region Partnerships and Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative1AdvancedVehicles »ofAmericas

305

Regional Economic Models, Inc. (REMI) Model | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs|ReflectionEnergyEconomic

306

Category:Latin America Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to: navigation,AreasFluid

307

Gulf of California Rift Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump Agency/Company(RedirectedPattern EnergyJump

308

Massachusetts Save Energy Now-State, Local, and Regional Delivery |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small ModularDepartmentSummary of data reported

309

Midwest Region Alternative Fuels Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project2 DOE

310

Midwest Region Alternative Fuels Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project2

311

Midwest Region Alternative Fuels Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project20

312

NREL: Regional Energy Deployment System (ReEDS) Model - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7Working with Us ThePublications

313

NREL: Regional Energy Deployment System (ReEDS) Model - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7Working with UsWebmaster Please

314

Stockton Regional Water Control Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: Energy ResourcesStockbridge is a town inInformation

315

Transportation Emergency Preparedness Program Plan, U.S. Department of Energy Region 6  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) Region 6 Transportation Emergency Preparedness Program Plan (TEPP Plan) operates within the framework of the DOE emergency management system for developing, coordinating, and directing emergency planning, preparedness, and readiness assurance activities for radiological transportation incidents. The DOE Region 6 TEPP Plan is a narrative description of the DOE Transportation Emergency Preparedness Program activities, training and technical assistance provided to states and tribes along DOE's transportation corridors in DOE Region 6.

Marsha Keister

2010-04-01T23:59:59.000Z

316

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

Appropriate Energy Technology Resource Center .IX DOE Appropriate Energy Technology Pilot Program - PartIX DOE Appropriate Energy Technology Pilot Program - Part I;

Case, C.W.

2012-01-01T23:59:59.000Z

317

Northwest Regional Technology Center  

E-Print Network [OSTI]

Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

318

Interaction region design for a RHIC-based medium-energy electron-ion collider  

SciTech Connect (OSTI)

As a first step in a staged approach towards a RHIC-based electron-ion collider, installation of a 4 GeV energy-recovery linac (ERL) in one of the RHIC interaction regions is currently under investigation. To minimize costs, the interaction region of this collider has to use the present RHIC magnets for focusing of the high-energy ion beam. Meanwhile, electron low-beta focusing needs to be added in the limited space available between the existing separator dipoles. We discuss the challenges and present the current design status of this e-A interaction region.

Montag,C.; Beebe-Wang, J.

2009-05-04T23:59:59.000Z

319

July 21, 2011 SPC Collaborates with Haydenfilms  

E-Print Network [OSTI]

Exchange July 21, 2011 1 SPC Collaborates with Haydenfilms During the summer of 2011, the Software Productization Center (SPC) at Millersville University is collaborating with regional company Haydenfilms and prototype system to show potential customers and investors. The SPC at Millersville University, formed

Hardy, Christopher R.

320

Regional cooperation in energy efficiency standard-setting and labeling in North America  

SciTech Connect (OSTI)

The North American Energy Working Group (NAEWG) was established in 2001 by the governments of Canada, Mexico, and the United States. The goals of NAEWG are to foster communication and cooperation on energy-related matters of common interest, and to enhance North American energy trade and interconnections consistent with the goal of sustainable development, for the benefit of all three countries. At its outset, NAEWG established teams to address different aspects of the energy sector. One, the Energy Efficiency Expert Group, undertook activity in three areas: (1) analyzing commonalities and differences in the test procedures of Canada, Mexico, and the United States, and identifying specific products for which the three countries might consider harmonization; (2) exploring possibilities for increased mutual recognition of laboratory test results; and (3) looking at possibilities for enhanced cooperation in the Energy Star voluntary endorsement labeling program. To support NAEWG's Expert Group on Energy Efficiency (NAEWG-EE), USDOE commissioned Lawrence Berkeley National Laboratory, representing the Collaborative Labeling and Appliance Standards Program (CLASP), to prepare a resource document comparing current standards, labels, and test procedure regulations in Canada, Mexico, and the United States. The resulting document identified 46 energy-using products for which at least one of the three countries has energy efficiency regulations. Three products--refrigerators/freezers, room air conditioners, and integral horsepower three-phase electric motors--have identical minimum energy performance standards (MEPS) and test procedures in the three countries. Ten other products have different MEPS and test procedures, but have the near-term potential for harmonization. NAEWG-EE is currently working to identify mechanisms for mutual recognition of test results. With consultative support from the United States and Canada through NAEWG-EE, Mexico is exploring possibilities for extending the Energy Star endorsement label to Mexico.

Wiel, Stephen; Van Wie McGrory, Laura

2003-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Low-energy proton capture reactions in the mass region 55-60  

E-Print Network [OSTI]

Low energy proton capture reactions in the mass 55-60 region are studied in a microscopic optical model. Nuclear density profile is calculated using the relativistic mean field theory. The DDM3Y interaction is folded with the theoretical density to obtain the proton-nucleus optical potential. A definite set of normalization parameters has been obtained for the concerned mass region by comparing with all available experimental data in this mass region. These parameters have been used to obtain proton capture rates for astrophysically important reactions in this mass region.

Saumi Dutta; Dipti Chakraborty; G. Gangopadhyay; Abhijit Bhattacharyya

2015-02-01T23:59:59.000Z

322

Low-energy proton capture reactions in the mass region 55-60  

E-Print Network [OSTI]

Low energy proton capture reactions in the mass 55-60 region are studied in a microscopic optical model. Nuclear density profile is calculated using the relativistic mean field theory. The DDM3Y interaction is folded with the theoretical density to obtain the proton-nucleus optical potential. A definite set of normalization parameters has been obtained for the concerned mass region by comparing with all available experimental data in this mass region. These parameters have been used to obtain proton capture rates for astrophysically important reactions in this mass region.

Dutta, Saumi; Gangopadhyay, G; Bhattacharyya, Abhijit

2015-01-01T23:59:59.000Z

323

Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)  

SciTech Connect (OSTI)

This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

2011-03-20T23:59:59.000Z

324

A Comprehensive Approach to Bi-National Regional Energy Planning in the Pacific Northwest  

SciTech Connect (OSTI)

The Pacific NorthWest Economic Region, a statutory organization chartered by the Northwest states of Alaska, Washington, Idaho, Montana, and Oregon, and the western Canadian provinces of British Columbia, Alberta, and the Yukon through its Energy Working Group launched a bi-national energy planning initiative designed to create a Pacific Northwest energy planning council of regional public/private stakeholders from both Canada and the US. There is an urgent need to deal with the comprehensive energy picture now before our hoped for economic recovery results in energy price spikes which are likely to happen because the current supply will not meet predicted demand. Also recent events of August 14th have shown that our bi-national energy grid system is intricately interdependent, and additional planning for future capacity is desperately needed.

Matt Morrison

2007-12-31T23:59:59.000Z

325

COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL  

SciTech Connect (OSTI)

The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

Gutowski, William J.

2013-02-07T23:59:59.000Z

326

OSCARS Collaborative Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms ControlChris Samoray CommunicationsOperationsOSCARS Collaborative

327

Collaboration | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic Feedstock -ImportCollaboration March 16,

328

Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model  

SciTech Connect (OSTI)

Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

Lettenmaier, Dennis P

2013-04-08T23:59:59.000Z

329

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

Solar Energy For Composting Toilets ..The toilet is a Mullbank composting toilet. CBB 801-127T;:Ee: Award: SOLAR ENERGY FOR COMPOSTING TOILETS Applicant

Case, C.W.

2012-01-01T23:59:59.000Z

330

Energy Planning in Selected European Regions - Methods for Evaluating the Potential of Renewable Energy Sources.  

E-Print Network [OSTI]

??Given their potentially positive impact on climate protection and the preservation of fossil resources, alternative energy sources have become increasingly important for the energy supply… (more)

Sliz-Szkliniarz, Beata

2013-01-01T23:59:59.000Z

331

Evolution of Magnetic Helicity and Energy Spectra of Solar Active Regions  

E-Print Network [OSTI]

We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field for estimating magnetic energy and helicity spectra as well as current helicity spectra of individual active regions and the change of their spectral indices with the solar cycle. The departure of the spectral index of current helicity from 5/3 is analyzed, and it is found that it is lower than that of magnetic energy. There is no obvious relationship between the change of the normalized magnetic helicity and the integral scale of the magnetic field for individual active regions. The evolution of the spectral index reflects the development and distribution of various scales of magnetic structures in active regions. It is found that around solar maximum the magnetic energy and helicity spectra are steeper.

Zhang, Hongqi; Sokoloff, D D

2015-01-01T23:59:59.000Z

332

ARM - Collaborations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALSPlainsARM

333

Strategic Collaboration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst Buffer Archive Home » R &

334

ARM - Collaborations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love to heartotdngovInstrumentswrf-chemHistoryListCloud and

335

ARM - Collaborations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love to heartotdngovInstrumentswrf-chemHistoryListCloud

336

ARM - Collaborations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love to heartotdngovInstrumentswrf-chemHistoryListCloudArctic

337

The energy situation in the Asian-Pacific region and international cooperation  

SciTech Connect (OSTI)

After the second oil crisis (1979-80), the developing countries in the Asian-Pacific region adopted two major energy policies: conservation and the introduction and stimulation of alternative sources of energy to oil. Energy conservation was successfully achieved only in the newly industrialized countries, including Korea, Taiwan, and Singapore; the potential for conservation was very limited in other less-developed countries. In order to promote energy conservation, many countries adopted a policy of higher prices for particular petroleum products. The results of the push to introduce or expand nonoil alternative sources of energy have been quite encouraging. Excellent examples are the development of natural gas in Thailand, Malaysia, and Indonesia; of coal and lignite in Indonesia; and of lignite in Thailand. Energy management and the expansion of domestic energy resources in the developing countries will require not only imported technology but the upgrading of indigenous human resources to guarantee long-term and successful development.

