Sample records for regional energy activity

  1. THE MAGNETIC ENERGY-HELICITY DIAGRAM OF SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Tziotziou, Kostas; Georgoulis, Manolis K. [Research Center for Astronomy and Applied Mathematics (RCAAM), Academy of Athens, 4 Soranou Efesiou Street, Athens, GR-11527 (Greece); Raouafi, Nour-Eddine [Johns Hopkins University Applied Physics Laboratory (JHU/APL), 11100 Johns Hopkins Rd. Laurel, MD 20723-6099 (United States)

    2012-11-01T23:59:59.000Z

    Using a recently proposed nonlinear force-free method designed for single-vector magnetograms of solar active regions, we calculate the instantaneous free magnetic energy and relative magnetic helicity budgets in 162 vector magnetograms corresponding to 42 different active regions. We find a statistically robust, monotonic correlation between the free magnetic energy and the relative magnetic helicity in the studied regions. This correlation implies that magnetic helicity, in addition to free magnetic energy, may be an essential ingredient for major solar eruptions. Eruptive active regions appear well segregated from non-eruptive ones in both free energy and relative helicity with major (at least M-class) flares occurring in active regions with free energy and relative helicity exceeding 4 Multiplication-Sign 10{sup 31} erg and 2 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The helicity threshold agrees well with estimates of the helicity contents of typical coronal mass ejections.

  2. Free Magnetic Energy and Flare Productivity of Active Regions , Changyi Tan2,3

    E-Print Network [OSTI]

    Free Magnetic Energy and Flare Productivity of Active Regions Ju Jing1 , Changyi Tan2,3 , Yuan Yuan with which we are able to estimate the free magnetic energy stored in the active regions. The magnitude scaling correlation between the free magnetic energy and the soft X-ray flare index of active regions

  3. Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State

    E-Print Network [OSTI]

    S. Regnier; E. R. Priest

    2008-05-12T23:59:59.000Z

    To understand the physics of solar flares, including the local reorganisation of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We investigate the values of the free magnetic energy estimated from either the excess energy in extrapolated fields or the magnetic virial theorem. For four different active regions, we have reconstructed the nonlinear force-free field and the linear force-free field corresponding to the minimum-energy state. The free magnetic energies are then computed. From the energy budget and the observed magnetic activity in the active region, we conclude that the free energy above the minimum-energy state gives a better estimate and more insights into the flare process than the free energy above the potential field state.

  4. THE LIMIT OF MAGNETIC-SHEAR ENERGY IN SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C., E-mail: ron.moore@nasa.gov [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2012-05-01T23:59:59.000Z

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  5. Magnetic Energy Spectra in Solar Active Regions Valentyna Abramenko and Vasyl Yurchyshyn

    E-Print Network [OSTI]

    Magnetic Energy Spectra in Solar Active Regions Valentyna Abramenko and Vasyl Yurchyshyn Big Bear productivity of solar active regions (ARs) and the power-law index, , of magnetic energy spectrum, E(k) k Solar Observatory, 40386 N. Shore Lane, Big Bear City, CA 92314 ABSTRACT Line-of-sight magnetograms

  6. Evolution of Magnetic Helicity and Energy Spectra of Solar Active Regions

    E-Print Network [OSTI]

    Zhang, Hongqi; Sokoloff, D D

    2015-01-01T23:59:59.000Z

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field for estimating magnetic energy and helicity spectra as well as current helicity spectra of individual active regions and the change of their spectral indices with the solar cycle. The departure of the spectral index of current helicity from 5/3 is analyzed, and it is found that it is lower than that of magnetic energy. There is no obvious relationship between the change of the normalized magnetic helicity and the integral scale of the magnetic field for individual active regions. The evolution of the spectral index reflects the development and distribution of various scales of magnetic structures in active regions. It is found that around solar maximum the magnetic energy and helicity spectra are steeper.

  7. Magnetic Energy and Helicity Budgets in the Active-Region Solar Corona. I. Linear Force-Free Approximation

    E-Print Network [OSTI]

    M. K. Georgoulis; Barry J. LaBonte

    2007-06-27T23:59:59.000Z

    We self-consistently derive the magnetic energy and relative magnetic helicity budgets of a three-dimensional linear force-free magnetic structure rooted in a lower boundary plane. For the potential magnetic energy we derive a general expression that gives results practically equivalent to those of the magnetic Virial theorem. All magnetic energy and helicity budgets are formulated in terms of surface integrals applied to the lower boundary, thus avoiding computationally intensive three-dimensional magnetic field extrapolations. We analytically and numerically connect our derivations with classical expressions for the magnetic energy and helicity, thus presenting a so-far lacking unified treatment of the energy/helicity budgets in the constant-alpha approximation. Applying our derivations to photospheric vector magnetograms of an eruptive and a noneruptive solar active regions, we find that the most profound quantitative difference between these regions lies in the estimated free magnetic energy and relative magnetic helicity budgets. If this result is verified with a large number of active regions, it will advance our understanding of solar eruptive phenomena. We also find that the constant-alpha approximation gives rise to large uncertainties in the calculation of the free magnetic energy and the relative magnetic helicity. Therefore, care must be exercised when this approximation is applied to photospheric magnetic field observations. Despite its shortcomings, the constant-alpha approximation is adopted here because this study will form the basis of a comprehensive nonlinear force-free description of the energetics and helicity in the active-region solar corona, which is our ultimate objective.

  8. Regional Energy Baseline

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J.C.; Haberl, J.

    ESL-TR-11-09-02 REGIONAL ENERGY BASELINE (1960 ~ 2009) 0 100 200 300 400 500 600 700 800 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 To tal En erg y U se pe r C ap ita (M MB tu) Year Total Energy... Use per Capita (1960-2009) US SEEC 12-States TX Hyojin Kim Juan-Carlos Baltazar, Ph.D. Jeff S. Haberl, Ph.D., P.E. September 2011 ENERGY SYSTEMS LABORATORY Texas Engineering Experiment Station Texas A&M University...

  9. Energy Conservation Standards Activities

    Broader source: Energy.gov (indexed) [DOE]

    Report to Congress August 2014 United States Department of Energy Washington, DC 20585 Energy Conservation Standards Activities Report to Congress | Page i Message from the...

  10. Regional Partnerships | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SRELRecyclingProjectsRegionalRegional

  11. Regional Systems Development for Geothermal Energy Resources...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii)....

  12. Estimating electric current densities in solar active regions

    E-Print Network [OSTI]

    Wheatland, M S

    2015-01-01T23:59:59.000Z

    Electric currents in solar active regions are thought to provide the energy released via magnetic reconnection in solar flares. Vertical electric current densities $J_z$ at the photosphere may be estimated from vector magnetogram data, subject to substantial uncertainties. The values provide boundary conditions for nonlinear force- free modelling of active region magnetic fields. A method is presented for estimating values of $J_z$ taking into account uncertainties in vector magnetogram field values, and minimizing $J_z^2$ across the active region. The method is demonstrated using the boundary values of the field for a force-free twisted bipole, with the addition of noise at randomly chosen locations.

  13. Secondary Energy Infobook Activities (19 Activities)'

    Broader source: Energy.gov (indexed) [DOE]

    Infobook Activities (19 Activities) Grades: 9-12 Topics: Energy Basics Owner: NEED This educational material is brought to you by the U.S. Department of Energy's Office of Energy...

  14. Enhanced ULF electromagnetic activity detected by DEMETER above seismogenic regions

    E-Print Network [OSTI]

    Athanasiou, M; David, C; Anagnostopoulos, G

    2013-01-01T23:59:59.000Z

    In this paper we present results of a comparison between ultra low frequency (ULF) electromagnetic (EM) radiation, recorded by an electric field instrument (ICE) onboard the satellite DEMETER in the topside ionosphere, and the seismicity of regions with high and lower seiismic activity. In particular we evaluated the energy variations of the ULF Ez-electric field component during a period of four years (2006-2009), in order to examine check the possible relation of ULF EM radiation with seismogenic regions located in central America, Indonesia, Eastern Mediterranean Basin and Greece. As a tool of evaluating the ULF Ez energy variations we used Singular Spectrum Analysis (SSA) techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emmited from regions of highest seismic activity at the tectonic plates boundaries. We interpret these results as suggesting that the highest ULF EM energy detected in the topside ionosphere is originated from seismic processes within Earth's...

  15. IS ACTIVE REGION CORE VARIABILITY AGE DEPENDENT?

    SciTech Connect (OSTI)

    Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2012-12-10T23:59:59.000Z

    The presence of both steady and transient loops in active region cores has been reported from soft X-ray and extreme-ultraviolet observations of the solar corona. The relationship between the different loop populations, however, remains an open question. We present an investigation of the short-term variability of loops in the core of two active regions in the context of their long-term evolution. We take advantage of the nearly full Sun observations of STEREO and Solar Dynamics Observatory spacecraft to track these active regions as they rotate around the Sun multiple times. We then diagnose the variability of the active region cores at several instances of their lifetime using EIS/Hinode spectral capabilities. We inspect a broad range of temperatures, including for the first time spatially and temporally resolved images of Ca XIV and Ca XV lines. We find that the active region cores become fainter and steadier with time. The significant emission measure at high temperatures that is not correlated with a comparable increase at low temperatures suggests that high-frequency heating is viable. The presence, however, during the early stages, of an enhanced emission measure in the ''hot'' (3.0-4.5 MK) and ''cool'' (0.6-0.9 MK) components suggests that low-frequency heating also plays a significant role. Our results explain why there have been recent studies supporting both heating scenarios.

  16. AWEA Wind Energy Regional Summit: Northeast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Energy Northeast Regional Summit will connect you with New England-area wind energy professionals and offers the opportunity to discuss significant issues related to land-based and...

  17. Activities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout -------------------------ISMActiveActivities

  18. DOE to Participate in Colombian Regional Energy Meeting Ahead...

    Office of Environmental Management (EM)

    to Participate in Colombian Regional Energy Meeting Ahead of Energy and Climate Ministerial of the Americas DOE to Participate in Colombian Regional Energy Meeting Ahead of Energy...

  19. Multilateral, regional and bilateral energy trade governance

    SciTech Connect (OSTI)

    Leal-Arcas, Rafael; Grasso, Costantino; Rios, Juan Alemany (Queen Mary Univ. of London (United Kingdom))

    2014-12-01T23:59:59.000Z

    The current international energy trade governance system is fragmented and multi-layered. Streamlining it for greater legal cohesiveness and international political and economic cooperation would promote global energy security. The current article explores three levels of energy trade governance: multilateral, regional and bilateral. Most energy-rich countries are part of the multilateral trading system, which is institutionalized by the World Trade Organization (WTO). The article analyzes the multilateral energy trade governance system by focusing on the WTO and energy transportation issues. Regionally, the article focuses on five major regional agreements and their energy-related aspects and examines the various causes that explain the proliferation of regional trade agreements, their compatibility with WTO law, and then provides several examples of regional energy trade governance throughout the world. When it comes to bilateral energy trade governance, this article only addresses the European Union’s (EU) bilateral energy trade relations. The article explores ways in which gaps could be filled and overlaps eliminated whilst remaining true to the high-level normative framework, concentrating on those measures that would enhance EU energy security.

  20. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1998-06-02T23:59:59.000Z

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  1. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1996-01-30T23:59:59.000Z

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  2. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1996-01-01T23:59:59.000Z

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  3. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1998-06-02T23:59:59.000Z

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  4. Regional Energy Efficiency Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LEDEISARegional Energy

  5. SPEER: Building a Regional Energy Efficiency Partnership

    E-Print Network [OSTI]

    Lewin, D.

    2013-01-01T23:59:59.000Z

    SPEER: Building a Regional Energy Efficiency Partnership Clean Air Through Energy Efficiency Conference – San Antonio, TX Doug Lewin December 18, 2013 ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas... Dec. 16-18 SPEER • Member-based, non-profit organization • The Newest Regional Energy Efficiency Organization (REEO) • Founded in 2011 • 38 members from wide cross section of E.E. industries ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy...

  6. Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation, search OpenEIOpen Energy InformationEnergy

  7. Regions in Energy Market Models

    SciTech Connect (OSTI)

    Short, W.

    2007-02-01T23:59:59.000Z

    This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  8. Alternative Energy Engineering Activity (Minnesota)

    Broader source: Energy.gov [DOE]

    This statute establishes an alternative energy engineering activity to provide on-site technical assistance for alternative energy and conservation projects; develop information materials and...

  9. Mid-Atlantic Regional Wind Energy Institute

    SciTech Connect (OSTI)

    Courtney Lane

    2011-12-20T23:59:59.000Z

    As the Department of Energy stated in its 20% Wind Energy by 2030 report, there will need to be enhanced outreach efforts on a national, state, regional, and local level to communicate wind development opportunities, benefits and challenges to a diverse set of stakeholders. To help address this need, PennFuture was awarded funding to create the Mid-Atlantic Regional Wind Energy Institute to provide general education and outreach on wind energy development across Maryland, Virginia, Delaware, Pennsylvania and West Virginia. Over the course of the two-year grant period, PennFuture used its expertise on wind energy policy and development in Pennsylvania and expanded it to other states in the Mid-Atlantic region. PennFuture accomplished this through reaching out and establishing connections with policy makers, local environmental groups, health and economic development organizations, and educational institutions and wind energy developers throughout the Mid-Atlantic region. PennFuture conducted two regional wind educational forums that brought together wind industry representatives and public interest organizations from across the region to discuss and address wind development in the Mid-Atlantic region. PennFuture developed the agenda and speakers in collaboration with experts on the ground in each state to help determine the critical issue to wind energy in each location. The sessions focused on topics ranging from the basics of wind development; model ordinance and tax issues; anti-wind arguments and counter points; wildlife issues and coalition building. In addition to in-person events, PennFuture held three webinars on (1) Generating Jobs with Wind Energy; (2) Reviving American Manufacturing with Wind Power; and (3) Wind and Transmission. PennFuture also created a web page for the institute (http://www.midatlanticwind.org) that contains an online database of fact sheets, research reports, sample advocacy letters, top anti-wind claims and information on how to address them, wind and wildlife materials and sample model ordinances. Video and presentations from each in-person meeting and webinar recordings are also available on the site. At the end of the two-year period, PennFuture has accomplished its goal of giving a unified voice and presence to wind energy advocates in the Mid-Atlantic region. We educated a broad range of stakeholders on the benefits of wind energy and gave them the tools to help make a difference in their states. We grew a database of over 500 contacts and hope to continue the discussion and work around the importance of wind energy in the region.

  10. Switch on Clean Energy Activity Book | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Switch on Clean Energy Activity Book Switch on Clean Energy Activity Book Games and activity book about energy efficiency and renewable energy technologies for kids....

  11. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect (OSTI)

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark [Smithsonian Astrophysical Observatory, 60 Garden street, MS 58, Cambridge, MA 02138 (United States); De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Hansteen, Viggo [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Kuzin, Sergey [P. N. Lebedev Physical institute of the Russian Academy of Sciences, Leninskii prospekt, 53, 119991 Moscow (Russian Federation); Walsh, Robert [University of Central Lancashire, Lancashire, Preston PR1 2HE (United Kingdom); DeForest, Craig, E-mail: ptesta@cfa.harvard.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2013-06-10T23:59:59.000Z

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  12. Regional Energy Deployment System (ReEDS)

    SciTech Connect (OSTI)

    Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A.

    2011-12-01T23:59:59.000Z

    The Regional Energy Deployment System (ReEDS) is a deterministic optimization model of the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States into the future. The model, developed by the National Renewable Energy Laboratory's Strategic Energy Analysis Center, is designed to analyze the critical energy issues in the electric sector, especially with respect to potential energy policies, such as clean energy and renewable energy standards or carbon restrictions. ReEDS provides a detailed treatment of electricity-generating and electrical storage technologies and specifically addresses a variety of issues related to renewable energy technologies, including accessibility and cost of transmission, regional quality of renewable resources, seasonal and diurnal generation profiles, variability of wind and solar power, and the influence of variability on the reliability of the electrical grid. ReEDS addresses these issues through a highly discretized regional structure, explicit statistical treatment of the variability in wind and solar output over time, and consideration of ancillary services' requirements and costs.

  13. Southeast Regional Clean Energy Policy Analysis (Revised)

    SciTech Connect (OSTI)

    McLaren, J.

    2011-04-01T23:59:59.000Z

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  14. Regional analysis of energy facility siting

    SciTech Connect (OSTI)

    Lipfert, F W; Meier, P M; Kleinman, L I

    1980-01-01T23:59:59.000Z

    This paper has examined some of the regional environmental parameters of energy facility siting, with emphasis on air quality impacts. An example of a siting optimization study was presented, and it was shown how difficult it presently is to specify an environmental objective function that is universally applicable. The importance of regional background effects was discussed, and long-range transport models were used to analyze the relative importance of local and long-range impacts.

  15. Regional Standards Enforcement Policy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |RebeccaRegional Standards Enforcement Policy Regional

  16. May 29 Tribal Renewable Energy Webinar to Highlight Regional...

    Broader source: Energy.gov (indexed) [DOE]

    9 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May...

  17. Geodesic Active Regions Using Non-parametric Statistical Regional Description and Their

    E-Print Network [OSTI]

    Frangi, Alejandro

    Geodesic Active Regions Using Non-parametric Statistical Regional Description and Their Application {mhg,afrangi}@unizar.es Abstract. The inclusion of statistical region-based information in the Geodesic for the segmentation of brain aneurysms in CTA data with the Geodesic Active Regions model. 1 Introduction Brain

  18. Geothermal Energy (5 Activities) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities) Geothermal Energy (5

  19. CHP REGIONAL APPLICATION CENTERS: ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin [ORNL

    2010-08-01T23:59:59.000Z

    Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This represents the first systematic attempt at RAC program measurement in a manner consistent with approaches used for other efforts funded by DOE's Industrial Technologies Program (ITP). In addition, data on CHP installations and associated effects were collected for the same years from a state-by-state database maintained for DOE by ICF international. A report documenting the findings of that study was produced in September, 2009. The purpose of the current report is to present the findings from a new study of RAC activities and accomplishments which examined what the Centers did in FY 2009, the last year in which they concentrated exclusively on CHP technologies. This study focused on identifying and describing RAC activities and was not designed to measure how those efforts influenced CHP installations or other outcomes.

  20. SITN Regional Outreach Map | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving LoanDepartment of Energy SGSITN Regional

  1. Indonesia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana WindIndonesia Geothermal Region

  2. THE DYNAMICS AND HEATING OF ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Doschek, G. A., E-mail: george.doschek@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2012-08-01T23:59:59.000Z

    I examine the dynamics of active regions using spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. I show the relationship between non-thermal velocities, Doppler outflows and downflows, intensities, and electron density for two representative active regions out of a group of 18 active regions examined. Results from the other active regions are summarized. Imaging spectra of these active regions were obtained from a number of different EIS raster observations. In the case of the outflows for the two representative regions, two-Gaussian fits were made to line profiles of Fe XII and Fe XIII to obtain quantitative information on high-speed components of the outflows. A three-Gaussian fit was made for the Fe XII line at {lambda}195.119. The highest speed outflows occur in weak regions adjacent to the bright loops in active regions. They are weak (less than 5% of the intensity of the main spectral component in the brightest parts of active regions) and even in the extensive flow regions they are generally less than 25% of the intensity of the main component. The outflow regions are characterized by long or open magnetic field lines and I suggest that the apparent absence of these higher speed outflows in bright regions is due to abundant stationary plasma in the closed bright loop regions that mask or overwhelm the outflow signal.

  3. Waste to Energy Time Activities

    E-Print Network [OSTI]

    SEMINAR Waste to Energy Time Activities 9:30-9:40 Brief introduction of participants 9:40-10:10 Presentation of Dr. Kalogirou, "Waste to Energy: An Integral Part of Worldwide Sustainable Waste Management" 10. Sofia Bethanis, "Production of synthetic aggregates for use in structural concrete from waste to energy

  4. Energy Conservation Standards Activities

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking. EnergyEnergyexternal power

  5. Does High[Plasma]-Beta Dynamics "Load" Active Regions?

    E-Print Network [OSTI]

    Scott W. McIntosh

    2007-02-04T23:59:59.000Z

    Using long-duration observations in the He II 304 Angstrom passband of the Solar and Heliospheric Observatory (SOHO) Extreme-ultraviolet Imaging Telescope (EIT) we investigate the spatial and temporal appearance of impulsive intensity fluctuations in the pixel light curves. These passband intensity fluctuations come from plasma emitting in the chromosphere, transition region and lowest portions of the corona. We see that they are spatially tied to the supergranular scale and that their rate of occurrence is tied to the unsigned imbalance of the magnetic field in which they are observed. The signature of the fluctuations (in space and time) is consistent with their creation by magnetoconvection forced reconnection that is driven by the flow field in the high-beta plasma. The signature of the intensity fluctuations around an active region suggest that the bulk of the mass and energy supplied into the active region complex observed in the hotter coronal plasma is supplied by this process, dynamically forcing the looped structure from beneath.

  6. Wind energy resources atlas. Volume 1. Northwest region

    SciTech Connect (OSTI)

    Elliott, D.L.; Barchet, W.R.

    1980-04-01T23:59:59.000Z

    Information is presented concering regional wind energy resource assessment; regional features; and state features for Idaho, Montana, Oregon, Washington, and Wyoming.

  7. Holocene Magmatic Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel JumpHoard, Wisconsin:Holiday59. It isRegion Jump to:

  8. Regional Networks for Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LEDEISARegional EnergyRegional

  9. Lake Region Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lake Region Electric Cooperative (LREC) offers a variety of rebates for residential customers to improve the energy efficiency of homes. Rebates are available for Energy Star refrigerators and...

  10. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Jouve, L. [UPS-OMP, Institut de Recherche en Astrophysique et Planetologie, Universite de Toulouse CNRS, 14 Avenue Edouard Belin, F-31400 Toulouse (France)] [UPS-OMP, Institut de Recherche en Astrophysique et Planetologie, Universite de Toulouse CNRS, 14 Avenue Edouard Belin, F-31400 Toulouse (France); Brun, A. S. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/SAp, F-91191 Gif sur Yvette (France)] [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/SAp, F-91191 Gif sur Yvette (France); Aulanier, G., E-mail: ljouve@irap.omp.eu [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon Cedex (France)

    2013-01-01T23:59:59.000Z

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  11. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.

    1983-11-01T23:59:59.000Z

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  12. Interpreting Helioseismic Structure Inversion Results of Solar Active Regions

    E-Print Network [OSTI]

    Chia-Hsien Lin; Sarbani Basu; Linghuai Li

    2008-09-08T23:59:59.000Z

    Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the "sound-speed" difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R_sun and that the strengths of magnetic-field effects at the surface and in the deeper (r < 0.98R_sun) layers are inversely related, i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa. We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.

  13. Secondary Energy Infobook Activities (19 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergy EconomyWindHydrogenHydrogen &Page Dedicated toActivities (19

  14. Transportation Emergency Preparedness Program Plan, U.S. Department of Energy Region 6

    SciTech Connect (OSTI)

    Marsha Keister

    2010-04-01T23:59:59.000Z

    The United States Department of Energy (DOE) Region 6 Transportation Emergency Preparedness Program Plan (TEPP Plan) operates within the framework of the DOE emergency management system for developing, coordinating, and directing emergency planning, preparedness, and readiness assurance activities for radiological transportation incidents. The DOE Region 6 TEPP Plan is a narrative description of the DOE Transportation Emergency Preparedness Program activities, training and technical assistance provided to states and tribes along DOE's transportation corridors in DOE Region 6.

  15. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    SciTech Connect (OSTI)

    Schmelz, J. T.; Pathak, S., E-mail: jschmelz@memphis.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2012-09-10T23:59:59.000Z

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescales less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.

  16. REGIONAL ECONOMICS APPLICATIONS LABORATORY CHICAGO BUSINESS ACTIVITY INDEX

    E-Print Network [OSTI]

    Shim, Moonsub

    Statistics reported total nonfarm payroll employment increased marginally by 54,000 in May. Job gains activity and the decrease of non-manufacturing employment. In May, the national and regional economy) increased 0.48 percent in May. In the Chicago region in May, manufacturing employment increased 0.34 percent

  17. Regionalized Global Energy Scenarios Meeting Stringent Climate Targets

    E-Print Network [OSTI]

    and Energy efficiency improvements) · Per capita income increases · Industrialized regions GDP from 20 by IIASA. (Ecological and Energy efficiency improvements) · Per capita income increases #12;Energy demand improvements) · Per capita income increases · Industrialized regions GDP from 20,000 USD/yr to 50,000 USD

  18. DC High School Science Bowl Regionals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DC High School Science Bowl Regionals DC High School Science Bowl Regionals February 22, 2014 1:15PM to 8:15PM EST Department of Energy headquarters - 1000 Independence Ave SW,...

  19. U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)

    SciTech Connect (OSTI)

    Lipman, Tim; Kammen, Dan; McDonell, Vince; Samuelsen, Scott; Beyene, Asfaw; Ganji, Ahmad

    2013-09-30T23:59:59.000Z

    The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence and Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC) at San Diego State University and San Francisco State University. The center also worked with a wide range of affiliated groups and industry, government, NGO, and academic stakeholders to conduct a series of CHP education and outreach, project technical support, and related activities for the Pacific region. Key PCEAC tasks have included: - Preparing, organizing and conducting educational seminars on various aspects of CHP - Conducting state baseline assessments for CHP - Working with state energy offices to prepare state CHP action plans - Providing technical support services including CHP/district energy project feasibility screenings - Working with state agencies on CHP policy development - Developing additional CHP educational materials The primary specific services that PCEAC has offered include: - A CHP “information clearinghouse “ website: http://www.pacificcleanenergy.org - Site evaluations and potential projects screenings - Assessment of CHP status, potential, and key issues for each state - Information and training workshops - Policy and regulatory guidance documents and other interactions These services were generally offered at no cost to client groups based on the DOE funding and additional activities supported by the California Energy Commission, except for the in-kind staff resources needed to provide input data and support to PCEAC assessments at host sites. Through these efforts, the PCEAC reached thousands of end-users and directly worked with several dozen organizations and potential CHP “host sites” from 2009-2013. The major activities and outcomes of PCEAC project work are described.

  20. U.S. Department of Energy to Host Regional Energy Efficiency...

    Office of Environmental Management (EM)

    Host Regional Energy Efficiency Conference in Istanbul, Turkey on June 3-4 U.S. Department of Energy to Host Regional Energy Efficiency Conference in Istanbul, Turkey on June 3-4...

  1. Southeast Regional Clean Energy Policy Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report covers the states that largely fall into the Southeastern Reliability Corporation (SERC) region: Alabama, Arkansas, Georgia, Louisiana, Kentucky, Missouri, Mississippi, North Carolina, South Carolina, and Tennessee.

  2. regional clean energy application centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Application Centers (CEACs), formerly called the Combined Heat and Power (CHP) Regional Application Centers (RACs), promote and assist in transforming the market for...

  3. Gainesville Regional Utilities- Business Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Gainesville Regional Utilities (GRU) offers an incentive to business customers for upgrading to energy efficient equipment at eligible facilities. Incentives are available for ductwork, insulation,...

  4. Lake Region Electric Cooperative- Commercial Energy Efficiency Grant Program

    Broader source: Energy.gov [DOE]

    Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for new and existing...

  5. Energy Department Announces First Regional Gasoline Reserve to...

    Office of Environmental Management (EM)

    Ernest Moniz today announced the creation of the first federal regional refined petroleum product reserve containing gasoline. Based on the Energy Department's lessons...

  6. Passive Housing for an Aggressive Region | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    describes the Capital region and the mission of bringing passive houses to the area. A passive house meets rigorous, voluntary energy efficiency standards and requires little...

  7. Lake Region Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: EnergyPocotopaug, Connecticut: Energy Resources JumpElectric

  8. Lake Region Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: EnergyPocotopaug, Connecticut: Energy Resources

  9. Philippines Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) |Facility | Open Energy0) Techniques (0)

  10. Wind energy resource atlas. Volume 4. The Northeast region

    SciTech Connect (OSTI)

    Pickering, K.E.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-09-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled in this chapter into an overview and summary of the various features of the regional wind energy resource. An introduction and outline are provided for in the descriptions of the wind resource given for each state. Assessments for individual states are presented. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters.

  11. Science Energy Literacy and Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) CawithMicrofluidicJournalWhatActivitiesScience &

  12. Energy Research in the Oldenburg Region

    E-Print Network [OSTI]

    institutions and companies developing modern, efficient and climate friendly energy systems. Energy research the title"Intelligent Data Center"innovative highly dynamic system management solutions are developed.offis.de #12;Fraunhofer Institute for ManufacturingTechnology and Applied Materials Research A new project

  13. Northwest Region Clean Energy Application Center

    SciTech Connect (OSTI)

    Sjoding, David

    2013-09-30T23:59:59.000Z

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  14. Petrovay: Solar physics The solar cycle ACTIVE REGIONS

    E-Print Network [OSTI]

    Petrovay, KristĂłf

    Petrovay: Solar physics The solar cycle ACTIVE REGIONS Large scale (up to 100 Mm) anomalies in the structure and radiation of the solar atmosphere. Photosphere : AR = cluster of strong magnetic flux tubes of facular points. Filamentary structure due to supergranulation. #12;Petrovay: Solar physics The solar cycle

  15. Observations of Transient Active Region Heating with Hinode

    E-Print Network [OSTI]

    Harry P. Warren; Ignacio Ugarte-Urra; David H. Brooks; Jonathan W. Cirtain; David R. Williams; Hirohisa Harra

    2007-11-02T23:59:59.000Z

    We present observations of transient active region heating events observed with the Extreme Ultraviolet Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode. This initial investigation focuses on NOAA active region 10940 as observed by Hinode on February 1, 2007 between 12 and 19 UT. In these observations we find numerous examples of transient heating events within the active region. The high spatial resolution and broad temperature coverage of these instruments allows us to track the evolution of coronal plasma. The evolution of the emission observed with XRT and EIS during these events is generally consistent with loops that have been heated and are cooling. We have analyzed the most energetic heating event observed during this period, a small GOES B-class flare, in some detail and present some of the spectral signatures of the event, such as relative Doppler shifts at one of the loop footpoints and enhanced line widths during the rise phase of the event. While the analysis of these transient events has the potential to yield insights into the coronal heating mechanism, these observations do not rule out the possibility that there is a strong steady heating level in the active region. Detailed statistical analysis will be required to address this question definitively.

  16. Italy Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | OpenIssaquena County, Mississippi:

  17. Australia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: Texas Service Territory:and Ore Reserves (The

  18. Austria Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: Texas Service Territory:and Ore

  19. State & Regional Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report: OAS-RA-14-01Awards |State & Regional

  20. Regional assessment of aquifers for thermal-energy storage. Volume 2. Regions 7 through 12

    SciTech Connect (OSTI)

    Not Available

    1981-06-01T23:59:59.000Z

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: Unglaciated Central Region; Glaciated Appalachians, Unglaciated Appalachians; Coastal Plain; Hawaii; and Alaska. (LCL)

  1. Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6

    SciTech Connect (OSTI)

    Not Available

    1981-06-01T23:59:59.000Z

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

  2. New Zealand Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) Jump to: navigation, search EquivalentProjects (0)

  3. Northern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)References ↑ US CensusNortheastName}}} Province is situated in

  4. Cascades Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm Jump to: navigation,Carsten

  5. Alaska Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand and Water Jump

  6. Germany Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation MexicoLLC Jump to: navigation,Germany

  7. Regional Dynamics Model (REDYN) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge And Piedmont Provinces | Open EnergyDynamics Model

  8. Cascades Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade Sierra Solutions CSS Jump to:

  9. Category:Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to: navigation,

  10. Iceland Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to: navigation,

  11. Idaho Batholith Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to:Information

  12. Mid-Columbia Region Clean Energy Feasibility Assessment - Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Official Documents > Mid-Columbia Region Clean Energy Assessment Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review...

  13. Pennsylvania Regional Infrastructure Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow Your EnergyTechnology toPaulStorage

  14. Mid-Columbia Region Clean Energy Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3, 1999 http://www.eia.doe.govMicrowave93 -VA

  15. Clean Energy Manufacturing Initiative Midwest Regional Summit:

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu IssuesCleanLightweighting

  16. Mexico Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to: navigation,Metalysis JumpMetzger, Oregon:Buildings0)

  17. China Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon842667°,Cheviot,3.Chimayo,China Geothermal

  18. Southern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551° LoadingSoutheastSRF JumpRElecEnergy

  19. Turkey Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformationTulsa, Oklahoma: EnergyTunisia:TuoriTurkerlerJump

  20. PHYSICAL PROPERTIES OF COOLING PLASMA IN QUIESCENT ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Landi, E. [Artep, Inc. at Naval Research Laboratory, 4555 Overlook Ave. S.W., 20375-5320, Washington DC (United States); Miralles, M. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-50, Cambridge, MA 02138 (United States); Curdt, W. [Max Planck Institut fuer Sonnensystemforschung, Max Planck Strasse 2, Katlenburg-Lindau 37191 (Germany); Hara, H. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2009-04-10T23:59:59.000Z

    In the present work, we use SOHO/SUMER, SOHO/UVCS, SOHO/EIT, SOHO/LASCO, STEREO/EUVI, and Hinode/EIS coordinated observations of an active region (AR 10989) at the west limb taken on 2008 April 8 to study the cooling of coronal loops. The cooling plasma is identified using the intensities of SUMER spectral lines emitted at temperatures in the 4.15 {<=} log T {<=} 5.45 range. EIS and SUMER spectral observations are used to measure the physical properties of the loops. We found that before cooling took place these loops were filled with coronal hole-like plasma, with temperatures in the 5.6 {<=} log T {<=} 5.9 range. SUMER spectra also allowed us to determine the plasma temperature, density, emission measure, element abundances, and dynamic status during the cooling process. The ability of EUVI to observe the emitting region from a different direction allowed us to measure the volume of the emitting region and estimate its emission measure. Comparison with values measured from line intensities provided us with an estimate of the filling factor. UVCS observations of the coronal emission above the active region showed no streamer structure associated with AR 10989 at position angles between 242{sup 0}and 253.{sup 0} EIT, LASCO, and EUVI-A narrowband images and UVCS spectral observations were used to discriminate between different scenarios and monitor the behavior of the active region in time. The present study provides the first detailed measurements of the physical properties of cooling loops, a very important benchmark for theoretical models of loop cooling and condensation.

  1. THE TEMPERATURE DEPENDENCE OF SOLAR ACTIVE REGION OUTFLOWS

    SciTech Connect (OSTI)

    Warren, Harry P.; Ugarte-Urra, Ignacio; Young, Peter R.; Stenborg, Guillermo [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2011-01-20T23:59:59.000Z

    Spectroscopic observations with the EUV Imaging Spectrometer (EIS) on Hinode have revealed large areas of high-speed outflows at the periphery of many solar active regions. These outflows are of interest because they may connect to the heliosphere and contribute to the solar wind. In this paper, we use slit rasters from EIS in combination with narrowband slot imaging to study the temperature dependence and morphology of an outflow region and show that it is more complicated than previously thought. Outflows are observed primarily in emission lines from Fe XI to Fe XV. Observations at lower temperatures (Si VII), in contrast, show bright fan-like structures that are dominated by inflows. These data also indicate that the morphology of the outflows and the fans is different, outflows are observed in regions where there is no emission in Si VII. This suggests that the fans, which are often associated with outflows in studies involving imaging data, are not directly related to the active region outflows.

  2. How Do I Use Renewable Energy in My Region?

    SciTech Connect (OSTI)

    Not Available

    2005-11-01T23:59:59.000Z

    NREL can asses renewable energy resource information and integrate it with data using geographic information systems (GIS) and interface the data with key analytical models. Planners and energy developers use these integrated resource assessments to make decisions about the feasibility, cost-effectiveness, and risks of developing projects in specific locations and for regional planning.

  3. Nonlinear force-free models for the solar corona I. Two active regions with very different structure

    E-Print Network [OSTI]

    S. Regnier; E. R. Priest

    2007-03-29T23:59:59.000Z

    With the development of new instrumentation providing measurements of solar photospheric vector magnetic fields, we need to develop our understanding of the effects of current density on coronal magnetic field configurations. The object is to understand the diverse and complex nature of coronal magnetic fields in active regions using a nonlinear force-free model. From the observed photospheric magnetic field we derive the photospheric current density for two active regions: one is a decaying active region with strong currents (AR8151), and the other is a newly emerged active region with weak currents (AR8210). We compare the three-dimensional structure of the magnetic fields for both active region when they are assumed to be either potential or nonlinear force-free. The latter is computed using a Grad-Rubin vector-potential-like numerical scheme. A quantitative comparison is performed in terms of the geometry, the connectivity of field lines, the magnetic energy and the magnetic helicity content. For the old decaying active region the connectivity and geometry of the nonlinear force-free model include strong twist and strong shear and are very different from the potential model. The twisted flux bundles store magnetic energy and magnetic helicity high in the corona (about 50 Mm). The newly emerged active region has a complex topology and the departure from a potential field is small, but the excess magnetic energy is stored in the low corona and is enough to trigger powerful flares.

  4. Intermediate Energy Infobook and Intermediate Infobook Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    activities are: Forms Of Energy fill in the blanks Biomass worksheet Coal worksheet Geothermal worksheet Hydropower worksheet Natural Gas worksheet Petroleum worksheet Propane...

  5. Regional Tribal Renewable Energy Workshops Announced | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartmentEnergyFrequency | Department ofMay 14,DepartmentManyDOE'sTed

  6. Energy Department Announces New Regional Approach to Wind Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of EnergyStakeholdersEnergyDevelop

  7. Energy Department Announces Regional Winners of University Clean Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of EnergyStakeholdersEnergyDevelopAnnouncement

  8. Southwest Alaska Regional Geothermal Energy Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South ValleyDepartmentSouthwest

  9. Key Activities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7JanuaryWASTE-TO-ENERGY:About » Key

  10. Key Activities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7JanuaryWASTE-TO-ENERGY:About » KeyKey

  11. Key Activities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7JanuaryWASTE-TO-ENERGY:About » KeyKeyAbout the

  12. Energy Department Announces New Regional Approach to Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Initiates New Outreach Efforts to Address a Changing Wind Industry This map shows wind potential capacity for turbine hub heights at 140 meters. Mapping the Frontier of New...

  13. THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA

    SciTech Connect (OSTI)

    Morgan, Huw; Jeska, Lauren; Leonard, Drew, E-mail: hmorgan@aber.ac.uk [Sefydliad Mathemateg a Ffiseg, Prifysgol Aberystwyth, Ceredigion SY23 3BZ (United Kingdom)

    2013-06-01T23:59:59.000Z

    Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.

  14. Sign singularity and flares in solar active region NOAA 11158

    E-Print Network [OSTI]

    Sorriso-Valvo, Luca; Kazachenko, Maria D; Krucker, Sam; Primavera, Leonardo; Servidio, Sergio; Vecchio, Antonio; Welsch, Brian T; Fisher, George H; Lepreti, Fabio; Carbone, Vincenzo

    2015-01-01T23:59:59.000Z

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares, and the presence of correlation with EUV and X-ray flux, suggest that eruption of large flares can be linked to the small scale properties of the current structures.

  15. FIP Bias Evolution in a Decaying Active Region

    E-Print Network [OSTI]

    Baker, D; Démoulin, P; Yardley, S L; van Driel-Gesztelyi, L; Long, D M; Green, L M

    2015-01-01T23:59:59.000Z

    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode's EUV Imaging Spectrometer (EIS) instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR) 11389. The composition maps show how FIP bias evolves within the decaying AR from 2012 January 4-6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR's decay phase, small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing time scales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Final...

  16. International Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartment of EnergyDr.MD,

  17. GTT Activities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergy Issues Related- a,-

  18. Activity: Conserving Electric Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract.4 (February|

  19. Policy support activities Brazil Rural Energy

    E-Print Network [OSTI]

    1 Policy support activities Brazil Rural Energy Enterprise Development (B-REED) Juan Zak UNEP Risoe makers implement Electricity Law 10.438 in ways that enable small rural energy enterprises to coexist with distribution utilities. ·The Law, approved in April 2002, dealt with key issues for rural energy enterprises

  20. Energy Detectives (3 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOEDeployment | Department ofEnergyofEnergy

  1. Key Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - Project LeaderDepartment's DirectivesKey

  2. Microgrid Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -ofMarc MorialMegan SlackDr.Federal programs,

  3. Regional Energy Deployment System (ReEDS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge And Piedmont Provinces | Open EnergyDynamics

  4. Energy-efficiency testing activities of the Mobile Energy Laboratory

    SciTech Connect (OSTI)

    Parker, G.B.

    1991-01-01T23:59:59.000Z

    This report summarizes energy-efficiency testing activities during the first and second quarters of fiscal year 1990 applying the Mobile Energy Laboratory (MEL) testing capabilities. Four MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) for energy testing and program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities.

  5. Regional Centre for Renewable Energy and Energy Efficiency Feed | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to:Co JumpRETScreenJam HomeReedy JumpEnergy

  6. Energy Department Announces Regional Winners of University Clean Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. StevenSolar PowerHanford'sSystemsBusiness

  7. Category:Clean Energy Economy Regions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Status of casesCaliper Log

  8. Non-Residential Energy Code National and Regional Codes

    E-Print Network [OSTI]

    Non-Residential Energy Code Comparison National and Regional Codes David Baylon Mike Kennedy #12 2003 · ASHRAE 90.1 2001 & addenda · E-Benchmark Guidelines (NBI) #12;Approach · Comparison of the State;Approach (cont.) · Provisions compared ­ Lighting power ­ Lighting controls ­ Mechanical systems ­ Building

  9. Implementation Report: Energy Conservation Activities

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy MediaRequirementsto Section 141 of the

  10. Key Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer Somers AboutEnergyKansas| Kerr-PhilpottAbout the

  11. Active Sensors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergy InformationAclara JumpLogsEnergySensors Jump

  12. E-Print Network 3.0 - active region magnetic Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND DYNAMICS OF INTERCONNECTING LOOPS AND CORONAL HOLES IN ACTIVE LONGITUDES Summary: Sun. All hot active region loops are visible in this wavelength. Eruptions of new' and...

  13. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Ofman, L.; Wang, T. J. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Davila, J. M. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

    2012-08-01T23:59:59.000Z

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  14. Implications of Regional Transmission Organization Design for Renewable Energy Technologies

    SciTech Connect (OSTI)

    Porter, K.

    2002-05-01T23:59:59.000Z

    This report summarizes the development of Regional Transmission Organizations (RTOs) and assesses the potential implications of market rules for renewable energy technologies. The report focuses on scheduling provisions, as these have proved problematic in some cases for intermittent renewable energy technologies. Market rules of four RTOs-the Pennsylvania-Maryland-New Jersey ISO, the ERCOT ISO, the Midwest ISO and the New York ISO (NYISO)-were examined to determine the impact on intermittent renewable energy projects such as wind energy generators. Also, a more general look was taken at how biomass power may fare in RTOs, specifically whether these technologies can participate in ancillary service markets. Lastly, an assessment was made regarding the implications for renewable energy technologies of a Northeast-wide RTO that would combine the three existing Northeast ISOs (the aforementioned PJM and NYISOs, as well as ISO New England).