Sakakibara, S.

1983-08-01T23:59:59.000Z

338

Maximal Net Baryon Density in the Energy Region Covered by NICA  

E-Print Network [OSTI]

There are several theoretical indications that the energy region covered by the proposed NICA accelerator in Dubna is an extremely interesting one. We present a review of data obtained in relativistic heavy ion collisions and show that there is a gap around 10 GeV where more and better precise measurements are needed. The theoretical interpretation can only be clarified by covering this energy region. In particular the strangeness content needs to be determined, data covering the full phase space ($4 \\pi$) would be very helpful to establish the thermal parameters of a possible phase transition.

J. Cleymans

2010-05-22T23:59:59.000Z

339

Energy Efficiency Investments in Public Facilities - Developing a Pilot Mechanism for Russia and Chelyabinsk Region  

SciTech Connect (OSTI)

Russian public sector buildings tend to be very inefficient, which creates vast opportunities for savings. This paper reviews opportunities to implement energy efficiency projects in Russian public buildings, created by new Russian legislation and regulations. Given Russia's limited experience with energy performance contracts (EPCs), a pilot project can help test an implementation mechanism. The authors use Chelyabinsk Region as an example to discuss opportunities, challenges and solutions to financing and implementing an EPC in Russia, navigating through federal requirements and specific local conditions.

Evans, Meredydd; Roshchanka, Volha; Parker, Steven A.; Baranovskiy, Aleksandr

2012-01-01T23:59:59.000Z

340

Final Technical Report for Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models, DE-FG02-07ER64429  

SciTech Connect (OSTI)

This is the final report for a DOE-funded research project describing the outcome of research on non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. The main results consist of extensive development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes.

Smyth, Padhraic [University of California, Irvine

2013-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model  

SciTech Connect (OSTI)

The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

Cassano, John [Principal Investigator

2013-06-30T23:59:59.000Z

342

Transition Region Emission and Energy Input to Thermal Plasma During the Impulsive Phase of Solar Flares  

E-Print Network [OSTI]

The energy released in a solar flare is partitioned between thermal and non-thermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by 5 flares and subsequently scattered by O VI ions in the corona to determine the 5.0 thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray emitting gas is ~ 0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by non-thermal particles exceeds the X-ray and UV energy losses and the rate of increase of the thermal energy.

J. C. Raymond; G. Holman; A. Ciaravella; A. Panasyuk; Y. -K. Ko; J. Kohl

2007-01-12T23:59:59.000Z

343

Regional cerebral energy metabolism during intravenous anesthesia with etomidate, ketamine or thiopental  

SciTech Connect (OSTI)

Regional brain glucose utilization (rCMRglc) was measured in rats during steady-state levels of intravenous anesthesia to determine if alterations in brain function due to anesthesia could provide information on the mechanisms of anesthesia. Intravenous anesthetics from three different chemical classes were studied: etomidate, ketamine and thiopental. All rCMRglc experiments were conducted in freely moving rats in isolation chambers, with the use of (6-/sup 14/C) glucose and guantitative autoradiography. Etomidate caused a rostral-to-caudal gradient of depression of rCMRglc. The four doses of etomidate did not differ in their effects on energy metabolism. Sub-anesthetic (5 mg kg/sup -1/) and anesthetic (30 mg kg /sup -1/) doses of ketamine produced markedly different patterns of behavior. Brain energy metabolism during the sub-anesthetic dose was stimulated in most regions, while the anesthetic dose selectively stimulated the hippocampus, leaving most brain regions unaffected. Thiopental produced a dose-dependent reduction of rCMRglc in all gray matter regions. No brain region was selectively affected. Comparison of the drug-specific alterations of cerebral energy metabolism suggests these anesthetics do not act through a common mechanism. The hypothesis that each acts by binding to specific cell membrane receptors is consistent with these observations.

Davis, D.W.

1987-01-01T23:59:59.000Z

344

Stepped Pressure Equilibrium Code computes extrema of the multi-region, relaxed MHD energy principle  

E-Print Network [OSTI]

Stepped Pressure Equilibrium Code computes extrema of the multi-region, relaxed MHD energy Code, G. Dennis et al., PRL, (2013) Topological features correctly reproduced #12;SPEC: ongoing; · Recent applications a. Computed 1/x and -function singular currents in ideal equilibria; completed

Hudson, Stuart

345

Analysis of Photoreaction in the Delta Energy Region by the Quantum Molecular Dynamics Approach  

E-Print Network [OSTI]

We study the photoreaction in the delta energy region using the QMD approach. The proton and pion cross-sections are calculated and compared with experimental data. Through this work we examine the multistep contributions in the cross-sections and the {$\\pi - \\Delta$} dynamics.

Tomoyuki Maruyama; Koji Niita; Satoshi Chiba; Toshiki Maruyama; Akira Iwamoto

1997-05-02T23:59:59.000Z

346

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

Digester for Small Farms HI-11 Solar Heating for a RuralFor Hawaiian Pig Farm Energy Needs. 29 HI~22 Solar Beeswax

Case, C.W.

2012-01-01T23:59:59.000Z

347

DOE to Participate in Colombian Regional Energy Meeting Ahead of Energy and  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C.EnergyBasicStrategic

348

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

B - Revised Description of: Biogas Energy for Hawaiian Smallprojected. Also, the low pressure biogas requires additional5000 - 5500 cubic feet of biogas (60% methane) daily may be

Case, C.W.

2012-01-01T23:59:59.000Z

349

Regional growth and energy supply: Is there an energy security issue?  

SciTech Connect (OSTI)

This study examines how the growth of the developing world might affect energy markets in the future. Based on recent growth trends, world energy demand could reasonably be expected to grow from about 350 Exajoules (EJ: 1.0E18=0.95 Quad) to nearly 1025 EJ by the year 2020, nearly 3x current consumption estimates. Introduction of more energy-efficient technologies could reduce this growth by about 17% to 830 EJ. But one cannot rely exclusively on current trends to forecast future energy demand. The growth of the developing world will interact with supply to affect prices, which in turn will mitigate the growth of demand, and growth rates of energy use will be much more modes. Under the Business as Usual scenario, energy demand will grow to 835 EJ by 2020, and this could be reduced a further 15% to 714 EJ through the adoption of more energy efficient technologies. Fuel prices based on model results are analyzed. Energy security implications of rapid growth in the developing world are considered and found to be of likely little significance.

Roop, J.M.; Freund, K.A.; Godoy-Kain, P.; Gu, A.Y.; Johnson, A.K.; Paananen, O.H.; Woodruff, M.G.

1996-12-01T23:59:59.000Z

350

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network [OSTI]

cold climate zone) buildings use least energy compared to other cold regions, mainly because of its high altitude and ample solar

Mendes, Goncalo

2014-01-01T23:59:59.000Z

351

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

o o o o Projects: Arizona California CA-173. Solar AquaDomeFrancisco, California Project Txpe: Award: SOLAR AQUADOMEOccidental, California P_roject T;:Ee: Award: SOLAR ENERGY

Case, C.W.

2012-01-01T23:59:59.000Z

352

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

within the house includes: passive solar heating and coolingof the house. Technical Details: The passive constructionhouse" (Other technologies include solar domestic water heating, composting toilet, energy efficient conservation devices, passive

Case, C.W.

2012-01-01T23:59:59.000Z

353

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

producing 258 million Btu annually. Over a lifetimewill produce about 2.58 billion Btu. REFERENCES Case, C.W. ,will provide 8.9 million Btu of energy :::nnual or about of

Case, C.W.

2012-01-01T23:59:59.000Z

354

Discussion of Air-Conditioning Energy-Savings in Hot-Summer and Cold-Winter Regions  

E-Print Network [OSTI]

Introducing several kinds of air-conditioning systems energy conservation measures, and according to the climate of the hot-summer and cold-winter region in China, this paper puts forward an overall conception for air-conditioning energy...

Zheng, W.; Gong, F.; Lou, X.; Cheng, J.

2006-01-01T23:59:59.000Z

355

NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNP UserReport summarizesNRELOffice

356

Innovation Impact, Wind: NREL Collaborative Improves the Reliability of Wind Turbine Gearboxes (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity in theSurface. | Innovation

357

Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs  

SciTech Connect (OSTI)

This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

1980-02-01T23:59:59.000Z

358

Federal Support for Energy Efficiency in U.S. Industry: Collaboratively Addressing Energy Management in Small- and Medium-Sized Enterprises (SMEs)  

E-Print Network [OSTI]

The U.S. industrial sector consumes about one-third of energy in the United States each year. Improving energy efficiency in an industrial environment may come with a host of benefits to the facility owner, including a reduction in annual energy...

Bostrom, P.; Lung, R. B.; Harris, J.

2010-01-01T23:59:59.000Z

359

Collaborative Research: Barotropic Radiation Experiment (BARX) The question of how energy flows through the oceans, especially how energy is lost from the currents  

E-Print Network [OSTI]

flows through the oceans, especially how energy is lost from the currents comprising the general and vorticity. Intellectual Merit. A fundamental process by which ocean currents lose the energy acquired from Variability in the Central North Atlantic Ocean 1. Motivations and Objectives The paths along which energy

Dushaw, Brian

360

Rigidity-dependent cosmic ray energy spectra in the knee region obtained with the GAMMA experiment  

E-Print Network [OSTI]

On the basis of the extensive air shower (EAS) data obtained by the GAMMA experiment, the energy spectra and elemental composition of the primary cosmic rays are derived in the 1-100 PeV energy range. The reconstruction of the primary energy spectra is carried out using an EAS inverse approach in the framework of the SIBYLL2.1 and QGSJET01 interaction models and the hypothesis of power-law primary energy spectra with rigidity-dependent knees. The energy spectra of primary H, He, O-like and Fe-like nuclei obtained with the SIBYLL interaction model agree with corresponding extrapolations of the balloon and satellite data to ~1 PeV energies. The energy spectra obtained from the QGSJET model show a predominantly proton composition in the knee region. The rigidity-dependent knee feature of the primary energy spectra for each interaction model is displayed at the following rigidities: ~2.5+/-0.2 PV (SIBYLL) and ~3.1-4.2 PV (QGSJET). All the results presented are derived taking into account the detector response, the reconstruction uncertainties of the EAS parameters, and fluctuations in the EAS development.