  15. The Confined X-class Flares of Solar Active Region 2192

    E-Print Network [OSTI]

    Thalmann, J K; Temmer, M; Veronig, A M

    2015-01-01T23:59:59.000Z

    The unusually large NOAA active region 2192, observed in October 2014, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north-south oriented magnetic system of arcade fields served as a strong, also lateral, confinement for a series of large two-ribbon flares originating from the core of the active region. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this active region was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power law spectrum, but that only a small fraction was accelerated to high ener...

  16. Primary Science of Energy Teacher and Student Guides (42 Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide (42 Activities) Intermediate Energy Infobook Activities (29 Activities) Thermodynamics Teacher and Student Guides (6 Activities) Features Find fun and introductory...

  17. Lubricants Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature Combustion DemonstratorEast Fork

  18. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01T23:59:59.000Z

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  19. NREL: Energy Analysis - Key Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email ContactJEDI

  20. Compare Activities by Energy Conservation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180

  1. 1 Managed by UT-Battelle for the U.S. Department of Energy Global and regional drivers of

    E-Print Network [OSTI]

    activity and the carbon intensity of energy sources. Our study shows that no region is decarbonizing its/Science/Biological & Environmental Research Worldwide emissions of man-made carbon dioxide are rising faster than even the worst case, leaped to over 3% per year from 2000 to 2004. We divided the world into nine regions and analysed

  2. Consumer Attitudes About Renewable Energy: Trends and Regional Differences

    SciTech Connect (OSTI)

    Natural Marketing Institute, Harleysville, Pennsylvania

    2011-04-01T23:59:59.000Z

    The data in this report are taken from Natural Marketing Institute's (NMI's) Lifestyles of Health and Sustainability Consumer Trends Database. Created in 2002, the syndicated consumer database contains responses from 2,000 to 4,000 nationally representative U.S. adults (meaning the demographics of the sample are consistent with U.S. Census findings) each year. NMI used the database to analyze consumer attitudes and behavior related to renewable energy and to update previously conducted related research. Specifically, this report will explore consumer awareness, concerns, perceived benefits, knowledge of purchase options, and usage of renewable energy as well as provide regional comparisons and trends over time.

  3. Key Activities in Energy Efficiency | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7JanuaryWASTE-TO-ENERGY:About » Key Activities

  4. Regional Test Centers Breaking Down Barriers to Solar Energy Deployment |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSiting Guidelines | Department ofRegional

  5. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect (OSTI)

    Cheung, M. C. M.; Title, A. M. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Rempel, M. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Schuessler, M. [Max Planck Institute for Solar System Research, Katlenburg-Lindau, 37191 (Germany)

    2010-09-01T23:59:59.000Z

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  6. Excitation energy dependence of fission in the mercury region

    E-Print Network [OSTI]

    J. D. McDonnell; W. Nazarewicz; J. A. Sheikh; A. Staszczak; M. Warda

    2014-06-26T23:59:59.000Z

    Background: Recent experiments on beta-delayed fission reported an asymmetric mass yield in the neutron-deficient nucleus 180Hg. Earlier experiments in the mass region A=190-200 close to the beta-stability line, using the (p,f) and (\\alpha,f) reactions, observed a more symmetric distribution of fission fragments. While the beta-delayed fission of 180Hg can be associated with relatively low excitation energy, this is not the case for light-ion reactions, which result in warm compound nuclei. Purpose: To elucidate the roles of proton and neutron numbers and excitation energy in determining symmetric and asymmetric fission yields, we compute and analyze the isentropic potential energy surfaces of 174,180,198Hg and 196,210Po. Methods: We use the finite-temperature superfluid nuclear density functional theory, for excitation energies up to E*=30MeV and zero angular momentum. For our theoretical framework, we consider the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Results: For 174,180Hg, we predict fission pathways consistent with asymmetric fission at low excitation energies, with the symmetric fission pathway opening very gradually as excitation energy is increased. For 198Hg and 196Po, we expect the nearly-symmetric fission channel to dominate. 210Po shows a preference for a slightly asymmetric pathway at low energies, and a preference for a symmetric pathway at high energies. Conclusions: Our self-consistent theory suggests that excitation energy weakly affects the fission pattern of the nuclei considered. The transition from the asymmetric fission in the proton-rich nuclei to a more symmetric fission in the heavier isotopes is governed by the shell structure of pre-scission configurations.

  7. A self-consistent nonlinear force-free solution for a solar active region magnetic M.S. Wheatland

    E-Print Network [OSTI]

    Régnier, Stéphane

    fields 1. Introduction Solar coronal magnetic fields provide the source of energy for solar flaresA self-consistent nonlinear force-free solution for a solar active region magnetic field M.S. Wheatland Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia m

  8. Secondary Energy Infobook and Secondary Infobook Activities (19 Activities)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergy EconomyWindHydrogenHydrogen &Page Dedicated toActivities

  9. File:LongValley Regional.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdfLongValley Regional.pdf Jump to:

  10. Approximations to the Distributed Activation Energy Model

    E-Print Network [OSTI]

    McGuinness, Mark

    ), used for the pyrolysis of a range of materials (including coal, biomass, residual oils and kerogen applies to the pyrolysis of other materials, including biomass, residual oils, resin chars [1Approximations to the Distributed Activation Energy Model for Pyrolysis C.P. Please, 1 M.J. Mc

  11. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    E-Print Network [OSTI]

    Moon, Kevin R; Delouille, Veronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O

    2015-01-01T23:59:59.000Z

    Complexity of an active region is related to its flare-productivity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from the magnetogram to analyze separately the core part of an active region fr...

  12. LOW-LATITUDE CORONAL HOLES, DECAYING ACTIVE REGIONS, AND GLOBAL CORONAL MAGNETIC STRUCTURE

    SciTech Connect (OSTI)

    Petrie, G. J. D. [National Solar Observatory, Tucson, AZ 85719 (United States); Haislmaier, K. J. [George Mason University, Fairfax, VA 22030 (United States)

    2013-10-01T23:59:59.000Z

    We study the relationship between decaying active-region magnetic fields, coronal holes, and the global coronal magnetic structure using Global Oscillations Network Group synoptic magnetograms, Solar TErrestrial RElations Observatory extreme-ultraviolet synoptic maps, and coronal potential-field source-surface models. We analyze 14 decaying regions and associated coronal holes occurring between early 2007 and late 2010, 4 from cycle 23 and 10 from cycle 24. We investigate the relationship between asymmetries in active regions' positive and negative magnetic intensities, asymmetric magnetic decay rates, flux imbalances, global field structure, and coronal hole formation. Whereas new emerging active regions caused changes in the large-scale coronal field, the coronal fields of the 14 decaying active regions only opened under the condition that the global coronal structure remained almost unchanged. This was because the dominant slowly varying, low-order multipoles prevented opposing-polarity fields from opening and the remnant active-region flux preserved the regions' low-order multipole moments long after the regions had decayed. Thus, the polarity of each coronal hole necessarily matched the polar field on the side of the streamer belt where the corresponding active region decayed. For magnetically isolated active regions initially located within the streamer belt, the more intense polarity generally survived to form the hole. For non-isolated regions, flux imbalance and topological asymmetry prompted the opposite to occur in some cases.

  13. E-Print Network 3.0 - active region model Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collection: Physics 72 The main rationale In the 21st Summary: development in the ASEAN region. Chapter 3: The Space Activities of ASEAN Countries investigates the...

  14. E-Print Network 3.0 - active regions based Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on the concept of international cooperation. In order... development in the ASEAN region. Chapter 3: The Space Activities of ASEAN Countries investigates the...

  15. Optimal discrimination of multiple regions with an active polarimetric

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    regions (a target and a background). In this paper, we propose a methodology to determine the set. J. E. Solomon, "Polarization imaging," Appl. Opt. 20, 1537­1544 (1981). 2. J. S. Tyo, M. P. Rowe, E

  16. E-Print Network 3.0 - astrophysical energy region Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Field Summary: absorb- ing) region I 0( ) Free space I Ray s 0 s s1 Emergent intensity High Energy Astrophysics... High Energy Astrophysics: Radiation Field 36111...

  17. active region noaa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NWS, Allan Darling, Paula Davidson 23 NOAA Air Resources Laboratory Quarterly Activity Report Geosciences Websites Summary: and Hawaii Meteorological Grids for NCEP Atmospheric...

  18. Transportation Security Rulemaking Activities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartment ofChairs'TransmissionDepartmentActivities

  19. Technical Assistance Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesStevenSupplyAbout theActivities

  20. Density structure of an active region and associated moss using Hinode/EIS

    E-Print Network [OSTI]

    D. Tripathi; H. E. Mason; P. R. Young; G. Del Zanna

    2008-02-22T23:59:59.000Z

    Context: Studying the problem of active region heating requires precise measurements of physical plasma parameters such as electron density, temperature etc. It is also important to understand the relationship of coronal structures with the magnetic field. The Extreme-ultraviolet Imaging Spectrometer (EIS) aboard Hinode provides a rare opportunity to derive electron density simultaneously at different temperatures. Aims: MethodsWe study the density structure and characterise plasma in active regions and associated moss regions. In addition we study its relationship to the photospheric magnetic field. Methods: We used data recorded by the EIS, together with magnetic field measurements from the Michelson Doppler Imager (MDI) aboard SoHO and images recorded with the Transition Region And Coronal Explorer (TRACE) and X-Ray Telescope (XRT/Hinode). Results: We find that the hot core of the active region is densest with values as high as 10^10.5 cm^-3. The electron density estimated in specific regions in the active region moss decreases with increasing temperature. The moss areas were located primarily on one side of the active region, and they map the positive polarity regions almost exactly. The density within the moss region was highest at log T=5.8-6.1, with a value around 10^(10.0-10.5) cm^-3. The moss densities were highest in the strong positive magnetic field region. However, there was no such correlation for the negative polarity areas, where there was a large sunspot.

  1. State and Regional Policy Assistance - Program Activities | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable EnergySouthwest4,Energy Providing Technical

  2. active region transition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentrations (> 5times1018 Mx) associated with active network and plage, small-scale mixed fields are absent and any short loops can connect just the peripheries of the...

  3. The Sun and Its Energy (11 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and Its Energy (11 activities) The Sun and Its

  4. active region loop: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loops J.-Y. Lee1,2 , Graham that seems to be associated with separators with a smaller free energy. Subject headings: Sun: corona -- Sun: magnetic topology -- Sun: UV radiation...

  5. active region loops: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loops J.-Y. Lee1,2 , Graham that seems to be associated with separators with a smaller free energy. Subject headings: Sun: corona -- Sun: magnetic topology -- Sun: UV radiation...

  6. High energy activation data library (HEAD-2009)

    SciTech Connect (OSTI)

    Mashnik, Stepan G [Los Alamos National Laboratory; Korovin, Yury A [NON LANL; Natalenko, Anatoly A [NON LANL; Konobeyev, Alexander Yu [NON LANL; Stankovskiy, A Yu [NON LANL

    2010-01-01T23:59:59.000Z

    A proton activation data library for 682 nuclides from 1 H to 210Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed. A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the final HEAD-2009 library.

  7. A Filter Active-Set Trust-Region Method

    E-Print Network [OSTI]

    2007-09-11T23:59:59.000Z

    Sep 10, 2007 ... where x ? Rn, f : IRn ? IR and ci : IRn ? IR are twice continuously differentiable. ... by a trust-region or a proximal-point term, and we can either use the RLP step if the EQP has no solution, or usa a piecewise line-search along an arc. ..... abandon any attempt to reduce f(x) and instead enter a restoration.

  8. Non-parametric geodesic active regions: Method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA

    E-Print Network [OSTI]

    Frangi, Alejandro

    Non-parametric geodesic active regions: Method and evaluation for cerebral aneurysms segmentation compares to other alternative techniques based on deformable models, namely parametric geodesic active aneurysm; Geodesic active regions; Differential invariants; Non-parametric probability estimation; Model

  9. Implementation Study of Energy Conservation Recommendations in the Upper Midwest Region

    E-Print Network [OSTI]

    Heisinger, K. P.; Bassett, K.; Twedt, M. P.

    The South Dakota State University (SDSU) Industrial Energy Optimization Program (IEOP) and Energy Analysis and Diagnostic Center (EADC) program perform energy audits for industrial companies in the Upper Midwest region of the United States. Each...

  10. Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region

    SciTech Connect (OSTI)

    Kim, S. K.; Mrozowski, T.; Harrell-Seyburn, A.; Ehrlich, N.; Hembroff, L.; Bieburn, B.; Mazor, M.; McIntyre, A.; Mutton, C.; Parsons, G.; Syal, M. G.; Wilkinson, R.

    2014-09-01T23:59:59.000Z

    This project report details activities and results of the 'Market Characterization' project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristics of housing groups referred to as 'archetypes' by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market. Key research activities included; literature review, statistical analysis of national and regional data of the American Housing Survey (AHS) collected by the U.S. Census Bureau, analysis of Michigan specific data, development of a housing taxonomy of architectural styles, case studies of two local markets (i.e., Ann Arbor and Grand Rapids in Michigan) and development of a suggested framework (or process) for characterizing local markets. In order to gain a high level perspective, national and regional data from the U.S. Census Bureau was analyzed using cross tabulations, multiple regression models, and logistic regression to characterize the housing stock and determine dominant house types using 21 variables.

  11. Activities for Engaging High School Students in Energy Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARCI-CARES Harry Bolson, LEED Green Associate Washington University in St. Louis PARCI-CARES Activities for Engaging High School Students in Energy Studies Activities for...

  12. Regional Typhoon Activity1 as Revealed by Track Patterns and

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    , lifespan, inten- sity, and accumulated cyclone energy (ACE). Results indicate that the major cli- mate classify historical tropical cyclone (TC) tracks (1945-2007) over the western North Pacific into eight- rea. For ACE, the signal is mixed. To draw more definitive conclusions, a consis- tency check

  13. DOE's New Checklist Helps Plants Assess Energy Management Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    simple checklist can help a facility assess whether Superior Energy Performance (SEP) or ISO 50001 are practical next steps, or if foundational energy management activities...

  14. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    solar energy applications, and water conservation. TheseConservation and Solar Applications, U.S. Department of Energy. )energy technologies including solar active and passive systems, wind machines, biomass conversion systems, energy conservation

  15. A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2012-11-10T23:59:59.000Z

    The recent analysis of observations taken with the EUV Imaging Spectrometer and X-Ray Telescope instruments on Hinode suggests that well-constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission measure distribution in 15 active region cores. We focus on measurements in the 'inter-moss' region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 A channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high-temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high-temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

  16. Active Solar Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » Alternative FuelNewsWashington Auto ShowAtoActive Solar Heating

  17. Active Sites Additional Information | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OF THE|PhysicalGuideAcquisition,forActive

  18. Toward a national plan for the accelerated commercialization of solar energy: guidelines for regional planning

    SciTech Connect (OSTI)

    Miller, G.; Bennington, G.; Bohannon, M.; Gerstein, R.; Kannan, N.; Page, A.; Rebibo, K.; Shulman, M.; Swepak, P.; Taul, J.

    1980-01-01T23:59:59.000Z

    This document provides data and guidelines for the development of regional programs for the accelerated commercialization of solar energy. It estimates the solar potential for individual regions based on the solar resources, competing costs of energy, and specific regional characteristics. It also points out the primary decision makers, technology distributors, and potential barriers that should be addressed by a commercialization program.

  19. Energy Storage Activities in the United States Electricity Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair Senior...

  20. DOE West Kentucky Regional Science Bowl | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Technical College, 4810 Alben Barkley Dr, Paducah, KY 42001 DOE West Kentucky Regional Science Bowl Contact Regional Co-Coordinator - Buz Smith, DOE Public Affairs 270-441-6821...

  1. IBM Systems Director Active Energy Manager Installation and User's Guide

    E-Print Network [OSTI]

    IBM Systems Director Active Energy Manager Installation and User's Guide Version 4.3 #12;#12;IBM Systems Director Active Energy Manager Installation and User's Guide Version 4.3 #12;ii IBM Systems Director Active Energy Manager: Installation and User's Guide #12;About this book This book provides

  2. DIAGNOSING THE TIME-DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. I. LOW-FREQUENCY NANOFLARES

    SciTech Connect (OSTI)

    Bradshaw, S. J.; Reep, J. W. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: stephen.bradshaw@rice.edu, E-mail: jeffrey.reep@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2012-10-10T23:59:59.000Z

    Observational measurements of active region emission measures contain clues to the time dependence of the underlying heating mechanism. A strongly nonlinear scaling of the emission measure with temperature indicates a large amount of hot plasma relative to warm plasma. A weakly nonlinear (or linear) scaling of the emission measure indicates a relatively large amount of warm plasma, suggesting that the hot active region plasma is allowed to cool and so the heating is impulsive with a long repeat time. This case is called low-frequency nanoflare heating, and we investigate its feasibility as an active region heating scenario here. We explore a parameter space of heating and coronal loop properties with a hydrodynamic model. For each model run, we calculate the slope {alpha} of the emission measure distribution EM(T){proportional_to}T {sup {alpha}}. Our conclusions are: (1) low-frequency nanoflare heating is consistent with about 36% of observed active region cores when uncertainties in the atomic data are not accounted for; (2) proper consideration of uncertainties yields a range in which as many as 77% of observed active regions are consistent with low-frequency nanoflare heating and as few as zero; (3) low-frequency nanoflare heating cannot explain observed slopes greater than 3; (4) the upper limit to the volumetric energy release is in the region of 50 erg cm{sup -3} to avoid unphysical magnetic field strengths; (5) the heating timescale may be short for loops of total length less than 40 Mm to be consistent with the observed range of slopes; (6) predicted slopes are consistently steeper for longer loops.

  3. Distributed Energy Communications & Controls, Lab Activities - Summary

    SciTech Connect (OSTI)

    Rizy, D Tom [ORNL

    2010-01-01T23:59:59.000Z

    The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is occurring in part because modern air-conditioner and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip than older motors. These motors can stall in less than three cycles (0.05 s) when a fault, for example, on the sub-transmission system, causes voltage on the distribution system to sag to 70% or less of nominal. We completed a new test system for A/C compressor motor stall testing at the DECC Lab. The A/C Stall test system is being used to characterize when and how compressor motors stall under low voltage and high compressor pressure conditions. However, instead of using air conditioners, we are using high efficiency heat pumps. We have gathered A/C stall characterization data for both sustained and momentary voltage sags of the test heat pump. At low enough voltage, the heat pump stalls (compressor motor stops and draws 5-6 times normal current in trying to restart) due to low inertia and low torque of the motor. For the momentary sag, we are using a fast acting contactor/switch to quickly switch from nominal to the sagged voltage in cycles.

  4. Ring diagram analysis of the characteristics of solar oscillation modes in active regions

    E-Print Network [OSTI]

    S. P. Rajaguru; Sarbani Basu; H. M. Antia

    2001-08-14T23:59:59.000Z

    The presence of intense magnetic fields in and around sunspots is expected to modify the solar structure and oscillation frequencies. Applying the ring diagram technique to data from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO), we analyze the characteristics of high-degree f and p modes near active regions and compare them with the characteristics of the modes in quiet regions. As expected from earlier results, the f- and p-mode frequencies of high degree modes are found to be significantly larger in magnetically active regions. In addition, we find that the power in both f and p modes is lower in active regions, while the widths of the peaks are larger, indicating smaller lifetimes. We also find that the oscillation modes are more asymmetric in active regions than those in quiet regions, indicating that modes in active regions are excited closer to the surface. While the increase in mode frequency is monotonic in frequency, all other characteristics show more complex frequency dependences.

  5. Secondary Energy Infobook and Secondary Infobook Activities ...

    Broader source: Energy.gov (indexed) [DOE]

    Detailed information covers an introduction to energy, the forms of energy, global climate change, the history of electricity, and information about the major energy...

  6. Energy Department Announces Regional Winners of University Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    their HSE technology, manufacturers could increase profits by approximately 35 per solar panel based on efficiency gains and silver cost savings. Western Region -- First Look...

  7. Energy Department Announces Regional Winners of University Clean...

    Energy Savers [EERE]

    design flexibility. One potential application for this innovation is in designing tanks to store natural gas more efficiently in motor vehicles. Western Midwest Region (run...

  8. Federal Biomass Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

  9. Physical Constraints on, and a Model for, the Active Regions in Seyfert Galaxies

    E-Print Network [OSTI]

    Sergei Nayakshin; Fulvio Melia

    1997-05-30T23:59:59.000Z

    We discuss several physical constraints on the nature of the Active Regions (AR) in Seyfert 1 Galaxies, and show that a plausible model consistent with these constraints is one in which the ARs are magnetically confined and ``fed''. The unique X-ray index of these sources points to a large compactness parameter ($l\\gg 1$). This, together with the conditions required to account for the observed optical depth being close to unity, suggests that the magnetic energy density in the AR should be comparable to the equipartition value in the accretion disk, and that it should be released in a flare-like event above the surface of the cold accretion disk. We consider the various issues pertaining to magnetic flares and attempt to construct a coherent picture, including a reason for the optical depth in the AR being $\\sim 1$, and an understanding of the characteristics of the X-ray reflection component and the power density spectra associated with this high-energy emission.

  10. Femtosecond Chemically Activated Reactions: Concept of Nonstatistical Activation at High Thermal Energies

    E-Print Network [OSTI]

    Kim, Sang Kyu

    Femtosecond chemical activation of reactions at very high thermal energies, much above the bond energyFemtosecond Chemically Activated Reactions: Concept of Nonstatistical Activation at High Thermal Energies Sang Kyu Kim, Ju Guo, J. Spencer Baskin, and Ahmed H. Zewail* Arthur Amos Noyes Chemical Physics

  11. New Jersey Joins the Energy Department's Carbon Sequestration Regional

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy SecondWells |Energy ServicesInvestment

  12. RAPID COMMUNICATION Activation of Distinct Motor Cortex Regions During Ipsilateral and

    E-Print Network [OSTI]

    Schaechter, Judith D.

    RAPID COMMUNICATION Activation of Distinct Motor Cortex Regions During Ipsilateral, Judith D. Schaechter, complex motor tasks (Rao et al. 1993; Salmelin et al. 1995), George Bush, and Bruce R. Rosen. Activation of distinct motor in the generation of increased levels of force (Dettmers et

  13. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M., E-mail: schryver@lmsal.co [Lockheed Martin Advanced Technology Center, Palo Alto, CA 94304 (United States)

    2010-08-20T23:59:59.000Z

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  14. West KY Regional Middle School Science Bowl | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department ofEnergy Is Everywhere! Webinar: Energy IsWelcomeWendy CainKY

  15. Wind energy resource atlas. Volume 3. Great Lakes Region

    SciTech Connect (OSTI)

    Paton, D.L.; Bass, A.; Smith, D.G.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01T23:59:59.000Z

    The Great Lakes Region atlas assimilates six collections of wind resource data, one for the region and one for each of the five states that compose the Great Lakes region: Illinois, Indiana, Michigan, Ohio, Wisconsin. At the state level, features of the climate, topography, and wind resource are discussed in greater detail than in the regional discussion and the data locations on which the assessment is based are mapped. Variations over several time scales in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and of hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  16. Energy and Development: Activities in Sub-Saharan Africa

    E-Print Network [OSTI]

    reduction strategy / MDGs #12;African Rural Energy Enterprise Development - AREED ENDA MFC KITE TaTEDO CEEEZEnergy and Development: Activities in Sub-Saharan Africa Gordon Mackenzie Energy Programme Coordinator UNEP Risø Centre #12;Energy and Development: Activities in Sub-Saharan Africa · AREED · EU

  17. Reconstruction of the Free Energy in the Metastable Region using the Path Ensemble

    E-Print Network [OSTI]

    Heermann, Dieter W.

    Reconstruction of the Free Energy in the Metastable Region using the Path Ensemble Armando Ticona which we reconstruct the free energy as a function of the magnetic field, temperature and system size. From the reconstructed free energy, we obtain the free energy barrier that is associated

  18. Analyzing the Regional Impact of a Fossil Energy Cap in China

    E-Print Network [OSTI]

    energy products and an energy saving allowance trading market is the most cost- effective design, while in large welfare losses in some provinces. Capping fossil energy use at the national level is foundAnalyzing the Regional Impact of a Fossil Energy Cap in China Da Zhang, Valerie Karplus, Sebastian

  19. NREL: Energy Analysis - Regional Energy Deployment System (ReEDS) Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version EmailBookmarkRegional

  20. Financial and Activity Reports | Department of Energy

    Office of Environmental Management (EM)

    - May 31, 2013 April 30, 2013 Financial and Activity Report - April 30, 2013 March 1, 2013 Financial and Activity Report - March 1, 2013 February 22, 2013 Financial and Activity...

  1. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    Demonstrating solar energy and energy conservation retro-toilet, energy efficient conservation devices, passive solar

  2. CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin [ORNL

    2009-10-01T23:59:59.000Z

    Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and related outcomes were obtained from an existing DOE-supported data base. The information provided on the individual RACs was summed to yield totals for all the Centers combined for each relevant item.

  3. Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image

    E-Print Network [OSTI]

    Soatto, Stefano

    Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image Segmentation, The Ohio State University, OH 43202, U.S. b Department of Mathematics, Harbin Institute of Technology convex segmenta- tion method and the split Bregman technique into the region-scalable fitting energy

  4. Governance for Sustainable Development in the Arab Region | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon, Alabama: Energy ResourcesGoulds,Gove

  5. Plasma Diagnostics of Active Region Evolution and Implications for Coronal Heating

    E-Print Network [OSTI]

    R. O. Milligan; P. T. Gallagher; M. Mathioudakis; F. P. Keenan; D. S. Bloomfield

    2005-09-08T23:59:59.000Z

    A detailed study is presented of the decaying solar active region NOAA 10103 observed with the Coronal Diagnostic Spectrometer (CDS), the Michelson Doppler Imager (MDI) and the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). Electron density maps formed using Si X (356.03A/347.41A) show that the density varies from ~10^10 cm^-3 in the active region core, to ~7x10^8 cm^-3 at the region boundaries. Over the five days of observations, the average electron density fell by ~30%. Temperature maps formed using Fe XVI(335.41A)/Fe XIV(334.18A) show electron temperatures of \\~2.34x10^6 K in the active region core, and ~2.10x10^6 K at the region boundaries. Similarly to the electron density, there was a small decrease in the average electron temperature over the five day period. The radiative, conductive, and mass flow losses were calculated and used to determine the resultant heating rate (P_H). Radiative losses were found to dominate the active region cooling process. As the region decayed, the heating rate decreased by almost a factor of five between the first and last day of observations. The heating rate was then compared to the total unsigned magnetic flux (Phi_tot), yielding a power-law of the form P_H ~ Phi_tot^(0.81 +/- 0.32). This result suggests that waves rather than nanoflares may be the dominant heating mechanism in this active region.

  6. DOE Regional Tribal Energy Project Development and Finance Workshops...

    Energy Savers [EERE]

    with renewable energy project experts, get hands-on training on how to use technology resource assessment tools, and hear project case studies and lessons learned from other...

  7. Join Us for the Clean Energy Manufacturing Initiative's Western Regional

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentatJeff ZientsP.EnergySummit |

  8. Join a Regional Stakeholder Quadrennial Energy Review Meeting Near You |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentatJeff ZientsP.EnergySummit

  9. National Strategy for the Arctic Region | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’s EMGeothermal energy inCreatedNational

  10. Wind energy resource atlas. Volume 2. The North Central Region

    SciTech Connect (OSTI)

    Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01T23:59:59.000Z

    The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

  11. Wind energy resource atlas. Volume 7. The south central region

    SciTech Connect (OSTI)

    Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01T23:59:59.000Z

    This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  12. Correlations between promoter activity and its nucleotide positions in spacing region

    E-Print Network [OSTI]

    Li, Jingwei

    2015-01-01T23:59:59.000Z

    Transcription is one of the essential processes for cells to read genetic information encoded in genes, which is initiated by the binding of RNA polymerase to related promoter. Experiments have found that the nucleotide sequence of promoter has great influence on gene expression strength, or promoter activity. In synthetic biology, one interesting question is how we can synthesize a promoter with given activity, and which positions of promoter sequence are important for determining its activity. In this study, based on recent experimental data, correlations between promoter activity and its sequence positions are analyzed by various methods. Our results show that, except nucleotides in the two highly conserved regions, $-35$ box and $-10$ box, influences of nucleotides in other positions are also not neglectable. For example, modifications of nucleotides around position $-19$ in spacing region may change promoter activity in a large scale. The results of this study might be helpful to our understanding of bio...

  13. Towards activity-relevant attribution of IT energy usage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Towards activity-relevant attribution of IT energy usage From a previous study we were able to disaggregate per socket energy consumption from whole domicile energy consumption. We discovered that Home preparation/storage, it is the largest contributor to personal energy consumption. Understanding how and when

  14. West KY Regional Middle School Science Bowl | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudgetFurnacesLES'

  15. Tuesday Webcast for Industry: Regional Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7Department ofDepartment ofEngagingWebcast

  16. National Clean Energy Business Plan Competition: 2014 Regional Winners |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’s EM programAFlying high 1NadyaDepartment

  17. State and Regional policies that promote energy efficiency programs carried

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable EnergySouthwest4,Energy Providing Technicalout by

  18. Regional Super ESPC Saves Energy and Dollars at NASA Johnson Space Center

    Broader source: Energy.gov [DOE]

    NASA will save approximately $43 million in facility operations costs over the next 23 years at the Johnson Space Flight Center (JSC) in Houston, Texas, thanks to the largest delivery order signed to date under a Regional Super Energy Savings Performance Contract (Super ESPC). The U. S. Department of Energy's Federal Energy Management Program (FEMP) instituted these special Regional Super ESPCs to streamline the financing process for Federal agencies.

  19. KAir Battery Wins Southwest Regional Clean Energy Business Plan...

    Office of Environmental Management (EM)

    start-ups over the course of the three days of the Rice Business Plan Competition. A panel of over one hundred judges, representing experts from energy, biomedical, and...

  20. Cuyahoga Regional Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy Information

  1. NREL/OAS-Regional EERE Training Workshop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator Jump to:Training Workshop

  2. State and regional policies that promote energy efficiency programs carried

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview *Agency RecoveryOctoberDepartmentout by

  3. Asia-Pacific Regional Climate Change Adaptation Assessment | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior, Ontario: Energy

  4. BiBB Western Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuels LLCTravel

  5. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07T23:59:59.000Z

    Building energy consumption currently accounts for 28% of China’s total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  6. The performance of double active region InGaAsP lasers

    SciTech Connect (OSTI)

    Champagne, A.; Maciejko, R. (Dept. of Engineering Physics, Ecole Polytechnique, Montreal, Quebec H3C 3A7 (CA)); Glinski, J.M. (Bell-Northern Research, Nepean, Ontario K1Y 4H7 (CA))

    1991-10-01T23:59:59.000Z

    In this paper the light-current characteristic and temperature behavior of the double-carrier-confinement (DCC) InGaAsP laser are shown largely to be determined by auger recombination. The carrier distributions in the two active regions, especially their relative fractions, play a major role in device behavior. A self-consistent, comprehensive numerical laser model is used to analyze a set of devices showing that superlinearity and possibly bistability are due to saturable absorption in the second active region and that a high characteristic temperature is usually tied with a higher threshold current density because of substantial Auger recombination rates in this type of device.

  7. Environmental and Resource Economics Household Energy Demand in Urban China: Accounting for regional prices and rapid

    E-Print Network [OSTI]

    Energy Demand in Urban China: Accounting for regional prices and rapid income change Article Type and changing demographics. We estimate income and price elasticities for these energy types using a two effects into account, we find that total energy is price-inelastic for all income groups. For individual

  8. Northwest Energy Efficiency Alliance Request for Proposals for Evaluation of the Regional Technical Forum

    E-Print Network [OSTI]

    Northwest Energy Efficiency Alliance Request for Proposals for Evaluation of the Regional Technical Energy Efficiency Alliance (NEEA) will issue a time-and-materials contract, not to exceed $75,000. NEEA governments, public interest groups and energy efficiency industry representatives that operate in the states

  9. Field Document No.50 REGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIA

    E-Print Network [OSTI]

    AND TOMORROW IN ASIA #12;This publication is printed by the FAO Regional Wood Energy Development Programme wood energy data, leading to best estimates of future consumption. It also tries to estimate development in other relevant sectors like agriculture and energy is also strongly recommended. The document

  10. THE USE OF TRUST REGIONS IN KOHN-SHAM TOTAL ENERGY MINIMIZATION

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    -consistent and the Kohn-Sham (KS) total energy function associated with the system reaches the global minimum. It has longTHE USE OF TRUST REGIONS IN KOHN-SHAM TOTAL ENERGY MINIMIZATION CHAO YANG , JUAN C. MEZA , AND LIN system, is viewed in this paper as an optimization procedure that minimizes the Kohn- Sham total energy

  11. Technical Assistance Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAs OfficeEricOn

  12. Coulee Region Bio Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric633211°, -105.4247166°Open EnergyCoulee

  13. May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergyBioenergy16-11 HSSWork ForcePlanning

  14. Secretary Bodman Meets with Regional Energy Ministers in Hungary |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1to Launch New Solar FacilityEfforts

  15. Clean Energy Manufacturing Initiative: Regional and National Summit Series

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperior Energy5-1DenverbyDecember 2009,| Department

  16. KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer Somers AboutEnergy JulyNowK BasinsK79491.pdf|

  17. Smart Grid Regional and Energy Storage Demonstration Projects: Awards |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE) |SeniorItDepartmentManage theirAs

  18. DOE South Central Ohio Regional Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department of EnergyJanuary 4,andof Energy NewViable EGSDOE

  19. USDA Regional Conservation Partnership Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment of Energy AtNoticeMotorThis8, 2015 5:00PM

  20. Energy and Environment Partnership Programme for Mekong Region | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLowDiscussion- Q & A HomeDataEnergyEnergy

  1. Active and reactive power in stochastic resonance for energy harvesting

    E-Print Network [OSTI]

    Kubota, Madoka; Hikihara, Takashi

    2015-01-01T23:59:59.000Z

    A power allocation to active and reactive power in stochastic resonance is discussed for energy harvesting from mechanical noise. It is confirmed that active power can be increased at stochastic resonance, in the same way of the relationship between energy and phase at an appropriate setting in resonance.

  2. activation energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activation energy First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Active Energy Harvesting. Open Access...

  3. Regional variations of days of autonomy for solar energy applications

    SciTech Connect (OSTI)

    Grindle, E. II; Vliet, G.C.

    1999-07-01T23:59:59.000Z

    A problem faced by designers of stand-alone solar installations is the sizing of the collector area and storage capacity. From a curve of the minimum possible insolation over any period of days for a given site, a functional relationship between the collector-area and storage-capacity that provides a 0% probability of not meeting load (PNML) can be derived. This permits evaluating the regional variations in days-of-autonomy required to provide 100% reliability. Such variations are shown for Texas based on recent insolation data.

  4. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest Basin and Range Geothermal Region Jump to:

  5. San Diego Regional Clean Fuels Coalition | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsung Jump to:San ClementeRegional

  6. Solar Atlas (PACA Region - France) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) Jump to: navigation, search Tool

  7. Flux Emergence in the Solar Active Region NOAA 11158: The Evolution of Net Current

    E-Print Network [OSTI]

    Vemareddy, P; Karthikreddy, S

    2015-01-01T23:59:59.000Z

    We present a detailed investigation on the evolution of observed net vertical current using a time series of vector magnetograms of the active region (AR) NOAA 11158 obtained from Helioseismic Magnetic Imager. We also discuss the relation of net current to the observed eruptive events. The AR evolved from $\\beta\\gamma$ to $\\beta\\gamma\\delta$ configuration over a period of 6 days. The AR had two sub-regions of activity with opposite chirality: one dominated by sunspot rotation producing a strong CME, the other showing large shear motions producing a strong flare. The net current in each polarity over the CME producing sub-region increased to a maximum and then decreased when the sunspots got separated. The time profile of net current in this sub-region followed the time profile of the rotation rate of the S-polarity sunspot of the same sub-region. The net current in the flaring sub-region showed a sudden increase at the time of the strong flare and remained unchanged till the end of the observation, while the ...

  8. Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena , Sigurd little attention. this paper addresses optimal operation of a simple natural gas liquefaction process at all times. Keywords: Self-optimizing control, liquefied natural gas, LNG, PRICO, disturbances, optimal

  9. Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsen a

    E-Print Network [OSTI]

    Skogestad, Sigurd

    processes. 2. Optimal operation of a PRICO liquefaction plant 2.1. Plant description The PRICO processActive constraint regions for a natural gas liquefaction process Magnus G. Jacobsen a , Sigurd Keywords: Self-optimizing control Liquefied natural gas LNG PRICO Disturbances Optimal operation a b s t r

  10. REGION-BASED ACTIVE SURFACE MODELLING AND ALPHA MATTING FOR UNSUPERVISED TUMOUR SEGMENTATION IN PET

    E-Print Network [OSTI]

    Wang, Jue

    REGION-BASED ACTIVE SURFACE MODELLING AND ALPHA MATTING FOR UNSUPERVISED TUMOUR SEGMENTATION IN PET University, UK. 3. Adobe Systems, Seattle, USA. 4. Turku PET Center and Department of Oncology imaging. We have validated our method on real PET images of head-and-neck cancer patients as well

  11. FLOWS AT THE EDGE OF AN ACTIVE REGION: OBSERVATION AND INTERPRETATION

    SciTech Connect (OSTI)

    Boutry, C.; Buchlin, E.; Vial, J.-C. [Universite Paris Sud, Institut d'Astrophysique Spatiale, UMR8617, 91405 Orsay (France); Regnier, S., E-mail: eric.buchlin@ias.u-psud.fr [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom)

    2012-06-10T23:59:59.000Z

    Upflows observed at the edges of active regions have been proposed as the source of the slow solar wind. In the particular case of Active Region (AR) 10942, where such an upflow has been already observed, we want to evaluate the part of this upflow that actually remains confined in the magnetic loops that connect AR 10942 to AR 10943. Both active regions were visible simultaneously on the solar disk and were observed by STEREO/SECCHI EUVI. Using Hinode/EIS spectra, we determine the Doppler shifts and densities in AR 10943 and AR 10942 in order to evaluate the mass flows. We also perform magnetic field extrapolations to assess the connectivity between AR 10942 and AR 10943. AR 10943 displays a persistent downflow in Fe XII. Magnetic extrapolations including both ARs show that this downflow can be connected to the upflow in AR 10942. We estimate that the mass flow received by AR 10943 areas connected to AR 10942 represents about 18% of the mass flow from AR 10942. We conclude that the upflows observed on the edge of active regions represent either large-scale loops with mass flowing along them (accounting for about one-fifth of the total mass flow in this example) or open magnetic field structures where the slow solar wind originates.

  12. Analysis Activities at National Renewable Energy Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on NREL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  13. Optical power of semiconductor lasers with a low-dimensional active region

    SciTech Connect (OSTI)

    Asryan, Levon V., E-mail: asryan@vt.edu [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Sokolova, Zinaida N., E-mail: zina.sokolova@mail.ioffe.ru [Ioffe Physico-Technical Institute, St. Petersburg 194021 (Russian Federation)

    2014-01-14T23:59:59.000Z

    A comprehensive analytical model for the operating characteristics of semiconductor lasers with a low-dimensional active region is developed. Particular emphasis is given to the effect of capture delay of both electrons and holes from a bulk optical confinement region into a quantum-confined active region and an extended set of rate equations is used. We derive a closed-form expression for the internal quantum efficiency as an explicit function of the injection current and parameters of a laser structure. Due to either electron or hole capture delay, the internal efficiency decreases with increasing injection current above the lasing threshold thus causing sublinearity of the light-current characteristic of a laser.

  14. Ocean Power (4 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 -OSSGasof Energy Ocean Energy

  15. SEEC- Regional Energy Baselines and Measurement and Verification Protocols

    E-Print Network [OSTI]

    Kim, H.; Haberl, J. S.; Verdict, M.

    1965 1970 1975 1980 1985 1990 1995 2000 2005 T o ta l E n e rg y U s e p e r C a p it a ( 1 0 6 B tu ) Y e a r Tota l Ene rgy Use per Ca pita : U.S . vs. SE EC 12 - Sta tes (1 96 0 - 2006) S E E C 1 2 - S t a t e s US Hyojin Kim Jeff... the source, selected data codes, and term definitions. The stated deliverables for the SEEC Subtask 3.1 consists of four parts: ? Energy use per capita ranked by state for 2006 (latest year data available); ? Historical energy use per capita...

  16. North County Regional Resource Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City)Norristown,Braddock isStateCentral

  17. LAC Regional Platform Workshop Agenda | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of TechnologyL-Shaped FlumeLAC

  18. LAC Regional Platform Workshop General Information | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of TechnologyL-Shaped

  19. LAC Regional Platform Workshop Links | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of TechnologyL-ShapedWorkshop

  20. LAC Regional Platform Workshop Participant Package | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of

  1. LAC Regional Platform Workshop Report | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLAC Workshop Announcement Agenda

  2. LEDSGP/about/regional-platforms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools <Platform

  3. National Science Bowl Regional Roundup | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn

  4. Regional Small Business Summit Material | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSiting Guidelines | Department of

  5. MENA-GTZ EERE Regional Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyM Communications Smart GridMC

  6. Central Nevada Seismic Zone Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedarCAPSCentral High

  7. Bayshore Regional Sewerage Authority (BRSA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:Sector BiomassBayport

  8. Geothermal Literature Review At Cascades Region (Vice, 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et Al., 1996) |

  9. Geothermometry At Yellowstone Region (Fournier, 1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico -Information

  10. Regional Greenhouse Gas Initiative Inc RGGI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge And Piedmont Provinces | Open EnergyDynamicsRGGI

  11. Papua New Guinea Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolar Jump to:PamukorenPanolaPanton,Paper

  12. Category:Smart Grid Projects - Regional Demonstrations | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJumpInformation Manufacturing category.

  13. Incubateur Regional Poitou Charentes IRPC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigationDesert PeakIncubator

  14. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  15. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  16. The New House of the Region of Hannover: Energy Efficiency in a Public Private Partnership

    E-Print Network [OSTI]

    Plesser, S.; Fisch, M. N.

    2007-01-01T23:59:59.000Z

    The “New House of the Region of Hannover“ is the first building in Germany that has been built according to the Standard „EnOB - Energieoptimiertes Bauen“ („Energy optimized building“) as defined by the German Ministry of Economics and Technology...