A. P. Garyaka; R. M. Martirosov; S. V. Ter-Antonyan; N. Nikolskaya; Y. A. Gallant; L. Jones; J. Procureur

2007-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Rigidity-dependent cosmic ray energy spectra in the knee region obtained with the GAMMA experiment  

E-Print Network [OSTI]

On the basis of the extensive air shower (EAS) data obtained by the GAMMA experiment, the energy spectra and elemental composition of the primary cosmic rays are derived in the 1-100 PeV energy range. The reconstruction of the primary energy spectra is carried out using an EAS inverse approach in the framework of the SIBYLL2.1 and QGSJET01 interaction models and the hypothesis of power-law primary energy spectra with rigidity-dependent knees. The energy spectra of primary H, He, O-like and Fe-like nuclei obtained with the SIBYLL interaction model agree with corresponding extrapolations of the balloon and satellite data to ~1 PeV energies. The energy spectra obtained from the QGSJET model show a predominantly proton composition in the knee region. The rigidity-dependent knee feature of the primary energy spectra for each interaction model is displayed at the following rigidities: ~2.5+/-0.2 PV (SIBYLL) and ~3.1-4.2 PV (QGSJET). All the results presented are derived taking into account the detector response, th...

Garyaka, A P; Ter-Antonian, S V; Nikolskaya, N; Gallant, Y A; Jones, L; Procureur, J

2007-01-01T23:59:59.000Z

362

Thermophotovoltaic energy conversion system having a heavily doped n-type region  

DOE Patents [OSTI]

A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

DePoy, David M. (Clifton Park, NY); Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY)

2000-01-01T23:59:59.000Z

363

Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows With Diffusion  

E-Print Network [OSTI]

In this paper we have extended our previous modeling of energy balance in the chromosphere-corona transition region to cases with particle and mass flows. The cases considered here are quasi-steady, and satisfy the momentum and energy balance equations in the transition region. We include in all equations the flow velocity terms and neglect the partial derivatives with respect to time. We present a complete and physically consistent formulation and method for solving the non-LTE and energy balance equations in these situations, including both particle diffusion and flows of H and He. Our results show quantitatively how mass flows affect the ionization and radiative losses of H and He, thereby affecting the structure and extent of the transition region. Also, our computations show that the H and He line profiles are greatly affected by flows. We find that line shifts are much less important than the changes in line intensity and central reversal due to the effects of flows. In this paper we use fixed conditions at the base of the transition region and in the chromosphere because our intent is to show the physical effects of flows and not to match any particular observations. However, we note that the profiles we compute can explain the range of observed high spectral and spatial resolution Lyman alpha profiles from the quiet Sun. We suggest that dedicated modeling of specific sequences of observations based on physically consistent methods like those presented here will substantially improve our understanding of the energy balance in the chromosphere and corona.

J. M. Fontenla; E. H. Avrett; R. Loeser

2001-09-24T23:59:59.000Z

364

Obama's Call for Public-Private Cyber Security Collaboration...  

Broader source: Energy.gov (indexed) [DOE]

Sector and the collaborative online project database. Media contact(s): Office of Electricity Delivery & Energy Reliability (202) 586-4940 Addthis Related Articles...

365

Best Practices for Sustainable WInd Energy Development in the Great Lakes Region and Beyond  

SciTech Connect (OSTI)

This document offers a menu of 18 different, yet complimentary preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. The practices include those that have been previously tested and proven effective, as well as new practices that were identified by experts in the field as needed for future wind developments. Each best practice includes information about the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, and federal, state and local government regulators. They were identified through a year long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors.

Great Lakes Commission; Victoria Pebbles; John Hummer; Celia Haven

2011-07-19T23:59:59.000Z

366

U.S. Department of Energy to Host Regional Energy Efficiency Conference in  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractorCleanand Disposal

367

Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region  

SciTech Connect (OSTI)

This project report details activities and results of the 'Market Characterization' project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristics of housing groups referred to as 'archetypes' by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market. Key research activities included; literature review, statistical analysis of national and regional data of the American Housing Survey (AHS) collected by the U.S. Census Bureau, analysis of Michigan specific data, development of a housing taxonomy of architectural styles, case studies of two local markets (i.e., Ann Arbor and Grand Rapids in Michigan) and development of a suggested framework (or process) for characterizing local markets. In order to gain a high level perspective, national and regional data from the U.S. Census Bureau was analyzed using cross tabulations, multiple regression models, and logistic regression to characterize the housing stock and determine dominant house types using 21 variables.

Kim, S. K.; Mrozowski, T.; Harrell-Seyburn, A.; Ehrlich, N.; Hembroff, L.; Bieburn, B.; Mazor, M.; McIntyre, A.; Mutton, C.; Parsons, G.; Syal, M. G.; Wilkinson, R.

2014-09-01T23:59:59.000Z

368

Regional variations in US residential sector fuel prices: implications for development of building energy performance standards  

SciTech Connect (OSTI)

The Notice of Proposed Rulemaking for Energy Performance Standards for New Buildings presented life-cycle-cost based energy budgets for single-family detached residences. These energy budgets varied with regional climatic conditions but were all based on projections of national average prices for gas, oil and electricity. The Notice of Proposed Rulemaking indicated that further analysis of the appropriateness of various price measures for use in setting the Standards was under way. This part of that ongoing analysis addresses the availability of fuel price projections, the variation in fuel prices and escalation rates across the US and the effects of aggregating city price data to the state, Region, or national level. The study only provides a portion of the information required to identify the best price aggregation level for developing of the standards. The research addresses some of the economic efficiency considerations necessary for design of a standard that affects heterogeneous regions. The first section discusses the effects of price variation among and within regions on the efficiency of resource allocation when a standard is imposed. Some evidence of the extreme variability in fuel prices across the US is presented. In the second section, time series, cross-sectional fuel price data are statistically analyzed to determine the similarity in mean fuel prices and price escalation rates when the data are treated at increasing levels of aggregation. The findings of this analysis are reported in the third section, while the appendices contain price distributions details. The last section reports the availability of price projections and discusses some EIA projections compared with actual prices.

Nieves, L.A.; Tawil, J.J.; Secrest, T.J.

1981-03-01T23:59:59.000Z

369

Regional Differences in the Price-Elasticity of Demand for Energy  

SciTech Connect (OSTI)

At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

Bernstein, M. A.; Griffin, J.

2006-02-01T23:59:59.000Z

370

Final Progress Report submitted via the DOE Energy Link (E-Link) in June 2009 [Collaborative Research: Decadal-to-Centennial Climate & Climate Change Studies with Enhanced Variable and Uniform Resolution GCMs Using Advanced Numerical Techniques  

SciTech Connect (OSTI)

The joint U.S-Canadian project has been devoted to: (a) decadal climate studies using developed state-of-the-art GCMs (General Circulation Models) with enhanced variable and uniform resolution; (b) development and implementation of advanced numerical techniques; (c) research in parallel computing and associated numerical methods; (d) atmospheric chemistry experiments related to climate issues; (e) validation of regional climate modeling strategies for nested- and stretched-grid models. The variable-resolution stretched-grid (SG) GCMs produce accurate and cost-efficient regional climate simulations with mesoscale resolution. The advantage of the stretched grid approach is that it allows us to preserve the high quality of both global and regional circulations while providing consistent interactions between global and regional scales and phenomena. The major accomplishment for the project has been the successful international SGMIP-1 and SGMIP-2 (Stretched-Grid Model Intercomparison Project, phase-1 and phase-2) based on this research developments and activities. The SGMIP provides unique high-resolution regional and global multi-model ensembles beneficial for regional climate modeling and broader modeling community. The U.S SGMIP simulations have been produced using SciDAC ORNL supercomputers. The results of the successful SGMIP multi-model ensemble simulations of the U.S. climate are available at the SGMIP web site (http://essic.umd.edu/~foxrab/sgmip.html) and through the link to the WMO/WCRP/WGNE web site: http://collaboration.cmc.ec.gc.ca/science/wgne. Collaborations with other international participants M. Deque (Meteo-France) and J. McGregor (CSIRO, Australia) and their centers and groups have been beneficial for the strong joint effort, especially for the SGMIP activities. The WMO/WCRP/WGNE endorsed the SGMIP activities in 2004-2008. This project reflects a trend in the modeling and broader communities to move towards regional and sub-regional assessments and applications important for the U.S. and Canadian public, business and policy decision makers, as well as for international collaborations on regional, and especially climate related issues.

Fox-Rabinovitz, M; Cote, J

2009-10-09T23:59:59.000Z

371

Striking a Balance Between Energy and the Environment in the Columbia River Basin Regional Power Plan Touts Efficiency to Meet  

E-Print Network [OSTI]

Striking a Balance Between Energy and the Environment in the Columbia River Basin Regional Power equivalent of the power use of a city the size of Seattle. Over time, the energy- efficiency target, to meet future demand. The plan's target for the first five years, 1,200 average megawatts, is the energy

372

Shielding Experiments Under JASMIN Collaboration at Fermilab(IV) - Measurement and Analyses of High-Energy Neutron Spectra in the Anti-Proton Target Station  

E-Print Network [OSTI]

Neutron spectra in high-energy region between 1 and 100-MeV in the shield configuration of the anti-proton target station and a 120-GeV proton beam at Fermi National Accelerator Laboratory (Fermilab) were determined using the reaction rate data obtained with the multi-foil activation method. Two kinds of methods were employed for the determination of neutron spectra: one is the fitting method which is newly developed in this work, another is the unfolding method with SAND-II code. The calculations were performed using the PHITS. From the comparison between the calculated and experimental neutron spectra, it concluded that the PHITS can be used for shielding design of high-energy proton accelerators.