  17. Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST3 AÇORIANO ORIENTAL SEGUNDA-FEIRA, 5 DE MARÇO DE

  18. regional clean energy application centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions3Images.APS-DPPA

  19. 2014 FIRST Robotics Smoky Mountain Regionals | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.Carbon Storage R&D ProjectEarth2014

  20. Microsoft Word - PghRegionEnergy3.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWERFebruarySavebasedSAR.doc Microsoft Word

  1. California Save Energy Now: State, Regional, and Local Delivery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPE OF131:770:9AprilofDepartment of

  2. Cape Cod Regional Transit Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannon (Various) Jump to:IICantuaCape Cod

  3. Central African Regional Program for the Environment (CARPE) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedarCAPS JumpForestry

  4. Central Nevada Seismic Zone Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedarCAPSCentral High(Redirected

  5. Snake River Plain Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy Ltd JumpSmoky

  6. Snake River Plain Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy Ltd JumpSmokySnake River

  7. Milestone for Regional Test Center in Vermont | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 MasterAcquisitiTechnology | Department of EnergyMilestone

  8. More Regional Science Bowl Winners | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department of EnergyDepartmentJuly 2013 MonthlyPage)

  9. National Clean Energy Business Plan Competition: Six Regional Winners

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department U.S. Department of Energy OfficeWomenCleanAdvance

  10. Americas Region Partnerships and Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative1AdvancedVehicles »ofAmericas

  11. Regional Economic Models, Inc. (REMI) Model | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs|ReflectionEnergyEconomic

  12. Category:Latin America Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to: navigation,AreasFluid

  13. Gulf of California Rift Zone Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump Agency/Company(RedirectedPattern EnergyJump

  14. Massachusetts Save Energy Now-State, Local, and Regional Delivery |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small ModularDepartmentSummary of data reported

  15. Midwest Region Alternative Fuels Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project2 DOE

  16. Midwest Region Alternative Fuels Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project2

  17. Midwest Region Alternative Fuels Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project20

  18. NREL: Regional Energy Deployment System (ReEDS) Model - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7Working with Us ThePublications

  19. NREL: Regional Energy Deployment System (ReEDS) Model - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7Working with UsWebmaster Please

  20. Stockton Regional Water Control Facility Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: Energy ResourcesStockbridge is a town inInformation

  1. Analysis Activities at Fossil Energy/ National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on NETL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  2. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    Appropriate Energy Technology Resource Center .IX DOE Appropriate Energy Technology Pilot Program - PartIX DOE Appropriate Energy Technology Pilot Program - Part I;

  3. Weatherization and Intergovernmental Activities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget WaterWeatherization and

  4. Public Events and Activities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3of EnergyPublic Comment

  5. Active Project Justification Statement | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout -------------------------ISMActive Project

  6. Meetings and Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -ofMarc Morial

  7. Activities and Accomplishments | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout Us » FAQsUCNIOFActive ShooterRelated toand

  8. Low Specific Activity (LSA) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy InvitationLegaltoLiz

  9. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect (OSTI)

    Tripathi, Durgesh [Inter-University Centre for Astronomy and Astrophysics, Pune University Campus, Pune 411007 (India); Mason, Helen E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Klimchuk, James A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-07-01T23:59:59.000Z

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  10. X-ray heating and ionization of broad-emission-line regions in QSO's and active galaxies

    SciTech Connect (OSTI)

    Weisheit, J.C.; Shields, G.A.; Tarter, C.B.

    1980-07-01T23:59:59.000Z

    Absorption of x-rays deep within the broad-line emitting clouds in QSO's and the nuclei of active galaxies creates extensive zones of warm (T approx. 10/sup 4/K), partially ionized N/sub e//N approx. 0.1) gas. Because Lyman alpha photons are trapped in these regions, the x-ray energy is efficiently channeled into Balmer lines collisionally excited from the n = 2 level. The HI regions plus the HII regions created by ultraviolet photons illuminating the surfaces of the clouds give rise to integrated L..cap alpha../H..cap alpha.. line emission ratios between 1 and 2. Enhanced MgII line emission from the HI regions gives rise to integrated MgII/H..cap alpha.. ratios near 0.5. The OI line lambda 8446 is efficiently pumped by trapped H..cap alpha.. photons and in the x-ray heated zone an intensity ratio I (lambda 8446)/I(H..cap alpha..) approx. < 0.1 is calculated. All of these computed ratios now are in agreement with observations.

  11. Interaction region design for a RHIC-based medium-energy electron-ion collider

    SciTech Connect (OSTI)

    Montag,C.; Beebe-Wang, J.

    2009-05-04T23:59:59.000Z

    As a first step in a staged approach towards a RHIC-based electron-ion collider, installation of a 4 GeV energy-recovery linac (ERL) in one of the RHIC interaction regions is currently under investigation. To minimize costs, the interaction region of this collider has to use the present RHIC magnets for focusing of the high-energy ion beam. Meanwhile, electron low-beta focusing needs to be added in the limited space available between the existing separator dipoles. We discuss the challenges and present the current design status of this e-A interaction region.

  12. OUTFLOWS AND DARK BANDS AT ARCADE-LIKE ACTIVE REGION CORE BOUNDARIES

    SciTech Connect (OSTI)

    Scott, J. T.; Martens, P. C. H.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2013-03-10T23:59:59.000Z

    Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for days and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.

  13. Exploring Wind Energy (12 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11for EnhancedEnergyEnergy

  14. EM Active Sites (large) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement || Department of Energy EISA 4322014Center

  15. Implementation Report: Energy Conservation Standards Activities

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy MediaRequirementsto Section 141 of

  16. Implementation Report: Energy Conservation Standards Activities

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy MediaRequirementsto Section 141

  17. Implementation Report: Energy Conservation Standards Activities

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy MediaRequirementsto Section

  18. ActiveGreenScore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean Energy LtdEnergy Information

  19. Assistance to Foreign Atomic Energy Activities

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 Sandia

  20. Assistance to Foreign Atomic Energy Activities

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to the Revised Part 810

  1. Ethics - Outside Activities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJustice EnvironmentalDISTRIBUTIO FROM: DAEGiftsMisuse

  2. URTAC Activities and Products | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track| Department of Energyon Energy and WaterUPS

  3. Low-energy proton capture reactions in the mass region 55-60

    E-Print Network [OSTI]

    Saumi Dutta; Dipti Chakraborty; G. Gangopadhyay; Abhijit Bhattacharyya

    2015-02-01T23:59:59.000Z

    Low energy proton capture reactions in the mass 55-60 region are studied in a microscopic optical model. Nuclear density profile is calculated using the relativistic mean field theory. The DDM3Y interaction is folded with the theoretical density to obtain the proton-nucleus optical potential. A definite set of normalization parameters has been obtained for the concerned mass region by comparing with all available experimental data in this mass region. These parameters have been used to obtain proton capture rates for astrophysically important reactions in this mass region.

  4. Low-energy proton capture reactions in the mass region 55-60

    E-Print Network [OSTI]

    Dutta, Saumi; Gangopadhyay, G; Bhattacharyya, Abhijit

    2015-01-01T23:59:59.000Z

    Low energy proton capture reactions in the mass 55-60 region are studied in a microscopic optical model. Nuclear density profile is calculated using the relativistic mean field theory. The DDM3Y interaction is folded with the theoretical density to obtain the proton-nucleus optical potential. A definite set of normalization parameters has been obtained for the concerned mass region by comparing with all available experimental data in this mass region. These parameters have been used to obtain proton capture rates for astrophysically important reactions in this mass region.

  5. Algeria-NREL Energy Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy Focus Area Renewable Energy,

  6. Energy of Moving Water (11 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting JobsClean Energy and Strengthenfrom Theof

  7. A Comprehensive Approach to Bi-National Regional Energy Planning in the Pacific Northwest

    SciTech Connect (OSTI)

    Matt Morrison

    2007-12-31T23:59:59.000Z

    The Pacific NorthWest Economic Region, a statutory organization chartered by the Northwest states of Alaska, Washington, Idaho, Montana, and Oregon, and the western Canadian provinces of British Columbia, Alberta, and the Yukon through its Energy Working Group launched a bi-national energy planning initiative designed to create a Pacific Northwest energy planning council of regional public/private stakeholders from both Canada and the US. There is an urgent need to deal with the comprehensive energy picture now before our hoped for economic recovery results in energy price spikes which are likely to happen because the current supply will not meet predicted demand. Also recent events of August 14th have shown that our bi-national energy grid system is intricately interdependent, and additional planning for future capacity is desperately needed.

  8. Part 810-ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES Sec.

    National Nuclear Security Administration (NNSA)

    Final Rule (effective March 25, 2015) Comments Part 810-ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES Sec. 810.1 Purpose. 810.2 Scope. 810.3 Definitions. 810.4 Communications....

  9. Property:Incentive/Active | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresentsGeothermalArea JumpActive Jump to:

  10. Particle acceleration and radiation by direct electric fields in flaring complex solar active regions

    E-Print Network [OSTI]

    Anastasiadis, Anastasios

    to connect the energy re- lease process with the acceleration of electrons in solar flares, using a CA modelParticle acceleration and radiation by direct electric fields in flaring complex solar active-Meudon, 92195 Meudon Cedex, FRANCE Abstract The acceleration and radiation of solar energetic particles

  11. Energy Conservation Contract (4 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ ContractEndstates InitiativeWebinar EnergyAwarenessConservation

  12. Energy From the Sun (10 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y.EnergyDepartment ofScheduleFrom the Sun

  13. Energy from The Wind (9 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting JobsClean Energy and Strengthenfrom The Wind

  14. Uganda-REEEP Energy Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:DevelopmentEnergyEurasiaLCI) JumpinREEEP

  15. Overview of Network Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place: Reno, NevadaOtter Tail Power

  16. EERE Office Activities | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizes dynamics

  17. LEDSGP/activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools <Platformsteering-committeeactivities

  18. Active Solar Heating Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OF

  19. Activated Aluminum Hydride Hydrogen Storage Compositions - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the EffectsAcknowledgment StatementGuidance »|

  20. NREL Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediationNASA-SurfaceNEPAActivities at

  1. NREL Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Information Exploration/DevelopmentLegalSolomons RFQ Jump

  2. Exploring Hydroelectricity (9 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy EnvironmentalJulyDepartment|March

  3. UDAC Activities and Products | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track |Weatherized|Energy-Water NexusUCOR

  4. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    Solar Energy For Composting Toilets ..The toilet is a Mullbank composting toilet. CBB 801-127T;:Ee: Award: SOLAR ENERGY FOR COMPOSTING TOILETS Applicant

  5. Energy Planning in Selected European Regions - Methods for Evaluating the Potential of Renewable Energy Sources.

    E-Print Network [OSTI]

    Sliz-Szkliniarz, Beata

    2013-01-01T23:59:59.000Z

    ??Given their potentially positive impact on climate protection and the preservation of fossil resources, alternative energy sources have become increasingly important for the energy supply… (more)

  6. South Africa-NREL Energy Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -Sonelgaz Jump to:SopogySouth Africa-NREL

  7. Active Financial Assistance Letters | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OF THE|PhysicalGuideAcquisition,for

  8. Focus Group Activities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire2Fleet

  9. BEDES Current Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21 AuditInsulatedEnergyBackground

  10. National Service Activation Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, Lake Hoare,JanuaryNational

  11. Compare All CBECS Activities: Total Energy Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel OilTotal

  12. Category:Exploration Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm JumpBLM)Development5Elkins,

  13. Environmental Justice Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1, 1996 EIS-0229:

  14. Coloring and Activity Book | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperiorThe Office ofScience MissionDepartmentThe

  15. Project Safety Oversight Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID ProjectBaseload

  16. Commercial Building Activities | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:EnergyServicesMoneyComments

  17. Active Soot Filter Regeneration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract.4 (February| Department

  18. Study Guides and Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge | Department of Energy SaveStudy Guides

  19. ASEAN-IEA Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,InformationWind EnergyPublic UtilitiesTechnology

  20. Biomass Energy: Student Handbook and Activity Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuelHelpBiologyB I I O O m m a a s s

  1. DEPARTMENT OF ENERGY PROCEDURES FOR INTELLIGENCE ACTIVITIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY Middle School Electric Car

  2. Category:Active Sensors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade Sierra SolutionsGeothermalpower.jpg Looking for the

  3. Peru-NREL Energy Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLCPascoagPerformance HomeMitigation

  4. Renewable Energy Activities: Choices for Tomorrow | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSitingPresentation Remy:

  5. Canada-NREL Energy Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide Wind

  6. Morocco-NREL Energy Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose,Stanley Capital Grp IncMoro,

  7. India-NETL Energy Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429 Throttled (bot load)Information

  8. Ghana-REEEP Energy Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: Energy Resources Jump to: navigation, searchEcobankREEEP

  9. India-REEEP Energy Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDSDloomis'sTransport inMEER)OpenActivities

  10. Photovoltaics and Solar Energy (2 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's ImpactAppendix3 Photo of theWe Mustache YouPhotos

  11. Energy From the Sun (10 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOEDeploymentHenry C. FoleyEnergy From the Sun (10

  12. Energy Savings Activities-Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOEDeploymentHenryEnergy Pumpkin

  13. Exploring Wind Energy (12 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy EnvironmentalJulyDepartment|MarchPhotovoltaics (9Wind

  14. Wind is Energy (17 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3 WindEnergy1 2This

  15. U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2

    SciTech Connect (OSTI)

    Jakubowski, F.M.

    1998-02-01T23:59:59.000Z

    Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

  16. The energy situation in the Asian-Pacific region and international cooperation

    SciTech Connect (OSTI)

    Sakakibara, S.

    1983-08-01T23:59:59.000Z

    After the second oil crisis (1979-80), the developing countries in the Asian-Pacific region adopted two major energy policies: conservation and the introduction and stimulation of alternative sources of energy to oil. Energy conservation was successfully achieved only in the newly industrialized countries, including Korea, Taiwan, and Singapore; the potential for conservation was very limited in other less-developed countries. In order to promote energy conservation, many countries adopted a policy of higher prices for particular petroleum products. The results of the push to introduce or expand nonoil alternative sources of energy have been quite encouraging. Excellent examples are the development of natural gas in Thailand, Malaysia, and Indonesia; of coal and lignite in Indonesia; and of lignite in Thailand. Energy management and the expansion of domestic energy resources in the developing countries will require not only imported technology but the upgrading of indigenous human resources to guarantee long-term and successful development.

  17. Maximal Net Baryon Density in the Energy Region Covered by NICA

    E-Print Network [OSTI]

    J. Cleymans

    2010-05-22T23:59:59.000Z

    There are several theoretical indications that the energy region covered by the proposed NICA accelerator in Dubna is an extremely interesting one. We present a review of data obtained in relativistic heavy ion collisions and show that there is a gap around 10 GeV where more and better precise measurements are needed. The theoretical interpretation can only be clarified by covering this energy region. In particular the strangeness content needs to be determined, data covering the full phase space ($4 \\pi$) would be very helpful to establish the thermal parameters of a possible phase transition.

  18. DIAGNOSING THE TIME DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. II. NANOFLARE TRAINS

    SciTech Connect (OSTI)

    Reep, J. W.; Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)] [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: jeffrey.reep@rice.edu, E-mail: stephen.bradshaw@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2013-02-20T23:59:59.000Z

    The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a 'nanoflare train' and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration {Delta} {sub H} to the post-train cooling and draining timescale {Delta} {sub C}, where {Delta} {sub H} depends on the number of heating events, the event duration and the time interval between successive events ({tau} {sub C}); (3) {tau} {sub C} may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for {Delta} {sub H} to be uniquely extracted from the ratio {Delta} {sub H}/{Delta} {sub C}.

  19. Energy Efficiency Investments in Public Facilities - Developing a Pilot Mechanism for Russia and Chelyabinsk Region

    SciTech Connect (OSTI)

    Evans, Meredydd; Roshchanka, Volha; Parker, Steven A.; Baranovskiy, Aleksandr

    2012-01-01T23:59:59.000Z

    Russian public sector buildings tend to be very inefficient, which creates vast opportunities for savings. This paper reviews opportunities to implement energy efficiency projects in Russian public buildings, created by new Russian legislation and regulations. Given Russia's limited experience with energy performance contracts (EPCs), a pilot project can help test an implementation mechanism. The authors use Chelyabinsk Region as an example to discuss opportunities, challenges and solutions to financing and implementing an EPC in Russia, navigating through federal requirements and specific local conditions.

  20. Transition Region Emission and Energy Input to Thermal Plasma During the Impulsive Phase of Solar Flares

    E-Print Network [OSTI]

    J. C. Raymond; G. Holman; A. Ciaravella; A. Panasyuk; Y. -K. Ko; J. Kohl

    2007-01-12T23:59:59.000Z

    The energy released in a solar flare is partitioned between thermal and non-thermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by 5 flares and subsequently scattered by O VI ions in the corona to determine the 5.0 thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray emitting gas is ~ 0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by non-thermal particles exceeds the X-ray and UV energy losses and the rate of increase of the thermal energy.

  1. Regional cerebral energy metabolism during intravenous anesthesia with etomidate, ketamine or thiopental

    SciTech Connect (OSTI)

    Davis, D.W.

    1987-01-01T23:59:59.000Z

    Regional brain glucose utilization (rCMRglc) was measured in rats during steady-state levels of intravenous anesthesia to determine if alterations in brain function due to anesthesia could provide information on the mechanisms of anesthesia. Intravenous anesthetics from three different chemical classes were studied: etomidate, ketamine and thiopental. All rCMRglc experiments were conducted in freely moving rats in isolation chambers, with the use of (6-/sup 14/C) glucose and guantitative autoradiography. Etomidate caused a rostral-to-caudal gradient of depression of rCMRglc. The four doses of etomidate did not differ in their effects on energy metabolism. Sub-anesthetic (5 mg kg/sup -1/) and anesthetic (30 mg kg /sup -1/) doses of ketamine produced markedly different patterns of behavior. Brain energy metabolism during the sub-anesthetic dose was stimulated in most regions, while the anesthetic dose selectively stimulated the hippocampus, leaving most brain regions unaffected. Thiopental produced a dose-dependent reduction of rCMRglc in all gray matter regions. No brain region was selectively affected. Comparison of the drug-specific alterations of cerebral energy metabolism suggests these anesthetics do not act through a common mechanism. The hypothesis that each acts by binding to specific cell membrane receptors is consistent with these observations.

  2. Stepped Pressure Equilibrium Code computes extrema of the multi-region, relaxed MHD energy principle

    E-Print Network [OSTI]

    Hudson, Stuart

    Stepped Pressure Equilibrium Code computes extrema of the multi-region, relaxed MHD energy Code, G. Dennis et al., PRL, (2013) Topological features correctly reproduced #12;SPEC: ongoing; · Recent applications a. Computed 1/x and -function singular currents in ideal equilibria; completed

  3. Analysis of Photoreaction in the Delta Energy Region by the Quantum Molecular Dynamics Approach

    E-Print Network [OSTI]

    Tomoyuki Maruyama; Koji Niita; Satoshi Chiba; Toshiki Maruyama; Akira Iwamoto

    1997-05-02T23:59:59.000Z

    We study the photoreaction in the delta energy region using the QMD approach. The proton and pion cross-sections are calculated and compared with experimental data. Through this work we examine the multistep contributions in the cross-sections and the {$\\pi - \\Delta$} dynamics.

  4. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    Digester for Small Farms HI-11 Solar Heating for a RuralFor Hawaiian Pig Farm Energy Needs. 29 HI~22 Solar Beeswax

  5. DOE to Participate in Colombian Regional Energy Meeting Ahead of Energy and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C.EnergyBasicStrategic

  6. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    B - Revised Description of: Biogas Energy for Hawaiian Smallprojected. Also, the low pressure biogas requires additional5000 - 5500 cubic feet of biogas (60% methane) daily may be

  7. DESCRIPTION OF ACTIVITIES AND SELECTED RESULTS FOR THE U.S. DEPARTMENT OF ENERGY S CLEAN ENERGY APPLICATION CENTERS: FISCAL YEAR 2010

    SciTech Connect (OSTI)

    Schweitzer, Martin [ORNL

    2011-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) sponsors a set of Clean Energy Application Centers that promote the development and deployment of clean energy technologies. There are eight regional centers that provide assistance for specific areas of the country plus a separate center operated by the International District Energy Association that provides technical assistance on district energy issues and applications to the regional centers. The original focus of the centers was on combined heat and power (CHP) alone but, beginning in fiscal year 2010, their scope expanded to include district energy systems and waste heat recovery. At that time, the official name of the centers changed from CHP Regional Application Centers (RACs) to Clean Energy Application Centers, and their number was expanded to include the previously-mentioned center focusing on district energy. Oak Ridge National Laboratory (ORNL) has performed two previous studies of RAC activities. The first one examined what the RACs had done each year from the initiation of the program through fiscal year (FY) 2008 and the second one examined RAC activities for the 2009 fiscal year. The most recent study, described in this report, examines what was accomplished in fiscal year 2010, the first year since the RACs expanded their focus and changed their name to Clean Energy Application Centers.

  8. Regional growth and energy supply: Is there an energy security issue?

    SciTech Connect (OSTI)

    Roop, J.M.; Freund, K.A.; Godoy-Kain, P.; Gu, A.Y.; Johnson, A.K.; Paananen, O.H.; Woodruff, M.G.

    1996-12-01T23:59:59.000Z

    This study examines how the growth of the developing world might affect energy markets in the future. Based on recent growth trends, world energy demand could reasonably be expected to grow from about 350 Exajoules (EJ: 1.0E18=0.95 Quad) to nearly 1025 EJ by the year 2020, nearly 3x current consumption estimates. Introduction of more energy-efficient technologies could reduce this growth by about 17% to 830 EJ. But one cannot rely exclusively on current trends to forecast future energy demand. The growth of the developing world will interact with supply to affect prices, which in turn will mitigate the growth of demand, and growth rates of energy use will be much more modes. Under the Business as Usual scenario, energy demand will grow to 835 EJ by 2020, and this could be reduced a further 15% to 714 EJ through the adoption of more energy efficient technologies. Fuel prices based on model results are analyzed. Energy security implications of rapid growth in the developing world are considered and found to be of likely little significance.

  9. American Recovery and Reinvestment Act Federal Energy Management Program Technical Assistance Project 244 US Coast Guard – Eastern Region

    SciTech Connect (OSTI)

    Sandusky, William F.

    2010-09-30T23:59:59.000Z

    This report documents the activities of a resource efficiency manager that served the US Coast Guard Eastern Region from November 23, 2009 through August 3, 2010.

  10. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    E-Print Network [OSTI]

    Mendes, Goncalo

    2014-01-01T23:59:59.000Z

    cold climate zone) buildings use least energy compared to other cold regions, mainly because of its high altitude and ample solar

  11. All Active DOE Technical Standards Document | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval ofAll Active DOE Technical

  12. South Africa-World Bank Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -Sonelgaz Jump to:SopogySouthEnergyEnergy

  13. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    o o o o Projects: Arizona California CA-173. Solar AquaDomeFrancisco, California Project Txpe: Award: SOLAR AQUADOMEOccidental, California P_roject T;:Ee: Award: SOLAR ENERGY

  14. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    within the house includes: passive solar heating and coolingof the house. Technical Details: The passive constructionhouse" (Other technologies include solar domestic water heating, composting toilet, energy efficient conservation devices, passive

  15. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    producing 258 million Btu annually. Over a lifetimewill produce about 2.58 billion Btu. REFERENCES Case, C.W. ,will provide 8.9 million Btu of energy :::nnual or about of

  16. Discussion of Air-Conditioning Energy-Savings in Hot-Summer and Cold-Winter Regions

    E-Print Network [OSTI]

    Zheng, W.; Gong, F.; Lou, X.; Cheng, J.

    2006-01-01T23:59:59.000Z

    Introducing several kinds of air-conditioning systems energy conservation measures, and according to the climate of the hot-summer and cold-winter region in China, this paper puts forward an overall conception for air-conditioning energy...

  17. Free Energy of Activation for the Comorosan Effect

    E-Print Network [OSTI]

    George E. Bass; Bernd Meibohm; James T. Dalton; Robert Sayre

    2007-06-11T23:59:59.000Z

    Initial reaction rate data for lactic dehydrogenase / pyruvate, lactic dehydrogenase / lactate and malic dehydrogenase / malate enzyme reactions were analyzed to obtain activation free energy changes of -329, -195 and -221 cal/mole, respectively, for rate increases associated with time-specific irradiation of the crystalline substrates prior to dissolution and incorporation in the reaction solutions. These energies, presumably, correspond to conformational or vibrational changes in the reactants or the activated complex. For the lactic dehydrogenase / pyruvate reaction, it is estimated that on the order of 10% of the irradiation energy (546 nm, 400 footcandles for 5 seconds) would be required to produce the observed reaction rate increase if a presumed photoproduct is consumed stoichiometrically with the pyruvate substrate. These findings are consistent with the proposition that the observed reaction rate enhancement involves photoproducts derived from oscillatory atmospheric gas reactions at the crystalline enzyme substrate surfaces rather than photo-excitations of the substrate molecules, per se.

  18. Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    SciTech Connect (OSTI)

    Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

    1980-02-01T23:59:59.000Z

    This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

  19. Get Current: Switch on Clean Energy Activity Book | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5Temperatures | DepartmentActivity Book Get

  20. MHD wave refraction and the acoustic halo effect around solar active regions - a 3D study

    E-Print Network [OSTI]

    Rijs, Carlos; Przybylski, Damien; Cally, Paul S

    2015-01-01T23:59:59.000Z

    An enhancement in high-frequency acoustic power is commonly observed in the solar photosphere and chromosphere surrounding magnetic active regions. We perform 3D linear forward wave modelling with a simple wavelet pulse acoustic source to ascertain whether the formation of the acoustic halo is caused by MHD mode conversion through regions of moderate and inclined magnetic fields. This conversion type is most efficient when high frequency waves from below intersect magnetic field lines at a large angle. We find a strong relationship between halo formation and the equipartition surface at which the Alfv\\'en speed $a$ matches the sound speed $c$, lending support to the theory that photospheric and chromospheric halo enhancement is due to the creation and subsequent reflection of magnetically dominated fast waves from essentially acoustic waves as they cross $a=c$. In simulations where we have capped $a$ such that waves are not permitted to refract after reaching the $a=c$ height, halos are non-existent, which su...

  1. High-resolution observations of active region moss and its dynamics

    E-Print Network [OSTI]

    Morton, R J

    2014-01-01T23:59:59.000Z

    The \\textit{High resolution Coronal Imager (Hi-C)} has provided the sharpest view of the EUV corona to date. In this paper we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads, that have widths with a mean and standard deviation of $440\\pm190$~km (Full Width Half Maximum). {The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere.} The emission decreases along the features implying the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation {of physical displacements of the moss fine-structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic b...

  2. MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY SDO IN ACTIVE REGION FUNNELS

    SciTech Connect (OSTI)

    Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Liu, W.; Title, A.; Aschwanden, M. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States)

    2011-10-20T23:59:59.000Z

    Recently, quasi-periodic, rapidly propagating waves have been observed in extreme ultraviolet by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) instrument in about 10 flare/coronal mass ejection (CME) events thus far. A typical example is the 2010 August 1 C3.2 flare/CME event that exhibited arc-shaped wave trains propagating in an active region (AR) magnetic funnel with {approx}5% intensity variations at speeds in the range of 1000-2000 km s{sup -1}. The fast temporal cadence and high sensitivity of AIA enabled the detection of these waves. We identify them as fast magnetosonic waves driven quasi-periodically at the base of the flaring region and develop a three-dimensional MHD model of the event. For the initial state we utilize the dipole magnetic field to model the AR and include gravitationally stratified density at coronal temperature. At the coronal base of the AR, we excite the fast magnetosonic wave by periodic velocity pulsations in the photospheric plane confined to a funnel of magnetic field lines. The excited fast magnetosonic waves have similar amplitude, wavelength, and propagation speeds as the observed wave trains. Based on the simulation results, we discuss the possible excitation mechanism of the waves, their dynamical properties, and the use of the observations for coronal MHD seismology.

  3. Rigidity-dependent cosmic ray energy spectra in the knee region obtained with the GAMMA experiment

    E-Print Network [OSTI]

    A. P. Garyaka; R. M. Martirosov; S. V. Ter-Antonyan; N. Nikolskaya; Y. A. Gallant; L. Jones; J. Procureur

    2007-04-24T23:59:59.000Z

    On the basis of the extensive air shower (EAS) data obtained by the GAMMA experiment, the energy spectra and elemental composition of the primary cosmic rays are derived in the 1-100 PeV energy range. The reconstruction of the primary energy spectra is carried out using an EAS inverse approach in the framework of the SIBYLL2.1 and QGSJET01 interaction models and the hypothesis of power-law primary energy spectra with rigidity-dependent knees. The energy spectra of primary H, He, O-like and Fe-like nuclei obtained with the SIBYLL interaction model agree with corresponding extrapolations of the balloon and satellite data to ~1 PeV energies. The energy spectra obtained from the QGSJET model show a predominantly proton composition in the knee region. The rigidity-dependent knee feature of the primary energy spectra for each interaction model is displayed at the following rigidities: ~2.5+/-0.2 PV (SIBYLL) and ~3.1-4.2 PV (QGSJET). All the results presented are derived taking into account the detector response, the reconstruction uncertainties of the EAS parameters, and fluctuations in the EAS development.

  4. Rigidity-dependent cosmic ray energy spectra in the knee region obtained with the GAMMA experiment

    E-Print Network [OSTI]

    Garyaka, A P; Ter-Antonian, S V; Nikolskaya, N; Gallant, Y A; Jones, L; Procureur, J

    2007-01-01T23:59:59.000Z

    On the basis of the extensive air shower (EAS) data obtained by the GAMMA experiment, the energy spectra and elemental composition of the primary cosmic rays are derived in the 1-100 PeV energy range. The reconstruction of the primary energy spectra is carried out using an EAS inverse approach in the framework of the SIBYLL2.1 and QGSJET01 interaction models and the hypothesis of power-law primary energy spectra with rigidity-dependent knees. The energy spectra of primary H, He, O-like and Fe-like nuclei obtained with the SIBYLL interaction model agree with corresponding extrapolations of the balloon and satellite data to ~1 PeV energies. The energy spectra obtained from the QGSJET model show a predominantly proton composition in the knee region. The rigidity-dependent knee feature of the primary energy spectra for each interaction model is displayed at the following rigidities: ~2.5+/-0.2 PV (SIBYLL) and ~3.1-4.2 PV (QGSJET). All the results presented are derived taking into account the detector response, th...

  5. Thermophotovoltaic energy conversion system having a heavily doped n-type region

    DOE Patents [OSTI]

    DePoy, David M. (Clifton Park, NY); Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY)

    2000-01-01T23:59:59.000Z

    A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

  6. Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows With Diffusion

    E-Print Network [OSTI]

    J. M. Fontenla; E. H. Avrett; R. Loeser

    2001-09-24T23:59:59.000Z

    In this paper we have extended our previous modeling of energy balance in the chromosphere-corona transition region to cases with particle and mass flows. The cases considered here are quasi-steady, and satisfy the momentum and energy balance equations in the transition region. We include in all equations the flow velocity terms and neglect the partial derivatives with respect to time. We present a complete and physically consistent formulation and method for solving the non-LTE and energy balance equations in these situations, including both particle diffusion and flows of H and He. Our results show quantitatively how mass flows affect the ionization and radiative losses of H and He, thereby affecting the structure and extent of the transition region. Also, our computations show that the H and He line profiles are greatly affected by flows. We find that line shifts are much less important than the changes in line intensity and central reversal due to the effects of flows. In this paper we use fixed conditions at the base of the transition region and in the chromosphere because our intent is to show the physical effects of flows and not to match any particular observations. However, we note that the profiles we compute can explain the range of observed high spectral and spatial resolution Lyman alpha profiles from the quiet Sun. We suggest that dedicated modeling of specific sequences of observations based on physically consistent methods like those presented here will substantially improve our understanding of the energy balance in the chromosphere and corona.

  7. Project Registration Number Assignments (Active) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItemsHiTek logo HiTekActive) Project

  8. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01T23:59:59.000Z

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

  9. NON-THERMAL RESPONSE OF THE CORONA TO THE MAGNETIC FLUX DISPERSAL IN THE PHOTOSPHERE OF A DECAYING ACTIVE REGION

    SciTech Connect (OSTI)

    Harra, L. K. [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Abramenko, V. I. [Big Bear Solar Observatory, 40386 N. Shore Lane, Big Bear City, CA 92314 (United States)

    2012-11-10T23:59:59.000Z

    We analyzed Solar Dynamics Observatory line-of-sight magnetograms for a decaying NOAA active region (AR) 11451 along with co-temporal Extreme-Ultraviolet Imaging Spectrometer (EIS) data from the Hinode spacecraft. The photosphere was studied via time variations of the turbulent magnetic diffusivity coefficient, {eta}(t), and the magnetic power spectrum index, {alpha}, through analysis of magnetogram data from the Helioseismic and Magnetic Imager (HMI). These measure the intensity of the random motions of magnetic elements and the state of turbulence of the magnetic field, respectively. The time changes of the non-thermal energy release in the corona was explored via histogram analysis of the non-thermal velocity, v {sub nt}, in order to highlight the largest values at each time, which may indicate an increase in energy release in the corona. We used the 10% upper range of the histogram of v {sub nt} (which we called V {sup upp} {sub nt}) of the coronal spectral line of Fe XII 195 A. A 2 day time interval was analyzed from HMI data, along with the EIS data for the same field of view. Our main findings are the following. (1) The magnetic turbulent diffusion coefficient, {eta}(t), precedes the upper range of the v {sub nt} with the time lag of approximately 2 hr and the cross-correlation coefficient of 0.76. (2) The power-law index, {alpha}, of the magnetic power spectrum precedes V {sup upp} {sub nt} with a time lag of approximately 3 hr and the cross-correlation coefficient of 0.5. The data show that the magnetic flux dispersal in the photosphere is relevant to non-thermal energy release dynamics in the above corona. The results are consistent with the nanoflare mechanism of the coronal heating, due to the time lags being consistent with the process of heating and cooling the loops heated by nanoflares.

  10. U.S. Department of Energy to Host Regional Energy Efficiency Conference in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractorCleanand Disposal

  11. Regional variations in US residential sector fuel prices: implications for development of building energy performance standards

    SciTech Connect (OSTI)

    Nieves, L.A.; Tawil, J.J.; Secrest, T.J.

    1981-03-01T23:59:59.000Z

    The Notice of Proposed Rulemaking for Energy Performance Standards for New Buildings presented life-cycle-cost based energy budgets for single-family detached residences. These energy budgets varied with regional climatic conditions but were all based on projections of national average prices for gas, oil and electricity. The Notice of Proposed Rulemaking indicated that further analysis of the appropriateness of various price measures for use in setting the Standards was under way. This part of that ongoing analysis addresses the availability of fuel price projections, the variation in fuel prices and escalation rates across the US and the effects of aggregating city price data to the state, Region, or national level. The study only provides a portion of the information required to identify the best price aggregation level for developing of the standards. The research addresses some of the economic efficiency considerations necessary for design of a standard that affects heterogeneous regions. The first section discusses the effects of price variation among and within regions on the efficiency of resource allocation when a standard is imposed. Some evidence of the extreme variability in fuel prices across the US is presented. In the second section, time series, cross-sectional fuel price data are statistically analyzed to determine the similarity in mean fuel prices and price escalation rates when the data are treated at increasing levels of aggregation. The findings of this analysis are reported in the third section, while the appendices contain price distributions details. The last section reports the availability of price projections and discusses some EIA projections compared with actual prices.

  12. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    SciTech Connect (OSTI)

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China); Su Jiangtao [Key Laboratory of Solar Activity, Chinese Academy of Sciences, Beijing 100012 (China); Li Hui [Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China); Ichimoto, Kiyoshi; Shibata, Kazunari, E-mail: ydshen@ynao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Kyoto 6078471 (Japan)

    2013-08-20T23:59:59.000Z

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  13. Regional Differences in the Price-Elasticity of Demand for Energy

    SciTech Connect (OSTI)

    Bernstein, M. A.; Griffin, J.

    2006-02-01T23:59:59.000Z

    At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

  14. EMERGING DIMMINGS OF ACTIVE REGIONS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Zhang Jun; Yang Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Liu Yang; Sun Xudong, E-mail: zjun@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn, E-mail: yliu@sun.stanford.edu, E-mail: xudong@sun.stanford.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

    2012-12-01T23:59:59.000Z

    Using the observations from the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we statistically investigate the emerging dimmings (EDs) of 24 isolated active regions (IARs) from 2010 June to 2011 May. All the IARs show EDs in lower-temperature lines (e.g., 171 A) at their early emerging stages. Meanwhile, in higher temperature lines (e.g., 211 A), the ED regions brighten continuously. There are two types of EDs: fan-shaped and halo-shaped. There are 19 fan-shaped EDs and 5 halo-shaped ones. The EDs appear to be delayed by several to more than ten hours relative to the first emergence of the IARs. The shortest delay is 3.6 hr and the longest is 19.0 hr. The EDs last from 3.3 hr to 14.2 hr, with a mean duration of 8.3 hr. Before the appearance of the EDs, the emergence rate of the magnetic flux of the IARs is between 1.2 Multiplication-Sign 10{sup 19} Mx hr{sup -1} to 1.4 Multiplication-Sign 10{sup 20} Mx hr{sup -1}. The larger the emergence rate is, the shorter the delay time is. While the dimmings appear, the magnetic flux of the IARs ranges from 8.8 Multiplication-Sign 10{sup 19} Mx to 1.3 Multiplication-Sign 10{sup 21} Mx. These observations imply that the reconfiguration of the coronal magnetic fields due to reconnection between the newly emerging flux and the surrounding existing fields results in a new thermal distribution which leads to a dimming for the cooler channel (171 A) and brightening in the warmer channels.

  15. Regional cooperation in energy efficiency standard-setting and labeling in North America

    SciTech Connect (OSTI)

    Wiel, Stephen; Van Wie McGrory, Laura

    2003-08-04T23:59:59.000Z

    The North American Energy Working Group (NAEWG) was established in 2001 by the governments of Canada, Mexico, and the United States. The goals of NAEWG are to foster communication and cooperation on energy-related matters of common interest, and to enhance North American energy trade and interconnections consistent with the goal of sustainable development, for the benefit of all three countries. At its outset, NAEWG established teams to address different aspects of the energy sector. One, the Energy Efficiency Expert Group, undertook activity in three areas: (1) analyzing commonalities and differences in the test procedures of Canada, Mexico, and the United States, and identifying specific products for which the three countries might consider harmonization; (2) exploring possibilities for increased mutual recognition of laboratory test results; and (3) looking at possibilities for enhanced cooperation in the Energy Star voluntary endorsement labeling program. To support NAEWG's Expert Group on Energy Efficiency (NAEWG-EE), USDOE commissioned Lawrence Berkeley National Laboratory, representing the Collaborative Labeling and Appliance Standards Program (CLASP), to prepare a resource document comparing current standards, labels, and test procedure regulations in Canada, Mexico, and the United States. The resulting document identified 46 energy-using products for which at least one of the three countries has energy efficiency regulations. Three products--refrigerators/freezers, room air conditioners, and integral horsepower three-phase electric motors--have identical minimum energy performance standards (MEPS) and test procedures in the three countries. Ten other products have different MEPS and test procedures, but have the near-term potential for harmonization. NAEWG-EE is currently working to identify mechanisms for mutual recognition of test results. With consultative support from the United States and Canada through NAEWG-EE, Mexico is exploring possibilities for extending the Energy Star endorsement label to Mexico.

  16. INTERMITTENCY AND MULTIFRACTALITY SPECTRA OF THE MAGNETIC FIELD IN SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Abramenko, Valentyna; Yurchyshyn, Vasyl [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2010-10-10T23:59:59.000Z

    We present the results of a study of intermittency and multifractality of magnetic structures in solar active regions (ARs). Line-of-sight magnetograms for 214 ARs of different flare productivity observed at the center of the solar disk from 1997 January until 2006 December are utilized. Data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory operating in the high resolution mode, the Big Bear Solar Observatory digital magnetograph, and the Hinode SOT/SP instrument were used. Intermittency spectra were derived from high-order structure functions and flatness functions. The flatness function exponent is a measure of the degree of intermittency. We found that the flatness function exponent at scales below approximately 10 Mm is correlated with flare productivity (the correlation coefficient is -0.63). The Hinode data show that the intermittency regime is extended toward small scales (below 2 Mm) as compared to the MDI data. The spectra of multifractality, derived from the structure functions and flatness functions, are found to be broader for ARs of higher flare productivity as compared to those of low flare productivity. The magnetic structure of high-flaring ARs consists of a voluminous set of monofractals, and this set is much richer than that for low-flaring ARs. The results indicate the relevance of the multifractal organization of the photospheric magnetic fields to the flaring activity. The strong intermittency observed in complex and high-flaring ARs is a hint that we observe a photospheric imprint of enhanced sub-photospheric dynamics.

  17. MAGNETIC RECONNECTION ALONG QUASI-SEPARATRIX LAYERS AS A DRIVER OF UBIQUITOUS ACTIVE REGION OUTFLOWS

    SciTech Connect (OSTI)

    Baker, D.; Van Driel-Gesztelyi, L.; Murray, M. J. [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Mandrini, C. H. [Instituto de AstronomIa y fisica del Espacio, CONICET-UBA, CC. 67, Suc. 28, 1428 Buenos Aires (Argentina); Demoulin, P. [Observatoire de Paris, LESIA, UMR 8109 (CNRS), Meudon-Principal Cedex (France)

    2009-11-01T23:59:59.000Z

    Hinode's EUV Imaging Spectrometer (EIS) has discovered ubiquitous outflows of a few to 50 km s{sup -1} from active regions (ARs). These outflows are most prominent at the AR boundary and appear over monopolar magnetic areas. They are linked to strong non-thermal line broadening and are stronger in hotter EUV lines. The outflows persist for at least several days. Using Hinode EIS and X-Ray Telescope observations of AR 10942 coupled with magnetic modeling, we demonstrate that the outflows originate from specific locations of the magnetic topology where field lines display strong gradients of magnetic connectivity, namely quasi-separatrix layers (QSLs), or in the limit of infinitely thin QSLs, separatrices. We found the strongest AR outflows to be in the vicinity of QSL sections located over areas of strong magnetic field. We argue that magnetic reconnection at QSLs separating closed field lines of the AR and either large-scale externally connected or 'open' field lines is a viable mechanism for driving AR outflows which are likely sources of the slow solar wind.

  18. Striking a Balance Between Energy and the Environment in the Columbia River Basin Regional Power Plan Touts Efficiency to Meet

    E-Print Network [OSTI]

    Striking a Balance Between Energy and the Environment in the Columbia River Basin Regional Power equivalent of the power use of a city the size of Seattle. Over time, the energy- efficiency target, to meet future demand. The plan's target for the first five years, 1,200 average megawatts, is the energy

  19. E-Print Network 3.0 - activation energy distribution Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Information Sciences 68 Ratepayer-Funded Energy-Efficiency Programs in a Restructured Electricity Summary: Private-Sector Energy-Efficiency Activities... a utility's past...