JASMIN Collaboration

2012-04-27T23:59:59.000Z

373

?c(++) and ?c(0) production from e(+)e(-) annihilation in the ? energy region  

E-Print Network [OSTI]

VOLUME 62, NUMBER 11 PHYSICAL REVIEW LETTERS 13 MARCH 1989 X,+ and X, Production from e + e Annihilation in the Y Energy Region T. Bowcock, ' K. Kinoshita, ' F. M. Pipkin, ' M. Procario, ' Richard Wilson, ' J. Wolinski, ' D. Xiao, ' A. Jawahery, C.... H. Park, R. Poling, R. Fulton, P. Haas, M. Hempstead, T. Jensen, D. R. Johnson, H. Kagan, R. Kass, F. Morrow, J. Whitmore, P. Baringer, R. L. McIlwain, D. H. Miller, C. R. Ng, E. I. Shibata, W. M. Yao, M. S. Alam, D. Chen, N. Katayama, (6) I. J. Kim...

Baringer, Philip S.

1980-03-13T23:59:59.000Z

374

Regional overview of Latin American and Caribbean energy production, consumption, and future growth. Report series No. 1  

SciTech Connect (OSTI)

The Latin American and Caribbean region - comprising Mexico, Central and South America, and the Caribbean - is relatively well endowed with energy resources, although the distribution of these resources is uneven across countries. The region produces more energy than it consumes, and the surplus energy, which amounts to 3.6 million barrels of oil equivalent per day (boe/d), is mostly oil. While the region`s total oil (crude and products) exports decreased from 4.4 million barrels per day (b/d) in 1981 to 3.8 million b/d in 1992, its net oil exports increased from about 1.6 million b/d in 1981 to 2.8 million b/d in 1992. In 1993, the surplus oil in Latin America and the Caribbean remained at 2.8 million b/d. This report analyzes the key issues of the Latin American and Caribbean energy industry and presents the future outlook for oil, gas, coal, hydroelectricity, and nuclear power developments in the region. In addition, the status of biomass energy, geothermal, and other noncommercial energy in the region will be briefly discussed in the context of overall energy development. The rest of the report is organized as follows: Section II assesses the current situation of Latin American and Caribbean energy production and consumption, covering primary energy supply, primary energy consumption, downstream petroleum sector development, and natural gas utilization. Section III presents the results of our study of future energy growth in Latin America. Important hydrocarbons policy issues in the region are discussed in Section IV, and a summary and concluding remarks are provided in Section V.

Wu, K.

1994-07-01T23:59:59.000Z

375

LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION  

E-Print Network [OSTI]

of Geothermal Energy", Geothermal Energy, UNESCO, Paris,U. S . Department of Energy, Geothermal Energy DOE/ET/28442-Western United States, Geothermal Energy Magazine vo. 6, no.

Haven, Kendal F.

2012-01-01T23:59:59.000Z

376

CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION  

E-Print Network [OSTI]

farm. Details are presented for the wind farm Sweetwater I (Abilene) as well as results from the application of this procedure to all the wind energy providers in the Texas ERCOT region in 2006....

Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

377

Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region  

SciTech Connect (OSTI)

This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

None

1980-07-01T23:59:59.000Z

378

Collaborative Approach World-Class Facilities  

E-Print Network [OSTI]

.5 million from the Department of Energy, along with additional funds from New York State, for an EnergyWCMC Collaborative Approach World-Class Facilities Research at Cornell /A Statistical Excerpt York 08 Funding Cornell's Research 09 Expending Research Dollars 10 Funding Graduate Education 12

Chen, Tsuhan

379

1 Managed by UT-Battelle for the U.S. Department of Energy Global and regional drivers of  

E-Print Network [OSTI]

activity and the carbon intensity of energy sources. Our study shows that no region is decarbonizing its/Science/Biological & Environmental Research Worldwide emissions of man-made carbon dioxide are rising faster than even the worst case, leaped to over 3% per year from 2000 to 2004. We divided the world into nine regions and analysed

380

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Retrieved from National Renewable Energy Laboratory: http://Golden, Colorado: National Renewable Energy Laboratory.for Energy Efficiency and Renewable Energy, Building

Feng, Wei

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EPA Clean Energy-Environment Guide to Action 3.2 State and Regional Energy Planning Policy Description and Objective Summary  

E-Print Network [OSTI]

Energy planning is, in its broadest sense, a strategic effort to develop energy-related goals and objectives and formulate related policies and programs. As the nexus for a variety of state concerns, energy planning can serve as an umbrella mechanism for simultaneously addressing energy, environmental, economic, and other issues. Energy planning can be undertaken at both a state and regional level. Many states have used their energy plans to support the development and use of cost-effective clean energy to help address multiple challenges including energy supply and reliability (including concerns with availability, independence, and security), energy prices, air quality and public health, and job development. Clean energy planning (as one aspect of energy planning)

unknown authors

382

LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION  

E-Print Network [OSTI]

Western United States, Geothermal Energy Magazine vo. 6, no.Utilization of Geothermal Energy: A Symposium. January 31 -of Energy, Division of Geothermal Energy, April 1978, CONF-

Haven, Kendal F.

2012-01-01T23:59:59.000Z

383

A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings  

E-Print Network [OSTI]

H. Gao. 2011. China Renewable Energy Industry DevelopmentGolden CO: National Renewable Energy Resource LaboratoryDOE), Energy Efficiency & Renewable Energy. 2012. Buildings

Feng, Wei

2014-01-01T23:59:59.000Z

384

Very High Energy Gamma-Ray Observations of the Galactic Centre Region  

E-Print Network [OSTI]

Recent progress in pushing the sensitivity of the Imaging Atmospheric Cherenkov Technique into the 10 mCrab regime has enabled first sensitive observations of the innermost few 100 pc of the Milky Way in Very High Energy (VHE; >100 GeV) gamma rays. These observations are a valuable tool to understand the acceleration and propagation of energetic particles near the Galactic Centre. Remarkably, besides two compact gamma-ray sources, faint diffuse gamma-ray emission has been discovered with high significance. The current VHE gamma-ray view of the Galactic Centre region is reviewed, and possible counterparts of the gamma-ray sources and the origin of the diffuse emission are discussed. The future prospects for VHE Galactic Centre observations are discussed based on order-of-magnitude estimates for a CTA type array of telescopes.

Christopher van Eldik

2008-11-06T23:59:59.000Z

385

Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region  

SciTech Connect (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

386

ALS Collaborative Postdoctoral Fellowship Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smart sensorsCollaborative Postdoctoral

387

ALS Collaborative Postdoctoral Fellowship Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALSSafety SafetyCollaborative

388

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building TechnologiesBuilding Stock. Golden, Colorado: National Renewable Energy

Feng, Wei

2013-01-01T23:59:59.000Z

389

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings August 12,Standard for Energy Efficiency of Public Buildings. Energyfor Energy Efficiency of Residential Buildings in Hot Summer

Feng, Wei

2013-01-01T23:59:59.000Z

390

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

3 Commercial and Residential Building Site Energy Usagecommercial and residential prototype buildings discussed in the previous section is simulated in EnergyPlus (DOE, 2011). The energy usage

Feng, Wei

2013-01-01T23:59:59.000Z

391

Efficient Windows Collaborative  

SciTech Connect (OSTI)

The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

Nils Petermann

2010-02-28T23:59:59.000Z

392

U.S. and Canada Sign Agreement to Enhance Collaboration in Civilian...  

Office of Environmental Management (EM)

U.S. and Canada Sign Agreement to Enhance Collaboration in Civilian Nuclear Energy Research and Development U.S. and Canada Sign Agreement to Enhance Collaboration in Civilian...

393

U.S.-India Collaboration Expands Indian Market for U.S. Technologies...  

Energy Savers [EERE]

collaboration is demonstrating DR technologies in a pilot program involving 167 buildings with more than 25 MW of enrolled peak load in the northern region of India's...

394

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network [OSTI]

solar energy applications, and water conservation. TheseConservation and Solar Applications, U.S. Department of Energy. )energy technologies including solar active and passive systems, wind machines, biomass conversion systems, energy conservation

Case, C.W.

2011-01-01T23:59:59.000Z

395

REGIONAL AND COMMUNITY IMPACTS OF THE DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM IN THE WESTERN PACIFIC  

E-Print Network [OSTI]

Conservation and Solar Applications, U.S. De- partment of Energy.Conservation and Solar Applications of the U.S. Department of Energy

Case, Charles W.

2013-01-01T23:59:59.000Z

396

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

397

Western Region Renewable Energy Markets: Implications for the Bureau of Land Management  

SciTech Connect (OSTI)

The purpose of this analysis is to provide the U.S. Department of the Interior (DOI) and the Bureau of Land Management (BLM) with an overview of renewable energy (RE) generation markets, transmission planning efforts, and the ongoing role of the BLM RE projects in the electricity markets of the 11 states (Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming) that comprise the Western Electricity Coordinating Council (WECC) Region. This analysis focuses on the status of, and projections for, likely development of non-hydroelectric renewable electricity from solar (including photovoltaic [PV] and concentrating solar power [CSP]), wind, biomass and geothermal resources in these states. Absent new policy drivers and without the extension of the DOE loan guarantee program and Treasury's 1603 program, state RPS requirements are likely to remain a primary driver for new RE deployment in the western United States. Assuming no additional policy incentives are implemented, projected RE demand for the WECC states by 2020 is 134,000 GWh. Installed capacity to meet that demand will need to be within the range of 28,000-46,000 MW.

Haase, S.; Billman, L.; Gelman, R.

2012-01-01T23:59:59.000Z

398

Prediction of average. beta. and. gamma. energies and probabilities of. beta. -delayed neutron emission in the region of fission products  

SciTech Connect (OSTI)

Mean {beta} and {gamma} energies and probabilities of {beta}-delayed neutron emission (P{sub n}) in the region of fission products are calculated using a proton-neutron quasiparticle random-phase approximation nuclear model. {beta}-decay properties of these nuclides are essential input parameters for decay heat calculations for nuclear reactors. The results are compared with recent measurements. Mean energies and the P{sub n} values of {approximately}150 experimentally unknown short-lived isotopes are predicted.

Hirsch, M.; Staudt, A.; Klapdor-Kleingrothaus, H.V. (Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany))

1992-07-01T23:59:59.000Z

399

Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V  

SciTech Connect (OSTI)

Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

1993-08-01T23:59:59.000Z

400

Customer focused collaborative demand planning  

E-Print Network [OSTI]

Many firms worldwide have adopted the process of Sales & Operations Planning (S&OP) process where internal departments within a firm collaborate with each other to generate a demand forecast. In a collaborative demand ...

Jha, Ratan (Ratan Mohan)

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Collaborative learning in software development  

E-Print Network [OSTI]

fields such as software process improvement, team research, organizational learning, organization scienceCollaborative learning in software development: An investigation of characteristics, prerequisites and Technology #12;[ii] Abstract Collaborative learning integrates individual and collective learning

Langseth, Helge

402

The Effects of Great Plains Irrigation on the Surface Energy Balance, Regional Circulation, and Precipitation  

E-Print Network [OSTI]

the net radiation at the surface, channeling that energy into additional latent heat flux, which increases convective available potential energy and provides downstream convective systems with additional energy and moisture. Most noteworthy in this study...

Huber, David B.; Brunsell, Nathaniel A.; Mechem, David B.

2014-05-05T23:59:59.000Z

403

ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA  

E-Print Network [OSTI]

might expect an energy-efficient building to be expensive toand Analysis of Energy Efficient New Commercial Buildings,possible to build an energy-efficient building for no more

Piette, M.A.

2010-01-01T23:59:59.000Z

404

ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA  

E-Print Network [OSTI]

We see that the low energy buildings need not cost more thanincludes both very low energy buildings, and buildings thatThe range shows the low-energy buildings at the left end,

Piette, M.A.

2010-01-01T23:59:59.000Z

405

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic  

E-Print Network [OSTI]

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind. Abstract-Short-term wind power forecasting is recognized nowadays as a major requirement for a secure and economic integration of wind power in a power system. In the case of large-scale integration, end users

Paris-Sud XI, Université de

406

Magnetic Energy and Helicity Budgets in the Active-Region Solar Corona. I. Linear Force-Free Approximation  

E-Print Network [OSTI]

We self-consistently derive the magnetic energy and relative magnetic helicity budgets of a three-dimensional linear force-free magnetic structure rooted in a lower boundary plane. For the potential magnetic energy we derive a general expression that gives results practically equivalent to those of the magnetic Virial theorem. All magnetic energy and helicity budgets are formulated in terms of surface integrals applied to the lower boundary, thus avoiding computationally intensive three-dimensional magnetic field extrapolations. We analytically and numerically connect our derivations with classical expressions for the magnetic energy and helicity, thus presenting a so-far lacking unified treatment of the energy/helicity budgets in the constant-alpha approximation. Applying our derivations to photospheric vector magnetograms of an eruptive and a noneruptive solar active regions, we find that the most profound quantitative difference between these regions lies in the estimated free magnetic energy and relative magnetic helicity budgets. If this result is verified with a large number of active regions, it will advance our understanding of solar eruptive phenomena. We also find that the constant-alpha approximation gives rise to large uncertainties in the calculation of the free magnetic energy and the relative magnetic helicity. Therefore, care must be exercised when this approximation is applied to photospheric magnetic field observations. Despite its shortcomings, the constant-alpha approximation is adopted here because this study will form the basis of a comprehensive nonlinear force-free description of the energetics and helicity in the active-region solar corona, which is our ultimate objective.

M. K. Georgoulis; Barry J. LaBonte

2007-06-27T23:59:59.000Z

407

A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings  

E-Print Network [OSTI]

energy usage intensity for residential and commercial buildingscommercial and residential prototype buildings [15]. Figures 10 and 11 show the energy usage

Feng, Wei

2014-01-01T23:59:59.000Z

408

To Collaborative LIfe Sciences Building  

E-Print Network [OSTI]

To Collaborative LIfe Sciences Building To Professional Development Center Collaborative Life Sciences Building SW MEADE SW PORTER SW M OODY I-5 To Main Campus To South Waterfront I-405 Collaborative Life Sciences Building 0650 SW Meade St. Academic & Student Recreation Center (ASRC) C8 Art Building

409

CO2 Mitigation Potential of Biomass Energy Plantations in DevelopingRegions  

E-Print Network [OSTI]

) of the total demand for primary energy by 2050 (Fig. 1a).2 Global CO2 emissions in 2050 are 25% less than Biomass can make major contributions to the global commercial energy economy in ways that help promote to global energy supply in a renewables-intensive global energy scenario (RIGES), providing 35% (206 EJ

410

Building the ADCIRC Collaborative  

E-Print Network [OSTI]

Building the ADCIRC Collaborative A federated approach to storm surge modeling and model output distribution to enable better decision support C O N T A C T I N F O R M A T I O N Brian Blanton Telephone: 919.445.9620 Email: brian_blanton@renci.org A R E N C I W H I T E P A P E R #12;Page 2 At a Glance

411

INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION  

SciTech Connect (OSTI)

On December 4, 1997, the US Department of Energy (DOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a ''Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration''. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. This report is a summary of the evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration. Almost 100 papers and reports resulted from this collaboration, including 18 peer reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. A full listing of these publications is in the reference section.

Howard J. Herzog; E. Eric Adams

2005-04-01T23:59:59.000Z

412

U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2  

SciTech Connect (OSTI)

Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

Jakubowski, F.M.

1998-02-01T23:59:59.000Z

413

Academic-Industry Collaboration (AIC) - Synchrophasor Engineering...  

Broader source: Energy.gov (indexed) [DOE]

Academic-Industry Collaboration (AIC) - Synchrophasor Engineering Education Program: Information Exchange Webinar (March 6, 2014) Academic-Industry Collaboration (AIC) -...

414

Collaboration Topics - Visualization | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Simulation and Computing and Institutional R&D Programs NNSACEA Cooperation in Computer Science Collaboration Topics - Visualization Collaboration Topics - Visualization...

415

Predicting the Power Output of Distributed Renewable Energy Resources within a Broad Geographical Region  

E-Print Network [OSTI]

Predicting the Power Output of Distributed Renewable Energy Resources within a Broad Geographical potentially dis- tributed renewable energy resources (su years, estimating the power output of in- herently intermittent and potentially distributed renewable

Chalkiadakis, Georgios

416

Analyzing the Regional Impact of a Fossil Energy Cap in China  

E-Print Network [OSTI]

Decoupling fossil energy demand from economic growth is crucial to China’s sustainable development. In addition to energy and carbon intensity targets enacted under the Twelfth Five-Year Plan (2011–2015), a coal or fossil ...

Zhang, D.

417

ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA  

E-Print Network [OSTI]

example, should the indoor ice-rink energy consumption bethe cooling provided from the ice-rink reduces the cooling

Piette, M.A.

2010-01-01T23:59:59.000Z

418

Beyond Basic Region Caching: Specializing Cache Structures for High Performance and Energy  

E-Print Network [OSTI]

's usage char- acteristics provides many potential benefits: faster access times, lower energy con a small heap footprint, we save energy by using the smaller structure and turn off the larger. For applications with larger footprints, we use both structures, but save energy by keeping highly used "hot" data

McKee, Sally A.

419

Presentation 2.6: Wood waste for energy: lessons learnt from tropical regions Paul Vantomme  

E-Print Network [OSTI]

of forest products with more value adding, and promoting the use of wood waste to increase energy efficiency tropical timber trade · almost 80% of the world's tropical forests ITTO ­ Wood Waste for Energy Working and forest industries GhanaDevelopment of energy alternatives for the efficient utilization of wood

420

Regional Energy Centres (REC) SIDA DemoEast programme in Estonia. Supply, delivery  

E-Print Network [OSTI]

Lighting Legal initiatives (municipal regulations, directives, etc) Local and regional authorities CHP. From this boiler house the heat is supplied to the one residential building too. In the Kunderi str

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tribal EPA 22nd Annual Region 9 Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and resource-sharing. The TribalEPA conference will be held in Sacramento, CA on October 15-17, 2014. The Regional Tribal Operations Committee (RTOC) meeting and RTOC...

422

Classical dynamics and localization of resonances in the high energy region of the hydrogen atom in crossed fields  

E-Print Network [OSTI]

When superimposing the potentials of external fields on the Coulomb potential of the hydrogen atom a saddle point appears, which is called the Stark saddle point. For energies slightly above the saddle point energy one can find classical orbits, which are located in the vicinity of this point. We follow those so-called quasi-Penning orbits to high energies and field strengths observing structural changes and uncovering their bifurcation behavior. By plotting the stability behavior of those orbits against energy and field strength the appearance of a stability apex is reported. A cusp bifurcation, located in the vicinity of the apex, will be investigated in detail. In this cusp bifurcation another orbit of similar shape is found, which becomes completely stable in the observed region of positive energy, i.e., in a region of parameter space, where the Kepler-like orbits located around the nucleus are already unstable. By quantum-mechanically exact calculations we prove the existence of signatures in quantum spectra belonging to those orbits. Husimi distributions are used to compare quantum-Poincar\\'e sections with the extension of the classical torus structure around the orbits. Since periodic orbit theory predicts that each classical periodic orbit contributes an oscillating term to photoabsorption spectra, we finally give an estimation for future experiments, which could verify the existence of the stable orbits.