  20. INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS

    SciTech Connect (OSTI)

    Tziotziou, Kostas; Georgoulis, Manolis K. [Research Center for Astronomy and Applied Mathematics (RCAAM) Academy of Athens, 4 Soranou Efesiou Street, Athens, GR-11527 (Greece); Liu Yang [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

    2013-08-01T23:59:59.000Z

    In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that the AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre.

  1. ?c(++) and ?c(0) production from e(+)e(-) annihilation in the ? energy region

    E-Print Network [OSTI]

    Baringer, Philip S.

    1980-03-13T23:59:59.000Z

    VOLUME 62, NUMBER 11 PHYSICAL REVIEW LETTERS 13 MARCH 1989 X,+ and X, Production from e + e Annihilation in the Y Energy Region T. Bowcock, ' K. Kinoshita, ' F. M. Pipkin, ' M. Procario, ' Richard Wilson, ' J. Wolinski, ' D. Xiao, ' A. Jawahery, C.... H. Park, R. Poling, R. Fulton, P. Haas, M. Hempstead, T. Jensen, D. R. Johnson, H. Kagan, R. Kass, F. Morrow, J. Whitmore, P. Baringer, R. L. McIlwain, D. H. Miller, C. R. Ng, E. I. Shibata, W. M. Yao, M. S. Alam, D. Chen, N. Katayama, (6) I. J. Kim...

  2. Regional overview of Latin American and Caribbean energy production, consumption, and future growth. Report series No. 1

    SciTech Connect (OSTI)

    Wu, K.

    1994-07-01T23:59:59.000Z

    The Latin American and Caribbean region - comprising Mexico, Central and South America, and the Caribbean - is relatively well endowed with energy resources, although the distribution of these resources is uneven across countries. The region produces more energy than it consumes, and the surplus energy, which amounts to 3.6 million barrels of oil equivalent per day (boe/d), is mostly oil. While the region`s total oil (crude and products) exports decreased from 4.4 million barrels per day (b/d) in 1981 to 3.8 million b/d in 1992, its net oil exports increased from about 1.6 million b/d in 1981 to 2.8 million b/d in 1992. In 1993, the surplus oil in Latin America and the Caribbean remained at 2.8 million b/d. This report analyzes the key issues of the Latin American and Caribbean energy industry and presents the future outlook for oil, gas, coal, hydroelectricity, and nuclear power developments in the region. In addition, the status of biomass energy, geothermal, and other noncommercial energy in the region will be briefly discussed in the context of overall energy development. The rest of the report is organized as follows: Section II assesses the current situation of Latin American and Caribbean energy production and consumption, covering primary energy supply, primary energy consumption, downstream petroleum sector development, and natural gas utilization. Section III presents the results of our study of future energy growth in Latin America. Important hydrocarbons policy issues in the region are discussed in Section IV, and a summary and concluding remarks are provided in Section V.

  3. VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS

    SciTech Connect (OSTI)

    Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); O'Dwyer, B.; Mason, H. E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2012-01-01T23:59:59.000Z

    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.

  4. Stay Active this Summer (and Save Energy, Money, and the Environment...

    Broader source: Energy.gov (indexed) [DOE]

    Stay Active this Summer (and Save Energy, Money, and the Environment too) Stay Active this Summer (and Save Energy, Money, and the Environment too) August 8, 2012 - 2:14pm...

  5. NARROW DUST JETS IN A DIFFUSE GAS COMA: A NATURAL PRODUCT OF SMALL ACTIVE REGIONS ON COMETS

    SciTech Connect (OSTI)

    Combi, M. R.; Tenishev, V. M.; Rubin, M.; Fougere, N.; Gombosi, T. I., E-mail: mcombi@umich.edu [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2012-04-10T23:59:59.000Z

    Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet's nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.

  6. LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION

    E-Print Network [OSTI]

    Haven, Kendal F.

    2012-01-01T23:59:59.000Z

    of Geothermal Energy", Geothermal Energy, UNESCO, Paris,U. S . Department of Energy, Geothermal Energy DOE/ET/28442-Western United States, Geothermal Energy Magazine vo. 6, no.

  7. Sub-Saharan Africa-KITE Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: Energy ResourcesStockbridgeTestStudyingStutsmanActivities

  8. DOD-DOE Workshop on Joint Energy Activities

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    The general conditions for DOD-DOE interactions were delineated in an October 1978, Memorandum of Understanding (MOU) that identified two basic goals: improving energy efficiency and availability within DOD, and utilizing DOD and DOE expertise and facilities to carry out projects of mutual interest. There has been considerable interaction between DOD and DOE, including a number of proposed joint initiatives but a systematic and coordinated approach for nurturing, maintaining, and expanding these relationships has not been developed. A DOD-DOE Workshop on Joint Energy Activities was held on March 10-12, 1980. The workshop was structured into five working groups - Mobility Fuels, Conservation, Fossil Fuels for Fixed Facilities, Solar and Renewable Energy Sources, and Special Projects - with DOD and DOE cochairmen for each. Over a hundred DOD and DOE management, program, and policymaking representatives were brought together by the workshop Steering Committee to identify specific programs for inclusion in an overall plan for implementing the MOU and to deal with fundamental issues and problems of maintaining future communications. The workshop accomplished its goals, these being to: (1) improve communication among the appropriate key DOD and DOE personnel at all levels and promote information exchange; (2) review ongoing and already-proposed joint DOD and DOE programs; (3) initiate a coordinated, systematic effort to establish joint DOD-DOE energy-security programs; and (4) propose specific programs and projects of mutual interest for inclusion in a follow-on joint-implementation plan.

  9. EMERGENCE OF HELICAL FLUX AND THE FORMATION OF AN ACTIVE REGION FILAMENT CHANNEL

    SciTech Connect (OSTI)

    Lites, B. W.; Kubo, M. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A. [Lockheed Martin Solar and Astrophysics Lab, 3251 Hanover Street, Organization ADBS, Building 252, Palo Alto, CA 94304 (United States); Okamoto, T. J. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Otsuji, K., E-mail: lites@ucar.ed [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2010-07-20T23:59:59.000Z

    We present comprehensive observations of the formation and evolution of a filament channel within NOAA Active Region (AR) 10978 from Hinode/Solar Optical Telescope and TRACE. We employ sequences of Hinode spectro-polarimeter maps of the AR, accompanying Hinode Narrowband Filter Instrument magnetograms in the Na I D1 line, Hinode Broadband Filter Instrument filtergrams in the Ca II H line and G-band, Hinode X-ray telescope X-ray images, and TRACE Fe IX 171 A image sequences. The development of the channel resembles qualitatively that presented by Okamoto et al. in that many indicators point to the emergence of a pre-existing sub-surface magnetic flux rope. The consolidation of the filament channel into a coherent structure takes place rapidly during the course of a few hours, and the filament form then gradually shrinks in width over the following two days. Particular to this filament channel is the observation of a segment along its length of horizontal, weak (500 G) flux that, unlike the rest of the filament channel, is not immediately flanked by strong vertical plage fields of opposite polarity on each side of the filament. Because this isolated horizontal field is observed in photospheric lines, we infer that it is unlikely that the channel formed as a result of reconnection in the corona, but the low values of inferred magnetic fill fraction along the entire length of the filament channel suggest that the bulk of the field resides somewhat above the low photosphere. Correlation tracking of granulation in the G band presents no evidence for either systematic flows toward the channel or systematic shear flows along it. The absence of these flows, along with other indications of these data from multiple sources, reinforces (but does not conclusively demonstrate) the picture of an emerging flux rope as the origin of this AR filament channel.

  10. THE SPECTROSCOPIC SIGNATURE OF QUASI-PERIODIC UPFLOWS IN ACTIVE REGION TIMESERIES

    SciTech Connect (OSTI)

    Tian Hui; McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 8037 (United States); De Pontieu, Bart, E-mail: htian@ucar.edu, E-mail: mscott@ucar.edu, E-mail: bdp@lmsal.com [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States)

    2011-02-01T23:59:59.000Z

    Quasi-periodic propagating disturbances are frequently observed in coronal intensity image sequences. These disturbances have historically been interpreted as being the signature of slow-mode magnetoacoustic waves propagating into the corona. The detailed analysis of Hinode EUV Imaging Spectrometer (EIS) timeseries observations of an active region (known to contain propagating disturbances) shows strongly correlated, quasi-periodic, oscillations in intensity, Doppler shift, and line width. No frequency doubling is visible in the latter. The enhancements in the moments of the line profile are generally accompanied by a faint, quasi-periodically occurring, excess emission at {approx}100 km s{sup -1} in the blue wing of coronal emission lines. The correspondence of quasi-periodic excess wing emission and the moments of the line profile indicates that repetitive high-velocity upflows are responsible for the oscillatory behavior observed. Furthermore, we show that the same quasi-periodic upflows can be directly identified in a simultaneous image sequence obtained by the Hinode X-Ray Telescope. These results are consistent with the recent assertion of De Pontieu and McIntosh that the wave interpretation of the data is not unique. Indeed, given that several instances are seen to propagate along the direction of the EIS slit that clearly shows in-phase, quasi-periodic variations of intensity, velocity, width (without frequency doubling), and blue wing enhanced emission, this data set would appear to provide a compelling example that upflows are more likely to be the main cause of the quasi-periodicities observed here, as such correspondences are hard to reconcile in the wave paradigm.

  11. CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

    farm. Details are presented for the wind farm Sweetwater I (Abilene) as well as results from the application of this procedure to all the wind energy providers in the Texas ERCOT region in 2006....

  12. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  13. Site Characterization Activities with a focus on NETL MMV efforts: Southwest Regional Partnership, San Juan Basin Pilot, New Mexico

    E-Print Network [OSTI]

    Wilson, Thomas H.

    , San Juan Basin Pilot, New Mexico Tom Wilson1,2 , Art Wells1 , Henry Rauch1,2 , Brian Strazisar1 Juan Basin of northwestern New Mexico as part of the Southwest Regional Partnership's (SWP) pilot and subsequent interpretation of the National Energy Technology Laboratory MMV tracer and soil gas monitoring

  14. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    Retrieved from National Renewable Energy Laboratory: http://Golden, Colorado: National Renewable Energy Laboratory.for Energy Efficiency and Renewable Energy, Building

  15. Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters Meera A. Sidheswaran a

    E-Print Network [OSTI]

    Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters Meera A Keywords: Activated carbon fiberVolatile organic compoundIndoor pollutantEnergy efficient ventilation a b s t r a c t This study explores the potential environmental and energy benefits of using activated

  16. Aerobic Capacity, Activity Levels and Daily Energy Expenditure in Male and Female Adolescents of the

    E-Print Network [OSTI]

    Lieberman, Daniel E.

    . The highly active and energy-demanding lifestyle of rural Kenyan adolescents may accountAerobic Capacity, Activity Levels and Daily Energy Expenditure in Male and Female Adolescents travelled to school and daily energy expenditure in 15 habitually active male (13.961.6 years) and 15

  17. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    SciTech Connect (OSTI)

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2010-02-25T23:59:59.000Z

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300 C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.

  18. EPA Clean Energy-Environment Guide to Action 3.2 State and Regional Energy Planning Policy Description and Objective Summary

    E-Print Network [OSTI]

    unknown authors

    Energy planning is, in its broadest sense, a strategic effort to develop energy-related goals and objectives and formulate related policies and programs. As the nexus for a variety of state concerns, energy planning can serve as an umbrella mechanism for simultaneously addressing energy, environmental, economic, and other issues. Energy planning can be undertaken at both a state and regional level. Many states have used their energy plans to support the development and use of cost-effective clean energy to help address multiple challenges including energy supply and reliability (including concerns with availability, independence, and security), energy prices, air quality and public health, and job development. Clean energy planning (as one aspect of energy planning)

  19. Solar Energy Education. Humanities: activities and teacher's guide. Field test edition

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Activities are outlined to introduce students to information on solar energy while performing ordinary classroom work. In this teaching manual solar energy is integrated with the humanities. The activities include such things as stories, newspapers, writing assignments, and art and musical presentations all filled with energy related terms. An energy glossary is provided. (BCS)

  20. LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION

    E-Print Network [OSTI]

    Haven, Kendal F.

    2012-01-01T23:59:59.000Z

    Western United States, Geothermal Energy Magazine vo. 6, no.Utilization of Geothermal Energy: A Symposium. January 31 -of Energy, Division of Geothermal Energy, April 1978, CONF-

  1. A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings

    E-Print Network [OSTI]

    Feng, Wei

    2014-01-01T23:59:59.000Z

    H. Gao. 2011. China Renewable Energy Industry DevelopmentGolden CO: National Renewable Energy Resource LaboratoryDOE), Energy Efficiency & Renewable Energy. 2012. Buildings

  2. High-differential-quantum-efficiency, long-wavelength vertical-cavity lasers using five-stage bipolar-cascade active regions

    SciTech Connect (OSTI)

    Koda, R.; Wang, C.S.; Lofgreen, D.D.; Coldren, L.A. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Raytheon Vision Systems, Goleta, California 93117 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2005-05-23T23:59:59.000Z

    We present five-stage bipolar-cascade vertical-cavity surface-emitting lasers emitting at 1.54 {mu}m grown monolithically on an InP substrate by molecular beam epitaxy. A differential quantum efficiency of 120%, was measured with a threshold current density of 767 A/cm{sup 2} and voltage of 4.49 V, only 0.5 V larger than 5x0.8 V, the aggregate photon energy. Diffraction loss study on deeply etched pillars indicates that diffraction loss is a major loss mechanism for such multiple-active region devices larger than 20 {mu}m. We also report a model on the relationship of diffraction loss to the number of active stages.

  3. CHARACTERISTICS AND EVOLUTION OF THE MAGNETIC FIELD AND CHROMOSPHERIC EMISSION IN AN ACTIVE REGION CORE OBSERVED BY HINODE

    SciTech Connect (OSTI)

    Brooks, David H.; Warren, Harry P. [Space Science Division, Code 7673, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R., E-mail: dhbrooks@ssd5.nrl.navy.mi [Department of Physics, Alabama A and M, 4900 Meridian Street, Normal, AL 35762 (United States)

    2010-09-10T23:59:59.000Z

    We describe the characteristics and evolution of the magnetic field and chromospheric emission in an active region core observed by the Solar Optical Telescope (SOT) on Hinode. Consistent with previous studies, we find that the moss is unipolar, the spatial distribution of magnetic flux evolves slowly, and that the magnetic field is only moderately inclined. We also show that the field-line inclination and horizontal component are coherent, and that the magnetic field is mostly sheared in the inter-moss regions where the highest magnetic flux variability is seen. Using extrapolations from spectropolarimeter magnetograms, we show that the magnetic connectivity in the moss is different from that in the quiet Sun because most of the magnetic field extends to significant coronal heights. The magnetic flux, field vector, and chromospheric emission in the moss also appear highly dynamic but actually show only small-scale variations in magnitude on timescales longer than the cooling times for hydrodynamic loops computed from our extrapolations, suggesting high-frequency (continuous) heating events. Some evidence is found for flux (Ca II intensity) changes on the order of 100-200 G (DN) on timescales of 20-30 minutes that could be taken as indicative of low-frequency heating. We find, however, that only a small fraction (10%) of our simulated loops would be expected to cool on these timescales, and we do not find clear evidence that the flux changes consistently produce intensity changes in the chromosphere. Using observations from the EUV Imaging Spectrometer (EIS), we also determine that the filling factor in the moss is {approx}16%, consistent with previous studies and larger than the size of an SOT pixel. The magnetic flux and chromospheric intensity in most individual SOT pixels in the moss vary by less than {approx}20% and {approx}10%, respectively, on loop cooling timescales. In view of the high energy requirements of the chromosphere, we suggest that these variations could be sufficient for the heating of 'warm' EUV loops, but that the high basal levels may be more important for powering the hot core loops rooted in the moss. The magnetic field and chromospheric emission appear to evolve gradually on spatial scales comparable to the cross-field scale of the fundamental coronal structures inferred from EIS measurements.

  4. With respect to energy balance in mobile ad hoc networks, there have been active researches proposing energy-aware

    E-Print Network [OSTI]

    Yu, Chansu

    ABSTRACT With respect to energy balance in mobile ad hoc networks, there have been active of energy-related metrics to find the most energy- balancing route in route discovery procedure. However there have been few works touching the energy balance during data transmission that is addressed

  5. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    SciTech Connect (OSTI)

    Fraser Goff; George Guthrie

    1999-06-01T23:59:59.000Z

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  6. Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm

    SciTech Connect (OSTI)

    Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard; Nix, David; Pollard, Daniel A.; Iyer, Venky N.; Hechmer, Aaron; Simirenko, Lisa; Stapleton, Mark; Luengo Hendriks, Cris L.; Chu, Hou Cheng; Ogawa, Nobuo; Inwood, William; Sementchenko, Victor; Beaton, Amy; Weiszmann, Richard; Celniker, Susan E.; Knowles, David W.; Gingeras, Tom; Speed, Terence P.; Eisen, Michael B.; Biggin, Mark D.

    2008-01-10T23:59:59.000Z

    Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early-embryonic transcriptional regulation, and a significant proportion may be nonfunctional. Surprisingly, for five of the six factors, their recognition sites are not unambiguously more constrained evolutionarily than the immediate flanking DNA, even in more highly bound and presumably functional regions, indicating that comparative DNA sequence analysis is limited in its ability to identify functional transcription factor targets.

  7. Very High Energy Gamma-Ray Observations of the Galactic Centre Region

    E-Print Network [OSTI]

    Christopher van Eldik

    2008-11-06T23:59:59.000Z

    Recent progress in pushing the sensitivity of the Imaging Atmospheric Cherenkov Technique into the 10 mCrab regime has enabled first sensitive observations of the innermost few 100 pc of the Milky Way in Very High Energy (VHE; >100 GeV) gamma rays. These observations are a valuable tool to understand the acceleration and propagation of energetic particles near the Galactic Centre. Remarkably, besides two compact gamma-ray sources, faint diffuse gamma-ray emission has been discovered with high significance. The current VHE gamma-ray view of the Galactic Centre region is reviewed, and possible counterparts of the gamma-ray sources and the origin of the diffuse emission are discussed. The future prospects for VHE Galactic Centre observations are discussed based on order-of-magnitude estimates for a CTA type array of telescopes.

  8. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    SciTech Connect (OSTI)

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  9. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building TechnologiesBuilding Stock. Golden, Colorado: National Renewable Energy

  10. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    Summer Study on Energy Efficiency in Buildings August 12,Standard for Energy Efficiency of Public Buildings. Energyfor Energy Efficiency of Residential Buildings in Hot Summer

  11. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    3 Commercial and Residential Building Site Energy Usagecommercial and residential prototype buildings discussed in the previous section is simulated in EnergyPlus (DOE, 2011). The energy usage

  12. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect (OSTI)

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01T23:59:59.000Z

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  13. E-Print Network 3.0 - active region spectra Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de Madrid, Dpt. de Astrofsica, Facultad C.C. Fsicas, Madrid, Spain, dmg@astrax.fis.ucm.es, Summary: -infrared indicators of chromospheric activity. The spectra have been...

  14. Solar Energy Education. Social studies: activities and teacher's guide. Field test edition

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Solar energy information is made available to students through classroom instruction by way of the Solar Energy Education teaching manuals. In this manual solar energy, as well as other energy sources like wind power, is introduced by performing school activities in the area of social studies. A glossary of energy related terms is included. (BCS)

  15. Relationship between magnetic power spectrum and flare productivity in solar active regions

    E-Print Network [OSTI]

    ; Politano et al. 1989) energy spectrum of solar wind plasma is close to k-5/3 . In the MHD case, Alfven.I. Abramenko Big Bear Solar Observatory, 40386 N. Shore Lane, Big Bear City, CA 92314, USA ABSTRACT Power turbulent regime with constant rate of energy transfer along the spectrum is holding. Due to an equilibrium

  16. Carbon emissions in energy production and use in the tropical region: The case of the state of Rio de Janeiro - Brazil

    SciTech Connect (OSTI)

    Freitas, M.A.V. de; Porto, R.M.G. Jr.; Peres, F.M. Jr.; Cecchi, J.C.

    1997-12-31T23:59:59.000Z

    The Brasil is one of the most important region in the tropics. An efficient management in energy use and production in this state of Rio de Janeiro could be an excellent model to others development regions in the tropics. In 1994, the State of the Rio de Janeiro represented around 13 millions of inhabitants, an economy of 42 billions US$ (gross national products), the biggest brazilian producer in petroleum and natural gas and a large market to energy products (electric power and fossil fuels). This state was responsible for 8.6 millions tonnes of carbon in CO2 emissions in 1994, issue to combustion of petroleum products (65.9%), coal (27.8%), natural gas (3.7%), charcoal and fuelwood (2.6%). The principals responsibles to these carbon emissions are the industrial activities (40%), the transport (35.7%) and energy production (12%). The main objectives of this work are analyze the carbon emissions in energy production and use in Rio de Janeiro between 1980 and 1994, the possibilities to reduction this amount and the perspectives to renewable energy.