Frank Schweiner; Jörg Main; Holger Cartarius; Günter Wunner

2014-12-10T23:59:59.000Z

423

Hydrogen-Atom Excitation and Ionization by Proton Impact in 50-Kev to 200-Kev Energy Region  

E-Print Network [OSTI]

PH YSICAL RE VIE% A VOLUME 16, N UMBER 8 SEPTEMBER 1977 Hydrogen-atom excitation and ionization by proton impact in the 50- to 200-keV energy region E. Fitchard, A. L. Ford, and J. F. Reading Cyclotron Institute and Department of Physics, Texas A..., and include all terms in the Born series. For projectile energies between SO and 200 keV the results are in excellent agreement with rec'ent experiments. The excitation and ionization of a hydrogen atom by proton impact has been for many years, and still...

Fitchard, E.; Ford, A. Lewis; Reading, John F.

1977-01-01T23:59:59.000Z

424

,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to ElectricSulfur Content,e.7,1.1.

425

,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to ElectricSulfur

426

,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to ElectricSulfurJaunary

427

,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to ElectricSulfurJaunary. Net

428

,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to ElectricSulfurJaunary. Net3 and

429

,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to ElectricSulfurJaunary. Net3

430

,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to ElectricSulfurJaunary. Net32005

431

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

SciTech Connect (OSTI)

The following paper conducts a regional analysis of the U.S. and Chinese buildings? potential for adopting Distributed Energy Resources (DER). The expected economics of DER in 2020-2025 is modeled for a commercial and a multi-family residential building in different climate zones. The optimal building energy economic performance is calculated using the Distributed Energy Resources Customer Adoption Model (DER CAM) which minimizes building energy costs for a typical reference year of operation. Several DER such as combined heat and power (CHP) units, photovoltaics, and battery storage are considered. The results indicate DER have economic and environmental competitiveness potential, especially for commercial buildings in hot and cold climates of both countries. In the U.S., the average expected energy cost savings in commercial buildings from DER CAM?s suggested investments is 17percent, while in Chinese buildings is 12percent. The electricity tariffs structure and prices along with the cost of natural gas, represent important factors in determining adoption of DER, more so than climate. High energy pricing spark spreads lead to increased economic attractiveness of DER. The average emissions reduction in commercial buildings is 19percent in the U.S. as a result of significant investments in PV, whereas in China, it is 20percent and driven by investments in CHP. Keywords: Building Modeling and Simulation, Distributed Energy Resources (DER), Energy Efficiency, Combined Heat and Power (CHP), CO2 emissions 1. Introduction The transition from a centralized and fossil-based energy paradigm towards the decentralization of energy supply and distribution has been a major subject of research over the past two decades. Various concerns have brought the traditional model into question; namely its environmental footprint, its structural inflexibility and inefficiency, and more recently, its inability to maintain acceptable reliability of supply. Under such a troubled setting, distributed energy resources (DER) comprising of small, modular, electrical renewable or fossil-based electricity generation units placed at or near the point of energy consumption, has gained much attention as a viable alternative or addition to the current energy system. In 2010, China consumed about 30percent of its primary energy in the buildings sector, leading the country to pay great attention to DER development and its applications in buildings. During the 11th Five Year Plan (FYP), China has implemented 371 renewable energy building demonstration projects, and 210 photovoltaics (PV) building integration projects. At the end of the 12th FYP, China is targeting renewable energy to provide 10percent of total building energy, and to save 30 metric tons of CO2 equivalents (mtce) of energy with building integrated renewables. China is also planning to implement one thousand natural gas-based distributed cogeneration demonstration projects with energy utilization rates over 70percent in the 12th FYP. All these policy targets require significant DER systems development for building applications. China?s fast urbanization makes building energy efficiency a crucial economic issue; however, only limited studies have been done that examine how to design and select suitable building energy technologies in its different regions. In the U.S., buildings consumed 40percent of the total primary energy in 2010 [1] and it is estimated that about 14 billion m2 of floor space of the existing building stock will be remodeled over the next 30 years. Most building?s renovation work has been on building envelope, lighting and HVAC systems. Although interest has emerged, less attention is being paid to DER for buildings. This context has created opportunities for research, development and progressive deployment of DER, due to its potential to combine the production of power and heat (CHP) near the point of consumption and delivering multiple benefits to customers, such as cost

Mendes, Goncalo; Feng, Wei; Stadler, Michael; Steinbach, Jan; Lai, Judy; Zhou, Nan; Marnay, Chris; Ding, Yan; Zhao, Jing; Tian, Zhe; Zhu, Neng

2014-04-09T23:59:59.000Z

432

UNECE Region marketplace reshaped by China's forest products trade and policies for wood energy, procurement and climate change SEARCH SITE MAP  

E-Print Network [OSTI]

UNECE Region marketplace reshaped by China's forest products trade and policies for wood energy stocked in forests q Roundwood prices rising in Europe, private forest owners selling Wood energy q EU for the Press [Index] [Français] [Russian] UNECE region marketplace reshaped by China's forest products trade

433

Office Civilian Waste Management Transportation Institutional Program Update on Collaborative Efforts with Key Stakeholders  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) created the Office of National Transportation in 2003 recognizing the need to revitalize and accelerate development of the transportation system. The Department has made a commitment to work through a collaborative planning process before developing specific policies and procedures and making transportation decisions. OCRWM has begun to build the institutional framework to support development of this transportation system. Interactions with stakeholders have been initiated. The authors describe the key stakeholders, identified issues, regional and national planning activities, and mechanisms for interaction.

E. Saris; P. Austin; J.J. Offner

2004-12-29T23:59:59.000Z

434

Marketing and Driving Demand Collaborative: Social Media Tools and Strategies Webinar  

Broader source: Energy.gov [DOE]

Marketing and Driving Demand Collaborative: Social Media Tools and Strategies Webinar, from the U.S. Department of Energy's Better Buildings program.

435

Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy Information 2006)EnergyInformation Laney,

436

A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings  

E-Print Network [OSTI]

Partnership, Catalog of CHP technologies, Washington D.C..Generation and Emerging Technologies. [6] Stadler, M. , C.Emissions by Optimal DER Technology Investment and Energy

Feng, Wei

2014-01-01T23:59:59.000Z

437

Energy Regulation, Roll Call Votes and Regional Resources: Evidence from Russia  

E-Print Network [OSTI]

L. "From Yeltsin's Russia to Putin's Russia." (In Russian).subsequently to President Putin. This means that the energyRussia under Yeltsin and Putin administrations has evolved

Grigoriadis, Theocharis N; Torgler, Benno

2007-01-01T23:59:59.000Z

438

Collaboration Surfaces for Outage Control Centers Lars Hurlen  

E-Print Network [OSTI]

Collaboration Surfaces for Outage Control Centers Lars Hurlen Institute for Energy Technology Os Allé 7 1777 Halden, Norway +47 69212242 lars.hurlen@hrp.no Bojana Petkov Institute for Energy for Energy Technology Os Allé 7 1777 Halden, Norway +47 69215028 oystein.veland@hrp.no Gisle Andresen

Deussen, Oliver

439

Syncob: Collaborative Time Synchronization in Wireless Sensor Networks  

E-Print Network [OSTI]

an independent power sup- ply like a battery and use methods of energy harvesting like solar cells. To control the limited energy resources efficiently, wireless sensor networks typically undergo pe- riodic sleep-cycles to save energy. To collaborate for a common application, wireless sensor nodes have to be pre- cisely

Beigl, Michael

440

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

photovoltaics (PV), and battery storage, are considered forStorage Heat Storage Flow Battery Energy Flow Battery PowerkW) Battery Capacity (kWh) Photo voltaic (kW) Heat Storage (

Feng, Wei

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives  

SciTech Connect (OSTI)

The main aim of this study is the integrated assessment of a proposed Waste-to-Energy facility that could contribute in the Municipal Solid Waste Management system of the Region of Central Greece. In the context of this paper alternative transfer schemes for supplying the candidate facility were assessed considering local conditions and economical criteria. A mixed-integer linear programming model was applied for the determination of optimum locations of Transfer Stations for an efficient supplying chain between the waste producers and the Waste-to-Energy facility. Moreover different Regional Waste Management Scenarios were assessed against multiple criteria, via the Multi Criteria Decision Making method ELECTRE III. The chosen criteria were total cost, Biodegradable Municipal Waste diversion from landfill, energy recovery and Greenhouse Gas emissions and the analysis demonstrated that a Waste Management Scenario based on a Waste-to-Energy plant with an adjacent landfill for disposal of the residues would be the best performing option for the Region, depending however on the priorities of the decision makers. In addition the study demonstrated that efficient planning is necessary and the case of three sanitary landfills operating in parallel with the WtE plant in the study area should be avoided. Moreover alternative cases of energy recovery of the candidate Waste-to-Energy facility were evaluated against the requirements of the new European Commission Directive on waste in order for the facility to be recognized as recovery operation. The latter issue is of high significance and the decision makers in European Union countries should take it into account from now on, in order to plan and implement facilities that recover energy efficiently. Finally a sensitivity check was performed in order to evaluate the effects of increased recycling rate, on the calorific value of treated Municipal Solid Waste and the gate fee of the candidate plant and found that increased recycling efforts would not diminish the potential for incineration with energy recovery from waste and neither would have adverse impacts on the gate fee of the Waste-to-Energy plant. In general, the study highlighted the need for efficient planning in solid waste management, by taking into account multiple criteria and parameters and utilizing relevant tools and methodologies into this context.

Perkoulidis, G. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Papageorgiou, A., E-mail: giou6@yahoo.g [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Karagiannidis, A. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Kalogirou, S. [Waste to Energy Research and Technology Council (Greece)

2010-07-15T23:59:59.000Z

442

Natural Resources Canada and DOE Announce Enhanced Energy Collaboratio...  