  17. International Atomic Energy Agency (IAEA) activities on spent fuel management options

    SciTech Connect (OSTI)

    Lovasic, Z.; Danker, W. [International Atomic Energy Agency (IAEA) Vienna (Austria)

    2007-07-01T23:59:59.000Z

    Many countries have in the past several decades opted for storage of spent fuel for undefined periods of time. They have adopted the 'wait and see' strategy for spent fuel management. A relatively small number of countries have adopted reprocessing and use of MOX fuel as part of their strategy in spent fuel management. From the 10, 000 tonnes of heavy metal that is removed annually from nuclear reactors throughout the world, only approximately 30 % is currently being reprocessed. Continuous re-evaluation of world energy resources, announcement of the Global Nuclear Energy Partnership (GNEP) and the Russian initiative to form international nuclear centers, including reprocessing, are changing the stage for future development of nuclear energy. World energy demand is expected to more than double by 2050, and expansion of nuclear energy is a key to meeting this demand while reducing pollution and greenhouse gases. Since its foundation, the International Atomic Energy Agency (IAEA) has served as an interface between countries in exchanging information on the peaceful development of nuclear energy and at the same time guarding against proliferation of materials that could be used for nuclear weapons. The IAEA's Department of Nuclear Energy has been generating technical documents, holding meetings and conferences, and supporting technical cooperation projects to facilitate this exchange of information. This paper focuses on the current status of IAEA activities in the field of spent fuel management being carried out by the Division of Nuclear Fuel Cycle and Waste Technology. Information on those activities could be found on the web site link www.iaea.org/OurWork/ST/NE/NEFW/nfcms. To date, the IAEA has given priority in its spent fuel management activities to supporting Member States in their efforts to deal with growing accumulations of spent power reactor fuel. There is technical consensus that the present technologies for spent fuel storage, wet and dry, provide adequate protection to people and environment. As storage durations grow, the IAEA has expanded its work related to the implications of extended storage periods. Operation and maintenance of containers for storage and transport have also been investigated related to long term storage periods. In addition, as international interest in reprocessing of spent fuel increases, the IAEA continues to serve as a crossroads for sharing the latest developments in spent fuel treatment options. A Coordinated Research Project is currently addressing spent fuel performance assessment and research to evaluate long term effects of storage on spent fuel. The effect of increased burnup and mixed oxide fuels on spent fuel management is also the focus of interest as it follows the trend in optimizing the use of nuclear fuel. Implications of damaged fuel on storage and transport as well as burnup credit in spent fuel applications are areas that the IAEA is also investigating. Since spent fuel management considerations require social stability and institutional control, those aspects are taken into account in most IAEA activities. Data requirements and records management as storage durations extend were also investigated as well as the potential for regional spent fuel storage facilities. Spent fuel management activities continue to be coordinated with others in the IAEA to ensure compliance and consistency with efforts in the Department of Safety and Security and the Department of Safeguards, as well as with activities related to geologic disposal. Either disposal of radioactive waste or spent fuel will be an ultimate consideration in all spent fuel management options. Updated information on spent fuel treatment options that include fuel reprocessing as well as transmutation of minor actinides are investigated to optimize the use of nuclear fuel and minimize impact on environment. Tools for spent fuel management economics are also investigated to facilitate assessment of industrial applicability for these options. Most IAEA spent fuel management activities will ultimately be reported in o

  18. Energy landscape and thermally activated switching of submicron-sized ferromagnetic elements

    E-Print Network [OSTI]

    Van Den Eijnden, Eric

    Energy landscape and thermally activated switching of submicron-sized ferromagnetic elements Weinan September 2002; accepted 18 November 2002 Thermally activated switching and the energy landscape films. The energy landscape of such a system is nicely summarized on the plane spanned by the average

  19. Forward Modeling of Active Region Coronal Emissions. II. Implications for Coronal Heating This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    McTiernan, James M.

    Forward Modeling of Active Region Coronal Emissions. II. Implications for Coronal Heating of Contents and more related content is available Home Search Collections Journals About Contact us My IOPscience #12;FORWARD MODELING OF ACTIVE REGION CORONAL EMISSIONS. II. IMPLICATIONS FOR CORONAL HEATING L. L

  20. E-Print Network 3.0 - active region evolution Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    56 The main rationale In the 21st Summary: on the evolution and recent status of the ASEAN Organization and its space activities for enhancing sustainable... development in the...

  1. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 279 IMCOM-Southeast Region: Redstone Arsenal

    SciTech Connect (OSTI)

    Hatley, Darrel D.; Goddard, James K.

    2010-09-30T23:59:59.000Z

    Report describing a building retuning workshop presented to staff at Redstone Arsenal. Document includes issues identified during building audits and recommendations for future activities to reduce energy use at the site.

  2. Hydrogen Delivery R&D Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Activities Hydrogen Delivery R&D Activities Hydrogen delivery technology may encompass several options over the short and long terms. The transportation and distribution...

  3. ITP Industrial Distributed Energy: Review of Thermally Activated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provide significant energy savings in waste-heat-fired applications, as part of Combined Heat and Power (CHP) systems. For example, TATs can increase the energy savings associated...

  4. REGIONAL AND COMMUNITY IMPACTS OF THE DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM IN THE WESTERN PACIFIC

    E-Print Network [OSTI]

    Case, Charles W.

    2013-01-01T23:59:59.000Z

    Conservation and Solar Applications, U.S. De- partment of Energy.Conservation and Solar Applications of the U.S. Department of Energy

  5. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

  6. Best Practices for Wind Energy Development in the Great Lakes Region

    SciTech Connect (OSTI)

    Pebbles, Victoria; Hummer, John; Haven, Celia

    2011-07-19T23:59:59.000Z

    This report offers a menu of 18 different, yet complementary, preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. Each best practice describes the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, academia, and federal, state and local government regulators. The practices were identified through a year-long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors. Optimally, a suite of these best practices would be applied in an appropriate combination to fit the conditions of a particular wind project or a set of wind projects within a given locality or region.

  7. Western Region Renewable Energy Markets: Implications for the Bureau of Land Management

    SciTech Connect (OSTI)

    Haase, S.; Billman, L.; Gelman, R.

    2012-01-01T23:59:59.000Z

    The purpose of this analysis is to provide the U.S. Department of the Interior (DOI) and the Bureau of Land Management (BLM) with an overview of renewable energy (RE) generation markets, transmission planning efforts, and the ongoing role of the BLM RE projects in the electricity markets of the 11 states (Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming) that comprise the Western Electricity Coordinating Council (WECC) Region. This analysis focuses on the status of, and projections for, likely development of non-hydroelectric renewable electricity from solar (including photovoltaic [PV] and concentrating solar power [CSP]), wind, biomass and geothermal resources in these states. Absent new policy drivers and without the extension of the DOE loan guarantee program and Treasury's 1603 program, state RPS requirements are likely to remain a primary driver for new RE deployment in the western United States. Assuming no additional policy incentives are implemented, projected RE demand for the WECC states by 2020 is 134,000 GWh. Installed capacity to meet that demand will need to be within the range of 28,000-46,000 MW.

  8. Prediction of average. beta. and. gamma. energies and probabilities of. beta. -delayed neutron emission in the region of fission products

    SciTech Connect (OSTI)

    Hirsch, M.; Staudt, A.; Klapdor-Kleingrothaus, H.V. (Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany))

    1992-07-01T23:59:59.000Z

    Mean {beta} and {gamma} energies and probabilities of {beta}-delayed neutron emission (P{sub n}) in the region of fission products are calculated using a proton-neutron quasiparticle random-phase approximation nuclear model. {beta}-decay properties of these nuclides are essential input parameters for decay heat calculations for nuclear reactors. The results are compared with recent measurements. Mean energies and the P{sub n} values of {approximately}150 experimentally unknown short-lived isotopes are predicted.

  9. Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V

    SciTech Connect (OSTI)

    Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

    1993-08-01T23:59:59.000Z

    Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

  10. Energy watchers IV. Energy, economics and environment: Imperatives realities, and balance and Pacific Basin Demand and downstream activities: Is Middle East supply the answer

    SciTech Connect (OSTI)

    El Mallakh, D.H. (ed.)

    1993-01-01T23:59:59.000Z

    Since 1974, the International Research Center for Energy and Economic Development (ICEED) has been holding annual international energy conferences that seek to bring together the public and private sectors from the United States and overseas in order to facilitate the exchange of views and information. The nineteenth annual international energy sessions on [open quotes]Energy, Economics, and Environment: Imperatives, Realities, and Balance,[close quotes] opened April 21, 1992. The goal was to look at the complex linkage between energy and the environment that cannot be decoupled in the near to medium future. The thirteenth annual international area conference, held from April 23-24, 1992, reflected appreciation and acknowledgement of the primacy of the Arabian/Persian Gulf in international energy trade. The area theme, [open quotes]Pacific Basin Demand and Downstream Activities: Is Middle East Supply the Answer ,[close quotes] was premised on the solidification of trade blocs globally and on these two regions which represent the major areas of growth in energy demand and petroleum supply, respectively. Issues addressed in the papers presented included the impact on the world oil sector of these demand and supply zones in the direction of upstream and downstream investment, the approaches and instruments that may be initiated or honed in terms of joint ventures and supply arrangements in the 1990s, and the possibility that the former USSR will become an energy land bridge between the Pacific Basin and Europe.

  11. Formation of Turbulent Cones in Accretion Disk Outflows and Application to Broad Line Regions of Active Galactic Nuclei

    E-Print Network [OSTI]

    A. Y. Poludnenko; E. G. Blackman; A. Frank

    2002-01-24T23:59:59.000Z

    We consider the stability of an accretion disk wind to cloud formation when subject to a central radiation force. For a vertical launch velocity profile that is Keplerian or flatter and the presence of a significant radiation pressure, the wind flow streamlines cross in a conical layer. We argue that such regions are highly unstable, and are natural sites for supersonic turbulence and, consequently, density compressions. We suggest that combined with thermal instability these will all conspire to produce clouds. Such clouds can exist in dynamical equilibrium, constantly dissipating and reforming. As long as there is an inner truncation radius to the wind, our model emerges with a biconical structure similar to that inferred by Elvis (2000) for the broad line region (BLR) of active galactic nuclei (AGN). Our results may also apply to other disk-wind systems.

  12. Energy in Mexico: a profile of solar energy activity in its national context

    SciTech Connect (OSTI)

    Hawkins, D.

    1980-04-01T23:59:59.000Z

    The geopolitical, economic, and cultural aspects of the United States of Mexico are presented. Mexico's energy profile includes the following: energy policy objectives, government energy structure, organizations for implementation, indigeneous energy sources, imported energy sources, solar energy research and development, solar energy organizations and solar energy related legislation and administrative policies. International agreements, contacts, manufacturers, and projects are listed. (MRH)

  13. The Effects of Great Plains Irrigation on the Surface Energy Balance, Regional Circulation, and Precipitation

    E-Print Network [OSTI]

    Huber, David B.; Brunsell, Nathaniel A.; Mechem, David B.

    2014-05-05T23:59:59.000Z

    the net radiation at the surface, channeling that energy into additional latent heat flux, which increases convective available potential energy and provides downstream convective systems with additional energy and moisture. Most noteworthy in this study...

  14. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    might expect an energy-efficient building to be expensive toand Analysis of Energy Efficient New Commercial Buildings,possible to build an energy-efficient building for no more

  15. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    We see that the low energy buildings need not cost more thanincludes both very low energy buildings, and buildings thatThe range shows the low-energy buildings at the left end,

  16. LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION

    E-Print Network [OSTI]

    Haven, Kendal F.

    2012-01-01T23:59:59.000Z

    Kegion KGKA 2. On-going Geothermal Power Plant Activity inof 50MW Demonstration Geothermal Power Plant, Presentationrates Table 2 On-Going Geothermal Power Plane Activity in

  17. European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind. Abstract-Short-term wind power forecasting is recognized nowadays as a major requirement for a secure and economic integration of wind power in a power system. In the case of large-scale integration, end users

  18. A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings

    E-Print Network [OSTI]

    Feng, Wei

    2014-01-01T23:59:59.000Z

    energy usage intensity for residential and commercial buildingscommercial and residential prototype buildings [15]. Figures 10 and 11 show the energy usage

  19. Energy-efficiency testing activities of the Mobile Energy Laboratory - Semiannual Report: April 1, 1990, Through September 30, 1990

    SciTech Connect (OSTI)

    Parker, G.B.; Currie, J.W.

    1991-03-01T23:59:59.000Z

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1990. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. MELs are equipped for the on-site evaluation of energy use efficiency. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. This report describes the testing, test results, and suggested courses of action.

  20. Fuel Cell R&D Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell R&D Activities Fuel Cell R&D Activities Photo of electric motor under the hood of fuel cell car The Fuel Cell Technologies fuel cell research and development (R&D)...

  1. US TG 4 Activities of QA Forum | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    TG 4 Activities of QA Forum US TG 4 Activities of QA Forum Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13diodessolariawhitfield...

  2. Room-temperature lasing in microring cavities with an InAs/InGaAs quantum-dot active region

    SciTech Connect (OSTI)

    Kryzhanovskaya, N. V., E-mail: kryj@mail.ioffe.ru; Zhukov, A. E.; Nadtochy, A. M. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Moiseev, E. I. [St. Petersburg Polytechnic University (Russian Federation)] [St. Petersburg Polytechnic University (Russian Federation); Kulagina, M. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Savelev, A. V.; Arakcheeva, E. M. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Lipovskii, A. A. [St. Petersburg Polytechnic University (Russian Federation)] [St. Petersburg Polytechnic University (Russian Federation); Zubov, F. I. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Kapsalis, A.; Mesaritakis, C.; Syvridis, D. [University of Athens (Greece)] [University of Athens (Greece); Mintairov, A. [University of Notre Dame (United States)] [University of Notre Dame (United States); Livshits, D. [Innolume GmbH (Germany)] [Innolume GmbH (Germany)

    2013-10-15T23:59:59.000Z

    Microring cavities (diameter D = 2.7-7 {mu}m) with an active region based on InAs/InGaAs quantum dots are fabricated and their characteristics are studied by the microphotoluminescence method and near-field optical microscopy. A value of 22 000 is obtained for the Q factor of a microring cavity with the diameter D = 6 {mu}m. Lasing up to room temperature is obtained in an optically pumped ring microlaser with a diameter of D = 2.7 {mu}m.

  3. K-12 Lesson Plans and Activities Gallery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    courtesy of the University of Maryland. AZ&039;s PIMA County using Energy Literacy to Train Educators. 3 of 12 AZ's PIMA County using Energy Literacy to Train Educators. DaNel...

  4. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01T23:59:59.000Z

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  5. A solar active region loop compared with a 2D MHD model

    E-Print Network [OSTI]

    C. Gontikakis; G. J. D. Petrie; H. C. Dara; K. Tsinganos

    2005-03-31T23:59:59.000Z

    We analyzed a coronal loop observed with the Normal Incidence Spectrometer (NIS), which is part of the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory (SOHO). The measured Doppler shifts and proper motions along the selected loop strongly indicate unidirectional flows. Analysing the Emission Measure Curves of the observed spectral lines, we estimated that the temperature along the loop was about 380000 K. We adapted a solution of the ideal MHD steady equations to our set of measurements. The derived energy balance along the loop, as well as the advantages/disadvantages of this MHD model for understanding the characteristics of solar coronal loops are discussed.

  6. Measurement of attitudes toward commercial development of geothermal energy in Federal Region IX. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-06-01T23:59:59.000Z

    A survey was conducted of ten target study groups and subgroups for Klamath Falls, Oregon, and Susanville, California: local government, current and potential industry at the site, relocators to the site, current and potential financial community, regulators, and current and potential promoters and developers. The results of benchmark attitudinal measurement is presented separately for each target group. A literature review was conducted and Macro-environmental attitudes of a sample of local government and industry personnel at the sites were assessed. An assessment of capabilities was made which involved two measurements. The first was a measurement of a sample of promoters, developers, and industrial service companies active at the site to determine infrastructure capabilities required by industry for geothermal plants. The second measurement involved analyzing a sample of industry management in the area and defining their requirements for plant retrofit and expansion. Finally, the processes used by the study group to analyze information to reach commitment and regulatory decisions that significantly impact on geothermal energy projects at the site were identified and defined.

  7. Energy data collection as a necessary activity for developing countries

    SciTech Connect (OSTI)

    Loebl, A.S.; Cagle, J.D.

    1980-01-01T23:59:59.000Z

    This paper examines the reasons for energy data collection by developing countries and includes an examination of the special requirements of Costa Rica for energy data collection. A primary reason for national data collection is to support the planning function, and this is particularly significant where energy planning and economic development are concerned. Energy data are necessary to support all phases of planning: short-term; mid-term; and long-range and/or strategic planning. These different planning requirements are discussed. Energy data are also necessary to support national management, as well as the economic-development functions. These latter requirements are also discussed briefly.

  8. Federal Interagency Geothermal Activities 2011 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergy Federal EfficiencyReporting &Federal

  9. Financial and Activity Report - June 5, 2009 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergyFinal FY 2009 NEUPStructures »WR-FS-09-04and

  10. CO2 Mitigation Potential of Biomass Energy Plantations in DevelopingRegions

    E-Print Network [OSTI]

    ) of the total demand for primary energy by 2050 (Fig. 1a).2 Global CO2 emissions in 2050 are 25% less than Biomass can make major contributions to the global commercial energy economy in ways that help promote to global energy supply in a renewables-intensive global energy scenario (RIGES), providing 35% (206 EJ

  11. HIGH-RESOLUTION HELIOSEISMIC IMAGING OF SUBSURFACE STRUCTURES AND FLOWS OF A SOLAR ACTIVE REGION OBSERVED BY HINODE

    SciTech Connect (OSTI)

    Zhao Junwei; Kosovichev, Alexander G. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Sekii, Takashi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2010-01-01T23:59:59.000Z

    We analyze a solar active region observed by the Hinode Ca II H line using the time-distance helioseismology technique, and infer wave-speed perturbation structures and flow fields beneath the active region with a high spatial resolution. The general subsurface wave-speed structure is similar to the previous results obtained from Solar and Heliospheric Observatory/Michelson Doppler Imager observations. The general subsurface flow structure is also similar, and the downward flows beneath the sunspot and the mass circulations around the sunspot are clearly resolved. Below the sunspot, some organized divergent flow cells are observed, and these structures may indicate the existence of mesoscale convective motions. Near the light bridge inside the sunspot, hotter plasma is found beneath, and flows divergent from this area are observed. The Hinode data also allow us to investigate potential uncertainties caused by the use of phase-speed filter for short travel distances. Comparing the measurements with and without the phase-speed filtering, we find out that inside the sunspot, mean acoustic travel times are in basic agreement, but the values are underestimated by a factor of 20%-40% inside the sunspot umbra for measurements with the filtering. The initial acoustic tomography results from Hinode show a great potential of using high-resolution observations for probing the internal structure and dynamics of sunspots.

  12. K-12 Lesson Plans & Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    from Villa Maria Middle School in Connecticut. Teach your students the importance of green energy while enhancing your required curriculum. Visit our Teach and Learn page to...

  13. Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdf MoreEnergyEnergyPending

  14. Thermodynamics Student Guide (6 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of EnergyThermodynamic EvaluationStudent

  15. Solar energy in Italy: a profile of renewable energy activity in its national context

    SciTech Connect (OSTI)

    Shea, C.A.

    1980-12-01T23:59:59.000Z

    The following are included: country overview; energy summary; Italian Republic-geopolitical, economic, and cultural aspects; the energy profile; imported energy sources; solar energy research and development; solar energy organizations; solar energy related legislation and administration policies; and international agreements, contacts, manufacturers, and projects. (MHR)

  16. Urban spatial-temporal activity structures: a New Approach to Inferring the Intra-urban Functional Regions via Social Media Check-In Data

    E-Print Network [OSTI]

    Zhi, Ye; Wang, Shaowen; Deng, Min; Gao, Jing; Li, Haifeng

    2014-01-01T23:59:59.000Z

    Most existing literature focuses on the exterior temporal rhythm of human movement to infer the functional regions in a city, but they neglects the underlying interdependence between the functional regions and human activities which uncovers more detailed characteristics of regions. In this research, we proposed a novel model based on the low rank approximation (LRA) to detect the functional regions using the data from about 15 million check-in records during a yearlong period in Shanghai, China. We find a series of latent structures, called urban spatial-temporal activity structure (USTAS). While interpreting these structures, a series of outstanding underlying associations between the spatial and temporal activity patterns can be found. Moreover, we can not only reproduce the observed data with a lower dimensional representative but also simultaneously project both the spatial and temporal activity patterns in the same coordinate system. By utilizing the K-means clustering algorithm, five significant types ...

  17. A Study to Assess Needed Improvements and Barriers in Planning and Delivering Agricultural Extension Activities in the Kurdistan Region of Iraq

    E-Print Network [OSTI]

    Khoshnaw, Yousif Khalid

    2013-07-22T23:59:59.000Z

    The purpose of this study was to assess planning and delivering agricultural extension activities in the Kurdistan region of Iraq for future program implementation. The study was a descriptive research and used a modified Delphi technique...

  18. Predicting the Power Output of Distributed Renewable Energy Resources within a Broad Geographical Region

    E-Print Network [OSTI]

    Chalkiadakis, Georgios

    Predicting the Power Output of Distributed Renewable Energy Resources within a Broad Geographical potentially dis- tributed renewable energy resources (su years, estimating the power output of in- herently intermittent and potentially distributed renewable

  19. Analyzing the Regional Impact of a Fossil Energy Cap in China

    E-Print Network [OSTI]

    Zhang, D.

    Decoupling fossil energy demand from economic growth is crucial to China’s sustainable development. In addition to energy and carbon intensity targets enacted under the Twelfth Five-Year Plan (2011–2015), a coal or fossil ...

  20. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    example, should the indoor ice-rink energy consumption bethe cooling provided from the ice-rink reduces the cooling