Energy Savers [EERE]

Natural Resources Canada and DOE Announce Enhanced Energy Collaboration Natural Resources Canada and DOE Announce Enhanced Energy Collaboration September 19, 2014 - 3:32pm Addthis...

443

Energy Education BASS CONNECTIONS in ENERGY  

E-Print Network [OSTI]

Energy Education BASS CONNECTIONS in ENERGY Leader: Prof. Richard Newell Duke University Energy Initiative Energy education at Duke capitalizes on the University's broader Energy Initiative, a university-wide interdisciplinary collaboration addressing today's pressing energy challenges related to the economy

Ferrari, Silvia

444

Modeling Building Energy Use and HVAC Efficiency Improvements in Extreme Hot and Humid Regions  

E-Print Network [OSTI]

An energy analysis was performed on the Texas A & M University at Qatar building in Doha, Qatar. The building and its HVAC systems were modeled using EnergyPlus. Building chilled water and electrical data were collected to validate the computer...

Bible, Mitchell

2011-10-21T23:59:59.000Z

445

Fluxnet Synthesis Dataset Collaboration Infrastructure  

E-Print Network [OSTI]

Fluxnet Synthesis Dataset Collaboration Infrastructure DebUCB) The Fluxnet synthesis dataset originally compiled forhave been added and the dataset now contains over 920 site

Agarwal, Deborah A.

2009-01-01T23:59:59.000Z

446

*Tri-Generation is a novel technology that was conceived by the National Fuel Cell Research Center in 2001 to simultaneously generate electricity, hydrogen, and heat. It was developed into the first prototype in collaboration with FuelCell Energy, Inc., a  

E-Print Network [OSTI]

*Tri-Generation is a novel technology that was conceived by the National Fuel Cell Research Center prototype in collaboration with FuelCell Energy, Inc., and Air Products and Chemicals, Inc. The first and fuel cell electric vehicles), there are still emissions associated with the upstream processes

Mease, Kenneth D.

447

Regional assessment of aquifers for thermal-energy storage. Volume 3. Appendices  

SciTech Connect (OSTI)

This volume contains two appendices to the main report. The first lists the aquifers in the 12 geographic regions of the USA and characterizes each as containing sands and gravels or limestones or volcanic rock. The second appendix tabulates the hydrologic characteristics of each aquifer. (LCL)

Not Available

1981-06-01T23:59:59.000Z

448

Energy supply and environmental issues: The Los Alamos National Laboratory experience in regional and international programs  

SciTech Connect (OSTI)

The Los Alamos National Laboratory, operated by the University of California, encompasses more than forty-three square miles of mesas and canyons in northern New Mexico. A Department of Energy national laboratory, Los Alamos is one of the largest multidisciplinary, multiprogram laboratories in the world. Our mission, to apply science and engineering capabilities to problems of national security, has expanded to include a broad array of programs. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, computational science, environmental protection and cleanup, materials science, and other basic sciences. The Energy Technology Programs Office is responsible for overseeing and developing programs in three strategic areas: energy systems and the environment, transportation and infrastructure, and integrated chemicals and materials processing. Our programs focus on developing reliable, economic and environmentally sound technologies that can help ensure an adequate supply of energy for the nation. To meet these needs, we are involved in programs that range from new and enhanced oil recovery technologies and tapping renewable energy sources, through efforts in industrial processes, electric power systems, clean coal technologies, civilian radioactive waste, high temperature superconductivity, to studying the environmental effects of energy use.

Goff, S.J.

1995-12-31T23:59:59.000Z

449

Regional Energy Baselines and Measurement and Verification Protocols: Subtask 3.1 for the Southern Energy Efficiency Center  

E-Print Network [OSTI]

1965 1970 1975 1980 1985 1990 1995 2000 2005 T o ta l E n e rg y U s e p e r C a p it a ( 1 0 6 B tu ) Y e a r Tota l Ene rgy Use per Ca pita : U.S . vs. SE EC 12 - Sta tes (1 96 0 - 2006) S E E C 1 2 - S t a t e s US Hyojin Kim, Ph... ranked by state for 2006 (latest year data available); ? Historical energy use per capita for the SEEC 12-state during 1960-2006; ? Energy use and energy use per capita by end-use sector and fuel source during 1960-2006 for the U.S. and each state...

Kim, Hyojin; Haberl, Jeff S.; Verdict, Malcolm

450

Department of Energy Announces More than $8.4 Million for Regional  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S.Development Projects | DepartmentMeetingLaboratory

451

Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary June 21, 2013  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2 Documentation and ApprovalThe Office of FossilToADVANCED

452

Department of Energy/National Nuclear Security Administration Regional Small Business Summit 2012  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of|AL 2010-07 Acquistion LettersAffiliation

453

Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies  

SciTech Connect (OSTI)

Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

Bird, L.; Lew, D.

2012-09-01T23:59:59.000Z

454

U.S. Department of Energy Schedules Regional Workshops to Provide...  

Office of Environmental Management (EM)

16, 2008 - 12:00pm Addthis Second Congestion Study to Further Evaluate our Nation's Electricity Reliability in the Face of Growing Energy Demand WASHINGTON, DC - As part of the...

455

LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION  

E-Print Network [OSTI]

Desalination Sugar refining District heating I I I I I Heatmajor expense of a district heating system i n t h e Geysersdevelopment of energy- district heating or a A d d i t i o n

Haven, Kendal F.

2012-01-01T23:59:59.000Z

456

Geodetic Survey At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa

457

Isotopic Analysis At U.S. West Region (Krohn, Et Al., 1993) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy Information

458

Isotopic Analysis At U.S. West Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy InformationInformation Laney, 2005) Jump to:

459

Isotopic Analysis At U.S. West Region (Welhan, Et Al., 1988) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy InformationInformation Laney, 2005) Jump

460

Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy InformationInformation Laney,Al.,

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

GUIDE FOR APPLICANTS COLLABORATIVE PROJECT  

E-Print Network [OSTI]

i GUIDE FOR APPLICANTS NMP COLLABORATIVE PROJECT FP7-NMP-2010-EU-USA Further copies of this Guide-site: http://cordis.europa.eu/ #12;NMP Guide for Applicants: Collaborative projects FP7-NMP-2010-EU-USA i-stage submission procedures. The main part of this Guide (sections 1 to 5) is common to all such calls. Information

Milano-Bicocca, UniversitĂ 

462

GUIDE FOR APPLICANTS COLLABORATIVE PROJECT  

E-Print Network [OSTI]

i GUIDE FOR APPLICANTS HEALTH COLLABORATIVE PROJECT FP7-HEALTH-2010-single-stage Further copies the following web-site: http://cordis.europa.eu/ #12;Theme: HEALTH Guide for Applicants: Collaborative projects for Applicants for calls using single-stage submission procedures. The main part of this Guide (sections 1 to 5

Milano-Bicocca, UniversitĂ 

463

GUIDE FOR APPLICANTS COLLABORATIVE PROJECT  

E-Print Network [OSTI]

i GUIDE FOR APPLICANTS HEALTH COLLABORATIVE PROJECT Call identifier: FP7-HEALTH-2010-Alternative: Collaborative projects FP7-HEALTH-2010-Alternative-Testing i About this Guide This is version number 4 of the FP7 Guide for Applicants for calls using single-stage submission procedures. The main part

Milano-Bicocca, UniversitĂ 

464

GUIDE FOR APPLICANTS COLLABORATIVE PROJECT  

E-Print Network [OSTI]

i GUIDE FOR APPLICANTS NMP COLLABORATIVE PROJECT FP7-NMP-2010-EU-Mexico Further copies the following web-site: http://cordis.europa.eu/ #12;NMP Guide for Applicants: Collaborative projects FP7-NMP using single-stage submission procedures. The main part of this Guide (sections 1 to 5) is common to all

Milano-Bicocca, UniversitĂ 

465

Cheap Artificial AB-Mountains, Extraction of Water and Energy from Atmosphere and Change of Regional Climate  

E-Print Network [OSTI]

Author suggests and researches a new revolutionary method for changing the climates of entire countries or portions thereof, obtaining huge amounts of cheap water and energy from the atmosphere. In this paper is presented the idea of cheap artificial inflatable mountains, which may cardinally change the climate of a large region or country. Additional benefits: The potential of tapping large amounts of fresh water and energy. The mountains are inflatable semi-cylindrical constructions from thin film (gas bags) having heights of up to 3 - 5 km. They are located perpendicular to the main wind direction. Encountering these artificial mountains, humid air (wind) rises to crest altitude, is cooled and produces rain (or rain clouds). Many natural mountains are sources of rivers, and other forms of water and power production - and artificial mountains may provide these services for entire nations in the future. The film of these gasbags is supported at altitude by small additional atmospheric overpressure and may be connected to the ground by thin cables. The author has shown (in previous works about the AB-Dome) that this closed AB-Dome allows full control of the weather inside the Dome (the day is always fine, the rain is only at night, no strong winds) and influence to given region. This is a realistic and cheap method of economical irrigation, getting energy and virtual weather control on Earth at the current time.

Alexander Bolonkin

2008-05-11T23:59:59.000Z

466

Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)  

SciTech Connect (OSTI)

Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

2010-04-01T23:59:59.000Z

467

Analysis of the Energy Spectra of Ground States of Deformed Nuclei in rare-earth region  

E-Print Network [OSTI]

The 62Sm, 64Gd, 64Dy, 70Y b, 72Hf and 74W nuclei are classified as deformed nuclei. Low-lying bands are one of the most fundamental excitation modes in the energy spectra of deformed nuclei. In this paper a theoretical analysis of the experimental data within the phenomenological model is presented. The energy spectra of ground states are calculated. It is found the low-lying spectra of ground band states are in good agreement with the experimental data.

Abdurahim A. Okhunov; G. I. Turaeva; M. U. Khandaker; Noora B. Rosli

2014-05-28T23:59:59.000Z

468

Cuttings Analysis At U.S. West Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy Information Mountain

469

Table 2: U.S. Geographic Areas and Census Regions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient updateTRI-STATE GENERATION AND TRANSMISSION131:2:

470

Field Mapping At Snake River Plain Region (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg| Open Energy Information

471

Field Mapping At U.S. West Region (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg| Open Energy InformationThe NeedlesU.S.

472

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network [OSTI]

usable energy of 14.2 million Btu per year, giving an annualMWh/year or 83.6 million Btu/year. Because the evaporativeper unit of 5.02 million Btu or natural gas of 1.5 MWh of

Case, C.W.

2011-01-01T23:59:59.000Z

473

Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals  

E-Print Network [OSTI]

We calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each within two different parameter sets. A comparative analysis of the results obtained for odd-even mass staggerings, quasiparticle spectra, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modelling

Dobaczewski, J; Bender, M; Robledo, L M; Shi, Yue

2015-01-01T23:59:59.000Z

474

Research Summary Key Ingredients of Collaborative Management  

E-Print Network [OSTI]

, wildlife management and water catchments. This project, developed in discussion with stakeholders, soughtResearch Summary Key Ingredients of Collaborative Management It is widely accepted that collaboration amongst stakeholders can lead to more sustainable land-management. Voluntary collaboration

475

NREL Launches Collaborative Resource for Field Test Best Practices (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNPResults give insight on a

476

Low energy E0 transitions in odd-mass nuclei of the neutron deficient 180 < A < 200 region  

SciTech Connect (OSTI)

The region of neutron-deficient nuclei near Z = 82 and N = 104 provides the most extensive example of low-energy shape coexistence anywhere on the mass surface. It is shown that E0 and E0 admixed transitions may be used as a fingerprint to identify shape coexistence in odd-mass nuclei. It is also shown that all the known cases of low energy E0 and E0 admixed transitions in odd-mass nuclei occur where equally low-lying O/sup +/ states occur in neighboring even-even nuclei. A discussion of these and other relevant data as well as suggestions for new studies which may help to clarify and, more importantly, quantify the connection between E0 transitions and shape coexistence are presented. 60 refs., 7 figs., 4 tabs.

Zganjar, E.F.; Kortelahti, M.O.; Wood, J.L.; Papanicolopulos, C.D.

1987-01-01T23:59:59.000Z

477

Cheap Artificial AB-Mountains, Extraction of Water and Energy from Atmosphere and Change of Regional Climate  

E-Print Network [OSTI]

Author suggests and researches a new revolutionary method for changing the climates of entire countries or portions thereof, obtaining huge amounts of cheap water and energy from the atmosphere. In this paper is presented the idea of cheap artificial inflatable mountains, which may cardinally change the climate of a large region or country. Additional benefits: The potential of tapping large amounts of fresh water and energy. The mountains are inflatable semi-cylindrical constructions from thin film (gas bags) having heights of up to 3 - 5 km. They are located perpendicular to the main wind direction. Encountering these artificial mountains, humid air (wind) rises to crest altitude, is cooled and produces rain (or rain clouds). Many natural mountains are sources of rivers, and other forms of water and power production - and artificial mountains may provide these services for entire nations in the future. The film of these gasbags is supported at altitude by small additional atmospheric overpressure and may be...

Bolonkin, Alexander

2008-01-01T23:59:59.000Z

478

LEDSGP/about/Latin America and Caribbean Regional Platform | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools <

479

National Strategy for the Arctic Region (NSAR) - 10-Year Renewable Energy Plan  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, Lake

480

DOE Regional Tribal Energy Project Development and Finance Workshops to be  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOEInfrastructureEnergyRecordsofDepartment

Note: This page contains sample records for the topic "regional energy collaborative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Honduras-Low-Carbon Energy for Central America: Building a Regional Model |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomer Electric Assn Inc Jump

482

Self Potential At Nw Basin & Range Region (Pritchett, 2004) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name:Open Energy|

483

Geothermometry At Northern Basin & Range Region (Cole, 1983) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation| Open

484

Geothermometry At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation| OpenInformation

485

Geothermometry At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation|

486

Geothermometry At U.S. Midwest Region (Vugrinovich, 1987) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico -Information Shevenell, Et

487

UNECE-Transport for Sustainable Development in the ECE Region | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:Development Reports Jump to:

488

El Salvador-Low-Carbon Energy for Central America: Building a Regional  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow CarbonOpen1Model | Open Energy

489

InSAR At Central Nevada Seismic Zone Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigation DistrictInformationInformation

490

InSAR At Walker-Lane Transitional Zone Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigationDesert Peak AreaInformation

491

United States Regional Administrator Region 9, Arizona, California Environmental Protection 75 Haw thorne Street Haw aii, Nevada, Guam  

E-Print Network [OSTI]

United States Regional Administrator Region 9, Arizona, California Environmental Protection 75 Haw Cities Network ASU Receives Environmental Award for Collaborative Sustainability Efforts SAN FRANCISCO - The U.S. Environmental Protection Agency's Regional Administrator Jared Blumenfeld today recognized

Hall, Sharon J.

492

Collaborative Emissions Research at EMSL | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collaborative Emissions Research at EMSL Collaborative Emissions Research at EMSL EMSL produced this video for the annual congressional science expo organized by the National User...

493

NREL Publishes Gearbox Reliability Collaborative Findings Report...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Publishes Gearbox Reliability Collaborative Findings Report NREL Publishes Gearbox Reliability Collaborative Findings Report October 3, 2011 - 12:56pm Addthis This is an...

494

Collaboration Shines in Materials Project Success  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collaboration Shines in Materials Project Success Collaboration Shines in Materials Project Success Many Hands at Lab Lift 'World-Changing Idea' to New Heights December 12, 2013 |...

495

Collaboration Topics - Meshing | National Nuclear Security Administrat...  

National Nuclear Security Administration (NNSA)

Simulation and Computing and Institutional R&D Programs NNSACEA Cooperation in Computer Science Collaboration Topics - Meshing Collaboration Topics - Meshing This work...

496

Collaboration Topics - System Software | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Simulation and Computing and Institutional R&D Programs NNSACEA Cooperation in Computer Science Collaboration Topics - System Software Collaboration Topics - System...

497

Investigating the Nexus of Climate, Energy, Water, and Land at Decision-Relevant Scales: The Platform for Regional Integrated Modeling and Analysis (PRIMA)  

SciTech Connect (OSTI)

The Platform for Regional Integrated Modeling and Analysis (PRIMA) is an innovative modeling system developed at Pacific Northwest National Laboratory (PNNL) to simulate interactions among natural and human systems at scales relevant to regional decision making. PRIMA brings together state-of-the-art models of regional climate, hydrology, agriculture, socioeconomics, and energy systems using a flexible coupling approach. The platform can be customized to inform a variety of complex questions and decisions, such as the integrated evaluation of mitigation and adaptation options across a range of sectors. Research into stakeholder decision support needs underpins the platform's application to regional issues, including uncertainty characterization. Ongoing numerical experiments are yielding new insights into the interactions among human and natural systems on regional scales with an initial focus on the energy-land-water nexus in the upper U.S. Midwest. This paper focuses on PRIMA’s functional capabilities and describes some lessons learned to date about integrated regional modeling.

Kraucunas, Ian P.; Clarke, Leon E.; Dirks, James A.; Hathaway, John E.; Hejazi, Mohamad I.; Hibbard, Kathleen A.; Huang, Maoyi; Jin, Chunlian; Kintner-Meyer, Michael CW; Kleese van Dam, Kerstin; Leung, Lai-Yung R.; Li, Hongyi; Moss, Richard H.; Peterson, Marty J.; Rice, Jennie S.; Scott, Michael J.; Thomson, Allison M.; Voisin, Nathalie; West, Tristram O.

2014-02-28T23:59:59.000Z

498

National Transport Code Collaboration (NTCC) PTRANSP, Final Report to the US Department of Energy for the Period August 1, 2007 Through July 31, 2010  

SciTech Connect (OSTI)

This report describes the work done under U.S. Department of Energy grant number DE-FG02-07ER54935 for the period ending July 31, 2010. The goal of this project was to provide predictive transport analysis to the PTRANSP code. Our contribution to this effort consisted of three parts: (a) a predictive solver suitable for use with highly non-linear transport models and installation of the turbulent confinement models GLF23 and TGLF, (b) an interface of this solver with the PTRANSP code, and (c) initial development of an EPED1 edge pedestal model interface with PTRANSP. PTRANSP has been installed locally on this cluster by importing a complete PTRANSP build environment that always contains the proper version of the libraries and other object files that PTRANSP requires. The GCNMP package and its interface code have been added to the SVN repository at PPPL.

Lao, Lang L. [General Atomics; St John, Holger [General Atomics; Staebler, Gary M. [General Atomics; Snyder, Phil B. [General Atomics

2010-08-20T23:59:59.000Z

499

Aspen Code Development Collaboration  

SciTech Connect (OSTI)

Wyoming has a wealth of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming?s coal and gas resources are exported from the state in unprocessed form rather than as refined higher value products. Wyoming?s leadership recognizes the opportunity to broaden the state?s economic base energy resources to make value-added products such as synthetic vehicle fuels and commodity chemicals. Producing these higher value products in an environmentally responsible manner can benefit from the use of clean energy technologies including Wyoming?s abundant wind energy and nuclear energy such as new generation small modular reactors including the high temperature gas-cooled reactors.

none,; Cherry, Robert S. [INL] INL; Richard, Boardman D. [INL] INL

2013-10-03T23:59:59.000Z

500

Regional Competitions - EERE Commercialization Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Competitions Six Regional Clean Energy Business Plan Competitions are taking place across the country- representing all of the United States' distinct regions. The...